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q

NGI, USA University of the Andes, CHL Shimizu Corporation, JPN

Dr. Yuan Feng Prof. Dr. Sumeet Kumar Sinha Ms. Fatemah Behbehani

TuSimple, USA University of New Delhi, IND UC, San Diego, USA

Prof. Dr. Han Yang Dr. Hexiang Wang Dr. Katarzyna Staszewska
王和祥

University of Tianjin, CHN Berkshire Hathaway Inc., USA Gdańsk UT, POL
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Motivation and Inspiration

The main motivation for development of the FEI system, comprised of these lecture notes and accompany-

ing modeling tools, computational libraries and visualization tools, is to help research and teach modeling

and simulation for civil engineering mechanics problems. Focus is on development and use of methods

that reduce Kolmogorov complexity and modeling uncertainty. In other words, focus is on development

and use of methods that predict and inform rather than fit. These lecture notes, in particular, are being

developed to document research, teaching and practical problem solving work for Real-ESSI problems

(Realistic modeling and simulation of Earthquakes, Soils, Structures and their Interaction). Almost all

of the theories, formulations and algorithms described here can be directly analyzed using Real-ESSI

Simulator system (http://real-essi.info/ ; http://real-essi.us/) on local computers or on

Cloud Computers (Amazon Web Services, AWS, on Marketplace, search for ESSI). A number of theories

and formulations, related to Real-ESSI problems, developed by us and others, as referenced, are collected

within these Lecture Notes in order to have one location, one write-up, with all/most necessary material

for the analysis of ESSI problems. These Lecture Notes are in perpetual development, and chapters

and sections are being edited and added as you read this. In that sense, these Lecture Notes are not

”polished” and there are some rough edges, however improvement work is underway.

Work on these lecture notes was inspired by a number of books and lecture notes that I have enjoyed

over many years, (Bathe, 1982), (Bathe and Wilson, 1976), (Felippa, 1992b, 1989, 1993; Felippa and

Park, 1995), (Willam, 1993), (Sture, 1993), (Lubliner, 1990), (Crisfield, 1991), (Chen and Han, 1988a),

(Zienkiewicz and Taylor, 1991a,b), (Argyris and Mlejnek, 1991), (Malvern, 1969), (Saouma, 1992-2013),

(Dunica and Kolundžija, 1986), (Kojić, 1997), (Hjelmstad, 1997), (Oberkampf et al., 2002). I particularly

enjoyed book by Bathe (1982), the only one I had partial access to in the late ’80s, with all the examples

that could be worked out on paper. In ’89 I managed to purchase a used book by Zienkiewicz (1977)

for US$50, from my first salary as a young engineer in Energoprojekt Company, from a colleague. In the

early ’90s, I was lucky to get exposed to early, draft versions of books by Kojić (1993); Kojić (1997).

Few years later, I enjoyed lectures and lecture notes by Felippa (1992b, 1989, 1993); Felippa and Park

(1995), Willam (1993), and Sture (1993).

Current version of lecture notes, the one in front of you, aims to extend concepts described by my

Teachers and Professors. Presented formulations and implementations are available within the Real-

ESSI Simulator http://real-essi.info/, http://real-essi.us/. A number of available, provided

models, some very simple, some more sophisticated, and some very sophisticated, can be analyzed and

results visualized using Real-ESSI Simulator on local computers or on Cloud Computers (Amazon Web

Services, AWS).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes page: 4 of 3287

Dedication

This book is dedicated to friends, colleagues, supporters, promoters that I had a privilege to know and

work with over last many years, and that are not with us anymore.

May they rest in peace!

Robert P. Kennedy, 1939-2018

”Response of a soil structure system is nonlinear, and I would really like to

know what that response is!”

”There are engineers and then there are Engineers!”

Neboǰsa Orbović, Nebojxa Orbovi�, 1962-2021

”As an engineer, I have to know, with good accuracy, what will happen to

the structure during loading, and will use modeling and analysis to find out,

hence verification and validation for modeling and analysis is really important”

”As an engineer, I have to know what are response sensitivities to

modeling parameters.”
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Contributions

Useful contributions were also made by the following students, colleagues and collaborators (other than

those listed on the front page): Mr. Babak Kamranimoghadam ( ), Mr. Chang-Gyun Jeong

( ), Mr. Chao Luo ( ), Mr. Max Sieber, Mr. Antonio Felipe Salazar, and Mr. Borko

Miladinović (Borko Miladinovi�).

Comments

Comments, corrections, edits &c. are much appreciated! Special thanks to (in chronological order):

Miroslav Živković (Miroslav �ivkovi�), Dmitry J. Nicolsky, Andrzej Niemunis, Robbie Jaeger, Yiorgos

Perikleous ( Γιώργος Περικλέους ), Robert Roche, Viktor Vlaski, Edison Lam, Dr. Sukumar Baishya,

Marco Andreini, Francisco ”Paco” Beltran.

The best way to send a comment on these lecture notes is by email, however please read the following

NOTE about sending an email to me. It would be great if you can place the following in the subject

line of your email: Draft CompMech Lecture Notes. This will be much appreciated as it will help me

filter your email and place it in Draft CompMech Lecture Notes email-box that I regularly read.

Acknowledgement

Many developments described in these lecture notes, developed over many years, were made possible

in collaborators with, and with financial support from the: US-DOE, US-NRC, CNSC/CCSN, US-NSF,

CalTrans, CH-ENSI/IFSN, ATC/US-FEMA, UN-IAEA, US-ACE, and NASA. Their support and collab-

oration is much appreciated!
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Software

Theoretical and computational developments described in these lecture notes are implemented in a

program Real-ESSI Simulator (http://real-essi.info/; (http://real-essi.us/; http://sokocalo.

engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/). The Real ESSI Simulator (Realistic Model-

ing and Simulation of Earthquakes, Soils, Structures and their Interaction), (pronunciation of ESSI is

similar to easy, as in ”as easy as pie”) is a software, hardware and documentation system for select level

of fidelity (high, low, intermediate), high performance, time domain, nonlinear/inelastic, deterministic

or probabilistic, 3D, finite element modeling and simulation of

• statics and dynamics of soil,

• statics and dynamics of rock,

• statics and dynamics of structures,

• statics of soil-structure systems, and

• dynamics of earthquake-soil-structure system interaction.

The Real-ESSI Simulator systems is used for the analysis, design and assessment of static and dynamic

behavior of infrastructure objects, including buildings, bridges, dams, nuclear energy installations, tunnels,

etc. The Real-ESSI Simulator develops modeling and simulations that inform and predict.

The Real-ESSI Simulator program is available in source, in executable form and as debian package at

http://real-essi.info/, http://real-essi.us/. The Real ESSI Simulator system is also available

for use on Amazon Web Services Market Place, search for ”Real ESSI” or ”MS ESSI”.

The name Real-ESSI, is explained in some detail in section 201.2.6 on page 710.
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Distribution?

These Lecture Notes can be downloaded and distributed worldwide. If you use these Lecture Notes,

please cite them as:

Boris Jeremić, Zhaohui Yang, Zhao Cheng, Guanzhou Jie, Nima Tafazzoli, Matthias Preisig, Panagiota

Tasiopoulou, Federico Pisanò, José Abell, Kohei Watanabe, Yuan Feng, Sumeet Kumar Sinha, Fatemah

Behbehani, Han Yang, and Hexiang Wang. Nonlinear Finite Elements: Modeling and Simulation of

Earthquakes, Soils, Structures and their Interaction. University of California, Davis, CA, USA; 2021.

ISBN: 978-0-692-19875-9

or

Jeremić et al. Nonlinear Finite Elements: Modeling and Simulation of Earthquakes, Soils, Structures

and their Interaction. UCD, CA, USA, 2021. ISBN: 978-0-692-19875-9
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes OVERVIEW TABLE OF CONTENTS page: 12 of 3287

504 Earthquake-Soil-Structure Interaction, Nuclear Power Plants

(2010-2011-2012-2017-2018-2019-2020-2021-2023-) . . . . . . . . . . . . . . . . . . .

505 Liquefaction and Cyclic Mobility

(2002-2006-2009-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . .

506 Slope Stability in 2D and 3D

(1999-2010-) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

507 Concrete Structures

(1989-2017-2018-2019-2020-2021-) . . . . . . . . . . . . . . . . . . . . . . .

508 ESSI for Concrete Dams

(2019-2020-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . . .

509 ESSI for Buildings

(2018-2019-2020-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . .

510 Guidebook: Modeling and Simulation of Earthquake-Soil-Structure Interaction for

Nuclear Energy Installations, Dams, Buildings, Bridges, Tunnels, &c.

(2016-2017-2018-2019-2020-2021-) . . . . . . . . . . . . . . . . . . . . . . .

511 ASCE-4, Chapter on Nonlinear ESSI analysis

(2016-2020-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . . .

512 Earthquake-Soil-Structure Interaction, Core Functionality

(2017-2018-2019-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . .

600 References

700 Appendix

701 Useful Formulae

(1985-1989-1993-2021-) . . . . . . . . . . . . . . . . . . . . . . . . . .

702 The nDarray Programming Tool

(1993-1995-1996-1999-) . . . . . . . . . . . . . . . . . . . . . . . . . .

703 Closed Form Gradients to the Plastic Potential Function

(1993-1994-) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

704 Hyperelasticity, Detailed Derivations

(1995-1996-) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

705 Body and Surface Wave Analytic Solutions

(2005-2001-2010-2011-2018-2019-2021-) . . . . . . . . . . . . . . . . . . . . . .
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes CONTENTS page: 33 of 3287

205.3.4.16 Modeling, Material Model: Drucker-Prager Nonassociated Multi-Yield

Surface Material Model . . . . . . . . . . . . . . . . . . . 854

205.3.4.17 Modeling, Material Model: Drucker-Prager Nonassociated Material Model

that Matches G/Gmax Curves. . . . . . . . . . . . . . . . . 856

205.3.4.18 Modeling, Material Model: Rounder Mohr-Coulomb Nonassociated Multi-

Yield Surface Material Model. . . . . . . . . . . . . . . . . 858

205.3.4.19 Modeling, Material Model: Tsinghhua Liquefaction Material Model . . 860

205.3.4.20 Modeling, Material Model: SANISand Material Model, version 2004 . . 862

205.3.4.21 Modeling, Material Model: SANISand Material Model, version 2008 . . 864

205.3.4.22 Modeling, Material Model: Cosserat Linear Elastic Material Model . . 867

205.3.4.23 Modeling, Material Model: von Mises Cosserat Material Model . . . . 868

205.3.4.24 Modeling, Material Model: Uniaxial Linear Elastic, Fiber Material Model 869

205.3.4.25 Modeling, Material Model: Stochastic Uniaxial Linear Elastic Model . . 870

205.3.4.26 Modeling, Material Model: Stochastic Uniaxial Nonlinear Armstrong Fred-

erick Model . . . . . . . . . . . . . . . . . . . . . . . 871

205.3.4.27 Modeling, Material Model: Uniaxial Nonlinear Concrete, Fiber Material

Model, version 02 . . . . . . . . . . . . . . . . . . . . . 873

205.3.4.28 Modeling, Material Model: Faria-Oliver-Cervera Concrete Material . . 874

205.3.4.29 Modeling, Material Model: Plane Stress Layered Material . . . . . . 875

205.3.4.30 Modeling, Material Model: Uniaxial Nonlinear Steel, Fiber Material Model,

version 01 . . . . . . . . . . . . . . . . . . . . . . . . 876

205.3.4.31 Modeling, Material Model: Uniaxial Nonlinear Steel, Fiber Material Model,

version 02 . . . . . . . . . . . . . . . . . . . . . . . . 877

205.3.4.32 Modeling, Material Model: Plane Stress Plastic Damage Concrete Material

878

205.3.4.33 Modeling, Material Model: Plane Stress Rebar Material. . . . . . . 879

205.3.4.34 Modeling, Nodes: Adding Nodes . . . . . . . . . . . . . . . 880

205.3.4.35 Modeling, Nodes: Adding Stochastic Nodes . . . . . . . . . . . 881

205.3.4.36 Modeling, Nodes: Define Nodal Physical Group . . . . . . . . . . 882

205.3.4.37 Modeling, Nodes: Adding Nodes to Nodal Physical Group . . . . . . 883

205.3.4.38 Modeling, Nodes: Removing Nodal Physical Group . . . . . . . . 884

205.3.4.39 Modeling, Nodes: Print Nodal Physical Group . . . . . . . . . . 885

205.3.4.40 Modeling, Nodes: Removing Nodes . . . . . . . . . . . . . . 886

205.3.4.41 Modeling, Nodes: Adding Nodal Mass, for 3DOFs and/or 6DOFs . . . 887
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Expansion with Inverse Order. . . . . . . . . . . . . . . . . 1071

205.3.4.171 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Ex-
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes CONTENTS page: 41 of 3287

205.3.5.4 Simulation: Dynamic Solution Advancement with the Constant Time

Step . . . . . . . . . . . . . . . . . . . . . . . . . . 1106

205.3.5.5 Simulation: Dynamic Solution Advancement with Variable Time Step . 1107

205.3.5.6 Simulation: Generalized Eigenvalue Analysis . . . . . . . . . . . 1108

205.3.5.7 Simulation: Displacement Control . . . . . . . . . . . . . . . 1109

205.3.5.8 Simulation: Load, Control, Factor Increment . . . . . . . . . . . 1110

205.3.5.9 Simulation: Dynamic Integrator, Newmark Method . . . . . . . . 1111

205.3.5.10 Simulation: Dynamic Integrator, Hilber Hughes Taylor, HHT, α Method 1112

205.3.5.11 Simulation: Absolute Convergence Criteria. . . . . . . . . . . . 1113

205.3.5.12 Simulation: Average Convergence Criteria . . . . . . . . . . . . 1114

205.3.5.13 Simulation: Relative Convergence Criteria . . . . . . . . . . . . 1115

205.3.5.14 Simulation: Solution Algorithms . . . . . . . . . . . . . . . 1116

205.3.5.15 Simulation: Constitutive Integration Algorithm . . . . . . . . . . 1117

205.3.5.16 Simulation: Status Check . . . . . . . . . . . . . . . . . . 1119

205.3.5.17 Simulation: Save State . . . . . . . . . . . . . . . . . . . 1120

205.3.5.18 Simulation: Restart Simulation . . . . . . . . . . . . . . . . 1121

205.3.5.19 Simulation: Return Value for simulate Command . . . . . . . . 1122

205.3.5.20 Simulation: New Elastic Loading Case . . . . . . . . . . . . . 1132

205.3.5.21 Simulation: Combine Elastic Load Cases . . . . . . . . . . . . 1133

205.3.5.22 Simulation, Dynamic Solution Advancement for Solid-Fluid Interaction . 1134

205.3.5.23 Simulation, Dynamic Solution Advancement for Stochastic Finite Ele-

ment Method. . . . . . . . . . . . . . . . . . . . . . . 1135

205.3.5.24 Simulation, Sobol Sensitivity Analysis . . . . . . . . . . . . . 1136

205.3.5.25 Simulation: 3D 3C Wave Field Inversion . . . . . . . . . . . . 1140

205.3.6 Output Options . . . . . . . . . . . . . . . . . . . . . . . 1142

205.3.6.1 Output Options: Enable/Disable Output . . . . . . . . . . . . 1143

205.3.6.2 Output Options: Enable/Disable Element Output . . . . . . . . . 1144

205.3.6.3 Output Options: Enable/Disable Displacement Output . . . . . . . 1145

205.3.6.4 Output Options: Enable/Disable Acceleration Output . . . . . . . 1146

205.3.6.5 Output Options: Enable/Disable Asynchronous Output . . . . . . . 1147

205.3.6.6 Output Options: Output Every n Steps . . . . . . . . . . . . . 1148

205.3.6.7 Output Options: Output Support Reactions . . . . . . . . . . . 1149
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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101.1 Chapter Summary and Highlights

101.2 On Modeling

Modeling of mechanical behaviour of civil engineering problems is performed using models. It is important

to note that everything we do for design or assessment is based on models. Models can range from very

simple to very sophisticated.

Simple Model Example. For example, simple model for the strength of a beam, as developed by

Leonardo da Vinci and noted by Timoshenko (1953), states: ”In every article that is supported, but

is free to bend, and is of uniform cross section and material, the part that is farthest from the support

will bend the most.” Leonardo da Vinci suggested a number of tests with variation in beam length and

keeping the same cross section, and record what loads could these beams carry. He concluded that

strength of beams supported on both ends, simple beams, varies inversely proportional to teh beam

length and directly to the beam width.

This simple model for beam bending, as stated, is based directly on observations of experiments.

These experiments represent the physics discovery experiments.

Sophisticated Model Example. The same simple beam problem can be analyzed using a sophisticated

Bernoulli or Timoshenko beam finite elements, or even using 3D solid brick elements.

The importance of computer analysis for design and performance assessment of civil engineering

systems has recently dramatically increased. With availability of fast, inexpensive computers, and avail-

ability of numerical analysis programs, computer analysis of civil engineering systems for design and for

assessment of performance is commonly used. It is important to note that failure of civil engineering

systems has high consequences. For safe and economical design and for assessment of performance (re-

liability, robustness and safety) of civil engineering systems, engineers have to perform proper analysis,

usually a numerical, computer analysis.

Developers of computer analysis software, computational analysts/engineers and users of numerical

analysis face a critical question: How should confidence in analysis results be critically assessed?

Verification and Validation (V&V) of computational analysis is the major process for assessing and

quantifying this confidence. Verification is the assessment of the software correctness and numerical ac-

curacy of the solution to a given computational model. Validation is the assessment of physical accuracy

of a computational model based on comparisons between computation simulation and experimental data.

For verification, the association or relationship of the simulation to the real world is not an issue while for
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validation the relationship between computation and real world external data is the issue. Verification

and validation are covered in much more detail in part 300 of this book, on pages after page 1436.

101.2.1 The Performance Challenge

Computational science challenges (Post, 2004):

• The Performance Challenge

• The Programming Challenge

• The Prediction Challenge

Parallel computing, development of portable Distributed Memory Parallel (DMP) applications, sped-

ifically Architecture Aware Plastic Domain Decomposition (AAPDD) Method (Feng et al., 2024) that

addresses the challenge of multiple CPUs, multiple cores, multiple GPUs, multiple networks, etc.

The Programming Challenge.

Quality controlled, managed program development...

The Prediction Challenge

Epistemic, modeling uncertainties

Aliatory, parametric uncertainties

Development of numerical modeling tools for engineers to develop a hierarchy of models, to explore,

try, different levels of modeling sophistication in order to understand, gain insight into the influence of

epistemic/modeling uncertainty on analysis and to propagate aleatory/parametric uncertainty through

models...

101.2.2 Analysis Governance

Analysis governance, sometimes also called simulations governance1 (Szabó and Actis, 2011, 2012), is

a very important components of numerical analysis in civil engineering.

Analysis governance is a process of increasing confidence in numerical analysis results. Analysis

governance covers both

• Numerical analysis tools, the program that is used for analysis

1Analysis consists of modeling, the physics component, and simulation, the numerics component, hence analysis covers

both modeling and simulation components (Analysis = Modeling + Simulation).
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• Numerical analyst, expert engineer that is performing the analysis

The numerical analysis program has to be extensively verified and validated.

Numerical analyst, expert engineer has to have required level of expertise, knowledge, experience

and, if possible, has to be certified to perform required analysis.
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101.3 Specialization to Computational Mechanics

In this section we start from general mechanics and specialize our interest toward the field of computa-

tional mechanics (this is based on great lecture notes by Prof. Carlos Felippa (Felippa, 1993)):

101.3.1 Mechanics

• Theoretical

• Applied

• Computational

– Nanomechanics

– Micromechanics

– Continuum Mechanics

∗ Solids and Structures

∗ Fluids

∗ Multiphysics

– Systems

• Experimental

101.3.2 Continuum Mechanics

• Statics

– Time invariant

– Transient (quasi-statics)

• Dynamics

101.3.3 Statics and Dynamics

• Linear

• Nonlinear

– Elastic

– Inelastic
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101.3.4 Discretization Methods

• Finite Element Method (FEM)

– FEM Formulation

∗ Displacement

∗ Equilibrium

∗ Mixed

∗ Hybrid

– FEM Solution

∗ Stiffness

∗ Flexibility

∗ Mixed

• Boundary Element Method

• Finite Difference Method

• Finite Volume Method

• Spectral Method

• Mesh-Free Method

101.3.5 The Solution Morass

A system of 1000 linear equations has one solution.

A system of 1000 cubic equations has 31000 ≈ 10477 solutions.

It is worth putting this number in prospective: number of atoms in the earth is about 1050, and a

number of atoms in the universe is about 1078 (Niemunis, 2015 –).

Solution: Continuation or Incremental analysis!

101.3.6 Smooth Nonlinearities

• Finite deflections

• Nonlinear elasticity

• Follower forces
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101.3.7 Rough Nonlinearities

• Elasto-plasticity

• Contact/Interface/Joint

• Interface/joint Friction

101.4 Tour of Computational Mechanics

In this section we describe various examples of equilibrium path and set up basic terminology.

101.4.1 Equilibrium Path

101.4.2 Special Equilibrium Points

101.4.2.1 Critical Points

Limit Points

Bifurcation Points

101.4.2.2 Turning Points

101.4.2.3 Failure Points

101.4.3 Generalized Response

101.4.4 Sources of Nonlinearities

Tonti Diagrams

101.4.5 Simulation Process: Loading Stages, Increments and Iterations
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input

loading stage

increment

iteration

output

Figure 101.1: Nonlinear analysis loading stages, loading increments, equilibrium iterations.
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Finite Elements Formulation

(1989-1994-1999-2005-2010-2011-2012-2013-2015-2016-2017-2018-2019-2020-2021-)

(In collaboration with Dr. Zhao Cheng, Dr. Nima Tafazzoli, Prof. José Abell, Dr. Yuan Feng. Prof. Han Yang)
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102.1 Chapter Summary and Highlights

This section uses basic principles of mechanics to derive finite element equations. We start with general

setup, assuming large deformation in section 102.2, and then proceed to develop finite element formu-

lation for small deformations in section 102.3 on page 104 . Further investigation of large deformation

formulation is given in chapter 106 on page 482.

102.2 Formulation of the Continuum Mechanics Incremental Equations of Mo-

tion

This section follows Bathe (1982), Felippa (1989) and Felippa (1993).

Assume that a 3D solid is analyzed in a fixed Cartesian coordinate system, Figure (102.1). Also,

assume that the solid can undergo large displacements and rotations, large strains, and nonlinear or

inelastic constitutive response. The main aim is to evaluate the equilibrium of solid at discrete times

0,∆t, 2∆t, . . . , where ∆t is an increment in time. To do that, a continuation strategy is used. That

is, assume that the solution for all the variables (generalized displacements, strain, stress, forces, etc.)

is available, was solved for, for all time steps from 0 to time t. Solution for the next time step t + ∆t

will be based on already obtained solution from the previous time step, at time t, (Felippa, 1993). This

approach will be applied for each time step, repetitively until the solution for all time steps is obtained.

In following all parts of the solid, as they undergo displacements and rotations, from the original

configuration to the final configuration, adopted is a Lagrangian ( or material ) formulation of the

problem. This approach is contrasting Eulerian (or spatial) formulation , usually used in the analysis of

fluid mechanics problems.

In the Lagrangian incremental analysis approach the equilibrium of the solid at time t+∆t is expressed

using the principle of virtual displacements. Using tensorial notation1 this principle requires that:

∫
t+∆tV

t+∆tσij δ t+∆tϵij
t+∆tdV = t+∆tR (102.1)

where the t+∆tσij are Cartesian components of the Cauchy stress tensor, see section 701.2.1 on page

2860, the t+∆tϵij are the Cartesian components of an infinitesimal strain tensor, see section 701.2.2 on

page 2863, and the δ means ”variation in” i.e.:

1Einstein’s summation rule is implied unless stated differently, all lower case indices (i, j, p, q, m, n, o, r, s, t, . . . ) can have

values of 1, 2, 3, and values for capital letter indices will be specified where need be.
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Figure 102.1: Motion of solid in a Cartesian coordinate system.

δ t+∆tϵij = δ
1
2

(
∂ui

∂ t+∆txj
+

∂uj
∂ t+∆txi

)
=

1
2

(
∂δui

∂ t+∆txj
+

∂δuj
∂ t+∆txi

)
(102.2)

It should be noted that Cauchy stresses are ”body forces per unit area” in the configuration at time

t + ∆t, and the infinitesimal strain components are also referred to this as yet unknown configuration.

The right hand side of equation (102.1), i.e. t+∆tR is the virtual work performed when the solid is

subjected to a virtual displacement at time t + ∆t:

t+∆tR =
∫

t+∆tV

(
t+∆t f B

i – ρüt+∆t
i

)
δut+∆t

i
t+∆tdV +

∫
t+∆tS

t+∆t f S
i δut+∆t

i
t+∆tdS

where t+∆t f B
i and t+∆t f S

i are the components of the externally applied body and surface force vectors,

respectively, and –ρüi
t+∆t is the inertial body force that is present if accelerations are present2, δui is

the ith component of the virtual displacement vector.

The main problem in applying equation (102.1) is that the configuration of the solid at a time t + ∆t

is unknown. The continuous change in the configuration, deformation of the solid needs to be properly

2This is based on D’Alembert’s principle (D’Alembert, 1758).
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modeled. As an example, consider, for example, Cauchy stress at time t + ∆t. This stress cannot be

obtained by adding to the Cauchy stresses at time t, a stress increment that is due only to material

deformation. The reason is that material might rotate, and stress state is a function of tractions (loads)

and size and orientation of differentially small faces on which stress components act. For material only

nonlinear analysis, the of large displacements, large rotations and large strain will be neglected. Large

displacements, rotations and large strains will be addressed in more detail in Chapter 106 on page 482.

The continuous change in the configuration of the solid is dealt with by using appropriate stress and

strain measures and constitutive relations. When solving the general problem3 one possible approach is

given in Simo (1988). The previous discussion was oriented toward small deformation, small-displacement

analysis leading to the use of Cauchy stress tensor σij and small strain tensor ϵij .

In the following, covered briefly are other stress and strain measures particularly useful in large strain

and large displacement analysis. More detailed description of large displacements, large rotations and

large strains problems is addressed in Chapter 106 on page 482.

The solution is sought for equation 102.1, which expresses the equilibrium and compatibility require-

ments of the general solid considered in the configuration corresponding to time t + ∆t. The nonlinear

or inelastic behavior of material enters equation 102.1 through the stress-strain constitutive equations.

In general, the solid can undergo large displacements, large rotations large strains, and since constitutive

relations are nonlinear, the relation in equation 102.1 cannot be solved directly. However, an approx-

imate solution can be obtained by referring all variables to a previously calculated known equilibrium

configuration, and linearizing the resulting equations. Iterations can then improve this solution.

To develop the governing equations for the approximate solution obtained by linearization, recall that

the solutions for time 0,∆t, 2∆t, . . . , t have already been calculated and that the Piola–Kirchhoff stress

tensor is energy conjugate to the Green–Lagrange strain tensor:

∫
0V

t
0Sij δ

t
0ϵij

0dV =
∫

0V

(
0ρ
tρ

0
t xi,m

tσmn
0
t xj,n

) (t
0xk,i δ

t
tϵkl

t
0 xl,j

) 0dV =
∫

0V

0ρ
tρ

tσmn δ
t
0ϵmn

0dV

(102.3)

since

t
0xk,l

0
t xl,m = δkm

and

3That is, large displacements, large rotations, large deformations and material nonlinear and/or inelastic.
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0ρ
0dV = tρtdV

one obtains

∫
0V

t
0Sij δ

t
0ϵij

0dV =
∫

0V

tσmn δ
t
tϵmn

tdV (102.4)

where 2nd Piola–Kirchhoff stress tensor is defined as:

t
0Sij = 0ρ

tρ
0
t xi,m

tσmn
0
t xj,n (102.5)

and 0
t xj,n = ∂0xi

∂txm
, and

0ρ
tρ represents the ratio of the mass density at time 0 and time t, and the Green–

Lagrange strain is defined as:

t
0ϵij =

1
2
(t
0ui,j + t

0uj,i + t
0uk,i

t
0uk,j

)
(102.6)

By employing equation 102.4 stresses and strains are referenced to the known equilibrium configuration.

The choice lies between two formulations, named (a)total Lagrangian and (b) updated Lagrangian

formulations.

For the total Lagrangian formulations, all static and kinematic variables are referenced to the initial

configuration at time 0. On the other hand, for the updated Lagrangian formulation, all static and

kinematic variables are referenced to the previous step equilibrium configuration at time t. Both the

total Lagrangian and updated Lagrangian formulations include all kinematic nonlinear effects due to

large displacement, large rotations, and large strains. Whether the large strain behavior is modeled

appropriately depends on the constitutive relations specified. The only advantage of using one over the

other formulation lies in numerical efficiency.

Using equation 102.4 in the total Lagrangian formulation, considered is this equation:

∫
0V

t+∆t
0 Sij δ

t+∆t
0 ϵij

0dV = t+∆tR (102.7)

while in the updated Lagrangian formulation considered is this equation:

∫
tV

t+∆t
t Sij δ

t+∆t
t ϵij

tdV = t+∆tR (102.8)
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where t+∆tR is the external virtual work as defined in equation ??. Approximate solution to the equa-

tion 102.7 and equation 102.8 can be obtained by linearization. Comparison of the total Lagrangian

and updated Lagrangian formulations reveal that they are quite similar, with the difference in the choice

of different reference configurations for kinematic and static variables. If in the numerical solution the

appropriate constitutive tensors are employed, identical results should be obtained.

102.3 Finite Element Discretization

Consider the equilibrium of a general three–dimensional solid such as in Figure (102.2) (Bathe, 1996).

The external forces acting on a solid are surface tractions f S
i and body forces f B

i . Displacements are ui

and strain tensor4 is ϵij and the stress tensor corresponding to strain tensor is σij .

x2

x1

x3

1

1

2

2

3

3f
B

f B
f B

f
S

f
S

f
S

1r

r
3

r
2

Figure 102.2: General three dimensional solid.

Dynamic equilibrium equation is given as

σij,j = fi – ρüi (102.9)

where σij,j is a small deformation (Cauchy) stress tensor, fi are external (body (f B
i ) and surface (f S

i ))

forces, ρ is material density and üi are accelerations. Inertial forces ρüi follow from D’Alembert’s principle

4small strain tensor as defined in equation: ϵij = 1
2
(
ui,j + uj,i

)
.
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(D’Alembert, 1758). The above equation can be premultiplied with virtual displacements δui and then

integrated by parts to obtain the weak form, as further elaborated below.

For a given solid, loaded with external forces, with prescribed supports solution for displacements,

strains and stresses are sought. The principle of virtual displacements (PVD) can be used to find a

solution. Using PVD, equilibrium is achieved if the total internal virtual work is equal to the total

external virtual work, for any compatible, small virtual displacements, that satisfy the essential boundary

conditions.

Mathematically this is expressed using equation 102.10 for the solid at time t + ∆t. Since the

incremental approach is used, a time dimension is dropped so that all the equations are applied for the

given increment5, at time t + ∆t. The equation is now, using tensorial notation6:

∫
V
σij δϵij dV =

∫
V

(
f B
i – ρüi

)
δui dV +

∫
S

f S
i δui dS (102.10)

The internal work given on the left side of (102.10) is equal to the actual stresses σij going through the

virtual strains δϵij that corresponds to the imposed virtual displacements. The external work is on the

right side of (102.10) and is equal to the actual surface forces f S
i and body forces f B

i – ρüi going through

the virtual displacements δui.

It is noted virtual strains used in equationi 102.10 correspond to the imposed virtual displacements

that can be represented by any compatible set of displacements that satisfy the geometric boundary

conditions. The equation 102.10 is an expression of equilibrium, and for different virtual displacements,

correspondingly, different equations of equilibrium are obtained. Equation 102.10 also contains the

compatibility and constitutive requirements. Displacements should be continuous and compatible and

should satisfy the displacement boundary conditions, and the stresses should be evaluated from the

strains using appropriate constitutive relations. Thus, the principle of virtual displacements contains

all requirements that need to be fulfilled to analyze a problem in solid and structural mechanics. The

principle of virtual displacements can be directly related to the principle that the total potential Π of

the system must be stationary.

In the finite element analysis, approximation for the solid in Figure 102.2 is done by creating an

assemblage of discrete finite elements with the elements connected at nodal points. The displacements

measured in a local coordinate system r1, r2 and r3 within each element are assumed to be a function

of the displacements at the N finite element nodal points:

5t + ∆t will be dropped from now one in this chapter.
6Einstein’s summation rule is implied unless stated differently, all lower case indices (i, j, p, q, m, n, o, r, s, t, . . . ) can have

values of 1, 2, 3, and values for capital letter indices will be specified where need be.
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ui ≈ ûa = HI ūIa (102.11)

where I = 1, 2, 3, . . . , n and n is number of nodes in a specific element, a = 1, 2, 3 represents a num-

ber of dimensions (can be 1 or 2 or 3). Real displacement field ui is approximated with approximate

displacement field ûa, and HI represent displacement interpolation functions, ūIa is the tensor of global

approximate generalized displacement components at all element nodes. The term generalized displace-

ments mean that both translations, rotations, or any other nodal unknown are modeled independently.

Here specifically, only translational degrees of freedom are considered. The strain tensor is defined as:

ϵab =
1
2
(
ua,b + ub,a

)
(102.12)

and by using equation 102.11, approximate strain tensor can be defined as:

ϵab ≈ êab =
1
2
(
ûa,b + ûb,a

)
=

=
1
2
(
(HI ūIa),b + (HI ūIb),a

)
=

=
1
2
((

HI ,b ūIa
)

+
(
HI ,a ūIb

))
(102.13)

The most general stress-strain relationship7 for an isotropic material is:

σ̂ab = Eabcd

(
êcd – ϵ0cd

)
+ σ0

ab (102.14)

where σ̂ab is the approximate Cauchy stress tensor, Eabcd is the constitutive tensor8, êcd is the infinites-

imal approximate strain tensor, ϵ0cd is the infinitesimal initial strain tensor and σ0
ab is the initial Cauchy

stress tensor.

Using the assumption of the displacements within each finite element, as expressed in equation 102.11,

equilibrium equations that correspond to nodal point displacements of the assemblage of finite elements

can be derived. Equation 102.10 can be rewritten as a sum9 of integrations over the volume and areas

of all finite elements:

⋃
m

∫
Vm

σ̂ab δêab dVm =
⋃
m

∫
Vm

(
f B
a – ρüa

)
δûa dVm +

⋃
m

∫
Sm

f S
a δûS

a dSm

7in terms of exact stress and strain fields, but it holds for approximate fields as well.
8This tensor can be elastic or elastoplastic constitutive tensor.
9Or, more correctly as a union

⋃
m since we are integrating over the union of elements.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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where m = 1, 2, 3, . . . , k and k is the number of elements. It is important to note that the integrations in

(??) are performed over the element volumes and surfaces, and that for convenience different element

coordinate systems may be used in the calculations. If we substitute equations 102.11, 102.12, 102.13

and 102.14 in ??, it follows:

⋃
m

∫
Vm

(
Eabcd

(
êcd – ϵ0cd

)
+ σ0

ab

)
δ

(
1
2
(
HI ,b ūIa + HI ,a ūIb

))
dVm =

⋃
m

∫
Vm

f B
a δ (HI ūIa) dVm –

⋃
m

∫
Vm

HJ ¨̄uJa ρ δ (HI ūIa) dVm +
⋃
m

∫
Sm

f S
a δ (HI ūIa) dSm

(102.15)

or:

⋃
m

∫
Vm

(
Eabcd

((
1
2
(
HJ,d ūJc + HJ,c ūJd

))
– ϵ0cd

)
+ σ0

ab

)
δ

(
1
2
(
HI ,b ūIa + HI ,a ūIb

))
dVm =

=
⋃
m

∫
Vm

f B
a δ (HI ūIa) dVm –

⋃
m

∫
Vm

HJ ¨̄uJa ρ δ (HI ūIa) dVm +
⋃
m

∫
Sm

f S
a δ (HI ūIa) dSm

(102.16)

We can observe that δ in the previous equations represents a virtual quantity, but the rules for δ

are quite similar to regular differentiation so that δ can enter the brackets and ”virtualize” the nodal

displacement10. It thus follows:

⋃
m

∫
Vm

(
Eabcd

((
1
2
(
HJ,d ūJc + HJ,c ūJd

))
– ϵ0cd

)
+ σ0

ab

) (
1
2
(
HI ,b δūIa + HI ,a δūIb

))
dVm =

=
⋃
m

∫
Vm

f B
a (HIδūIa) dVm –

⋃
m

∫
Vm

HJ ¨̄uJa ρ (HIδūIa) dVm +
⋃
m

∫
Sm

f S
a (HIδūIa) dSm

(102.17)

Let us now work out some algebra on the left-hand side of the equation (102.17):⋃
m

∫
Vm

(
Eabcd

((
HJ,d ūJc + HJ,c ūJd

)
2

)
– Eabcdϵ

0
cd + σ0

ab

) ((
HI ,b δūIa + HI ,a δūIb

)
2

)
dVm =

=
⋃
m

∫
Vm

f B
a (HIδūIa) dVm –

⋃
m

∫
Vm

HJ ¨̄uJa ρ HIδūIa dVm +
⋃
m

∫
Sm

f S
a (HIδūIa) dSm

(102.18)

and further:
10since they are driving variables that define the overall displacement field through interpolation functions
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⋃
m

∫
Vm

((
1
2
(
HJ,d ūJc + HJ,c ūJd

))
Eabcd

(
1
2
(
HI ,b δūIa + HI ,a δūIb

)))
dVm +

+
⋃
m

∫
Vm

(
–Eabcd ϵ

0
cd

(
1
2
(
HI ,b δūIa + HI ,a δūIb

)))
dVm +

+
⋃
m

∫
Vm

(
σ0

ab

) (1
2
(
HI ,b δūIa + HI ,a δūIb

))
dVm =

⋃
m

∫
Vm

f B
a (HIδūIa) dVm

–
⋃
m

∫
Vm

HJ ¨̄uJa ρ HIδūIa dVm

+
⋃
m

∫
Sm

f S
a (HIδūIa) dSm

(102.19)

Several things should be observed in the equation (102.19). Namely, the first three lines in the equation

can be simplified if one takes into account symmetries of Eijkl and σij . In the case of the elastic stiffness

tensor Eijkl major and both minor symmetries exist. In the case of the elastoplastic stiffness tensor, such

symmetries exist if a flow rule is associated. If the flow rule is non–associated, only minor symmetries

exist while major symmetry is destroyed11. As a matter of fact, both minor symmetries in Eijkl are the

only symmetries needed, and the first line of (102.19) can be rewritten as:

⋃
m

∫
Vm

((
1
2
(
HJ,d ūJc + HJ,c ūjd

))
Eabcd

(
1
2
(
HI ,b δūIa + HI ,a δūIb

)))
dVm =

=
⋃
m

∫
Vm

(
HJ,d ūJc

)
Eabcd

(
HI ,b δūIa

)
dVm =

=
⋃
m

∫
Vm

(
HI ,b δūIa

)
Eabcd

(
HJ,d ūJc

)
dVm

(102.20)

Similar simplifications are possible in the second and third line of the equation (102.19). Namely, in the

second line both minor symmetries of Eijkl can be used so that:

11for more on stiffness tensor symmetries, see sections (104.6.1, 104.3 and 104.4)
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⋃
m

∫
Vm

(
–Eabcd ϵ

0
cd

(
1
2
(
HI ,b δūIa + HI ,a δūIb

)))
dVm =

=
⋃
m

∫
Vm

(
–Eabcd ϵ

0
cd
(
HI ,b δūIa

))
dVm

(102.21)

and the third line can be simplified due to the symmetry in Cauchy stress tensor σij as:

⋃
m

∫
Vm

(
σ0

ab

) (1
2
(
HI ,b δūIa + HI ,a δūIb

))
dVm =

=
⋃
m

∫
Vm

(
σ0

ab

) (
HI ,b δūIa

)
dVm

(102.22)

After these simplifications, equation (102.19) looks like this:

⋃
m

∫
Vm

(
HI ,b δūIa

)
Eabcd

(
HJ,d ūJc

)
dVm +

+
⋃
m

∫
Vm

(
–Eabcd ϵ

0
cd
(
HI ,b δūIa

))
dVm +

⋃
m

∫
Vm

(
σ0

ab

) (
HI ,b δūIa

)
dVm =

=
⋃
m

∫
Vm

f B
a (HIδūIa) dVm –

⋃
m

∫
Vm

HJ ¨̄uJa ρ HIδūIa dVm +
⋃
m

∫
Sm

f S
a (HIδūIa) dSm

(102.23)

or if unknown nodal accelerations12 ¨̄uJc and displacements ūJc are left on the left hand side and all

known quantities are moved to the right hand side:

⋃
m

∫
Vm

HJ δac ¨̄uJc ρ HIδūIa dVm +
⋃
m

∫
Vm

(
HI ,b δūIa

)
Eabcd

(
HJ,d ūJc

)
dVm =

=
⋃
m

∫
Vm

f B
a (HIδūIa) dVm +

⋃
m

∫
Sm

f S
a (HIδūIa) dSm +

+
⋃
m

∫
Vm

(
Eabcd ϵ

0
cd
(
HI ,b δūIa

))
dVm –

⋃
m

∫
Vm

(
σ0

ab

) (
HI ,b δūIa

)
dVm

(102.24)

To obtain the equation for the unknown nodal generalized displacements from equation 102.24,

invoke the virtual displacement theorem. This theorem states that virtual displacements are any, non

12It is noted that ¨̄uJc = δac¨̄uJa relationship was used here, where δac is the Kronecker delta.
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zero, kinematically admissible displacements. In that case, we can factor out nodal virtual displacements

δūIa so that equation 102.24 becomes:

[⋃
m

∫
Vm

HJ δac ¨̄uJc ρ HI dVm +
⋃
m

∫
Vm

(
HI ,b

)
Eabcd

(
HJ,d ūJc

)
dVm

]
δūIa =

=
⋃
m

[∫
Vm

f B
a HI dVm

]
δūIa +

⋃
m

[∫
Sm

f S
a HI dSm

]
δūIa +

+
⋃
m

[∫
Vm

(
Eabcd ϵ

0
cd HI ,b

)
dVm

]
δūIa –

⋃
m

[∫
Vm

(
σ0

ab

)
HI ,b dVm

]
δūIa

(102.25)

and now just cancel δūIa on both sides:

⋃
m

∫
Vm

HJ δac ρ HI ¨̄uJcdVm +

⋃
m

∫
Vm

(
HI ,b

)
Eabcd

(
HJ,d ūJc

)
dVm =

=
⋃
m

∫
Vm

f B
a HI dVm +

⋃
m

∫
Sm

f S
a HI dSm +

+
⋃
m

∫
Vm

(
Eabcd ϵ

0
cd HI ,b

)
dVm –

⋃
m

∫
Vm

(
σ0

ab

)
HI ,b dVm

(102.26)

One should also observe that in the first line of equation (102.26) generalized nodal accelerations ¨̄uJc

and generalized nodal displacements ūJc are unknowns that are not subjected to integration so they can

be factored out of the integral:

⋃
m

∫
Vm

HJ δac ρ HI dVm ¨̄uJc

+
⋃
m

∫
Vm

HI ,b Eabcd HJ,d dVm ūJc

=
⋃
m

∫
Vm

f B
a HI dVm +

⋃
m

∫
Sm

f S
a HI dSm +

+
⋃
m

∫
Vm

(
Eabcd ϵ

0
cd HI ,b

)
dVm –

⋃
m

∫
Vm

(
σ0

ab

)
HI ,b dVm (102.27)

We can now define several tensors from equation (102.27):
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(m)MIacJ =
∫

Vm
HJ δac ρ HI dVm (102.28)

(m)KIacJ =
∫

Vm
HI ,b Eabcd HJ,d dVm (102.29)

(m)FB
Ia =

∫
Vm

f B
a HI dVm (102.30)

(m)FS
Ia =

∫
Sm

f S
a HI dSm (102.31)

(m)Fϵ
0
mn

Ia =
∫

Vm
Eabcd ϵ

0
cd HI ,b dVm (102.32)

(m)Fσ
0
mn

Ia =
∫

Vm
σ0

ab HI ,b dVm (102.33)

where (m)MIacJ is the element mass tensor, (m)KIacJ is the element stiffness tensor, (m)FB
Ia is the tensor of

element body forces, (m)FS
Ia is the tensor of element surface forces, (m)Fϵ

0
mn

Ia is the tensor of element initial

strain effects, (m)Fσ
0
mn

Ia is the tensor of element initial stress effects. Now equation (102.27) becomes:

⋃
(m)

(m)MIacJ ¨̄uJc +
⋃
(m)

(m)KIacJ ūJc =
⋃
m

(m)FB
Ia +

⋃
m

(m)FS
Ia +

⋃
m

(m)Fϵ
0
mn

Ia –
⋃
m

(m)Fσ
0
mn

Ia

(102.34)

By summing13 all the relevant tensors, a well known equation is obtained:

MAacB ¨̄uBc + KAacB ūBc = FAa (102.35)

A, B = 1, 2, . . . , # of nodes

a, c = 1, . . . , # of dimensions (1, 2 or 3)

where:
13Summation of the element volume integrals expresses the direct addition of the element tensors to obtain global, system

tensors. This method of direct addition is usually referred to as the direct stiffness method.
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MAacB =
⋃
m

(m)MIacJ ; KAacB =
⋃
m

(m)KIacJ (102.36)

are the system mass and stiffness tensors, respectively, ¨̄uBc is the tensor of unknown nodal accelerations,

and ūBc is the tensor of unknown generalized nodal displacements, while the load tensor is given as:

FAa =
⋃
m

(m)FB
Ia +

⋃
m

(m)FS
Ia +

⋃
m

(m)Fϵ
0
mn

Ia –
⋃
m

(m)Fσ
0
mn

Ia (102.37)

After assembling the system of equations in (102.36), it is relatively easy to solve for the unknown

displacements ūLc either for static or fully dynamic case. It is also very important to note that in

all previous equations, omissions of inertial force term (all terms with ρ) will yield static equilibrium

equations. Description of solutions procedures for static linear and nonlinear problems are described in

some detail in chapter 107. In addition to that, solution procedures for dynamic, linear and nonlinear

problems are described in some detail in chapter 108.

A note on the final form of the tensors used is in order. In order to use readily available system of

equation solvers equation (102.36) will be rewritten in the following form:

MPQ ¨̄uP + KPQ ūP = FQ P, Q = 1, 2, . . . , (#ofDOFs)N (102.38)

where MPQ is system mass matrix, KPQ is system stiffness matrix and FQ is the loading vector. Matrix

form of equation 102.36, presented as equation 102.38 is obtained flattening the system mass tensor

MAacB, system stiffness tensor KAacB, unknown acceleration tensor ¨̄uBc, unknown displacement tensor

ūBc and the system loading tensor FAa. Flattening from the fourth order mass/stiffness tensors to two-

dimensional mass/stiffness matrix is done by simply performing appropriate (re–) numbering of nodal

DOFs in each dimension. A similar approach is used for unknown accelerations/displacements and

loadings.

102.3.1 Static Analysis: Internal and External Loads.

Internal and external loading tensors is defined as:
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(fIa)int =
⋃
(m)

(m)KIacJ ūJc =
⋃
m

∫
Vm

σab HI ,b dVm (102.39)

(fIa)ext =
⋃
m

(m)FB
Ia +

⋃
m

(m)FS
Ia +

⋃
m

(m)Fϵ
0
mn

Ia –
⋃
m

(m)Fσ
0
mn

Ia (102.40)

where (fIa)int is the internal force tensor and (fIa)ext is the external force tensor. Equilibrium is obtained

when residual:

rIa(ūJc,λ) = (fIa (ūJc))int – λ (fIa)ext (102.41)

is equal to zero, r(u,λ) = 0. The same equation in flattened form yields:

r(u,λ) = fint(u) – λfext = 0 (102.42)
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102.4 Isoparametric Solid Finite Elements

102.4.1 8 Node Brick

r1

r2

r3

1

23

4

5

6
7

8

Figure 102.3: 8 node brick element

Table 102.1: Values of r1, r2, and r3 at each of the eight nodes

Node r1 r2 r3

1 +1 +1 +1

2 -1 +1 +1

3 -1 -1 +1

4 +1 -1 +1

5 +1 +1 -1

6 -1 +1 -1

7 -1 -1 -1

8 +1 -1 -1

Shape function of the nodes which i indicates the node number:

N (e)
i =

1
8

(1 + r1(r1)i)(1 + r2(r2)i)(1 + r3(r3)i) (102.43)
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102.4.2 Collapsed 8 Node Brick

It is sometimes required to mesh finite element models using collapsed brick elements. Collapsed brick

elements are finite elements that do not feature all 8 nodes, rather some nodes are merged. This is

done to help generate meshes for complicated geometries where it is impossible to rely on solid bricks

with eight (8) nodes only. For example, SASSI2000 (System for Analysis of Soil-Structure Interaction)

program (Ostadan, 2007) uses such elements. For example, solid elements with 7, 6, and 5 nodes are

used extensively and are created by collapsing/combining nodes of 8 node brick into solid elements with

7, 6 or 5 nodes. There are three types of collapsed SASSI 8 node brick element, as shown in Figure 102.4.

Figure 102.4: Three types of collapsed brick elements in SASSI (Ostadan, 2007).

Verification tests for collapsed brick finite elements are provided in verification section ?? on page 1547.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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102.4.3 20 Node Brick

r1

r2

r3

5

6

1

23

4

8

7

16

13

14

15

11

10

12 9

17

18
19

20

Figure 102.5: 20 node brick element

Table 102.2: Values of r1, r2, and r3 at each of the 9th to 20th nodes

Node r1 r2 r3

9 0 +1 +1

10 -1 0 +1

11 0 -1 +1

12 +1 0 +1

13 0 +1 -1

14 -1 0 -1

15 0 -1 -1

16 +1 0 -1

17 +1 +1 0

18 -1 +1 0

19 -1 -1 0

20 +1 -1 0

Shape function of the 8 corner nodes (1 to 8) which i indicates the node number:
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N (e)
i =

1
8

(1 + r1(r1)i)(1 + r2(r2)i)(1 + r3(r3)i)(r1(r1)i + r2(r2)i + r3(r3)i – 2) (102.44)

Shape function of the node numbers 9, 11, 13, and 15 which i indicates the node number:

N (e)
i =

1
4

(1 – r2
1)(1 + r2(r2)i)(1 + r3(r3)i) (102.45)

Shape function of the node numbers 10, 12, 14, and 16 which i indicates the node number:

N (e)
i =

1
4

(1 – r2
2)(1 + r1(r1)i)(1 + r3(r3)i) (102.46)

Shape function of the node numbers 17, 18, 19, and 20 which i indicates the node number:

N (e)
i =

1
4

(1 – r2
3)(1 + r1(r1)i)(1 + r2(r2)i) (102.47)
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102.4.4 27 Node Brick

26

23

27

r1

r2

r3

21

25

24

22

10

11

12
9

13

14
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16

17

18

20

19
1

23

4

5

6
7

8

Figure 102.6: 27 node brick element

Table 102.3: Values of r1, r2, and r3 at each of the 21th to 27th nodes

Node r1 r2 r3

21 0 0 0

22 0 +1 0

23 -1 0 0

24 0 -1 0

25 +1 0 0

26 0 0 +1

27 0 0 -1

Shape function of the 8 corner nodes (1 to 8) which i indicates the node number:

N (e)
i =

1
8

(1 + r1(r1)i)(1 + r2(r2)i)(1 + r3(r3)i)(r1(r1)i)(r2(r2)i)(r3(r3)i) (102.48)

Shape function of the node numbers 9, 11, 13, and 15 which i indicates the node number:

N (e)
i =

1
4

(1 – r2
1)(1 + r2(r2)i)(1 + r3(r3)i)(r2(r2)i)(r3(r3)i) (102.49)
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Shape function of the node numbers 10, 12, 14, and 16 which i indicates the node number:

N (e)
i =

1
4

(1 + r1(r1)i)(1 – r2
2)(1 + r3(r3)i)(r1(r1)i)(r3(r3)i) (102.50)

Shape function of the node numbers 17, 18, 19, and 20 which i indicates the node number:

N (e)
i =

1
4

(1 + r1(r1)i)(1 + r2(r2)i)(1 – r2
3)(r1(r1)i)(r2(r2)i) (102.51)

Shape function of the node number 21:

N (e)
21 = (1 – r2

1)(1 – r2
2)(1 – r2

3) (102.52)

Shape function of the node numbers 22 and 24 which i indicates the node number:

N (e)
i =

1
2

(1 – r2
1)(1 + r2(r2)i)(1 – r2

3)(r2(r2)i) (102.53)

Shape function of the node numbers 23 and 25 which i indicates the node number:

N (e)
i =

1
2

(1 + r1(r1)i)(1 – r2
2)(1 – r2

3)(r1(r1)i) (102.54)

Shape function of the node numbers 26 and 27 which i indicates the node number:

N (e)
i =

1
2

(1 – r2
1)(1 – r2

2)(1 + r3(r3)i)(r3(r3)i) (102.55)

102.4.5 Isoparametric 8 – 20 Node Finite Element

The basic procedure in the isoparametric14 finite element formulation is to express the element coor-

dinates and element displacements in the form of interpolations using the local three dimensional15

coordinate system of the element. Considering the general 3D element, the coordinate interpolations,

using indicial notation16 are:

14name isoparametric comes from the fact that both displacements and coordinates are defined in terms of nodal values.

Superparametric and subparametric finite elements exists also.
15in the case of element presented here, that is isoparametric 8 – 20 node finite element.
16Einstein’s summation rule is implied unless stated differently, all lower case indices (i, j, p, q, m, n, o, r, s, t, . . . ) can have

values of 1, 2, 3, and values for capital letter indices will be specified where need be.
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xi = HA (rk) x̄Ai (102.56)

where A = 1, 2, . . . , n and n is the total number of nodes associated with that specific element, x̄Ai is the

i-th coordinate of node A, i = 1, 2, 3, k = 1, 2, 3 and HA are the interpolation functions defined in local

coordinate system of the element, with variables r1, r2 and r3 varying from –1 to +1.

The interpolation functions HA for the isoparametric 8–20 node are the so called serendipity inter-

polation functions mainly because they were derived by inspection. For the finite element with nodes

numbered as in Figure (102.7) they are given17 in the following set of formulae:

r1

r2

r3
3

4
9

11

14

15

x  

x  

x  

17

12

16
13

6

18

210

7

8

20

19

1

3

2

1
5

Figure 102.7: Isoparametric 8–20 node brick element in global and local coordinate systems

H20 =
isp (20) (1 + r1) (1 – r2)

(
1 – r2

3
)

4
H19 =

isp (19) (1 – r1) (1 – r2)
(
1 – r2

3
)

4

H18 =
isp (18) (1 – r1) (1 + r2)

(
1 – r2

3
)

4
H17 =

isp (17) (1 + r1) (1 + r2)
(
1 – r2

3
)

4

H16 =
isp (16) (1 + r1)

(
1 – r2

2
)

(1 – r3)
4

H15 =
isp (15)

(
1 – r2

1
)

(1 – r2) (1 – r3)
4

H14 =
isp (14) (1 – r1)

(
1 – r2

2
)

(1 – r3)
4

H13 =
isp (13)

(
1 – r2

1
)

(1 + r2) (1 – r3)
4

H12 =
isp (12) (1 + r1)

(
1 – r2

2
)

(1 + r3)
4

H11 =
isp (11)

(
1 – r2

1
)

(1 – r2) (1 + r3)
4

H10 =
isp (10) (1 – r1)

(
1 – r2

2
)

(1 + r3)
4

H9 =
isp (9)

(
1 – r2

1
)

(1 + r2) (1 + r3)
4

17for more details see Bathe (1982).
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H8 =
(1 + r1) (1 – r2) (1 – r3)

8
+

–H15 – H16 – H20
2

H7 =
(1 – r1) (1 – r2) (1 – r3)

8
+

–H14 – H15 – H19
2

H6 =
(1 – r1) (1 + r2) (1 – r3)

8
+

–H13 – H14 – H18
2

H5 =
(1 + r1) (1 + r2) (1 – r3)

8
+

–H13 – H16 – H17
2

H4 =
(1 + r1) (1 – r2) (1 + r3)

8
+

–H11 – H12 – H20
2

H3 =
(1 – r1) (1 – r2) (1 + r3)

8
+

–H10 – H11 – H19
2

H2 =
(1 – r1) (1 + r2) (1 + r3)

8
+

–H10 – H18 – H9
2

H1 =
(1 + r1) (1 + r2) (1 + r3)

8
+

–H12 – H17 – H9
2

where r1, r2 and r3 are the axes of natural, local, curvilinear coordinate system and isp (nod num) is

boolean function that returns +1 if node number (nod num) is present and 0 if node number (nod num)

is not present.

To be able to evaluate various important element tensors18, to calculate the strain–displacement

transformation tensor19 is needed. The element strains are obtained in terms of derivatives of element

displacements with respect to the local coordinate system. Because the element displacements are

defined in the local coordinate system, there is a need to relate global x1, x2 and x3 derivatives to the

r1, r2 and r3 derivatives. In order to obtain derivatives with respect to global coordinate system, i.e.

∂
∂xa

, use chain rule for differentiation in the following form:

∂

∂xk
=
∂ra
∂xk

∂

∂ra
= J–1

ak
∂

∂ra
(102.57)

while the inverse relation is:

∂

∂rk
=
∂xa
∂rk

∂

∂xa
= Jak

∂

∂xa
(102.58)

where Jak is the Jacobian operator relating local coordinate derivatives to the global coordinate deriva-

tives:

18i.e. (m)KIacJ ,
(m)FB

Ia,
(m)FS

Ia,
(m)Fϵ0

mn
Ia , (m)Fσ0

mn
Ia , that are defined in chapter (102.3).

19from the equation ϵ̂ab = 1
2
((

HI ,b ūIa
)

+
(
HI ,a ūIb

))
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Jak =
∂xa
∂rk

=



∂x1
∂r1

∂x2
∂r1

∂x3
∂r1

∂x1
∂r2

∂x2
∂r2

∂x3
∂r2

∂x1
∂r3

∂x2
∂r3

∂x3
∂r3


(102.59)

The existence of equation (102.57) requires that the inverse of Jak exists and that inverse exists

provided that there is a one–to–one20 correspondence between the local and the global coordinates of

element.

It should be pointed out that except for the very simple cases, volume and surface element tensor21

integrals are evaluated by means of numerical integration22 Numerical integration rules is quite a broad

subject and will not be covered here23.

102.4.6 Isoparametric 8 - 27 Node Finite Element

26

23

27

r1

r2

r3

21

25

24

22

10

11

12
9

13

14

15

16

17

18

20

19
1

23

4

5

6
7

8

Figure 102.8: 8-27 variable node brick element

20unique.
21as defined in chapter (102.3) by equations (102.29), (102.30), (102.31), (102.32) and (102.33).
22Gauss–Legendre, Newton–Coates, Lobatto are among the most used integration rules.
23nice explanation with examples is given in Bathe (1982).
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H1 =
(1 + r1)(1 + r2)(1 + r3)

8
–

H9 + H12 + H17
2

–
H22 + H25 + H26

4
–

H21
8

H2 =
(1 – r1)(1 + r2)(1 + r3)

8
–

H9 + H10 + H18
2

–
H22 + H23 + H26

4
–

H21
8

H3 =
(1 – r1)(1 – r2)(1 + r3)

8
–

H10 + H11 + H19
2

–
H23 + H24 + H26

4
–

H21
8

H4 =
(1 + r1)(1 – r2)(1 + r3)

8
–

H11 + H12 + H20
2

–
H24 + H25 + H26

4
–

H21
8

H5 =
(1 + r1)(1 + r2)(1 – r3)

8
–

H13 + H16 + H17
2

–
H22 + H25 + H27

4
–

H21
8

H6 =
(1 – r1)(1 + r2)(1 – r3)

8
–

H13 + H14 + H18
2

–
H22 + H23 + H27

4
–

H21
8

H7 =
(1 – r1)(1 – r2)(1 – r3)

8
–

H14 + H15 + H19
2

–
H23 + H24 + H27

4
–

H21
8

H8 =
(1 + r1)(1 – r2)(1 – r3)

8
–

H15 + H16 + H20
2

–
H24 + H25 + H27

4
–

H21
8

H9 =
1
4

(1 – r2
1)(1 + r2)(1 + r3) –

H22 + H26
2

–
H21
4

H10 =
1
4

(1 – r2
2)(1 – r1)(1 + r3) –

H23 + H26
2

–
H21
4

H11 =
1
4

(1 – r2
1)(1 – r2)(1 + r3) –

H24 + H26
2

–
H21
4

H12 =
1
4

(1 – r2
2)(1 + r1)(1 + r3) –

H25 + H26
2

–
H21
4

H13 =
1
4

(1 – r2
1)(1 + r2)(1 – r3) –

H22 + H27
2

–
H21
4

H14 =
1
4

(1 – r2
2)(1 – r1)(1 – r3) –

H23 + H27
2

–
H21
4

H15 =
1
4

(1 – r2
1)(1 – r2)(1 – r3) –

H24 + H27
2

–
H21
4

H16 =
1
4

(1 – r2
2)(1 + r1)(1 – r3) –

H25 + H27
2

–
H21
4

H17 =
1
4

(1 – r2
3)(1 + r1)(1 + r2) –

H22 + H25
2

–
H21
4

H18 =
1
4

(1 – r2
3)(1 – r1)(1 + r2) –

H22 + H23
2

–
H21
4

H19 =
1
4

(1 – r2
3)(1 – r1)(1 – r2) –

H23 + H24
2

–
H21
4

H20 =
1
4

(1 – r2
3)(1 + r1)(1 – r2) –

H24 + H25
2

–
H21
4

H21 = (1 – r2
1)(1 – r2

2)(1 – r2
3)
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H22 =
1
2

(1 – r2
1)(1 + r2)(1 – r2

3)r2

H23 = –
1
2

(1 – r1)(1 – r2
2)(1 – r2

3)r1

H24 = –
1
2

(1 – r2
1)(1 – r2)(1 – r2

3)r2

H25 =
1
2

(1 + r1)(1 – r2
2)(1 – r2

3)r1

H26 =
1
2

(1 – r2
1)(1 – r2

2)(1 + r3)r3

H27 = –
1
2

(1 – r2
1)(1 – r2

2)(1 – r3)r3

102.4.7 Surface Loads for Solid Bricks

To apply surface load on brick elements, equivalent nodal forces have to be applied instead of the surface

load. The equivalent force of the i-th node Fi is given by the following equation with shape function Hi

and load distribution function f .

Fi =
∫

S
fHids (102.60)

Assuming that the load distribution is uniform

Fi = f
∫

S
Hids (102.61)

Furthermore, when the magnitude of the load per unit area is 1, and the size of the element is

1× 1× 1, equivalent nodal forces are given as shown in Figure 102.9 for 8 node brick element, 20 brick

element, and 27 nodes brick element.

Figure 102.9 shows cases of normal loads on vertical upper surface (with nodes: 1, 2, 3, 4 for 8 node

brick; 1, 2, 3, 4, 9, 10, 11, and 12 for 20 node brick; and 1, 2, 3, 4, 9, 10, 11, 12 and 26 for the 27 node

brick).

Nodal loads from uniform surface loads for 27 node brick are obtained as:
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a)  

1F
4F

3F
2F

b)  

1F
4F

3F
2F

9F

10F

11F

12F

c)  

1F
4F

3F
2F

9F
11F

12F

26F

10F

Figure 102.9: Nodal loads for brick elements: (a) F1 = F2 = F3 = F4 = +1/4; (b) F1 = F2 = F3 = F4 =

– 1
12 , F9 = F10 = F11 = F12 == +1

3 ; (c) F1 = F2 = F3 = F4 = + 1
36 , F9 = F10 = F11 = F12 == +1

9 , F36 = 4
9 .

• for nodes 1, 2, 3, and 4, N (e)
i = 1

8 (1 + r1(r1)i)(1 + r2(r2)i)(1 + r3(r3)i)(r1(r1)i)(r2(r2)i)(r3(r3)i)∫ +1

–1
HidS =

=
1
8

(1 + r3(r3)i)(r3(r3)i)
∫ +1

–1

∫ +1

–1
(1 + r1(r1)i)(1 + r2(r2)i)(r1(r1)i)(r2(r2)i)(r2(r2)i)dr1dr2

=
1
8

(1 + r3(r3)i)(r3(r3)i)((r1)i)2((r2)i)2(
2
3

)2

=
1
18

(1 + r3(r3)i)(r3(r3)i)((r1)i)2((r2)i)2 (102.62)

• for nodes 9, 10, 11 and 12, N (e)
i = 1

4 (1 – r2
1)(1 + r2(r2)i)(1 + r3(r3)i)(r2(r2)i)(r3(r3)i)∫ +1

–1
HidS =

=
1
4

(1 + r3(r3)i)(r3(r3)i)
∫ +1

–1
(1 – r2

1)(1 + r2(r2)i)(r2(r2)i)dr1dr2

=
1
8

(1 + r3(r3)i)(r3(r3)i)((r2)i)2(
4
3

)(
2
3

)

=
2
9

(1 + r3(r3)i)(r3(r3)i)((r2)i)2 (102.63)
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• for nodes 26 N (e)
i = 1

2 (1 – r2
1)(1 – r2

2)(1 + r3(r3)i)(r3(r3)i)∫ +1

–1
HidS =

=
1
4

(1 + r3(r3)i)(r3(r3)i)
∫ +1

–1

∫ +1

–1
(1 – r2

1)(1 – r2
2)dr1dr2

=
1
8

(1 + r3(r3)i)(r3(r3)i)(
4
3

)(
4
3

)

=
8
9

(1 + r3(r3)i)(r3(r3)i) (102.64)

102.5 Numerical Integration for Solid Brick Elements

Gauss integration rule, see Bathe (1996), section 5.5.3. While using the regular Newton-Coates integra-

tion formula, one uses (n + 1) equally spaced points to integrate exactly polynomial of order n. On the

other hand, while using the Gauss integration formula, one uses n unequally spaced points to integrate

exactly polynomial of order (2n – 1).

102.6 Two Node, 3D Truss Finite Element

Bathe and Wilson (1976); Bathe (1982)

102.7 3D Beam-Column Finite Element, 12 Degrees of Freedom

Bathe and Wilson (1976); Bathe (1982); Przemieniecki (1985)

Stiffness Matrix: Equation 102.65

Mass Matrix: Equation 102.66
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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102.8 3D Beam-Column Finite Element, 9 Degrees of Freedom

Przemieniecki (1985)

Condensation Formulation: Equations 102.67 to 102.73

Rearranged 12dof Stiffness Matrix: Equation 102.74

Krr part of stiffness matrix: Equation 102.75

Krc part of stiffness matrix: Equation 102.76

Kcr part of stiffness matrix: Equation 102.77

Kcc part of stiffness matrix: Equation 102.78

Stiffness Matrix: Equation 102.79

T Matrix: Equation 102.80

Rearranged Mass Matrix: Equation 102.81

Mass Matrix: Equation 102.82

 krr krc

kcr kcc

 dr

dc

 =

 rr

rc

 (102.67)

(
[ krr

]
–
[

Krc

] [
Kcc

]–1 [
Kcr

]
)
{

dr

}
=
{

rr

}
–
[

Krc

] [
Kcc

]–1 {
rc

}
(102.68)

[kcondensed] =
[

krr

]
–
[

Krc

] [
Kcc

]–1 [
Kcr

]
(102.69)

rcondensed =
{

rr

}
–
[

Krc

] [
Kcc

]–1 {
rc

}
(102.70)

[T ] =

 I

–
[

Kcc

]–1 [
Kcr

]
 (102.71)

[Kcondensed] = [T ]T [K][T ] (102.72)

Kcondensed should give the same results using either method.

[Mcondensed] = [T ]T [M][T ] (102.73)
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[Krr] =



EA
L 0 0 – EA

L 0 0 0 0 0

0 12EIz
L3 0 0 – 12EIz

L3 0 0 0 6EIz
L2

0 0 12EIy
L3 0 0 – 12EIy

L3 0 – 6EIy
L2 0

– EA
L 0 0 EA

L 0 0 0 0 0

0 – 12EIz
L3 0 0 12EIz

L3 0 0 0 – 6EIz
L2

0 0 – 12EIy
L3 0 0 12EIy

L3 0 6EIy
L2 0

0 0 0 0 0 0 GJx
L 0 0

0 0 – 6EIy
L2 0 0 6EIy

L2 0 4EIy
L 0

0 6EIz
L2 0 0 – 6EIz

L2 0 0 0 4EIz
L



(102.75)

[Krc] =



0 0 0

0 0 6EIz
L2

0 – 6EIy
L2 0

0 0 0

0 0 – 6EIz
L2

0 6EIy
L2 0

– GJx
L 0 0

0 2EIy
L 0

0 0 2EIz
L



(102.76)

[Kcr] =


0 0 0 0 0 0 – GJx

L 0 0

0 0 – 6EIy
L2 0 0 6EIy

L2 0 2EIy
L 0

0 6EIz
L2 0 0 – 6EIz

L2 0 0 0 2EIz
L

 (102.77)

[Kcc] =


GJx
L 0 0

0 4EIy
L 0

0 0 4EIz
L

 (102.78)
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[Kcondensed] =



EA
L 0 0 – EA

L 0 0 0 0 0

0 3EIz
L3 0 0 – 3EIz

L3 0 0 0 3EIz
L2

0 0 3EIy
L3 0 0 – 3EIy

L3 0 – 3EIy
L2 0

– EA
L 0 0 EA

L 0 0 0 0 0

0 – 3EIz
L3 0 0 3EIz

L3 0 0 0 – 3EIz
L2

0 0 – 3EIy
L3 0 0 3EIy

L3 0 3EIy
L2 0

0 0 0 0 0 0 0 0 0

0 0 – 3EIy
L2 0 0 3EIy

L2 0 3EIy
L 0

0 3EIz
L2 0 0 – 3EIz

L2 0 0 0 3EIz
L



(102.79)

[T ] =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 3
2L 0 0 – 3

2L 0 – 1
2 0

0 – 3
2L 0 0 3

2L 0 0 0 – 1
2



(102.80)
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102.9 Shear Beam Finite Element

102.10 Quadrilateral Shell Finite Element with 6DOFs per Node

Based on works by Bergan and Felippa (1985); Alvin et al. (1992); Felippa and Militello (1992); Felippa

and Alexander (1992); Militello and Felippa (1991). The stiffness matrix for this element is obtained by

averaging two quad shells made up of two ANDES triangular shells (with an alternating orientation of

diagonals, Stošić (1984-2022))
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102.11 Seismic Isolator and Dissipator Finite Elements

Base isolation system are used to change dynamic characteristics of seismic motions that excite structure

and also to dissipate seismic energy before it excites structure. Therefore there are two main types of

devices:

• Base Isolators (Kelly, 1991a,b; Toopchi-Nezhad et al., 2008; Huang et al., 2010; Vassiliou et al.,

2013) are usually made of low damping (energy dissipation) elastomers and are primarily meant

to change (reduce) frequencies of input motions. They are not designed nor modeled as energy

dissipators.

• Base Dissipators Kelly and Hodder (1982); Fadi and Constantinou (2010); Kumar et al. (2014)

are developed to dissipate seismic energy before it excites the structure. There two main types of

such dissipators:

– Elastomers made of high dissipation rubber, and

– Frictional pendulum dissipators

Both isolators and dissipators are usually developed to work in two horizontal dimensions, while

motions in vertical direction are not isolated or dissipated. This can create potential problems and need

to be carefully modeled.

Modeling of base isolation and dissipation system is done using two-node finite elements of relatively

short length.

102.11.1 Base Isolation Systems

Base isolation systems are modeled using linear or nonlinear elastic elements. Stiffness is provided from

either tests on a full-sized base isolators, or from material characterization of rubber (and steel plates if

used in a sandwich isolator construction). Depending on rubber used, a number of models can be used

to develop stiffness of the device Ogden (1984); Simo and Miehe (1992); Simo and Pister (1984).

Particularly important is to properly account for vertical stiffness as vertical motions can be amplified

depending on characteristics of seismic motions, structure and stiffness of the isolators Hijikata et al.

(2012); Araki et al. (2009). It is also important to note that assumption of small deformation is used

in most cases. In other words, the stability of the isolator, for example, overturning or rolling is not

modeled. It is assumed that elastic stiffness will not suddenly change if the isolator becomes unstable

(rolls or overturns).
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102.11.2 Base Dissipator Systems

Base dissipator systems are modeled using inelastic (nonlinear) two node elements. There are three basic

types of dissipator models used:

• High damping rubber dissipators

• Rubber dissipators with lead core

• Frictional pendulum (double or triple) dissipators

Each one is calibrated using tests done on a full dissipator. It is important to be able to take into

account the influence of (an increase in) temperature on resulting behavior. Energy dissipation results

in heating of devices, and an increase in temperature influences material properties of dissipators.

102.11.3 Two Node, 3D, Rubber Isolator Finite Element

Kelly (1991a,b)

Behavior of rubber (Ogden, 1984; Simo and Miehe, 1992; Simo and Pister, 1984)

102.11.4 Two Node, 3D, Frictional Pendulum Finite Element

102.12 Fully Coupled, Porous Solid – Pore Fluid Finite Elements

102.12.1 u-p-U Formulation

102.12.1.1 Background

This section follows developments by Zienkiewicz and Shiomi (1984).

The relationship between effective stress, total stress and pore pressure is given as:

σ
′′
ij = σij – αδijp (102.83)

where σ
′′
ij is effective stress tensor, σij is total stress tensor, δij is Kronecker delta. δij = 1, when i=j,

and δij = 0, when i ̸= j. It is assumed that tensile components of effective and total stress are positive,

and the pore fluid pressure p is also positive in tension, hence for compressions (usual case) pore fluid

pressure is negative (p < 0) (Zienkiewicz et al., 1999a). For isotropic materials, α = 1 – KT /KS. KT is

the total bulk modulus of the solid matrix, KS is the bulk modulus of the solid particle. For most of the

soil mechanics problems, as the bulk modulus KS of the solid particles is much larger than that of the

whole material, α ≈ 1 can be assumed. Equation (102.83) becomes

σ
′′
ij = σij – δijp (102.84)
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In the next sections, a detailed derivation of formulation and numerical implementation for a fully

coupled (pore fluid and porous soil) solid mechanics problem is given. Derivations are based in part on

earlier work by Zienkiewicz et al. (1999a).

102.12.1.2 Governing Equations of Porous Media

The following notation is used:

• σij , the total Cauchy stress in the mixture,

• ui, the displacement of the solid skeleton,

• wi, the displacement of the fluid phase relative to the skeleton of solid,

• p, the pore water pressure,

• εij = 1
2 (ui,j + uj,i), the strain increment of the solid phase,

• ωij = 1
2 (ui,j – uj,i), the rotation increment of the solid phase,

• ρ, ρs, ρf , the densities of the mixture, solid phase and water respectively,

• n the porosity,

• θ = –ẇi,i, the rate of change of volume of water per unit total volume of mixture.

The Equilibrium Equation of the Mixture. The overall equilibrium or momentum balance equation for

the soil-fluid mixture is written as

σij,j – ρüi – ρf [ẅi + ẇjẇi,j] + ρbi = 0 (102.85)

here üi is the acceleration of the solid part, bi is the body force per unit mass, ẅi + ẇjẇi,j is the fluid

acceleration relative to the solid part, ẅi is local acceleration, ẇjẇi,j is convective acceleration.

The underlined terms in the above equation represent the fluid acceleration relative to the solid and

convective terms of this acceleration. Generally, this acceleration is so small that it is frequently omitted.

For static problems, equation 102.85 only consists of the first and last terms.

For fully saturated porous media (no air inside), from definition

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ρ =
Mt
Vt

=
Ms + Mf

Vt

=
Vsρs + Vf ρf

Vt

=
Vf
Vt
ρf +

Vt – Vf
Vt

ρs

= nρf + (1 – n)ρs

ρ = nρf + (1 – n)ρs (102.86)

where Mt , Ms and Mf are the mass of total, solid part and fluid part respectively. Vt , Vs and Vf are the

volume of total, solid part and fluid part respectively.

The Equilibrium Equation of the Fluid. For the pore fluid, the equation of momentum balance is written

as

–p,i – Ri – ρf üi – ρf [ẅi + ẇjẇi,j]/n + ρf bi = 0 (102.87)

where R is the viscous drag forces. It is noted that the underlined terms in equation 102.87 represent

the convective fluid acceleration again and are generally small. Also note that the permeability k is used

with dimensions of [length]3[time]/[mass], which is different from the usual soil mechanics convention,

where the permeability has the dimension of velocity, i.e., [length]/[time]. Their values are related by

k = K /ρf g, where g is the gravitational acceleration at which the permeability is measured. Assuming

the Darcy seepage law: nẇ = Ki, here i is the head gradient. Seepage force is then R = ρf gi. R can be

written as

Ri = k–1
ij ẇj or Ri = k–1ẇi (102.88)

where kij or k are Darcy permeability coefficients for anisotropic and isotropic conditions respectively.

Flow Conservation Equation. The final equation is supplied by the mass conservation of the fluid flow

ẇi,i + αε̇ii +
ṗ
Q

+ n
ρ̇f
ρf

+ ṡ0 = 0 (102.89)

The first term of equation(102.89) is the flow divergence of a unit volume of mixture. The second term

is the volume change of the mixture. In the third term, Q is relative to the compressibility of the solid

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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and fluid. The underlined terms represent change of density and rate of volume expansion of the solid

in case of thermal changes. They are generally negligible.

1
Q
≡ n

Kf
+
α – n
Ks
∼= n

Kf
+

1 – n
Ks

(102.90)

where Ks and Kf are the bulk moduli of the solid and fluid phases respectively. Note that the bulk

modulus of the solid phase Ks is the actual bulk modulus of the solid particle.

Obtained are the total mixture equilibrium equation (102.85), fluid equilibrium equation (102.87) and

the flow conservation equation (102.89) for saturated soil. By omitting the convective acceleration (the

underline terms in (102.85) and (102.87)), density variation and the volume expansion due to the thermal

change (the underline terms in (102.89)), the equations of coupled system can be further simplified, as

summarized below

σij,j – ρüi – ρf ẅi + ρbi = 0 (102.91)

–p,i – Ri – ρf üi –
ρf ẅi

n
+ ρf bi = 0 (102.92)

ẇi,i + αε̇ii +
ṗ
Q

= 0 (102.93)

Bulk Modulus of Fluid (see Verruijt (2012) page 97... compressibility of water and with air bubbles)...

102.12.1.3 Modified Governing Equations.

Solid Part Equilibrium Equation. A new variable Ui is introduced in place of the relative pseudo-

displacement wi

Ui = ui + UR
i = ui +

wi
n

(102.94)

Figure 102.10: Fluid mechanics of Darcy’s flow (wi) versus real flow (Ui = wi/n).
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Change of variables is finalized by insertion of equation 102.94 into equations 102.91 and 102.92, and

then by subtraction of term ([n× equation 102.92]) from equation 102.91, which leads to the equation

of skeleton equilibrium

σij,j – ρüi + ρbi + np,i + nRi + nρf üi – nρf bi = 0 (102.95)

By substituting ρ = (1 – n)ρs + nρf

σij,j – (1 – n)ρsüi – nρf u̇i + (1 – n)ρsbi + nρf bi + np,i + nRi + nρf üi – nρf bi = 0

σij,j + np,i + (1 – n)ρsbi – (1 – n)ρsüi + nRi = 0 (102.96)

By using the definition of effective stress, equation 102.83, equation 102.95 becomes

σ
′′
ij,j – (α – n)p,i + (1 – n)ρsbi – (1 – n)ρsüi + nRi = 0 (102.97)

Fluid Part Equilibrium Equation. The fluid part equilibrium equation can be obtained simply by [n ×
(102.92],i.e.

–np,i – nRi – nρf üi – ρf ẅi + nρf bi = 0

–np,i – nRi – nρf (üi +
ẅi
n

) + nρf bi = 0 (102.98)

From equation (102.94),

Üi = üi +
ẅi
n

(102.99)

so that equation (102.98) becomes:

–np,i + nρf bi – nρf Üi – nRi = 0 (102.100)

Mixture Balance of Mass. By differentiating equation (102.94) in time and space

ẇi,i = nU̇i,i – nu̇i,i (102.101)

Notice that ε̇ii = u̇i,i, so that equation (102.101) becomes

ẇi,i = nU̇i,i – nε̇ii (102.102)

By substituting (102.102) to (102.93)

nU̇i,i – nε̇ii + αε̇ii +
ṗ
Q

= 0 (102.103)

or:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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–nU̇i,i = (α – n)ε̇ii +
1
Q

ṗ (102.104)

Developed is a set of modified governing equations (102.97), (102.100) and (102.104). They are

summarized below

σ
′′
ij,j – (α – n)p,i + (1 – n)ρsbi – (1 – n)ρsüi + nRi = 0 (102.105)

–np,i + nρf bi – nρf Üi – nRi = 0 (102.106)

–nU̇i,i = (α – n)ε̇ii +
1
Q

ṗ (102.107)

From the modified equation set (102.105), (102.106) and (102.107), it is noted that only üi occurs in

the first equation, and only Üi in the second, thus leading to a convenient diagonal form in discretization.

Obtained is a a complete equation system given by (102.105), (102.106) and (102.107). With the

basic definitions introduced earlier, there are three essential unknowns:

1. three solid displacement ui

2. pore pressure p

3. three fluid displacement Ui

The boundary conditions imposed on these variables will complete the problem. These boundary

conditions are:

• For the momentum balance part,

– on boundary Γt , traction ti(t)(or σijnj), where ni is the i-th component of the normal to the

boundary.

– On boundary Γu, the displacement ui is given.

• For the fluid part, again the boundary is divided into two parts:

– On Γp, the pressure p is specified,

– on Γw, the normal outflow ẇn is specified. For impermeable boundary a zero value for the

outflow should be specified.
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The boundary conditions can be summarized below

Γ = Γt ∪ Γu

ti = σijnj = ti on Γ = Γt

ui = ui on Γ = Γu (102.108)

and

Γ = Γp ∪ Γw

p = p on Γ = Γp

nT w = wn on Γ = Γw (102.109)

102.12.1.4 Numerical Solution of the u-p-U Governing Equations

The solutions to the problems governed by the modified governing equation set (102.105), (102.106)

and (102.107) can be found by solving partial differential equations, which can be written as

AΦ̈ + BΦ̇ + L(Φ) = 0 (102.110)

where A, B are constant matrices, and L is an operator involving spatial differentials. The dot notation

represents the time differentiation. Vector of dependent variables, Φ represents the displacement u or

the pore fluid pressure p.

The finite element solution of a problem proceeds as follows.

1. Discretize or approximate the unknown functions Φ by a finite set of parameters Φk and shape

function Hk. They are specified in space dimensions. Thus

Φ ∼= Φh =
n∑

k=1
HkΦk (102.111)

2. Insert the value of the approximating function Φ̂ into the differential equations to obtain a residual,

then a set of weighted residual equations can be written in the form∫ Ω

WT
j (AΦ̈h + BΦ̇h + L(Φh))dΩ = 0 (102.112)

In the finite element method, the weighting functions Wj are usually identical to the shape func-

tions.
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The solid displacement ui, the pore pressure p, and the absolute fluid displacement Ui can be

approximated using shape functions and nodal values.

ui = Hu
KuKi

p = Hp
KpK

Ui = HU
K UKi (102.113)

where Hu
K , Hp

K , and HU
K are shape functions for solid displacement, pore pressure and fluid displacement,

respectively, uKi,pK ,UKi are nodal values of solid displacement, pore pressure and fluid displacement,

respectively.

Numerical Solution of solid part equilibrium equation. To obtain the numerical solution of the first

equation, premultiply equation 102.105 by Hu
K and integrate over the domain.

First term of (102.105) becomes∫
Ω

Hu
Kσ

′′
ij,jdΩ =

∫
Γt

Hu
Knjσ

′′
ijdΓ –

∫
Ω

Hu
K ,jσ

′′
ijdΩ

=
∫
Γt

Hu
K (ti + niαp)dΓ –

∫
Ω

Hu
K ,jσ

′′
ijdΩ

= (f u
1 )Ki –

∫
Ω

Hu
K ,jDijmlεmldΩ

= (f u
1 )Ki – [

∫
Ω

Hu
K ,jDijmlHu

P,ldΩ]uPm

= (f u
1 )Ki – KEP

KimPuPm

= (f u
1 )Ki – KEP

KijLuLj

= (f u
1) – KEPu (102.114)

where KEP is the stiffness matrix of the solid part,ni is the direction of the normal on the boundary.

Second term of (102.105) becomes

–
∫
Ω

Hu
K (α – n)p,idΩ = –

∫
Γp

Hu
K (α – n)nipdΓ +

∫
Ω

Hu
K ,i(α – n)pdΩ

= –
∫
Γp

Hu
K (α – n)nipdΓ + [

∫
Ω

Hu
K ,i(α – n)Hp

MdΩ]pM

= –(f u
4 )Ki + (G1)KiMpM

= –f u
4 + (G1)p (102.115)

Third term of (102.105) (solid body force) is then
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∫
Ω

Hu
K (1 – n)ρsbidΩ = (f u

5 )Ki (102.116)

Fourth term of (102.105) can be written as

–
∫
Ω

Hu
K (1 – n)ρsδij üjdΩ = –[

∫
Ω

Hu
K (1 – n)ρsδijHu

LdΩ]üLj

= –(Ms)KijLüLj

= –Msü (102.117)

where Ms is the mass matrix of solid part. By substituting equations (102.88) and (102.94), last

term of (102.105) (Damping Matrix) becomes

∫
Ω

Hu
KnRidΩ =

∫
Ω

Hu
Knk–1

ij ẇjdΩ

=
∫
Ω

Hu
Kn2k–1

ij U̇jdΩ –
∫
Ω

Hu
Kn2k–1

ij u̇jdΩ

= [
∫
Ω

Hu
Kn2k–1

ij HU
L dΩ]U̇Lj – [

∫
Ω

Hu
Kn2k–1

ij HU
L dΩ]u̇Lj

= (C2)KijLU̇Lj – (C1)KijLu̇Lj

= C2U̇ – C1u̇ (102.118)

Equation (102.105) becomes

–KEPu + f u
1 – f u

4 + G1p + f u
5 + Msü + C2U̇ – C1u̇ = 0 (102.119)

or

KEPu – G1p – C2U̇ + C1u̇ + Msü = f s (102.120)

where

f s = f u
1 – f u

4 + f u
5 (102.121)

and in index form

KEP
KijL – (G1)KiLpL + (C2)KijLU̇Lj – (C1)KijLu̇Lj + (Ms)KijLüKi = (f s)Ki (102.122)
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where

KEP = (KEP)KimP =
∫
Ω

Hu
K ,jDijmlHu

P,ldΩ

G1 = (G1)KiM =
∫
Ω

Hu
K ,i(α – n)Hp

MdΩ

C2 = (C2)KijL =
∫
Ω

Hu
Kn2k–1

ij HU
L dΩ

C1 = (C1)KijL =
∫
Ω

Hu
Kn2k–1

ij Hu
LdΩ

Ms = (Ms)KijL =
∫
Ω

Hu
K (1 – n)ρsδijHu

LdΩ

f = (f s)Ki = (f u
1 )Ki – (f u

4 )Ki + (f u
5 )Ki (102.123)

Numerical Solution of fluid part equilibrium equation. From equations (102.88) and (102.94),

Ri = nk–1
ij (U̇j – u̇j) (102.124)

By substituting (102.124) into equation (102.106),

–np,i + nρf bi – nρf Üi – n2k–1
ij (U̇j – u̇j) = 0 (102.125)

By premultiplying (102.125) by HU
K and integrating over the domain, first term of (102.125) becomes

–
∫
Ω

nHU
K p,idΩ = –

∫
Γp

nHU
K nipdΓ +

∫
Ω

nHU
K ,ipdΩ

= –(f1)Ki + [
∫
Ω

nHU
K ,iH

p
MdΩ]pM

= –(f1)Ki + (G2)KiMpM

= –(f 1)Ki + (G2)p (102.126)

Second term of (102.125) is then∫
Ω

HU
K ρf bidΩ = (f2)Ki (102.127)

Third term of (102.125) (Lumped mass matrix obtained by multiplying δij) becomes

–
∫
Ω

HU
K nρf δijÜjdΩ = –[

∫
Ω

HU
K nρf δijHU

L dΩ]ÜLj

= –(Mf )KijLÜLj

= –Mf Ü (102.128)
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Forth term of (102.125) becomes

–
∫
Ω

HU
K n2k–1

ij U̇jdΩ +
∫
Ω

HU
K n2k–1

ij u̇jdΩ = –[
∫
Ω

HU
K n2k–1

ij HU
L dΩ] ˙ULj (102.129)

+[
∫
Ω

HU
K n2k–1

ij Hu
LdΩ] ˙uLj

= –(C3)KijL
˙ULj + (C2)TLjiK ˙uLj

= C3U̇ + CT
2 u̇ (102.130)

Equation (102.125) becomes

–f 1 + G2p + f 2 – Mf Ü – C3U̇ + CT
2 u̇ = 0 (102.131)

or

–G2p – CT
2 u̇ + C3U̇ + Mf Ü = f f (102.132)

where

f f = f2 – f1 (102.133)

and in index form

–(G2)KiMpM – (C2)TLjiK u̇Lj + (C3)KijLU̇Lj + (Mf )KijLÜLj = (ff )Ki (102.134)

where

(f f )Ki = (f1)Ki – (f2)Ki

G2 = (G2)KiN =
∫
Ω

nHU
K ,iH

p
MdΩ

CT
2 = (CT

2 )KijL =
∫
Ω

HU
K n2k–1

ij Hu
LdΩ

C3 = (C3)KijL =
∫
Ω

HU
K n2k–1

ij HU
L dΩ

Mf = (Mf )KijL =
∫
Ω

HU
K nρf δijHU

L dΩ (102.135)

Numerical Solution of flow conservation equation. By integrating (102.107) in time and noticing that

εii = ui,i,

–nUi,i = (α – n)εii +
1
Q

p (102.136)

By multiplying (102.136) by Hp
M and integrating over domain, first term of (102.136) becomes

–[
∫
Ω

Hp
MnHU

L,jdΩ]ULj = –(G2)MLjULi = –GT
2 U (102.137)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 102.12. FULLY COUPLED, POROUS SOLID – . . . page: 148 of 3287

Second term of (102.136) is∫
Ω

Hp
M (α – n)ui,idΩ = [

∫
Ω

Hp
M (α – n)Hu

L,jdΩ]uLj

= (G1)LjMuLj

= GT
1 u (102.138)

Third term of (102.136) becomes

[
∫
Ω

Hp
N

1
Q

Hp
MdΩ]pN = PNMpM = Pp (102.139)

The equation (102.136) becomes

GT
2 U + GT

1 u + Pp = 0 (102.140)

in index form

(G2)LiKULi + (G1)LiKuLi + PKLpL = 0 (102.141)

102.12.1.5 Matrix form of the governing equations.

The numerical forms of governing equations (102.120),(102.132) and (102.140) can be written together

in the matrix form as
Ms 0 0

0 0 0

0 0 Mf




ü

p̈

Ü

 +


C1 0 –C2

0 0 0

–CT
2 0 C3




u̇

ṗ

U̇

 +


KEP –G1 0

–GT
1 –P –GT

2

0 –G2 0




u

p

U



=


f s

0

f f


(102.142)

or in index form
(Ms)KijL 0 0

0 0 0

0 0 (Mf )KijL




üLj

p̈N

ÜLj

 +


(C1)KijL 0 –(C2)KijL

0 0 0

–(C2)LjiK 0 (C3)KijL




u̇Lj

ṗN

U̇Lj



+


(KEP)KijL –(G1)KiM 0

–(G1)LjM –PMN –(G2)LjM

0 –(G2)KiL 0




uLj

pM

ULj

 =


f solid
Ki

0

f fluid
Ki


(102.143)
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where

Ms = (Ms)KijL =
∫
Ω

Hu
K (1 – n)ρsδijHu

LdΩ

Mf = (Mf )KijL =
∫
Ω

HU
K nρf δijHU

L dΩ

C1 = (C1)KijL =
∫
Ω

Hu
Kn2k–1

ij Hu
LdΩ

C2 = (C2)KijL =
∫
Ω

Hu
Kn2k–1

ij HU
L dΩ

C3 = (C3)KijL =
∫
Ω

HU
K n2k–1

ij HU
L dΩ

KEP = (KEP)KijL =
∫
Ω

Hu
K ,mDimjnHu

L,ndΩ

G1 = (G1)KiM =
∫
Ω

Hu
K ,i(α – n)Hp

MdΩ

G2 = (G2)KiM =
∫
Ω

nHU
K ,iH

p
MdΩ

P = PNM =
∫
Ω

Hp
N

1
Q

Hp
MdΩ

(102.144)

f solid
Ki = (f u

1 )Ki – (f u
4 )Ki + (f u

5 )Ki

f fluid
Ki = –(f U

1 )Ki + (f U
2 )Ki

(f u
1 )Ki =

∫
Γt

Hu
Knjσ

′′
ijdΓ

(f u
4 )Ki =

∫
Γp

Hu
K (α – n)nipdΓ

(f u
5 )Ki =

∫
Ω

Hu
K (1 – n)ρsbidΩ

(f U
1 )Ki =

∫
Γp

nHU
K nipdΓ

(f U
2 )Ki =

∫
Ω

nHU
K ρf bidΩ (102.145)

Functions Nu,Np,NU are shape functions for unknown field of skeleton dispalacements, pore fluid pres-

sures and fluid displacements, respectively, while ρ, ρs, ρf are the density of the total, solid and fluid

phases, respectively, n is the porosity, and by its definition ρ = (1 – n)ρs + nρf , the symbol ni is the

direction of the normal on the boundary, ui is the displacement of the solid part, p is pore fluid pressure

and Ui is the absolute displacement of the fluid part. Equation (102.142) represents the general form

(u – p – U) for coupled system which can be written in a familiar form as

Mẍ + Cẋ + Kx = f (102.146)
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where x represents the generalized unknown variable. The solution of this equation for each time step

will render an unknown field for given initial and boundary conditions.

102.12.1.6 Choice of shape functions

Isoparametric elements are used in previous sections, where the coordinates are interpolated using the

same shape functions as for the unknown. This mapping allows using elements of more arbitrary shape

than simple forms such as rectangles and triangles. But in static or dynamic undrained analysis the

permeability (and compressibility) matrices are zero, i.e.(Q→∞,and P → 0),resulting in a zero-matrix

diagonal term in the equation(102.143).

The matrix to be solved is the same as that in the solutions of problems of incompressible elasticity

or fluid mechanics. Actually, a wide choice of shape functions is available if the limiting(undrained)

condition is never imposed. Due to the presence of first derivatives in space in all the equations, it is

necessary to use ”Co-continuous” interpolation functions and the suitable element forms are shown in

Fig.102.11.

Figure 102.11: Shape functions used for coupled analysis, displacement u and pore pressure p formula-

tion
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Figure 102.12: 8 node u-p-U brick element. Note that all seven DOFs (three porous solid displacements

ui, pore fluid pressure p and pore fluid displacements Ui are defined at each node.
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Figure 102.13: 20 node brick element. Note that all seven DOFs (three porous solid displacements ui,

pore fluid pressure p and pore fluid displacements Ui are defined at each node.
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Figure 102.14: 27 node brick element. Note that all seven DOFs (three porous solid displacements ui,

pore fluid pressure p and pore fluid displacements Ui are defined at each node.

102.12.1.7 8 Node u – p – U Brick

102.12.1.8 20 Node u – p – U Brick

102.12.1.9 27 Node u – p – U Brick

102.12.2 u-p-U Formulation for Partially Saturated, Unsaturated Material

Coming SOON, by end of Winter 2020

102.12.3 u-p Formulation

102.12.3.1 Governing Equations of Porous Media

The formulation given here is based on Zienkiewicz et al. (1999b).

The first governing equation of porous media is total momentum balance equation:

σij,j – ρüi + ρbi = 0 (102.147)

where σij = σ′′ij – αpδij and ρ = (1 – n)ρs + nρf .

The second governing equation is the fluid mass balance equation:(
kij(–p,j + ρf bj)

)
,i + αu̇i,i +

ṗ
Qsf

= 0 (102.148)
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where

kij =
k′ij
gρf

=
k′ij
γf

(102.149)

and k′ij is the permeability in Darcy’s law with the same unit as velocity.

Qsf =
KsKf

Ks + Kf
(102.150)

is the total compression modulus, Ks and Kf are solid and fluid compression modulus, respectively.

The boundary conditions are

σijnj = t̄i on Γ = Γt (102.151)

ui = ūi on Γ = Γu (102.152)

niwi = nikij(–p,j + ρf bj) = w̄ = –q̄ on Γ = Γw (102.153)

p = p̄ on Γ = Γp (102.154)

where w̄ is the outflow and q̄ is the influx.

102.12.3.2 Numerical Solutions of the Governing Equations

The solid displacement ui and the pore pressure p can be approximated using shape functions and nodal

values:

ui = Nu
K ūKi (102.155)

p = Np
L p̄L (102.156)

Similar approximations are applied to u̇i, üi, ṗ and p̈.

Numerical solution of the total momentum balance The numerical solution of the total momentum

balance is∫
Ω

Nu
K
(
σij,j – ρüi + ρbi

)
dΩ = 0 (102.157)
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First-term of (102.157) becomes∫
Ω

Nu
Kσij,jdΩ =

∫
Γt

Nu
Kσij,jnjdΩ –

∫
Ω

Nu
K ,jσijdΩ

=
∫
Γt

Nu
K t̄idΩ –

∫
Ω

Nu
K ,j(σ

′′
ij – αpδij)dΩ

= (f u
1 )Ki –

∫
Ω

Nu
K ,jσ

′′
ijdΩ +

∫
Ω

Nu
K ,iαpdΩ

= (f u
1 )Ki –

∫
Ω

Nu
K ,jDijmlεmldΩ + [

∫
Ω
αNu

K ,iN
p
NdΩ]p̄N

= (f u
1 )Ki – [

∫
Ω

Nu
K ,jDijmlNu

P,mdΩ]ūPm + [
∫
Ω
αNu

K ,iN
p
NdΩ]p̄N

= (f u
1 )Ki – (Kep

KimP)ūPm + (QKiN )p̄N

= f u
1 – (Kep)ū + Qp̄ (102.158)

Second term of (102.157) becomes

–
∫
Ω

Nu
KρüidΩ = –

∫
Ω

Nu
KρNu

LdΩüLi

= –[
∫
Ω

Nu
KρNu

LdΩ]¨̄uLi

= –[δij
∫
Ω

Nu
KρNu

LdΩ]¨̄uLj

= –(MKijL)¨̄uLj

= –M ¨̄u (102.159)

The third term of (102.157) becomes∫
Ω

Nu
KρbidΩ = (f u

2 )Ki

= f u
2 (102.160)

The equation (102.157) thus becomes

(MKijL)¨̄uLj – (QKiN )p̄N + (Kep
KijL)ūLj = (f u

1 )Ki + (f u
2 )Ki = (f u)Ki (102.161)

or

M ¨̄u – Qp̄ + (Kep)ū = f u
1 + f u

2 = f u (102.162)

Numerical solution of the fluid mass balance The numerical solution of the fluid mass balance is∫
Ω

Np
M

(
kij(–p,j + ρf bj),j + αu̇i,i +

ṗ
Qsf

)
dΩ = 0 (102.163)
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First term of (102.163) becomes∫
Ω

Np
M
(
kij(–p,j + ρf bj)

)
,i dΩ (102.164)

=
∫
γw

Np
MwinidΩ –

∫
Ω

Np
M,ikij(–p,j + ρf bj)dΩ

=
∫
γw

Np
M w̄dΩ +

∫
Ω

Np
M,ikijp,jdΩ –

∫
Ω

Np
M,ikijρf bjdΩ

= (f p
1 )M +

∫
Ω

Np
M,ikijp,jdΩ –

∫
Ω

Np
M,ikijρf bjdΩ

= (f p
1 )M + [

∫
Ω

Np
M,ikijN

p
N ,jdΩ]p̄N – (f p

2 )M

= (f p
1 )M + (HMN )p̄N – (f p

2 )M

= f p
1 + Hp̄ – f p

2 (102.165)

Second term of (102.163) becomes∫
Ω

Np
Mαu̇i,idΩ = [

∫
Ω

Np
MαNu

L,jdΩ] ˙̄uLj

= (QLjM ) ˙̄uLj

= QT ˙̄u (102.166)

The third term of (102.163) becomes∫
Ω

Np
M

ṗ
Qsf

dΩ = [
∫
Ω

Np
M

1
Qsf

Np
NdΩ] ˙̄pN

= (SMN ) ˙̄pN

= S ˙̄p (102.167)

The equation (102.163) thus becomes

(HMN )p̄N + (QLjM ) ˙̄uLj + (SMN ) ˙̄pN = –(f p
1 )M + (f p

2 )M = (f p)M (102.168)

or

Hp̄ + QT ˙̄u + S ˙̄p = –f p
1 + f p

2 = f p (102.169)

Matrix form of the governing equations Combine equation (102.161) and (102.168), to obtain MKiLj 0

0 0

 üLj

p̈N

 +

 0 0

QLjM SMN

 u̇Lj

ṗN


+

 (Kep)KiLj –QKiN

0 HMN

 uLj

pN

 =

 f u
Ki

f p
M

 (102.170)
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or, by combining equations (102.162) and (102.169), obtain M 0

0 0

 ü

p̈

 +

 0 0

QT S

 u̇

ṗ

 +

 Kep Q

0 H

 u

p

 =

 f u

f p

 (102.171)

where

f u ↔ f u
Ki = (f u

1 )Ki + (f u
2 )Ki (102.172)

f p ↔ f p
M = –(f p

1 )M + (f p
2 )M (102.173)

and

f u
1 ↔ (f u

1 )Ki =
∫
Γt

Nu
K t̄idΓ (102.174)

f u
2 ↔ (f u

2 )Ki =
∫
Ω

Nu
KρbidΩ (102.175)

f p
1 ↔ (f p

1 )M =
∫
Γw

Np
M w̄dΓ (102.176)

f p
2 ↔ (f p

2 )M =
∫
Ω

Np
M,ikijρf bjdΩ (102.177)

M ↔ MKiLj = δij
∫
Ω

Nu
KρNu

LdΩ (102.178)

Q ↔ QKiN =
∫
Ω
αNu

K ,iN
p
NdΩ (102.179)

S ↔ SMN =
∫
Ω

Np
M

1
Qsf

Np
NdΩ (102.180)

H ↔ HMN =
∫
Ω

Np
M,ikijN

p
N ,jdΩ (102.181)

102.12.3.3 8 Node u – p Brick

102.13 Material and Geometric Non–Linear Finite Element Formulation

102.13.1 Introduction

Presented here is a detailed formulation of material and geometric non–linear static finite element system

of equations. The configuration of choice is material or Lagrangian. Eulerian and mixed Eulerian-

Lagrangian configuration will be mentioned as need be.

102.13.2 Equilibrium Equations

The local form of equilibrium equations in material format (Lagrangian) for static case can be written

as:

PiJ,J – ρ0bi = 0 (102.182)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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r1

r2

r3

1

23

4
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7

8

Figure 102.15: 8 node u – p brick element. Note that all four DOFs (three porous solid displacements

ui and a pore fluid pressure p are defined at each node.

where PiJ = SIJ (FiI )t and SIJ are first and second Piola–Kirchhoff stress tensors, respectively and bI are

body forces.

Weak form of equilibrium equations is obtained by premultiplying 102.182 with virtual displacements

δui and integrating by parts on the initial configuration B0 (initial volume V0):∫
V0
δui,jPijdV =

∫
V0
ρ0δuibidV –

∫
S0
δui t̄idS (102.183)

It proves beneficial to rewrite Lagrangian format of weak form of equilibrium equilibrium by using sym-

metric second Piola–Kirchhoff stress tensor Sij :∫
V0
δui,jFjlSildV =∫

V0

1
2
(
δui,jFjl + Fljδuj,i+

)
SildV =∫

V0

1
2
(
δui,j

(
δjl + uj,l

)
+
(
δlj + ul,j

)
δuj,i

)
SildV =∫

V0

1
2
(
δui,l + δui, juj,l

)
+
(
δul,i + ul,jδuj,i

)
SildV =∫

V0

1
2
((
δui,l + δul,i

)
+
(
δui,juj,l + ul,jδuj,i

))
SildV =

(102.184)
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where symmetry of Sil was used, definition for deformation gradient Fki = δki + uk,i. In addition,

conveniently defined was differential operator Êil(δui, ui) as

Êil(δui, ui) =
1
2
(
δul,i + δui,l

)
+

1
2
(
ul,jδuj,i + δui,juj,l

)
(102.185)

102.13.3 Formulation of Non–Linear Finite Element Equations

Consider the motion of a general solid in a fixed, non-moving Cartesian coordinate system, as shown

in Figure (102.16), and assume that the solid can experience large displacements, large strains, and

nonlinear constitutive response. The aim is to evaluate the equilibrium positions of the complete solid

at discrete time points 0,∆t, 2∆t, . . . , where ∆t is an increment in time. To develop the solution

strategy, assume that the solutions for the static and kinematic variables for all time steps from 0 to

time t inclusive, have been obtained. The solution process for the next required equilibrium position

corresponding to time t + ∆t is typical and would be applied repetitively until a complete solution path

has been found. Hence, in the analysis one follows all particles of the solid in their motion, from the

original to the final configuration of the solid. In so doing, a Lagrangian ( or material ) formulation of

the problem was adopted.

t+  t∆

t+  t∆ ui

tui

t+  t∆u ix i
0

ix0

ixt

Ω 0

Ωn

Ωn+1
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22 2
0 t

2 3
)P(

0

0V

t

t

A
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V
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333
0 tx x x

x x x
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+
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=
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Figure 102.16: Motion of a solid in non-moving Cartesian coordinate system.

Weak format of the equilibrium equations can be obtained by premultiplying 102.182 with virtual
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displacements δui and integrating by parts. We obtain the virtual work equations in the Lagrangian

format:∫
V0
δui,jPijdV =

∫
V0
ρ0δuibidV –

∫
S0
δui t̄idV (102.186)

Virtual work equations can also be written in terms of second Piola–Kirchhoff stress tensor SIJ as:∫
V0
δui,jFjlSildV =

∫
V0
ρ0δuibidV +

∫
S0
δui t̄idV (102.187)

which after some algebraic manipulations, and after observing that SIJ = SJI yields (SEE ABOVE!) By

introducing a differential operator Ê(u1, u2) as:

Êil(1ui, 2ui) =
1
2

(
1ui,l + 1ul,i

)
+

1
2

(
1ul,j

2uj,i + 2ui,j
1uj.l
)

(102.188)

virtual work equation 102.185 can be written as:∫
V0

Êil(δui, ui)SildV =
∫

V0
ρ0δuibidV +

∫
S0
δui t̄idV (102.189)

or as:

W (δui, u
(k)
i )int + Wext(δui) = 0 (102.190)

with:

W int(δui, n+1
0u(k)

i ) =
∫
Ωc

Êij(δui, n+1
0u(k)

i ) n+1
0S(k)

ij dV (102.191)

=
∫
Ωc

((
δuj,i + δui,j

)
+
(
uj,rδur,i + δui,rur,j

))
S(k)

ij dV

Wext(δui) = –
∫
Ωc
ρ0 δui

n+1
0bi dV –

∫
∂Ωc

δui
n+1

0 ti dS (102.192)

102.13.4 Computational Domain in Incremental Analysis

This chapter elaborates on the choice of Total Lagrangian (TL) formulations as a computational domain.

In addition, a Newton-type procedure is chosen for satisfying equilibrium, i.e., virtual work for a given

computational domain. Given the displacement field u(k)
i (Xj), in iteration k, the iterative change δui

u(k+1)
i = u(k)

i + ∆ui (102.193)

is obtained from the linearized virtual work expression

W (δui, u
(k+1)
i ) ≃ W (δui, u

(k)
i ) + ∆W (δui,∆ui; u(k)

i ) (102.194)

Here, W (δui, u
(k)
i ) is the virtual work expression

W (δui, u
(k)
i ) = W (δui, u

(k)
i )int + Wext(δui) (102.195)
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with

W int(δui, n+1
0u(k)

i ) =
∫
Ωc

Êij(δui, n+1
0u(k)

i ) n+1
0S(k)

ij dV (102.196)

Wext(δui) = –
∫
Ωc
ρ0 δui

n+1
0bi dV –

∫
∂Ωc

δui
n+1

0 ti dS (102.197)

and the ∆W (δui,∆ui; u(k)
i ) is the linearization of virtual work

∆W (δui,∆ui; u(k)
i ) = lim

ϵ→0

∂W (δui, ui + ϵ∆ui)
∂ϵ

=
∫
Ωc

Êij(δui, ui) dSij dV +
∫
Ωc

∆Êij(δui, ui) SijdV

=
∫
Ωc

Êij(δui, ui) Lijkl Êkl(∆ui, ui) dV +
∫
Ωc

∆Êij(δui, ui) Sij dV

(102.198)

Here it was used that dSij = 1/2 LijkldCkl = LijklÊkl(∆ui, ui).

In order to obtain expressions for stiffness matrix, work is done on equation 102.198 in some more

details. To this end, equation 102.198 can be rewritten by expanding definitions for Ê as

∆W (δui,∆ui; u(k)
i ) =

1
4

∫
Ωc

((
δuj,i + δui,j

)
+
(
uj,rδur,i + δui,rur,j

))
Lijkl

((
∆uk,l + ∆ul,k

)
+
(
uk,s∆us,l + ∆ul,sus,k

))
dV +

+
∫
Ωc

1
2
(
∆uj,lδul,i + δui,l∆ul,j

)
Sij dV

(102.199)

Or, by conveniently splitting the above equation

∆1W (δui,∆ui; u(k)
i ) =

1
4

∫
Ωc

((
δuj,i + δui,j

)
+
(
uj,rδur,i + δui,rur,j

))
Lijkl

((
∆uk,l + ∆ul,k

)
+
(
uk,s∆us,l + ∆ul,sus,k

))
dV

(102.200)

∆2W (δui,∆ui; u(k)
i ) =

∫
Ωc

1
2
(
∆uj,lδul,i + δui,l∆ul,j

)
Sij dV (102.201)

By further working on equation 102.200

∆1W (δui,∆ui; u(k)
i ) =

∫
Ωc

(
1
2
(
δuj,i + δui,j

))
Lijkl

(
1
2
(
∆uk,l + ∆ul,k

))
dV

+
∫
Ωc

(
1
2
(
δuj,i + δui,j

))
Lijkl

(
1
2
(
uk,s∆us,l + ∆ul,sus,k

))
dV

+
∫
Ωc

1
2
(
uj,rδur,i + δui,rur,j

)
Lijkl

1
2
(
uk,s∆us,l + ∆ul,sus,k

)
dV

+
∫
Ωc

1
2
(
uj,rδur,i + δui,rur,j

)
Lijkl

(
1
2
(
∆uk,l + ∆ul,k

))
dV (102.202)
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It should be noted that the Algorithmic Tangent Stiffness (ATS) tensor Lijkl poses both minor

symmetries (Lijkl = Ljikl = Lijlk). However, Major symmetry cannot be guaranteed. Non–associated

flow rules in elastoplasticity lead to the loss of major symmetry (Lijkl ̸ =Lklij). Moreover, it can be shown

(i.e., Jeremić and Sture (1997)) that there is algorithmic induced symmetry loss even for associated flow

rules.

With the minor symmetry of Lijkl one can write (102.202) as:

∆1W (δui,∆ui; u(k)
i ) =

∫
Ωc
δui,j Lijkl ∆ul,kdV

+
∫
Ωc
δui,j Lijkl uk,s∆ul,sdV

+
∫
Ωc
δui,rur,j Lijkl uk,s∆ul,sdV

+
∫
Ωc
δui,rur,j Lijkl ∆ul,kdV (102.203)

Similarly, by observing symmetry of second Piola–Kirchhoff stress tensor Sij

∆2W (δui,∆ui; u(k)
i ) =

∫
Ωc
δui,l∆ul,j SijdV (102.204)

Weak form of equilibrium expressions (i.e. (102.192) and (102.192) ) for internal (W int) and external

(Wext) virtual work, with the above mentioned symmetry of Sij can be written as

W int(δui, n+1
0u(k)

i ) =
∫
Ωc
δui,j SijdV +

∫
Ωc
δui,rur,j SijdV (102.205)

Wext(δui) = –
∫
Ωc
ρ0 δuibi dV –

∫
∂Ωc

δui ti dS (102.206)

Standard finite element discretization of displacement field yields:

ui ≈ ûi = HI ūIi (102.207)

where ûi is the approximation to exact, analytic (if it exists) displacement field ui, HI are standard FEM

shape functions and ūIi are nodal displacements. With this approximation

∆1W (δui,∆ui; u(k)
i ) =

∫
Ωc

(
HI ,jδūIi

)
Lijkl

(
HQ,k∆ūQl

)
dV

+
∫
Ωc

(
HI ,jδūIi

)
Lijkl

(
HJ,k ūJs

) (
HQ,s∆ūQl

)
dV

+
∫
Ωc

(
HI ,rδūIi

) (
HJ,j ūJr

)
Lijkl

(
HJ,k ūJs

) (
HQ,s∆ūQl

)
dV

+
∫
Ωc

(
HI ,rδūIi

) (
HJ,j ūJr

)
Lijkl

(
HQ,k∆ūQl

)
dV (102.208)
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∆2W (δui,∆ui; u(k)
i ) =

∫
Ωc

(
HI ,lδūIi

) (
HQ,j∆ūQl

)
SijdV (102.209)

W int(δui, n+1
0u(k)

i ) =
∫
Ωc

(
HI ,jδūIi

)
SijdV +

∫
Ωc

(
HI ,rδūIi

) (
HJ,j ūJr

)
SijdV (102.210)

Wext(δui) = –
∫
Ωc
ρ0 (HIδūIi) bi dV –

∫
∂Ωc

(HIδūIi) ti dS (102.211)

Upon noting that virtual nodal displacements δuIi are any non–zero, continuous displacements, and since

they occur in all expressions for linearized virtual work (from Equations (102.194), (102.195), (102.196),

(102.197) and (102.198)) they can be factored out so that (while remembering that ∆W1 + ∆W2 +

Wext + W int = 0):∫
Ωc

(
HI ,j
)
Lijkl

(
HQ,k∆ūQl

)
dV

+
∫
Ωc

(
HI ,j
)
Lijkl

(
HJ,k ūJs

) (
HQ,s∆ūQl

)
dV

+
∫
Ωc

(
HI ,r

) (
HJ,j ūJr

)
Lijkl

(
HJ,k ūJs

) (
HQ,s∆ūQl

)
dV

+
∫
Ωc

(
HI ,r

) (
HJ,j ūJr

)
Lijkl

(
HQ,k∆ūQl

)
dV

+
∫
Ωc

(
HI ,l
) (

HQ,j∆ūQl
)

SijdV

+
∫
Ωc

(
HI ,j
)

SijdV +
∫
Ωc

(
HI ,r

) (
HJ,j ūJr

)
SijdV

=
∫
Ωc
ρ0 (HI ) bi dV +

∫
∂Ωc

(HI ) ti dS (102.212)

By rearranging previous equations, one can write:(∫
Ωc

HI ,jLijklHQ,kdV +
∫
Ωc

HI ,jLijklHJ,k ūJsHQ,sdV +
∫
Ωc

HI ,rHJ,j ūJrLijklHJ,k ūJsHQ,sdV

+
∫
Ωc

HI ,rHJ,j ūJrLijklHQ,kdV +
∫
Ωc

HI ,lHQ,jSijdV
)
∆ūQl

+
∫
Ωc

(
HI ,j
)

SijdV +
∫
Ωc

(
HI ,r

) (
HJ,j ūJr

)
SijdV

=
∫
Ωc
ρ0 (HI ) bi dV +

∫
∂Ωc

(HI ) ti dS (102.213)

The vectors of external and internal forces are

fint =
∂(W int(δui, n+1

0u(k)
i ))

∂(δui)
(102.214)

fext =
∂(Wext(δui))

∂(δui)
(102.215)
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The Algorithmic Tangent Stiffness (ATS) tensor LATS
ijkl is defined as a linearization of second Piola–

Kirchhoff stress tensor Sij with respect to the right deformation tensor Ckl

dSij =
1
2
Lijkl dCkl with dCkl = 2 Êkl(dui, ui) (102.216)

Then, the global algorithmic tangent stiffness matrix (tensor) is given as

Kt =
∂(∆W (δui,∆ui; u(k)

i ))
∂(δui)

(102.217)

The iterative change in displacement vector ∆ui is obtained by setting a linearized virtual work to

zero

W (δui, u
(k+1)
i ) = 0 ⇒ W (δui, u

(k)
i ) = –∆W (δui,∆ui; u(k)

i ) (102.218)

102.13.4.1 Total Lagrangian Format

The undeformed configuration Ω0 is chosen as the computational domain (Ωc = Ω0). The iterative

displacement ∆ui is obtained from the equation

W (δui, n+1u(k)
i ) = –∆W (δui,∆ui; n+1u(k)

i ) (102.219)

where

W (δui, n+1u(k)
i ) =

∫
Ωc

Êij(δui, n+1u(k)
i ) n+1S(k)

ij dV

–
∫
Ωc
ρ0 δui

n+1bi dV –
∫
∂Ωc

δui
n+1ti dS (102.220)

and

∆W (δui,∆ui; n+1u(k)
i ) =

∫
Ωc

Êij(δui, n+1u(k)
i ) n+1L(k)

ijkl Êkl(∆ui, n+1u(k)
i ) dV

+
∫
Ωc

dÊij(δui,∆ui) n+1S(k)
ij dV (102.221)

In the case of hyperelastic–plastic response, second Piola–Kirchhoff stress n+1S(k)
ij is obtained by

integrating the constitutive law, described in Chapter 106.4. It should be noted that by integrating in

the intermediate configuration, obtained is Mandel stress n+1T̄ij and subsequently24 the second Piola–

Kirchhoff stress S̄kj . The ATS tensor L̄ijkl is then obtained based on S̄kj . In order to obtain second

Piola–Kirchhoff stress Skj and ATS tensor in initial configuration, a pull-back from the intermediate

configuration to the initial configuration is performed

n+1Sij = n+1Fp
ip

n+1Fp
jq

n+1̄Spq (102.222)

n+1Lijkl = n+1Fp
im

n+1Fp
jn

n+1Fp
kr

n+1Fp
ls

n+1L̄mnrs (102.223)

24S̄kj =
(
C̄ik
)–1 T̄ij
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102.13.5 Finite Element Formulations

Presented here is a slightly different approach to developing large deformation FEM in total Lagrangian

form. Lower case indices are used for variables in current configuration, while the capital case indices

are used for the reference configuration.

102.13.5.1 Strong Form

The static, strong form of momentum balance in the current configuration is

∂σij
∂xj

+ ρbi = 0 (102.224)

where σij is the Cauchy stress, rho is the material density, bi is the material body force.

Used here was the so-called Total Lagrangian formulation that is based on the reference configuration.

The strong form of momentum balance can be expressed in the reference configuration

∂PiJ
∂XJ

+ ρ0bi = 0 (102.225)

where PiJ is the first Pialo-Kirchhoff stress, ρ0 is the material Lagrangian density and ρ0 = Jρ.

102.13.5.2 Weak Form

The corresponding weak form of Equation 102.225 can be expressed as∫
Ω0
δui

(
∂PiJ
∂XJ

+ ρ0bi

)
dV = 0 (102.226)

where δui is some arbitrary virtual displacement, Ω0 is the concerned domain of the reference configu-

ration. Using the partial integration rule, the above equation can be alternatively expressed as∫
Ω0

∂

∂XJ
(PiJδui) dV –

∫
Ω0

PiJ
∂δui
∂XJ

dV +
∫
Ω0
ρ0biδuidV = 0 (102.227)

The first term of Equation 102.227 can be rewritten in terms of the surface traction∫
Ω0

∂

∂XJ
(PiJδui) dV =

∫
∂Ω0

δuiPiJHJdA =
∫
∂Ω0

tiδuidA (102.228)

with the traction ti = PiJHJ , where HJ the unit surface normal vector in the reference configuration, and

∂Ω0 is the boundary of the reference domain Ω0.

The second term of Equation 102.227 can be rewritten as∫
Ω0

PiJ
∂δui
∂XJ

dV =
∫
Ω0

PiJδFiJdV =
∫
Ω0

SIJδEIJdV (102.229)
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where SIJ is the second Pialo-Kirchhoff stress and EIJ is the Lagrangian-Green strain. δFiJ = ∂δui/∂XJ

is used.

The overall weak form in the reference configuration is now∫
Ω0

SIJδEIJdV =
∫
∂Ω0

tiδuidA +
∫
Ω0
ρ0biδuidV (102.230)

102.13.5.3 Linearized Form

To utilize the iterative algorithm for incremental strategy, needed is the linearized form the governing

equation 102.230.

The first term linearization of Equation 102.230 is

∆

∫
Ω0

SIJδEIJ =
∫
Ω0

[∆SIJδEIJ + SIJδ(∆EIJ )] dV

=
∫
Ω0

[LIJKL∆EKLδEIJ + SIJδ(∆EIJ )] dV (102.231)

where LIJKL is the Lagrangian stiffness linked the second Pialo-Kirchhoff stress SIJ and the Lagrangian-

Green strain EKL by the relation

SIJ = LIJKLEKL (102.232)

The linearization of EKL is

∆EKL = Sym
(

FK
∂∆ub
∂XL

)
(102.233)

where Sym is the operator of tensor symmetry, defined as Sym(Aij) := (1/2)(Aij + Aji). Similarly,

δEIJ = Sym
(

FaI
∂δua
∂XJ

)
(102.234)

and

δ(∆EIJ ) = Sym
(
∂δuc
∂XI

∂∆uc
∂XJ

)
(102.235)

Note that SIJ is a symmetric tensor, and LIJKL is a tensor with major and minor symmetries, Equation

102.231 can be expressed as

∆

∫
Ω0

SIJδEIJ =
∫
Ω0

[
LIJKL

(
FbK

∂∆ub
∂XL

)(
FaI

∂δua
∂XJ

)
+ SIJ

(
∂δuc
∂XI

∂∆uc
∂XJ

)]
dV

=
∫
Ω0

[
∂δua
∂XJ

(FaIFbKLIJKL + δabSJL)
∂∆ub
∂XL

]
dV (102.236)

The overall linearization form is thus∫
Ω0

[
∂δua
∂XJ

(FaIFbKLIJKL + δabSJL)
∂∆ub
∂XL

]
dV =

∫
∂Ω0

∆tiδuidA +
∫
Ω0
ρ0∆biδuidV (102.237)
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102.13.5.4 Finite Element Form

In finite element form, the displacements ui are interpolated from the element nodal displacements ūAi:

ui = HAūAi (102.238)

where HA is the element shape function of the node A, ūAi is the node A displacements, and

∂δua
∂XJ

=
∂HA
∂XJ

δūAa,
∂∆ub
∂XL

=
∂HB
∂XL

∆ūBb (102.239)

Equation 102.237 can be expressed as

(
KAaBb ∆ūBb – ∆f ex

Aa
)
δūAa = 0 (102.240)

where

KAaBb =
∫
Ω0

∂HA
∂XJ

(FaIFbKLIJKL + δabSJL)
∂HB
∂XL

dV (102.241)

∆f ex
Aa =

∫
∂Ω0

HA∆tidA +
∫
Ω0
ρ0HA∆bidV (102.242)

Due to the arbitrariness of the virtual nodal displacements, the expression in the parentheses should be

zero in Equation 102.240, which gives the incremental finite element form:

KAaBb ∆ūBb = ∆f ex
Aa (102.243)

102.14 Cosserat Continuum Finite Element Formulation

102.14.1 Introduction

The classical theory of elasticity describes well the behavior of metals, like steel and aluminum. But

when the micro-structure of the material becomes significant, like soil and sand, the classical elasticity

lacks the ability to represent the granular media properties. In 1909, Cosserat Cosserat (1909) brothers

published their prominent work on the Cosserat continua to remove the shortcomings of the classical

elasticity. Compared to the classical continua, Cosserat continua has the additional couple stress to

reflect the free rotations on the particles.

102.14.1.1 3D Finite Element Formulation for Cosserat Continua

Pothier Pothier and Rencis (1994) proposed the three-dimensional finite element formulation for micro-

polar elasticity with both classical strain and the micro-polar strain components. Riahi Dehkordi (2008)

developed the finite element Cosserat formulation with the application in layered structures. This article
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contributes the three-dimensional finite element formulation with the micro-polar strain, which simplifies

further development in the elastoplasticity algorithm. In addition, the formulation for the isoparametric

brick element is provided.

102.14.1.2 Cosserat Elastoplastic Algorithm

Vardoulakis et al. Vardoulakis (1989); Papamichos et al. (1990) developed the 2D Cosserat plasticity

to predict the thickness of shear bands in granular materials. De Borst de Borst (1993, 1991) applied

the 2D Cosserat elastoplasticity to analyze the strain localization. Li Li and Bing Chen (2005) applied

the 2D pressure-dependent Cosserat elastoplasticity to simulate the strain localization. Grammenoudis

Grammenoudis and Tsakmakis (2005) implemented the micro-polar plasticity in the finite deformation

framework. This article developed the implicit algorithms for 3D Cosserat plasticity. Rotational kinematic

hardening is introduced to the Cosserat elastoplasticity.

102.14.2 Cosserat Elasticity

The Cosserat (micro-polar) elasticity has 6 parameters Pothier and Rencis (1994) , including λ, µ, χ,

π1, π2, π3.

The units of λ, µ, and χ are Newton/(meter2). The units of π1, π2, and π3 are Newton.

102.14.2.1 Stress

The stress is the same to the classical elastic stress Riahi and Curran (2009); Dehkordi (2008),

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (102.244)

where the unit of σ is force per unit area (Newton/meter2).

102.14.2.2 Couple Stress

The couple-stress is the couple stress of the classical elastic stress.

t =


t11 t12 t13

t21 t22 t23

t31 t32 t33

 (102.245)
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Figure 102.17: Illustration of Stress and Couple Stress

where the unit of t is torque per unit area (Newton/meter).

In the classical elasticity, the stress is symmetric: σ12 = σ21. This is no longer true in the Cosserat

materials. Namely, σ12 ̸= σ21 due to the couple stress.

Figure 102.18: Illustration of Asymmetric Stress due to Couple Stress

102.14.2.3 Generalized Stress

In the calculation, for the purpose of simplification, the generalized stress are defined by :

σ = [σ
... t]

σ = [σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33
... t11 t12 t13 t21 t22 t23 t31 t32 t33]

(102.246)

Namely, the generalized stress σ (18× 1) is a horizontal combination of σ and t.
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102.14.2.4 Cosserat Strain

ϵ = uj,i – eijkϕk =


u1,1 u2,1 – ϕ3 u3,1 + ϕ2

u1,2 + ϕ3 u2,2 u3,2 – ϕ1

u1,3 – ϕ2 u2,3 + ϕ1 u3,3

 (102.247)

where eijk is the permutation symbol.

where u and ϕ are the displacement and micro-rotation respectively.

Note that generally ϵ12 ̸= ϵ21 even when ϕ = 0.

Figure 102.19: Illustration of Asymmetric Strain due to Rotations

102.14.2.5 Curvature

ω = ϕi,j =


ϕ1,1 ϕ1,2 ϕ1,3

ϕ2,1 ϕ2,2 ϕ2,3

ϕ3,1 ϕ3,2 ϕ3,3

 (102.248)

where ϕ is called the micro-rotation and ω is called the Cosserat rotation gradient (curvature).

102.14.2.6 Generalized Strain

In the calculation, for the purpose of simplification, the Generalized Strain are defined by :

ξ = [ϵ
... ω]

ξ = [ϵ11 ϵ12 ϵ13 ϵ21 ϵ22 ϵ23 ϵ31 ϵ32 ϵ33
... ω11 ω12 ω13 ω21 ω22 ω23 ω31 ω32 ω33]

(102.249)

The generalized strain ξ (18× 1) is a horizontal combination of ϵ and κ.

102.14.2.7 Constitutive Equations

Force Tangent: The relationship between the stress and strain Pothier and Rencis (1994) is

σij = λϵkkδij + µϵij + (µ + χ)ϵji (102.250)
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Therefore, the tangent between stress and strain is

Eijkl = λδijδkl + µδikδjl + (µ + χ)δjkδil (102.251)

Curvature Tangent: The relationship between the couple-stress and curvature is

tij = π1ωkkδij + π2ωij + π3ωji (102.252)

Therefore, the tangent between couple-stress and curvature is

Cijkl = π1δijδkl + π2δikδjl + π3δjkδil (102.253)

102.14.2.8 Relation to the classical elasticity tangent

When χ = π1 = π2 = π3 = 0, the curvature tangent is zero, and the force tangent is the same to the

classical elasticity tangent.

Full tangent matrix for one Cosserat point:

Dfull
18×18 =

Dforce
9×9 [0]9×9

[0]9×9 Dcurvature
9×9


18×18

(102.254)

102.14.2.9 Flatten the tensor of force tangent and curvature tangent

Corresponding to the defined generalized stress and generalized strain, flatten the 3× 3× 3× 3 tensor

Cijkl to 9× 9 matrix D.

D9×9 =



C1111 C1112 C1113 C1121 C1122 C1123 C1131 C1132 C1133

C1211 C1212 C1213 C1221 C1222 C1223 C1231 C1232 C1233

C1311 C1312 C1313 C1321 C1322 C1323 C1331 C1332 C1333

C2111 C2112 C2113 C2121 C2122 C2123 C2131 C2132 C2133

C2211 C2212 C2213 C2221 C2222 C2223 C2231 C2232 C2233

C2311 C2312 C2313 C2321 C2322 C2323 C2331 C2332 C2333

C3111 C3112 C3113 C3121 C3122 C3123 C3131 C3132 C3133

C3211 C3212 C3213 C3221 C3222 C3223 C3231 C3232 C3233

C3311 C3312 C3313 C3321 C3322 C3323 C3331 C3332 C3333


9×9

(102.255)
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102.14.3 3D Finite Element Formulation

102.14.3.1 Force Equilibrium

σji,j + bi = ρüi in dynamic problems.

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

+ bx = ρüx

∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

+ by = ρüy

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ bz = ρüz

(102.256)

where bi is the body force, and üi is the acceleration of the point.

102.14.4 Momentum Equilibrium

tji,j + eijkσjk + Mi = J θ̈i in dynamic problems.

∂txx
∂x

+
∂tyx
∂y

+
∂tzx
∂z

+ σxy – σyx + Mx = Jxθx

∂txy
∂x

+
∂tyy
∂y

+
∂tzy
∂z

+ σzx – σxz + My = Jyθy

∂txz
∂x

+
∂tyz
∂y

+
∂tzz
∂z

+ σyz – σzy + Mz = Jzθz

(102.257)

where Mi is the body rotation force per unit area (Newton/meter2).

102.14.4.1 Illustration in 2D

Figure 102.20: Illustration of Force Equilibrium in Cosserat Continua
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Figure 102.21: Illustration of Moment Equilibrium in Cosserat Continua

102.14.4.2 Strain-Displacement Relationship

Define the DOFs and the generalized strain. For the 8-node brick element. Each node has 6 DOFs.

The vector of nodal DOFs is defined by :

U = [u ϕ]T = [ux uy uz ϕx ϕy ϕz]T1×6 (102.258)

The vector of generalized strain ξ (18× 1) is a horizontal combination of ϵ and κ.

ξ = [ϵ11 ϵ12 ϵ13 ϵ21 ϵ22 ϵ23 ϵ31 ϵ32 ϵ33
... ω11 ω12 ω13 ω21 ω22 ω23 ω31 ω32 ω33] (102.259)

Strain-displacement for one node. Therefore,

ξ18×1 = B18×6U6×1 (102.260)

So the dimension of matrix B (strain-displacement matrix) for 1 node is 18× 6.

According to the definition of force strain (Eq 102.247) and curvature (Eq 102.248), express the

matrix B for 1 node Riahi and Curran (2009); Padovan (1978) by

BN =

 BNa BNb

[0]9×3 BNc


18×6

(102.261)

where
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BNa =



HN ,x 0 0

0 HN ,x 0

0 0 HN ,x

HN ,y 0 0

0 HN ,y 0

0 0 HN ,y

HN ,z 0 0

0 HN ,z 0

0 0 HN ,z


9×3

, BNb =



0 0 0

0 0 –HN

0 +HN 0

0 0 +HN

0 0 0

–HN 0 0

0 –HN 0

+HN 0 0

0 0 0


9×3

, (102.262)

BNc =



–HN ,x 0 0

–HN ,y 0 0

–HN ,z 0 0

0 –HN ,x 0

0 –HN ,y 0

0 –HN ,z 0

0 0 –HN ,x

0 0 –HN ,y

0 0 –HN ,z


9×3

(102.263)

where H is the shape function. N is the node number, which can be 1, 2, ..., 8.

Strain-displacement for 8 node brick. So the dimension of matrix B (strain-displacement matrix) for 8

node brick is 18× 48.

B = [ B1 B2 B3 B4 B5 B6 B7 B8 ]18×48 (102.264)

Express the 8 node displacement by

U = [ U1 U2 U3 U4 U5 U6 U7 U8 ]T48×1 (102.265)

Note that matrix B is a field function obtained by the interpolation of the displacements at 8 nodes.

For a specified Gauss point, the Gauss coordinates should be substituted to calculate the correspond-

ing generalized strain.

So the generalized strain at a specific Gauss coordinates is

E |xi ,yi ,zi = B|xi ,yi ,ziU (102.266)
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102.14.4.3 Isoparametric 8 Node Brick

For the purpose of completeness, the shape function Bathe (1996) for the isoparametric 8 node brick is

given by

Hi =
1
8

(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (102.267)

where the values of ξi, ηi, ζi for eight nodes are listed.

Node ξi ηi ζi

1 +1 +1 +1

2 -1 +1 +1

3 -1 -1 +1

4 +1 -1 +1

5 +1 -1 +1

6 -1 +1 -1

7 -1 -1 -1

8 +1 -1 -1

In addition, the shape function is used for both the displacement interpolation in Eq (102.268) and

coordinate transformation formula in Eq (102.269) from the global coordinate to the natural coordinate

system.

ux =
8∑

i=1
Hi(ξ, η, ζ)ui

x uy =
8∑

i=1
Hi(ξ, η, ζ)ui

y uz =
8∑

i=1
Hi(ξ, η, ζ)ui

z

ϕx =
8∑

i=1
Hi(ξ, η, ζ)ϕi

x ϕy =
8∑

i=1
Hi(ξ, η, ζ)ϕi

y ϕz =
8∑

i=1
Hi(ξ, η, ζ)ϕi

z

(102.268)

The coordinate transformation formula from the global coordinate to the natural coordinate system

is

x =
8∑

i=1
Hi(ξ, η, ζ)xi y =

8∑
i=1

Hi(ξ, η, ζ)yi z =
8∑

i=1
Hi(ξ, η, ζ)zi (102.269)

where the xi, yi, zi are the nodal coordinates. Therefore, with the help of Eq (102.269), the global

coordinate (x, y, z) become a function of (ξ, η, ζ), which is the natural coordinate in the isoparametric

element.

To construct the strain-displacement matrix, the derivative with respect to the global coordinate

(x, y, z) is required. Jacobian transformation is used to calculate the derivatives in Eq (102.262, 102.263).
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∂Hi
∂x

∂Hi
∂y

∂Hi
∂z


= J–1



∂Hi
∂ξ

∂Hi
∂η

∂Hi
∂ζ


(102.270)

where

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 =



∑8
i=1

∂Hi
∂ξ xi

∑8
i=1

∂Hi
∂ξ yi

∑8
i=1

∂Hi
∂ξ zi

∑8
i=1

∂Hi
∂η xi

∑8
i=1

∂Hi
∂η yi

∑8
i=1

∂Hi
∂η zi

∑8
i=1

∂Hi
∂ζ xi

∑8
i=1

∂Hi
∂ζ yi

∑8
i=1

∂Hi
∂ζ zi


(102.271)

Note that BNb in Eq (102.262) has the original shape functions. Jacobian transformation is not

required on BNb because the interpolated rotation is used directly to construct the strain in Eq (102.247)

.
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Micromechanical Origins of Elasto-Plasticity
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103.1 Chapter Summary and Highlights

This chapter is based in large part on lecture notes by Prof. Stein Sture (Sture, 1993).

103.2 Friction

103.2.1 Early Works

• Leonardo da Vinci, (1452-1519), worked and wrote about friction in 1493... (https://en.

wikipedia.org/wiki/Leonardo_da_Vinci)

• Guillaume Amontons (1663-1705), Law of friction, rediscovered in 1699 (since da Vinci’s notes

were lost), (https://en.wikipedia.org/wiki/Guillaume_Amontons)

• Charles-Augistine de Coulomb (1736-1806), verified laws of friction in 1791 (https://en.wikipedia.

org/wiki/Charles-Augustin_de_Coulomb)

Surface with asperities

grain assemblies, loose and dense

Saw-Teeth model analog

Frictional response of solids, friction angle for the polished mineral and dilatancy angle

Particle shapes

Particle rotations

types of packaging of particles

103.3 Particle Contact Mechanics

103.3.1 Particle Contact Mechanics, Axial Behavior

• Hertz contact theory, elastic (1885)

• Cattaneo and Midnlin theories, 1938 elastic and plastic contact

Two equal particles in normal contact

equations for a, ∆, σN , σmax
N

Two unequal particles in normal contact

average normal stress and average normal strain

tangent stiffness, function of 3√σavg

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Bulk modulus for loose and dense packaging

Mindlin and Deresiewicz (1953)

Hashin (1983)

Rowe (1962)

Cosserat (1909)

103.3.2 Particle Contact Mechanics, Shear Behavior

Shear Behavior

closed form solution for no-slip behavior

equilibrium, integral of τ

slip ring

SLIP ring

There is NO elastic behavior of particles in contact if there is ANY small amount of shear!

Example values for typical contact stress parameters

typical stiffness parameters for sands

103.4 Dilatancy
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Chapter 104

Small Deformation Elasto-Plasticity

(1991-1994-2002-2006-2010-2016-2017-2018-2019-2020-2021-)

(In collaboration with Prof. Zhaohui Yang, Dr. Zhao Cheng, Dr. Nima Tafazzoli, Dr. Federico Pisanò, and Prof.

Han Yang)
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104.1 Chapter Summary and Highlights

104.2 Elasto–plasticity

104.2.1 Constitutive Relations for Infinitesimal Plasticity

A wide range of elasto–plastic materials can be characterized by means of a set of incremental constitutive

relations of the general form:

dϵij = dϵeij + dϵpij (104.1)

dσij = Eijkldϵekl (104.2)

dϵpij = dλ
∂Q
∂σij

= dλ mij(σij , q∗) (104.3)

dq∗ = dλ h∗(τij , q∗) (104.4)

where, following standard notation ϵij , ϵeij and ϵ
p
ij denotes the total, elastic and plastic strain tensor, (and

dϵij is an increment of a strain tensor ϵij), σij is the Cauchy stress tensor, and q∗ signifies some suitable

set of internal variables1. The asterisk in the place of indices in q∗ replaces n indices2. Equation (104.1)

expresses the commonly assumed additive decomposition of the infinitesimal strain tensor into elastic and

plastic parts. Equation (104.2) represents the generalized Hooke’s law3 which linearly relates stresses and

elastic strains through a stiffness modulus tensor Eijkl. Equation (104.3) expresses a generally associated

or non-associated flow rule for the plastic strain and (104.4) describes a suitable set of hardening laws,

which govern the evolution of the plastic variables. In these equations, mij is the plastic flow direction, h∗
the plastic moduli and dλ is a plastic parameter to be determined with the aid of the loading—unloading

criterion, which can be expressed in terms of the Karush–Kuhn–Tucker condition (Karush, 1939; Kuhn

and Tucker, 1951) as:

F(σij , q∗) ≤ 0 (104.5)

1In the simplest models of plasticity the internal variables are taken as either plastic strain components ϵpij or the hardening

variables κ defined, for example as a function of inelastic (plastic) work, i.e. κ = f
(
Wp). See Lubliner (1990) page 115.

2for example ij if the variable is ϵpij , or nothing if the variable is a scalar value, i.e. κ .
3also Eq. 104.157
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dλ ≥ 0 (104.6)

F dλ = 0 (104.7)

In the previous equations F(σij , q∗) denotes the yield function of the material and (104.5) characterizes

the corresponding elastic domain, which is presumably convex. Along any process of loading, conditions

(104.5), (104.6) and (104.7) must hold simultaneously. For F < 0, equation (104.7) yields dλ = 0, i.e.

elastic behavior, while plastic flow is characterized by dλ > 0, which with (104.7) is possible only if the

yield criterion is satisfied, i.e. F = 0. From the latter constraint, in the process of plastic loading the

plastic consistency conditions4 is obtained in the form:

dF =
∂F
∂σij

dσij +
∂F
∂q∗

dq∗ = nijdσij + ξ∗dq∗ = 0 (104.8)

where :

nij =
∂F
∂σij

(104.9)

ξ∗ =
∂F
∂q∗

(104.10)

Equation (104.8) has the effect of confining the stress trajectory to the yield surface5. It is worthwhile

noting that nij and ξ∗ are normals to the yield surface in stress space and the plastic variable space

respectively.

An interesting alternative way of representing non–associated flow rules can be found in Runesson

(1987). A fictitious plastic strain derived from associated flow rule, ep
ij is introduced. This fictitious plastic

strain is assumed to be related to the real plastic strain ϵ
p
ij , which is derived from a non–associated flow

rule6 through the linear transformation:

ep
ij = Aijklϵ

p
kl (104.11)

Linear transformation tensor Aijkl may be state dependent in general case, and it reduces to the symmetric

part of the fourth order identity tensor7 for the case of associated plasticity.

4first order accuracy condition.
5Since it is only linear expansion stress trajectory is confined to the tangential plane only.
6as in equation 104.3.
7Aijkl ≡ Isym

ijkl ≡ 1
2
(
δikδjl + δilδjk

)
.
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It is often of interest to model deviatoric strains by an associated flow rule while the volumetric part

is non–associated. For this case, Aijkl can be formulated as:

Aijkl =
(
β

1
3
(
δijδkl

)
+

1
2
(
δikδjl + δilδjk

))
(104.12)

A–1
ijkl =

(
–

β

1 + β
1
3
(
δijδkl

)
+

1
2
(
δikδjl + δilδjk

))
(104.13)

and it is obvious that the non–associated flow rule is obtained with β ̸= 0 and the associated flow

rule with β = 0. It is useful to choose β ≥ 0 and retain nice, positive definite properties of adjusted

constitutive tensors later.

Let the ∥ · ∥ norm, be the complementary energy norm8:

∥σij∥2 = σijDijklσkl (104.14)

where Dijkl is the elastic compliance tensor ( Dijkl = E–1
ijkl ), and let us introduce the adjusted complementary

energy norm as:

A∥σij∥2 = σij
(
AijklDklmn

)
σmn = σij

(
ADijmn

)
σmn (104.15)

where ADijmn is the elastic compliance tensor transformed with respect to the non–associativity involved.

It is clear that when Aijkl ≡ Isym
ijkl =⇒ A∥σij∥2 ≡ ∥σij∥2

104.2.2 On Integration Algorithms

In the section Constitutive Relations for Infinitesimal Plasticity we have summarized constitutive equa-

tions that are capable of representing a wide variety of elasto–plastic materials. The problem in

Computational Elasto–plasticity is to devise accurate and efficient algorithms for the integration of

such constitutive relations. In the context of finite element analysis using isoparametric elements, the

integration of constitutive equations is carried out at Gauss points. In each step the deformation incre-

ments are given or known, and the unknowns to be found are updated stresses and plastic variables.

According to Ortiz and Popov (1985) an acceptable algorithm should satisfy:

• consistency with the constitutive relations to be integrated or first order accuracy,

• Numerical stability,

8This norm will be reintroduced later on!
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• incremental plastic consistency

A non—required but desirable feature to be added to the above list is:

• higher9 order accuracy

First two conditions are needed for attaining convergence for the numerical solution as the step or

increment becomes vanishingly small. The third condition is the algorithmic counterpart of the plastic

consistency condition and requires that the state of stress computed from the algorithm be contained

within the elastic domain.

104.2.3 Midpoint Rule Algorithm

A class of algorithms for integrating constitutive equations with potential to satisfy the above mentioned

conditions are the Generalized Midpoint rule algorithms. They are given in the following form:

d(n+1σij) = Eijkl

(
d(n+1ϵkl) – d(n+1ϵpkl)

)
(104.16)

d(n+1ϵpij) = d(nϵpij) + dλ n+αmij (104.17)

d(n+1q∗) = d(nq∗) + dλ n+αh∗ (104.18)

Fn+1 = 0 (104.19)

where:

n+αmij = mij
(

(1 – α) nσij + α
(

n+1σij
)

, (1 – α) nq∗ + α
(

n+1q∗
))

(104.20)

n+αh∗ = h∗
(

(1 – α) nσij + α
(

n+1σij
)

, (1 – α) nq∗ + α
(

n+1q∗
))

(104.21)

It is quite clear that the case α = 0 corresponds to the Forward Euler approach10, the case α = 1

corresponds to the Backward Euler approach11, and the case α = 1/2 to the Crank – Nicholson scheme.

Equations (104.16), (104.17), (104.18), (104.19), (104.20) and (104.21) are the nonlinear algebraic
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Figure 104.1: integration algorithms in elasto–plasticity

equations to be solved for the unknowns d(n+1σij), d(n+1ϵpij), d(n+1q∗) and dλ. From the Figure (104.1)12

it can be seen that the Generalized Midpoint rule may be regarded as a returning mapping algorithm

in which the elastic predictor predσij is projected on the updated yield surface along the flow direction

evaluated at the midpoint
(n+ασij , n+αq∗

)
.

104.2.3.1 Accuracy Analysis

Bearing in mind the context of the displacement based finite element analysis the integration of consti-

tutive equations is performed for the given strain increment. The updated strains n+1ϵij = ϵij (tn + ∆t)

may be viewed as the known function of the step size ∆t. The remaining updated variables n+1σij ,

n+1ϵpij ,
n+1q∗, as well as the incremental plastic parameter λ become functions of ∆t implicitly defined

through equations (104.16), (104.17), (104.18) and (104.19). It should be clear from (104.16), (104.17),

(104.18) and (104.19) that as ∆t → 0 than n+1ϵij → nϵij , and thus the limiting values of n+1σij ,
n+1ϵpij ,

n+1q∗ and λ are obtained:

9at least second order accuracy.
10explicit scheme.
11implicit scheme.
12it should be pointed out that the vectors, as drawn on this figure, are pointing in the right direction only if we assume

that Eijkl ≡ Iijkl. For any general elasticity tensor Eijkl all vectors are defined in the Eijkl metric, so the term ”normal”, as

we are used to it, does not apply here.
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lim
∆t→0

(
n+1σij

)
= nσij

lim
∆t→0

(
n+1ϵpij

)
= nϵpij

lim
∆t→0

(
n+1q∗

)
= nq∗

lim
∆t→0

λ = 0 (104.22)

It can also be argued that, by virtue of the implicit function theorem ((Abraham et al., 1988) Chapter

2.5), n+1σij ,
n+1ϵpij ,

n+1q∗ and λ are differentiable functions of ∆t, if the functions n+αmij ,
n+αh∗ and F

are sufficiently smooth. Sufficient smoothness will be assumed as needed.

First Order Accuracy. First order accuracy13 of the algorithm, defined by the equations (104.16),

(104.17), (104.18) and (104.19) with the constitutive equations given by (104.1), (104.2), (104.3)

and (104.4) necessitates that the numerically integrated variables n+1σij ,
n+1ϵpij and n+1q∗ agree with their

exact values σij(t + ∆t), ϵpij (t + ∆t) and q∗ (t + ∆t) to within second order terms in the Taylor’s expansion

around the initial state nσij = σij(t), nϵpij = ϵ
p
ij (t) and nq∗ = q∗ (t) in ∆t. First order accuracy can be

written in the following form:

lim
∆t→0

d
(n+1σij

)
d (∆t)

=
d
(nσij

)
d (∆t)

= Eijkl

d
(nϵij)

d (∆t)
–

d
(

nϵpij

)
d (∆t)

 (104.23)

lim
∆t→0

d
(

n+1ϵpij

)
d (∆t)

=
d
(

nϵpij

)
d (∆t)

=
d (nλ)
d (∆t)

nmij (104.24)

lim
∆t→0

d
(n+1q∗

)
d (∆t)

=
d (nq∗)
d (∆t)

=
d (nλ)
d (∆t)

nh∗ (104.25)

lim
∆t→0

d (λ)
d (∆t)

=
d (nλ)
d (∆t)

(104.26)

and the plastic parameter d (nλ) /d (∆t) is determined with the aid of the plastic consistency condition

at t:
13first order consistency.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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d (nF)
d (∆t)

=
∂ (nF)
∂σij

dσij
d (∆t)

+
∂ (nF)
∂q∗

dq∗
d (∆t)

= nnij
dσij

d (∆t)
+ nξ∗

dq∗
d (∆t)

= 0 (104.27)

It is now rather straightforward to check whether the Generalized Midpoint rule satisfies the consis-

tency conditions as given by (104.23), (104.24), (104.25) and (104.26). We can proceed further on by

differentiating (104.16), (104.17), (104.18) and (104.19) with respect to ∆t14:

d
(n+1σij

)
d (∆t)

= Eijkl

(
d
(n+1ϵkl

)
d (∆t)

–
d
(n+1ϵpkl

)
d (∆t)

)
(104.28)

d
(

n+1ϵpij

)
d (∆t)

=
dλ

d (∆t)
(n+αmij

)
+ λ

d
(n+αmij

)
d (∆t)

=

dλ
d (∆t)

(n+αmij
)

+ λα

(
∂mij
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂mij
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
(104.29)

d
(n+1qp

∗
)

d (∆t)
=

dλ
d (∆t)

(n+αh∗
)

+ λ
d
(n+αh∗

)
d (∆t)

=

dλ
d (∆t)

(n+αh∗
)

+ λα

(
∂h∗
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂h∗
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
(104.30)

d
(n+1F

)
d (∆t)

=
∂
(n+1F

)
∂
(n+1σij

) d
(n+1σij

)
d (∆t)

+
∂
(n+1F

)
∂
(n+1q∗

) d
(n+1n+1q∗

)
d (∆t)

= 0 (104.31)

where n+αmij and n+αh∗ are defined by the equations (104.20) and (104.21).

By taking ∆t to the limit value, ∆t → 0, in the (104.28), (104.29), (104.30) and (104.31) and using

the relations from (104.22) one finds:

14bearing in mind that values at t are constants and that only variables at t + ∆t are changing with respect to ∆t.
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lim
∆t→0

d
(n+1σij

)
d (∆t)

= Eijkl

(
d (nϵkl)
d (∆t)

–
d
(n+1ϵpkl

)
∆t=0

d (∆t)

)
(104.32)

lim
∆t→0

d
(

n+1ϵpij

)
d (∆t)

=
dλ

d (∆t)
(nmij

)
(104.33)

lim
∆t→0

d
(n+1q∗

)
d (∆t)

=
dλ

d (∆t)
(nh∗)

(104.34)

lim
∆t→0

d
(n+1F

)
d (∆t)

=
∂ (nF)
∂σij

(
lim

∆t→0

d
(n+1σij

)
d (∆t)

)
+
∂ (nF)
∂q∗

(
lim

∆t→0

d
(n+1q∗

)
d (∆t)

)
= 0 (104.35)

In the previous equations it is quite clear that since ∆t = 0, then equations (104.22) hold and since the

variables nσij ,
nϵpij and nq∗ are constant with respect to the change in ∆t, the result follows readily, i.e.

the Midpoint rule satisfies first order accuracy.

Second Order Accuracy To investigate second order accuracy of the algorithm given by (104.16),

(104.17), (104.18) and (104.19) together with the constitutive equations given by (104.1), (104.2),

(104.3) and (104.4) we shall proceed in the following manner. Second order accuracy actually means

that the numerically integrated variables n+1σij ,
n+1ϵpij and n+1q∗ agree with their ”exact” values σij(t + ∆t),

ϵ
p
ij (t + ∆t) and q∗ (t + ∆t) to within third order terms in the Taylor’s expansion around the initial state

nσij = σij(t), nϵpij = ϵ
p
ij (t) and nq∗ = q∗ (t) in ∆t. This verbal statement can be written in the following

mathematical form:
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lim
∆t→0

d2 (n+1σij
)

d (∆t)2
=

Eijkl

(
lim

∆t→0

d2 (n+1ϵkl
)

d (∆t)2
– lim
∆t→0

d2 (nϵpkl
)

d (∆t)2

)
= Eijkl

(
d2 (nϵkl)
d (∆t)2

–
d2 (nϵpkl

)
d (∆t)2

)
(104.36)

lim
∆t→0

d2
(

n+1ϵpij

)
d (∆t)2

=

d2λ

d (∆t)2
lim

∆t→0

(
n+1mij

)
+ lim
∆t→0

d
(n+1λ

)
d (∆t)

d
(n+αmij

)
d (∆t)

=

d2λ

d (∆t)2
(nmij

)
+

d (nλ)
d (∆t)

d
(n+αmij

)
d (∆t)

=

d2λ

d (∆t)2
(nmij

)
+

d (nλ)
d (∆t)

(
∂mij
∂σij |n

d
(nσij

)
d (∆t)

+
∂mij
∂q∗ |n

d (nq∗)
d (∆t)

)
(104.37)

lim
∆t→0

d2 (n+1qp
∗
)

d (∆t)2
=

d2λ

d (∆t)2
lim

∆t→0

(
n+1h∗

)
+ lim
∆t→0

d
(n+1λ

)
d∆t

d
(n+1h∗

)
d (∆t)

=

d2λ

d (∆t)2
(nh∗) +

d
(n+1λ

)
d∆t

d (nh∗)
d (∆t)

=

d2λ

d (∆t)2
(nh∗) +

d
(n+1λ

)
d∆t

(
∂h∗
∂σij |n

d
(nσij

)
d (∆t)

+
∂h∗
∂q∗ |n

d (nq∗)
d (∆t)

)
(104.38)

lim
∆t→0

d2 (λ)
d (∆t)2

=
d2 (nλ)
d (∆t)2

(104.39)

and the plastic parameter d2 (nλ) /d (∆t)2 is determined with the aid of the second order oscillatory

satisfaction of the plastic consistency condition:

d2 (nF)
d (∆t)2

=
dnij
d∆t

∣∣∣∣
n

dσij
d (∆t)

+ nnij
d2 (σij

)
d (∆t)2

∣∣∣∣∣
n

+
d (ξ∗)
d∆t

∣∣∣∣
n

dnq∗
d (∆t)

+ nξ∗
d2 (nq∗)
d (∆t)2

= 0 (104.40)

Now we can proceed by taking the second derivative of the equations (104.16), (104.17), (104.18) and

(104.19) or use the already derived first derivatives from equations (104.28), (104.29), (104.30) and

(104.31), and then differentiate them again so that we get:
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.2. ELASTO–PLASTICITY page: 189 of 3287

d2 (n+1σij
)

d (∆t)2
= Eijkl

(
d2 (n+1ϵkl

)
d (∆t)2

–
d2 (n+1ϵpkl

)
d (∆t)2

)
(104.41)

d2
(

n+1ϵpij

)
d (∆t)2

=

d2λ

d (∆t)2
(n+αmij

)
+

2
dλ

d (∆t)
α

(
∂mij
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂mij
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
+

λα
d

d (∆t)

(
∂mij
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂mij
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
(104.42)

d2 (n+1qp
∗
)

d (∆t)2
=

d2λ

d (∆t)2
(n+αh∗

)
+

2
dλ

d (∆t)
α

(
∂h∗
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂h∗
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
+

λα
d

d (∆t)

(
∂h∗
∂σij

∣∣∣∣
n+1

d
(n+1σij

)
d (∆t)

+
∂h∗
∂q∗

∣∣∣∣
n+1

d
(n+1q∗

)
d (∆t)

)
(104.43)

d2 (n+1F
)

d (∆t)2
=

d
(n+1nij

)
dσij

d
(n+1σij

)
d (∆t)

+ n+1nij
d2 (n+1σij

)
d (∆t)2

+

+
d
(n+1ξ∗

)
dσij

d
(n+1q∗

)
d (∆t)

+ n+1ξ
d2 (n+1q∗

)
d (∆t)2

= 0 (104.44)

If we drive ∆t to the limit, namely by taking lim∆t→0 and keeping in mind equations (104.22) and

the assumed consistency of the algorithm15 as given by the equations (104.23), (104.24), (104.25) and

(104.26) one finds:

15actually the first order accuracy that is already proven.
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lim
∆t→0

d2 (n+1σij
)

d (∆t)2
= Eijkl

(
d2 (nϵkl)
d (∆t)2

– lim
∆t→0

d2 (n+1ϵpkl
)

d (∆t)2

)
(104.45)

lim
∆t→0

d2
(

n+1ϵpij

)
d (∆t)2

=

lim
∆t→0

d2 (n+1λ
)

d (∆t)2
(n+αmij

)
+ 2

d (nλ)
d (∆t)

α

(
∂mij
∂σij

∣∣∣∣
n

d
(nσij

)
d (∆t)

+
∂mij
∂q∗

∣∣∣∣
n

d (nq∗)
d (∆t)

)
(104.46)

lim
∆t→0

d2 (n+1qp
∗
)

d (∆t)2
=

lim
∆t→0

d2 (n+1λ
)

d (∆t)2
(n+αh∗

)
+ 2

d (nλ)
d (∆t)

α

(
∂h∗
∂σij

∣∣∣∣
n

d
(nσij

)
d (∆t)

+
∂h∗
∂q∗

∣∣∣∣
n

d (nq∗)
d (∆t)

)
(104.47)

lim
∆t→0

d2 (n+1F
)

d (∆t)2
=

d
(nnij

)
dσij

d
(nσij

)
d (∆t)

+ nnij lim
∆t→0

d2 (n+1σij
)

d (∆t)2
+

+
d (nξ∗)
dσij

d (nq∗)
d (∆t)

+ nξ lim
∆t→0

d2 (n+1q∗
)

d (∆t)2
= 0 (104.48)

By comparing equations (104.45), (104.46), (104.47) and (104.48) with the second order accuracy

condition stated in equations (104.36), (104.37), (104.38) and (104.39) it is quite clear that the second

order accuracy is obtained iff16 α = 1/2 !

The conclusion is that the Midpoint–rule algorithm is consistent17 for all α ∈ [0, 1] and it is second

order accurate for α = 1/2. However, one should not forget that these results are obtained for the limiting

case ∆t → 0, i.e. the strain increments are small and tend to zero.

16if and only if ( ⇐⇒ ).
17first order accurate.
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104.2.3.2 Numerical Stability Analysis

Numerical stability of an algorithm plays a central role in approximation theory for initial value problems.

In fact, it can be stated that consistency and stability are necessary and sufficient conditions for conver-

gence of an algorithm as the time step tends to zero. In the approach presented by Ortiz and Popov

(1985) a new methodology is proposed by which the stability properties of an integration algorithm for

elasto–plastic constitutive relations can be established. Our attention is confined to perfect plasticity

and a smooth yield surface.

The purpose of the following stability analysis is to determine under what conditions a finite pertur-

bation in the initial stresses is diluted by the algorithm. In other words:

d
(

n+1σ(2)
ij , n+1σ(1)

ij

)
≤ d

(
nσ(2)

ij , nσ(1)
ij

)
(104.49)

where d (·, ·) is some suitable distance on the yield surface and n+1σ(1)
ij and n+1σ(2)

ij are two sets of

updated stresses corresponding to arbitrary initial stress values nσ(1)
ij and nσ(2)

ij , respectively, and all of

the previous stress values are assumed to lie on the yield surface. Stability in the sense of equation

(104.49) is referred to as large scale stability. It is shown in Helgason (1978)18 that for nonlinear initial

value problems defined on Banach manifolds, consistency and large scale stability with respect to a

complete metric are sufficient for convergence.

The task of directly establishing estimates of the type expressed in (104.49) is rather difficult, and

so despite the conceptual appeal of large scale stability, simplified solutions are sought. It should be

recognized that attention can be restricted to infinitesimal perturbation in the initial conditions of the

type nσij → nσij + d
(nσij

)
. This simplification is founded on the fact that the dilution or attenuation, by

the algorithm of infinitesimal perturbations:

∥d n+1σij∥ ≤ ∥d nσij∥ (104.50)

with respect to some suitable norm ∥ · ∥, of small scale stability, implies large scale stability in the sense

of equation (104.49).

Let the ∥ · ∥ norm, be the energy norm:

∥σij∥2 = σijDijklσkl (104.51)

18the first Chapter of Helgason’s book.
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where Dijkl is the elastic compliance tensor (Dijkl = E–1
ijkl ), and let the distance d (·, ·) on the yield surface

be defined as

d
(
σ(1)

ij ,σ(2)
ij

)
= inf

γ

∫
γ
∥σ′

ij (s) ∥ds (104.52)

where the infinum is taken over all possible stress paths γ on the yield surface that are joining two

stress states, namely σ(1)
ij and σ(2)

ij . It can be found in Helgason (1978) that for a smooth yield surface,

equation (104.52) defines the geodesic distance which endows the yield surface with a complete metric

structure.

Suppose that we have any two initial states of stress nσ(1)
ij and nσ(2)

ij and let n+1σ(1)
ij and n+1σ(2)

ij be

the corresponding updated values, respectively, and all the previous stress states are assumed to lie on

the yield surface. Then, according to Helgason (1978), there exists a unique geodesic curve that joins

nσ(1)
ij and nσ(2)

ij for which the infinum in equation (104.52) is attained. If γn is such a curve, then by

definition:

d
(

nσ(1)
ij , nσ(2)

ij

)
=
∫
γn
∥σ′

ij (s) ∥ds (104.53)

Let the new curve γn+1 be the transform of curve γn by the algorithm. By definition γn+1 lies on

the yield surface and joins two stress states n+1σ(1)
ij and n+1σ(2)

ij . By the definition given in (104.52), it

follows that:

d
(

n+1σ(1)
ij , n+1σ(2)

ij

)
=
∫
γn+1
∥σ′

ij (s) ∥ds (104.54)

Under the assumption of small scale stability of the algorithm one can write:

∥σ′
ij (sn+1) ∥ds = ∥dσij (sn+1) ∥ ≤ ∥dσij (sn) ∥ = ∥σ′

ij (sn) ∥ds (104.55)

for every pair of corresponding points sn and sn+1 on γn and γn+1 respectively, so it follows:

∫
γn+1
∥σ′

ij (sn+1) ∥ds ≤
∫
γn
∥σ′

ij (sn) ∥ds (104.56)

By combining equations (104.54), (104.55) and (104.56) it is concluded that:

d
(

n+1σ(1)
ij , n+1σ(2)

ij

)
≤ d

(
nσ(1)

ij , nσ(2)
ij

)
(104.57)
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which proves large scale stability. The main conclusion of the above argument may be stated as follows:

small scale stability in the energy norm is equivalent to large scale stability in the associated geodesic

distance.

The previous result is of practical importance, since it shows that the stability analysis for the

integration algorithm in elasto–plasticity can be carried out by the assessment of small scale stability.

The small scale stability analysis of the Generalized Midpoint rule is necessary to determine how the

algorithm propagates infinitesimal perturbations in the initial conditions. By differentiating equations

(104.16), (104.17), (104.18) and (104.19)and considering that we are dealing with perfectly plastic case

here so that
(n+1q∗

)
= (nq∗) = constants, it follows:

d
(

n+1σij
)

= –Eijkl d
(

n+1ϵpkl

)
(104.58)

d
(nσij

)
= –Eijkl d

(nϵpkl
)

(104.59)

d
(

n+1ϵpij

)
– d
(

nϵpij

)
= d λ

(n+αmij
)

+ λ d
(n+αmij

)
(104.60)

d
(

n+1F
)

=
∂F
∂σij

∣∣∣∣
n+1

d
(

n+1σij
)

= n+1nij d
(

n+1σij
)

= 0 (104.61)

Let us now examine the shape of d
(n+αmij

)
having in mind the original definition19 given in equation

(104.20):

n+αmij = mij
(

(1 – α) nσij + α
(

n+1σij
)

, (1 – α) nq∗ + α
(

n+1q∗
))

and the differential of the previous equation is:

d
(n+αmij

)
= (1 – α)

∂mij
∂σkl

∣∣∣∣
n+α

d
(nσkl

)
+ α

∂mij
∂σkl

∣∣∣∣
n+α

d
(

n+1σkl

)
To ease writing let us introduce the following fourth order tensor:

19the remark about restraining analysis to perfectly plastic case still holds, so that
(

n+1q∗
)
and

(nq∗) are constant.
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Mijkl =
∂mij
∂σkl

The equation (104.60) now reads:

d
(

n+1ϵpij

)
– d
(

nϵpij

)
=

dλ
(n+αmij

)
+ λ
(

(1 – α)
(n+αMijkl

)
d
(nσkl

)
+ α

(n+αMijkl
)

d
(

n+1σkl

))
(104.62)

By using equations (104.58) and (104.59) and knowing that E–1
ijkl = Dijkl one can write:

d
(

n+1ϵpij

)
= –Dijkl d

(
n+1σkl

)

d
(

nϵpij

)
= –Dijkl d

(nσkl
)

so that the equation (104.62) now reads:

–Dijkl d
(

n+1σkl

)
+ Dijkl d

(nσkl
)

=

dλ
(n+αmij

)
+ λ
(

(1 – α)
(n+αMijkl

)
d
(nσkl

)
+ α

(n+αMijkl
)

d
(

n+1σkl

))
Now we are proceeding by solving the previous equation for d

(n+1σkl
)
:

(
Dijkl + λ α

(n+αMijkl
))

d
(

n+1σkl

)
=(

Dijkl – λ (1 – α)
(n+αMijkl

))
d
(nσkl

)
– dλ

(n+αmij
)

and by denoting :

Ψijkl = Dijkl – λ (1 – α)
(n+αMijkl

)

Γijkl = Dijkl + λ α
(n+αMijkl

)
it follows:
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d
(

n+1σkl

)
= Γ–1

ijkl
(
Ψijkl d

(nσkl
)

– dλ
(n+αmij

))
(104.63)

Then by inserting the solution for d
(n+1σkl

)
in the consistency condition (104.61):

d
(

n+1F
)

= n+1nkl d
(

n+1σkl

)
= 0

one gets:

d
(

n+1F
)

=
n+1nkl Γ

–1
ijkl
(
Ψijkl d

(nσkl
)

– dλ
(n+αmij

))
= 0 (104.64)

then if we solve for dλ:

dλ n+αmij
n+1nkl Γ

–1
ijkl = n+1nkl Γ

–1
ijklΨijkl d

(nσkl
)

(104.65)

or20:

dλ =
n+1nrs Γ–1

pqrsΨpqrs d (nσrs)(n+αmpq
) (n+1nrs

)
Γ–1

pqrs
(104.66)

then by using the solution for d
(n+1σkl

)
from (104.63) and the solution for dλ from (104.66) one can

find:

d
(

n+1σkl

)
= Γ–1

ijklΨijkl d
(nσkl

)
– Γ–1

pqrs Ψpqrs

n+1nrs Γ–1
ijkl
(n+αmij

)
n+αmpqn+1nrs Γ–1

pqrs
d
(nσrs

)
(104.67)

d
(

n+1σkl

)
= Γ–1

ijklΨijkl

(
δksδrl –

n+1nrs Γ–1
ijkl
(n+αmij

)
n+αmpqn+1nrs Γ–1

pqrs

)
d
(nσrs

)
(104.68)

to ease the writing we can define the following notation:

20where the change in dummy indices is possible because dλ is scalar.
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Φklrs = δksδrl –
n+1nrs Γ–1

ijkl
(n+αmij

)
n+αmpqn+1nrs Γ–1

pqrs
(104.69)

so that the equation (104.68) now reads:

d
(

n+1σkl

)
= Γ–1

ijklΨijkl Φklrs d
(nσrs

)
(104.70)

In order to derive the estimate of the type (104.50) from (104.70) we shall proceed in the following way.

The norm of a tensor is defined as:

∥Aijkl∥ = sup
σ

∥Aijklσkl∥
∥σkl∥

(104.71)

If we take the norm of (104.70), while recalling the inequalities:

∥Aijklσkl∥ ≤ ∥Aijkl∥ ∥σkl∥ ; ∥AijklBijkl∥ ≤ ∥Aijkl∥ ∥Bijkl∥ (104.72)

it follows:

∥d
(

n+1σkl

)
∥ = ∥Γ–1

ijklΨijkl Φklrs d
(nσrs

)
∥ (104.73)

then by using equations (104.72), we are able to write:

∥d
(

n+1σkl

)
∥ ≤ ∥Γ–1

ijkl Ψijkl∥ ∥Φklrs∥ ∥d
(nσrs

)
∥ (104.74)

Considering the norm of ∥Φklrs∥ it should be noted that Φklrs defines a projection along the direction of

Γ–1
ijkl

n+αmij onto the hyperplane that is orthogonal to n+1nrs, so that the following properties hold:

(Φklrs)
(
Γ–1

ijkl
n+αmij

)
= ∅ (104.75)

(Φklrs) (σrs) = σrs (104.76)

for every σrs that is orthogonal to n+1nrs. From these properties and the definition in equation (104.71)

it follows that:
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∥Φklrs∥ ≡ 1 (104.77)

In what follows it is assumed that the fourth order tensor field

Mijkl = ∂mij /∂σkl

is symmetric and positive definite everywhere on the yield surface. The assumption is valid, if the flow

direction mij is derived from the convex potential function, which is a rather common feature among

yield criteria. It is now clear that :

∥Γ–1
ijkl Ψijkl∥ =

∣∣∣∣maxγij Ψijkl
maxγkl

maxγij Γijkl maxγkl

∣∣∣∣ (104.78)

where maxγij is the eigentensor corresponding to the maximum eigenvalue of the eigenproblem:

(
Ψijkl – µ Γijkl

)
γkl = 0 (104.79)

which is normalized to satisfy:

∥maxγij∥∥maxγij∥ = maxγij Dijkl
maxγkl = 1 (104.80)

If we denote:

n+αβ = maxγij
n+αMijkl

maxγkl (104.81)

as the maximum eigenvalue of the fourth order tensor n+αMijkl and that value is a positive real number21,

then from equations (104.78), (104.80), (104.81) and from the definition22 of Ψijkl and Γijkl, it follows:

∥Γ–1
ijkl Ψijkl∥ =

∣∣∣∣∣1 – (1 – α) λ
(n+αβ

)
1 + α λ (n+αβ)

∣∣∣∣∣ (104.82)

which, when inserted in the equation (104.74) yields:

21because n+αMijkl is derived from a convex potential function.
22Ψijkl = Dijkl – λ (1 – α)

(n+αMijkl
)
and Γijkl = Dijkl + λ α

(n+αMijkl
)
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∥d
(

n+1σkl

)
∥ ≤

∣∣∣∣∣1 – (1 – α) λ
(n+αβ

)
1 + α λ (n+αβ)

∣∣∣∣∣ ∥d (nσrs
)
∥ (104.83)

Since it is said that n+αβ is a positive real number it follows that:

∣∣∣∣∣1 – (1 – α) λ
(n+αβ

)
1 + α λ (n+αβ)

∣∣∣∣∣ ≤
∣∣∣∣1 – α
α

∣∣∣∣ n+αβ
n+αβ

=
∣∣∣∣1 – α
α

∣∣∣∣ (104.84)

and α ∈ [0, 1]. The new form of equation (104.83) is now:

∥d
(

n+1σkl

)
∥ ≤

∣∣∣∣1 – α
α

∣∣∣∣ ∥d (nσrs
)
∥ (104.85)

which in conjunction with the requirement for unconditional stability23 yields:

∣∣∣∣1 – α
α

∣∣∣∣ ≤ 1 (104.86)

and so it is necessary that:

α ≥ minα =
1
2

(104.87)

The conclusion is that the Generalized Midpoint rule is unconditionally stable for α ≥ 1/2. In the case

when α < 1/2 the Generalized Midpoint rule is only conditionally stable. To obtain a stability condition

for α ≤ 1/2 one has to go back to equation (104.83), and we conclude that:

∣∣∣∣∣1 – (1 – α) λ
(n+αβ

)
1 + α λ (n+αβ)

∣∣∣∣∣ ≤ 1 ⇒ λ ≤ 2
maxβ (1 – 2α)

for α ≤ 1
2

(104.88)

and when α = 1/2, then criticalλ→∞, and thus the unconditional stability is recovered.

23that is ∥d n+1σij∥ ≤ ∥d nσij∥
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104.2.4 Crossing the Yield Surface

Midpoint rule algorithms in computational elasto–plasticity require24 the evaluation of the intersection25

stress. Despite the appeal of the closed form solution, as found in Bićanić (1989), and numerical iterative

procedures as found in Marques (1984) and Nayak and Zienkiewicz (1972), for some yield criteria26 the

solution is not that simple to find. Special problems arises, even with the numerical iterative methods

in the area of a apex. The apex area problems are connected to the derivatives of yield a function.

F( σ
n

ij
)

elastic region

ijσ
contact

F( )=0
F( σ

predictor

ij )

predictor

σ
ij

ij
σ

n

F=0

σ

σ
σ

2

3

1

Figure 104.2: The pictorial representation of the intersection point problem in computational elasto–

plasticity: which must be resolved for the Forward and Midpoint schemes

Having in mind the before mentioned problems, a different numerical scheme, that does not need

derivatives, was sought for solving this problem. One possible solution was found in Press et al. (1988b)

24except for the fully implicit Backward Euler algorithm.
25contact, penetration point, i.e the point along the stress path where F = 0 or the point where stress state crosses from

the elastic to the plastic region.
26namely for the MRS-Lade elasto–plastic model.
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in the form of an excellent algorithm that combines root bracketing, bisection, and inverse quadratic

interpolation to converge from a neighborhood of a zero crossing. The algorithm was developed in the

1960s by van Wijngaarden, Dekker and others at the Mathematical Center in Amsterdam. The algorithm

was later improved by Brent, and so it is better known as Brent’s method. The method is guaranteed

to converge, so long as the function27 can be evaluated within the initial interval known to contain a

root. While the other iterative methods that do not require derivatives28 assume approximately linear

behavior between two prior estimates, inverse quadratic interpolation uses three prior points to fit an

inverse quadratic function29, whose value at y = 0 is taken as the next estimate of the root x. Lagrange’s

classical formula for interpolating the polynomial of degree N – 1 through N points y1 = f (x1), y2 = f (x2),

. . . y3 = f (x3) is given by:

P (x) =
(x – x2) (x – x3) · · · (x – xN )

(x1 – x2) (x1 – x3) · · · (x1 – xN )
y1 +

+
(x – x1) (x – x3) · · · (x – xN )

(x2 – x1) (x2 – x3) · · · (x2 – xN )
y2 + · · ·

· · · +
(x – x1) (x – x2) · · · (x – xN )

(xN – x1) (xN – x3) · · · (xN – xN–1)
yN (104.89)

If the three point pairs are [a, f (a)], [b, f (b)], [c, f (c)], then the interpolating formula (104.89) yields:

x =
(y – f (a)) (y – f (b))

(f (c) – f (a)) (f (c) – f (b))
c +

+
(y – f (b)) (y – f (c))

(f (a) – f (b)) (f (a) – f (c))
a +

+
(y – f (c)) (y – f (a))

(f (b) – f (a)) (f (b) – f (a))
b (104.90)

By setting y = 0, we obtain a result for the next root estimate, which can be written as:

x = b +
f (b)
f (a)

(
f (a)
f (c)

(
f (b)
f (c) – f (a)

f (c)

)
(c – b) –

(
1 – f (b)

f (c)

)
(b – a)

)
(

f (a)
f (c) – 1

)(
f (b)
f (c) – 1

)(
f (b)
f (a) – 1

) (104.91)

In practice b is the current best estimate of the root and the term:

27in our case yield function F
(
σij
)
.

28false position and secant method.
29x as a quadratic function of y.
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f (b)
f (a)

(
f (a)
f (c)

(
f (b)
f (c) – f (a)

f (c)

)
(c – b) –

(
1 – f (b)

f (c)

)
(b – a)

)
(

f (a)
f (c) – 1

)(
f (b)
f (c) – 1

)(
f (b)
f (a) – 1

)
is a correction. Quadratic methods30 work well only when the function behaves smoothly. However, they

run serious risk of giving bad estimates of the next root or causing floating point overflows, if divided by

a small number

(
f (a)
f (c)

– 1
)(

f (b)
f (c)

– 1
)(

f (b)
f (a)

– 1
)
≈ 0

Brent’s method prevents against this problem by maintaining brackets on the root and checking where

the interpolation would land before carrying out the division. When the correction of type (104.92)

would not land within bounds, or when the bounds are not collapsing rapidly enough, the algorithm

takes a bisection step. Thus, Brent’s method combines the sureness of bisection with the speed of a

higher order method when appropriate.

104.2.5 Singularities in the Yield Surface

104.2.5.1 Corner Problem

Some yield criteria are defined with more that one yield surface31. We will restrict our attention to a

two–surface yield criterion32. Koiter has shown in Koiter (1960) and Koiter (1953) that in the case when

two yield surfaces are active, the plastic strain rate from equation (104.3) can be derived as follows:

dϵpij = dλcone
conemij

(
σij , q∗

)
+ dλcap

capmij
(
σij , q∗

)
(104.92)

where conemij
(
σij , q∗

)
and capmij

(
σij , q∗

)
are normals to the potential functions at a corner, which

belongs to the yield functions that are active, i.e. Fcone and Fcap. We now observe that we have two

non–negative plastic multipliers dλcone and dλcap instead of one. We must require that at the end of

the loading step33, neither of the two yield functions is violated. These multipliers dλcone and dλcap can

be determined from the conditions:

30Newton’s method for example.
31for example MRS-Lade yield criterion has two surfaces.
32having in mind MRS-Lade cone-cap yield criterion.
33after stress correction, i.e. return to the yield surface(s).
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Figure 104.3: Pictorial representation of the corner point problem in computational elasto–plasticity:

Yield surfaces with singular points

Fcone
(

n+1σij , n+1q∗
)

= 0 (104.93)

Fcap
(

n+1σij , n+1q∗
)

= 0 (104.94)

noting that by virtue of equation (104.92) we have at the corner singular point:

n+1σij = predσij – dλcone Eijkl
conemkl – dλcap Eijkl

capmkl (104.95)
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Figure 104.4: The pictorial representation of the apex point problem in computational elasto–plasticity:

Yield surfaces with singular points

104.2.5.2 Apex Problem

The apex problem, as depicted in Figure (104.4) is solved in an empirical fashion. Rather than facing

the complexity of solving a complex differential geometry problem34 the stress point that is situated in

the gray apex region is immediately returned to the apex point.

In the case when the hardening rule for the cone portion has developed to the stage that it affects the

size of that cone portion of the yield criterion and not the position of intersection with the hydrostatic

axis, then all stress returns from any part of apex gray region will be to the apex point itself. This

strategy was used by Crisfield (1987). Nevertheless, the problem of integrating the rate equations in

the apex gray region is readily solvable for the piecewise flat yield criteria35 by using Koiter’s conditions

as found in Koiter (1960) and Koiter (1953). The apex problem for yield criteria that are smooth and

differentiable everywhere except at the apex point, is solvable by means of differential geometry. Further

34using Koiter’s work described in Koiter (1960) and Koiter (1953) and the fact that the sum dϵpij =
∑

k dλk
(
∂Fk /∂σij

)
can be transformed into the integral equation dϵpij =

∫
dλ
(
∂F/∂σij

)∣∣
aroundapex where the integration should be carried out

infinitesimally close to, but in the vicinity of the apex point.
35Mohr - Coulomb for example.
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work is needed for solving the problem, when the yield surface is not piecewise flat in the apex vicinity.

104.2.5.3 Influence Regions in Meridian Plane

([p,q] v [p’,q’])

p
0

q

p
cap

4

p

q’

q’

q’

p’

p’

p’

p’

2

1

1

4
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cap
α

φ

σ
φ+90o

q

p

q

p

q’
2

q’
3

p’
3

tran

tran

Figure 104.5: Influence regions in the meridian plane for the cone/cap surface of the MRS-Lade material

model.

In order to define which surface is active and which is not for the current state of stress, a simple

two dimensional analysis will be conducted. The fortunate fact for the MRS-Lade material model is

that such an analysis can be conducted in the p – q meridian plane, only, i.e. the value for θ can be

”frozen”. The concept is to calculate the stress invariants p, q and θ for the current state of stress36,

calculate the position of the apex and corner points in p – q space for given the θ, calculate the two

dimensional gradients at these points, perform linear transformation of the current stress state37 to the

new coordinate systems, and then check for the values of p′i, i = 1, 2, 3, 4, where p′i is the transformed

pi axis.

The angle ψ is defined as the angle between the p axis and the tangent to the potential function.

The gradients to the cone portion of the potential surface are defined as:

36by using equations (104.138) and (104.139) as defined in section (104.4.4).
37now in p, q and θ space.
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∂Qcone
∂p

= –n ηcone

∂Qcone
∂q

= g(θ)
(

1 +
q
qa

)m
+

g(θ) m q
(

1 + q
qa

)–1+m

qa

The gradients of the cap portion of the yield/potential surface is defined as:

∂Qcap
∂p

=
2 (p – pm)

p2
r

∂Qcap
∂q

=
2 g(θ)2 q

(
1 + q

qa

)2 m

fr2 +
2 g(θ)2 m q2

(
1 + q

qa

)–1+2 m

fr2 qa

The vector of gradients in p – q space is defined as:

 ∂Q
∂p
∂Q
∂q

 (104.96)

and the angle ϕ is calculated as:

ϕ = arctan


(
∂Q
∂p

)
(
∂Q
∂q

)
 – 90◦ (104.97)

Care must be exercised with regard to which potential function is to be used in angle calculations. It

should be mentioned that for the cap portion, the angle at the corner is ϕ = 0◦, while at the tip of the

cap, the angle is ϕ = –90◦. If a new definition, as found in Ferrer (1992), is used for the cone potential

function, where n is variable and n→ 0 as p→ αpcap, then the corner gray region is empty.

The linear transformation38 between coordinate systems p′ – q′ and p – q is defined as:

 p′

q′

 =

 cosϕ sin ϕ

– sin ϕ cosϕ

  p – tranp

q – tranq

 (104.98)

and by using that linear transformation, one can check the region where our current stress state, in p, q

and θ space, belongs. Figure (104.5) depicts the transformation scheme and the new coordinate systems

at three important points39.

38translation and rotation.
39at the apex point, corner point and the cap tip point.
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104.3 A Forward Euler (Explicit) Algorithm

The explicit algorithm (Forward Euler) is based on using the starting point (the state stress σn
ij and

internal variable space qn
∗ on the yield surface) for finding all the relevant derivatives and variables.

The Explicit algorithm can be derived by starting from a first order Taylor expansion about starting

point (σn
ij , q

n
∗):

Fnew = Fold +
∂F
∂σmn

∣∣∣∣
n

d
(nσmn

)
+
∂F
∂q∗

∣∣∣∣
n

dq∗ =

= nnmn dσmn + ξ∗h∗dλ = 0 (104.99)

From the differential form of equation (104.16) it follows:

d
(

fEσmn
)

= Emnpq
(
d
(
ϵpq
)

– d
(
ϵ
p
pq
))

=

= Emnpqd
(
ϵpq
)

– Emnpq d
(
ϵ
p
pq
)

= Emnpqd
(
ϵpq
)

– Emnpq dλ
(crossmpq

)
so that equation (104.99) becomes:

nnmn Emnpq dϵpq – nnmn Emnpq dλnmpq + ξ∗h∗dλ = 0

and it follows, after solving for dλ

dλ =
nnmn Emnpq dϵpq

crosnab Eabcd crosmcd – ξ∗h∗
With this solution for dλ one can obtain the increments in stress tensor and internal variables as

dσmn = Emnpq dϵpq – Emnpq
nnrs Erstu dϵtu

nnab Eabcd nmcd – ξAhA
nmpq (104.100)

dqA =
( nnmn Emnpq dϵpq

crosnab Eabcd crosmcd – ξBhB

)
hA (104.101)

where n() denotes the starting elastic–plastic point for that increment. It should be noted that the

explicit algorithm performs only one step of the computation and does not check on the equilibrium of

the obtained solutions. This usually results in the slow drift of the stress–internal variable point from

the yield surface for monotonic loading. It also results in spurious plastic deformations during elastic

unloading for cyclic loading–unloading.

104.3.1 Continuum Tangent Stiffness Tensor.

The continuum tangent stiffness tensor (contEep
pqmn) is obtained from the explicit (forward Euler) integra-

tion procedure (Jeremić and Sture, 1997):

contEep
pqmn = Epqmn –

Epqkl
nmkl

nnijEijmn
nnotEotrs nmrs – nξA hA

(104.102)

It is important to note that continuum tangent stiffness (contEep
pqmn) posses minor symmetries (contEep

pqmn =
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contEep
qpmn = contEep

pqnm), while major symmetry (contEep
pqmn = contEep

mnpq), is only retained for associated

elastic–plastic materials, when nij ≡ mij .

104.4 A Backward Euler (Implicit) Algorithm

In previous sections, the general theory of elasto–plasticity was presented. The accuracy and stability

for the general Midpoint rule algorithm has been shown. In this chapter, the focus is on the Backward

Euler algorithm, which is derived from the general Midpoint algorithm by setting α = 1. The advantage

of the Backward Euler scheme over other midpoint schemes is that the solution is sought by using the

normal40 at the final stress state. By implicitly assuming that such a stress state exists, the Backward

Euler scheme is guaranteed to provide a solution, despite the size of the strain step41. However, it was

shown in section (104.2.3.1) that the Backward Euler algorithm is only accurate to the first order.

The full implicit Backward Euler algorithm is based on the equation:

n+1σij = predσij – ∆λ Eijkl
n+1mkl (104.103)

where predσij = Eijkl ϵkl is the elastic trial stress state, Q is the plastic potential function and n+1mkl =
∂Q
∂σkl

∣∣∣
n+1

is the gradient to the plastic potential function in the stress space at the final stress position,

and

predσij = nσij + Eijkl
pred∆ϵkl (104.104)

is the elastic predicted (trial) stress state.

An initial estimate for the stress n+1σij can be obtained using various other methods. This estimate

generally does not satisfy the yield condition, so some kind of iterative scheme is necessary to return the

stress to the yield surface.

104.4.1 Single Vector Return Algorithm.

If the predictor stress predσij is not in a corner or apex gray regions, a single vector return to the yield

surface is possible. In order to derive such a scheme for a single vector return algorithm, a tensor of

residuals rij will be defined as 42 :

rij = σij –
(

predσij – ∆λ Eijkl mkl

)
(104.105)

40mij = ∂Q/∂σij
41large strain step increments were tested, the scheme converged to the solution even for deviatoric strain steps of 20%

in magnitude.
42By default at increment n + 1, and n+1() is omitted for simplicity.
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This tensor represents the difference between the current stress state σij and the Backward Euler stress

state predσij – ∆λ Eijkl mkl.

The trial stress state predσij is kept fixed during the iteration process. The first order Taylor series

expansion can be applied to Equation 104.105 to obtain the new residual newrij from the old one oldrij

newrij = oldrij + dσij + d(∆λ) Eijkl mkl + ∆λ Eijkl

(
∂mkl
∂σmn

dσmn +
∂mkl
∂qA

dqA

)
(104.106)

where dσij is the change in σij , d(∆λ) is the change in ∆λ, and ∂mkl
∂σmn

dσmn + ∂mkl
∂qA

dqA is the change in

mkl. The goal is let newrij = ∅, so one can write

∅ = oldrij + dσij + d(∆λ) Eijkl mkl + ∆λ Eijkl

(
∂mkl
∂σmn

dσmn +
∂mkl
∂qA

dqA

)
(104.107)

Similarly,

qA = nqA + ∆λ hA (104.108)

rA will be defined as:

rA = qA –
(nqA + ∆λ hA

)
(104.109)

and nqA is kept fixed during iteration, that

∅ = oldrA + dqA – d(∆λ) hA – ∆λ

(
∂hA
∂σij

dσij +
∂hA
∂qB

dqB

)
(104.110)

From equation 104.107 and 104.110, one obtains Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂qA

–∆λ ∂hA
∂σij

δAB – ∆λ∂hA
∂qB

 dσmn

dqB


+d(∆λ)

 Eijklmkl

–hA

 +

 oldrij
oldrA

 = ∅ (104.111)

Since f (σij , qA) = 0, one obtains

∅ = oldf + nmndσmn + ξBdqB (104.112)

From equations 104.111 and 104.112,

d(∆λ) =

oldf –
{

nmn ξB

} Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂qA

–∆λ ∂hA
∂σij

δAB – ∆λ∂hA
∂qB

–1 oldrij
oldrA


{

nmn ξB

} Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂qA

–∆λ ∂hA
∂σij

δAB – ∆λ∂hA
∂qB

–1 Eijklmkl

–hA


(104.113)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.4. A BACKWARD EULER (IMPLICIT) ALG . . . page: 209 of 3287

The iteration of ∆λ is then

∆λk+1 = ∆λk + d(∆λ)k (104.114)

The iterative procedure is continued until the yield criterion f = 0, ∥rij∥ = ∅, and ∥rA∥ = ∅ are satisfied

within some tolerances at the final stress state 43.

In Equation 104.113, the generalized matrix C, which is defined by

C =

 Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂qA

–∆λ ∂hA
∂σij

δAB – ∆λ∂hA
∂qB

–1

(104.115)

plays an important role in the implicit algorithm. It should be mentioned here that the above definition is

a simplified expression for very general model with various isotropic and kinematic hardening. Specifically,

if there is no hardening,

C =
[

Is
ijmn + ∆λEijkl

∂mkl
∂σmn

]–1
(104.116)

If there is only one isotropic internal variable q,

C =

 Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂q

–∆λ ∂h
∂σij

1 – ∆λ∂h
∂q

–1

(104.117)

For only one kinematic internal variable αij ,

C =

 Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂αmn

–∆λ∂hmn
∂σij

Is
ijmn – ∆λ∂hmn

∂αij

–1

(104.118)

For one isotropic variable q and one kinematic variable αij ,

C =


Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂q ∆λEijkl

∂mkl
∂αmn

–∆λ ∂h
∂σij

1 – ∆λ∂h
∂q –∆λ ∂h

∂αij

–∆λ∂hmn
∂σij

–∆λ∂hmn
∂q Is

ijmn – ∆λ∂hmn
∂αij


–1

(104.119)

or for two kinematic variables zij and αij ,

C =


Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂zmn

∆λEijkl
∂mkl
∂αmn

–∆λ ∂hz

∂σij
Is
ijmn – ∆λ ∂hz

∂zmn
–∆λ ∂hz

∂αij

–∆λ∂hαmn
∂σij

–∆λ∂hαmn
∂zmn

Is
ijmn – ∆λ∂hαmn

∂αij


–1

(104.120)

If we define

n =

 nmn

ξB

 (104.121)

43∥∥ is some normal of the tensor
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m =

 Eijklmkl

–hA

 (104.122)

oldr =

 oldσij
oldrA

 (104.123)

Equation 104.114 can be simplified as

d(∆λ) =
oldf – nT C oldr

nT C M
(104.124)

and  dσmn

dqB

 = –C
(

oldr + d(∆λ)m
)

(104.125)

104.4.2 Backward Euler Algorithms: Starting Points

Some remarks are necessary in order to clarify the Backward Euler Algorithm. It is a well known fact

that the rate of convergence of the Newton - Raphson Method , or even obtaining convergence at all,

is closely tied to the starting point for the iterative procedure. Bad initial or starting points might lead

our algorithm to an oscillating solution, i.e. the algorithm does not converge. In the following, starting

points for the Newton - Raphson iterative procedure will be established for one– and two–vector return

algorithms.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.4. A BACKWARD EULER (IMPLICIT) ALG . . . page: 211 of 3287

104.4.2.1 Single Vector Return Algorithm Starting Point.

One of the proposed starting points (Crisfield, 1991) uses the normal at the elastic trial point44 predσij .

A first order Taylor expansion about point predσij yields:

predFnew = predFold +
∂F
∂σmn

∣∣∣∣
pred

d
(

predσmn
)

+
∂F
∂qA

∣∣∣∣
pred

dqA =

= predFold + prednmn dσmn + ξAhAdλ = 0 (104.126)

It is assumed that the total incremental strain ϵkl is applied in order to reach the point predσij , i.e.

predσij = Eijkl ϵkl so that any further stress ”relaxation” toward the yield surface takes place under zero

total strain condition ϵkl = ∅ . From the differential form of equation (104.16) it follows:

d
(

predσmn
)

= Emnpq
(

d
(

predϵpq
)

– d
(

predϵppq
))

=

= –Emnpq d
(

predϵppq
)

= –Emnpq dλ
(

predmpq
)

and equation (104.126) becomes:

predFold – prednmn Emnpq dλpredmpq + ξAhAdλ = 0

and it follows:

dλ =
predFold

prednmn Emnpq predmpq – ξAhA

With this solution for dλ we can obtain the starting point for the Newton-Raphson iterative procedure

startσmn = Emnpq
predϵpq – Emnpq

predFold

prednmn Emnpq predmpq – ξAhA

predmpq (104.127)

This starting point in six dimensional stress space will in general not satisfy the yield condition F = 0,

but it will provide a good initial guess for the upcoming Newton-Raphson iterative procedure.

It should be mentioned, however, that this scheme for returning to the yield surface is the well known

Radial Return Algorithm , if the yield criterion under consideration is of the von Mises type. In the

special case the normal at the elastic trial point predσij coincides with the normal at the final stress state

n+1σij , the return is exact, i.e. the yield condition is satisfied in one step.

Another possible and readily available starting point can be obtained by applying one Forward Euler

step45. To be able to use the Forward Euler integration scheme, an intersection point has to be found.

The procedure for calculating intersection points is given in section (104.2.4).

44I have named this scheme as semi Backward Euler scheme.
45or more steps for really large strain increments, for example over 10% in deviatoric direction. What has actually been

done is to divide the θ region into several parts and depending on the curvature of the yield surface in deviatoric plane, use

different schemes and different number of subincrements ( the more curved, the more subincrements) to get the first, good

initial guess. In the region around θ = 0, one step of the semi Backward Euler scheme is appropriate, but close to θ = π/3

the Forward Euler subincrementation works better.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.4. A BACKWARD EULER (IMPLICIT) ALG . . . page: 212 of 3287

A first order Taylor expansion about intersection point crossσij yields:

Fnew = Fold +
∂F
∂σmn

∣∣∣∣
cross

d
(crossσmn

)
+
∂F
∂qA

∣∣∣∣
cross

dqA =

= crossnmn dσmn + ξAhAdλ = 0 (104.128)

From the differential form of equation (104.16) it follows:

d
(

fEσmn
)

= Emnpq
(
d
(
ϵpq
)

– d
(
ϵ
p
pq
))

=

= Emnpqd
(
ϵpq
)

– Emnpq d
(
ϵ
p
pq
)

= Emnpqd
(
ϵpq
)

– Emnpq dλ
(crossmpq

)
and equation (104.128) becomes:

–crossnmn Emnpq dϵpq – crossnmn Emnpq dλcrossmpq + ξAhAdλ = 0

and it follows

dλ =
crossnmn Emnpq dϵpq

crosnmn Emnpq crosmpq – ξAhA

With this solution for dλ we can obtain the starting point for the Newton-Raphson iterative procedure

startσmn = Emnpq dϵpq – Emnpq
crossnrs Erstu dϵtu

crossnab Eabcd crossmcd – ξAhA
crossmpq (104.129)

This starting point in six–dimensional stress space will again not satisfy the yield condition46 F = 0, but

will provide a good initial estimate for the upcoming Newton-Raphson iterative procedure.

104.4.3 Consistent Tangent Stiffness Tensor

The final goal in deriving the Backward Euler scheme for integration of elasto–plastic constitutive equa-

tions is to use that scheme in finite element computations. If the Newton – Raphson iterative scheme is

used at the global equilibrium level then the use of the so called traditional tangent stiffness tensor47 Eep
ijkl

destroys the quadratic rate of asymptotic convergence of the iterative scheme. In order to preserve such

a quadratic rate, a consistent, also called algorithmic, tangent stiffness tensor is derived. The consistent

tangent stiffness tensor make use of derivatives of direction48 normal to the potential function, and

they are derived at the final, final at each iteration, that converges to the final stress point on the yield

surface, stress point. The traditional forward scheme has a constant derivative, mij that is evaluated at

the intersection point.

46except for the yield criteria that have flat yield surfaces ( in the stress invariant space) so that the first order Taylor

linear expansion, is exact.
47the one obtained with the Forward Euler method, i.e. where parameter α = 0.
48mij = ∂Q/∂σij , i.e. ∂mij /∂σkl = ∂2Q/∂σij∂σkl .
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It appears that Simo and Taylor (1985) and Runesson and Samuelsson (1985) have first derived

the consistent tangent stiffness tensor. Other interesting articles on the subject can be found in Simo

and Taylor (1986), Simo and Govindjee (1988), Jetteur (1986), Braudel et al. (1986), Crisfield (1987),

Ramm and Matzenmiller (1988) and Mitchell and Owen (1988). As a consequence of consistency, the

use of the consistent tangent stiffness tensor significantly improves the convergence characteristics of the

overall equilibrium iterations, if a Newton - Raphson scheme is used for the latter. Use of the consistent

tangent stiffness tensor yields a quadratic convergence rate of Newton - Raphson equilibrium iterations.

In what follows, two derivations are given, namely the consistent tangent stiffness tensor for single– and

two–vector return algorithms.

The concept of consistent linearization was introduced by Hughes and Pister (1978), while detailed

explanation is given by Simo and Hughes (1998). The consistent tangent stiffness leads to quadratic

convergence rates at global level.

It should be mentioned that there are various ‘equivalent’ forms of consistent tangent stiffness

depending on the specific implicit algorithm equations. For instance, Simo and Hughes (1998), and

Belytschko et al. (2001) derived the consistent tangent stiffness by taking current plastic strain as

unknown and seeking its derivatives in the stress space; Pérez-Foguet and Huerta (1997) and Pérez-

Foguet et al. (2000) used the numerical differentiation to calculate the consistent tangent stiffness in a

compact matrix-vector form; Choi (2004) adopted the compact matrix-vector form by Pérez-Foguet and

Huerta (1997) and Pérez-Foguet et al. (2000) but taking current plastic strain as unknown and seeking

its derivatives in the elastic strain space. Slightly different from the above strategies, in this work the

implicit algorithm is adopting the traditional form but taking current stress as unknown and seeking its

derivatives in the stress space. Provided these differences, the consistent tangent stiffness in this work

is slightly different from those in the above work.

104.4.3.1 Single Vector Return Algorithm.

In implicit algorithm, a very important advantage is that it may lead to consistent (algorithmic) tangent

stiffness (Equation 104.137). The concept of consistent linearization was introduced in Hughes and

Pister (1978), more details on consistent tangent stiffness were explained in Simo and Hughes (1998).

The consistent tangent stiffness leads to quadratic convergence rates at global level.

It should be mentioned that there are various ‘equivalent’ forms of consistent tangent stiffness

depending on the specific implicit algorithm equations. For instance, Simo and Hughes (1998), and

Belytschko et al. (2001) derived the consistent tangent stiffness by taking current plastic strain as

unknown and seeking its derivatives in the stress space; Pérez-Foguet and Huerta (1997) and Pérez-

Foguet et al. (2000) used the numerical differentiation to calculate the consistent tangent stiffness in a
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compact matrix-vector form; Choi (2004) adopted the compact matrix-vector form by Pérez-Foguet and

Huerta (1997) and Pérez-Foguet et al. (2000) but taking current plastic strain as unknown and seeking

its derivatives in the elastic strain space. Slightly different from the above strategies, in this work (section

104.4) the implicit algorithm is adopting the traditional form but taking current stress as unknown and

seeking its derivatives in the stress space. Provided these differences, the consistent tangent stiffness in

this work is slightly different from those in the above work. The detail derivation will be followed.

When seeking the algorithmic tangent stiffness, we look into the explicit expression of dσij /dϵ
pred
mn . At

the same time, the internal variables are initialized the values at the previous time step, in other words,

they are fixed within the time step when seeking the algorithmic tangent stiffness.

Linearize Equation 104.103, one obtains

dσij = Eijkl dϵpred
kl – d(∆λ) Eijkl mkl – ∆λ Eijkl

(
∂mkl
∂σmn

dσmn +
∂mkl
∂qA

dqA

)
(104.130)

Similarly, linearize Equation 104.108, one obtains

dqA = d(∆λ) hA + ∆λ

(
∂hA
∂σij

dσij +
∂hA
∂qB

dqB

)
(104.131)

From equation 104.130 and 104.131, one obtains Is
ijmn + ∆λEijkl

∂mkl
∂σmn

∆λEijkl
∂mkl
∂qA

–∆λ ∂hA
∂σij

δAB – ∆λ∂hA
∂qB

 dσmn

dqB


+d(∆λ)

 Eijklmkl

–hA

 =

 Eijkl dϵpred
kl

0

 (104.132)

If one use the definitions of 104.115, 104.122 and 104.121, Equation 104.132 can be simplified to

C–1

 dσmn

dqB

 + d(∆λ)m =

 Eijkl dϵpred
kl

0

 (104.133)

Linearize the yield function f (σij , qA) = 0, one obtains

nmndσmn + ξBdqB = 0 (104.134)

or in a simplified form

nT

 dσmn

dqB

 = 0 (104.135)

From Equations 104.133 and 104.135, one obtain

d(∆λ) =
nTC

nTCm

 Eijmn dϵpred
mn

0

 (104.136)
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Substitute expression 104.136 into 104.133, one obtains dσij

dqA

 =
{
C –

CmnTC
nT C m

} Eijmn dϵpred
mn

0

 (104.137)

This equation gives the explicit expression of the consistent tangent stiffness dσij /dϵ
pred
mn for the implicit

algorithm.

From section 104.4, if there are interactions between internal variables, the implicit algorithm will

become very complicated. Simple models (e.g. von Mises model, or sometimes termed as J2 model)

have been proved efficient and good performance by the implicit algorithm (Simo and Hughes, 1998).

Evidently, the implicit algorithm is mathematically based on the Newton-Raphson nonlinear equation

solving method as well as the Eulerian backward integration method. Theoretically, the Newton-Raphson

method may have quadratic convergence rate. However, Newton-Raphson method is not unconditional

stable, and sometimes the iteration will diverge (Press et al., 1988a). Any bad starting point, non-

continuous derivatives around solution, high nonlinearity, and interactions between internal variables, will

deteriorate the implicit algorithm performance. A complicated model cannot guarantee good performance

or quadratic convergence by the implicit algorithm Crisfield (1997a). The task to obtain the analytical

expressions (Equations 104.116 to 104.120) may prove exceeding laborious for complicated plasticity

models Simo and Hughes (1998).

104.4.4 Gradients to the Potential Function

In the derivation of the Backward Euler algorithm and the Consistent Tangent Matrix it is necessary to

derive the first and the second derivatives of the potential function. The function Q is the function of

the stress tensor σij and the plastic variable tensor qA. Derivatives with respect to the stress tensor σij

and plastic variable tensor qA are given here. It is assumed that any stress state can be represented with

the three stress invariants p, q and θ given in the following form:

p = –
1
3

I1 q =
√

3J2D cos 3θ =
3
√

3
2

J3D√
(J2D)3

(104.138)

I1 = σkk J2D =
1
2

sijsij J3D =
1
3

sijsjkski sij = σij –
1
3
σkkδij (104.139)

Stresses are here chosen as positive in tension. The definition of Lode’s angle θ in equation (104.138)

implies that θ = 0 defines the meridian of conventional triaxial extension (CTE), while θ = π/3 denotes

the meridian of conventional triaxial compression (CTC).
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The Potential Function is given in the following form:

Q = Q(p, q, θ) (104.140)

The complete derivation of the closed form gradients is given in Appendix 703.

104.4.4.1 Analytical Gradients

The first derivative of the function Q in stress space is:

∂Q
∂σij

=
∂Q
∂p

∂p
∂σij

+
∂Q
∂q

∂q
∂σij

+
∂Q
∂θ

∂θ

∂σij
(104.141)

and subsequently the first derivatives of the chosen stress invariants are

∂p
∂σij

= –
1
3
δij (104.142)

∂q
∂σij

=
3
2

1
q

sij (104.143)

∂θ

∂σij
=

3
2

cos (3θ)
q2 sin (3θ)

sij –
9
2

1
q3 sin (3θ)

tij (104.144)

where:

tij =
∂J3D
∂σij

The second derivative of the function Q in stress space is

∂2Q
∂σpq∂σmn

=(
∂2Q
∂p2

∂p
∂σmn

+
∂2Q
∂p∂q

∂q
∂σmn

+
∂2Q
∂p∂θ

∂θ

∂σmn

)
∂p
∂σpq

+
∂Q
∂p

∂2p
∂σpq∂σmn

+

+

(
∂2Q
∂q∂p

∂p
∂σmn

+
∂2Q
∂q2

∂q
∂σmn

+
∂2Q
∂q∂θ

∂θ

∂σmn

)
∂q
∂σpq

+
∂Q
∂q

∂2q
∂σpq∂σmn

+

+

(
∂2Q
∂θ∂p

∂p
∂σmn

+
∂2Q
∂θ∂q

∂q
∂σmn

+
∂2Q
∂θ2

∂θ

∂σmn

)
∂θ

∂σpq
+
∂Q
∂θ

∂2θ
∂σpq∂σmn

(104.145)

and the second derivatives of the stress invariants are
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∂2p
∂σpq∂σmn

= ∅ (104.146)

∂2q
∂σpq∂σmn

=
3
2

1
q

(
δpmδnq –

1
3
δpqδnm

)
–

9
4

1
q3 smnspq (104.147)

∂2θ
∂σpq∂σmn

=

–
(

9
2

cos 3θ
q4 sin (3θ)

+
27
4

cos 3θ
q4 sin3 3θ

)
spq smn +

81
4

1
q5 sin3 3θ

spq tmn +

+

(
81
4

1
q5 sin 3θ

+
81
4

cos2 3θ
q5 sin3 3θ

)
tpq smn –

243
4

cos 3θ
q6 sin3 3θ

tpq tmn +

+
3
2

cos (3θ)
q2 sin (3θ)

ppqmn –
9
2

1
q3 sin (3θ)

wpqmn (104.148)

where:

wpqmn =
∂tpq
∂σmn

= snpδqm + sqmδnp –
2
3

sqpδnm –
2
3
δpqsmn

and:

ppqmn =
∂spq
∂σmn

=
(
δmpδnq –

1
3
δpqδmn

)
Another important gradient is:

∂2Q
∂σij∂qA

=
∂mij
∂qA

=

=
∂ ∂Q
∂p

∂qA

∂p
∂σij

+
∂ ∂Q
∂q

∂qA

∂q
∂σij

+
∂ ∂Q
∂θ

∂qA

∂θ

∂σij
=

=
∂2Q
∂p∂qA

∂p
∂σij

+
∂2Q
∂q∂qA

∂q
∂σij

+
∂2Q
∂θ∂qA

∂θ

∂σij
(104.149)
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104.4.4.2 Finite Difference Gradients

After having developed the closed form, analytical derivatives49 the author of this thesis asked himself:

”is there a simpler way of finding these derivatives?” One of the proposed ways to check the analytical

solution is found in Dennis and Schnabel (1983). Dennis and Schnabel proposes the finite difference

method for approximating derivatives if these derivatives are not analytically available and as a tool to

check your analytical derivatives if they are derived.

Another good reason for developing alternative gradients is that for θ = 0,π/3 gradients are not

defined, i.e. indefinite terms as 0/0 are appearing. One possible solution is the use of l’Hospital’s rule.

This has been done in Perić (1991). The solution to the problem in this work went in a different direction,

i.e. instead of aiming for the analytical form, numerical derivatives are derived.

We should recall that for a function f of a single variable, the finite difference approximation to f ′(x),

by using forward finite difference approach, is given by:

a =
f (x + h) – f (x)

h
(104.150)

where h is a vanishingly small quantity. The same definition was used in deriving the finite difference

approximation for the first derivative of the yield function F and potential function Q. The first derivative

of F ( or Q ) with respect to the stress tensor σij for diagonal elements is50 :

approx.F,ii =
F(σii + hii) – F(σii)

hii
(104.151)

and for non-diagonal elements51:

approx.F,ij =
F(σij + hij + hji) – F(σij)

2hij
(104.152)

where hij is the step size which, because of finite precision arithmetic, is a variable52.

The accuracy of the finite difference approximation to the analytical derivatives is closely bound to

the step size hij . It is suggested in Dennis and Schnabel (1983)[section 5.4.] that for functions given

by the simple formula, the number h should be h =
√

macheps, while for more complicated functions

49see Appendix (703).
50no sum convention implied, just the position of the element.
51since the stress tensor σij is symmetric, change in one non-diagonal element triggers the other to be changed as well.
52it is actually one small number, h, that is multiplied with the current stress value so that the relative order of magnitude

is retained.
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that number should be larger. Here macheps is the so called machine epsilon. It is defined as the

smallest distinguishable positive number53, such that 1.0 + macheps > 1.0 on the given platform. For

example54, on the Intel x86 platform55 macheps = 1.08E – 19 while on the SUNSparc and DEC platforms

macheps = 2.22E – 16. It has been found that in the case of yield or potential functions the best

approximation of analytical gradients is obtained by using h =
√

macheps 103. The three order of

magnitude increase in the finite difference step is due to a rather complicated56 formula for yield and

potential functions. The error in the approximation, approx.F,ij is found to be after the N th decimal place,

where N is the order of macheps, i.e. macheps = O(N).

Second derivative approximations for one variable function are given in the form:

a =
(
f (x + hiei + hjej) – f (x + hiei)

)
–
(
f (x + hjej) – f (x)

)
hihj

(104.153)

If the first derivatives are available in closed form, one could use equations (104.151) and (104.152) just

by replacing the function values with tensor values for analytical derivatives57.

However, if the analytic derivatives are not available, one has to devise a formula that will create a

fourth order tensor from the changes in two dimensional stress tensors, σij and σkl. Using the scheme

employed in equation (104.153) the following scheme has been devised:

approx.Q,ijkl =(
Q(σmn + hij + hkl) – Q(σmn + hij)

)
– (Q(σmn + hkl) – Q(σmn))

hijhkl
(104.154)

Special considerations are necessary in order to retain symmetry of the fourth order tensor. At

the moment it has not been possible to figure out how to build the finite difference approximation to

the second derivatives of yield/potential functions for a general stress state. The only finite difference

approximation of the second derivatives that appears to have worked was the one devised in principal

stress space. Namely, diagonal elements of the analytical and the approximate gradients matched exactly,

but development of non-diagonal elements, and the whole scheme of symmetrizing the fourth order

approximation, still remain a mystery. However, some pattern was observed in non–diagonal elements,

and the work on symmetrizing it is in progress.

53in a given precision, i.e. float ( real*4 ), double ( real*8 ) or long double ( real*10 ).
54the precision sought was double ( real*8 ).
55PC computers.
56One should not forget that we work with six dimensional tensor formulae directly.
57see Dennis and Schnabel (1983), section 5.6.
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For many different potential functions (or yield functions) the only task left would be the derivation

of the first derivatives of F and Q and the second derivatives of Q with respect to p, q and θ, namely

the first derivatives ∂Q
∂p , ∂Q

∂q and ∂Q
∂θ and ∂Q

∂p , ∂Q
∂q and ∂Q

∂θ and the second derivatives ∂2Q
∂p2 , ∂2Q

∂p∂q , ∂2Q
∂p∂θ ,

∂2Q
∂q∂p , ∂2Q

∂q2 , ∂2Q
∂q∂θ , ∂2Q

∂θ∂p , ∂2Q
∂θ∂q and ∂2Q

∂θ2 . If the potential function is twice differentiable with respect to

the stress tensor σij , and if it is continuous then the Hessian matrix is symmetric.

104.5 Line Search Technique for Constitutive Elastic-Plastic Integration

This section is entirely based on Jeremić (2001). There exist a repetition of some previously defined

equations...

104.6 Elastic and Elastic–Plastic Material Models for Solids

In this section we present elements of general elastic and elastic–plastic material models for engineering

materials. We describe various forms of the yield functions, plastic flow directions and hardening and

softening laws.

104.6.1 Elasticity

DSL COMMANDS for the elastic material models are given in section 205.3 on page 827.

In linear elasticity the relationship between the stress tensor σij and the strain tensor ϵkl can be

represented in the following form:

σij = σ
(
ϵij
)

(104.155)

If we assume the existence of a strain energy function58 W
(
ϵij
)

then the stress strain relation is:

σij =
∂W

(
ϵij
)

∂ϵij
(104.156)

The introduction of the strain energy density function into elasticity is due to Green, and elastic solids

for which such a function is assumed to exist are called Green elastic or hyperelastic solids.

58per unit volume.
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Linearization of an elastic continuum is carried out with respect to a reference configuration which

is stress free at temperature T0, so that 0σij = 0. If we denote as Eijkl an isothermal modulus tensor,

then under isothermal conditions, we obtain the generalized Hooke’s law:

σij = Eijklϵkl (104.157)

where Eijkl is the fourth order elastic stiffness tensor with 81 independent components in total. The

elastic stiffness tensor features both minor symmetry Eijkl = Ejikl = Eijlk and major symmetry Eijkl = Eklij

(Jeremić and Sture, 1997). The number of independent components for such elastic stiffness tensor is

21 (Spencer, 1980).

Eijkl =

∣∣∣∣∣ ∂2W
∂ϵij ∂ϵkl

∣∣∣∣∣
ϵ=0

=

∣∣∣∣∣ ∂2W
∂ϵkl ∂ϵij

∣∣∣∣∣
ϵ=0

(104.158)

We will restrain our considerations to the isotropic case. The most general form of the isotropic

tensor of rank 4 has the following representation:

I4 = λδijδkl + µδikδjl + νδilδjk (104.159)

If Eijkl has this form then in order to satisfy the symmetry condition59 Eijkl = Ejikl we must have ν = µ.

The symmetry condition60 Eijkl = Eklji is then automatically satisfied. The elastic constant tensor has

the following form:

Eijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(104.160)

where λ and µ are the Lamé coefficients:

λ =
νE

(1 + ν) (1 – 2ν)
; µ =

E
2 (1 + ν)

(104.161)

and E and ν are Young’s Modulus and Poisson’s ratio respectively. The symmetric part of the fourth

order unit tensor is :

Isym
ijkl =

1
2
(
δikδjl + δilδjl

)
(104.162)

and can be found as multiplier of µ in equation (104.160). Equation (104.160) can be written in terms

of E and ν as:

Eijkl =
E

2 (1 + ν)

(
2ν

1 – 2ν
δijδkl + δikδjl + δilδjk

)
(104.163)

The same relation in terms of bulk modulus K and shear modulus G is:

59symmetry in stress tensor.
60existence of strain energy function.
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Eijkl = Kδijδkl + G
(

–
2
3
δijδkl + δikδjl + δilδjk

)
(104.164)

where K and G are given as:

K = λ +
2
3
µ ; G = µ (104.165)

The relation between the strain tensor, ϵkl and the stress tensor, σij is:

ϵkl = Dklpqσpq (104.166)

where Dklpq is the elastic compliance fourth order tensor, defined as:

Dklpq =
–λ

2µ (3λ + 2µ)
δklδpq +

1
4µ
(
δkpδlq + δkqδlp

)
(104.167)

or in terms of E and ν:

Dklpq =
1 + ν
2E

(
–2ν
1 + ν

δklδpq + δkpδlq + δkqδlp

)
(104.168)

of in terms of K and G:

Dklpq =
1

9K
(
δklδpq

)
+

1
2G

(
–

1
3
δklδpq +

1
2
(
δkpδlq + δkqδlp

))
(104.169)

It is worthwhile noting that the part adjacent to the inverse of the bulk modulus K :(
δklδpq

)
controls the volumetric response and that the part adjacent to the inverse of the shear modulus G:(

–
1
3
δklδpq +

1
2
(
δkpδlq + δkqδlp

))
controls the shear response! This note will prove useful later on. Linear transformation of the stress

tensor σpq into itself, i.e. σij is defined as:

σij = Eijklϵkl = EijklDklpqσpq (104.170)

where

EijklDklpq =
1
2
(
δipδjq + δiqδjp

)
= Isym

ijpq (104.171)

104.6.1.1 Elastic Model

Linear elastic law is the simplest one and assumes constant Young’s modulus E and constant Poisson’s

Ration ν.
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104.6.1.2 Non–linear Elastic Model #1

This nonlinear model (Janbu, 1963), (Duncan and Chang, 1970) assumes dependence of the Young’s

modulus on the minor principal stress σ3 = σmin in the form

E = Kpa

(
σ3
pa

)n
(104.172)

Here, pa is the atmospheric pressure in the same units as E and stress. The two material constants K

and n are constant for a given void ratio.

104.6.1.3 Non–linear Elastic Model #2

If Young’s modulus and Poisson’s ratio are replaced by the shear modulus G and bulk modulus K the

non–linear elastic relationship can be expressed in terms of the normal effective mean stress p as

G and/or K = AF(e, OCR)pn (104.173)

where e is the void ratio, OCR is the overconsolidation ratio and p = σii/3 is the mean effective stress

(Hardin, 1978).

104.6.1.4 Lade’s Non–linear Elastic Model

Lade and Nelson (1987) and Lade (1988a) proposed a nonlinear elastic model based on Hooke’s law in

which Poisson ratio ν is kept constant. According to this model, Young’s modulus can be expressed in

terms of a power law as:

E = M pa

((
I1
pa

)2
+
(

6
1 + ν
1 – 2ν

)
J2D
p2

a

)λ
(104.174)

where I1 = σii is the first invariant of the stress tensor and J2D = (sijsij)/2 is the second invariant of the

deviatoric stress tensor sij = σij – σkkδij /3. The parameter pa is atmospheric pressure expressed in the

same unit as E, I1 and
√

J2D and the modulus number M and the exponent λ are constant, dimensionless

numbers.

104.6.1.5 Cross Anisotropic Linear Elastic Model

104.6.2 Yield Functions

The typical plastic behavior of frictional materials is influenced by both normal and shear stresses. It

is usually assumed that there exists a yield surface F in the stress space that encompasses the elastic

region. States of stress inside the yield surface are assumed to be elastic (linear or non–linear). Stress
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states on the surface are assumed to produce plastic deformations. Yield surfaces for geomaterials are

usually shaped as asymmetric tar drops with smoothly rounded triangular cross sections. In addition to

that, simpler yield surfaces, based on the Drucker–Prager cone or Mohr–Coulomb hexagon can also be

successfully used if matched with appropriate hardening laws. Yield surface shown in Figure 104.6 Lade

(1988b) represent typical meridian plane trace for an isotropic granular material. Line BC represents

stress path for conventional triaxial compression test. Figure 104.7 represents the view of the yield

Figure 104.6: Yield surface patterns in the meridian plane for isotropic granular materials (from Lade

(1988b))

surface traces in the deviatoric plane.

104.6.3 Plastic Flow Directions

Plastic flow directions are traditionally derived from a potential surface which to some extent reassembles

the yield surface. Potential surfaces for metals are the same as their yield surfaces but experimental

evidence suggests that it is not the case for geomaterials. The non–associated flow rules, used in

geomechanics, rely on the potential surface, which is different from the yield surface, to provide the

plastic flow directions. It should be noted that the potential surface is used for convenience and there is

no physical reason to assume that the plastic strain rates are related to a potential surface Q (Vardoulakis

and Sulem, 1995). Instead of defining a plastic potential, one may assume that the plastic flow direction

is derived from an tensor function which does not have to possess a potential function.
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σ2 σ3

σ1

γ 1

γ 0

σ3σ2

σ1

θ

low confinment trace

high confinment trace

Figure 104.7: Deviatoric trace of typical yield surface for pressure sensitive materials.

104.6.4 Hardening–Softening Evolution Laws

The change in size and/or shape of the yield and potential surfaces is controlled by the hardening–

softening evolution laws. Physically, these laws control the hardening and/or softening process during

loading. Depending on the evolution type they control, these laws can be in general separated into

isotropic and kinematic (also called anisotropic). The isotropic evolution laws control the size of the

yield surface through a single scalar variable. This is usually related to the Coulomb friction or to the

mean stress values at isotropic yielding. The non–isotropic evolution laws can be further specialized to

rotational, translational kinematic and distortional. It should be noted that all of the kinematic evolution

laws can be treated as special case of the general, distortional laws (Baltov and Sawczuk, 1965). Figure

104.8 depicts various types of evolution laws (for the control of hardening–softening) in the meridian
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plane61.
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Figure 104.8: Various types of evolution laws that control hardening and/or softening of elastic–

plastic material models: (a) Isotropic (scalar) controlling equivalent friction angle and isotropic yield

stress. (b) Rotational kinematic hardening (second order tensor) controlling pivoting around fixed point

(usually stress origin) of the yield surface. (c) Translational kinematic hardening (second order tensor)

controlling translation of the yield surface. (d) Distortional (fourth order tensor) controlling the shape

of the yield surface.

104.6.5 Tresca Model

The first yield criteria in the metal plasticity is Tresca yield criteria. Tresca yield criteria states that

when the maximum shear stress or, the half difference of the maximum and minimum principal stresses,

reaches the shear strength, τs, the material will begin yielding. It is can be expressed by the yield function

f = |τmax| – τs =
1
2
|σ1 – σ3| – τs = 0 (104.175)

Tresca yield surface in the principal stress space is a regular hexagonal cylinder. It is implied that the

intermediate principal stress plays no role in the yielding for Tresca yield criteria.

104.6.6 von Mises Model

DSL COMMANDS for the von Mises material models are given in section 205.3 on page 827.

61The meridian plane is chosen just for illustration purposes, similar sketch can be produced in deviatoric plane as well.
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Experimental data showed that for most metals, von Mises yield criteria is more accurate than Tresca

criteria. von Mises yield function can be expressed by

f = 3J2 – k2 = 0 (104.176)

or if extended to include the kinematic hardening,

f =
3
2

(sij – αij)(sij – αij) – k2 = 0 (104.177)

where k is the scalar internal variable; its initial value is the uniaxial tension strength. αij is the tensor

internal variable called the back stress. Similar to sij , αij is also a deviatoric symmetric tensor.

Although von Mises model is mainly for the metal plasticity analysis, for undrained analysis in

geomechanics, von Mises model can be approximately used to simulate the undrained behaviors, (Yang

and Jeremić, 2002), (Yang and Jeremić, 2003).

The stress derivative of the yield function is

∂f
∂σij

= 3(sij – αij) (104.178)

From Equation 104.178, it is easily to derive that

∂f
∂αij

= –3(sij – αij) (104.179)

and

∂f
∂k

= –2k (104.180)

If the associated plastic flow rule g = f is assumed, then

mij =
∂g
∂σij

= 3(sij – αij) (104.181)

∂mij
∂σmn

= 3Is
ijmn – δijδmn (104.182)

∂mij
∂αmn

= –3Is
ijmn (104.183)

where Is
ijmn is the symmetric unit rank-4 tensor.

It is interesting that from the Equation 104.181, von Mises model gives

ϵ̇
p
v = ϵ̇pii = λ̇mii = 3λ̇(sii – αii) = 0 (104.184)
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which accords with the phenomena that no plastic volumetric strain occurs for metals. It is implied that

the isotropic stress (hydrostatic pressure) can never make the metal yield for this yield criteria. von Mises

model is therefore pressure-independent.

If k is assumed a linear relation to the equivalent plastic strain ϵ
p
q, or by the equation

k̇ = Hsϵ̇
p
eq = λ̇Hs

(
2
3

mdev
ij mdev

ij

)0.5
(104.185)

where Hs is the linear hardening/softening modulus to the equivalent plastic strain, the corresponding

hA is then

h = Hs

(
2
3

mdev
ij mdev

ij

)0.5
(104.186)

where mdev
ij is the ‘deviatoric’ plastic flow, and if it is associated plasticity,

h = 2Hsk (104.187)

If αij is assumed a linear relation to the plastic strain tensor ϵ
p
ij , or by the equation

α̇ij = Ht ϵ̇
p
ij = λ̇Htmij (104.188)

if it is associated plasticity,

α̇ij = 3λ̇Ht(sij – αij) (104.189)

where Ht is the linear hardening/softening modulus to plastic strain tensor, the corresponding hA is then

hij = Htmij (104.190)

if it is associated plasticity,

hij = 3Ht(sij – αij) (104.191)

A saturation-type kinematic hardening rule is the Armstrong-Frederick hardening (Armstrong and

Frederick, 1966),

α̇ij =
2
3

haϵ̇
p
ij – cr ϵ̇

p
eqαij (104.192)

if it is associated plasticity,

α̇ij = λ̇[ha(sij – αij) – 2crkαij] (104.193)

where ha and cr are material constants. The corresponding hA is then

hij =
2
3

hamij – crmeqαij (104.194)

where meq is the ‘equivalent’ plastic flow, and if it is associated plasticity,

hij = 2hasij – 2(ha + crk)αij (104.195)
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104.6.6.1 Yield and Plastic Potential Functions: von Mises Model (form I)

Yield function and related derivatives

f =
3
2
[(

sij – αij
) (

sij – αij
)]

– k2 = 0 (104.196)

∂f
∂σij

= 3
∂skl
∂σij

(skl – αkl)

= 3
(
δkiδlj –

1
3
δklδij

)
(skl – αkl)

= 3
(
sij – αij

)
(104.197)

∂f
∂αij

= –3
∂αkl
∂αij

(skl – αkl)

= –3δkiδlj (skl – αkl)

= –3
(
sij – αij

)
(104.198)

∂f
∂k

= –2k (104.199)

Plastic flow (associated plasticity) and related derivatives

mij =
∂f
∂σij

= 3
(
sij – αij

)
(104.200)

∂mij
∂σmn

= 3δimδjn – δijδmn (104.201)

∂mij
∂k

= 0 (104.202)

∂mij
∂αmn

= –3δimδjn (104.203)
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104.6.6.2 Yield and Plastic Potential Functions: von Mises Model (form II)

Yield function and related derivatives

f =
[(

sij – αij
) (

sij – αij
)]0.5 –

√
2
3

k = 0 (104.204)

∂f
∂σij

=
∂skl
∂σij

(skl – αkl) [(smn – αmn) (smn – αmn)]–0.5

=
(
δkiδlj –

1
3
δklδij

)
(skl – αkl) [(smn – αmn) (smn – αmn)]–0.5

=
(
sij – αij

)
[(smn – αmn) (smn – αmn)]–0.5 (104.205)

∂f
∂αij

= –
(
sij – αij

)
[(smn – αmn) (smn – αmn)]–0.5 (104.206)

∂f
∂k

= –
√

2
3

(104.207)

Plastic flow (associated plasticity) and related derivatives

mij =
∂f
∂σij

=
(
sij – αij

)
[(smn – αmn) (smn – αmn)]–0.5 (104.208)

∂mij
∂σmn

=
(
δimδjn –

1
3
δijδmn

)
[(srs – αrs) (srs – αrs)]–0.5–

(
sij – αij

)
(smn – αmn) [(srs – αrs) (srs – αrs)]–1.5

(104.209)

∂mij
∂k

= 0 (104.210)

∂mij
∂αmn

= –δimδjn [(srs – αrs) (srs – αrs)]–0.5 +
(
sij – αij

)
(smn – αmn) [(srs – αrs) (srs – αrs)]–1.5 (104.211)
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104.6.6.3 Hardening and Softening Functions: von Mises Model

Linear isotropic hardening and related derivatives

k̄ = Hmequivalent = H
(

2
3

mijmij

)0.5
(104.212)

∂k̄
∂σij

=
2
3

Hmpq
∂mpq
∂σij

(
2
3

mmnmmn

)–0.5
(104.213)

∂k̄
∂k

=
2
3

Hmpq
∂mpq
∂k

(
2
3

mmnmmn

)–0.5
(104.214)

∂k̄
∂αij

=
2
3

Hmpq
∂mpq
∂αij

(
2
3

mmnmmn

)–0.5
(104.215)

Linear kinematic hardening and related derivatives

ᾱij = Hmdev
ij = H

(
mij –

1
3

mklδklδij

)
(104.216)

∂ᾱij
∂σmn

= H
(
∂mij
∂σmn

–
1
3
∂mkl
∂σmn

δklδij

)
(104.217)

∂ᾱij
∂k

= H
(
∂mij
∂k

–
1
3
∂mkl
∂k

δklδij

)
(104.218)

∂ᾱij
∂αmn

= H
(
∂mij
∂αmn

–
1
3
∂mkl
∂αmn

δklδij

)
(104.219)

Armstrong-Frederick kinematic hardening for von Mises

ᾱij =
2
3

hamdev
ij – cr

(
2
3

mdev
rs mdev

rs

)0.5
αij (104.220)

The unit of parameter ha is Pascal. The parameter cr is unitless. The unit of αij is Pascal.

The deviatoric component of m is employed because the backstress αij is the center of yield surface

in the deviatoric stress space.

When the derivative of backstress ᾱij = 0, the tensor αij reaches the tensor limit.
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αlim
ij =

√
2
3

ha
cr

mdev
ij√

mdev
rs mdev

rs
(104.221)

Some useful tensor derivatives for von Mises ᾱ.

mdev
ij = mij –

1
3

mklδklδij (104.222)

• Useful tensor derivatives for von Mises ᾱ with respect to σ.

∂ᾱij
∂σmn

=
2
3

ha
∂mdev

ij
∂σmn

–
2
3

crmdev
rs

∂mdev
rs

∂σmn

(
2
3

mdev
kl mdev

kl

)–0.5
αij (104.223)

where

∂mdev
ij

∂σmn
=
∂mij
∂σmn

–
1
3
∂mot
∂σmn

δotδij (104.224)

• Useful tensor derivatives for von Mises ᾱ with respect to α.

∂ᾱij
∂αmn

=
2
3

ha
∂mdev

ij
∂αmn

–
2
3

crmdev
rs

∂mdev
rs

∂αmn

(
2
3

mdev
kl mdev

kl

)–0.5
αij –cr

(
2
3

mdev
pq mdev

pq

)0.5
δimδjn (104.225)

where

∂mdev
ij

∂αmn
=
∂mij
∂αmn

–
1
3
∂mot
∂αmn

δotδij (104.226)

• Useful tensor derivatives for von Mises ᾱ with respect to k.

∂ᾱij
∂k

=
2
3

ha
∂mdev

ij
∂k

–
√

2
3

crαij(mdev
rs mdev

rs )–0.5∂mdev
pq
∂k

mdev
pq (104.227)

where

∂mdev
ij
∂k

=
∂mij
∂k

–
1
3
∂mot
∂k

δotδij (104.228)

104.6.7 Drucker-Prager Model

DSL COMMANDS for the Drucker Prager material models are given in section 205.3 on page 827.

Drucker and Prager (1952) proposed a right circle cone to match with the Mohr-Coulomb irregular

hexagonal pyramid, which can be expressed by

f = αI1 +
√

J2 – β = 0 (104.229)

or if considering the kinematic hardening,

f = αI1 + [
1
2

(sij – pαij)(sij – pαij)]
1
2 – β = 0 (104.230)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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where α and β are material constants.

By coinciding Drucker-Prager cone with the outer apexes of the Mohr-Coulomb hexagon locus, we

get the compressive cone of Drucker-Prager model, with the constants as

α =
2 sin ϕ√

3(3 – sin ϕ)
, β =

6 cosϕ√
3(3 – sin ϕ)

c (104.231)

By coinciding Drucker-Prager cone with the inner apexes of the Mohr-Coulomb hexagon locus, we

get the tensile cone of Drucker-Prager model, with the constants as

α =
2 sin ϕ√

3(3 + sin ϕ)
, β =

6 cosϕ√
3(3 + sin ϕ)

c (104.232)

We can also get the mean cone of the compressive and tensile cone, with the constants as

α =
√

3 sin ϕ
9 – sin2 ϕ

, β =
2
√

3 cosϕ
9 – sin2 ϕ

c (104.233)

Another inner-tangent cone to the the Mohr-Coulomb pyramid, with the constants as

α =
tan ϕ√

9 + 12 tan2 ϕ
, β =

3c√
9 + 12 tan2 ϕ

(104.234)

Obviously, in practice α and β are not directly obtained from experiments. They are functions

of Mohr-Coulomb parameters, the cohesion c and the friction angle ϕ, which can be determined by

experiments. The shape of Drucker-Prager yield surface has different types. They only partially satisfy

the above requirements for locus in the π plane: they do not coincide with both compressive and tensile

experimental points.

A useful formulation on Equation 104.229 is

∂f
∂σij

= αδij +
sij

2
√

J2
(104.235)

For cohesionless sands, k = 0, Drucker-Prager yield function can thus be simplified as

f = αI1 +
√

J2 = 0 (104.236)

or in terms of p and q,

f = q – Mp = 0 (104.237)

If Equation 104.231 is adopted, then M can be easily derived as

M =
6 sin ϕ

3 – sin ϕ
(104.238)

If the kinematic hardening is taken account, Equation 104.237 can be extended into

f =
3
2

[(sij – pαij)(sij – pαij)] – M2p2 = 0 (104.239)
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Useful formulations for this yield function are

∂f
∂σij

= 3s̄ij +
(

s̄mnαmn +
2
3

M2p
)
δij (104.240)

∂f
∂αij

= –3ps̄ij (104.241)

where s̄ij = sij – pαij .

If the plastic flow is assumed associated, g = f , then

mij =
∂g
∂σij

= 3s̄ij +
(

s̄mnαmn +
2
3

M2p
)
δij (104.242)

the ‘deviatoric’ plastic flow is therefore

meq = 2Mp (104.243)

104.6.7.1 Yield and Plastic Potential Functions: Drucker-Prager Model (form I)

Yield function and related derivatives

f =
3
2
[(

sij – pαij
) (

sij – pαij
)]

– k2p2 = 0 (104.244)

∂f
∂σij

=
3
2

[
2
∂smn
∂σij

(smn – pαmn)
]

+
3
2

[
–2αmn

∂p
∂σij

(smn – pαmn)
]

– 2k2p
∂p
∂σij

= 3
(
δmiδnj –

1
3
δmnδij

)
(smn – pαmn) + 3

[
αmn

1
3
δij (smn – pαmn)

]
+

2
3

k2pδij

= 3
(
sij – pαij

)
+ αmn (smn – pαmn) δij +

2
3

k2pδij (104.245)

∂f
∂αij

= –3p
(
sij – pαij

)
(104.246)

∂f
∂k

= –2kp2 (104.247)
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Plastic flow (associated plasticity) and related derivatives

mij =
∂f
∂σij

= 3
(
sij – pαij

)
+ αrs (srs – pαrs) δij +

2
3

k2pδij (104.248)

∂mij
∂σmn

= 3
((

δimδjn –
1
3
δijδmn

)
–

1
3
δmnαij

)
+ αrs

∂ (srs – pαrs)
∂σmn

δij +
2
3

k2 ∂p
∂σmn

δij

= 3δimδjn – δijδmn – δmnαij + αrs

(
δrmδsn –

1
3
δrsδmn +

1
3
δmnαrs

)
δij +

2
3

k2 ∂p
∂σmn

δij

= 3δimδjn – δijδmn – δmnαij + αmnδij +
1
3
δmnαrsαrsδij –

2
9

k2δmnδij

= 3δimδjn +
(

–1 +
1
3
αrsαrs –

2
9

k2
)
δijδmn – δmnαij + αmnδij (104.249)

∂mij
∂k

=
4
3

kpδij (104.250)

∂mij
∂αmn

= –3pδimδjn + δrmδsn (srs – pαrs) δij – αrspδrmδsnδij

= –3pδimδjn + (smn – pαmn) δij – αmnpδij

= –3pδimδjn + smnδij – 2pαmnδij (104.251)

104.6.7.2 Yield and Plastic Potential Functions: Drucker-Prager Model (form II)

Yield function and related derivatives

f =
[(

sij – pαij
) (

sij – pαij
)]0.5 –

√
2
3

kp = 0 (104.252)

∂f
∂σij

=
(
∂smn
∂σij

– αmn
∂p
∂σij

)
(smn – pαmn) [(srs – pαrs) (srs – pαrs)]–0.5 –

√
2
3

k
∂p
∂σij

=
(
δmiδnj –

1
3
δmnδij +

1
3
αmnδij

)
(smn – pαmn) [(srs – pαrs) (srs – pαrs)]–0.5 +

√
2
27

kδij

=
[(

sij – pαij
)

+
1
3
αmnδij (smn – pαmn)

]
[(srs – pαrs) (srs – pαrs)]–0.5 +

√
2
27

kδij (104.253)

∂f
∂αij

= –pδmiδnj (smn – pαmn) [(srs – pαrs) (srs – pαrs)]–0.5

= –p
(
sij – pαij

)
[(srs – pαrs) (srs – pαrs)]–0.5 (104.254)

∂f
∂k

= –
√

2
3

p (104.255)
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Plastic flow (associated plasticity) and related derivatives

mij =
∂f
∂σij

=
[(

sij – pαij
)

+
1
3
αpqδij

(
spq – pαpq

)]
[(srs – pαrs) (srs – pαrs)]–0.5 +

√
2
27

kδij (104.256)

∂mij
∂σmn

=
[(
δmiδnj –

1
3
δmnδij +

1
3
δmnαij

)
+

1
3
αpqδij

(
δmpδnq –

1
3
δmnδpq +

1
3
δmnαpq

)]
[(srs – pαrs) (srs – pαrs)]–0.5

–
[(

sij – pαij
)

+
1
3
αpqδij

(
spq – pαpq

)](
δmrδns –

1
3
δmnδrs +

1
3
δmnαrs

)
(srs – pαrs) [(stu – pαtu) (stu – pαtu)]–1.5 (104.257)

∂mij
∂k

=
√

2
27
δij (104.258)

∂mij
∂αmn

=
[
–pδmiδnj +

1
3
δmpδnqδij

(
spq – pαpq

)
–

1
3

pαpqδijδmpδnq

]
[(srs – pαrs) (srs – pαrs)]–0.5

–
[(

sij – pαij
)

+
1
3
αpqδij

(
spq – pαpq

)]
[–pδrmδsn (srs – pαrs)] [(stu – pαtu) (stu – pαtu)]–1.5

(104.259)

Plastic flow (non-associated plasticity) and related derivatives

mij =
(
∂f
∂σij

)dev
–

1
3

Dδij =
(
sij – pαij

)
[(srs – pαrs) (srs – pαrs)]–0.5 –

1
3

Dδij (104.260)

where

D = ξ

(√
2
3

kd –
√smnsmn

p

)
(104.261)

∂D
∂σmn

= –p–1smn(sklskl)–0.5 –
1
3

p–2δmn(sotsot)0.5 (104.262)

Therefore,

∂mij
∂σmn

=
(
δmiδnj –

1
3
δmnδij +

1
3
δmnαij

)
[(srs – pαrs) (srs – pαrs)]–0.5

–
(
sij – pαij

)(
δmrδns –

1
3
δmnδrs +

1
3
δmnαrs

)
(srs – pαrs) [(stu – pαtu) (stu – pαtu)]–1.5

+
1
3
δijsmnp–1(sklskl)–0.5 +

1
9
δijδmnp–2(sotsot)0.5 (104.263)
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∂mij
∂k

= 0 (104.264)

∂mij
∂αmn

= –pδmiδnj [(srs – pαrs) (srs – pαrs)]–0.5

–
(
sij – pαij

)
[–pδrmδsn (srs – pαrs)] [(stu – pαtu) (stu – pαtu)]–1.5 (104.265)

104.6.7.3 Hardening and Softening Functions: Drucker-Prager Model

Note that the linear isotropic and linear kinematic hardening equations for Drucker-Prager model are the

same as the ones for von Mises model. Here they are shown again for completeness.

Linear isotropic hardening and related derivatives

k̄ = Hmequivalent = H
(

2
3

mijmij

)0.5
(104.266)

∂k̄
∂σij

=
2
3

Hmpq
∂mpq
∂σij

(
2
3

mmnmmn

)–0.5
(104.267)

∂k̄
∂k

=
2
3

Hmpq
∂mpq
∂k

(
2
3

mmnmmn

)–0.5
(104.268)

∂k̄
∂αij

=
2
3

Hmpq
∂mpq
∂αij

(
2
3

mmnmmn

)–0.5
(104.269)

Linear kinematic hardening and related derivatives

ᾱij = Hmdev
ij = H

(
mij –

1
3

mklδklδij

)
(104.270)

∂ᾱij
∂σmn

= H
(
∂mij
∂σmn

–
1
3
∂mkl
∂σmn

δklδij

)
(104.271)

∂ᾱij
∂k

= H
(
∂mij
∂k

–
1
3
∂mkl
∂k

δklδij

)
(104.272)

∂ᾱij
∂αmn

= H
(
∂mij
∂αmn

–
1
3
∂mkl
∂αmn

δklδij

)
(104.273)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.6. ELASTIC AND ELASTIC–PLASTIC MAT . . . page: 238 of 3287

Armstrong-Frederick Kinematic Hardening for Drucker-Prager

ᾱij =
2
3

ha
p

mdev
ij – cr

(
2
3

mdev
rs mdev

rs

)0.5
αij (104.274)

where p is pressure of the current stress state. The unit of parameter ha is Pascal. The parameter

cr is unitless. The αij in Drucker-Prager is unitless.

The pressure p is introduced for two reasons.

• The center of the yield surface is pαij , not αij . The kinematic hardening rule is to control the

center of the yield surface.

• The unit in equation (104.303) matches after the pressure p is introduced.

When the derivative of backstress ᾱij = 0, the tensor αij reaches the tensor limit.

αlim
ij =

√
2
3

ha
pcr

mdev
ij√

mdev
rs mdev

rs
(104.275)

Some useful tensor derivatives for Drucker-Prager ᾱ.

mdev
ij = mij –

1
3

mklδklδij (104.276)

• Useful tensor derivatives for Drucker-Prager ᾱ with respect to σ.

∂ᾱij
∂σmn

=
2
3

ha
p
∂mdev

ij
∂σmn

+
2

9p2 hamdev
ij δmn –

2
3

crmdev
rs

∂mdev
rs

∂σmn

(
2
3

mdev
kl mdev

kl

)–0.5
αij (104.277)

where

∂mdev
ij

∂σmn
=
∂mij
∂σmn

–
1
3
∂mot
∂σmn

δotδij (104.278)

• Useful tensor derivatives for Drucker-Prager ᾱ with respect to α.

∂ᾱij
∂αmn

=
2
3

ha
p
∂mdev

ij
∂αmn

–
2
3

crmdev
rs

∂mdev
rs

∂αmn

(
2
3

mdev
kl mdev

kl

)–0.5
αij –cr

(
2
3

mdev
pq mdev

pq

)0.5
δimδjn (104.279)

where

∂mdev
ij

∂αmn
=
∂mij
∂αmn

–
1
3
∂mot
∂αmn

δotδij (104.280)

• Useful tensor derivatives for Drucker-Prager ᾱ with respect to k.

∂ᾱij
∂k

=
2
3

ha
p
∂mdev

ij
∂k

–
√

2
3

crαij(mdev
rs mdev

rs )–0.5∂mdev
pq
∂k

mdev
pq (104.281)

where

∂mdev
ij
∂k

=
∂mij
∂k

–
1
3
∂mot
∂k

δotδij (104.282)
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104.6.7.4 Federico’s Description of a Drucker–Prager Kinematic Hardenig Model

Presented is a concise description of nonlinear rotational kinematic hardening (Armstrong-Frederick)

Drucker-Prager model (Lemaitre and Chaboche, 1990).

Elastic behavior The standard Hooke’s law has been assumed for the sake of simplicity.

Yield function The yield locus is of the same kind described by Prevost (1985a) and Manzari and

Dafalias (1997), i.e. conical and allowed to rotate around its apex (the centre of rotation coincides – for

cohesionless materials – with the origin of the principal stress space):

f =
√(

sij – pαij
) (

sij – pαij
)

–
√

2
3

kp = 0 (104.283)

in which p is the isotropic mean pressure, αij the back–stress ratio tensor and k a constitutive surface

parameter62. While this latter governs the opening angle of the cone, αij is a second–rank deviatoric

tensor determining the yield locus rotation.

Plastic flow rule As usual, the incremental plastic strain tensor can be expressed as:

ϵ
p
ij = λ̇mij (104.284)

where λ̇ is a scalar plastic multiplier and mij assigning the direction of the plastic flow. While in the

associated version of the model mij would coincide with the stress gradient of the yield function (104.283),

here the following non–associated flow rule has been adopted (Prevost, 1985a; Manzari and Dafalias,

1997):

mij =
(
∂f
∂σij

)dev
–

1
3

Dδij (104.285)

where the superscript dev and δij denote the “deviatoric” tensor operator and the Kronecker hydrostatic

tensor, respectively, and D is a dilatancy coefficient defined as:

D = ξ

(√
2
3

kd –
√

rmnrmn

)
(104.286)

Here, we defined normalized deviatoric stress tensor rij = sij /p.

62stresses are meant here to be effective

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Apparently, the flow rule (104.285) implies the deviatoric plastic strain increment to be associated,

while non-associativeness holds for the volumetric component. The definition (104.286) requires two

consitutive parameters to be identified, namely kd and ξ: the former represents the stress obliquity

for the transition from contractive to dilative response; the latter quantitatively governs the volumetric

plastic strain rate. Specifically, kd denotes the existence of a “dilatancy surface”, the soil response being

contractive for inner stress states and dilative otherwise; this surface – characterized by no volumetric

plastic strain – is still a Drucker–Prager conical locus, fixed in the principal stress space and with an

opening angle given by kd .

Armstrong–Frederick kinematic hardening rule The last ingredient in the model formulation is rep-

resented by the hardening rule for the internal variable αij . Here, an Armstrong–Frederick hardening

(Armstrong and Frederick, 1966; Lemaitre and Chaboche, 1990) has been introduced:

α̇ij =
2
3

ha
(
ϵ
p
ij

)dev
– crαij

√
2
3
(
ϵ
p
rs
)dev (

ϵ
p
rs
)dev

(104.287)

where ha and cr are two hardening constitutive parameters. Equation (104.287) yields a saturation–type

evolution under deviatoric plastic straining, up to the achievement of a limit back–stress ratio αlim
ij .

Starting from (104.287), it could be easily proven that:∥∥∥αlim
ij

∥∥∥ =
√

2
3

ha
cr

(104.288)

i.e. the norm of the limit tensor αlim
ij exclusively depends on the ha/cr ratio for any value of the Lode

angle. The existence of an outer bound for αij implies all feasible stress states to lie within a so–called

bounding surface, determined both by αlim
ij and the opening of the yield locus f = 0 (104.283). The

bounding surface, governing the shear strength of the material, is in this case a Lode–angle insensitive

Drucker–Prager cone: in the simplest case of triaxial loading, the limit stress obliquity M can be shown

to equal:

M =
(

q
p′

)
failure

= k +
ha
cr

(104.289)

both in compression and extension. From the above analytical relationships it can be inferred that the

material shear strength is ruled by the ratio ha/cr , whereas cr determines the evolution rate of the back–

stress tensor αij .
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104.6.7.5 Han’s Description of Drucker–Prager Model with Armstrong–Frederick Kinematic Hardening

Presented is a new description of non-associated Drucker-Prager model with nonlinear Armstrong-

Frederick kinematic hardening. Compared with the traditional description shown in earlier sections,

the main difference in this description is taking into consideration of the symmetry nature of stress and

strain tensors. As a result, some of the derivatives of plastic flow and internal variable are different.

More importantly, this change leads to a consistent stiffness tensor that has minor symmetry.

Elastic Behavior The elastic behavior is modeled as linear elastic, following classic generalized Hook’s

law. The elastic stiffness tensor is that for isotropic, linear elastic material (Equation 104.163).

Eijkl =
E

2 (1 + ν)

(
2ν

1 – 2ν
δijδkl + δikδjl + δilδjk

)
(104.290)

Yield Function The yield function and its derivatives remain unchanged.

f =
[(

sij – pαij
) (

sij – pαij
)]0.5 –

√
2
3

kp = 0 (104.291)

∂f
∂σij

=
[(

sij – pαij
)

+
1
3
αmnδij (smn – pαmn)

]
[(srs – pαrs) (srs – pαrs)]–0.5 +

√
2
27

kδij (104.292)

∂f
∂αij

= –p
(
sij – pαij

)
[(srs – pαrs) (srs – pαrs)]–0.5 (104.293)

∂f
∂k

= –
√

2
3

p (104.294)

Plastic Flow The changes in derivatives of plastic flow, and later in hardening, comes from the clarifi-

cation of derivative of the stress tensor with respect to itself. According to Park (2018), since the stress

tensor is intrinsically symmetric, its derivative with respect to itself should be:

∂σij
∂σmn

=
1
2
(
δimδjn + δinδjm

)
(104.295)

Then, the derivative of deviatoric stress with respect to stress becomes:

∂sij
∂σmn

=
1
2
δimδjn +

1
2
δinδjm –

1
3
δmnδij (104.296)

The non-associated plastic flow still has the same form:

mij =
(
∂f
∂σij

)dev
–

1
3

Dδij =
(
sij – pαij

)
[(srs – pαrs) (srs – pαrs)]–0.5 –

1
3

Dδij (104.297)
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where

D = ξ

(√
2
3

kd –
√smnsmn

p

)
(104.298)

and

∂D
∂σmn

= –ξ
[
p–1smn(sklskl)–0.5 +

1
3

p–2δmn(sotsot)0.5
]

(104.299)

Therefore,

∂mij
∂σmn

=
(

1
2
δimδjn +

1
2
δinδjm –

1
3
δmnδij +

1
3
δmnαij

)
[(srs – pαrs) (srs – pαrs)]–0.5

–
(
sij – pαij

) [
(smn – pαmn) +

1
3
αrs (srs – pαrs) δmn

]
[(stu – pαtu) (stu – pαtu)]–1.5

+
1
3
ξ

[
smnp–1(sklskl)–0.5 +

1
3
δmnp–2(sotsot)0.5

]
δij (104.300)

∂mij
∂k

= 0 (104.301)

∂mij
∂αmn

= –p
(

1
2
δmiδnj +

1
2
δmjδni

)
[(srs – pαrs) (srs – pαrs)]–0.5

+ p
(
sij – pαij

)
(smn – pαmn) [(stu – pαtu) (stu – pαtu)]–1.5 (104.302)

Armstrong-Frederick kinematic hardening for Drucker-Prager

ᾱij =
2
3

ha
patm

mdev
ij – cr

(
2
3

mdev
rs mdev

rs

)0.5
αij (104.303)

where patm is the atmospheric pressure of 101.325 kPa. The unit of parameter ha is Pascal. The

parameter cr is unitless. The αij in Drucker-Prager is unitless. The atmospheric pressure patm is

introduced so that the unit in equation (104.303) matches.

Notice that

mdev
rs mdev

rs = (srs – pαrs) (srs – pαrs) [(stu – pαtu) (stu – pαtu)]–1 = 1 (104.304)

This means the hardening equation and related derivatives can be simplified:

ᾱij =
2
3

ha
patm

mdev
ij –

√
2
3

crαij (104.305)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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When the derivative of backstress ᾱij = 0, the tensor αij reaches the tensor limit:

αlim
ij =

√
2
3

ha
patmcr

mdev
ij (104.306)

Some useful tensor derivatives for Drucker-Prager ᾱ.

mdev
ij =

(
sij – pαij

)
[(srs – pαrs) (srs – pαrs)]–0.5 (104.307)

∂mdev
ij

∂σmn
=
(

1
2
δimδjn +

1
2
δinδjm –

1
3
δmnδij +

1
3
δmnαij

)
[(srs – pαrs) (srs – pαrs)]–0.5

–
(
sij – pαij

) [
(smn – pαmn) +

1
3
αrs (srs – pαrs) δmn

]
[(stu – pαtu) (stu – pαtu)]–1.5 (104.308)

∂mdev
ij
∂k

= 0 (104.309)

∂mdev
ij

∂αmn
= –p

(
1
2
δimδjn +

1
2
δinδjm

)
[(srs – pαrs) (srs – pαrs)]–0.5

– p
(
sij – pαij

)
(smn – pαmn) [(stu – pαtu) (stu – pαtu)]–1.5 (104.310)

• Tensor derivative of Drucker-Prager ᾱij with respect to σij .

∂ᾱij
∂σmn

=
2ha

3patm

∂mdev
ij

∂σmn
(104.311)

• Tensor derivative of Drucker-Prager ᾱij with respect to k.

∂ᾱij
∂k

= 0 (104.312)

• Tensor derivative of Drucker-Prager ᾱij with respect to αij .

∂ᾱij
∂αmn

=
2ha

3patm

∂mdev
ij

∂αmn
–
√

2
3

cr

(
1
2
δimδjn +

1
2
δinδjm

)
(104.313)

104.6.8 Hyperbolic Drucker Prager Model

104.6.8.1 Original Yield Function and Hyperbolic Function

The original Drucker-Prager yield function is

Φ(σ) =
√

J2 – ηp – ξ (104.314)
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where

η =
3tanϕ√

9 + 12tan2ϕ
(104.315)

ξ =
3c√

9 + 12tan2ϕ
(104.316)

where ϕ is the friction ratio, and c is the cohesion. Besides, the constant η is unitless. The unit of

constant ξ is Pascal. In addition, here we define that p is compression-positive. Namely, p = –σii
3 .

Rewrite the yield function (104.314) with p, q such that

Φ(σ) =
q√
3

– ηp – ξ (104.317)

The slope of the yield surface is
√

3η, and the hydrostatic cutoff point is at (– ξη , 0).

104.6.8.2 Hyperbolic Drucker Prager Model

Assume a standard hyperbolic function is(
x – d

a

)2
–
(y

b

)2
= 1 (104.318)

In the hyperbolic function, as showed in the Figure 104.9, the distance between the original apex to

the rounded hydrostatic cut-off is a, and the corresponding y value is b. The hydrostatic cut off of the

asymptotic line is d.

104.6.8.3 Modified Hyperbolic Drucker Prager

Mapping the Hyperbolic Equation. In the modified hyperbolic Drucker Prager yield surface, the asymp-

totic line is the original yield surface.

The slope of the asymptotic line is

b
a

=
√

3η (104.319)

The hydrostatic cut-off of the asymptotic line is

d =
ξ

η
(104.320)

The rounded distance a of the hyperbolic line is a new parameter.

The hyperbolic function isp + ξ
η

a

2

–
(

q√
3 a η

)2
= 1 (104.321)
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Figure 104.9: The standard hyperbolic function parameters.

Removing the Negative Branch. To remove the negative branch, we need the pressure (p + ξ
η ) always

be positive. Therefore,p + ξ
η

a

2

=
(

q√
3 a η

)2
+ 1 (104.322)

Take the root on both sides,

p + ξ
η

a
=

√(
q√

3 a η

)2
+ 1 (104.323)

Inside the hyperbolic To make the yield surface value smaller than zero when the stress state is inside

the modified cone, the yield surface is

0 =

√(
q√

3 a η

)2
+ 1 –

p + ξ
η

a
(104.324)

Avoiding Zero Denominator. To avoid the zero denominator situation, multiply the equation on both

sides by η and a.

0 =

√(
q√
3

)2
+ a2η2 – ηp – ξ (104.325)
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The basic yield function The yield function now has one internal variable η for isotropic hardening.

Φ(σ, η) =

√(
q√
3

)2
+ a2η2 – ηp – ξ (104.326)

Simplify the yield function and substitute q =
√

3
2sijsij , we have

Φ(σ, η) =
√

1
2

sijsij + a2η2 – ηp – ξ (104.327)

Introduce the capability of rotational kinematic hardening by α.

Φ(σ, η,α) =
√

1
2

(sij – pαij)(sij – pαij) + a2η2 – ηp – ξ (104.328)

104.6.8.4 The Non-Associative Plastic Potential Function.

The non-associative plastic flow direction is

mij =
(
∂f
∂σij

)dev
+

1
3
η̄δij (104.329)

where η̄ controls the plastic flow direction. When η̄ = 0, the material has the deviatoric plastic flow

only.

The relation between the dilatancy angle and η̄ is similar to the relation between the friction angle

and η.

η̄ =
3tanψ√

9 + 12tan2ψ
(104.330)

where ψ is the dilatancy angle.

Numerical Issues in the Non-Associative Plastic Potential Function. The non-associative plastic flow

rule will have asymmetric stiffness matrix, which requires a asymmetric solver. The non-associative

requires smaller subincrements for convergence. One important non-associative plastic potential is the

purely deviatoric plastic flow.

The purely deviatoric plastic flow may have the numerical issues for the convergence. For example,

in Fig 104.10, the purely deviatoric plastic flow direction can never return back to the yield surface.

Subincrements can solve this problem.
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Figure 104.10: The inconvergence situation for purely deviatoric plastic flow.

104.6.8.5 Han’s Description of Hyperbolic Drucker–Prager Model with Armstrong–Frederick Kinematic

Hardening

Presented is a new description of non-associated hyperbolic Drucker-Prager model with nonlinear Armstrong-

Frederick kinematic hardening. It’s intended to keep the same theoretical framework and the same set

of material parameters as the Drucker-Prager material model shown in section 104.6.7.5.

Classic Drucker–Prager Yield Function with Cohesion This is the yield function shown in Equation 104.237,

extended to considering cohesion

f = q – Mp –
√

3β (104.331)

where

M =
6 sin ϕ

3 – sin ϕ
and β =

6 cosϕ0√
3 (3 – sin ϕ0)

c (104.332)

Note that ϕ is the friction angle, which can evolve if hardening is present in the model, and ϕ0 is the

initial friction angle.

Rewrite Equation 104.333 using the parameters in Real-ESSI implementation

f =
√(

sij – pαij
) (

sij – pαij
)

–
√

2
3

kp –
√

2β (104.333)

Hyperbolic Drucker–Prager Yield Function Assume the same generic hyperbolic function shown in

Equation 104.318, the hyperbolic Drucker-Prager yield function considering isotropic and kinematic
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hardening is given as

f =
√(

sij – pαij
) (

sij – pαij
)

+
2
3

k2a2 –
√

2
3

kp –
√

2β (104.334)

where a is the rounded distance shown in Figure 104.9.

Derivatives of the yield function Equation 104.334 are shown below.

∂f
∂σij

=
[(

sij – pαij
)

+
1
3
αkl (skl – pαkl) δij

] [
(smn – pαmn) (smn – pαmn) +

2
3

k2a2
]–0.5

+
√

2
27

kδij

(104.335)

∂f
∂αij

= –p
(
sij – pαij

) [
(smn – pαmn) (smn – pαmn) +

2
3

k2a2
]–0.5

(104.336)

∂f
∂k

=
2
3

ka2
[
(smn – pαmn) (smn – pαmn) +

2
3

k2a2
]–0.5

–
√

2
3

p (104.337)

Plastic Flow The non-associated plastic flow is defined as

mij =
(
∂f
∂σij

)dev
–

1
3

Dδij =
(
sij – pαij

) [
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

–
1
3

Dδij (104.338)

where

D = ξ

(√
2
3

kd –
√smnsmn

p

)
(104.339)

The derivatives of the plastic flow are shown below.

∂mij
∂σmn

=
(

1
2
δimδjn +

1
2
δinδjm –

1
3
δmnδij +

1
3
δmnαij

)[
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

–
(
sij – pαij

) [
(smn – pαmn) +

1
3
αrs (srs – pαrs) δmn

] [
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

+
1
3
ξ

[
smnp–1(sklskl)–0.5 +

1
3
δmnp–2(sotsot)0.5

]
δij (104.340)

∂mij
∂αmn

= –p
(

1
2
δmiδnj +

1
2
δmjδni

)[
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

+ p
(
sij – pαij

)
(smn – pαmn)

[
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

(104.341)

∂mij
∂k

= –
2
3

ka2 (sij – pαij
)

(smn – pαmn)
[
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

(104.342)
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Linear Isotropic Hardening Linear isotropic hardening is used for this material model. The evolution of

the internal variable k is defined as

k̄ = Hmequi , mequi =
(

2
3

mijmij

)0.5
(104.343)

where H is a material constant.

The derivatives of the internal variable k are shown below.

∂k̄
∂σij

=
2H
3

mkl
∂mkl
∂σij

(
mequi

)–1
(104.344)

∂k̄
∂αij

=
2H
3

mkl
∂mkl
∂αij

(
mequi

)–1
(104.345)

∂k̄
∂k

=
2H
3

mkl
∂mkl
∂k

(
mequi

)–1
(104.346)

Armstrong-Frederick kinematic hardening for Hyperbolic Drucker-Prager

ᾱij =
2
3

ha
patm

mdev
ij – cr

(
2
3

mdev
rs mdev

rs

)0.5
αij (104.347)

where patm is the atmospheric pressure of 101.325 kPa. The unit of parameter ha is Pascal. The

parameter cr is unitless. The αij in Drucker-Prager is unitless.

Some useful tensor derivatives for Drucker-Prager ᾱ.

mdev
ij =

(
sij – pαij

) [
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

(104.348)

∂mdev
ij

∂σmn
=
(

1
2
δimδjn +

1
2
δinδjm –

1
3
δmnδij +

1
3
δmnαij

)[
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

–
(
sij – pαij

) [
(smn – pαmn) +

1
3
αrs (srs – pαrs) δmn

] [
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

(104.349)

∂mdev
ij

∂αmn
= –p

(
1
2
δimδjn +

1
2
δinδjm

)[
(srs – pαrs) (srs – pαrs) +

2
3

k2a2
]–0.5

– p
(
sij – pαij

)
(smn – pαmn)

[
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

(104.350)
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∂mdev
ij
∂k

= –
2
3

ka2 (sij – pαij
)

(smn – pαmn)
[
(stu – pαtu) (stu – pαtu) +

2
3

k2a2
]–1.5

(104.351)

Tensor derivative of Drucker-Prager ᾱij with respect to σij .

∂ᾱij
∂σmn

=
2ha

3patm

∂mdev
ij

∂σmn
–

2
3

crmdev
kl

∂mdev
kl

∂σmn

(
2
3

mdev
rs mdev

rs

)–0.5
αij (104.352)

Tensor derivative of Drucker-Prager ᾱij with respect to αij .

∂ᾱij
∂αmn

=
2ha

3patm

∂mdev
ij

∂αmn
–

2
3

crmdev
kl

∂mdev
kl

∂αmn

(
2
3

mdev
rs mdev

rs

)–0.5
αij

– cr

(
2
3

mdev
rs mdev

rs

)0.5(1
2
δmiδnj +

1
2
δmjδni

)
(104.353)

Tensor derivative of Drucker-Prager ᾱij with respect to k.

∂ᾱij
∂k

=
2ha

3patm

∂mdev
ij
∂k

–
2
3

crmdev
kl

∂mdev
kl
∂k

(
2
3

mdev
rs mdev

rs

)–0.5
αij (104.354)

104.6.9 Rounded Mohr-Coulomb Model

DSL COMMANDS for the rounded Mohr-Coulomb material models are given in section 205.3 on

page 827.

The model consists of a smooth conical yield surface. This conical yield surface has an apex that

is located at the zero of stress coordinate system or to the extension side, depending on the cohesion

characteristic of material in question. The yield surface is defined by:

F (p, q, θ,κcone) = q
(

1 +
q
qa

)m
g (θ) – ηcone (κcone) (p – pc) (104.355)

where qa is a (positive) reference deviator stress, m is a material constant such that 0 ≤ m ≤ 1,

controlling the curvature of the cone in the meridian (p, q) planes, ηcone represents the angle of internal

friction, and pc represents the cohesion. ηcone is a function of the hardening variable κcone which, in turn,

is a function of the plastic work. Moreover, an asymmetric trace of the yield surface in the deviatoric

plane is generated through the introduction of g(θ) according to the expression by Willam and Warnke

(1974):

g (θ) =
4
(
1 – e2) cos2 θ + (2e – 1)2

2
(
1 – e2) cos θ + (2e – 1)

√
4
(
1 – e2) cos2 θ + 5e2 – 4e

(104.356)

and e is an eccentricity parameter that satisfies the condition 1/2 < e ≤ 1. From eqn. (104.356) we

conclude that g (0) = 1/e and g (π/3) = 1. For e = 1 ⇒ g (θ) = 1, so the influence of the third stress

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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invariant via θ is dropped and the conical surface represents a curved cone63. For e→ 1/2 the triangular

cone64 is obtained. A nice pictorial representation of function 1/g (θ) is presented in the Figure (104.6.9),

showing material model traces in the deviatoric plane.

sigma1

sigma2

sigma3

e = 0.51

e = 0.6

e = 0.7

e = 0.8

e = 0.9

e = 1.0

Figure 104.11: Willam Warnke function 1/g for different values of e (e = 0.51, 0.6, 0.7, 0.8, 0.9, 1.0 )

representing traces of rounded Mohr-Coulomb model in deviatoric space.

104.6.10 Modified Cam-Clay Model

DSL COMMANDS for the Modified Cam Clay material models are given in section 205.3 on page 827.

The pioneering research work on the critical state soil mechanics by the researchers at Cambridge

University (Roscoe et al., 1958), (Roscoe and Burland, 1968), (Muir Wood, 1990)) has made great

contribution on the modern soil elastoplastic models. The original Cam Clay model (Roscoe et al.,

1963), and later the modified Cam Clay model (Schofield and Wroth, 1968) were within the critical

state soil mechanics framework. We focus on only the modified Cam Clay model and herein the word

‘modified’ is omitted to shorten writing.

63extended Drucker Prager cone.
64extended Rankine yield criteria.
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104.6.10.1 Critical State

The critical state line (CSL) takes the form

ec = ec,r – λc ln pc (104.357)

where ec is the critical void ratio at the critical mean effective stress pc 65, ec,r is the reference critical

void ratio, λc is the normal consolidation slope.

The critical state soil mechanics assumes that the normal consolidation line (NRL) is parallel to the

CSL, which is expressed by

e = eλ – λ ln p (104.358)

where eλ is the intercept on the NRL at p = 1. λ is the normal consolidation slope or the elastoplastic

slope of e – ln p relation, and λc = λ.

The unloading-reloading line (URL) take the similar form but with different slope by

e = eκ – κ ln p (104.359)

where eκ is the intercept on the URL at p = 1. λc is the normal consolidation slope or the elastoplastic

slope of e – ln p relation.

104.6.10.2 Elasticity

The elastic bulk modulus K can be directly derived from the Equation 104.359 and takes the form

K =
(1+e) p
κ

(104.360)

If a constant Poisson’s ratio ν is assumed, since the isotropic elasticity needs only two material

constants, the shear elastic modulus can be obtained in terms of K and ν by

G =
3 (1 – 2ν)
2 (1+ν)

K =
3 (1 – 2ν) (1+e)

2 (1+ν)κ
p (104.361)

Alternatively, a constant shear elastic modulus G can be assumed and then the Poisson’s ratio ν is

expressed in terms of K and G as

ν =
3K – 2G

2 (G+3K)
(104.362)

65In this chapter, only single-phase (dry phase) is studied, the total and effective stresses are thus identical, e.g. p′c = pc.
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104.6.10.3 Yield Function

The yield function of the Cam Clay model is defined by

f = q2 – M2
c [p (p0 – p)] = 0 (104.363)

where Mc is the critical state stress ration in the q – p plane, and the p0 is the initial internal scalar

variable, which is controlled by the change of the plastic volumetric strain.

The gradient of the yield surface to the stress can be obtained as

∂f
∂σij

= 2q
∂q
∂σij

– M2
c (2p – p0)

∂p
∂σij

= 3sij+
1
3

M2
c (p0 – 2p) δij (104.364)

where ∂q/∂σij and ∂p/∂σij are independent of the yield function.

The gradient of the yield surface to p0 will be used in the integration algorithm, and can be expressed

by

∂f
∂p0

= M2
c p (104.365)

104.6.10.4 Plastic Flow

The plastic flow of the Cam Clay model is associated with its yield function, in other words, the plastic

flow is defined by the potential function, g, which is assumed the same as the yield function, f .

g = f = q2 – M2
c [p (p0 – p)] = 0 (104.366)

The stress gradient to the yield surface can be obtained as

mij =
∂g
∂σij

= 2q
∂q
∂σij

+M2
c (2p – p0)

∂p
∂σij

= 3sij+
1
3

M2
c (p0 – 2p) δij (104.367)

It can define the plastic dilation angle β, which is related to the ratio of plastic volumetric and

deviatoric strain (Muir Wood, 1990), by

tan β = –
∆ϵ

p
v

∆ϵ
p
q

=
M2

c (p0 – 2p)
2q

(104.368)

It is interesting to find that from Equation 104.368, when p < p0/2, the plastic dilation angle is positive;

when p > p0/2, the plastic dilation angle is negative. If p = p0/2, the plastic dilation angle is zero, which

is corresponding to the critical state. This is evidently more realistic than Drucker-Prager model, whose

associated plastic flow always gives positive plastic dilation angle.
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104.6.10.5 Evolution Law

The evolution law of the Cam Clay model is a scalar one, which can be expressed by

ṗ0 =
(1+e) p0
λ – κ

ϵ̇
p
v (104.369)

With this scalar evolution law, the change of p0 is decided by the change of plastic volumetric strain.

When it reaches the critical state, or when there is no plastic volumetric strain, the evolution of p0 will

cease. From Equation 104.369, one gets

ṗ0 = λ̇
(1+e) p0
λ – κ

mii (104.370)

so if using Equation 104.367 further, one obtains

h =
(1+e) p0
λ – κ

M2
c (2p – p0) (104.371)

or using dilation angle,

h =
2 (1+e) p0q
λ – κ

tan β (104.372)

104.6.10.6 Yield and Plastic Potential Functions: Cam-Clay Model

Yield function and related derivatives

f = q2 – M2
c [p (p0 – p)] = 0 (104.373)

∂f
∂σij

= 2q
∂q
∂σij

– M2
c (2p – p0)

∂p
∂σij

= 3sij+
1
3

M2
c (p0 – 2p) δij (104.374)

∂f
∂p0

= –M2
c p (104.375)

Plastic flow (associated plasticity) and related derivatives

mij =
∂f
∂σij

= 3sij +
1
3

M2
c (p0 – 2p) δij (104.376)

∂mij
∂σmn

= 3
∂sij
∂σmn

–
2
3

M2
c δij

∂p
∂σmn

= 3δimδjn – δijδmn +
2
9

M2
c δijδmn

= 3δimδjn +
(

2
9

M2
c – 1

)
δijδmn (104.377)
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∂mij
∂p0

=
1
3

M2
c δij (104.378)

Isotropic Hardening and related derivatives (CC Ev) Note the due to the current definition of p (i.e.

p = – 1
3σii), a minus sign appears in from of the evolution of p0 as follows:

p̄0 = –
(1+e) p0
λ – κ

mii (104.379)

=
(1+e) p0
λ – κ

M2
c (2p – p0) (104.380)

∂p̄0
∂σij

=
(1+e) p0
λ – κ

M2
c

(
–

2
3
δij

)
(104.381)

∂p̄0
∂p0

=
2 (1+e)
λ – κ

M2
c (p – p0) (104.382)

104.6.11 SaniSand2004 (aka Dafalias-Manzari) Model

DSL COMMANDS for the Dafalias-Manzari material models are given in section 205.3 on page 827.

Within the critical state soil mechanics framework, Manzari and Dafalias (1997) proposed a two-

surface sand model. This model considered the effects of the state parameter on the behaviors of the

dense or loose sands. The features of this model include successfully predicting the softening at the dense

state in drained loading, and also softening at the loose state but in the undrained loading. Dafalias and

Manzari (2004a) later presented an improved version. This version introduced the fabric dilatancy tensor

which has a significant effect on the contraction unloading response. It is also considered the Lode’s

angle effect on the bounding surface, which produces more realistic responses in non-triaxial conditions.

Here only the new version is summarized. The compression stress is assumed negative here, which is

different from the original reference by Dafalias and Manzari (2004a).

104.6.11.1 Critical State

Instead of using the most common linear line of critical void ration vs. logarithmic critical mean effective

stress, the power relation recently suggested by Li and Wang (1998) was used:

ec = ec,r – λc

(
pc
Pat

)ξ
(104.383)
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where ec is the critical void ratio at the critical man effective stress p′c, ec,r is the reference critical void

ratio, λc and ξ (for most sands, ξ = 0.7) are material constants, and Pat is the atmospheric pressure for

normalization.

104.6.11.2 Elasticity

The elastic incremental moduli of shear and bulk, are following Richart et al. (1970):

G = G0
(2.97 – e)2

(1+e)

(
p

Pat

)0.5
Pat ; K =

2 (1+ν)
3 (1 – 2ν)

G (104.384)

where G0 is a material constant, e is the void ratio, and ν is the Poisson’s ratio.

The isotropic hypoelasticity is then defined by

ėe
ij =

ṡij
2G

, ϵ̇ev =
ṗ
K

(104.385)

104.6.11.3 Yield Function

The yield function is defined by

f = |Λ| –
√

2
3

mp = 0 (104.386)

where sij is the deviatoric stress tensor, αij is the deviatoric back stress-ratio tensor, m is a material

constant, and

|Λ| =
∥∥sij – pαij

∥∥ = [(sij – pαij)(sij – pαij)]0.5 (104.387)

The gradient of the yield surface to the stress can be obtained as

∂f
∂σij

= nij +
1
3

(αpqnpq +
√

2
3

m)δij (104.388)

where rij = sij /p is the normalized deviatoric stress tensor, and nij is the unit gradient tensor to the yield

surface defined by

nij =
sij – pαij
|Λ| (104.389)

It is evident that nii ≡ 0 and nijnij ≡ 1.

The gradient of the yield surface to αij can be easily obtained as

∂f
∂αij

= –pnij (104.390)

The tensor of nij is to defined θn, the Lode’s angle of the yield gradient, by the equation

cos 3θn = –
√

6nijnjknki (104.391)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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where 0 ≤ θn ≤ π/6 and θn = 0 at triaxial compression and θn = π/6 at triaxial extension.

The critical stress ratio M at any stress state can be interpolated between Mc, the triaxial compression

critical stress ratio, and Me, the triaxial extension critical stress ratio.

M = Mcg(θn, c), g(θn, c) =
2c

(1 + c) – (1 – c) cos 3θn
, c =

Me
Mc

(104.392)

The line from the origin of the π plane parallel to nij will intersect the bounding, critical and dilation

surfaces at three ‘image’ back-stress ratio tensor αb
ij , α

c
ij , and αd

ij respectively (Figure 104.12), which are

expressed as

αb
ij =

√
2
3

[M exp (–nbψ) – m]nij =

(√
2
3
αb
θ

)
nij (104.393)

αc
ij =

√
2
3

[M – m]nij =

(√
2
3
αc
θ

)
nij (104.394)

αd
ij =

√
2
3

[M exp (ndψ) – m]nij =

(√
2
3
αd
θ

)
nij (104.395)

where ψ = e – ec is the state parameter; nb and nd are material constants.

Figure 104.12: Schematic illustration of the yield, critical, dilatancy, and bounding surfaces in the

π-plane of deviatoric stress ratio space (after Dafalias and Manzari 2004).
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104.6.11.4 Plastic Flow

The plastic strain is given by

ϵ̇
p
ij = λ̇Rij = λ̇(R′

ij +
1
3

Dδij) (104.396)

The deviatoric plastic flow tensor is

R′
ij = Bnij + C(niknkj –

1
3
δij) (104.397)

where

B = 1 +
3
2

1 – c
c

g cos 3θn, C = 3
√

3
2

1 – c
c

g (104.398)

The volumetric plastic flow part is

D = –Ad(αd
ij – αij)nij = –Ad

(√
2
3
αd
θ – αijnij

)
(104.399)

where

Ad = A0(1 +
〈
zijnij

〉
) (104.400)

A0 is a material constant, and zij is the fabric dilation tensor. The Macauley brackets ⟨⟩ is defined that

⟨x⟩ = x, if x > 0 and ⟨x⟩ = 0, if x ≤ 0.

104.6.11.5 Evolution Laws

This model has two tensorial evolution internal variable, namely, the back stress-ratio tensor αij and the

fabric dilation tensor zij .

The evolution law for the back stress-ratio tensor αij is

α̇ij = λ̇[
2
3

h(αb
ij – αij)] (104.401)

with

h =
b0

(αij – α̃ij)nij
(104.402)

where α̃ij is the initial value of αij at initiation of a new loading process and is updated to the new value

when the denominator of Equation 104.402 becomes negative. b0 is expressed by

b0 = G0h0(1 – che)
(

p
Pat

)–0.5
(104.403)

where h0 and ch are material constants.

The evolution law for the fabric dilation tensor zij is

żij = –cz
〈
Ḋ
〉

(zmaxnij + zij) (104.404)

where cz and zmax are material constants.
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104.6.11.6 Analytical Derivatives for the Implicit Algorithm

When implemented into an implicit algorithm for the Dafalias-Manzari model, some complicated addi-

tional analytical derivatives are needed. This section gives the analytical derivatives expressions based

on the tensor calculus.

Analytical expression of
∂mij
∂σkl

:

∂mij
∂σmn

= B
∂nij
∂σmn

+ nij
∂B
∂σmn

+ C
∂nik
∂σmn

nkj + (niknkj –
1
3
δij)

∂C
∂σmn

+
1
3
δij

∂D
∂σmn

(104.405)

where

∂nij
∂σmn

=
1
|Λ|

[
Is
ijmn –

1
3
δijδmn +

1
3
αijδmn – nijnmn –

1
3

(αabnab)nijδmn

]
(104.406)

∂D
∂σmn

= –
∂Ad
∂σmn

(√
2
3
αd
θ – αabnab

)
– Ad

(√
2
3
∂αd

θ

∂σmn
– αab

∂nab
∂σmn

)
(104.407)

and

∂B
∂σmn

=
3
2

(
1 – c

c

)(
∂g
∂σmn

cos 3θ + g
∂ cos 3θ
∂σmn

)
(104.408)

∂C
∂σmn

= 3
√

3
2

(
1 – c

c

)
∂αd

θ

∂σmn
(104.409)

∂αd
θ

∂σmn
= Mc exp (ndψ)

(
gnd ∂ψ

∂σmn
+

∂g
∂σmn

)
(104.410)

∂ψ

∂σmn
= –

ξλc
3Pat

(
p

Pat

)(ξ–1)
δmn (104.411)

∂g
∂σmn

= g2
(

1 – c
2c

)
∂ cos 3θ
∂σmn

(104.412)

∂ cos 3θ
∂σmn

= –3
√

6
∂nij
∂σmn

(njknki) (104.413)

∂Ad
∂σmn

= A0zab
∂nab
∂σmn

{zabnab} (104.414)

and define
{

X
}

= 1 if X > 0, and
{

X
}

= 0 if X ≤ 0.
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Analytical expression of
∂mij
∂αkl

:

∂mij
∂αmn

= B
∂nij
∂αmn

+ nij
∂B
∂αmn

+ C
∂nik
∂αmn

nkj + (niknkj –
1
3
δij)

∂C
∂αmn

+
1
3
δij

∂D
∂αmn

(104.415)

where

∂nij
∂αmn

=
p
|Λ|
(

nijnmn – Is
ijmn

)
(104.416)

∂D
∂αmn

= –
∂Ad
∂αmn

(√
2
3
αd
θ – αabnab

)
– Ad

(√
2
3
∂αd

θ

∂αmn
– nmn – αab

∂nab
∂αmn

)
(104.417)

and

∂B
∂αmn

=
3
2

(
1 – c

c

)(
∂g
∂αmn

cos 3θ + g
∂ cos 3θ
∂αmn

)
(104.418)

∂C
∂αmn

= 3
√

3
2

(
1 – c

c

)
∂αd

θ

∂αmn
(104.419)

∂αd
θ

∂αmn
= Mc exp (ndψ)

∂g
∂αmn

(104.420)

∂g
∂αmn

= g2
(

1 – c
2c

)
∂ cos 3θ
∂αmn

(104.421)

∂ cos 3θ
∂αmn

= –3
√

6
∂nij
∂αmn

(njknki) (104.422)

∂Ad
∂αmn

= A0zab
∂nab
∂αmn

{zabnab} (104.423)

Analytical expression of
∂mij
∂zmn

:

∂mij
∂zmn

=
1
3
δij

∂D
∂zmn

(104.424)

where

∂D
∂zmn

= –
∂Ad
∂zmn

(√
2
3
αd
θ – αabnab

)
(104.425)
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and

∂Ad
∂zmn

= A0nmn {zabnab} (104.426)

Analytical expression of
∂Aij
∂σmn

:

∂Aij
∂σmn

=
2
3

[
∂h
∂σmn

(√
2
3
αb
θnij – αij

)
+
√

2
3

h

(
nij

∂αb
θ

∂σmn
+ αb

θ

∂nij
∂σmn

)]
(104.427)

where

∂αb
θ

∂σmn
= Mc exp (–nbψ)

(
∂g
∂σmn

– nbg
∂ψ

∂σmn

)
(104.428)

∂h
∂σmn

=
1

(αab – αin
ab)nab

[
∂b0
∂σmn

– h(αpq – αin
pq)

∂npq
∂σmn

]
(104.429)

and

∂b0
∂σmn

=
b0
6p
δmn (104.430)

Analytical expression of
∂Aij
∂αmn

:

∂Aij
∂αmn

=
2
3

[(√
2
3
αb
θnij – αij

)
∂h
∂αmn

+
√

2
3

h

(
nij

∂αb
θ

∂αmn
+ αb

θ

∂nij
∂αmn

– Is
ijmn

)]
(104.431)

where

∂αb
θ

∂αmn
= Mc exp (–nbψ)

∂g
∂αmn

(104.432)

∂h
∂αmn

= –
h

(αab – αin
ab)nab

[
nmn + (αpq – αin

pq)
∂npq
∂αmn

]
(104.433)

Analytical expression of
∂Aij
∂zmn

:

∂Aij
∂zmn

= ∅ (104.434)
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Analytical expression of
∂Zij
∂σmn

:

∂Zij
∂σmn

= –cz

[
(zmaxnij + zij)

∂D
∂σmn

+ zmaxD
∂nij
∂σmn

]{
D
}

(104.435)

Analytical expression of
∂Zij
∂αmn

:

∂Zij
∂αmn

= –cz

[
(zmaxnij + zij)

∂D
∂αmn

+ zmaxD
∂nij
∂αmn

]{
D
}

(104.436)

Analytical expression of
∂Zij
∂zmn

:

∂Zij
∂zmn

= –cz

(
DIs

ijmn + zmaxnij
∂D
∂zmn

){
D
}

(104.437)

104.6.12 SaniSand2008 (aka SANISAND) Model

Taiebat and Dafalias (2008)

104.6.13 SANICLAY Model

Dafalias et al. (2006)

104.6.14 G/Gmax Modeling

Modeling of stiffness reduction using G/Gmax curves is frequently used. It is important to note that

such modeling is essentially using linear elastic stiffness, reduced stiffness, secant stiffness to model an

inelastic, nonlinear process. As such, some important simplifying assumptions are made. As noted by

Pecker et al. (2022), using G/Gmax models is appropriate if certain conditions are met, as shown in

Figure 104.13.

104.6.15 Pisanò Elastic-Plastic Model with Vanishing Elastic Region (for G/Gmax Modeling)

A more recent description of this model is available by Pisanò and Jeremić (2014).

Modeling the mechanical behavior of soils under cyclic/dynamic loading is crucial in most Geotechni-

cal Earthquake Engineering (GEE) applications, including site response analysis and soil structure inter-

action (SSI) problems. In the last decades, a number of experimental studies (Ishihara, 1996; di Prisco

and Wood, 2012) pointed out the complexity of such behavior – especially in the presence of pore
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Figure 104.13: Pecker thresholds for G/Gmax modeling.

fluid(s) – characterized by non-linearity, irreversibility, anisotropy, barotropy, picnotropy, rate-sensitivity,

etc. In principle, a comprehensive soil model should be capable of reproducing all the aspects of the

mechanical response for any loading condition, as well as predicting the occurrence of liquefaction and

cyclic mobility, distinguishing the conditions for shakedown or ratcheting under repeated loads and so

forth. However, such an ideal model would probably require too many data for calibration, along with a

cumbersome numerical treatment.

Traditionally, many GEE problems are still tackled in the frequency domain through 1D (equivalent)

linear models, mainly because of their computational convenience and straightforward calibration. In the

light of a Kelvin-Voigt visco-elastic idealization, the dynamic soil behavior is fully described in terms of

strain-dependent stiffness degradation (G/Gmax) and damping (ζ) ratios (Kramer, 1996a). As it holds in
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the linear regime, the shear and the volumetric responses are assumed to be decoupled, so that G/Gmax

and ζ curves are derived from the experimental cyclic shear tests (triaxial, simple shear or torsional) as

a function of the cyclic shear strain amplitude.

Owing to the availability of computer programs for 1D site response analysis (SHAKE (Schnabel et al.,

1972), EERA (Bardet et al., 2000), DEEPSOIL (Hashash and Park, 2001)) and SSI problems (SASSI

(Lysmer, 1988)), the visco-elastic approach has become more and more popular among practitioners,

regardless of drawbacks:

• despite a non-negligible rate-sensitiveness, most energy dissipation in soils derives from frictional

inter-granular mechanisms rather than viscous flow (as it is implicitly assumed by using G/Gmax

and damping approaches);

• G/Gmax and ζ curves do not allow to evaluate irreversible deformations, nor the influence of pore

fluid(s);

• adopting 1D shear constitutive relationships has poor mechanical soundness, since soil behavior

exhibits a pronounced deviatoric-volumetric multiaxial coupling;

• the meaning of cyclic shear strain amplitude for the choice of G/Gmax and ζ values is not evident

in the presence of irregular seismic loads.

The above observations justify the need for alternative approaches and more physically consistent

soil models. From this standpoint, the incremental elastic-plastic theory represents the main modeling

framework, within which significant efforts have been spent in the last decades to simulate the response

of cyclically loaded soils. Several approaches have been explored and gradually refined, including e.g.

“multi-surface plasticity”, “bounding surface plasticity”, “generalized plasticity” and “hypoplasticity”.

Comprehensive overviews on cyclic elasto-plasticity modeling can be found in Lemaitre and Chaboche

(1990) and, with specific reference to soils, Prevost and Popescu (1996), Zienkiewicz et al. (1999b)

and di Prisco and Wood (2012). In most cases, rotational kinematic hardening formulations have been

adopted in conjunction with increasingly accurate flow rules and hardening laws; a number of valuable

contributions are worth citing, such as – to mention only a few – Mróz et al. (1978); Prevost (1985a);

Borja and Amies (1994); Manzari and Dafalias (1997); Papadimitriou and Bouckovalas (2002); Elgamal

et al. (2002); Taiebat and Dafalias (2008); recently, it has been also shown how a good simulation

of dynamic properties can be achieved by means of even elastic-perfectly plastic models, as long as

formulated in a probabilistic elastic-plastic framework (Sett et al., 2011b). The major issues about the

practical use of elastic-plastic models concern the complexity of the mathematical formulations, the

computer implementation and the possible high number of material parameters. For a model to appeal
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to practicing engineers, a tradeoff is needed between the overall accuracy and the number of parameters

to be calibrated, particularly provided the frequent lack of detailed in situ or laboratory data.

Among the aforementioned models, the one by Borja and Amies (1994) is here taken into spe-

cial consideration. These authors proposed a total-stress von Mises-type model in the framework of

kinematic-hardening bounding surface plasticity, then successfully applied to the seismic simulation of

fine-grained deposits at Lotung site in Taiwan (Borja et al., 1999, 2000). Based on work by Dafalias and

Popov (1977) and Dafalias (1979), the multiaxial model is characterized by the assumption of vanishing

elastic domain, thus implying soil plastification under any load level and a redefinition of the standard

loading/unloading criterion. Apart from the mathematical aspects, the model possesses sufficient flex-

ibility to reproduce the undrained dynamic properties of clayey/silty soils, while keeping a minimum

number of physically-based parameters.

In this paper similar bounding surface approach with vanishing elastic region is adopted to derive

a Drucker-Prager effective-stress model, incorporating pressure sensitivity and non-associativeness, es-

sential ingredients for material modeling of granular materials. As a result, the following constitutive

relationship is suitable for the effective-stress time-domain analysis of even liquefiable soils. In addition,

the dissipative model performance is here explored in combination with a further viscous mechanism,

which can be wisely exploited to improve the simulation of the experimental damping. Although numer-

ical convenience often motivates the embedment of viscous dissipation into elastic-plastic computations,

it has a de facto physical origin, coming from rate-dependent processes occurring at both inter-granular

contacts and grain/pore fluid interfaces.

104.6.15.1 Frictional and viscous dissipative mechanisms

The time-domain finite element (FE) solution of dynamic problems is usually carried out by solving an

incremental discrete system of the following form (Bathe, 1982; Zienkiewicz and Taylor, 1991a):

M∆Ü + C∆U̇ + Kt∆U = ∆Fext (104.438)

where ∆ and dots stand respectively for step increment and time derivative, U is the generalized DOF

vector (nodal displacement for example), Fext the nodal external force vector and M, C, Kt are the

mass, damping and (tangent) stiffness matrices, respectively.

In system (104.438) two dissipative sources are readily recognizable, namely the viscous (velocity-

proportional) and the frictional (displacement-proportional) terms (Argyris and Mlejnek, 1991). While

the latter is given by the variation of the elastic-plastic tangent stiffness Kt , the viscous term related

to the damping matrix C can represent interaction of solid skeleton and pore fluid, and constitutive

time-sensitiveness of the soil skeleton. The above combination of frictional and viscous dissipation can
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be interpreted in terms of two distinct effective stress components acting on the soil skeleton:

σij = σf
ij + σv

ij (104.439)

where the effective stress tensor σij has been split into frictional (elastic-plastic) and viscous stresses66.

From a rheological point of view, the resulting scheme can be defined as visco-elastic-plastic – not elastic-

viscoplastic – as the elastic-plastic response is rate-independent and accompanied by a parallel viscous

resisting mechanism. In what follows, the frictional component is first specified via the formulation of

the bounding surface model with vanishing elastic domain; then, the role and the calibration of the linear

viscous term is discussed.

Index tensor notation is used, along with the standard Einstein convention for repeated indices; the

norm of any second-order tensor xij is defined as ∥xij∥ = √xijxij , whereas the deviatoric component can

be extracted as xdev
ij = xij – xkkδij /3 (δij is the Kronecker delta). In accordance with usual Solid Mechanics

conventions, positive tensile stresses/strains are considered, whereas – as is done in Fluid Mechanics –

only the isotropic mean pressure is positive if compressive.

104.6.15.2 Bounding surface frictional model with vanishing elastic domain

The formulated constitutive model represents the frictional effective-stress version of the previous work

by Borja and Amies (1994); for the sake of clarity, the presentation sequence of the former publication

is here maintained, highlighting both differences and similarities. As was expected, the introduction

of pressure-dependence into the constitutive equations implies somewhat more involved derivations, so

that the analytical details skipped in this section are reported toward the end in section 104.6.15.7; the

superscript f referring to the frictional component of the global effective stress (Equation (104.439)) is

avoided for the sake of brevity.

Elastic relationship Provided the usual additive (incremental) strain split into elastic and plastic com-

ponents dϵij = dϵeij + dϵpij , the incremental linear elastic Hooke’s law is expressed as follows:

dσij = De
ijhk
(
dϵhk – dϵphk

)
(104.440)

where d stands for a differentially small increment of strain and De
ijhk is the fourth-order elastic stiffness

tensor. Under the elastic deviatoric/volumetric decoupling, the deviatoric and volumetric counterparts

of Equation (104.440) can be also given:

dsij = 2Gmax
(
dehk – dep

hk
)

(104.441)

66Henceforth, effective stresses are exclusively accounted for
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dp = –K
(
dϵvol – dϵpvol

)
(104.442)

in which p = –σkk/3 is the mean stress, ϵvol = ϵkk is the volumetric strain, sij = σdev
ij is the stress deviator,

and eij = ϵdev
ij is the strain deviator. The shear modulus Gmax = E/2 (1 + ν) and the bulk modulus

K = E/3 (1 – 2ν) are derived from the Young modulus E and the Poisson’s ratio ν. Henceforth, Gmax

will be always used for the elastic small-strain shear modulus, whereas the secant cyclic shear stiffness

will be referred to as G.

Drucker-Prager yield and bounding loci A conical Drucker-Prager type yield locus is first introduced,

similar to what is used by Prevost (1985a) and Manzari and Dafalias (1997):

fy =
3
2
(
sij – pαij

) (
sij – pαij

)
– k2p2 = 0 (104.443)

where αij is the so called deviatoric back-stress ratio (αkk = 0) governing the kinematic hardening of the

yield surface; k is a parameter determining the opening angle of the cone. It is also important to note

that the variation of the back-stress ratio αij in (104.443) determines a rigid rotation of the yield locus

and, therefore, a rotational kinematic hardening.

The stress derivative of the yield function is also reported for the following developments:

∂fy
∂σij

=
(
∂fy
∂σij

)dev
+
(
∂fy
∂σij

)vol
= 3
(
sij – pαij

)
+
[
αhk (shk – pαhk) +

2
3

k2p
]
δij (104.444)

The yield locus must always reside within the so called bounding surface, here assumed to be a

further Drucker-Prager cone (non kinematically hardening, fixed in size):

fB =
3
2

sijsij – M2p2 = 0 (104.445)

where M provides the bounding cone opening and, as a consequence, the material shear strength (as a

function of the mean effective pressure p).

Plastic flow and translation rule When dealing with granular materials, a non-associated plastic flow

rule is needed (Nova and Wood, 1979), allowing for plastic contractancy or dilatancy depending on

whether loose or dense materials are analyzed. Here, the plastic flow rule is borrowed from Manzari and

Dafalias (1997):
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.6. ELASTIC AND ELASTIC–PLASTIC MAT . . . page: 268 of 3287

dϵphk = dλ
(

ndev
ij –

1
3

Dδij
)

(104.446)

where dλ is the plastic multiplier, ndev
ij is a deviatoric unit tensor (∥ndev

ij ∥ = 1) and D is a dilatancy

coefficient defined as (Manzari and Dafalias, 1997):

D = ξ
(
αd

ij – αij
)

ndev
ij = ξ

(√
2
3

kdndev
ij – αij

)
ndev

ij (104.447)

in which ξ and kd are two positive constitutive parameters. While the former controls the amount of

volumetric plastic strain, the latter determines the position of the so called “dilatancy surface” and rules

the transition from contractive (D > 0) to dilative (D < 0) behavior.

The kinematic hardening evolution of the yield locus is imposed via the standard Prager translation

rule for the (deviatoric) back-stress ratio (Borja and Amies, 1994):

dαij = ∥dαij∥ndev
ij (104.448)

with both ndev
ij and the norm ∥dαij∥ to be determined.

Vanishing elastic region and consistency condition As previously mentioned, the most notable feature

of the present model concerns the vanishing elastic domain, corresponding with the limit k → 0 in

Equation (104.443). Accordingly, the Drucker-Prager cone reduces to its symmetry axis, so that:

lim
k→0

fy = 0⇒ lim
k→0

sij = pαij ⇒ dsij = dαijp + αijdp (104.449)

and, after substituting the Prager rule (104.448) (for more detailed derivation, see section 104.6.15.7):

ndev
ij =

dsij – αijdp
∥dsij – αijdp∥ (104.450)

The direction of the deviatoric plastic strain increment ndev
ij depends on the variation of both the stress

deviator and the mean pressure, which differs from the cohesive version by Borja and Amies (1994). It

is also worth noting that purely hydrostatic stress increments (dsij = 0) from initial hydrostatic states

(αij = 0) yield ndev
ij = 0 and thus generates no deviatoric plastic strains.

From a theoretical standpoint, since the direction of the deviatoric plastic strain increment ndev
ij

depends on dσij , the resulting constitutive formulation can be properly defined as “hypoplastic”, this

being a spontaneous outcome of the limit operation applied on the elastic region (Dafalias, 1986).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.6. ELASTIC AND ELASTIC–PLASTIC MAT . . . page: 269 of 3287

The norm of the back-stress increment in Equation (104.448) is obtained by imposing the standard

consistency condition, that is the fulfillment of dfy = 0 during plastic loading (section 104.6.15.7):

dfy = 0⇔ ∂f
∂σij

dσij +
∂f
∂αij

dαij = 0 (104.451)

whence:

∥dαij∥ =
1

pNdev
∂f
∂σij

dσij (104.452)

and Ndev = ∥
(
∂fy/∂σij

)dev ∥ = 3∥sij – pαij∥. From Equation (104.452), the norm of dαij can be further

specified for the case of radial loading paths in the deviatoric plane, characterized by the nullity of dp

and the coaxiality of sij , αij and their increments. After simple manipulations (see section 104.6.15.7)

this results in:

∥dαij∥ =
√

2
3

dq
p

(104.453)

where q =
√

3/2∥sij∥ stands for the usual deviatoric stress invariant.

Hardening relationship and plastic multiplier An incremental hardening relationship is directly estab-

lished (Borja and Amies, 1994):

dq =
√

2
3

H∥dep
ij∥ (104.454)

where H is the hardening modulus. Then, the substitution of both the flow rule (104.446) and the

hardening relationship (104.454) into (104.453) leads to:

∥dαij∥ =
2
3

Hdλ
p

(104.455)

By equaling the right–hand sides of Equations (104.441) and (104.449) the following relationship is

obtained:

2Gmax
(

deij – dλndev
ij

)
= ∥dαij∥ndev

ij p + αijdp =
2
3

Hdλ
p

ndev
ij p – αijK (dϵvol + dλD) (104.456)
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whence:

dλ =
2Gmax∥deij∥ + Kdϵvolαijndev

ij

2G +
2
3

H – KDαijndev
ij

(104.457)

Equation (104.457) represents the consistent ”frictional” generalization of Equation (18) in Borja and

Amies (1994), as well as the limit of Equation (12) in Manzari and Dafalias (1997)67 for a vanishing

yield locus size.

Stress projection, hardening modulus and unloading criterion The bounding surface plasticity theory

relies on the basic concept that the plastic modulus explicitly depends on the distance between the

current stress state and an ad hoc stress projection onto the bounding surface. While Borja and Amies

(1994) defined a purely deviatoric projection operator, here the whole stress state is involved:

σ̄ij = σij + β
(
σij – σ0

ij

)
(104.458)

where β is a scalar distance coefficient and σ0
ij embodies the stress state at the last stress reversal

(Figure 104.14). The coefficient β must be such that the projected stress σ̄ij lies on the bounding

surface (Equation (104.445)):

3
2

s̄ij s̄ij = M2p̄2 (104.459)

whence, after substituting (104.458) into (104.459), β can be obtained as the positive root of the

following second-order algebraic equation:[∥∥∥sij – s0
ij

∥∥∥2
–

2
3

M2 (p – p0)2
]
β2+

2
[(

sij – s0
ij

)
sij –

2
3

M2p (p – p0)
]
β+[

∥sij∥2 –
2
3

M2p2
]

= 0

(104.460)

Apparently, the limit situations β = 0 and β → ∞ correspond with the current stress state being right

on the bounding locus or at instantaneous unloading (stress reversal).

In principle, any analytical relationship can be adopted to relate H and β, as long as two fundamental

requirements are satisfied, i.e. H (β = 0) = 0 and H (β → ∞) → ∞: the former ensures the material

shear strength to be fully mobilized when the bounding surface is attained; the latter guarantees an

67Different signs result because of the opposite sign conventions adopted by these authors
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Figure 104.14: Representation of the stress projection onto the bounding surface.

instantaneous elastic stiffness upon any stress reversal, as is explained next. In this case, the expression

by Borja and Amies (1994) has been extended to frictional media by accounting for the influence of the

mean pressure:

H = phβm (104.461)

in which h and m are two additional constitutive parameters.

The last element of the model formulation is the unloading criterion, which in this case is ill-defined

due to the lack of the elastic region and the yield surface. The same multiaxial unloading criterion

suggested by Borja and Amies (1994) is employed, based on the observation that the hardening modulus

H increases at the onset of unloading. Accordingly, as long as H (β) is a monotonically increasing

function, instantaneous unloading is assumed to occur whenever dH > 0, i.e. dβ > 0. The variation

of β (and thus its sign) can be readily derived by substituting (104.458) into (104.459), and then
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differentiating the latter with respect to β:

dβ = – (1 + β)
s̄ijdsij –

2
3

M2p̄dp

s̄ij
(

sij – s0
ij

)
–

2
3

M2p̄
(
p – p0) > 0 (104.462)

It is worth noting that the variation of β, dβ, plays here the same role of the scalar product
(
∂f /σij

)
dσij

in standard elastic-plastic models, i.e. it defines the alternatives of elastic-plastic loading (dβ < 0),

neutral loading (dβ = 0) or elastic unloading (dβ > 0). The last key point concerns the update of the

stress σ0
ij in Equation (104.458), which must be set equal to the current stress state when dβ > 0 is

instantaneously found.

Possible refinements The frictional model has been developed trying to keep the number of material

parameters as low as possible, even with a non-associated flow rule. However, it is worth mentioning

which kind of improvements might be introduced if required by the problem under examination.

It should be first noted that, as a Drucker-Prager type bounding surface has been adopted, the

material shear strength is unaffected by the Lode angle, so that for instance the same failure obliquity is

predicted for triaxial compression and extension. This drawback could be easily remedied by modifying

the deviatoric cross-section of the bounding surface itself, e.g. by adopting the well known Mohr-

Coulomb deviatoric locus or other smooth loci (Matsuoka and Nakai, 1974; Willam and Warnke, 1974;

Lade, 1977). A change in the deviatoric cross-section would negligibly influence the overall formulation,

as just the evaluation of the projection distance β and of its increment should be modified (Equations

(104.459)-(104.460) and (104.462)).

Secondly, the present version of the model cannot predict a possible brittle behavior of the soil,

usually taking place in the case of dense materials. Constitutive brittleness could be accounted for

by incorporating a further isotropic hardening mechanism at the bounding surface level, allowing for a

gradual shrinkage of the outer surface during plastifications.

Another relevant point is about the fact that different parameters must be calibrated for different

relative densities of the same granular material, as if distinct materials were indeed considered. As a

matter of fact, continuous transitions from loose to dense states (and vice versa) spontaneously take

place during straining: this aspect has been successfully addressed and reproduced via the concept of

“state parameter” (Been and Jefferies, 1985; Wood et al., 1994; Manzari and Dafalias, 1997), which

could be also introduced into a critical-state version of the proposed model.

The above and further refinements – related for instance to non-linear elastic behavior, anisotropy,

fabric effects, delayed plastic response, etc. – might result in a more accurate soil model, implying though

higher difficulties in terms of calibration, implementation and, as a consequence, practical employment.
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104.6.15.3 The role of linear viscous damping

An additional viscous mechanism (Equation (104.439)) can be usually exploited in finite element (FE)

analysis, even though it is not directly included in the constitutive model. Indeed, many numerical codes

solve discrete systems with a viscous damping term (Equation (104.438)), usually assembled as a linear

combination of the mass and the (elastic) stiffness matrices (Rayleigh formulation (Argyris and Mlejnek,

1991; Chopra, 2000)):

C = a0M + a1Ke (104.463)

where a0 and a1 are two constant parameters, related to the nth modal damping ratio ζn of the discrete

structural system.

It could be easily shown that a constitutive viscosity of the form:

σv
ij = Dv

ijhk ϵ̇hk (104.464)

gives rise to a stiffness-proportional damping matrix, which can be equivalently reproduced through the

following calibration of the Rayleigh damping parameters (Borja et al., 2000; Hashash and Park, 2002):

a0 = 0 a1 =
2ζ0
ω

(104.465)

The calibration (104.465) establishes the same ratio between tangential/bulk elastic and the viscous

moduli, that is Ge
max/Gv

max = Ke/Kv. More importantly, a damping ratio ζ0 is ensured for a given circular

frequency ω, as long as the parallel resisting mechanism (σ
f
ij) is purely elastic; as a consequence, provided

the a1 value at the beginning of the analysis, modal frequencies and the corresponding damping ratios

are linearly related.

It is also worth remarking some further points about the implications of linear viscous damping in

conjunction with non-linear soil models. If a soil element undergoes an imposed shear strain history, the

overall shear stress/strain cycles τ – γ differ from the purely frictional component τ f – γ, this difference

being due to the viscous shear stress τ v. As will be shown in next section, the viscous component

implies smoother cycles and avoid the sharp transitions at stress reversal usually exhibited by purely

elastic-plastic responses (Borja et al., 2000). However, the overall G/Gmax ratio between the average

cyclic stiffness and the elastic shear modulus is unaffected by viscosity.

As far as the damping ratio is concerned, its standard definition (Kramer, 1996a) can be easily

adapted to point out the frictional/viscous splitting of the energy ∆W dissipated in a loading cycle:
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ζ =
∆W

2πGγ2
max

=
∆W f + ∆Wv

2πGγ2
max

= ζ f + ζv (104.466)

where γmax is the imposed cyclic shear strain amplitude and G the corresponding (secant) cyclic shear

stiffness. As γmax approaches zero, the plastic dissipation tends to zero as well, so that ζ = ζv; therefore,

the Rayleigh parameter a1 can be calibrated to obtain ζ (γmax → 0) = ζ0 for a given circular frequency

ω (see Equation (104.465)). This is a desirable feature of the model, as natural soils are well known to

dissipate energy at even very small strain amplitudes.

At progressively larger strains, both the frictional and viscous components contribute to the global

damping, although the relative quantitative significance is hard to assess a priori. In addition, the viscous

component of the ζ–γmax curve is not constant, since ζv depends on the strain-dependent secant modulus

G (γmax) and, implicitly, on the strain rate. This is different to what has been argued by Borja et al.

(2000).

As an example, consider the response of an elastic-perfectly plastic model with additional viscosity

under a sinusoidal shear excitation γ (t) = γmax sin (ωt). The simplicity of the elastic-perfectly plastic

response allows derivation of instructive analytical formulas for the G/Gmax and the damping ratios, even

in the presence of viscous dissipation. While γmax < γy (yielding shear strain), the material behavior is

linear elastic, so that G/Gmax = 1 and ζ equals the purely viscous contribution at γmax = 0, i.e. ζ = ζ0;

γy depends on the elastic stiffness and the shear strength of the material, γy = τlim/Gmax, where τlim is

the limit (frictional) shear stress for a given confining pressure. For γmax > γy plastifications take place

with a flat elastic-perfectly plastic τ f – γ branch, and the following expressions can be easily derived:

G
Gmax

=
τlim

Gmaxγmax
(104.467)

ζ =
∆W f + ∆Wv

2πGγ2
max

=
2
π

(
1 –

τlim
Gmaxγmax

)
︸ ︷︷ ︸

ζ f

+ ζ0
Gmaxγmax
τlim︸ ︷︷ ︸
ζv

(104.468)

In Figure 104.15 the G/Gmax and ζ ratios are plotted for increasing ζ0 values. As γmax increases, the

frictional damping tends to 2/π ≈ 0.63, while the viscous one keeps increasing because of the reduction in

the secant stiffness and the increase in the shear strain rate (depending on the strain amplitude). Hence,

the value of ζ0 is to be carefully chosen, in order to avoid excessive dissipation when medium/large

strains are induced by the loading process.
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Figure 104.15: G/Gmax and damping curves for a elastic-perfectly plastic model with linear viscous

damping at varying ζ0 (τlim=100 kPa, Gmax=100 MPa)

The fact that the viscous mechanism can modify the purely frictional ζ – γmax curve without altering

the cyclic stiffness degradation can be fruitfully exploited to remedy the (frequent) cases in which the

experimental-numerical agreement is not satisfactory in terms of energy dissipation properties.

104.6.15.4 Model performance and calibration

The frictional mechanism of the above model is characterized by a rather low number of material

parameters, namely the following seven:

• two elastic parameters, the Young modulus E (or the shear modulus Gmax) and the Poisson’s ratio

ν;

• the shear strength parameter M for the definition of the bounding surface (Equation (104.445));

• the flow rule parameters, ξ and kd , governing the increment of the volumetric plastic strain under

shearing and the size of the dilatancy surface, respectively (Equation (104.446));

• the hardening parameters h and m for the dependence of the hardening modulus on the distance

coefficient β (Equation (104.461)), affecting the pre-failure deformational behavior and, in overall,

the resulting dynamic properties (G/Gmax and damping curves).

Provided a reasonable value for the Poisson’s ratio (usually in the range 0.25 – 0.3), the small-strain

elastic stiffness can be evaluated from dynamic laboratory (RC tests) or in situ (seismic geophysical
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surveys) tests. As far as the shear strength is concerned, the parameter M can be related to the friction

angle ϕ as follows:

M =
6 sin ϕ

3± sin ϕ
(104.469)

depending on whether triaxial compression (sign – in (104.469)) or extension (sign + in (104.469)) failure

conditions are to be reproduced (a change in the deviatoric section of the bounding surface would allow

to capture both compressive and extensive limits).

The calibration of the flow rule parameters, ξ and kd , requires at least a triaxial test to be performed,

in order to obtain some information about the volumetric behavior. Figure 104.16 shows the predicted

triaxial response for three different values of kd (and fixed ξ), that is by varying the opening angle of

the dilatancy surface (the employed parameters are reported in the figure caption, where p0 stands for

the initial mean pressure).

While the limit stress deviator q is exclusively given by M, the pre-failure behavior is influenced by

the plastic deformability and therefore by kd . The model possesses sufficient flexibility to reproduce

contractive, dilative or contractive/dilative behavior; also, such a feature is necessary to reproduce

undrained conditions (liquefying and non-liquefying responses), this being a further motivation for non-

associativeness when dealing with sandy materials.

Figure 104.17 exemplifies the response predicted under pure shear (PS) cyclic loading, applied as a

sinusoidal shear strain history (γmax = 0.2%, 20%, period T=2π s) at constant normal stresses (and thus

constant mean pressure p0 as well. This corresponds with a radial loading path on the deviatoric plane);

for the sake of clarity, the volumetric plastic response has been inhibited (ξ=0), in order to evaluate the

deviatoric mechanism exclusively. Both purely frictional (solid line) and frictional/viscous (dashed line)

responses are plotted.

Owing to the kinematic hardening of the vanished yield locus, the model is capable of reproducing

both the Bauschinger and the Masing effects, the latter implying the stabilization of the cyclic response

to take place after more than one loading cycle. As expected, the additional viscous damping increases

the area of the cyclic loop and therefore the overall dissipated energy; however, the effect of the viscous

dissipation becomes significant only at medium-high shear strains, corresponding – for a given loading

frequency – with higher strain rates. Further, viscosity causes the aforementioned “smoothing” of

stress reversals, as it can be readily noticed in Figure 104.18 by comparing the purely frictional and the

frictional/viscous responses.

Given the elastic stiffness and the strength of the soil, the shape of the resulting loading cycles is

totally governed by the hardening properties, by h and m in Equation (104.461): this directly affects

the simulation of experimental G/Gmax and damping curves, which can be therefore exploited for the
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Figure 104.16: Predicted triaxial responses for different dilatancy surfaces ( p0=100 kPa, Gmax = 4

MPa, ν=0.25, M=1.2, ξ=1, h=G/(1.5p0), m=1)

calibration of both h and m. As can be easily demonstrated (the proof is given in section 104.6.15.7),

the following equality holds under PS loading conditions, i.e. under constant pressure shearing:

1 =
G

Gmax

[
1 +

6Gmax
hp0γmax

∫ γmax

0

(
γ

τlim/G – 2γ + γmax

)m
dγ
]

(104.470)

where τlim = Mp0/
√

3. Relationship (104.470) has been obtained by integrating the constitutive equations

over the first loading cycle, and represents the frictional counterpart of Equation (6) in Borja et al.

(2000) – as is testified by the explicit influence of the confining pressure p0. The proper use of Equation

(104.470) requires first the choice of two meaningful points on the G/Gmax experimental curve, i.e. two

(γmax, G/Gmax) couples; then, the unknowns h and m are obtained by solving the integral system arising
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Figure 104.17: Predicted pure shear response at two different shear strain amplitudes (p0=100 kPa,

T=2π s, ζ0 = 0.003, Gmax= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(1.5p0), m=1)

from the specification of Equation (104.470) for both selected (γmax, G/Gmax) couples.

Figure 104.19 illustrates the result of the above calibration procedure, applied on the G/Gmax and ζ

curves for sands implemented into the code EERA (Bardet et al., 2000) and formerly obtained by Seed

and Idriss (1970b).

Since Equation (104.470) exclusively accounts for the G/Gmax curve, the very satisfactory agreement

in terms of stiffness degradation (viscosity has no effect on it) should not surprise. On the other hand,

once h and m are set, the predicted damping curve may or may not match the experimental outcome

irrespective of the calibration procedure. In this respect, Figure 104.19 also presents the comparison

between the damping curve by Seed and Idriss and the model prediction. The frictional ζ curve lies in

the same experimental range, even though the accuracy at γmax = 0.03 – 1% is not as good as for the
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Figure 104.18: Detail of stress reversals for the pure shear response in Figure 104.17 (γmax = 20%)
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Figure 104.19: Comparison between experimental and simulated G/Gmax and damping curves (p0=100

kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(112p0), m=1.38)

G/Gmax ratio. In this case, the contribution of the viscous mechanism is practically non-existent, as it

only increases the total ζ ratio for γmax > 0.1%.

Depending on the specific application, a “trial and error” calibration might be preferable, sacrificing

some of the accuracy in terms of G/Gmax ratio to improve the damping performance. A possible outcome

of a manual calibration is plotted in Figure 104.20: apparently, while the simulation of the stiffness curve

is still acceptable, the damping curve appears to be much better than the previous one. The use of the

viscous mechanism seems to be highly beneficial, since it remedies the lack of accuracy in the frictional
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curve at medium/large cyclic strains.
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Figure 104.20: Comparison between experimental and simulated G/Gmax and damping curves (p0=100

kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0), m=1)

It is also worth noting that the experimental/numerical agreement is good up to γmax = 10%, this

being a rather high cyclic strain level, for equivalent elastic modeling of soil. In fact, even though the

interpretation of experimental cyclic tests is questionable when substantial plasticity occurs, the proposed

model produces, within a different framework, the same mechanical response incorporated into traditional

equivalent-linear approaches. Besides, if the experimental data under examination are unsatisfactorily

reproduced for any h and m combination, the user still has the chance of substituting the interpolation

function (104.461) with no further changes in the model formulation.

104.6.15.5 Parametric analysis

In this section the sensitivity of the model predictions to some relevant input parameters is parametrically

investigated.

Influence of the confining pressure Figure 104.21 illustrates the sensitivity, under PS loading, of both

G/Gmax and damping frictional curves to the initial confining pressure. As can be noticed, increasing

p0 does enlarge the “pseudo-elastic” range, that is the strain interval within which the deviation by the

elastic behavior is negligible even with a vanishing yield locus. It is also noted that the variations in the

confining pressure do not imply appreciable changes in the shape of the curves.
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Figure 104.21: Simulated G/Gmax and damping curves at varying confining pressure (T=2π s, Gmax =

4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(15p0), m=1)

Influence of the hardening parameters Figures 104.22 and 104.23 show the influence of the hardening

parameters h and m on the predicted cyclic properties. As the material strain-hardening is accelerated by

decreasing either h or m, the pseudo-elastic range tends to disappear, so that G/Gmax < 1 and ζ > 0 at

even γmax = 10–4%; conversely, an extended pseudo-elastic behavior can be obtained over a large strain

range by increasing the hardening parameters. Apparently, the model ensures high flexibility in terms

of cyclic curve shapes, so that the response of standard elastic-plastic models (i.e. with non-vanishing

elastic region) can be smoothly approximated (compare for instance the m = 3 curves in Figure 104.23

and the analytical elastic-perfectly plastic frictional curves in Figure 104.15).

Influence of the viscous mechanism The influence of the viscous parameter ζ0 on the resulting fric-

tional/viscous damping curve is illustrated in Figure 104.24 (the G/Gmax is not affected by the parallel

viscous mechanism). As was expected, an increase in ζ0 induce larger values of ζ (γmax → 0), as well

as a faster increase of the ζ curve at medium/high cyclic strains. Figure 104.24 confirms the suitability

of the viscous mechanism, as an additional degree of freedom for reproducing the cyclic dissipative soil

behavior.

Influence of the volumetric behavior in constrained problems So far, all the simulations have been

performed by inhibiting the elastic-plastic soil dilatancy (ξ = 0), which in most cases cannot be done to

represent real soil behavior. As previously shown for triaxial loading conditions (Figure 104.16), in the

absence of kinematic boundary constraints, a variation in the volumetric behavior slightly affects only the
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Figure 104.22: Simulated G/Gmax and damping curves at varying h (p0=100 kPa, T=2π s, Gmax = 4

MPa, ν=0.25, M=1.2, kd=ξ=0, m=1)
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Figure 104.23: Simulated G/Gmax and damping curves at varying m (p0=100 kPa, T=2π s, Gmax = 4

MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0))

hardening evolution of the stress-strain response toward the limit shear strength; a similar consideration

applies to PS loading conditions, since even in this case the normal confinement is statically determined.

However, computational (FE) models contain kinematic constraints arising from certain symmetries

(consider plane strain or one-dimensional schemes) (Prevost, 1989; Borja et al., 1999; di Prisco et al.,

2012). In addition, for SSI problems, where soil interacts with a (stiff) structural foundations and wall,

the soil volume change plays an important role. The presence of kinematic constraints implies that some
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Figure 104.24: Damping curves simulated at varying ζ0 (p0=100 kPa, T=2π s, Gmax = 4 MPa, ν=0.25,

M=1.2, kd=ξ=0, h=Gmax/(15p0), m=1)

stress components are to be derived through compatibility conditions (e.g. prevented lateral expansion).

That means that the local mean confinement is directly affected by the tendency of the material to dilate

or contract. In particular, dilative frictional materials will increase the limit shear stress (with respect to

unconfined conditions), while compactive frictional materials will decrease the limit shear stress. Further,

not only the limit shear stress, but also the whole pre-failure response depends on the plastic flow rule

whenever kinematic constraints are imposed (di Prisco and Pisanò, 2011; di Prisco et al., 2012).

The above considerations suggest that both experimental and numerical results are certainly affected

by the kinematics of the system, even though this effect is not easy to be a priori quantified in terms

of, for instance, G/Gmax and damping curves. The kinematic conditions of an infinite soil layer during

1D shear wave propagation are experimentally approximated through the well known “simple shear (SS)

apparatus” (Wood, 2004), in which the soil specimen is cyclically sheared with no lateral expansion

allowed. In order to assess how the kinematic confinement influences the cyclic response, stiffness

degradation and damping curves are hereafter simulated under SS conditions by varying the volumetric

response of the soil; in particular, three different calibrations of the plastic flow rule (104.446) are

considered, namely (i) isochoric (kd = ξ = 0), (ii) compactive (kd = M, ξ = 1) and (iii) dilative (kd = 0.4,

ξ = 1)

The results reported in Figure 104.25 provide an insight into the possible effect of the volumetric
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response in combination with constrained loading conditions. In the isochoric case, the PS and the

SS curves perfectly match (compare e.g. with the p0 =100 kPa curves in Figure 104.21), as, with no

plastic expansion (or contraction), the lateral constraints do not affect the mean pressure during the

shear loading; conversely, non-negligible SS-PS differences arise when dilative or contractive materials

are considered. As is evident in Figure 104.25, the discrepancy between isochoric and non-isochoric

curves becomes evident at medium/high cyclic strains, i.e. at the onset of significant plastifications.

Indeed, while the mechanical response is barely inelastic, the deviatoric and the volumetric responses are

practically decoupled, so that no variation of the normal confinement takes place.

Apparently, the quantitative significance of the above effects is strictly related to the actual dilational

properties and confinement conditions. It can be in general concluded that the cyclic properties are

expected to vary depending on specific loading conditions (triaxial, biaxial, simple shear, torsional shear,

etc), so that, when numerical models are calibrated, this aspect should be always explicitly considered.
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Figure 104.25: G/Gmax and damping curves simulated under SS conditions and different volumet-

ric responses ( p0=100 kPa, T=2π s, Gmax = 4 MPa, ν=0.25, M=1.2, kd=[1.2, 0.4], ξ=[0,1],

h=Gmax/(15p0), m=1)

104.6.15.6 Concluding remarks

An incremental 3D elastic-plastic constitutive model was developed to reproduce the mechanical response

of soils under cyclic/dynamic loading. The model is based on an effective-stress formulation with two

parallel dissipative mechanisms, purely frictional (elastic-plastic) and viscous.

As far as the frictional mechanism is concerned, a bounding surface formulation with vanishing elastic
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region was adopted, extending to the case of pressure-sensitive non-associative soils the previous cohesive

model by Borja and Amies (1994) for total-stress analysis. Notable features of the frictional model are:

(i) the vanishing yield locus implies an elastic-plastic response at any load levels, as is observed in real

experiments; (ii) a minimum number of physically meaningful parameters, which can be easily calibrated

on the basis of a few experimental data; (iii) excellent performance and flexibility in reproducing in

the elasto-plastic framework the standard stiffness degradation and damping curves. With reference to

these latter, the parallel viscous mechanism – easy to be introduced in FE computations – was shown

to provide an additional degree of freedom to improve the simulation of the cyclic energy dissipation, as

long as the viscous parameter is properly calibrated. As a matter of fact, the viscous mechanism, used

here, does physically exist in the form of viscous interaction between the soil solid skeleton and the pore

fluid(s), and needs to be taken into account (as for example done here).

Future work will concern the investigation of the model performance in dynamic problems with

pronounced hydro-mechanical coupling (cyclic mobility and liquefaction), as well as the comparison of

the present model and traditional equivalent-linear approaches in seismic site response and SSI analysis.

Further research is also needed to evaluate the accuracy of the model under non-symmetric loading

conditions, these being particularly important in seismic slope stability applications.

104.6.15.7 Derivations of Various Equations

Derivation for Equation (104.449) The vanishing size of the yield locus implies:

lim
k→0

sij = pαij ⇒ dsij = dαijp + αijdp = ∥dαij∥ndev
ij p + αijdp (104.471)

and, after substituting the Prager translation rule (104.448):

ndev
ij =

dsij – αijdp
∥dαij∥p

=
dsij – αijdp
∥dsij – αijdp∥ (104.472)

In this last equality the property ∥ndev
ij ∥ = 1 has been exploited.

Derivations for Equations (104.452) – (104.453) The consistency condition:

dfy = 0⇔ ∂f
∂σij

dσij +
∂f
∂αij

dαij = 0 (104.473)

results in the following equality chain

∂f
∂σij

dσij = 3p
(
sij – pαij

)
∥dαij∥ndev

ij = 3p
(
sij – pαij

)
∥dαij∥

3
(
sij – pαij

)
Ndev = 0 (104.474)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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leading to:

∥dαij∥ =

∂f
∂σij

dσij

pNdev (104.475)

where Ndev = ∥
(
∂fy/∂σij

)dev ∥ = 3∥sij – pαij∥. The above equation can be further simplified for the case

of radial loading paths in the deviatoric plane, characterized by dσij = dsij and coaxiality between the

current stress state and its increment:

∥dαij∥ =

∂f
∂σij

dσij

pNdev =

∂f
∂σij

dsij

pNdev =

∂f
∂σij

dev
dsij

pNdev =
ndev

ij dsij

p
=

sijdsij
p∥sij∥

(104.476)

The final relationship can be re-expressed in terms of standards invariants q =
√

3/2∥sij∥ and p:

∥dαij∥ =
√

2
3

dq
p

(104.477)

Derivation for Equation (104.470) Under PS loading conditions (constant mean pressure), Equation

(104.458) can be reduced to a simpler scalar form:

β =
τlim – τ
τ – τ0

(104.478)

where τlim = Mp0/
√

3. By exploiting the previous definitions of deviatoric stress and strain invariants,

the elastic-plastic response can be expressed as:

dϵd =
dq

3Gmax
+
(
τ – τ0
τlim – τ

)m dq
hp0

(104.479)

and specialized to the case of PS loading:

dγ√
3

=
√

3dτ
3Gmax

+
(
τ – τ0
τlim – τ

)m √3dτ
hp0

(104.480)

Integration over a strain interval between two stress reversals (γ ∈ [–γmax; γmax]) yields:

2γmax =
2τ

Gmax
+

3
hp0

∫ τ

–τ

(
τ ′ + τ
τlim – τ ′

)m
dτ ′ (104.481)

where τ0 = –τ has been set. Straightforward variable changes lead to:

1 =
G

Gmax
+

3
2hp0γmax

∫ 2Gγmax

0

(
τ ′′

τlim – τ ′′ + Gγmax

)m
dτ ′′ (104.482)
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1 =
G

Gmax

[
1 +

6Gmax
hp0γmax

∫ γmax

0

(
γ

τlim/G – 2γ + γmax

)m
dγ
]

(104.483)

It is worth highlighting that two approximations are implicitly contained in Equation (104.483): (i)

the integration over the first loading cycle does not exactly reproduce the stabilized cyclic response

(because of the aforementioned Masing effect); (ii) a symmetric loading cycle in terms of shear strain

does not in general ensure the symmetry of the corresponding shear stress range (as it is assumed in

Equation (104.481)). However, such approximations do not prevent reasonable values for the hardening

parameters h and m to be obtained.

104.6.16 Cosserat Elastoplasticity

Four components of the classical elastoplasticity.

• Elasticity law, Eijkl and Cijkl.

• Yield surface, f (σ, t,κ)

• Plastic flow direction, mforce
ij = ∂Q(σ,t,κ)

∂σij
and mcurvature

ij = ∂Q(σ,t,κ)
∂t .

• Hardening law for internal variables, κ = dλh(σ, t).

where σ is the stress, and t is the couple-stress.

104.6.16.1 Elasticity Law

Eijkl = λδijδkl + µδikδjl + (µ + χ)δjkδil

Cijkl = π1δijδkl + π2δikδjl + π3δjkδil
(104.484)

104.6.16.2 Yield Criterion

Hencky (1924) provided a physical interpretation of von Mises criterion suggesting that yielding begins

when the elastic energy of distortion reaches a critical value.[4] So von Mises is called maximum distortion

strain energy yield criterion.

In the von-Mises plasticity for the classical elasticity, the distortion extent is measured by

J2 =
1
2

sijsij (104.485)
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where,

sij = σij + pδij (104.486)

In the von-Mises plasticity for the Cosserat elasticity, the distortion extent de Borst (1993) can be

measured by

J2 =
1
2

(h1sijsij + h2sijsji + h3tkltkl/l2) (104.487)

where, h1 = 3/4, h2 = –1/4, and h3 = 1/8. The length l is the characteristic length. The yield strength is

σy =
√

3J2 (104.488)

such that the yield criterion is

f (σ, t) =
√

3J2 – k =
√

3
2

(h1sijsij + h2sijsji + h3tkltkl/l2) – k (104.489)

where k is a constant for perfectly plasticity, and k is a function of stress and couple-stress for hardening

materials.

104.6.16.3 Plastic Flow

The plastic flow direction is

mforce
ij =

∂Q(σ, t,κ)
∂σij

, dσij = dλmforce
ij

mcurvature
ij =

∂Q(σ, t,κ)
∂t

, dtij = dλmcurvature
ij

(104.490)

In the conventional elastoplasticity, the plastic potential function Q is a function of stress σ and the

internal variables κ.

In the Cosserat elastoplasticity, the plastic potential function Q is a function of stress σ, couple-stress

t, and the internal variables κ.

104.6.16.4 Hardening Rule

The hardening rule describes how to update the internal variables with the plastic multiplier.

dq = dλh(σ, t,κ) (104.491)

In the conventional elastoplasticity, the hardening rule is a function of stress σ and the internal

variables κ.

In the Cosserat elastoplasticity, the hardening rule is a function for stress σ, couple-stress t, and the

internal variables κ.
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104.6.16.5 Forward Euler Algorithm

Forward Euler Algorithm uses the cross point on the yield surface as the starting point to calculate the

plastic flow direction and the normal to the yield surface.

104.6.16.6 Explicit Formulation

The governing equation of the forward Euler, explicit algorithm is

n+1σ + λCforcem(crossσ, crosst, crossκ) = nσ + Cforce△ϵ

n+1t + λCcurvaturem(crossσ, crosst, crossκ) = nt + Ccurvature△ω

n+1κ – λh(crossσ, crosst, crossκ) = nκ

F(crossσ, crosst, crossκ) = 0

(104.492)

where nσ, nt, △ϵ, △ω, and nκ are known, which represents the stress state, couple-stress state, total

strain increment, and internal variables state in the previous step. The four unknowns are n+1σ, n+1t,
n+1κ and λ, which represents the stress state, internal variables state, and plastic multiplier in the current

step.

Continuum Stiffness Tensor The explicit algorithm is derived by starting from the first order Taylor

expansion about the starting point (σij , t, κ).

f new = f old +
∂f
∂σij

dσij +
∂f
∂tkl

dtkl +
∂f
∂κ

dκ (104.493)

Since both yield surface values should be zeroes, the Taylor expansion is simplified to

∂f
∂σij

dσij +
∂f
∂tkl

dtkl +
∂f
∂κ

dκ = 0

∂f
∂σij

(Eijkldϵ – Eijkldλms
kl) +

∂f
∂tkl

(Cijkldω – Cijkldλmc
kl) + ξ∗h∗dλ = 0

dλ =
∂f
∂σij

Eijkldϵ + ∂f
∂tkl

Cijkldω
∂f
∂σij

Eijklms
kl + ∂f

∂tkl
Cijklmc

kl – ξ∗h∗

(104.494)

Simplify the dλ expression by ns
ij = ∂f

∂σij
and nc

ij = ∂f
∂tij . So we have

dλ =
ns

ijEijkldϵ + nc
ijCijkldω

ns
ijEijklms

kl + nc
ijCijklmc

kl – ξ∗h∗
(104.495)
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104.6.16.7 Backward Euler, Implicit Algorithm

Forward Euler Algorithm uses the final stress state to calculate the plastic flow direction and the normal

to the yield surface.

Iterations are required to find the final stress state.

Implicit Formulation The governing equations of the backward Euler, implicit algorithm

n+1σ + λEms(n+1σ, n+1t, n+1κ) = nσ + E△ϵ

n+1t + λCmc(n+1σ, n+1t, n+1κ) = nt + C△ω

n+1κ – λh(n+1σ, n+1t, n+1κ) = nκ

F(n+1σ, n+1t, n+1κ) = 0

(104.496)

where nσ, nt, △ϵ, △ω, and nκ are known, which represents the stress state, couple-stress state,

total strain increment, and internal variables state in the previous step. The four unknowns are n+1σ,

n+1t, n+1κ and λ, which represents the stress state, internal variables state, and plastic multiplier in the

current step.

Consistent Stiffness Tensor The consistent stiffness tensor for a Cosserat elastoplastic algorithm is ex-

tended from the classic elastoplastic algorithmPérez-Foguet et al. (2001). The Jacobian of the backward

algorithm can be written as

n+1J =


(I + λE∂ms

∂σ ) (∂σ∂t + λE∂ms

∂t ) λE∂ms

∂κ Ems

( ∂t
∂σ + λC ∂mc

∂σ ) (I + λC ∂mc

∂t ) λC ∂mc

∂κ Cmc

–λ ∂h
∂σ –λ∂h

∂t (I – λ ∂h
∂κ ) –h

nT
s nT

c ξT 0

 (104.497)

104.6.17 Cosserat von-Mises Elastoplastic Model

Following the fundamental Cosserat elastoplastic material model defined above, an full Cosserat von-

Mises plastic model is defined below.

104.6.17.1 Cosserat Plastic Model

Cosserat von-Mises Yield Surface :
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f (σ, t) =

(
1
2

sijsij +
1
2

sijsji +
1

2l2p
(tij tij + tij tji)

)1/2

–
√

2
3

k (104.498)

The normal to the yield surface with respect to the force

nf =
∂f
∂σ

=
1
2

(sij + sji)

(
1
2

sijsij +
1
2

sijsji +
1

2l2p
(tij tij + tij tji)

)–1/2 (104.499)

The normal to the yield surface with respect to the curvature

nc =
∂f
∂t

=
1

2l2p
(tij + tji)

(
1
2

sijsij +
1
2

sijsji +
1

2l2p
(tij tij + tij tji)

)–1/2 (104.500)

Plastic Flow :

mf = nf

mc = nc
(104.501)

Hardening Law:

k̄ = Hmequiv = H
(

1
3

mf
ijm

f
ij +

1
3

mf
ijm

f
ji +

1
3

l2p(mc
ijm

c
ij + mc

ijm
c
ji)
)0.5

(104.502)

Calculation of dλ : The algorithm is derived by starting from the first order Taylor expansion about

the starting point (σij , t, κ).

f new = f old +
∂f
∂σij

dσij +
∂f
∂tkl

dtkl +
∂f
∂κ

dκ (104.503)

Since both yield surface values should be zeros, the Taylor expansion is simplified to

∂f
∂σij

dσij +
∂f
∂tkl

dtkl +
∂f
∂κ

dκ = 0

∂f
∂σij

(Eijkldϵ – Eijkldλms
kl) +

∂f
∂tkl

(Cijkldω – Cijkldλmc
kl) + ξ∗h∗dλ = 0

dλ =
∂f
∂σij

Eijkldϵ + ∂f
∂tkl

Cijkldω
∂f
∂σij

Eijklms
kl + ∂f

∂tkl
Cijklmc

kl – ξ∗h∗

(104.504)
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Simplify the dλ expression by ns
ij = ∂f

∂σij
and nc

ij = ∂f
∂tij . So we have

dλ =
ns

ijEijkldϵ + nc
ijCijkldω

ns
ijEijklms

kl + nc
ijCijklmc

kl – ξ∗h∗
(104.505)

For this Cosserat von-Mises isotropic hardening case,

ξ∗ =
∂f
∂k

= –
√

2
3

(104.506)

h∗ = k̄ = Hmequiv (104.507)

104.6.17.2 Analysis of Cosserat Elastoplastic Solids

For the elastoplastic analysis, a rectangular plate of 10 m width and 20 m height is horizontally fixed at

one end while the other end is subjected to a given horizontal displacement. The geometry and boundary

conditions used for the plate are shown in Fig.104.26. In addition, the upper left corner of the plate is

vertically fixed. The elastic material constants are λ = 20MPa, µ = 10MPa, χ = 0, π1 = 10MN , π2 = 0,

π3 = 1kN , and the plastic constants are internal length lp = 1E – 6m, von-Mises radius k = 50kPa, and

hardening (softening) rate H = –500kPa. For the sake of comparison, the geometry, material properties

and loadings used in this problem are the same as the ones used where classical elasticity is employed.

Fig.104.27 illustrates the plastic zone obtained for the problem when the classical and Cosserat

theories with different discretization are used. As it is expected, the plastic zone obtained for the classical

theory becomes narrowed as the discretization refines. In fact, the plastic zone is two elements wide for

all discretization which shows the mesh-dependency of the results based on the classical theory. One

the other hand, the plastic zone obtained for the Cosserat theory approximately remains the unchanged

when discretization refines.

104.6.18 Accelerated Constitutive Models

One of the concerns of elastic-plastic analysis is the computational effort. In this section developed are

closed form elastic-plastic stress increments and elastic-plastic tangent stiffness matrices for commonly

used elastic-plastic models. This is achieved by multiplying, in closed form, explicit, forward Euler elastic-

plastic stress incremental solution and explicit, tangent elastic-plastic stiffness tensor, as developed in

section 104.3 on page 206.
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Figure 104.26: Loading Condition and Boundary Conditions of the Cosserat Elastoplastic Model.

Figure 104.27: Comparison of the Plastic Zone of the Cosserat Elastoplastic Model. Left side is the

classical elastoplastic material model, where the mesh refinement leads to localization of the plastic

zone. Right side is the Cosserat elastoplastic material model, where the plastic zone is independent of

the mesh sizes.

Relation between stress increment dσij and strain increments dϵkl can be written for linear isotropic

elasticity as:

dσij = Eijkldϵkl (104.508)

where Eijkl is the fourth order elastic stiffness tensor. The elastic stiffness tensor features both minor

symmetry Eijkl = Ejikl = Eijlk and major symmetry Eijkl = Eklij (Jeremić and Sture (1997)). The elastic

stiffness tensor for isotropic material can be written as:

Eijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(104.509)

where λ and µ are the Lamé constants and E and ν are Young’s Modulus and Poisson’s ratio, respectively:

λ =
νE

(1 + ν) (1 – 2ν)
; µ =

E
2 (1 + ν)

(104.510)
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The relation between the stress tensor increment dσij and strain tensor increment dϵkl is:

dϵkl = Dklpqdσpq (104.511)

where Dklpq is the elastic compliance fourth order tensor, defined as:

Dklpq =
–λ

2µ (3λ + 2µ)
δklδpq +

1
4µ
(
δkpδlq + δkqδlp

)
(104.512)

104.6.18.1 Elasto-plasticity

Using developments from section 104.3 on page 206, one can write

dσij = Eijkldϵekl (104.513)

dϵpij = dλ
∂Q
∂σij

= dλ mij(σij , q) (104.514)

dϵij = dϵeij + dϵpij (104.515)

dq∗ = dλ h(τij , q) (104.516)

where, ϵij , ϵ
e
ij , and ϵ

p
ij are total, elastic, and plastic strain tensors respectively, σij is stress tensor, and

q∗ represents internal variables. Moreover, mij is the plastic flow direction, h is the plastic moduli, and

dλ is a plastic constistency parameter that is to be determined. Equation (104.513) is the Hooke’s law

that relates stress to elastic strain using the stiffness tensor Eijkl. Equation(104.514) shows relations of

plastic strains to the associated or non-associated plastic flow rule. Equation (104.515) represents the

additive decomposition of strain increment into elastic strain increment and plastic strain increments,

that is applicable for small deformation analysis. Equation (104.516) represents evolution law for internal

variables.

104.6.18.2 Elastic-Plastic Constitutive Models

For each elastic-plastic constitutive model, there are four components to be specified. Those components

are (a) elasticity relation, (b) yield function, (c) plastic flow function, and (d) hardening and/or softening

laws.
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Once those four components are chosen, specified, elastic-plastic stiffness tensor, developed earlier

in section 104.3 on page 206, can be developed for each model, by analytically multiplying functions and

tensor equations for each component. In following sections this is done for von Mises, Drucker-Prager,

and Cam-Clay material models.

The tanget elastic-plastic tensor is written as

Eel–pl
pqmn = Epqmn –

Epqkl
nmkl

nnijEijmn
nnotEotrs nmrs – ξ∗ h∗

(104.517)

For perfectly plastic materials ξ∗ and h∗ would be zero while for the cases with evolution laws, the

appropriate evolution laws should be used in derivation of tangent stiffness Eel–pl
pqmn. Elastic modulus tensor

is written as:

Eijkl = λδijδkl + µ(δikδjl + δilδjk) (104.518)

where λ = νE/(1 + ν)(1 – 2ν), µ = E/2(1 + ν).

104.6.18.3 von Mises Model

von Mises yield criteria can be written as

f =
[(

sij – αij
) (

sij – αij
)]0.5 –

√
3
2

k = 0 (104.519)

where k is the scalar internal variable where initial value is related to the uniaxial tension strength, αij is

the tensorial internal variable, the so called back stress that controls translational kinematic hardening.

The stress derivative of the yield function is

nij =
∂f
∂σij

=
1√

(sij – αij)(sij – αij)
(sij – αij) (104.520)

In case of associated plastic flow rule where the plastic potential function is considered to be the

same of yield function, stress derivative of plastic flow function is:

mij =
∂g
∂σij

=
1√

(sij – αij)(sij – αij)
(sij – αij) (104.521)

In order to find the closed form equation for elastic-plastic modulus for case of perfectly-plastic,

Equation ( 104.519) is used for both yield surface and plastic potential and no evolution law is considered.

Relevant stress derivatives are:
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nij =
1

√sijsij
sij ; mij =

1
√sijsij

sij (104.522)

Base on obtained stress derivatives, plastic consistency parameter is derived as

dλ =
nijEijpqdϵpq
nijEijklmkl

=
nijdσij

2µ
(104.523)

The elastic-plastic tangent tensor is then

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd

= 2µnpqnmn

= 2µ
1√sklskl

spq
1

√sijsij
smn = 2µ

1
sklskl

spqsmn (104.524)

In case isotropic hardening, ξ and h are not zero anymore, since k is scalar internal variable that is

updated in each increment. Harderning/softenig functions, scalar functions in this case. ξ and h can be

calculated as

ξ = –
√

2
3

(104.525)

h =
√

2
3

mijmijk =
√

2
3

k (104.526)

Therefore, plastic parameter (dλ) and tangnet elastic-plastic tensor (Epl
pqmn) can be written as:

dλ =
nijEijpqdϵpq

nijEijklmkl – ξ h
=

nijdσij

2µ + 2
3k

(104.527)

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd – ξ h

=
4µ2npqnmn

2µ + 2
3k

=
4µ2 1√sklskl

spq
1√sijsij

smn

2µ – 2
3k

=
4µ2 1

sklskl
spqsmn

2µ + 2
3k

(104.528)

The value of k should be updated at each step using the following equation:
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kupdated = k + dk = k + hdλ = k +
√

2
3

kdλ = k(1 +
√

2
3

dλ) (104.529)

For case the of von Mises with kinematic hardening, αij is the tensorial internal variable to be updated

at each step of analysis, while tensor functions ξab and hab can be calculated from the following equations

using Armstrong-Frederick saturation-type kinematic hardening rule (Armstrong and Frederick (1966);

Lemaitre and Chaboche (1990)) :

ξab =
∂F
∂αab

= –
1√

(sab – αab)(sab – αab)
(sab – αab) (104.530)

Recall that dqij = dαij = dλhij , and dϵpl
ij = dλmij and that the Armstrong-Frederic kinematic

hardening rule for the internal variable αij is given as:

dαij =
2
3

ha
(

dϵpij
)dev

– crαij

√
2
3
(
dϵpst

)dev (dϵpst)dev
(104.531)

so that

hst =
2
3

hamst – αstcr

√
2
3

(104.532)

since
√mijmij = 1.

Plastic consistency parameter (dλ) and tanget elastic-plastic tensor (Epl
pqmn) can be expressed as:

dλ =
nijEijpqdϵpq

nijEijklmkl – ξ h
=

nijdσij
2µ – ξab hab

(104.533)

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd – ξ h

=
4µ2npqnmn
2µ – ξij hij

(104.534)

Full, developed form of tangent elastic-plastic stiffness can be written as
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E
pl pq
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ab
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ab
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ab
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kl
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kl
))(

1
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ab
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( s
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Above equation can be simplified, written in a shorter form by using a substitution

A =
1√

(sab – αab)(sab – αab)
(104.536)

it can be written as:

Epl
pqmn =

Epqkl (A (skl – αkl))
(
A
(
sij – αij

))
Eijmn

(A (sab – αab)) Eabcd (A (sab – αab)) – (–A)
(

2
3ha (A (scd – αcd)) –

√
2
3αcdcr

)
(scd – αcd)

(104.537)

Finally the full elastic-plastic tangent stiffness tensor can be written as:

Eel–pl
pqmn =

Eel
pqmn – Epl

pqmn =

Eel
pqmn –

Epqkl (A (skl – αkl))
(
A
(
sij – αij

))
Eijmn

(A (sab – αab)) Eabcd (A (scd – αcd)) – (–A)
(

2
3ha (A (scd – αcd)) –

√
2
3αcdcr

)
(scd – αcd)

(104.538)

104.6.18.4 Nonlinear Elastic Model in 1D based on Armstrong Frederick Equation

dσij = dαij =
2
3

ha
(

dϵpij
)dev

– crσij

√
2
3
(
dϵpst

)dev (dϵpst)dev
(104.539)

104.6.18.5 Drucker-Prager Model

Drucker-Prager model yield surface, including rotational kinematic hardening can be written as

f = αI1 + [
1
2

(sij – pαij)(sij – pαij)]
1
2 – β = 0 (104.540)

where α and β are material constants.

By coinciding Drucker-Prager cone with the outer apexes of the Mohr-Coulomb hexagon locus, the

constants for compressive cone of Drucker-Prager can be evaluated as shown in Equation (104.541) by

knowing the soil strength parameters of cohesion (c) and friction angle (ϕ):

α =
2 sin ϕ√

3(3 – sin ϕ)
, β =

6 cosϕ√
3(3 – sin ϕ)

c (104.541)

Drucker-Prager yield function for cohesionless sands (k = 0) can be obtained as:
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f = αI1 +
√

J2 = 0 (104.542)

or in p – q space:

f = q – Mp = 0 (104.543)

which then M can be obtained as:

M =
6 sin ϕ

3 – sin ϕ
(104.544)

By considering kinematic hardening, Equation (104.543) can be expressed as:

f =
[(

sij – pαij
) (

sij – pαij
)]0.5 –

√
2
3

kp = 0 (104.545)

which then stress derivative of yield function and plastic potential function in case of associated plasticity

can be defined as:

nij = mij =
∂f
∂σij

=
∂g
∂σij

=
[(

sij – pαij
)

+
1
3
αpqδij

(
spq – pαpq

)]
[(srs – pαrs) (srs – pαrs)]–0.5

+
√

2
27

kδij (104.546)

To find the closed form equation of elastic-plastic modulus for case of perfectly-plastic, Equation

(104.545) is used for associated plasticity rule with no hardening. By these assumptions stress derivative

is calculated as:

nij = mij =
1

√sijsij
sij +

√
2
27

kδij (104.547)

Splitting plastic modulus to different parts:

Hqij = Eijklmkl = {λδijδkkl + µ(δikδjl + δilδjk)}{ 1√smnsmn
skl +

√
2
27

kδkl}

= 2µ
1√smnsmn

sij + δij{
1√smnsmn

λ(spqδpq) +
√

2
27

k(3λ + 2µ)}

= 2µ
1√smnsmn

sij + Bδij (104.548)
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Assuming:

B =
1√smnsmn

λ(spqδpq) +
√

2
27

k(3λ + 2µ) (104.549)

Plastic parameter can be written as:

dλ =
nijEijpqdϵpq
nijEijpqmkl

=
λnominator
λdenominator

(104.550)

λnominator = nijEijpqdϵpq = nijdσij (104.551)

λdenominator = nijEijpqmkl = nijHqij

= { 1
√sijsij

sij +
√

2
27

kδij}{2µ
1√smnsmn

sij + Bδij}

= 2µ +
1√smnsmn

(B + 2µ
√

2
27

k)(sijδij) + 3B
√

2
27

k (104.552)

Finally plastic tensor can be expressed as:

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd

=
HqpqHqmn
λdenominator

(104.553)

where:

HqpqHqmn = { 2µ
√sijsij

spq + Bδpq}{
2µ
√sijsij

smn + Bδmn}

= 4µ2 1
sijsij

spqsmn + 4µ
1

√sijsij
Bspqδmn + B2δpqδmn (104.554)

When isotropic hardening is considered for Drucker-Prager model, ξ and h are not zero. These

parameters can be obtained using following equations:

ξ = –p
√

2
3

(104.555)
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h =
√

2
3

mijmijk =
√

2
3

(1 +
2
9

k2)k (104.556)

Plastic parameter (dλ) and plastic modulus (Epl
pqmn) can be written as:

λdenominator = nijEijpqmkl – ξ h = nijHqij – ξ h (104.557)

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd

=
HqpqHqmn
λdenominator

(104.558)

k is the scalar internal variable to be updated at each step of analysis using following equation:

kupdated = k + dk = k + hdλ

= k +
√

2
3

(1 +
2
9

k2)kdλ = k(1
√

2
3

(1 +
2
9

k2)dλ) (104.559)

By considering kinematic hardening for Drucker-Prager material model, tensorial internal variable

(αij) is introduced and has to be updated at each step of analysis. The stress derivatives of yield

function and plastic potential function can be written as:

nij = mij =
1√

(sij – pαij)(sij – pαij)
(sij – pαij) +

√
2
27

kδij (104.560)

Tensorial parameters of ξ)ij and hij can be calculated using Armstrong-Frederick saturation-type

kinematic hardening rule (Armstrong and Frederick (1966)):

ξij = –
p√

(sij – pαij)(sij – pαij)
(sij – pαij) (104.561)

hij =
2
3

hamij – αijcr

√
2
3

mijmij (104.562)

Plastic parameter (dλ) and plastic modulus (Epl
pqmn) are obtained from following equations:

dλ =
nijEijpqdϵpq

nijEijklmkl – ξij hij
=

nijdσij
2µ – ξij hij

(104.563)
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Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd – ξij hij

(104.564)

Tensorial internal variable (αij) can be updated using following equation:

αij
updated = αij + dαij = αij + hijdλ

= αij + (
2
3

hamij – αijcr

√
2
3

mijmij)dλ (104.565)

104.6.18.6 Modified Cam-Clay Model

The critical state line for Cam-Clay can be written as

ec = ec,r – λc ln pc (104.566)

where ec is the critical void ratio at critical mean stress (pc), ec,r is the reference critical void ratio, and

λc is the normal consolidation slope. In general it is assumed that the normal consolidation line (NCL)

is parallel to CSL, which is defined as:

e = eλ – λ ln p (104.567)

where eλ is the intercept on the NRL at p = 1. λ is the normal consolidation slope or the elasto-plastic

slope of e – ln p relation. The same relation is used for unloading-reloading line (URL) with different

slope as:

e = eκ – κ ln p (104.568)

where eκ is the intercept on the URL at p = 1. The yield function for Cam-Clay model can be defined

as

f = q2 – M2[p(p0 – p)] = 0 (104.569)

where M is the critical state stress ration in q – p space and p0 is the initial internal scalar variable which

will be changed by change in plastic volumetric strain.

Cam-Clay model is one of the associated flow rule models which means the same function is used for

both yield and plastic potential surfaces (f = g). The plastic flow of the Cam-Clay model is associated
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with its yield function, in other words, the plastic flow is defined by the potential function (g), which is

assumed the same as the yield function (f ).

The evolution law of for Cam-Clay model is a scalar one which can be expressed by:

ṗ0 =
(1 + e)p0
λ – κ

ϵ̇
p
v (104.570)

where e is the void ratio, λ is the normal consolidation slope or the elasto-plastic slope of e– ln p relation,

and κ is the slope of unloading-reloading line. This equation proves that the change of p0 is controlled

by change of plastic volumetric strain. By considering the yield function expressed in Equation (104.569)

and considering the associated flow rule, stress derivatives can be evaluated as:

nij = mij = 3sij +
1
3

M2(p0 – 2p)δij (104.571)

Elastic modulus in terms of shear modulus (G) and bulk modulus (K) can be expressed as:

Eijkl = (K –
2
3

G)δijδkl + G(δikδjl + δilδjk) (104.572)

Hqij = Eijklmkl

= {(K –
2
3

G)δijδkl + G(δikδjl + δilδjk)}{3sij +
1
3

M2(p0 – 2p)δij}

= 6Gsij + {(K –
2
3

G)M2(p0 – 2p) +
2
3

M2(p0 – 2p)G}δij (104.573)

Defining D as:

D = (K –
2
3

G)M2(p0 – 2p) +
2
3

M2(p0 – 2p)G (104.574)

ξ and h in case of using Cam-Clay constitutive model can be expressed as following equations:

ξ = M2p (104.575)

h = (1 + e0)p0
dϵv
λ – κ

(104.576)

where dϵv = M2(2p – p0). Plastic parameter can be written as:
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dλ =
nijEijpqdϵpq

nijEijpqmkl – ξ h
=

λnominator
λdenominator

(104.577)

λnominator = nijEijpqdϵpq = nijdσij (104.578)

λdenominator = nijEijpqmkl – ξ h = nijHqij – ξ h

= {3sij +
1
3

M2(p0 – 2p)δij}{6Gsij + Dδij} – ξ h

= 18Gsijsij + DM2(p0 – 2p) – ξ h (104.579)

Then the plastic tensor can be expressed as:

Epl
pqmn =

EpqklnklmijEijmn
nabEabcdmcd – ξ h

=
HqpqHqmn
λdenominator

(104.580)

where:

HqpqHqmn = {6Gsij + Dδij}{6Gsij + Dδij}

= D2δpqδmn + 6GDδpqsmn + 6GDspqδmn + 36G2spqsmn (104.581)

p0 is the scalar internal variable to be updated at each step of analysis using the following equation:

p0
updated = p0 + dp0 = p0 + hdλ (104.582)

104.6.18.7 Comparison of Computational Time of Accelerated Constitutive Models with NewTem-

plate3Dep

In order to compare the computational time of accelerated constitutive models with the ones available

in NewTemplate3Dep, cyclic simulations are done in constitutive level using explicit integration method.

Simulations are done for all the mentioned cases of von Mises, Drucker-Prager, and Cam-Clay constitutive

models. The ratios of computational time of NewTemplate3Dep (tN ) to accelerated constitutive models

(tAcc) are summarized in Table (104.1). As it is observed, there are improvements in range of 2 to 3 times

in computational time which can lead to reducing the computational time of soil-structure systems.
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Table 104.1: Comparison of computational time of accelerated constitutive models with NewTem-

plate3Dep

Constitutive Model tN /tAcc Constitutive Model tN /tAcc

von Mises
3.1

Drucker-Prager
2.9

Perfectly Plastic Perfectly Plastic

von Mises
2.6

Drucker-Prager
2.5

Isotropic Hardening Isotropic Hardening

von Mises
2.3

Drucker-Prager
1.9

Kinematic Hardening Kinematic Hardening

Cam-Clay 2.2 ————

104.7 Elastic-Plastic Models for Contacts, Joints and Interfaces

This section is based on Sinha and Jeremić (2017).

104.7.1 Experimental Data

The response of the interface plays a very important role on the behavior of deep and shallow foundations,

retaining walls, geo-membranes, submerged structures and soil-structure interaction. The load transfer

mechanism from structure to the soil acts at the interface. The soil-structure interface comprise of a

very thin small shearing band. The initial investigation by Yoshimi and Kishida (1981) indicated the

thickness of the shear band as nine times the mean grain size diameter D50. Tejchman and Wu (1995)

conducted several tests on sand-steel interface and concluded that the thickness of the interface for

rough interface is 30-40 D50 and for smooth interface is 6-10 D50. Dejong et al. (2006); DeJong and

Westgate (2009) investigated the shear-zone thickness to be 5-10 times the mean particle diameter D50.

Martinez et al. (2015) conducted several axial and torsional shear experiments on sand-steel interface

to understand the micro mechanics involved at interface. The micro-mechanical hypothesis proposed by

Martinez et al. (2015) is shown in Figure 104.28. The thickness of the interface zone formed by the

particle in axial shearing migrates along the interface whereas for torsional shearing it migrates away from

the interface.Similar mechanical hypothesis was observed by Dejong et al. (2006) It was also observed

that for torsional shear the shear band zone was 2-3 times larger than the purely axial shearing. It

also depends upon the characteristics of the soil beneath and the surface structural material and its

roughness.

Since 1960’s, researchers have been carrying out experiments to understand the interface behavior.

The initial works have been contributed by Potyondy (1961); Brumund and Leonards (1973); Littleton
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Figure 104.28: Hypothesis for a particle movement under (a) axial and (b) torsional loading (Martinez

et al. (2015))

(1976). Potyondy (1961) studied the effect of soil-moisture content, structural surface roughness, soil-

composition and normal load intensity on the skin-friction of the soil-structure interface. Brumund and

Leonards (1973) investigated the static and dynamic friction angle between sand steel interface. Littleton

(1976) performed drained and undrained tests on clay-steel interface and found that the shear stress

response was steeper than the usual clay-clay interface. Based on the normal confinement σn, an initial

hardening was observed until the peak shear strength τp is reached. After that softening to residual τr

was observed. Later Desai (1981) emphasized on the importance of modeling of interface behavior for

real soil-structure interactions. He also pointed out the lack of existing experimental data which could be

used to develop constitutive models defining the interface behavior. Yoshimi and Kishida (1981) used a

ring torsion apparatus to find the friction angle between dry sand and steel surface over a wide variation

of surface roughness and sand density. Uesugi and Kishida (1986a,b); Kishida and Uesugi (1987) carried

a series of laboratory experiments between steel and air-dried sands using simple shear apparatus shown

in Figure 104.29 and Figure 104.30. It was found that the interface behavior is highly influenced by the

sand type and surface roughness Rmax while the effect of normal stress σn and mean grain size D50 are

of poor significance. Thus, Kishida and Uesugi (1987) proposed a normalized roughness Rn to evaluate

the relative coefficient of friction µy of sand-steel interface as shown in Figure ??.

Rmax(L = D50)/D50 (104.583)

where, Rmax(L = D50) is the Rmax value of the steel surface with gauge length L = D50.

Desai and Nagaraj (1988) performed a cyclic normal and shear tests on dry sand and concrete

interface in translational shear box. Monotonic and cyclic normal loads along with cyclic shear loads

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 104.29: Section of friction test apparatus (Uesugi and Kishida (1986b)).

were applied. The shear behavior was modeled with a modified form of Ramberg-Osgood (R-O) model.

Although Desai and Nagaraj (1988) did not show any experimental results, he idealized the normal

interface behavior to be composed of (1) Virgin loading; (2) unloading; (3) reloading; 4 tensile condition;

(5) partial debonding; and 6 rebonding as shown in Figure 104.32. Uesugi et al. (1989, 1990) studied

the frictional behavior of sand-steel interface subject to repeated shearing under one-way or two-way

loadings. It was found that under repeated loading conditions the coefficient of friction µ converged

close to the residual coefficient of friction µr as could be observed in Figure ?? Boulon (1989) performed

a lot of experiments on piles in sand. Direct simple shear tests were carried out to investigate the shear

behavior between the granular soil and rough construction material. Based on the experimental results

obtained later Boulon and Nova (1990) proposed a mathematical model and constitutive integration to

model the interface behavior in finite element method (FEM). Aubry et al. (1990) proposed a dilatancy

based cyclic elastic-plastic constitutive model for the interface. Cyclic loading functions with memory

of last loading reversal was used to model subsequent loadings and unloading. The yield function was

defined using simple Mohr Coulomb with additional parameter F as a function of normal stress σn and

plastic compressibility β to account for curvature and dilation of the yield surface.

Fakharian and Evgin (1995) developed a 3-D apparatus capable of performing direct and simple shear

type testing of interfaces between soil and structure. The developed apparatus was subsequently used

to perform numerous experiments Fakharian and Evgin (1996); Evgin and Fakharian (1997); Fakharian

and Evgin (1997); Fakharian (1996); Fakharian et al. (2002) over sand-steel interface for different stress

paths for different relative densities Dr of sand. The 3-D apparatus made it possible to conduct 2-D
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Figure 104.30: Measurement of tangential displacement (Uesugi and Kishida (1986b)).
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Figure 104.31: Coefficient of friction at yield µy and normalized roughness (after Kishida and Uesugi

(1987)).
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Figure 104.32: Schematic of Stress-Strain Response for Normal Behavior (Desai and Nagaraj (1988))

: (a) Virgin Loading and unloading with Tensile stress Condition; (b) Partial Loading.

shear test with constant normal stress σn. Monotonic and cyclic test results are shown in Figure 104.34

and Figure 104.34. The experiment results in Figure 104.34 clearly shows a peak shear stress ratio

(τ /σn)p and a residual stress ratio (τ /σn)r . Initial hardening and then softening depends upon the relative

density Dr of the sand was observed. A higher relative density Dr = 80% sand shows dilation for lower

confinement and thus a peak behavior whereas a low relative density Dr = 25% sand shows no dilation.

For cyclic shear tests, the loose soil Dr = 25% shown in Figure 104.35(b) showed gain in strength due to

densification resulting from particle breakage. While for soil with high relative density Dr = 80% almost

no gain in shear strength was observed during cyclic shearing. The 3-D tests performed showed that the

shear stress τ is almost isotropic for different shear stress paths.

Shahrour and Rezaie (1997) performed a series of monotonic and cyclic tests on Hostun Sand with

rough and smooth surface with constant normal load condition. The results obtained were used to

propose an elasto-plastic bounding surface based constitutive model for the interface behavior. The

monotonic and cyclic test are shown in Figure 104.36 for rough and smooth interface surface. From

Figure 104.36, it could be observed that for smooth interface, the shear stress τ increases only upto the

critical shear stress τc. Whereas for rough soil, the shear stress τ hardens to a peak strength τp and then

softens to the critical shear strength τc. The behavior observed for rough and smooth interface is similar

to dense and loose soil as observed in tests by Fakharian and Evgin (1996). The cyclic test shown in

Figure 104.36(c) showed similar response as was observed by Fakharian and Evgin (1996).

Dejong et al. (2006) performed laboratory soil-structure investigation under constant normal stiff-

ness using particle image velocimetry (PIV)method. Cyclic shearing was carried out to simulate and

understand the the shear behavior at pile interface. Cyclic degradation exponential model was proposed

of model the change in void ratio. Later Mortara et al. (2007) also performed cyclic shear tests on sand

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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a
b

Figure 104.33: (a) Monotonic and (b) cyclic response of Toyora sand with steel interface (Uesugi et al.

(1989)) (Dr = 90%,σn = 98kPa, Rn = 150e–3).

steel interfaces. DeJong and Westgate (2009) quantified the soil-structure interface behavior to the

shearing on the factor like relative density Dr , particle angularity, particle hardness, surface roughness,

normal stress and normal stiffness. Local as well as global load displacement response was recorded to

understand the load-transfer mechanism.

104.7.2 Axial Contact, Joint, Interface

The contact/joint/interface behavior in the normal direction is modeled as penalty stiffness function as

described in the Section 104.7.2.1. The penalty function can be chosen as linear with fixed stiffness also

known as Hard Contact/Joint/Interface (Section 104.7.2.2), or it can be assumed to be a non-linear

function with stiffness increasing exponentially with penetration. This type of normal behavior is called as

Soft Contact/Joint/Interface (Section 104.7.2.3). Soft Contact/Joint/Interface represents more realistic

soil-structure interface behavior. The soil becomes stiff as the penetration increases and gets relaxed

upon unloading.

104.7.2.1 Penalty Method

At the interface of the soil-foundation system, an impenetrability constraint exists as shown in Equation ??

to ??. The contacting/interfacing bodies cannot penetrate into each other. The impenetrability leads

to an inequality constraint, which requires special methods such as penalty method, Lagrange, barrier,
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(b)(a)

Figure 104.34: Stress ratio versus shear displacement for σn = 100, 200, 500kPa: (a) rough surface-dense

sand (Dr = 80%); (b) rough surface loose sand (Dr = 25%) (Fakharian and Evgin (1996)).

augmented Lagrangian, etc. as described in (Wriggers, 2002). Penalty method is a common approach

used for solving constrained minimization (or maximization) problems involving inequalities as described

in section ?? and Section ??. In this approach, a large penalty term is added to the minimizing functional

to prevent the solution from escaping the constrained space.

Figure 104.37 shows a two contact/interface node pairs initially separated by a small distance of

g in the contact/interface normal direction. During pure contact/interface/joint, the two node pene-

trates against each other by ∆n. The instantaneous relative distance between the two contact/interface

surfaces is u. Thus, if u < g there is no contact/interface and normal force N = 0 otherwise there is

contact/interface and a normal force N will act.

In the penalty stiffness formulation, a small penetration ∆n is allowed between the mass and the

floor having stiffness kn such that during contact the normal force N is defined as

N = kn∆n if ∆n ≥ 0 (104.584)

where kn can be thought of the normal contact/interface stiffness and ∆n is the relative displacement

between the two contact/interface surfaces with respect to the initial gap g in contact/interface normal

direction. It is defined as the following

∆n = ur
n – gn = u – g (104.585)

where ur
n is the relative displacement in the contact/interface normal direction and gn is the initial gap in

contact/interface normal direction. Theoretically, for rigid contact/interface case, the penalty stiffness

kn is assumed to infinite resulting in ∆n = 0. However, for numerical reasons, infinity is not possible, and
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Figure 104.35: Cyclic test results, shear stress versus shear displacement for σn = 500kPa: (a) rough

surface, dense sand (Dr = 80%); (b) rough surface, loose sand (Dr = 25%) (Fakharian and Evgin

(1996)).

thus ∆n = 0 is never enforced. This results in small penetration at contact/interface surfaces resulting

in ∆n < 0 during contact. For penalty method, the term penetration is thus normally referred to ∆n

defining the two possible states as:

• No Contact/Joint/Interface (Penetration ∆n > 0)

• Contact/Joint/Interface State (Penetration ∆n ≤ 0)

In equation 104.584, if the penalty stiffness parameter kn is assumed to be constant and independent

of penetration (∆n), it is referred as a hard contact. This type of contact/interface is more physical for

interactions between two rigid surfaces or bodies. However, to model interaction between soft-soil and

rigid foundation, a soft contact/interface with penalty stiffness increasing with penetration is preferred.

The following Section 104.7.2.2 and 104.7.2.3 describes hard and soft contact/interface respectively.

For coupled contact/interface problems described in Section ??, in order to enforce the no-drainage

condition in contact/interface normal direction between U (soil) and u (foundation) degrees of freedom,

an additional penalty stiffness parameter kp is required. Section ?? describes how penalty stiffness kp is

used to enforce the undrained condition.

It must be noted that in the penalty or any other method (Lagrange, barrier .. etc.) as described in

(Wriggers, 2002), to get to the solution it has to take into account of whether the contact/interface is

active or not. Thus, the inequality constraint has to be changed to the active (closed gap) or inactive

(open gap) based on the state of contact. As a result, the topology of the structure changes due to
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Figure 104.36: (a) and (b) Monotonic and (c) and (d) cyclic test on dense Hostun sand and steel

interface(Shahrour and Rezaie (1997)).

contact. This points out one of the difficulties while solving the contact/interface problem i.e. the

stiffness matrix changes with active or inactive constraint equations.

As compared to one of the popular Lagrange method, the penalty method leads to non-physical

penetration but does not create any additional variables. However, the non-physical penetration could

be utilized to model more complicated normal contact/interface force function as such for soft contac-

t/interface shown in Figure ?? and non-linear shear interface models as described in section ??.
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Figure 104.37: Contact/Interface/Joint Node Pairs.

104.7.2.2 Hard Contact/Joint/Interface

In hard contact, the normal penalty stiffness kn is assumed to be constant with penetration ∆n. As a

result, the normal contact/interface force Fn or stress σn varies linearly with penetration.

Fn = kn∆n

σn = knϵ
(104.586)

where kn represents the normal stiffness between soil-structure interface and ∆n is the penetration in

contact/interface normal direction.

 
-1000

-1

σn , Fn

ϵ,Δn

 
-20000

-1

kn

ϵ,Δn

Figure 104.38: Hard contact/interface normal (a) force and (b) stiffness function with penetration ∆n

Figure 104.38 shows the normal force Fn or stress σn and stiffness kn as a function of penetration

∆n or normal strain ϵ respectively. The normal stiffness kn is assumed to be constant and thus has an

abrupt jump or discontinuity at ∆n = 0 leading to C0 continuity. The abrupt change of stiffness could

often lead to numerical convergence problems.
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104.7.2.3 Soft Contact/Joint/Interface

For rocks, (Gens et al., 1990) presented a nonlinear (hyperbolic) function of elastic normal stress with

penetration. The function had different stiffness for loading and unloading up-to a permanent defor-

mation umc. The hyperbolic function u/(u – umc) has a singularity at u = umc. It does not increase

monotonically and does not poses continuous derivatives for u ≥ 0. In FEM since, the stiffness cannot

be infinite at u = umc and the displacement u can be greater than u ≥ umc, which can lead to numerical

instability and convergence problems. As per authors knowledge, there has not been enough experimental

investigation to understand the normal contact/interface behavior of the soil-structure interface. Desai

and Nagaraj (1988) claim to have performed cyclic normal tests on a concrete-soil interface on a shear

box but did not show any experimental results. Desai and Nagaraj (1988) idealized the normal behavior

based on the critical state soil mechanics as shown in Figure 104.32. (Bandis et al., 1983) investigated

the response of fresh and weathered rock. It could be observed that after some (2–4) cycles, the loading

and unloading curve fairly overlaps and could be approximated by the same function. More recently,

Lei and Barton (2022) presented a very nice set of experiments with data for proper choice of interface

parameters.

The normal behavior at the interface being modeled here using penalty stiffness approach, a non-linear

exponential elastic function is assumed for the soft contact. The parameters include an initial stiffness

ki and a stiffening rate Sr to control the normal stress σn function with penetration ∆n. In comparison

-1000

-1

σn , Fn

ϵ,Δn

 
-20000

-1

kn

ϵ,Δn

Figure 104.39: Soft contact/interface normal (a) force and (b) stiffness function with penetration ∆n

to hard contact, soft contact/interface thus has a smooth exponential, normal contact/interface force

function with penetration as shown in Figure ??. The exponential variation is expected to match the

realistic increasing contact force with penetration as shown in Figure 104.32. As stated earlier, it must
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.7. ELASTIC-PLASTIC MODELS FOR CONT . . . page: 317 of 3287

be noted that in this model the response is assumed to be fully non-linear elastic with no tensile region.

As a result, the loading and unloading stiffness and response is the same.

The non-linear normal force Fn or stress σn is defined as:

Fn = kiexp(–Sr∆n)∆n

σn = kiexp(–Srϵ)ϵ
(104.587)

where ki represents the initial normal stiffness between soil-structure interface and Sr represents the

stiffening ( or hardening) rate with penetration ∆n or normal strain ϵ. Equation 104.587 represents the

normal force Fn and stress σn for force based and stress based contact respectively. At soil-foundation

interface, as the foundation penetrates more, the soil becomes harder resulting in an increase of interface

normal stiffness kn and normal stress σn. The stiffening rate leads to an exponential increment of

contact/interface stress per unit of penetration ∆n. From the above formulation it must be noted

that for the stress based contact, the penetration ∆n is replaced with normal strain ϵ. Subsequently,

the parameters initial normal stiffness ki and stiffening rate Sr should also be calibrated accordingly.

Similarly, the stiffness and other derivatives could be obtained by replacing penetration ∆n with normal

strain ϵ. The normal stiffness kn has unit of n/m for the force based contact/interface and Pa for the

stress based contact.

Equation 104.587 could be differentiated to get the stiffness kn as:

kn = kiexp(–Sr∆n)(1 – Sr∆n)

kn = kiexp(–Srϵ)(1 – Srϵ)
(104.588)

It can be observed from equation 104.588 that putting ∆n = 0, the normal stiffness kn becomes equal

to initial normal stiffness ki i.e. kn = ki. When ∆n ≥ 0, the stiffness grows exponentially. Extending

Equation 104.587 and 104.588 to uplift (no-contact) (∆n ≥ 0), with the assumption of small initial

stiffness ki, the force and stiffness function would lead to C1 continuity. The C1 continuity thus would

lead to a smooth stiffness function even at the border of contact/interface and non-contact region

resulting in quadratic convergence at global FEM level for the Newton-Raphson method. However the

non-linear behavior would lead to comparatively larger number f iteration than hard contact,

It is also interesting to note that by setting the stiffening rate Sr = 0, hard contact/interface can

be recovered i.e. kn = ki and σn = knϵ. This demonstrates the generality of soft contact/interface

formulation.

The exponential growth of stiffness in finite element method (FEM) can lead to numerical instability

for large values. To avoid this, a maximum normal stiffness kmax
n is applied to restrict its further growth.

Figure 104.40 shows the stiffness kn function with and without a cap. The stiffness function thus can
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Figure 104.40: Soft Contact Stiffness function (a) without any limit and (b) with limit

be written as:

kn = max(kiexp(–Sr∆n)(1 – Sr∆n), kmax
n )

kmax
n = kiexp(–Sr∆

max
n )(1 – Sr∆

max
n )

(104.589)

For implementing the above Equation 104.589 in FEM, there would be a need to find ∆max
n corre-

sponding to maximum allowable normal stiffness kmax
n in order to integrate the stiffness function kn. An

efficient method to get ∆max
n is described in Section 104.7.2.3 below.

Iterative Method To Find ∆max
n . For soft contact/interface implementation in FEM, it would be

required to find out ∆max
n for a given initial normal stiffness ki, stiffening rate Sr and maximum normal

stiffness kmax
n . Since Equation 104.589 is a nonlinear function, an iterative method is needed to get to

the solution. One of the best solution search methods is the bisection method, which repeatedly bisects

an assumed solution interval, choosing only one of the branches where the solution might exist. In this

method, an initial guess of solution space is required.

Theoretically, a large solution space could be given but would not be computationally feasible and

optimal. For the given problem, it is often desired to predict solution space to get in as fewer iterations as

possible. To reach the solution optimally and efficiently, an initial guess of solution range for penetration

∆n was found to be [kmax
n /ki, 0.5kmax

n /ki].
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104.7.3 Shear Contact/Joint/Interface

104.7.3.1 Interface Shear Zone

At the soil-structure interface, there exists a thin shearing zone of 5-20 times the D50 Yoshimi and

Kishida (1981); Martinez et al. (2015); Dejong et al. (2006); DeJong and Westgate (2009) as shown

in Figure 104.41. Since the interface constitutive models are defined in stress-strain space, the applied

displacements must be converted to strains. Based on the shear zone thickness SZh, the total shear

Shear Zone Thickness (SZh)

N

N

S

S

Δt

Figure 104.41: Thin shear zone at soil-structure interface

strain γ and incremental shear strain ∆γ can be calculated as

γ = ∆t /SZh

∆γ = δ∆t /SZh

(104.590)

where ∆t and δ∆t are the total and incremental shear displacement at the interface between the two

soil-structure contact/interface surface.

Similarly, the normal strain ϵ and incremental normal strain ∆ϵ can be calculated as

ϵ = ∆n/SZh

∆ϵ = δ∆n/SZh

(104.591)

where ∆n and δ∆n are the total and incremental penetration in contact/interface normal direction. In

the interface constitutive models, the normal strain ϵ is generally also referred as volumetric strain ϵv

Stutz (2016). The normal stress is assumed to offer confinement to the interface shear band. It must

be noted that although a shear band of thickness SZh is assumed, the interface element itself has zero

thickness. The shear zone thickness SZh is a material parameter for the interface models. The shear

zone thickness can vary based on the roughness of the soil-structure interface but could be generally

assumed to be around 5-20 mean particle size diameter D50.
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Shear Contact/Joint/Interface Models. This section describes three models to describe the non-linear

shear interface behavior which is intended to capture some of the actual soil-structure interface response.

Apart from the traditional Mohr-Coulomb i.e. Elastic-Perfectly Plastic Shear (EPPS) model, two

additional non-linear models have been proposed. The Non-Linear Hardening Shear (NLHS) is a non-

linear Armstrong-Frederick type hardening model where the normalized shear stress parameter µ = τ /σn

increases non-linearly from 0 to residual normalized shear stress µr = τr /σn. Non-Linear Hardening

Softening Shear (NLHSS) adds one more level of sophistication. It can model the softening of normalized

shear stress parameter µ. Once the peak normalized shear stress µp = τp/σn is attained, it starts to

decrease to the residual normalized shear stress µr . Figure 104.42 shows a typical monotonic response

of the three models for a constant normal stress σn;
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Figure 104.42: Comparison of the interface models with monotonic response

From the Figure 104.42, it can be observed that the models behave quite differently. The EPPS

model reaches the residual state at very small shear strain γ = ∆u/SZh level where as because of non-

linear hardening both NLHS and NLHSS reach at larger shear strains γ. EPPS and NLHS do not

show any peak behavior whereas NLHSS shows a peak followed by softening to residual strength. The

models are explained in detail in the next section. NLHS and NLHSS model assume to have negligible

to no elastic region and follow the elasto-plasticity theory. And since, the linear Armstrong-Frederick

hardening parameter Ha is assumed to be equal to the elastic stiffness kt resulting in the overall elasto-

plastic stiffness equal to 0.5kt . The thin shear zone at the soil-structure interface starts to develop plastic

deformation as soon as a small shear stress τ is applied. It must also be noted in Figure 104.42 that
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the elastic shear stiffness kt depends upon the normal stress σn. Thus, for a given normal stress σn, the

shear stiffness kt is defined as

kt = kσn
t = (kt)σp0 σn

σp0
(104.592)

where σp0 is the constant stress of 101.3kPa and (kt)σp0 is the shear stiffness for a normal stress of

σn = σp0 = 100kPa. The models are thus developed using kinematic hardening plasticity with initial

kinematic hardening stiffness Ha equal to the elastic stiffness kt . As stated above, this leads to initial

elastic-plastic stiffness equal to 0.5kt and also results in incremental elastic strain energy equal to the

incremental plastic free energy as described in Section ??.

104.7.3.2 Elastic Perfectly Plastic Shear (EPPS) Model

The simplest shear interface model is the Mohr Coulomb interface model with an elastic stiffness under

no slippage and zero stiffness when it slips. The material behavior is of type elastic-perfectly plastic

type. The yield function (f ) is thus given as

f := τ – µσn ≤ 0 (104.593)

where µ is a constant coefficient of friction, τ is the shear stress and σn is the normal stress.

Figure 104.43 shows the performance of EPPS model for different loading conditions. Since it is a

elastic perfectly-plastic model, the shear stiffness kt is constant with shear strain γ or displacement ∆t and

becomes zero (perfectly-plastic state) when it reaches its residual friction coefficient µr . Figure 104.43(a)

and 104.43(c) shows the monotonic and full cyclic response with elastic perfectly-plastic behavior

respectively. Figure 104.43(b) and 104.43(d) shows the monotonic cyclic behavior before and after

reaching the residual friction coefficient µr . This kind of interface behavior is mostly observed between

rigid surfaces in contact. For more realistic soil-structure interface non-linear yield function should be

used as described in the coming sections.

104.7.3.3 Nonlinear Hardening Shear (NLHS) Model

In this model, the normalized shear stress hardening variable µ increases from 0 to critical or residual

normalized shear stress µr using the non-linear Armstrong Frederick type hardening law. The evolution

rule for frictional hardening variable µ is given as

∆µ = kt∆γ
p –

kt
µr
|∆γp|µ (104.594)

where kt is the non-linear elastic hardening variable and ∆γp is the plastic part of the shear strain ∆γ.

The material behavior is thus of type non-linear hardening type.
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Figure 104.43: Response of Linear Elastic Perfectly Plastic Shear (EPPS) Model with normal stress of

100kPa, residual coefficient of friction µr = 0.68, shear stiffness kt = 200kPa and shear zone length

SZh = 5mm.

The yield function (f ) is still given as

f := τ – µσn ≤ 0 (104.595)

where the normalized shear stress hardening variable µ evolves by Equation 104.594, τ is the shear stress

and σn is the normal stress.

Figure 104.44 shows the performance of NLHS model for different loading conditions. It can be

observed that the hardening variable µ increases non-linearly from 0 to residual normalized shear stress

ratio µr at large shear displacements. As compared to the EPPS models, it is more realistic as the

soil-structure interface develops the shear strength gradually with increments of shear strain ∆γ or shear

displacements ∆t .

For loose or low relative density Dr soil at soil-structure interface Fakharian and Evgin (1996);
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Shahrour and Rezaie (1997) as shown in Figure 104.34(b) and 104.36(b), this model could be calibrated

to model the non-linear hardening response. The monotonic and full cyclic response of this model shown

in Figure 104.44(b) can be seen to match the interface behavior investigated by Uesugi et al. (1989)

and is shown in Figure ??. Figure 104.44(d) shows the response of the model subject to cyclic shearing

before reaching the residual strength. It could be observed that it is able to model the non-linear interface

behavior as investigated by Fakharian and Evgin (1996); Shahrour and Rezaie (1997) which is shown in

Figure 104.35 and Figure 104.36(c) respectively.

For dense soil with higher relative density Dr , it is important to model the peak normalized shear

stress µp, followed by the softening behavior until the residual shear stress µr is reached. The NLHSS

model proposed in next section can be used to model both hardening and softening.
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Figure 104.44: Response of Non-Linear Hardening Plastic Contact/Joint/Interface (NLHS) model with

normal stress of 100kPa, residual normalized shear stress of µr = 0.68, shear stiffness kt = 400kPa and

shear zone length SZh = 5mm.
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104.7.3.4 Nonlinear Hardening Softening Shear (NLHSS) Model

In this model, the normalized shear stress hardening/softening variable µ increases from 0 to its peak limit

µp and then with more shear displacement reaches to the residual normalized shear stress of µr using a

non-linear Armstrong Frederick type hardening/softening law. The evolution of the hardening/softening

variable µ during hardening phase is given as

∆µ = kt∆γ
p –

kt
µp
|∆γp|µ (104.596)

where kt is the non-linear hardening variable and ∆γp is the the plastic part of incremental shear strain

∆γ. Once the peak normalized shear stress is attained, the material starts to soften. The softening

behavior is modeled as reduction of normalized shear stress ratio µ as

∆µ = –
n ∗ b(µp – µr)
(π/2)nθ1/n–1 ∗ cos2θ∆γp (104.597)

θ =
µp – µ
µp – µr

(π/2)n (104.598)

where b is the softening rate, ∆γp is the incremental plastic shear strain and n represents the size of the

peak plateau as shown in Figure 104.45. This incremental form of softening phase is derived from the

inverse tangent function raised to power n as

f = a ∗ (arctan(b ∗ γP))n (104.599)

where a is a constant parameter of the function and in Equation 104.598 is equal to (µp – µ)/(µp – µr).

The softening rate parameter b represents the rate at which the normalized shear stress µp decreases

with further application of shear displacement ∆t as shown in Figure 104.45. A larger value of b would

result in faster decay. The size of peak plateau parameter n determines the size of the plateau formed

at the peak as shown in Figure 104.45. A larger value of n would result in a larger plateau. It must be

noted that the peak plateau size parameter n also influences the overall rate of softening as could be

seen from the derived incremental Equation 104.598. The parameters n and b can be calibrated from

monotonic shearing tests. Figure 104.46 shows the response of the model with the peak plateau size

parameter n = 4 and softening rate parameter b = 40.

The yield function (f ) is again given as

f := τ – µσn ≤ 0 (104.600)

where µ is a normalized shear stress hardening/softening variable evolved by Equation 205.17 and

104.598, τ is the shear stress and σn is the normal stress.

Since in the model, the hardening law is defined as Armstrong-Frederick type, the peak shear stress

ratio µp is defined as only 95% of the asymptotic limit of the Equation 205.17. Thus, the asymptotic
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Figure 104.45: Non-Linear Hardening Softening Shear model parameters

limit of Armstrong-Frederick type hardening is raised by a factor of 1/0.95 times the peak shear stress

ratio µp.

In this model during cyclic shearing, it is assumed that once the peak strength is passed, the material

would not be able to again attain the peak strength during cyclic loading. It is based on the assumption

that as the material passes the peak strength, particle breakage and smoothening of the surface takes

place which cannot be recovered back by any process. Thus as the material softens, the peak coefficient

of friction µp is iteratively redefined to the coefficient of friction µ in the softening phase. This effect

can also be observed from the tests performed by Uesugi et al. (1989) as shown in Figure ??(b). As

soon as the peak shear stress ratio µp degrades to residual strength in the first cycle, other cycles follow

the residual shear stress ratio µr .

Figure 104.44 shows the performance of NLHSS model for different loading conditions. The response

of the model is very close to the realistic interface behavior observed by Uesugi et al. (1989) as shown in

Figure ??(b) . During cyclic shearing shown in Figure 104.44(c), the model predicts the peak behavior

only in the first cycle. After that, the response is governed by the residual normalized shear stress

µr . Figure 104.44(c) shows the cyclic shearing behavior when the residual normalized shear stress µr

is not attained in the first cycle. As a result of unloading and reloading, it again attains the last peak

normalized shear stress µp that it had attained during the softening phase.

NLHSM can be extended further to model the variation of peak normalized shear stress µp for

different normal stress σn conditions as observed in tests by Fakharian and Evgin (1996); Shahrour and

Rezaie (1997); Evgin and Fakharian (1997); Fakharian and Evgin (1997); Fakharian (1996); Fakharian
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Figure 104.46: Response of Non-Linear Hardening Softening Shear (NLHSS) model with normal stress

of 100kPa, residual normalized shear stress µr = 0.68, peak normalized shear stress µp = 0.9, shear

stiffness kt = 800kPa, peak-plateau parameter n = 4, softening rate parameter b = 40 and shear zone

length SZh = 5mm.

et al. (2002). For a given relative density Dr of soil in the sheared zone, the peak normalized shear stress

µp can be generalized to be a logarithmic function of normal stress σn as

µp = µp0 – k ∗ log(σn/P0) (104.601)

where µp0 is the peak normalized shear stress at normal stress of σn = P0, k is the peak normalized shear

stress rate of decrease and P0 is the reference stress of P0 = 100kPa. This is similar to the Bolton (1986)

stress-dilatancy relationship observed in sands. In the above Equation 104.601, for the normal stress of

σn ≤ P0, the peak normalized shear stress µp would become greater than µp0 as the term log(σn/P0)

becomes negative. This would result in high peak normalized shear stress µp for low confining stress

σn. As a result, the peak normalized shear stress µp needs to be restricted to a value. In this model,
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it is assumed that µp0 would also act as the maximum possible peak normalized shear stress µp for low

normal stresses or confinement. Thus the above Equation 104.601 can be re-written with the limit on

peak normalized shear stress µp as

µp = max(µp0 ,µp0 – k ∗ log(σn/P0)) (104.602)

where µp0 also represents the maximum peak normalized shear stress µmax
p , that the sheared zone soil

could attain. Thus, with experiments conduction for different normal stress σn, the peak normalized

shear stress µp can be calibrated as the function of normal stress σn with peak normalized shear stress

limit µp0 and peak normalized shear stress rate of decrease k. Figure ?? shows the response of the

model for different normal loads of 100kPa, 250kPa and 500kPa and also validates the model with the

experimental results from Fakharian and Evgin (1996) as shown in Figure 104.34.

Extending The Models to 3D . Section ?? described the model in 2-D in τ – σn space, to make the

reader understand the basics of the model. The model can be easily extended to 3-D using the back

stress variable α instead of the normalized shear stress µ for NLHS and NLHSS models. In 3-D, there

would be normal stress component σn in contact/interface normal direction n and two tangential stress

components τ1 and τ2 in tangential contact/interface plane in directions 1 and 2 respectively. Similarly,

the shear strain γ has two components as γ1 and γ2 in the two tangential directions 1 and 2 respectively.

As stated earlier, since normal interface behavior is assumed to be non-linear elastic, the plastic strains

are only developed in shear. Thus the incremental plastic strain ∆γp and its magnitude |∆γp| in these

models is defined as

|∆γp| =
√
∆γ

p
1∆γ

p
2 (104.603)

∆γp = [∆γp
1 ,∆γp

2 ] (104.604)

where ∆γ
p
1 and ∆γ

p
2 represents the incremental plastic shear strain components in contact/interface

tangential (shear) direction 1 and 2 respectively. The plastic flow direction m is defined as the direction

of incremental plastic shear strain δγp and thus is defined as m = δγp/|∆γp|

104.7.3.5 EPPS Model

EPPS Model described in Section 104.7.3.2, is the simplest Mohr Coulomb type elastic perfectly-plastic

model. The yield function (f ) is defined as

f := (τ1/σn – µr)2 + (τ2/σn – µr)2 = 0 (104.605)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.7. ELASTIC-PLASTIC MODELS FOR CONT . . . page: 328 of 3287

where σn is the normal stress, τ1, τ2 are the shear stress and µr is the residual friction coefficient. Being

an elastic-perfectly plastic model with no internal variables, there is no hardening/softening evolution

rule.

104.7.3.6 NLHS Model

The non-linear hardening shear model described in Section 104.7.3.3 is modeled in 3-D using the back

stress internal variable α. The yield function (f ), is defined as

f := (τ1/σn – α1)2 + (τ2/σn – α2)2 = 0 (104.606)

where σn is the normal stress, τ1, τ2 are the shear stress and α1,α2 are the back stress components in

contact/interface tangential direction 1 and 2 respectively on the contact-interface plane. The hardening

law would be then defined as

∆α = kt∆γ
p –

kt
µp
|∆γp|α (104.607)

∆α = Hm|∆γp| (104.608)

Hm = ktm –
kt
µp
α (104.609)

where µp is the peak normalized shear stress, which depends upon the normal stress σn as stated in

Equation 104.601 and kt represents the initial elastic shear stiffness of soil-structure interface. Hm

represents the non-linear Armstrong-Frederick type hardening modulus and m represents the plastic flow

direction.

104.7.3.7 NLHSS Model

The non-linear hardening softening shear model described in Section 104.7.3.4 is also modeled in 3D

using the back stress internal variable α. The yield function (f ) is defined as Equation 104.606. The

hardening evolution law for the back stress α is defined by Equation 104.609. The softening law is

defined as Von-Mises type as

∆α = –
n ∗ b(µp – µr)
(π/2)nθ1/n–1 ∗ cos2θ∆γp (104.610)

θ =
µp – |α|
µp – µr

(π/2)n (104.611)

∆α = Sm∆γ
p (104.612)

Sm = –
n ∗ b(µp – µr)
(π/2)nθ1/n–1 ∗ cos2θ (104.613)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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where µr is the residual normalized shear stress that is constant and depends upon the soil and structure

material, µp is the peak normalized shear stress at the start of softening phase and Sm represents the

softening modulus.

As stated in Section 104.7.3.4, for NLHSS model, the peak normalized shear stress µp of the material

is iteratively defined to the back stress µp = |α| in softening phase. This means that the dilatancy surface

squeezes towards the critical surface as the sheared zone soil at interface continues to shear.

Using the incremental Equation 104.609 Equation 104.613 presented for both hardening and softening

phase respectively, the 3-D model can be integrated. using the elastic-plastic theory Hill (1950); Temam

(1985); Wu Tai (1966); Lubliner (1990); de Borst and Feenstra (1990); de Borst (1987). The elastic-

plastic stiffness or consistent tangent stiffness Jeremić (1994); Crisfield (1987) can then be computed

easily at each loading increment or iteration. Section ?? presents the elastic-plastic integration for the

interface models.

104.8 Inelastic Behavior and Models for Rock

104.8.1 Overview of Intact Rock Behavior

(Stavrogin et al., 2001), (Fairhurst, 2003), (Mogi, 2006)

Rock, and other geomaterials, feature a distinct set of material behavior that separates them from

other natural and/or man made materials. Rock material subjected to shock waves in particular shows

a variety of response regimes and behavior that warrant further discussion. Of particular interest are

the following specifics of rock behavior: pressure sensitivity, dilative and compactive response, inherent

and induced anisotropy, full coupling of porous rock solid with pore fluid and temperature fields and

bifurcation response, resulting in shear and compaction bands. Each of these aspects of rock behavior

will be described in sections below.

It is also very important to note that this study will focus on behavior of intact rock material, while

main focus of research in rock mechanics is on behavior of jointed rock masses. While behavior of dis-

continuous, jointed rock mass is very important for construction in rock (tunnels, dams, foundations...),

behavior of intact rock mass becomes very important for any modeling and simulation of deeper rock

structures, particularly where strong shock waves are involved. This is emphasized by the fact that rock

blocks do behave like solid for high pressures. For example, during shock loading blocks might fuse at

contact/interface and behave like a solid, in which case the inelastic (elastic-plastic) behavior of intact

rock mass has major impact on overall rock mass response.

This section uses selection of published results to emphasize distinct features of mechanical response

of rock that are considered important for proper modeling of shock wave propagation. While there exist
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a significant body of published work on behavior of intact rock (which is still much smaller than body

of published work on behavior of rock as discrete media), chosen here are publications and results that

provide important results used to emphasize distinct features of mechanical behavior of rock. Empha-

sizing these distinct feature of rock behavior is important for a number of reasons. Two main reasons

are that while the shock wave theory was developed over last two centuries (see brief overview in section

104.8.3) main focus was on ideal domains (linear elastic solids or fluids), rock features many distinct

modes of mechanical response that demand use of high fidelity numerical modeling. In addition to

that, even when shock wave theories were developed for inelastic (elastic-plastic) solids, this was done

for metals, elastic-plastic response of which lacks many features found in rock (geomaterial) response

(pressure sensitivity, anisotropy, dilative and compactive response...)
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104.8.1.1 Pressure Sensitivity

Rock material response shows strong pressure sensitivity. Both initial yielding response, inelastic re-

sponse and ultimate strength strongly depend on confinement pressure experienced by rock material.

Confinement pressure acting on rock can be inherent, coming from location of rock mass (depth) and

from geologic factors (tectonics). Fairhurst (2003) details initial stress determination procedures. Ini-

tial stress determination (stress level from previous, historical loading stages, tectonics, erosion) is very

important in view of pressure sensitivity and elastic-plastic response of rock. Depending on the type of

rock material, the effects of confinement pressure on response vary. Figures 104.47 – 104.55) show rest

data for a full elastic-plastic response of various rock specimens for varying confinement pressures. Both

axial (ϵ1) and radial (ϵ2) strains are shown versus axial stress (∆σ1). It is very important to recognize

a number of distinct features of rock behavior that these test show:

• Varying confinement pressure influences yield stress, that is an increase of yield stress is observed

with the increase in confinement pressure,

• Elastic stiffness increases with increase in confinement pressure,

• Ductility increases with increase in confinement pressure,

• Increase in confinement pressure significantly influences final strain level achieved

• Volume change (dilation, as observed from radial strain results (ϵ2) is significant, however, in

some cases it increases and in some decreases with confinement pressure increase (as observed in

Figures 104.47 – 104.52)

• Elastic degradation/damage is increasing with cycles of loading (Fig. 104.54 for example, reduction

of loading-unloading-reloading slope signifies elastic damage)

• Presence of energy dissipation in rock for various confinement pressures (area of hysteresis loops,

see for example Fig. 104.53 – 104.55)
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Figure 104.47: Full elastic-plastic response of marble specimens for varying confinement pressures.

Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial loading of 3D samples

(Stavrogin et al., 2001).

Figure 104.48: Full elastic-plastic response of lignite specimens for varying confinement pressures.

Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial loading of 3D samples

(Stavrogin et al., 2001).
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Figure 104.49: Full elastic-plastic response of granite specimens for varying confinement pressures.

Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial loading of 3D samples

(Stavrogin et al., 2001).

Figure 104.50: Full elastic-plastic response of sandstone (non-burst prone) specimens for varying

confinement pressures. Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial

loading of 3D samples (Stavrogin et al., 2001).

Figure 104.51: Full elastic-plastic response of sandstone (burst prone) specimens for varying confinement

pressures. Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial loading of

3D samples (Stavrogin et al., 2001).
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Figure 104.52: Full elastic-plastic response of sulphidic ore specimens for varying confinement pressures.

Shown are axial (ϵ1) and radial (ϵ2) strains versus axial stress (∆σ1) for triaxial loading of 3D samples

(Stavrogin et al., 2001).

Figure 104.53: Full elastic-plastic response, with loading-reloading cycles of Periodite (upper) and Dior-

ite (lower) specimens for varying confinement pressures. Shown are axial (ϵ1) strains versus differential

stresses (σ1 – σ2) for triaxial loading of 3D samples (Mogi, 2006).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.8. INELASTIC BEHAVIOR AND MODELS . . . page: 335 of 3287

Figure 104.54: Full elastic-plastic response, with loading-reloading cycles of Trachite (left) and Marble

(right) specimens for varying confinement pressures. Shown are axial (ϵ1) strains versus differential

stresses (σ1 – σ2) for triaxial loading of 3D samples (Mogi, 2006).
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Figure 104.55: Full elastic-plastic response, with loading-reloading cycles of Tuff specimens (two dif-

ferent rock sources) for varying confinement pressures. Shown are axial (ϵ1) strains versus differential

stresses (σ1 – σ2) for triaxial loading of 3D samples (Mogi, 2006).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.8. INELASTIC BEHAVIOR AND MODELS . . . page: 337 of 3287

104.8.1.2 Dilative and Compactive Response

Rock (similar to other geomaterials) feature dilative (increase in volume) and compactive (decrease in

volume) response for both hydrostatic confinement as well as for deviatoric loading (shear stresses).

Lockner and Stanchits (2002) performed a number of tests on (initially isotropic) sandstone and mea-

sured the undrained poroelastic response for changes in mean (hydrostatic, normal) and deviatoric (shear)

stress. While change in pore pressure was found to result from changes in mean (hydrostatic) stress, it

was also resulting from changes in deviatoric stress. This dependence of pore pressure, and consequen-

tially pore volume, on deviatoric stress is called dilatancy and is a feature found in most geomaterials.

Figure 104.56 shows measured dependence of a coefficient η, defined as a ratio of change in pore pressure

due to change in deviatoric stress (∆p = –η∆σdeviatoric).

Figure 104.56: Measured poroelastic (Skempton’s) coefficient B and η for Berea Sandstone. (Lockner

and Stanchits, 2002).

Figure 104.56 also shows measured values for coefficient B, which defines a ratio of change in pore

pressures due to change in mean stress (∆p = –η∆σmean). Coefficient B and η are also known as

Skempton’s coefficients (Skempton, 1954). Hamiel et al. (2005) developed a model based on data

provided by Lockner and Stanchits (2002) that captures dilatancy in poroelastic regime. In addition to
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that, one of their models allows for variability in Skempton’s coefficients and seems to capture test data

quite well. While presented development focuses on seismic pore fluid pressure development (positive

and negative) it has modeling and simulation implications for other dynamic, rock events where pores

are filled with fluid and dilatancy is involved (which is always the case).

Dilatant response in elastic-plastic regime can be observed in Figures 104.47 – 104.52. In particular,

volumetric strain calculations (ϵvolumetric = ϵii = ϵ1 + 2ϵ2) reveal that dilatant response is present during

elastic phase of loading (before yielding), significant dilation occurs after plastic limit. Thus we can

conclude that while dilatancy is present in elastic phase of loading (as concluded by Lockner and Stanchits

(2002)) dilatancy is even more pronounced in elastic-plastic loading regime.

In the limit of compactive and dilative response is the localized compactive/explosive deformation.

Olsson (1999, 2001) details recent findings of compaction bands. They are thin zones of pure com-

pressional deformation with very low permeability and porosity. porosity drop for such zones is on the

order of ten times (10×) when compared to porosity of surrounding rock (Olsson, 1999). In addition to

that, compaction zones (bands) growth is described in terms of shock wave analysis. Issen and Rudnicki

(2001) developed a more general theory of compaction band formation, particularly in view of plasticity

models with cap. Plasticity models with cap are necessary if realistic behavior of rock is to be modeled,

covering a wide range of stress states, from tension, shear to compression. Borja (2006) reviews ana-

lytical conditions for appearance of volume implosion/explosion (diffuse process) and compaction bands

(localized process). He shows that general conditions for localization of deformation can be used for

both shear as well as for compaction and dilative localization of deformation.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.8. INELASTIC BEHAVIOR AND MODELS . . . page: 339 of 3287

104.8.1.3 Anisotropy

Various rock types feature directional features (bedding, foliation, flow structures) which are reflected in

anisotropic elastic and plastic properties. Anisotropy of rock behavior can be inherent and/or induced.

Inherent anisotropy is present before the current loading is applied and is most likely resulting from past

geological processes in rock (past loading). Induced anisotropy results from current loading processes

and can significantly change orientation and value of elastic constants from inherent values (Amadei

and Goodman, 1982; Amadei, 1983). Anisotropy can also be apparent, when bedding planes obvious

and hidden when bedding planes not directly observable. Measurements of anisotropy are not readily

available in literature as such tests are quite involved and complex. For example Pariseau (2006) reports

that measurements indicate that Young’s modulus is parallel to bedding plane is often about twice as

large as Young’s modulus perpendicular to bedding plane. Figure 104.57 shows usual test setup when

rock cores are extracted with different orientations to the test loading. For such anisotropic test setups,

variations of axial Young’s modulus are shown in Figure 104.58.

Figure 104.57: Test setup for measuring elastic anisotropy for rock cores extracted at different orienta-

tions (Pariseau, 2006).

In addition to influence of anisotropy on elastic constants, permeability is significant influenced by

anisotropy of rock. A.Angabini (2003) shows significant influence of rock anisotropy on both elastic

properties and on anisotropic permeability. He used 438 samples with distinct orientations to measure

isotropic and anisotropic material properties out of research wells in The Netherlands along of 2.6 km

test section and going to depths of up to 1.6 km. His measurements indicate that in addition elastic

anisotropy, permeability anisotropy is significant. Figure 104.59 shows differences (variation) in measured

specific permeabilities at different depths for wells in The Netherlands.

In addition to significant anisotropy in permeability (for example at depth 345m permeability in
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Figure 104.58: Anisotropic variations of axial Young’s moduli for different orientation of core samples

(Pariseau, 2006).

Figure 104.59: Measured specific permeabilities at different depths for wells in The Netherlands, parallel

to bedding (x, y) and perpendicular to bedding (z) (A.Angabini, 2003).

vertical direction (Z) is three times higher than the one in X and 5 times higher than permeability in Y

direction), significant spatial variation of permeability is present. For example, within 6 meters (between

depth of 339m and 345m difference is two orders of magnitude!

Measured anisotropy of elastic and elastic-plastic properties is also significant. For example, Fig-

ure 104.60 shows directional elastic moduli (obtained using either static or dynamic tests, for dry and

saturated conditions) for mudstone and sandstone.
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Figure 104.60: Measured anisotropic elastic moduli for different rock samples (Mudstone and Clayish

sandstone) for wells in The Netherlands. Young’s modulus parallel to bedding (x, y) and perpendicular

to bedding (z) (A.Angabini, 2003).

Differences between elastic moduli in different directions of two or more are obvious. In addition to

that, since elastic moduli in all three directions are different, rock exhibits general anisotropy (as opposed

to cross anisotropy, where two elastic moduli would be the same).

Similar to elastic moduli (Young’s moduli), Poisson’s ratios do show significant anisotropy as shown

in Figure 104.61.

In addition to elastic anisotropy (as shown in Figures 104.60 and 104.61) uniaxial strength also

shows very strong directional dependence as shown in Figure 104.62.

Anisotropy of rock is not localized to one region of the domain, rather it is present in every level.

Figure 104.63 shows elastic anisotropic moduli for wells in the Netherlands test area for a full depth of

1.7km. It is important to note that in addition to anisotropy that extends throughout depth. inherent

uncertainty on measured moduli is present as well. This uncertainty (spread of data points for same

depth) will be discussed in some more details in section 104.8.2.

In view of importance of anisotropy on rock response, determination of anisotropy is very important

if simulations are to be used in predicting rock behavior. This is particularly true for modeling and

simulation of shock wave propagation as anisotropy (both in elasticity and permeability) can significantly

influence results.
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Figure 104.61: Dynamic Poisson’s ratios for different rock samples (limestone and sandstone) in dry

and saturated conditions, for wells in The Netherlands, (A.Angabini, 2003).

Figure 104.62: Uniaxial strength of mudstone for three different orientations of core sample, for various

sampling depths, for wells in The Netherlands, (A.Angabini, 2003).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 104.63: Anisotropic properties of mudstone and limestone an three directions at different depths

(full depth profile), for wells in The Netherlands, (A.Angabini, 2003).
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104.8.1.4 High Rate Elastic-Plastic Loading

Experimental data presenting (controlled) high rate elastic-plastic loading is fairly limited compared to

the abundance of low rate data. It is very important to note that high rate controlled tests are of

much value as they allow separation of high rate constitutive response from shock loading tests that

are accomplished using high energy shock application to rock samples, which then initiate many other

facets of multi-physics of rock behavior (described in more detail in section 104.8.3 on page 354). One

of the best controlled high loading rate data sets were published by Stavrogin and Protosenya (1983);

Stavrogin and Pevzner (1983); Stavrogin et al. (2001). A wide range of loading rates (strain rates, ranging

over 12 orders of magnitude), presented (Stavrogin and Protosenya, 1983; Stavrogin and Pevzner, 1983;

Stavrogin et al., 2001), allows development of qualitative understanding and development of quantitative

model parameters for rock material. Figures 104.64, 104.65 and 104.66 show the influence of rate of

loading on peak strength and elastic limit (yield stress) for rock samples (marble, diabase and sandstone

respectively) confined to different pressures,

Figure 104.64: Marble: dependence of peak strength ( a) upper) and elastic limit (yield stress) ( b)

lower) on loading rate (ϵ̇) for different confining stresses (1 – σ2 = 0 Mpa; 2 – σ2 = 20 Mpa; 3 –

σ2 = 50 Mpa; 4 – σ2 = 100 Mpa; 5 – σ2 = 150 Mpa) (Stavrogin and Protosenya, 1983).

While highest loading (strain) rates are on the order of ϵ̇ = 102 1/s which is lower than shock loading

rates (estimated to be over ϵ̇ = 105 1/s) this data is still very useful as it can be used to calibrated

models where strength and elastic limits are dependent or loading rate, and then use those models
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Figure 104.65: Diabase: dependence of peak strength ( a) upper) and elastic limit (yield stress) (

b) lower) on loading rate (ϵ̇) for different confining stresses (1 – σ2 = 0 Mpa; 2 – σ2 = 50 Mpa; 3 –

σ2 = 100 Mpa; 4 – σ2 = 150 Mpa) (Stavrogin et al., 2001).

Figure 104.66: Sandstone: dependence of peak strength ( full lines) and elastic limit (dashed lines) on

loading rate (ϵ̇) for different confining stresses (1 – σ2 = 0 Mpa; 2 – σ2 = 50 Mpa; 3 – σ2 = 100 Mpa)

(Stavrogin et al., 2001).
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to predict (in the sense of true prediction (Oberkampf et al., 2002)) shock wave propagation. Data

presented in above Figures suggests that both peak strength and elastic limit increase with confinement

pressures (pressure sensitive material, as discussed in section 104.8.1.1 on page 331). Presented data

also suggest that both peak strength and elastic limit increase (linearly!) with the increase of rate of

loading. Dependence of peak strength and elastic limits is proportional to loading rate increase, although

such factor of proportionality is not very high. This is move evident from Figures 104.67 and 104.68

where full stress strain curves are shown for marble and granite respectively.

While data shown in Figures 104.67 and 104.68 does not cover such wide range of loading strain

rates, it still leads to similar conclusion, that is increase in strain rate will lead to proportional increase

in elastic limit and peak strength. Similar conclusion was drawn by Zhao et al. (1999), however, their

results show much larger variation and weaker factor of proportionality.
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Figure 104.67: Marble: stress-strain response for different strain rates (ϵ̇1) 1 – ϵ̇1 = 2 × 10–61/s; 2 –

ϵ̇1 = 2× 10–51/s; 3 – ϵ̇1 = 2× 10–41/s; 4 – ϵ̇1 = 2× 10–31/s; 5 – ϵ̇1 = 2× 10–21/s; 6 – ϵ̇1 = 2× 10–11/s;

(Stavrogin et al., 2001).

Figure 104.68: Granite: stress-strain response for different strain rates (ϵ̇1) 1 – ϵ̇1 = 10–51/s; 2 –

ϵ̇1 = 2× 10–41/s; 3 – ϵ̇1 = 5× 10–21/s; 4 – ϵ̇1 = 2× 10–11/s; (Stavrogin et al., 2001).
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104.8.1.5 Coupling with Pore Fluid Pressure and Temperature

In addition to constitutive response of elastic, plastic and damaged matrix (solid porous skeleton) pore

fluid and temperature fields have large influence on behavior of rock. Pore pressure directly influences

mechanical response of solid skeleton through effective stress principle (see section 104.8.6). In addition

to that, changes in temperature field will affect both pore fluid and elastic-plastic-damage characteristics

of the porous solid (rock skeleton).

For example, Figure 104.69 shows dependence of stress at failure for sandstone. In particular,

Figure 104.69(a) (left) shows clear dependence of failure stress on pore pressure, where increase in

pore fluid pressure reduces the failure limit (stress). This is the case for different confining stresses,

Figure 104.69: Sandstone: ultimate stresses (full capacity mobilized) as a function of ( a) left) pore

fluid pressure; ( b) right) effective principal stress (Jaeger et al., 2007).

and the dependence is linear, which nicely follows equations that will be given in section 104.8.6. If

the dependence is plotted in somewhat different form, as a function of effective stress, as shown in

Figure 104.69(b) (right) all the points fall into (almost) same line. Present variation is inherent to all

geomaterials and is discussed in some detail in section 104.8.2.

In addition to a full saturation, where effective stress principle is fully valid, partial saturation plays

a very important role in behavior of porous rock. Partial saturation will affect response of porous rock

matrix through increase in pore fluid (mix or water and air) pressures as loading is applied and rock

undergoes compactive or dilatant response. Such interaction of pore fluid (mix or air and water) will

also be affected by the rate of load application as the fluid viscosity starts having effects on pore pressure
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advection and diffusion. For example, Figures 104.70 and 104.71 shows effects of moisture content68

on peak strength. elastic limit and coefficient of cohesion for sandstone and limestone (cohesion only).

Full saturation of sandstone samples was achieved at moisture content of 3 % while for limestone it

Figure 104.70: Sandstone: dependence of peak strength ( a) upper) and elastic limit (yield stress) (

b) lower) on loading rate (ϵ̇) for different confining stresses (1 – σ2 = 0 Mpa; 2 – σ2 = 50 Mpa; 3 –

σ2 = 100 Mpa; 4 – σ2 = 150 Mpa) and moisture content (W) (Stavrogin et al., 2001).

was 8 %. Results show that steady decrease of peak strength, elastic limit and coefficient of cohesion

with increase in moisture content. It is very interesting to note that an increase in loading rate still

increases the peak strength, elastic limit and coefficient of cohesion (as concluded in section 104.8.1.4

for dry samples), even with increase in influence of pore fluid (water and air) pressures, that now has to

advect and diffuse. This type of interaction of pore fluid with loading rate and response of rock skeleton

is somewhat counter-intuitive as it was expected that increase in saturation with increase in loading rate

68Moisture content is here defined as weight percentage of the water content compared to the weight of the sample.
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Figure 104.71: Dependence of the coefficient of cohesion for sandstone (a, upper) and limestone (b,

lower) on strain rate (ϵ̇) for different levels of moisture content (W) (Stavrogin et al., 2001).

will lead to an increase in pore fluid pressures during high loading rate events, and thus reduce peak

strength, elastic limit and coefficient of cohesion.

The influence of pore fluid on response can also be followed on full stress strain curves, as shown in

Figure 104.72 for limestone. While increase in water (moisture) content leads to a decrease in stiffness

and elastic-plastic strength, increase in strain (loading) rate leads to an increase in stiffness and elastic-

plastic strength (stress-strain curves are ”higher” for faster loading). This seemingly counter-intuitive

response might need to be explored in more depth.

While previously shown results assume that pore space within rock is mostly connected, Curran

(1994) uses simple micromechanical models to predict that at high confinement, the behavior of fully

water-saturated rock changes from a classical effective stress response (see more about effective stresses

in section 104.8.6) to a much stronger and stiffer material. This transition happens at different confining

pressures, depending primarily on solids bulk modulus and the pore morphology/fabric. For example,

Curran (1994) note that hard rock with small ratio of crack volume to pore volume, the transition begins

at 0.2 GPa, while for soft rock (or rock with high ratios of crack volume to pore volume), the transition

happens at much higher confinements, of 1 – 2 GPa. This change in rock skeleton needs to be taken

into account for any modeling and simulations where such threshold compressive values are reached or

exceeded. In addition to that, a very important observation was made by (Larson and Anderson, 1979),

in that under high confining pressures, liquid water will turn into ice VI 69 thus significantly changing

the nature of coupling of pore fluid with porous solid.

Changes in temperature will affect both the pore fluid (by changing the volume and reactivity with

69Ice VI is a tetragonal crystalline form of ice formed by cooling water to 270 K at 1.1 GPa.
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Figure 104.72: Limestone: stress-strain (τ – ϵ1) curves for different strain rates (ϵ̇) and different levels

of moisture content (W) (Stavrogin et al., 2001).

rock minerals), as well as the behavior of the solid (porous) matrix. With an increase in temperature,

rock becomes softer but much more ductile. Inada et al. (1992) performed a number of tests on granite,

andesite and sandstone, with changes of temperature from –160o C (–256o F) to +100.00o C (212o F)

for both dry and wet (saturated) rock samples. Figure 104.73 shows stress-strain curves resulting from

those tests. While the influence of saturation and temperature varies for different types of rock, general

trend is that with increased temperature response becomes softer (lower stiffness, lower peak strength)

with higher ductility. Temperature range presented does not cover completely application area for shock

loading (where temperatures might reach and exceed melting point for rock), however softening and

increase in ductility trend will continue as the temperatures increase until close to melting point. At

such high temperatures, rock behavior will gradually change from solid to heavy fluid with significant

changes in viscosity. Holyoke and Rushmer (2002) did a number of tests on muscovite-biotite metapelite

and a biotite gneiss with very high temperatures (from 650o C (1202o F) to 950o C (1742o F)) and

reported dilatancy effects and highly ductile response, with strains extending over 15 % and reaching

peak strength at 5 – essentially represents a new material that has to be properly modeled.
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Figure 104.73: Stress-strain curves for dry and wet samples of granite, andesite and sandstone with

varying temperature (Inada et al., 1992).
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104.8.2 Uncertainty and Variability of Rock Behavior

Rock material behavior is characterized by point wise uncertainty and spatial variability. While this

topic is covered in much more detail in section 506.6, given here is a brief account of experimental

data that supports above statement. Test data shown in previous sections exhibits variation. This

variation is present in any set of test data were more than one sample was used to determine material

properties. For example, Figure 104.74 from Pariseau (2006), shows values for shear modulus for a variety

of rock types. It is noted that the variability is quite large, yet this is nothing unusual and is rather

Figure 104.74: Variation of shear modulus for different rock types (Pariseau, 2006).

characteristic of rock material. In addition to that, variability of rock material parameters is apparent

in any other set of test data. For example larger and/or smaller variability is present in data presented

in Figures 104.56, 104.59–104.63, 104.64–104.66, 104.69–104.71. This variability is always present (see

discussion in section 506.6) and need to be taken into account in order to have higher confidence in

modeling and simulation of rock behavior. One possible approach to fully incorporating uncertainty into

modeling and simulation is given in section 506.6 on page 2649.
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104.8.3 Effects of Shock Loading on Intact Rock Behavior

In previous sections I have attempted to present main features of intact rock behavior for a variety of

loading conditions, loading rates, temperatures... Select set of publications were used to describe specifics

of rock behavior, including pressure sensitivity, dilative and compactive response, anisotropy, effects of

high rate of loading and effects of pore fluid pressures and temperatures and finally the uncertainty of

such data. In this section, select publications on shock loading in rock are reviewed with the main aim

of synthesizing previous findings and showing that all of the previous specifics of intact rock behavior

influence response to shock loading.

It is very important to note that the history of development of modern theory of shock waves is long

and quite interesting. Salas (2006) describes many (unsuccessful) attempts by the greatest mechanics

minds of last two centuries to develop a consistent theory of shock waves. Such historic are invaluable

in having the right prospective in developing consistent approaches for multi-physics modeling of shock

waves in intact rock.

A very interesting set of experimental results and findings for rocks of both high porosity (tuff and

limestone) (Larson and Anderson, 1979) and low porosity (granite and sandstone) (Larson and Anderson,

1980) are available in literature. For low porosity tests a number of important observation are made.

Relationship of shock wave velocity versus particle velocity shows a discontinuity. It is suggested that

this is due to the shear initiated pore collapse, which relates to dilatancy and compactive/shear localized

deformation bands. This is indeed more appropriate, in Authors opinion, and in view of recent research

on compressive localization (Olsson, 1999, 2001; Issen and Rudnicki, 2001; Borja, 2006) that such pore

collapse is due to the initiation of diffusive, implosive and localized, compaction bands. In addition to

that Larson and Anderson (1980) show that uniaxial strain data for low strain rates can be used to

model high strain rate events, for dry rocks. This is a very important findings as it allows calibration of

material models using low rate experiments for prediction of shock wave events. In addition to that, it

was found that for very low porosity rock where pore are not in contact, the effective stress principle does

indeed need to be used in its original form (Biot and not Terzaghi form) as given in equation 104.616

in section 104.8.6 on page 363, with α having a very low value. This is consistent with findings from

micromodels mentioned in section 104.8.1.5 (Curran, 1994). Test result date for highly porous rock (tuff

and limestone) (Larson and Anderson, 1979) show that porosity plays a major role in behavior of rock.

For example, the irreversible process of compaction and elastic unloading leads to a large hysteresis,

dissipating significant amounts of wave energy, effectively damping the wave out. In addition to that, an

increase of strength with strain rate is observed, reinforcing experimental observations be Stavrogin and

Protosenya (1983); Stavrogin and Pevzner (1983); Stavrogin et al. (2001), described in section 104.8.1.4
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on page 344.

Dynamic compaction behavior of intact rock material was and still is of considerable interest. Lysne

(1970) did a number of experiments on dry and water saturated tuff. The main conclusion he was able

to draw was that the compaction of porous rock material is a process that is slower than the shock

wave propagation and that it takes longer time (than for the compressive wave to pass) to complete

such compaction process. In addition to that, Lysne (1970) was able to show, that at least for stresses

in water below 2.5 GPa, the influence of heating on volume change can be neglected in porous rock

saturated with water. D. Erskine and Weir (1994) presents data on dry and wet tuff, which exhibits

quite complex behavior. Both pore crushing and phase change (liquefaction) are observed and are

responsible for complex compression behavior. Heterogeneity of rock also plays a major role in the

observed response. Another very important conclusion is that Gruneisen model (aka Debye-Grüneisen

model) does not perform well, indicating that there a likely phase transition is happening and needs to

be accounted for.

Hiltl et al. (1999) present interesting set of shock-recovery tests results on dry and fully saturated

sandstone. Principle of effective stress is again playing important role as it is observed that water

saturated samples had much smaller compaction due to distribution of confining pressures between pore

water and porous solid. In addition to that, reduction of porosity due to high pressure of shock waves

was much smaller for saturated samples, again proving that pore fluid caries quite a bit of load due to

slow drainage, as present during shock wave loading. It is also observed that as the shock pulse duration

increases, so does the damage, implying that as the pore fluid gains time to drain, effective stresses in

porous solid increase and causes the damage and compaction.

104.8.3.1 Shock Waves of First and Second Kind

The dynamic behavior of saturated porous media was studied at length by M.A.Biot (1956); Biot (1962,

1972). In one of his studies (M.A.Biot, 1956) he concluded that there exist three kinds of coupling

between pore fluid and porous solid (inertial, viscous and mechanical). He also concluded that the

viscous coupling plays a key role and determines response of a coupled system to dynamic excitation,

while making wave propagation dispersive. He demonstrated (analytically) the existence of two kinds of

compressional waves corresponding to the mechanical and inertial coupling, while the viscous coupling is

responsible for a pure wave. For high viscous coupling, the relative movements between the two phases

are prevented, so there is only one compressional wave and the total mass behaves as a single-phase

medium.

Recent paper by Lomov et al. (2001), actually shows an experimental proof of such coupling. Fig-

ure 104.8.3.1 shows two test results for dry and wet samples. It is important to recognize that these
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test results can also be used to validate shock wave propagation modeling and simulation as described

in section 104.8.6 on page ??.

Figure 104.75: Test results for a 1D wave propagation in dry (high coupling) and wet (low coupling)

sandstone (Lomov et al., 2001).

For example, for high coupling case (dry sandstone, pore fluid is air), the velocity profile shown in

Figure 104.8.3.1 is increasing and when integrated (to get displacements), profile corresponds (at least

qualitatively) to high coupling case (K = 10–6 cm/s) presented in Figure 310.14. Similarly, low coupling

case (wet sandstone, pore fluid is water) the velocity profile increases, then drops to almost zero and

then increases again. Upon integration to get displacement, this will correspond (qualitatively) to low

coupling case (K = 10–2 cm/s) presented in Figure 310.14. Permeabilities are here used qualitatively

for both water and air and signify ease with which fluid (water or air) moves past porous solid. While,

results presented in Figure 310.14 correspond to a linear elastic case, at least qualitatively, they follow

test results, which of course correspond to elastic–plastic behavior of rock material. Such elastic-plastic

behavior will affect results in many ways (slow the wave propagation speed for one), but at least it is

reassuring that an elastic solution can be used to help gain understanding of the basic mechanics.

Analytical solutions for shock wave propagation, even with many simplifying assumptions, are valuable

as candidates for verification and validation. Two such solutions are mentioned below. Vasilev et al.

(1980) discusses interaction of gas, liquid and porous medium during and after an underground explosion.

A complex interaction is described which eventually leads to the implosion of explosion cavity. Although

the analysis presented is based on elastic behavior of the porous medium, it provides excellent basis

for understanding phenomena involved as well as for verification. Nikolaevskiy et al. (2006) presents
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more sophisticated analysis of similar phenomena, using finite difference method (Wilkins, 1999), and

an elastic-plastic material model. However, Authors neglect the dilatancy of the material in order to

simplify their solutions. Neglecting dilatancy certainly affects results Compaction related to coupling

of pore fluid and porous solid. Moreover, influence of temperature fields is also neglected (isothermal

process) which might hinder fidelity of modeling where large temperature changes are present and where

temperature change influences behavior of pore fluid and porous solid.

104.8.3.2 Hugoniots

The Hugoniot curves (also known as Rankine-Hugoniot) for material present important data about

material state. Material compression state defined by initial pressure, density and energy, can be used,

to determine new state upon applying shock loads. Such curves prove important in material modeling

for rock subjected to shock loading. Early on Afanasenkov et al. (1969) showed that a it is possible to

predict shock Hugoniots of any substance up to compression ratio of two with the knowledge of initial

density and initial compressibility. Shipman et al. (1971) used a number of experiments to determine

Hugoniots for Sandstone. In addition to that they used measured data and developed curves to show that

phase boundaries do shift significantly compared to those determined using static means. This important

conclusion affects development of elastic-plastic modeling for intact rock where high temperature effects

cannot be neglected.
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104.8.4 Material Modeling of Rock

104.8.4.1 Lawrence Livermore National Laboratory Models

A number of models originating from researchers from Lawrence Livermore National Laboratory have

been developed over the years. While they do not represent a single line of development (and might

have been produced by different research groups from different departments) they are summarized in

this LLNL section.

Glenn (1995) presents a simple, yet effective total stress model that depends on mean confinement

(pressure), temperature and on a damage parameter that serves as an internal variable and depends on

degradation due to tensile and shear failure.√
3sijsij ≤ Y = (1 – D)Ȳ + βDȲ (104.614)

where sij is the deviatoric stress, β is a constant, and D is a scalar function of the volumetric components

of void and equivalent plastic strain tensors. The generalized compressive strength Ȳ is a function of

unconfined compressive strength, the ultimate compressive strength, the melting temperature, the mean

pressure, the cohesion and an material additional constant.

More recently Lomov et al. (2001); Antoun et al. (2003), presented an elastic viscoplastic material

model that takes into the account various influences on rock yielding behavior. For example, taken into

the account are the effects of scaling, hardening, damage and melting. In addition to that, compaction

is modeled using analytic porous compaction model, while also included are the effects of dilatancy.

Model is set in a proper thermodynamic framework. However, it should be noted that strictly following

thermodynamics for geomaterial behavior, can have negative effects on modeling proper volumetric

response (dilatancy and compaction), with alternative material model formulation spaces being suggested

by Collins and Houlsby (1997). This is an area which certainly deserves much attention, namely the

apparent small disconnect between sound thermodynamic framework for modeling (which nicely applies

to metal plasticity) and observed behavior of geomaterials (rock included).

104.8.4.2 Hoek and Brown Model

One of the most often used material models for rock is Hoek and Brown. It is important to note that this

model is actually a failure criterion, delineating elastic and failure states of stress, lacking usual plasticity

features, such as hardening and/or softening. The most recent edition of the model (Hoek et al., 2002)

fixes some earlier observed problems with friction angle determination. This is a valuable model for

practical work for rock with low confinement stresses, where behavior is brittle and failure indeed occurs

as soon as the failure state of stress is reached. However, in view of shock loading modeling, this model
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does not hold much promise, as it lacks, as mentioned above, basic elastic-plastic features.

104.8.4.3 Other Models

A number of other material models have been developed for modeling of elastic-plastic-damage behavior

of rock. Small selection is presented below. It should be noted that most of those developed models

inherit most of their features from models described in previous sections.

Benz and Schwabb (2008) provide comparison for six most commonly used failure criteria for rock.

While failure is emphasized, as opposed to full elastic-plastic behavior, the data presented is very telling in

view of uncertainty of rock behavior. For example, six deterministic models are calibrated using statistical

fitting techniques, and deterministic parameters are developed for a deterministic elastic-plastic (failure)

models. The information about the uncertainty of response is thus completely lost.

Das and Basudhar (2009) perform similar exercise with four deterministic models. Moreover, they

label some of the test data as outliers thus negatively influencing date regression (removal of statistical

moments).

G. W. Ma and Zhou (1998) present an isotropic elastic-plastic model that includes rate dependence,

damage development and plasticity of rock. Isotropic damage was used where the elastic constitutive

tensor was related to scalar damage parameter D

Eijkl = Eijkl(1 – D) (104.615)

This is a standard way of incorporating scalar damage (Carol et al., 1995). Of course, anisotropic damage

(Rizzi, 1993; Carol et al., 2001a,b; Loret and Rizzi, 1997) is more accurate in modeling realistic materials

and should be used whenever possible, however in this case, scalar damage was identified as sufficiently

accurate for modeling. In this model, yield strength is controlled by accumulated damage, through

a simple linear, isotropic relationship. In addition to that, a non-associated plastic flow is employed.

However, plastic flow is limited to deviatoric plane (there is no volumetric component) which reduces

accuracy of modeling, since rock material does undergo plastic volumetric change upon plastification

(Borja, 2006). Comparison of simulation and experimental data shows somewhat satisfactory similarity,

however, bias is present in attenuation plots (similar to results obtained by Wei et al. (2009)).

Bart et al. (2000) presents an interesting approach where an anisotropic poroelastic damage model

is used to model slow behavior of rock samples (sandstone). Model is able to predict effects of damage

induced by micro-cracking, such as deterioration of elastic and poroelastic properties, induced anisotropy

and dilatancy. Model does not feature any plastic deformation, rather inelasticity is completely managed

through damage.
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Chen et al. (2010) develop an elastic-plastic-damage model which can handle inherent and induced

anisotropy. Calibration and application to shale is presented, with main focus on behavior of strongly

anisotropic samples. Fabric tensor (not unlike fabric tensor developed for SANISAND family of models

described in section 104.6.12) presents an effective modeling tool for modeling anisotropy. However,

in their model, Chen and Phoon (2009) simplified modeling of induced anisotropy to isotropic damage

(citing complexity of doing it otherwise). This might be unfortunate as induced anisotropy (resulting

from anisotropic damage) might be more important than inherent anisotropic, particularly for cases

where reversal of loading plays an important role, for example in modeling of shock wave propagation.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.8. INELASTIC BEHAVIOR AND MODELS . . . page: 361 of 3287

104.8.5 Model Calibration / Testing Devices

While a number of material models have been developed over years to model rock behavior, calibration of

such models has to be done with great care. Rock is fairly stiff material and as such, stiffness of testing

equipment can have significant effects on test results. For example, Labuz and Biolzi (2007) discusses

such influence in great detail. Figure 104.8.5 shows how inappropriate stiffness of testing equipment can

affect (mask) the real rock response.

Figure 104.76: Influence of testing machine stiffness on observed and real test specimen behavior (Labuz

and Biolzi, 2007).

In addition to that, elastic-plastic models assume intact rock, so that any influence of discontinuities

is removed from test results. This is where scaling of samples plays a very important role. For example

Lo et al. (1987) show how variation in test specimen volume (see Figure 104.8.5) can affects (bias)

measurements of dynamic elastic modulus, by simply including, within the tested volume, discontinuities

and not accounting for them.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.8. INELASTIC BEHAVIOR AND MODELS . . . page: 362 of 3287

Figure 104.77: Influence of volume of test specimen elastic modulus of rock ((Lo et al., 1987)).
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104.8.6 Influence of Pore Fluid Pressure and Temperature on Rock Response

One of the main features of geomaterials is the coupling of pore fluid with the porous solid. Such coupling

is taken into account through the effective stress principle. The relationship between effective stress,

total stress and pore pressure is (assuming tensile components of stress as positive and compressive

pressure, p is positive) (Zienkiewicz et al., 1999a)

σ
′′
ij = σij + αδijp (104.616)

where σ
′′
ij is effective stress tensor, σij is total stress tensor, δij is Kronecker delta. δij = 1, when i=j,

and δij = 0, when i ̸= j. For isotropic materials,α = 1 – KT /KS (Bouteca and Gueguen, 1999), and KT is

the total bulk modulus of the solid matrix, KS is the bulk modulus of the solid particle/grains. For most

of the geomechanics problems, as the bulk modulus KS of the solid particles is much larger that that

of the whole material, α ≈ 1 can be assumed. However, in case of rock (as well as for concrete, bone

material...), such assumption does not hold all the time so α needs to be kept throughout derivations

(Bouteca and Gueguen, 1999).

104.9 Inelastic Behavior and Models for Concrete Beams, Walls and Shells

104.9.1 Uniaxial Material Model for Steel

The uniaxial steel material model used in this study was developed by Menegotto and Pinto (1973) and

extended by Filippou et al. (1983). Model is capable of capturing the nonlinear hysteretic behavior and

isotropic strain-hardening effect of steel for uniaxial state of stress and strain (1D). The stress–strain

response of rebar steel material is shown in Figure 104.93. The model, as presented in Menegotto and

Pinto (1973), takes on the form:

σ∗ = bϵ∗ +
(1 – b)ϵ∗

(1 + ϵ∗R)1/R (104.617)

with

ϵ∗ =
ϵ – ϵr
ϵ0 – ϵr

; σ∗ =
σ – σr
σ0 – σr

(104.618)

where b is the strain-hardening ratio, ϵr and σr are the strain and stress at the point of strain reversal,

ϵ0 and σ0 are the strain and stress at the point of intersection of the two asymptotes, R is the curvature

parameter that governs the shape of the transition curve between the two asymptotes. It is noted that

this model is for uniaxial material behavior, in which the stresses and strains are scalars instead of tensors.

The expression for the curvature parameter R is suggested by Menegotto and Pinto (1973) as:

R = R0 –
cR1ξ

cR2 + ξ
(104.619)
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Figure 104.78: Constitutive model for uniaxial steel fiber (Menegotto and Pinto (1973)).

where R0 is the value of the curvature parameter R during initial loading, cR1 and cR2 are degradation

parameters that need to be experimentally determined. The parameter ξ, which is updated after strain

reversal, is defined as:

ξ =
∣∣∣∣ (ϵm – ϵ0)

ϵy

∣∣∣∣ (104.620)

where ϵm is the maximum (or minimum) strain at the previous strain reversal point, depending on the

loading direction of the material. If the current incremental strain is positive, the parameter ϵm takes

the value of the maximum reversal strain. Parameter ϵy is the monotonic yield strain.

In order to capture isotropic hardening behavior, Filippou et al. (1983) introduced stress shift mecha-

nism into the original model by Menegotto and Pinto (1973). Note that the hardening rate in compression

and tension can be different by choosing different hardening parameters for compression and tension.

The proposed relation takes the form:

σst
σy

= a1

(
ϵmax
ϵy

– a2

)
(104.621)

where σst is the shift stress that determines the shift of yield asymptote, ϵmax is the absolute maximum

strain at strain reversal, and a1 and a2 are hardening parameters in compression which are experimentally

determined. In the case of tension, the hardening parameters a1 and a2 in Equation 104.621 are changed

to a3 and a4, that are also determined experimentally or from previous studies for given steel.
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104.9.2 3D Plastic Damage Concrete Material Model, Faria-Oliver-Cervera

The concrete material model used in this study was developed by Faria et al. (1998). Model features:

• distinct stress-strain envelopes obtained under compression or under tension

• stiffness recovery after loading reversal

• higher concrete strength under 2D or 3D compression test, compared to 1D loading

• plastic deformations discernible after some compressive stress limit is reached

The material model, as presented in Faria et al. (1998), takes on the form:

σij = (1 – d+)σ̄+
ij + (1 – d–)σ̄–

ij (104.622)

where, d+ and d– are scalar damage variables corresponding to tensile and compressive degradation.

Cauchy stress tensor σij involves effective stress components σ̄+
ij and σ̄–

ij , that are related to the total

effective stress (σ̄ij = σ̄+
ij + σ̄–

ij), defined as follows:

σ̄ij = Dijkl(εkl – εp
kl) (104.623)

In the previous equation, Dijkl is the fourth order isotropic linear elastic constitutive tensor, εkl the

small strain tensor and ε
p
kl is the plastic strain tensor. Damage variables together with the plastic strain

constitute the internal variable set. Tensile part of the effective stress tensor can be written using

principal stresses (σ̄i) and principal directions (pi):

σ̄+ =
∑

i
⟨σ̄i⟩pi ⊗ pi (104.624)

Compressive components of the effective stress can be written as:

σ̄–
ij = σ̄ij – σ̄+

ij (104.625)

Following adopted stress split, a tensile equivalent stress τ̄+ and a compressive equivalent stress τ̄– are

considered. According to Simo and Ju (1987):

τ̄+ = (σ̄+
ijDijklσ̄

+
kl)

1/2 (104.626)

τ̄– = (
√

3(Kσ̄–
oct + τ̄–

oct))1/2 (104.627)

In the last equation, σ̄–
oct and τ̄–

oct are the octahedral normal and shear stress, respectively, obtained from

σ̄–. K is a material characteristic, adjusted so that 2D and 1D compressive strength ratio can match
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ratio of 1.16-1.2 (Kupfer et al., 1969). Two separate damage criteria, functions, g+ for tension and g–

for compression, are introduced:

g+(τ̄+, r+) = τ+ – r+ ≤ 0 (104.628)

g–(τ̄–, r–) = τ– – r– ≤ 0 (104.629)

Variables r+ and r– represent current damage thresholds. Their role is to control the size of expanding

damage surfaces. Quadrant (σ̄2 = 0, σ̄1, σ̄3 ≥ 0) shows 2D representation for this surface, when τ̄+ = r+,

Fig 104.79. The bounding surface associated to the principal effective compressive stresses resembles

Drucker-Prager cone. It is obvious that the elastic domain under 2D compression is bounded by stresses

greater than the 1D elastic compressive stress, denoted by f –
0 .

Figure 104.79: Initial 2D elastic domain

For the plastic flow of the tensor ε
p
ij the following is proposed in Faria et al. (1998):

ε̇
p
ij = β E H(ḋ–)

⟨σ̄ij ε̇ij⟩
σ̄ij σ̄ij

D–1
ijkl σ̄kl (104.630)

where β is the coefficient which controls the rate of intensity of plastic deformation, E is Young’s

modulus, H(ḋ–) denotes the Heaviside step function for the compressive damage rate. Proposed model

assumes that plastic strain has the direction of the elastic strain tensor D–1
ijklσ̄kl. It should be noted that

the model cannot account for plastic strains for a pure tension test.

Kinematics of damage, internal variables is defined based on the following rate equations:

ḋ+ = θ̇+∂G+(r+)
∂r+ (104.631)

ṙ+ = θ̇+(≥ 0) (104.632)
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where G+ and G– are monotonically increasing functions for tension and compression, that are experi-

mentally determined, and θ̇+ and θ̇– are damage consistency parameters. Karush-Kuhn-Tucker conditions

implies the following (Jeremić et al., 1989-2025):

g+ ≤ 0 damage/plastic function (104.633)

θ̇+ ≥ 0 consistency parameter (104.634)

g+ θ̇+ = 0 (104.635)

which leads to the following conclusions:

• when damage/plasticity function is smaller then zero, g+ < 0, consistency parameter must be zero,

θ̇+ = 0, implying that no damage occurs,

• when consistency parameter is greater than zero, θ̇+ > 0, damage/plastic function is zero, g+ = 0

implying the presence of damage.

It is now possible to define consistency parameter θ̇+ from the damage consistency condition:

ġ+(τ̄+, r+) = 0 =⇒ ṙ+ = τ̇+ = θ̇+, θ̇+ ≥ 0 (104.636)

Introducing equation (104.636) into (104.631) the flow rule for the tensile damage variable can be

expressed as:

ḋ+ =
∂G+(r+)
∂r+ ṙ+ = Ġ+(r+) ≥ 0 (104.637)

The compression damage variable is then:

ḋ– =
∂G–(r–)
∂r– ṙ– = Ġ–(r–) ≥ 0 (104.638)
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104.10 Calibration of Elastic-Plastic Material Models

104.10.1 Calibration of Elastic-Plastic Material Models, Soil

104.10.2 Calibration of Elastic-Plastic Material Models, Rock

104.10.3 Calibration of Elastic-Plastic Material Models, Contact/Joint/Interface

104.10.4 Calibration of Elastic-Plastic Material Models, Concrete

104.10.5 Calibration of Elastic-Plastic Material Models, Steel

104.11 Energy Dissipation Calculations for Solids

This section is based on Yang et al. (2018)

104.11.1 Introduction

Energy dissipation in elastic plastic solids and structures is the result of an irreversible dissipative process

in which energy is transformed from one form to another and entropy is produced. The transformation and

dissipation of energy is related to permanent deformation and damage within an elastic-plastic material.

Of particular interest here is the dissipation of mechanical energy that is input into elastic-plastic solids

by static or dynamic excitations.

Early work on plastic dissipation was done by Farren and Taylor (1925) and Taylor and Quinney

(1934). They performed experiments on metals and proved that a large part, but not all, of the input

mechanical energy is converted into heat. The remaining part of the non-recoverable plastic work is

known as the stored energy of cold work. The ratio of plastic work converted into heating (Quinney–

Taylor coefficient), usually denoted as β, has been used in most later work on this topic. Based on large

amount of experimental data, this ratio was determined to be a constant between 0.6 to 1.0 (Clifton

et al., 1984; Belytschko et al., 1991; Zhou et al., 1996; Dolinski et al., 2010; Ren and Li, 2010; Osovski

et al., 2013).

More recently Rittel (Rittel, 2000; Rittel and Rabin, 2000; Rittel et al., 2003) published several

insightful papers on the energy dissipation (heat generation) of polymers during cyclic loading, presenting

both experimental and theoretical works. Rosakis et al. Rosakis et al. (2000) presented a constitutive

model for metals based on thermoplasticity that is able to calculate the evolution of energy dissipation.

Follow up papers (Hodowany et al., 2000; Ravichandran et al., 2002) present assumptions to simplify

the problem. One direct application of plastic dissipation to geotechnical engineering is presented by

Veveakis et al. (Veveakis et al., 2007, 2012), using thermoporomechanics to model the heating and pore
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pressure increase in large landslides, like the 1963 Vajont slide in Italy.

In the past few decades, extensive studies have been conducted on energy dissipation in structures

and foundations. Work by Uang and Bertero (1990) has been considered a source and a reference for

many recent publications dealing with energy as a measure of structural demand. Uang and Bertero

(1990) developed an energy analysis methodology based on absolute input energy (or energy demand).

Numerical analysis results were compared with experiments on a multi-story building. In work by Uang

and Bertero (1990) , hysteretic energy is calculated indirectly by taking the difference of absorbed energy

and elastic strain energy. The term absorbed energy of each time step is simply defined as restoring force

times incremental displacement. It is also stated that hysteretic energy is irrecoverable, which indicates

that this parameter was considered the same as hysteretic dissipation or plastic dissipation. An equation

for energy balance, is given by (Uang and Bertero (1990)) as:

Ei = Ek + Eξ + Ea = Ek + Eξ + Es + Eh (104.639)

where Ei is the (absolute) input energy, Ek is the (absolute) kinetic energy, Eξ is the viscous damping

energy, Ea is the absorbed energy, which is composed of elastic strain energy Es and hysteretic energy

Eh.

The problem with this approach is the absence of plastic free energy, which is necessary to correctly

evaluate energy dissipation of elastic-plastic materials and to uphold the second law of thermodynamics.

While there is no direct plot of plastic dissipation (hysteretic energy) in Uang and Bertero (1990), since

it was not defined directly, there are plots of other energy components. Plastic dissipation can be easily

calculated from these plots. After doing this, indications of negative incremental energy dissipation,

which violates the basic principles of thermodynamics, were found in various sections of the paper.

This misconception could be clarified by renaming hysteretic energy as plastic work, a sum of plastic

dissipation and plastic free energy. Both plastic work and plastic free energy can be incrementally

negative, but plastic dissipation (defined as the difference of plastic work and plastic free energy) must

be incrementally non-negative during any time period. Unfortunately, this misconception has been

inherited (if not magnified) by many following studies on energy analysis of earthquake soils and structures

(hundreds of papers).

Even Chopra (2000) used similar set of equations in section 7.9, and equation 7.9.6 is clearly wrong!

The basic principles of thermodynamics are frequently used to derive new constitutive models, for

example by Dafalias and Popov (1975), Ziegler and Wehrli (1987), Collins and Houlsby (1997), Houlsby

and Puzrin (2000), Collins (2002), Collins and Kelly (2002), Collins (2003) and Feigenbaum and Dafalias

(2007). The concept of plastic free energy is introduced to enforce the second law of thermodynamics for

developed constitutive models. It is important to distinguish between energy dissipation due to plasticity
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and plastic work, which is often a source of a confusion. Plastic work is the combination of plastic free

energy and plastic energy dissipation, which is defined as the amount of heat (and other forms of energy)

transformed from mechanical energy during an irreversible dissipative process. The physical nature of

plastic free energy is illustrated later in this section through a conceptual example that is analyzed on

particle scale. Essentially, development of plastic free energy is caused by particle rearrangement in

granular assembly under external loading.

Specific formulation of free energy depends on whether the elastic and plastic behavior of the material

is coupled. According to Collins et al. Collins and Houlsby (1997), Collins (2002), Collins (2003), material

coupling behavior can be divided into modulus coupling, where the instantaneous elastic stiffness (or

compliance) moduli depend on the plastic strain, and dissipative coupling, where the rate of dissipation

function depends not only on the plastic strains and their rates of change but also on the stresses (or

equivalently the elastic strains). The modulus coupling describes the degradation of stiffness as in for

rock and concrete, and is usually modeled by employing a coupled elastic-plastic constitutive model or

by introducing damage variables. The dissipative coupling is considered to be one of the main reasons

for non-associative behavior in geomaterials Collins and Houlsby (1997), Ziegler (1981).

A number of stability postulates are commonly used to prevent violation of principles of thermo-

dynamics. Stability postulates include Drucker’s stability condition Drucker (1956), Drucker (1957),

Hill’s stability condition Bishop and Hill (1951), Hill (1958), and Il’Iushin’s stability postulate Il’Iushin

(1961), Lubliner (1990). As summarized in a paper by Lade Lade (2002), theoretical considerations by

Nemat–Nasser (1983) and Runesson and Mrǒz (1989) have suggested that they are sufficient but not

necessary conditions for stability. These stability postulates can indeed ensure the admissibility of the

constitutive models by assuming certain restrictions on incremental plastic work. As demonstrated by

Collins (2002), if the plastic strain rate is replaced by the irreversible stain rate in Drucker’s postulate,

then all the standard interpretations of the classical theory still apply for coupled materials. Dafalias

(1977) also modified Il’Iushin’s postulate in a similar way and applied it to both coupled and uncoupled

materials.

It is important to note that development of inelastic deformation in geomaterials involves large

changes in entropy, and significant energy dissipation. It is thus useful to perform energy dissipation

(balance) analysis for all models with inelastic deformation. In section we focus on energy dissipation on

material level. Focus is on proper modeling that follows thermodynamics. Comparison is made between

accumulated plastic dissipation and accumulated plastic work, since these quantities can be quite different

in most cases. As a way of verification, the input work, which is introduced by applying external forces,

is compared with the stored energy and dissipation in the entire system. Finally, conclusions on plastic

energy dissipation are drawn from the verified results.
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104.11.2 Theoretical and Computational Formulations

104.11.2.1 Thermo-Mechanical Theory

For energy analysis of elastic-plastic materials undergoing isothermal process, it is beneficial to start

from the statement of the first and second laws of thermodynamics:

Ŵ = Ψ̇ + Φ (104.640)

where Φ ≥ 0 and Ŵ ≡ σ : ϵ̇ = σij ϵ̇ij is the rate of work per unit volume. The function Ψ is the Helmholtz

free energy, and Φ is the rate of dissipation; both defined per volume. The free energy Ψ is a function

of the state variables (also known as internal variables), but Φ and Ŵ are not the time derivatives of

the state functions. The choice of state variables depends on the complexity of constitutive model that

is being used, as cyclic loading with certain hardening behaviors usually requires more state variables.

This will be elaborated in the following sections as we discuss specific elastic-plastic material models.

For general elastic-plastic materials, the free energy depends on both the elastic and plastic strains.

In most material models, it can be assumed that the free energy Ψ can be decomposed into elastic and

plastic parts:

Ψ = Ψel + Ψpl (104.641)

The total rate of work associated with the effective stress can be written as the sum of an elastic

and plastic component:

Ŵel ≡ σij ϵ̇
el
ij = Ψ̇el (104.642)

and

Ŵpl ≡ σij ϵ̇
pl
ij = Ψ̇pl + Φ (104.643)

Note that the focus of this section is the energy dissipation caused by material plasticity, which

should be distinguished from viscous coupling and other sources of energy dissipation. So the effects of

solid-fluid interaction are neglected and all stresses are defined as effective stresses in further derivations.

In order to avoid confusion, the common notation (σ
′
ij) will not be used. Standard definition of stress

from mechanics of materials, i.e. positive in tension, is used.

In the case of a decoupled material, the elastic free energy Ψel depends only on the elastic strains,

and the plastic free energy Ψpl depends only on the plastic strains, as shown by Collins and Houlsby

(1997):

Ψ = Ψel(ϵel
ij ) + Ψpl(ϵ

pl
ij ) (104.644)
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The effective stress can also be decomposed into two parts:

σij = αij + χij (104.645)

lwhere χij is a stress-like variable that is related to the dissipative behavior of elastic-plastic material.

The difference between the actual stress σij and the stress-like variable χij is another stress-like term

αij , which is defined from the plastic free energy function Ψpl. In simple kinematic hardening models,

this variable αij controls the shift behavior of stress under cyclic loading, and thus usually referred to as

shift or back stress.

Ziegler’s orthogonal postulate Ziegler and Wehrli (1987) ensures the validity of Equation 104.645. It is

equivalent to the maximum entropy production criterion, which is necessary to obtain unique formulation.

Also, this is a weak assumption so that all the major continuum models of thermo-mechanics are included.

Equation 104.643 of plastic work rate can hence be rewritten as:

Ŵpl ≡ σij ϵ̇
pl
ij = Ψ̇pl + Φ = αij ϵ̇

pl
ij + χij ϵ̇

pl
ij (104.646)

The plastic work Ŵpl is the product of the actual Cauchy stress σij with the plastic strain rate ϵ̇
pl
ij ,

while the dissipation rate Φ is the product of the stress variable χij with the plastic strain rate ϵ̇
pl
ij . They

are only equal if the rate of plastic free energy Ψ̇pl is zero, or equivalently, if the free energy depends

only on the elastic strains.

In kinematic hardening models, where the back stress describes the translation (or rotation) of the

yield surface, the decomposition of the true stress (sum of back stress and dissipative stress) is a default

assumption. Although such a shift stress is important for anisotropic material models, Collins and Kelly

(2002) have pointed out that it is also necessary in isotropic models of geomaterials with different

strength in tension and compression.

104.11.2.2 Plastic Free Energy

A popular conceptual model, which focused on particulate materials and demonstrated the physical

occurrence of shift stresses, was described by Besseling and Van Der Giessen (1994) and Collins and

Kelly (2002). On macro (continuum) scale, every point in a given element is at yield state and deforms

plastically. But on meso-scale, only part of this element is undergoing plastic deformations, the remaining

part is still within yield surface and respond elastically. The elastic strain energy stored in the elastic

part of a plastically deformed macro-continuum element is considered to be locked into the macro-

deformation, giving rise to the plastic free energy function Ψpl and its associated back stress αij . This

energy can be released only when the plastic strains are reversed.
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For better explanation, the nature of plastic free energy in particulate materials is illustrated through

a finite element simulation combined with considerations of particle rearrangement on mesoscopic scale.

Figure 104.80 shows stress-strain response of Drucker-Prager with nonlinear Armstrong-Frederick kine-

matic hardening, a typical elastic-plastic model for metals and geomaterials. Six states during shear are

chosen to represent evolution of micro fabric of the numerical sample. Correspondingly, Figure 104.81

shows the process of particle rearrangement of the 2D granular assembly under cyclic shearing from mi-

croscopic level. The square window can be roughly considered as a representative volume (a constitutive

level or a finite element) in FEM.
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Figure 104.80: Elastic-plastic material modeled with Drucker-Prager yield function and Armstrong-

Frederick kinematic hardening under cyclic shear loading: (a) Stress-strain curve; (b) stress and plastic

strain versus time.

By discussing movement and energy of particle A in Figure 104.81, the physical nature of plastic free

energy is illustrated. At state (a), which is the beginning of deformation, particle A does not bear any

load other than its self weight. State (b) is in middle of loading, when particle B pushes downwards to

particle A until it makes contact with particle D and E. Load reaches peak at state (c), and there’s no

space for particle A to move. Then the sample is unloaded to state (d). Particle A is now stuck between

particles C, D, and F, which means that certain amount of elastic energy is stored due to particle elastic

deformation. Compared with state (a), this part of elastic energy is not released when the sample is

unloaded, which indicates that it’s not classic strain energy. This part of elastic energy on particle level

which can’t be released by unloading is defined as the plastic free energy in granular materials. Reverse

loading starts at state (e), where particle D pushes particle A upwards, making it squeeze through particle

C and F. Elastic energy on particle level, which is now defined as plastic free energy, is released during
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Figure 104.81: Particle rearrangement of a 2D granular assembly under cyclic shearing: (a) Initial state;

(b) Loading (accumulating plastic free energy); (c) End of loading (maximum plastic free energy); (d)

Unloading (plastic free energy unchanged); (e) Reverse loading (releasing plastic free energy); (f) End

of reverse loading (plastic free energy released).
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reverse loading.

By analyzing this example, an explanation on particle scale is provided for the origin of plastic free

energy in granular materials. It is important to note that the concept of plastic free energy also exists in

metals and other materials, as studied by Dafalias et al. (2002) and Feigenbaum and Dafalias (2007).

The physical nature of plastic free energy in these materials can be different and probably should be

studied on molecular and/or crystalline level.

Collins Collins and Kelly (2002), Collins (2003) suggested that in the case of granular materials, the

particle-level plastic energy dissipation during normal compaction, arises from the plastic deformations

occurring at the inter-granular contacts on the strong force chains, that are bearing the bulk of the

applied loads. Collins also suggested that the locked-in elastic energy is produced in the weak force

networks, where the local stresses are not large enough to produce plastic deformation at the grain

contacts. The plastic strains can be associated with the irreversible rearrangement of the particles,

whilst the elastic energy arises from the elastic compression of the particle contacts. Part of this elastic

strain energy will be released during unloading, however other part of this energy will be trapped as a

result of the irreversible changes in the particle configuration.

104.11.2.3 Plastic Dissipation

As pointed out, plastic work and energy dissipation are not the same physical quantity. The confusion of

these two concepts often leads to incorrect results and conclusions, especially in seismic energy dissipation

analysis. Of major concern in this section is the computation of plastic dissipation, as elaborated in this

section.

With the decoupling assumption (Equation 104.644), the second law of thermodynamics (positive

entropy production) directly leads to the dissipation inequality, which states that the energy dissipated

due to the difference of the plastic work rate and the rate of the plastic part of the free energy must be

non-negative:

Φ = σij ϵ̇
pl
ij – Ψ̇pl = σij ϵ̇

pl
ij – ρψ̇pl ≥ 0 (104.647)

where ψ̇pl is the rate of plastic free energy, per unit mass, and ρ is the mass density. In addition, ψpl

denotes plastic free energy density, which is generally not constant at different locations in a body. This

expression is closer to physics and makes it convenient for further derivations.

Now we proceed to consider how to calculate plastic free energy, which can then be used to calculate

dissipation. According to Feigenbaum and Dafalias (2007), plastic free energy density ψpl is assumed

to be additively decomposed into parts which correspond to the isotropic, kinematic and distortional
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hardening mechanisms as follows:

ψpl = ψiso
pl + ψani

pl ; ψani
pl = ψkin

pl – ψdis
pl (104.648)

where ψiso
pl , ψani

pl , ψkin
pl , and ψdis

pl are the isotropic, anisotropic, kinematic, and distortional parts of the

plastic free energy, respectively. The anisotropic part is assumed to decompose into kinematic and

distortional parts, which correspond to different hardening models. The subtraction, instead of addition,

of ψdis
pl from ψkin

pl , to obtain the overall anisotropic part ψani
pl of the plastic free energy, is a new concept

proposed by Feigenbaum and Dafalias (2007). This expression can better fit experimental data, as well

as satisfy the plausible expectations for a limitation of anisotropy development. The distortional part

of the plastic free energy ψdis
pl is related to the directional distortion of yield surface and will only be

present if the material model incorporates distortional strain hardening, which is not considered in the

formulations and examples of this study.

As pointed out by Dafalias et al. (2002), the thermodynamic conjugates to each of the internal

variables exist and each part of the plastic free energy can be assumed to be only a function of these

conjugates. The explicit expressions for the isotropic and kinematic components of the plastic free energy

are:

ψiso
pl = ψiso

pl (k̄) =
κ1
2ρ

k̄2; ψkin
pl = ψkin

pl (ᾱij) =
a1
2ρ
ᾱijᾱij (104.649)

where k̄ and ᾱij are the thermodynamic conjugates to k (size of the yield surface) and αij (deviatoric

back stress tensor representing the center of the yield surface), respectively. Material constants κ1 and

a1 are non-negative material constants whose values depend on the choice of elastic-plastic material

models.

According to definition, the thermodynamic conjugates are related to the corresponding internal

variables by:

k = ρ
∂ψiso

pl
∂k̄

= κ1k̄; αij = ρ
∂ψkin

pl
∂ᾱij

= a1ᾱij (104.650)

By substituting Equation 104.650 back into Equation 104.649, the plastic free energy can be expressed

in terms of the internal variables:

ψiso
pl =

1
2ρκ1

k2; ψkin
pl =

1
2ρa1

αijαij (104.651)

With Equation 104.651, the components of plastic free energy can be computed, as long as the

internal variables are provided. Combining Equation 104.647 with 104.651, the plastic dissipation in a

given elastic-plastic material can be accurately obtained at any location, at any time. This approach

allows engineers and designers to correctly identify energy dissipation in time and space and make

appropriate conclusions on material behavior.
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104.11.2.4 Energy Computation in Finite Elements

Formulations from the previous section are applied to FEM analysis in order to follow energy dissipation.

Energy density is chosen as the physical parameter for energy analysis. Energy density in this study is

defined as the amount of energy stored in a given region of space per unit volume.

For FEM simulations, both external forces and displacements can be prescribed. The finite element

program accepts either (or both) forces and/or displacements as input and solves for the other. Either

way, the rate of input work can be calculated by simply multiplying force and displacement within a time

step. Therefor input work of a finite element model is:

WInput(t) =
∫ t

0
ẆInput(T )dT =

∫ t

0

∑
i

Fex
i (x, T )u̇i(x, T )dT (104.652)

where Fex
i is the external force and ui is the displacement computed at the location of the applied load,

at given time step, for a load controlled analysis. The external load can have many forms, including

nodal loads, surface loads, and body loads. All of them are ultimately transformed into nodal forces. As

shown in Equation 104.652, input work is computed incrementally at each time step, in order to obtain

the evolution of total input work at certain time.

As shown in Figure 104.82, when loads and/or displacements are introduced into a finite element

model, the input energy will be converted in a number of different forms as it propagates through the

system. Input energy will be converted into kinetic energy, free energy, and dissipation. As mentioned

before, free energy can be further separated into elastic part, which is traditionally defined as strain

energy, and plastic part, which is defined as the plastic free energy. Kinetic energy and strain energy

can be considered as the recoverable portion of the total energy since they are transforming from one to

another. Plastic free energy is more complicated in the sense that it is conditionally recoverable during

reverse loading, as has been discussed in detail in previous sections. Other than kinetic energy and free

energy, the rest of the input energy is dissipated, transformed into heat or other forms of energy that

are irrecoverable.

Calculation of kinetic energy and strain energy is rather straight forward:

UK (x, t) =
1
2
ρu̇ij(x, t)u̇ij(x, t) (104.653)

US(x, t) =
∫ t

0
U̇S(x, T )dT =

∫ t

0
σij(x, T )ϵ̇el

ij (x, T )dT (104.654)

where UK and US are the kinetic energy density and strain energy density, respectively.
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Figure 104.82: Different forms of energy in a dynamic soil-structure system.

Similar to the input energy, strain energy density and plastic free energy are also computed incremen-

tally. Integrating energy density over the entire model, corresponding energy quantities are expressed

as:

EK (t) =
∫

V
UK (x, t)dV (104.655)

ES(t) =
∫

V
US(x, t)dV (104.656)

EP(t) =
∫

V
Ψpl(x, t)dV (104.657)

where EK , ES, and EP are the kinetic energy, strain energy, and plastic free energy of the entire model,

respectively. Energy densities, defined in Equations 104.653 and 104.654 are functions of both time

and space, while energy components, defined in the above equations (Equation 104.655, 104.656, and

104.657) are only functions of time, since they are integrated over the whole model.

Although the plastic free energy is conditionally recoverable, it is still considered to be stored in the

system, rather than dissipated. Summing up all the stored energy EStored , one obtains:

EStored = EK + ES + EP (104.658)
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Rate of plastic dissipation, given by Equation 104.647, can be integrated over time and space:

DP(t) =
∫

V

∫ t

0
Φ(x, T )dTdV (104.659)

where DP is the dissipation due to plasticity of the entire model at certain time.

Finally the energy balance of a finite element model is given by:

WInput = EStored + DP = EK + ES + EP + DP (104.660)

104.11.3 Numerical Studies

Numerical simulation results presented in this section are performed using the Real-ESSI (Jeremić et al.,

1988-2025). Examples in this section focus on constitutive behavior of elastic-plastic material from the

perspective of energy dissipation.

All cases are assumed to be static problems. External loads are applied incrementally using load- or

displacement-control scheme. System equations are solved using Newton-Raphson iteration algorithm

and UMFPACK solver. Standard 8-node-brick elements are used in all cases, in order to eliminate the

variation in energy computation caused by different element types.

104.11.3.1 Elastic Material

Figure 104.83: Numerical models used in this section: (a) Single brick element; (b) Cantilever with 10

brick elements.

Initial investigation of energy dissipation is focused on linear elastic material. It is noted that linear

elastic material does not dissipate energy. Use of linear elastic material model is suitable for preliminary

verification of the newly developed energy analysis methodology. In this section, energy balance in a

single brick element and a cantilever beam is studied, as shown in Figure 104.83.

It should be mentioned that the bending deformations of cantilever are not accurate due to the use of

a single layer of 8-node-brick elements in the direction of stress and strain variation. However, the focus
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of this example is energy transformation and balance, which are not affected by inaccurate deformations

in this example.

The simplest case is a single element model under uniform shear load. The model is constrained

appropriately to simulate simple shear test. In order to show the influence of different material param-

eters and loads, a set of simulations are performed and the results are presented in Table 104.2 and

Figure 104.84.

Table 104.2: Energy analysis results for linear elastic materials (single element).

Material Property Simulation Results

E (GPa) ν u (m) WInput (J) EK (J) ES (J) EP (J) EStored (J) DP (J)

100 0.30 2.60E-5 13.00 0.00 13.00 0.00 13.00 0.00

150 0.30 1.73E-5 8.67 0.00 8.67 0.00 8.67 0.00

200 0.30 1.30E-5 6.50 0.00 6.50 0.00 6.50 0.00

250 0.30 1.04E-5 5.20 0.00 5.20 0.00 5.20 0.00

300 0.30 8.67E-6 4.33 0.00 4.33 0.00 4.33 0.00

200 0.20 1.20E-5 6.00 0.00 6.00 0.00 6.00 0.00

200 0.25 1.25E-5 6.25 0.00 6.25 0.00 6.25 0.00

200 0.30 1.30E-5 6.50 0.00 6.50 0.00 6.50 0.00

200 0.35 1.35E-5 6.75 0.00 6.75 0.00 6.75 0.00

200 0.40 1.40E-5 7.00 0.00 7.00 0.00 7.00 0.00

Since linear elastic material is used with static algorithm, energy components related to dynamics

(kinetic energy) and plasticity (plastic free energy and plastic dissipation) are equal to zero. This means

that all input work is stored in the system, as observed in all cases.

Figure 104.84 shows that energy stored in the system is inversely proportional to Young’s moduli E

and proportional to one plus Poisson’s ratio (1 + ν). This is expected because of the following equations

for strain energy under static shear loading:

ES =
1
2
τγ =

1
2G

τ2 =
1 + ν

E
τ2 (104.661)

Note that these relationships are only valid at constitutive level. For models with more finite elements,

stress and strain are generally not uniform. The computation of energy depends on the distribution

of energy density, and nonuniform stress/strain distribution will result in nonuniform energy density

distribution.
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Figure 104.84: Relationships between energy storage and different simulation parameters (single element

model): (a) Young’s modulus; (b) Poisson’s ratio.

In order to study the influence of simulation parameters in larger models, another set of simulations

with cantilever model (Figure 104.83b) are performed. Vertical loads are applied to the nodes of the

free end. In this case, both shearing and bending occurs, which means that in general a full 3D state of

stress and strain is present. The results are presented in Table 104.3 and Figure 104.84. As expected,

energy behavior of cantilever is different than the single-element/constitutive example.

For all cases, the energy balance between input and storage is maintained, which gives us confidence

on the energy calculation methodology for elastic material. According to results in Figure 104.84, energy

stored in the system is still inversely proportional to Young’s modulus. This is because the general

equation for elastic strain energy density is:

ES =
1

2E

(
σ2

xx + σ2
yy + σ2

zz + 2(1 + ν)(σ2
xy + σ2

yz + σ2
zx)
)

(104.662)

So as long as all the elements have the same Young’s modulus, the relationship between stored energy

and Young’s modulus will remain valid.

104.11.3.2 von Mises Plasticity

Elastic-plastic modeling using von Mises material model has been proven to be effective in modeling

pressure-independent materials like steel or other metals. In this section, the energy behavior of models

using von Mises plasticity with various hardening rules are examined using the proposed method. The

material model parameters used in this section are summarized in Table 104.4.

Note that associated plasticity is used in all models in this section, which means that the plastic flow
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Table 104.3: Energy analysis results for linear elastic materials (cantilever model).

Material Property Simulation Results

E (GPa) ν u (m) WInput (J) EK (J) ES (J) EP (J) EStored (J) DP (J)

100 0.30 2.33E-3 116.57 0.00 116.57 0.00 116.57 0.00

150 0.30 1.55E-3 77.71 0.00 77.71 0.00 77.71 0.00

200 0.30 1.17E-3 58.28 0.00 58.28 0.00 58.28 0.00

250 0.30 9.33E-4 46.63 0.00 46.63 0.00 46.63 0.00

300 0.30 7.77E-4 38.86 0.00 38.86 0.00 38.86 0.00

200 0.20 1.20E-5 65.89 0.00 65.89 0.00 65.89 0.00

200 0.25 1.26E-3 62.97 0.00 62.97 0.00 62.97 0.00

200 0.30 1.17E-3 58.28 0.00 58.28 0.00 58.28 0.00

200 0.35 1.02E-3 51.17 0.00 51.17 0.00 51.17 0.00

200 0.40 8.12E-4 40.60 0.00 40.60 0.00 40.60 0.00

direction mij is equal to the gradient of the yield surface nij(= ∂f /∂σij). Since the yield function is of

von Mises type, associated plasticity leads to the result that only deviatoric plastic flow will appear in

all cases.

No Hardening (Elastic-Perfectly Plastic). In this example, elastic-perfectly plastic material is used.

Equations 104.647 and 104.651 indicate that in the case of no hardening the rate of plastic free energy

is zero. Then the incremental plastic work is equal to incremental plastic dissipation. Note that this is

one of the rare cases where plastic dissipation equals to plastic work.

Figure 104.85 shows stress–strain curve (left) and energy calculated for elastic-perfectly plastic con-

stitutive model (right) used here.

In this case, the plastic dissipation is equal to the plastic work. This means that the plastic free

energy does not develop at all during loading and unloading. Zero plastic free energy points out the

absence of fabric evolution of a particulate, elastic-plastic material, as all the input work is dissipated

through particle to particle friction. Since there is no plastic free energy EP in this case, the stored

energy equals to mechanical energy, which is the combination of strain energy ES and kinetic energy EK .

Total stored energy EStored develops nonlinearly and always has the same value at the beginning of every

loop after the first one. Plastic dissipation DP increases linearly when the material yields. This can be
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Table 104.4: Model parameters for cases using von Mises plasticity

Parameter Unit
Hardening Type

No Hardening Linear Isotropic Linear Kinematic A–F Kinematic

mass density kg/m3 8050 8050 8050 8050

elastic modulus GPa 200 200 200 200

poisson ratio 0.3 0.3 0.3 0.3

von mises radius MPa 250 250 250 250

isotropic hardening rate GPa 20 0

kinematic hardening rate GPa 0 50

armstrong frederick ha GPa 200

armstrong frederick cr 100
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Figure 104.85: Energy analysis of elastic-plastic material modeled using von Mises plasticity with no

hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation, strain energy and plastic work.

explained by rewriting Equation 104.647 with Ψpl = 0:

Φ = σij ϵ̇
pl
ij (104.663)

where stress σij is constant after elastic perfectly plastic material yields, and rate plastic deformation ϵ̇
pl
ij

is also constant. Then the rate of plastic dissipation is constant which makes the plastic dissipation DP

increase linearly.
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Linear Isotropic Hardening. Next material model used is von Mises plasticity with linear isotropic hard-

ening. First used to model monotonic behavior of elastic-plastic materials, isotropic hardening assumes

that the yield surface maintains shape, while isotropically (proportionally) changing its size. Figure 104.86

illustrates the stress–strain response as well as energy balance for elastic-plastic material with isotropic

hardening.
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Figure 104.86: Energy analysis of elastic-plastic material modeled using von Mises plasticity with linear

isotropic hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation, strain energy, and plastic

work.

As can be observed from Figure 104.86, plastic free energy is equal to the plastic work, which means

that the plastic dissipation is zero during cycles of loading. Even though this might sound surprising,

it can be explained using basic thermodynamics. Linear isotropic hardening, used in this case, can be

described through a rate of the internal variable (size of the yield surface) k̇ as:

k̇ = κ1|ϵ̇pl
ij | (104.664)

where |ϵ̇pl
ij | is the magnitude of the rate of plastic strain while κ1 is a hardening constant. The hardening

constant κ1 is denoted as isotropic hardening rate in Table 104.4. Substituting previous equation

into Equation 104.651 yields:

ψpl = ψiso
pl =

κ1
2ρ
ϵ
pl
ij ϵ

pl
ij (104.665)

Take the time derivative of the above equation:

ψ̇pl =
κ1
ρ
ϵ
pl
ij ϵ̇

pl
ij (104.666)
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Then the rate of dissipation due to plasticity can be expressed as:

Φ = σijϵ
pl
ij – ρψ̇pl = (σij – κ1ϵ

pl
ij )ϵ̇pl

ij = (σij – kmij)ϵ̇
pl
ij (104.667)

where mij is the plastic flow direction. The plastic flow direction defines the direction of incremental

plastic strain, which can be different from the direction of total plastic strain. But in the case of

associated von Mises plasticity with only isotropic hardening, the plastic flow direction mij is the same

as the direction of the total plastic strain ϵ
pl
ij . Thus we have κ1ϵ

pl
ij = kmij in the above equation.

Substitute the plastic flow direction mij with the gradient of yield surface nij , and also note that

σij ϵ̇
pl
ij = sij ϵ̇

pl
ij , where sij(= σij – 1/3δijσkk) is the deviatoric part of the stress tensor, the rate of plastic

dissipation can be rewritten as:

Φ = (sij – knij)ϵ̇
pl
ij = αij ϵ̇

pl
ij (104.668)

Realizing that the back stress αij is always zero since we assume no kinematic hardening, then the

rate of plastic dissipation becomes zero, which means there is no energy dissipation during cycles of

loading for isotropically hardening material. Obviously, the observed response is not physical from the

perspective of energy dissipation. Therefore, isotropic hardening material models cannot properly model

energy dissipation, even for monotonic loading.

Prager Linear Kinematic Hardening. Compared with isotropic hardening, kinematic hardening can better

describe the constitutive, stress-strain behavior of elastic-plastic materials, particularly for cyclic loading.

Elastic-plastic material that relies on kinematic hardening is used to analyze energy dissipation. Both

linear and nonlinear kinematic hardening rules are investigated in relation to energy dissipation.

Prager’s linear kinematic hardening rule is given as:

α̇ij = a1ϵ̇
pl
ij (104.669)

where a1 is a hardening constant. The hardening constant a1 is denoted as kinematic hardening rate

in Table 104.4.

If only linear kinematic hardening (Equation 104.669) is assumed, the back stress αij is expressed

explicitly, and can be substituted into Equation 104.651 yielding:

ψpl = ψkin
pl =

a1
2ρ
ϵ
pl
ij ϵ

pl
ij (104.670)

Take the time derivative of the above equation:

ψ̇pl =
a1
ρ
ϵ
pl
ij ϵ̇

pl
ij (104.671)
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Then the rate of dissipation due to plasticity can be rewritten as:

Φ = σij ϵ̇
pl
ij – ρψ̇pl = (sij – αij)ϵ̇

pl
ij = kmij ϵ̇

pl
ij (104.672)

Notice that the term mij ϵ̇
pl
ij denotes the magnitude of the rate of plastic strain. Since only linear

kinematic hardening is assumed, the internal variable k will remain constant. So if loads are applied

in such a way that the rate of plastic strain is constant, then the rate of dissipation will also remain

constant. In other words, the accumulated dissipation will be linearly increasing under the assumption

of linear kinematic hardening.

Figure 104.87 shows stress–strain response (left) and energy computation results (right) of an elastic-

plastic material modeled using von Mises plasticity with linear kinematic hardening.
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Figure 104.87: Energy analysis of elastic-plastic material modeled using von Mises plasticity with linear

kinematic hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation strain energy and plastic

work.

As expected, the plastic dissipation increases linearly once the material yields. In contrast to the

isotropic hardening case, a significant amount of the input work is dissipated due to material plasticity.

The ratio of dissipated energy to input work is largely influenced by the material parameters. However,

in general, energy dissipation will be observed if kinematic hardening model is used.

Another important observation is that the plastic work decreases during certain phases of reverse

loading, while the actual rate of energy dissipation is always nonnegative. It is important to distinguish

plastic work from plastic energy dissipation. Otherwise, one might argue that accumulated energy

dissipation can increase or decrease, which is a common mistake observed in a number of publications

that violates the second law of thermodynamics.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Armstrong-Frederick Kinematic Hardening. Armstrong-Frederick kinematic hardening model Armstrong

and Frederick (1966) is often used to simulate elastic-plastic material behavior under cyclic loading.

Material parameters of the Armstrong-Frederick kinematic hardening rule can be derived from basic

thermodynamics. The following equation is a general expression for Armstrong-Frederick kinematic

hardening rule:

α̇ij = a1ϵ̇
pl
ij – a2λ̇αij (104.673)

where λ̇ is a non-negative scalar plastic multiplier and a2 is a non-negative material hardening con-

stant. It can be proven that a1/a2 is related to the limit of back stress magnitude
∣∣αij
∣∣. In Ta-

ble 104.4, the hardening constants a1 and a2 correspond to parameters armstrong frederick ha and

armstrong frederick cr.

Taking the time derivative of the kinematic part of plastic free energy (Equation 104.671), and

substituting the expression of back stress αij (Equation 104.673) gives:

ψ̇kin
pl =

1
ρa1

αijα̇ij =
1
ρ
αij(ϵ̇

pl
ij –

a2
a1
λ̇αij) (104.674)

Then the rate of plastic energy dissipation of an Armstrong-Frederick kinematic hardening elastic-

plastic material is given by:

Φ = σij ϵ̇
pl
ij – ρψ̇pl = sij ϵ̇

pl
ij – αij ϵ̇

pl
ij +

a2
a1
λ̇αijαij = kmij ϵ̇

pl
ij +

a2
a1
λ̇αijαij (104.675)

Compared with Equation 104.672, the above expression has an additional term which makes the

rate of plastic dissipation non-constant even if the rate of plastic strain is constant. As the back stress

αij becomes larger when load increases, the rate of plastic dissipation also increases. This indicates a

nonlinear result of total plastic dissipation, which is exactly what we have observed in our computations.

Figure 104.88 shows the energy computation results of an elastic-plastic material modeled using von

Mises plasticity with Armstrong-Frederick kinematic hardening. Compared to all previous cases, the

material response of this model is more sophisticated and more realistic. Decrease of plastic work is

observed, again, while the plastic dissipation is always nonnegative during the entire simulation. For

both linear and nonlinear kinematic hardening cases, the plastic free energy is relatively small compared

to the plastic dissipation.

104.11.3.3 Drucker–Prager Plasticity

It has been proven that von Mises plasticity generally performs poorly in modeling pressure-sensitive

materials like soils. In this section, the thermomechanical formulations presented in earlier sections are
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Figure 104.88: Energy analysis of elastic-plastic material modeled using von Mises plasticity with

Armstrong–Frederick kinematic hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation,

strain energy, and plastic work.

Table 104.5: Model parameters for cases using Drucker–Prager plasticity

Parameter Unit
Hardening Type

Linear Isotropic Linear Kinematic A–F Kinematic

mass density kg/m3 2000 2000 2000 2000 2000

elastic modulus MPa 150 150 200 200 200

poisson ratio 0.3 0.3 0.3 0.3 0.3

druckerprager k 0.25 0.5 0.1 0.1 0.1

confining stress kPa 100 100 100 300 500

isotropic hardening rate 50 0

kinematic hardening rate 0 50

armstrong frederick ha MPa 20 20 20

armstrong frederick cr 100 100 100
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applied to models using Drucker–Prager yield criteria with different hardening types. The material model

parameters used in this section are summarized in Table 104.5.

The yield function of Drucker–Prager plasticity is:

f = [(sij – pαij)(sij – pαij)]0.5 –
√

2
3

kp (104.676)

where p = (1/3)δijσkk is the mean stress (or hydrostatic pressure). Note that in this form of Drucker–

Prager plasticity, the internal variables αij and k, as well as the hardening constants κ1 and a1, are

dimensionless.

For the computation of plastic free energy in Drucker–Prager plasticity models, Equation 104.651 is

modified:

ψiso
pl =

1
2ρ(κ1p)

(kp)2 =
1

2ρκ1
k2p (104.677)

ψkin
pl =

1
2ρ(a1p)

(αijp)(αijp) =
1

2ρa1
αijαijp (104.678)

All examples presented in this section are using non-associated Drucker–Prager plasticity. The plastic

potential function is of von Mises type so that only deviatoric plastic flow exists. In addition, all cases are

loaded with constant hydrostatic pressure, which means that the plastic flow direction mij is the same

as the direction of the total plastic strain ϵ
pl
ij . With the above conditions, Equation 104.663, 104.668,

and 104.672 are all still valid for the following examples, as will be observed in their results.

It should be noted that the proposed energy computation approach can also be applied to associated

Drucker–Prager plasticity and non-associated Drucker–Prager plasticity with different plastic potential

functions. The loading condition can be arbitrary, even with evolving hydrostatic pressures.

Linear Isotropic Hardening. Figure 104.89 shows the stress–strain response and energy computation

results of an elastic-plastic material modeled using Drucker–Prager plasticity with linear kinematic hard-

ening.

No plastic dissipation is observed in this case, which have been theoretically proven in Equa-

tion 104.668. This example again indicates that isotropic hardening is not capable of proper modeling

of energy dissipation in elastic-plastic materials.

Prager Linear Kinematic Hardening. Figure 104.90 shows the stress–strain response and energy compu-

tation results of an elastic-plastic material modeled using Drucker–Prager plasticity with linear kinematic

hardening.

Plastic dissipation increases linearly when the material yields, while the plastic work decreases during

certain phases of reverse loading. This observation is consistent with the theoretical conclusion drawn

from Equation 104.672.
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Figure 104.89: Energy analysis of elastic-plastic material modeled using Drucker–Prager plasticity with

linear isotropic hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation strain energy and

plastic work.
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Figure 104.90: Energy analysis of elastic-plastic material modeled using Drucker–Prager plasticity with

linear kinematic hardening: (a) Stress–strain curve; (b) Input work, plastic dissipation strain energy and

plastic work.
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Note that the results of the above two examples share high similarity with those of the cases mod-

eled with associated von Mises plasticity. This is because the hydrostatic pressures were constant during

shearing, which makes the pressure-dependent feature of Drucker–Prager plasticity not observed. The

energy computation results are expected to be more complicated with different loading conditions. How-

ever, the difference between plastic work and plastic dissipation will be observed. And the incremental

plastic dissipation should always be nonnegative.

Armstrong–Frederick Kinematic Hardening. In order to illustrate the influence of hydrostatic pressure

to the energy dissipation in Drucker–Prager models, three cases with different confining pressures are

studied. Armstrong–Frederick kinematic hardening is used here to model the nonlinear hardening re-

sponse of pressure-dependent material, like soils. Figure 104.91 shows the stress–strain response and

energy computation results of these three cases.

As can be observed from Figure 104.91, the slope of stress–strain loop increases, which means the

material becomes stiffer, as the confining stress increases. Also, the size of elastic region becomes larger

when the confining stress is bigger.

Plastic dissipation and plastic free energy starts to evolve as soon as the material yields. The pattern

of evolution of energy components are the same for all three cases, while the value of plastic dissipation

decreases as the confining stress increases. This is expected since the material becomes stiffer and harder

to plastify with a higher confining stress.

104.11.4 Conclusions

Presented was a methodology for (correct) computation of energy dissipation in elastic-plastic materials

based on the second law of thermodynamics. A very important role of plastic free energy was analyzed,

with highlights on its physical nature and theoretical formulations. The proposed methodology has been

illustrated using a number of elasto-plastic material models.

An analysis of a common misconception that equates plastic work and dissipation, which leads to the

violation of the basic principles of thermodynamics, was addressed. A conceptual example, for granular

materials, was used to explain the physical meaning of plastic free energy. It was also shown that plastic

free energy is responsible for the evolution of internal variables.

It was shown that energy balance is ensured by taking into consideration all energy components,

including kinetic and strain energy. Input work was balanced with the stored and dissipated energy,

expressed as the summation of all possible components.

Presented approach was illustrated and tested using several elastic-plastic constitutive models with

various hardening rules. Elastic materials showed no energy dissipation (as expected), leading to the
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Figure 104.91: Energy analysis of elastic-plastic material modeled using Drucker–Prager plasticity with

Armstrong–Frederick kinematic hardening: (a) Confining stress = 100 kPa; (b) Confining stress = 300

kPa; (c) Confining stress = 500 kPa;
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input work being equal to the stored energy. Elastic-perfectly plastic materials had no change in plastic

free energy, which led to the equality of plastic work and plastic dissipation and indicated no evolution

of particle arrangements. The plastic dissipation, in that case, was observed to be increasing linearly.

Isotropic hardening materials experienced zero dissipation even after yielding. This observation was

surprising, but verified by further derivation of energy equations. This observation also serves as a

reminder that the isotropic hardening rules can be used, but only with observed lack of energy dissipation.

Prager’s linear and Armstrong-Frederick nonlinear kinematic hardening materials both gave significant

dissipations, with large fluctuation of plastic free energy as well. In the case with linear kinematic

hardening, linear increase of dissipation was derived and observed, while energy was dissipated nonlinearly

in the case of nonlinear kinematic hardening. Although the plastic free energy was not significant for

some materials, it is noted that it should always be recognized and considered during energy analysis, so

that the basic principles of thermodynamics are maintained.

104.12 Energy Dissipation Calculations for Structures

This section is based on Yang et al. (2019a)

104.12.1 Introduction

Mechanical energy in soil structure interaction (SSI) systems are dissipated during the irreversible dis-

sipative process of energy transformation in which entropy of the system increases. Energy dissipation

has been used, directly or indirectly, as a key parameter to evaluate damage in elastic-plastic materials.

A common misconception of plastic work and energy dissipation due to plasticity has been noticed in a

number of publications Uang and Bertero (1990), Léger and Dussault (1992), Symans and Constantinou

(1998), Soong and Spencer (2002), Symans et al. (2008), Wong (2008), Nehdi et al. (2010) in which

violations of the second law of thermodynamics were observed. As presented in an earlier section (and

also by Yang et al. (2018), the correct formulation for energy analysis on elastic-plastic solids has been

derived from the second law of thermodynamics. The theoretical and computational framework has

been verified through system energy balance in a series of numerical studies on elastic and elastic-plastic

material models. The purpose of this section is to present a methodology of correctly evaluating energy

dissipation in structural elements, which is crucial in determining the safety and economy of a SSI system.

It has been shown Dafalias et al. (2002), Feigenbaum and Dafalias (2007), Yang et al. (2018) that

the difference between plastic work and plastic dissipation is the plastic free energy, or cold work, which

can be calculated from material internal variables (or state variables), like radius of yield surface or back

stress. This computation can be easily performed on solids modeled with classic elasticity/plasticity
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constitutive relationships in which internal variables are computed and obtained at every time step. On

the other hand, constitutive relationships used to model nonlinear structural elements were proposed

mainly based on experimental results Spacone et al. (1996a), Spacone et al. (1996b), Lee and Fenves

(1998), Popovics (1973), Mander et al. (1988), Chang and Mander (1994), Waugh (2009), Kolozvari

et al. (2015). The internal variables used in these models are different than those used in classic

constitutive models for solids. Therefore, a new methodology that can correctly evaluate energy storage

and dissipation in structural elements is required.

During the recent few decades, a number of studies have been conducted with focus on energy

analysis of SSI systems Uang and Bertero (1990), Léger and Dussault (1992), Kalkan and Kunnath

(2007), Kalkan and Kunnath (2008), Symans et al. (2008), Gajan and Saravanathiiban (2011), Moustafa

(2011), Moustafa and Mahmoud (2014), Mezgebo and Lui (2017), Deniz et al. (2017). Despite different

formulations used, the calculations of energy dissipation due to hysteretic damping (material elasto-

plasticity) in these publications were all performed without consideration of plastic free energy, which

lead to violations of principles of thermodynamics. It is worth pointing out that such oversight is not

rare, especially in literature of civil and geotechnical engineering.

Early work reported by Farren and Taylor (1925) and Taylor and Quinney (1934) showed that plastic

free energy could be significant in metals, thus should not be neglected without reasoning. The ratio of

plastic work converted into heat, usually referred to as the Quinney–Taylor coefficient, was measured to

be between 0.6 to 1.0 Belytschko et al. (1991), Zhou et al. (1996), Dolinski et al. (2010), Osovski et al.

(2013). Mason Mason et al. (1994) pointed out that the the Quinney–Taylor coefficient is both strain

and strain rate dependent but could be assumed to be a constant in most cases. A constitutive model

for metals was presented by Rosakis et al. Rosakis et al. (2000), Hodowany et al. (2000), Ravichandran

et al. (2002) based on thermoplasticity, which can model the evolution of energy dissipation and has

been validated through experiments. Semnani et al. (2016) presented a thermoplastic framework that

could predict strain localization in transversely isotropic materials.

Despite of the existence of sophisticated theories that are capable of modeling the evolution of energy

dissipation, including those mentioned earlier, most constitutive relationships used to model structural

elements do not involve thermodynamics or thermoplasticity. One commonly used finite element (FE)

technique of modeling frame structures is fiber section, in which beams and columns are divided into

multiple uniaxial fibers with various constitutive models. This model have been proved to be able to

capture nonlinear stress–strain behaviors of structural elements under axial loading and/or bending.

Problems arise when such elements are used to calculate energy dissipation. As observed in many

publications Kwan and Billington (2001), Zhu et al. (2006), Gajan and Saravanathiiban (2011), Wang

et al. (2012), Zhang et al. (2013), Nikbakht et al. (2014) energy analysis were performed based on the
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hysteretic stress–strain or force–displacement response of the elements. This indicates that plastic work

was confused with plastic energy dissipation, which is the common misconception pointed out earlier. It

is also important to point out that various damage indices derived from energy dissipation are used widely

to evaluate damage in structures. Such parameters will not be valid if the fundamental formulation of

energy dissipation is incorrect.

In order to correctly evaluate energy dissipation in structural elements modeled with fiber sections,

the framework of thermo-mechanics must be enforced on the uniaxial constitutive models. Focus of

this section is on proper modeling of different forms of energy (storage and dissipation) in uniaxial

materials that follows the second law of thermodynamics. Theoretical and computational formulations

of energy dissipation in uniaxial concrete and steel fibers are presented. A series of FE simulations are

carried out using the Real-ESSI (Jeremić et al., 1988-2025) to illustrate the energy behavior of structural

systems. The method is verified by comparing the input work and the energy storage and dissipation

in the system. The difference between accumulated plastic work and accumulated plastic dissipation,

which can be significant in many cases, is addressed. Finally, conclusions on plastic energy dissipation

in structural elements are drawn from the verified results.

104.12.2 Theoretical and Computational Formulations

104.12.2.1 Thermomechanical Framework

The theories of continuum thermo-mechanics have been discussed in a number of earlier publications

Lubliner (1972), Rosakis et al. (2000), from which the fundamental framework of this study is derived.

General equations of elastoplasticity and thermodynamics are modified with a few plausible assumptions

to accommodate the scope of this study. Small deformation theory is assumed, so that the small strain

tensor ϵij is used to describe deformation of the material body. All equations in this section are expressed

in index notation.

The general thermomechanical process is governed by momentum balance and the first and second

law of thermodynamics. The localized version of the first law of thermodynamics (energy balance

equation) is given in the form:

σij ϵ̇ij + qi,i + ρr = ρė (104.679)

where the term σijϵij is called the stress power, qi are the components of the heat flux vector, ρ is the

mass density of the material, r is the heat supply per unit volume, and e is the internal energy per unit

volume. Note that in this section all stresses are defined as effective stresses. In order to avoid confusion,

the common notation (σ
′
ij) will not be used. Standard definition of stress from mechanics of materials,

i.e. positive in tension, is used.
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The localized version of the second law of thermodynamics (Clausius–Duhem inequality) is expressed

as:

ρη̇ – (
qi
θ

),i –
1
θ
ρr ≥ 0 (104.680)

where η is the entropy per unit volume and θ is the absolute temperature.

Substituting the heat supply per unit volume r in Equation 104.680 with the expression from Equa-

tion 104.679, and introducing the rate of change of internal dissipation per unit volume Φ gives:

ρθη̇ – ρė + σij ϵ̇ij +
1
θ

qiθ,i = Φ +
1
θ

qiθ,i ≥ 0 (104.681)

Note that the internal dissipation can have many sources, including material plasticity, viscous coupling,

radiation damping, and other forms of energy dissipation.

The Helmholtz free energy per unit volume ψ, which is referred to as free energy in this section, is

defined as:

ψ = e – θη (104.682)

The second law of thermodynamics can be expressed in terms of free energy ψ as:

Φ +
1
θ

qiθ,i = –ρψ̇ – ρθ̇η + σij ϵ̇ij +
1
θ

qiθ,i ≥ 0 (104.683)

The rate of internal dissipation per unit volume Φ can be written as:

Φ = σij ϵ̇ij – ρψ̇ – ρθ̇η (104.684)

At this point, a few assumptions are introduced to simplify the governing equations. According to

Feigenbaum and Dafalias (2007), Collins and Houlsby (1997), Collins (2002), Collins and Kelly (2002),

it can be assumed that the deformation of soil and structural elements under earthquake loading is

approximately isothermal, which indicates that the temperature field θ is constant and uniform. This

approximation is reasonable considering the fact that seismic energy is mostly carried by the low-frequency

components of earthquake ground motion, which allows the heat generated in the materials to be largely

dissipated. With this assumption, the rate of internal dissipation Φ is simplified into the form:

Φ = σij ϵ̇ij – ρψ̇ ≥ 0 (104.685)

Next, all material models studied in this section is assumed to be decoupled, which means that the

(small) strain tensor can be additively decomposed into elastic and plastic parts:

ϵij = ϵel
ij + ϵpl

ij (104.686)
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Lubliner (1972) and Collins and Houlsby (1997) showed that this assumption can be deduced if the

instantaneous elastic moduli of a material are independent of the internal variables. Under the assumption

of decoupled material, the free energy ψ can also be decomposed into elastic and plastic parts as follows:

ψ = ψel + ψpl (104.687)

where the elastic part of the free energy ψel is also known as the elastic strain energy, which is defined

in incremental form as:

ψ̇el = σij ϵ̇
el
ij (104.688)

By substituting Equation 104.686, Equation 104.687, and Equation 104.688 into Equation 104.685, the

rate of internal dissipation Φ can be expressed in terms of the rate of plastic free energy ψ̇pl:

Φ = σij ϵ̇ij – σij ϵ̇
el
ij – ρψ̇pl ≥ 0 (104.689)

Equation 504.8 represents two basic principles that should always be upheld in any energy analysis

for decoupled material undergoing isothermal process:

• The stress power that is input into a material body by external loading is transformed into elastic

strain energy, plastic free energy, and material internal dissipation. All forms of energy must be

considered to maintain energy balance of the material body. This principle ensures the first law of

thermodynamics.

• The rate of change of material internal dissipation (plastic dissipation) is nonnegative at any time.

In other words, accumulated internal dissipation can not decrease during any time period. This

principle ensures the second law of thermodynamics.

Note that material internal dissipation can have many sources. Our interest is the energy dissipation

caused by material plasticity, so the term plastic dissipation will be used instead, which indicates no

other source of energy dissipation is present in the examples that are being analyzed in the remaining

part of this section.

104.12.2.2 Plastic Free Energy

The physical nature of plastic free energy is associated with the material micro-structure. For particulate

material, like soil, plastic free energy will be accumulated or released if there is evolution of particle

arrangement (micro-fabric), which generally happens as soon as the material body is loaded. For other
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 104.12. ENERGY DISSIPATION CALCULATION . . . page: 398 of 3287

structural and geotechnical materials, like metals, their micro-structures are represented by the shape

and arrangement of the crystals, whose evolution will result in change in plastic free energy. Detailed

explanations of the evolution of plastic free energy can be found in publications by Besseling and Van

Der Giessen (1994), Collins and Kelly (2002), and Yang et al. (2018).

Using Equation 504.8, the energy dissipation of any elastic-plastic material under isothermal loading

process can be calculated, if all the terms on the right hand side of the equation is known. For most

elastic-plastic constitutive models, the stress tensor σij and the elastic strain tensor ϵel
ij are being cal-

culated as simulation progresses. The challenging task is to evaluate the plastic free energy term ψpl,

whose formulation depends on the internal variables used in the constitutive model.

For a decoupled elastic-plastic material model that exhibits both isotropic and kinematic hardening,

the plastic free energy is decomposed into isotropic and kinematic parts, which are calculated individ-

ually and then added up. The formulation of plastic free energy in this type of material was given by

Feigenbaum and Dafalias (2007):

ψpl = ψiso
pl + ψkin

pl =
1

2ρκ1
k2 +

1
2ρa1

αijαij (104.690)

where ψiso
pl and ψkin

pl are the isotropic and kinematic parts of the plastic free energy, respectively, k is

the radius of yield surface, α is the back stress, κ1 and a1 are non-negative material constants. Note

that Equation 104.690 can be used for a wide range of constitutive models with various yield functions,

including von Mises and Drucker-Prager yield criteria whose energy behaviors has been studied and

presented by Yang et al. (2018). Such materials are usually used to model soils and parts of the

structure that need to be modeled with solid elements in SSI system.

However, frame structures are generally modeled with beam-column elements in combination with

fiber sections and uniaxial material models, where Equation 104.690 does not apply. It should be realized

that most uniaxial constitutive relationships are capable of modeling the stress–strain behavior but not the

energy dissipation features of the material. Therefore, an approach that follows our thermomechanical

framework is presented to correctly evaluate energy storage and dissipation in these material models.

104.12.2.3 Energy Dissipation in Beam-Column Element

Beams and columns are modeled with nonlinear displacement-based beam element, which is implemented

in the Real-ESSI Simulator. In order to incorporate confined/unconfined concrete and steel reinforcement

bars into beam elements, fiber sections are constructed with corresponding uniaxial fibers. A bottom-fixed

reinforced concrete column model is shown in Figure 104.92, along with the constitutive relationships

used for the concrete and steel fibers.
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Figure 104.92: Schematic of a bottom-fixed column modeled with concrete and steel fibers.

Uniaxial Steel Fiber. The uniaxial steel material model examined in this study was developed by Mene-

gotto and Pinto (1973) and extended by Filippou et al. (1983), and is capable of capturing the nonlinear

hysteretic behavior and isotropic strain-hardening effect of steel. The stress–strain response of this ma-

terial is shown in Figure 104.93, along with some of the material parameters. The model, as presented

in Menegotto and Pinto (1973), takes on the form:

σ∗ = bϵ∗ +
(1 – b)ϵ∗

(1 + ϵ∗R)1/R (104.691)

with

ϵ∗ =
ϵ – ϵr
ϵ0 – ϵr

; σ∗ =
σ – σr
σ0 – σr

(104.692)

where b is the strain-hardening ratio, ϵr and σr are the strain and stress at the point of strain reversal,

ϵ0 and σ0 are the strain and stress at the point of intersection of the two asymptotes, R is the curvature

parameter that governs the shape of the transition curve between the two asymptotes. Note that this

model is for uniaxial materials, in which the stresses and strains are scalars instead of tensors.

The expression for the curvature parameter R is suggested by Menegotto and Pinto (1973):

R = R0 –
cR1ξ

cR2 + ξ
(104.693)

where R0 is the value of the curvature parameter R during initial loading, cR1 and cR2 are degradation

parameters that need to be experimentally determined. The parameter ξ, that is updated after strain
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Figure 104.93: Constitutive model for uniaxial steel fiber (Menegotto and Pinto (1973)).

reversal, is defined as:

ξ =
∣∣∣∣ (ϵm – ϵ0)

ϵy

∣∣∣∣ (104.694)

where ϵm is the maximum (or minimum) strain at the previous strain reversal point, depending on the

loading direction of the material. If the current incremental strain is positive, the parameter ϵm takes

the value of the maximum reversal strain. Parameter ϵy is the monotonic yield strain.

In order to capture isotropic hardening behavior, Filippou et al. (1983) introduced stress shift mecha-

nism into the original model by Menegotto and Pinto (1973). Note that the hardening rate in compression

and tension can be different by choosing different hardening parameters for compression and tension.

The proposed relation takes the form:

σst
σy

= a1

(
ϵmax
ϵy

– a2

)
(104.695)

where σst is the shift stress that determines the shift of yield asymptote, ϵmax is the absolute maximum

strain at strain reversal, and a1 and a2 are hardening parameters in compression that are experimentally

determined. In the case of tension, the hardening parameters a1 and a2 in Equation 104.695 are changed

to a3 and a4 that are also determined by experiment or obtained from the literature.
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The energy computation procedure for this uniaxial steel model is shown in Figure 507.4, and it

follows the thermomechanical framework established earlier in this section.
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Figure 104.94: Energy computation of uniaxial steel fiber: (a) Monotonic loading branch; (b) Cyclic

loading branch.

Note that the only difference between the monotonic loading branch (Figure 507.4(a)) and the cyclic

loading branch (Figure 507.4(b)) is that the strain reversal point c is at the origin o in the monotonic case.

So the following explanation of the proposed energy computation method applies to both monotonic

and cyclic loading scenarios.

Firstly, the elastic strain energy density ES is defined in accordance with the classic assumption that

it is only a function of current stress state of the material, which yields:

ES = ES(σ) =
1

2E0
σ2 (104.696)

Graphically, the elastic strain energy density of the material shown in Figure 507.4 at states a and b are

the triangular areas afd and bge. Then the incremental form of Equation 507.9 is simply:

dES =
1

E0
σdσ (104.697)

Next, the incremental plastic dissipation density DP from state a to b is assumed to be the triangular

area abc:

dDP =
1
2

[(σ – σr)dϵ – (ϵ – ϵr)dσ] (104.698)

This assumption ensures that the incremental plastic dissipation is nonnegative, which is one of the two

basic principles of our thermomechanical framework. One special case is when the material exhibits
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no cyclic softening, which means that perfectly overlapping stress–strain loops will be observed, the

energy dissipation calculated using Equation 507.11 for one cyclic is the area of the hysteresis loop. In

the proposed thermomechanical framework, the area of hysteresis loop should be equal to the plastic

work, rather than plastic dissipation, done in one loading cycle. But in this special case of no cyclic

softening, which means no evolution of material state and thus no development of plastic free energy

after a complete loading cycle, the plastic work equals to the plastic dissipation in the material in one

loading cycle.

For general case where the material does exhibit cyclic softening, plastic free energy density EP

is graphically denoted by the areas adoc and beoc at states a and b, respectively. The formulation

representing this assumption is given by:

EP =
1
2

[
σ

(
ϵ –

σ

E0
– ϵr
)

+ σrϵ

]
(104.699)

The incremental form of Equation 507.12 is:

dEP =
1
2

[
(σ + σr) dϵ +

(
ϵ –

1
E0
σ – ϵr

)
dσ
]

(104.700)

Adding Equation 507.10, 507.11, and 507.13, the incremental form of energy balance is achieved:

dES + dEP + dDP = σdϵ (104.701)

where the increment of three energy components add up to the increment of stress power during any

loading step.

Uniaxial Concrete Fiber. The uniaxial concrete material model used in this study is based on the model

proposed by Yassin (1994), which is capable of modeling the nonlinear hysteretic behavior and damage

effect of concrete. The material parameters and stress–strain response of this material are shown in

Figure 104.95.

The monotonic envelope curve of this model in compression is based on the model of Kent and Park

(1971) and later generalized by Scott et al. (1982). For a given strain ϵc, the compressive stress σc and

corresponding tangent stiffness E are given by:

ϵc ≤ ϵcs σc = fcs

[
2
(
ϵc
ϵcs

)
–
(
ϵc
ϵcs

)2
]

E = Ec

(
1 –

ϵc
ϵcs

)
(104.702)

ϵcs < ϵc ≤ ϵcu σc =
ϵc – ϵcs
ϵcu – ϵcs

(fcu – fcs) + fcs E =
fcu – fcs
ϵcu – ϵcs

(104.703)

ϵc > ϵcu σc = fcu E = 0 (104.704)

where fcs is the maximum compressive strength of the concrete material, ϵcs is the concrete strain at

compressive strength, fcu is the ultimate (crushing) strength of the concrete material, ϵcu is the concrete
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Figure 104.95: Constitutive model for uniaxial concrete fiber (Yassin (1994)).

strain at ultimate strength, and Ec is the initial concrete tangent stiffness that can be calculated using

the equation:

Ec =
2fcs
ϵcs

(104.705)

All material parameters should be determined by experiment or related literature data.

The cyclic behavior of this concrete model in compression is shown in Figure 104.95. One assumption

of this model is that all reloading lines intersect at a common point, where the stress σr and strain ϵr

are given by the following expressions:

ϵr =
fcu – λEcϵcu

Ec(1 – λ)
(104.706)

σr = Ecϵr (104.707)

After unloading from a point on the compressive monotonic envelope, the model response is bounded

by two lines that are defined by:

σmax = σm + Er(ϵc – ϵm) (104.708)

σmin = 0.5Er(ϵc – ϵt) (104.709)
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where

Er =
σm – σr
ϵm – ϵr

(104.710)

ϵt = ϵm –
σm
Er

(104.711)

where σm and ϵm are the stress and strain at the unloading point on the compressive monotonic envelope,

respectively. If the unloading–reloading cycle is incomplete, the material response will be a straight line

with slope Ec, as shown in Figure 104.95.

The tensile behavior of this concrete model considers tension stiffening and the effects of initial

cracking. Details of the monotonic and cyclic behavior of this model under tensile stress can be found

in Yassin (1994).

Since there are different loading/unloading branches in this model, the energy computation needs to

be considered separately for each branch. One energy component that remains the same in all loading

cases is the elastic strain energy density ES, which is only a function of current stress:

ES = ES(σ) =
1

2Ec
σ2 (104.712)

And the incremental form of Equation 104.712 is:

dES =
1
Ec
σdσ (104.713)

In order to calculate plastic dissipation, a few assumptions are made that ensures the energy behavior

of the concrete material to follow the proposed thermomechanical framework:

• Majority of energy is dissipated during first monotonic load.

• Subsequent cycles of loading, on an already damaged concrete, do not dissipate much energy.

• No energy is dissipated during unloading in both compressive and tensile conditions.

• When the material is cyclically loaded under compression, energy dissipation only happens when

the stress reaches the upper bound σmax.

• No energy is dissipated during cyclic loading when the material is under tension.

For a single loading step from stress state a to b in each subplot of Figure 104.96, the energy

dissipation is represented by the shaded area.

If the material is under compression (Figure 104.96 (a), (b), and (c)), the amount of energy dissipated

in the concrete fiber DP is calculated by taking the area abcdef , which is generally a hexagon formed by

the two unloading paths originated from stress state a and b:

dDP =
1
2

[(σ – σc)dϵ + (ϵc – ϵ)dσ + (ϵc – ϵf )σ + (σf – σc)(ϵ – ϵt) + σcdϵt] (104.714)
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Figure 104.96: Energy computation of uniaxial concrete fiber: (a) Monotonic compression; (b) Single

unloading-reloading cycle; (c) Unloading-reloading cycles within monotonic envelope; (d) Tension.

where the stress and strain at point f can be computed using the following expression:

ϵf =
σ + 0.5Erϵt – Ecϵ

0.5Er – Ec
σf = 0.5Er(ϵf – ϵt) (104.715)

Point c can be calculated using the same fashion, but with all variables evaluated at state b.

Note that the hexagon becomes quadrilateral in the cases of cyclic loading within the monotonic

envelope, as can be observed in Figure 104.96 (b) and (c). But Equation 104.714 and 104.715 remains

valid, obviously.

Plastic free energy EP in this concrete material is calculated by taking the triangular area fge at state

a:

EP =
1
2

[(
ϵ –

σ

Ec
– ϵt
)
σf

]
(104.716)
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The incremental form of Equation 104.716 is obtained by taking the difference between the plastic free

energy at state a and b:

dEP =
1
2

[(
σc – σf –

1
Ec
σ

)
(ϵ – ϵt) – (dϵ – dϵt)σc –

1
Ec
σcdσ

]
(104.717)

Adding Equation 104.713, 104.714, and 104.717, the incremental form of energy balance is achieved:

dES + dEP + dDP = σdϵ (104.718)

where the increment of three energy components add up to the increment of stress power during any

loading step.

104.12.3 Numerical Studies

Numerical examples presented in this section are performed using the Real-ESSI Simulator Jeremić et al.

(1988-2025). Energy dissipation in numerical models consist of fiber section elements and uniaxial

steel/concrete fibers are computed and analyzed.

First, numerical simulation of steel and plain concrete columns under various loading conditions are

performed to study the energy behavior of uniaxial steel and concrete material models. Then, a model of

reinforced concrete column, which consists of both concrete and steel fibers, is constructed and simulated

to illustrate the energy dissipation in realistic structural elements. Finally, a bare steel frame structure

is modeled with fiber section elements and loaded with seismic motion. Through these examples, it will

be shown that the difference between plastic work and plastic energy dissipation can be significant.

External loads are applied incrementally using displacement-control scheme. System equations are

solved using Newton-Raphson iteration algorithm and UMFPACK solver, which are available in Real-

ESSI. Static integration algorithm is used for the column cases, while Newmark integration is used for

the dynamic steel frame case. Note that viscous and numerical damping are excluded from all cases, in

order to accurately evaluate energy dissipation due to material elastoplasticity.

104.12.3.1 Steel Column

In order to verify the proposed energy computation approach for uniaxial steel material model, examples

of steel columns are studied in this section. As shown in Figure 104.97, the one-meter-long column

model is fixed at the bottom, and loads are applied at the top. The size of the cross section is 100 mm ×
100 mm. The parameters for uniaxial steel material used in this section are summarized in Table 104.6.
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Section A - A

Concrete or

Steel Fibers

100 mm

A A

Axial Loading

Shear Loading Bending

1 m
100 mm

Figure 104.97: Schematic of the steel/plain-concrete column modeled with fiber sections and uniaxial

steel/concrete materials.

Table 104.6: Material model parameters used in steel column examples.

σy (MPa) E (GPa) b R0 cR1 cR2 a1 a2 a3 a4

413.8 200.0 0.01 18.0 0.925 0.15 0.0 55.0 0.0 55.0

Cyclic Axial Loading. Since the fiber material model is uniaxial in nature, axial loading case is being

investigated first. The evolution of energy parameters for uniaxial steel material are computed using

Equation 507.10, 507.11, and 507.13. Figure 104.98 shows the stress–strain response as well as the

energy results of the steel column under cyclic axial loading.

As expected, the stress–strain response shown in Figure 104.98 follows the constitutive model pre-

sented in Figure 104.93. Due to the choice of hardening parameters (a1, a2, a3, and a4), isotropic

hardening after first loading reversal is relatively small in this case. The evolution of plastic free energy,

which is related to the hardening behavior of the constitutive model, is also observed to be insignificant

after the first loading reversal. Energy balance in the steel material (Equation 507.14) is maintained

during entire simulation.

In this particular case, the difference between plastic dissipation and plastic work is significant during

initial loading (or monotonic loading), but then becomes less obvious during cyclic loading, which is
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Figure 104.98: Energy analysis of steel column under cyclic axial loading: (a) Stress–strain response;

(b) Plastic dissipation, plastic work, plastic free energy, strain energy, and input work.

probably the reason of ignorance of plastic free energy in many studies. It is important to point out

that such difference could be significant if different hardening parameters are chosen or complex loading

conditions (like seismic loading) are applied.

Another observation made in this example is that the ratio between plastic dissipation and plastic

work (the Quinney–Taylor coefficient) changes from 0.5 to 0.9 in just a few loading cycles. Therefore,

it is not accurate to prescribe a fixed number to be the Quinney–Taylor coefficient of a material during

entire simulation, which is a common assumption made in a number of studies.

Cyclic Bending Loading. It has been proven that fiber section elements perform well under axial- and

bending-dominant loading conditions. In this case, a cyclic bending moment is loaded on the top of the

steel column. Figure 104.99 shows the moment–rotation response as well as the energy results of the

steel column under cyclic bending loading.

Clearly, the moment–rotation response and energy results in this case are very similar to those in

the axial loading case. When a beam element is under bending, half of the fibers will be under tension

while the other half under compression, and the normal stress distribution on any cross section should be

symmetric. Since the fiber material model used in this case has almost the same stress–strain response

under tension and compression, the energy results in this bending case are expected to share the same

pattern with those in the axial loading case.

Note that in both axial and bending cases, the strain energy accumulated in the material body is

much smaller than the plastic dissipation. This means that most of the input work results in plastic
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Figure 104.99: Energy analysis of steel column under cyclic bending loading: (a) Moment–rotation

response; (b) Plastic dissipation, plastic work, plastic free energy, strain energy, and input work.

deformation of the material, which indicates high possibility of large deformation and material damage.

104.12.3.2 Plain Concrete Column

In order to verify the proposed energy computation approach for uniaxial concrete material model,

examples of plain concrete columns are studied in this section. The size and setup of the model are the

same as those of the steel column, which has been shown in Figure 104.97. The parameters for uniaxial

concrete material used in this section are summarized in Table 104.7.

Table 104.7: Material model parameters used in plain concrete column examples.

fcs (MPa) ϵcs fcu (MPa) ϵcu λ fts (MPa) Et (GPa)

-30.2 -0.00219 -6.0 -0.00696 0.5 3.02 5.0

Monotonic Axial Loading. As stated in the assumptions for energy dissipation in the uniaxial concrete

model, the amount of energy dissipated during monotonic loading is much larger than that during

unloading/reloading. Such assumption is made based on the brittle nature of concrete materials, in

which fracture is the main source of energy dissipation. In this case, the stress–strain response as well as

the energy results of the plain concrete column model under monotonic axial compression is investigated

and presented in Figure 104.100.

The stress–strain response shown in Figure 104.100 follows the constitutive model presented in
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Figure 104.100: Energy analysis of plain concrete column under monotonic axial loading: (a) Stress–

strain response; (b) Plastic dissipation, plastic work, plastic free energy, strain energy, and input work.

Figure 104.95, as expected. Energy balance in the model, which is expressed in Equation 507.8, is

maintained during entire simulation.

As observed in Figure 104.100, large amount of the input work is dissipated during monotonic

compression. It is important to point out that the difference between plastic dissipation and plastic work

is significant. Plastic free energy starts to accumulate after maximum compressive strength is reached

and continue to increase even after crushing. Such behavior can be explained by considering that the

micro-structure of concrete continues to evolve as external loads continues to be applied on the material.

The strain energy starts to drop after maximum compressive strength and gradually decreases to

almost zero after crushing. This observation is consistent with the fact that the micro-fractures expand

rapidly after maximum strength is reached, which leads to the release of elastic strain energy and energy

dissipation caused by fracture and crushing.

Cyclic Axial Loading. Due to the complex unloading–reloading rules of the model, the cyclic behavior

of the uniaxial concrete material is much more complicated than that of the steel model. Figure 104.101

presents the stress–strain response as well as the energy results of the plain concrete column under cyclic

axial loading.

As shown in Figure 104.101, the majority of plastic dissipation happens during monotonic loading

branch. Notice that there are drops in plastic work during unloading, but plastic dissipation never

decreases, which means that the second law of thermodynamics (Equation 504.8) is always obeyed.

It should be mentioned that there are certain amount of energy dissipation when the material is in
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Figure 104.101: Energy analysis of plain concrete column under cyclic axial loading: (a) Stress–strain

response; (b) Plastic dissipation, plastic work, plastic free energy, strain energy, and input work.

tension. But it is much smaller than that when the material is in monotonic compression, due to the

low tensile strength of concrete material in general.

104.12.3.3 Reinforced Concrete Column

To study the combined influence of concrete and steel fibers, a reinforced concrete column is modeled and

tested in this section. The schematic of the model is shown in Figure 104.101, and the material model

parameters are summarized in Table 104.8. The cross section of the column is modeled with unconfined

concrete, confined concrete, and steel fibers with uniaxial material models discussed in earlier sections.

Cyclic Axial Loading. Figure 104.103 shows the force–displacement response as well as the energy

results of the reinforced concrete column under cyclic axial loading.

Since concrete fibers have much higher compressive strength than tensile strength, the stress–strain

response of the column is controlled by the concrete part when it is under compression, and by the

steel part when under tension. In this case, the initial loading curve clearly resembles the stress–strain

response of concrete fiber under monotonic compression. Then the unloading–reloading cycles have the

same pattern as those of the steel fiber under cyclic axial loading.

By comparing the energy results shown in Figure 104.103 and those shown in Figure 104.98, it can

be seen that the energy dissipation patterns in both cases are very close. This indicates that the majority

of input work is dissipated in the steel fibers once the maximum strength of the concrete is exceeded.

Again, it can be observed that the difference between plastic work and plastic dissipation is significant
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Figure 104.102: Schematic of the reinforced concrete column modeled with fiber sections and uniaxial

steel/concrete materials.
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Figure 104.103: Energy analysis of reinforced concrete column under cyclic axial loading: (a) Force–

displacement response; (b) Plastic dissipation, plastic work, plastic free energy, strain energy, and input

work.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Table 104.8: Material model parameters used in reinforced concrete column examples.

Steel Fiber
Concrete Fiber

Confined Unconfined

σy (MPa) 413.8 fcs (MPa) -30.2 -24.16

E (GPa) 200.0 ϵcs -0.00219 -0.001752

b 0.01 fcu (MPa) -6.0 0.0

R0 18.0 ϵcu -0.00696 -0.005568

cR1 0.925 λ 0.5 0.5

cR2 0.15 fts (MPa) 3.02 0.0

a1, a3 0.0 Et (GPa) 5.0 0.0

a2, a4 55.0

in this case.

Cyclic Bending Loading. Figure 104.104 shows the moment–rotation response as well as the energy

results of the reinforced concrete column under cyclic bending loading.
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Figure 104.104: Energy analysis of reinforced concrete column under cyclic bending loading: (a)

Moment–rotation response; (b) Plastic dissipation, plastic work, plastic free energy, strain energy, and

input work.

During initial loading, the concrete fibers on the compressive side of the cross section take most

of the compression, then during the first reverse loading, the concrete fibers on the other side of the
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cross section are compressed and damaged. This process is indicated in the moment–rotation curve

where a bump caused by the compressive strength of the concrete fibers during the first reverse loading

is observed. The energy computation result also shows that the concrete fibers dissipate large amount

of energy and get damaged during the first loading cycle. After that, the response of the reinforced

concrete column is controlled by the steel bars.

According to the two cases of reinforced concrete column under cyclic loading, the concrete part of the

column can dissipate the majority of the input work if the loading is mainly monotonic compression. For

cyclic loading cases, if the loading does not exceed the maximum compressive strength of the concrete,

which should not be significantly damaged, energy dissipation would be observed in both the concrete and

steel. However, if the cyclic loading does exceed the maximum strength of the concrete, the majority of

energy dissipation would be in the steel reinforcing bars after the concrete is damaged. This conclusion is

consistent with the engineering experience that reinforcements are crucial to the performance of concrete

structure during seismic events, when the beams and columns suffer from cyclic loadings.

104.12.3.4 Steel Frame

All the previous cases are assumed to be static or quasi-static to investigate the energy dissipation on

material level without the influence of dynamics. In other words, inertia and kinetic energy were not

considered. In this example, a steel frame structure is model using fiber section element with uniaxial

steel material, as shown in Figure 104.105, and loaded dynamically with a realistic seismic motion. The

peak acceleration of the input motion is 0.76 g.

The energy computation results are shown in Figure 104.106. Strain energy, plastic free energy, and

plastic dissipation in different stories are computed using Equation 507.10, 507.11, and 507.13. Input

work is computed from the input motion and reaction forces at the base of model. Kinetic energy is

computed indirectly by subtracting all other forms of energy from input work.

Note that the kinetic energy of the system is almost zero at certain times, and strain energy reaches a

peak value. As can be observed from Figure 104.106, when kinetic energy becomes zero, the combination

of strain energy, plastic free energy, and plastic dissipation of the system equals to the total input work.

This observation proves that the energy balance of the system is maintained during entire simulation.

At the end of simulation, more than 80% of the total input work is dissipated due to material

elasto-plasticity, while about 13% is transformed into plastic free energy which does not result in heating

or material damage. In some cases, it might be reasonable to use input work (or energy demand

in some literature) as a parameter to evaluate structure safety. However, as shown in this example,

correctly computed energy dissipation is more appropriate for evaluation of material damage and structure

performance in general.
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Figure 104.105: Schematic of the steel frame modeled with fiber section elements and uniaxial steel

material.

104.12.4 Conclusions

Presented in this section was a thermodynamic-based methodology for (correct) computation of energy

dissipation in nonlinear structural elements modeled with fiber section and uniaxial material models.

Two popular material models for steel and concrete were examined with focus on their nonlinear cyclic

behaviors. Formulations for the energy storage and dissipation in these two material models were derived

from the basic principles of thermodynamics, in combination with a few reasonable assumptions. The

proposed methodology has been illustrated using a series of numerical simulations on columns and frame

modeled with fiber section elements.

The misconception between plastic work and plastic dissipation, which leads to the violation of

principles of thermodynamics, was addressed. Theoretical derivation and experimental observation have

both proven that plastic free energy is a basic form of energy that should not be neglected without

proper reasoning. By taking into account of all possible energy forms, including kinetic energy, strain

energy, plastic free energy, and plastic dissipation, the first law of thermodynamics (energy balance) was
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Figure 104.106: Energy analysis of steel frame model under imposed seismic motion.

ensured in the proposed methodology.

Physically, plastic free energy is related to the evolution of material micro-structure, which is not

represented by specific parameters (like the internal variables in some elastoplasticity models). According

to the experimental behavior of the material models, a few assumptions that ensures their energy behavior

to follow the proposed thermomechanical framework were made. Equations for energy computation were

derived and implemented in Real-ESSI, which was used to perform numerical simulations in this study.

Presented approach was illustrated and tested using several column and frame models with different

loading conditions. As expected, energy balance was maintained during entire simulation in all tested

cases. It was shown that plastic work could drop but plastic dissipation always maintained nonnegative

during any time period, which is expressed in the second law of thermodynamics. It was also observed

that the difference between plastic work and plastic dissipation could be significant in most cases. The

ratio between them (Quinney–Taylor coefficient) evolved with time and thus should not be assumed to
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be constant in general.

104.13 Localization of Deformation

(Rudnicki and Rice, 1975), (Lu et al., 2009)
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105.1 Chapter Summary and Highlights

For more details on work in this area, please consult the following papers:

Jeremić et al. (2007a),

Sett et al. (2007a),

Sett et al. (2007b),

Jeremić and Sett (2007),

Jeremić and Sett (2006),

Sett and Jeremić (2007),

Jeremić and Sett (2009a),

Sett and Jeremić (2010),

Sett et al. (2011b),

Sett et al. (2011a),

Jeremić and Sett (2010).

Material from (some of) the above papers is presented below.

105.2 Probabailistic Elasto-Plasticity, 1D FPK Formulation

A second-order exact expression for evolution of Probability Density Function (PDF) of stress is derived

for general, one dimensional (1-D) elastic-plastic constitutive rate equations with uncertain material

parameters. The Eulerian–Lagrangian (EL) form of Fokker–Planck–Kolmogorov (FPK) equation is used

for this purpose. It is also shown that by using EL form of FPK, the so called ”closure problem”

associated with regular perturbation methods used so far, is resolved too. The use of EL form of

FPK also replaces repetitive and computationally expensive deterministic elastic-plastic computations

associated with Monte Carlo technique.

The derived general expression are specialized to the particular cases of point location scale lin-

ear elastic and elastic–plastic constitutive equations, related to associated Drucker-Prager with linear

hardening

In a companion paper, the solution of FPK equations for 1D is presented, discussed and illustrated

through a number of examples.

105.2.1 Probabilistic Elasto-Plasticity: Introduction

Advanced elasto–plasticity constitutive models, when properly calibrated, are very accurate in capturing

important aspects of material behavior. However, all materials’, and in particular geomaterials’ (soil, rock,
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concrete, powder, bone etc.) behavior is uncertain due to inherent spatial and point-wise uncertainties.

These uncertainties in material properties could outweigh the advantages gained by using advanced

constitutive models. For example, Fig. 105.1 shows a schematic of anticipated influence of material

uncertainties on a bi-linear elastic-plastic stress-strain behavior. Depending on uncertainties in material

properties and interaction between them, the behavior of the same material could be very different.

Figure 105.1: Anticipated Influence of Material Fluctuations on Stress-Strain Behavior

The uncertainties in material properties are inevitable in real materials and it is best to account for

them in modeling and simulation. In traditional deterministic constitutive modeling, material models

are calibrated against set of experimental data. Although those experimental data sets generally exhibit

statistical distribution, the models are usually calibrated against the mean of the data and all the

information about uncertainties is neglected.

The modeling and simulation of solids and structures with uncertain material properties involves two

steps: (a) classification and quantification of uncertainties and (b) propagation of uncertainties through

governing differential equations.

The uncertainties can be broadly classified into aleatory and epistemic types. Aleatory uncertainties

are associated with the inherent variabilities of nature. This type of uncertainty can not be reduced.

Highly developed mathematical theory is available for dealing with aleatory uncertainty. On the other

hand, epistemic uncertainties arise due to our lack of knowledge. This type of uncertainty can be

reduced by collecting more data but the mathematical tools to deal with them are not highly developed
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(e.g. fuzzy logic Zadeh (1983), convex models Ben-Haim and Elishakoff (1990), interval arithmetic

Moore (1979) etc.). Hence, it proves useful to trade epistemic uncertainties for aleatory uncertainties

in order to facilitate their propagation through the governing equations using advanced mathematical

tools. It is important to note that in trading-off epistemic uncertainties for aleatory uncertainties, one

doesn’t reduce the total uncertainties in the system, but assumes that the uncertainties in the system

are irreducible. Under the framework of probability theory, uncertain material parameters are modeled

as random variables or random fields (Vanmarcke, 1983) depending on whether they are specialized to

a fixed location in their continuum or a function of location in their continuum. We note recent works

in quantifying the uncertainties in material (soil) properties for geotechnical engineering applications,

Lumb (1966), Vanmarcke (1977), Mayerhoff (1993), DeGroot and Baecher (1993), Popescu (1995),

Lacasse and Nadim (1996), Popescu et al. (1998), Phoon and Kulhawy (1999a,b), Fenton (1999a,b),

Duncan (2000b), Rackwitz (2000), Marosi and Hiltunen (2004), and Stokoe II et al. (2004) The issue

of uncertain material properties becomes very pronounced when one starts dealing with the boundary

value problems with uncertain material properties (elastic or elastic–plastic).

In mechanics, the equilibrium equation,Aσ = ϕ(t), together with the strain compatibility equation,

Bu = ϵ, and the constitutive equation, σ = Dϵ, are sufficient1 to describe the behavior of the solid.

Rigorous mathematical theory has been developed for problems where the only random parameter is the

external force ϕ(t). In this case, the probability distribution function (PDF) of the response variable

will satisfy FPK partial differential equation (Soize, 1994) . With appropriate initial and boundary

conditions the FPK PDE can be solved for PDF of response variable. The numerical solution method for

FPK equation by finite element method (FEM) is described by number of researchers e.g. Langtangen

(1991), Masud and Bergman (2005).

The other extreme case, which is of interest in this work, is when the stochasticity of the system

is purely due to operator uncertainty. Exact solution of the problems with stochastic operator was

attempted by Hopf (1952) using characteristic functional approach. Later, Lee (1974) applied the

methodology to the problem of wave propagation in random media and derived a FPK equation satisfied

by the characteristic functional of the random wave field. This characteristic functional approach is

very complicated for linear problems and becomes even more intractable (and possibly unsolvable) for

nonlinear problems and problems with irregular geometries and boundary conditions.

Monte Carlo simulation technique is an alternative to analytical solution of partial differential equation

with stochastic coefficient. Nice descriptions of different aspects of formulation of Monte Carlo technique

for stochastic mechanics problem is described by Schüeller (1997). Monte Carlo method is very popular

1Generalized stress is σ, ϕ(t) is generalized forces that can be time dependent, u is generalized displacements, ϵ is

generalized strain and A, B, and D are operators which could be linear or non-linear.
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tool with the advantage that accurate solution can be obtained for any problem whose deterministic

solution (either analytical or numerical) is known. Monte Carlo technique has been used by a number of

researchers in obtaining probabilistic solution of geotechnical boundary value problems, e.g. Paice et al.

(1996); Griffiths et al. (2002); Fenton and Griffiths (2003, 2005). Popescu et al. (1997), Mellah et al.

(2000), De Lima et al. (2001), Koutsourelakis et al. (2002), Nobahar (2003). The major disadvantage of

Monte Carlo analysis is the repetitive use of the deterministic model until the solution variable become

statistically significant. The computational cost associated with it could be very high especially for

non–linear problems with multiple uncertain material properties.

Various difficulties in finding analytical solutions and the high computational cost associated with

Monte Carlo technique instigated development of numerical method for the solution of stochastic dif-

ferential equation with random coefficient. For stochastic boundary value problems Stochastic Finite

Element Method (SFEM) is the most popular such method. There exist several formulations of SFEM,

among which perturbation (Kleiber and Hien (1992); Der Kiureghian and Ke (1988); Mellah et al.

(2000); Gutierrez and De Borst (1999)) and Spectral (Ghanem and Spanos (1991); Keese and Matthies

(2002); Xiu and Karniadakis (2003); Debusschere et al. (2003); Anders and Hori (2000)) methods are

very popular. A nice review on advantages and disadvantages of different formulations of SFEM was

provided by Matthies et al. (1997). Mathematical issues regarding different formulations of SFEM was

addressed by Deb et al. (2001) and Babuska and Chatzipantelidis (2002). It is important to note that

most of the formulations described in the above mentioned references are for linear elastic problems.

A limited number of references is also available related to geometric non–linear problems, Liu and

Der Kiureghian (1991); Keese and Matthies (2002) and Keese (2003)). Similarly, there exist only few

published references related to material non–linear (elastic–plastic) problems with uncertain material

parameters. The major difficulty in extending the available formulations of SFEM to general elastic–

plastic problem is the high non–linear coupling in the elastic–plastic constitutive rate equation. First

attempt to propagate uncertainties through elastic–plastic constitutive equations considering random

Young’s modulus was published only recently, e.g. Anders and Hori (1999, 2000). The perturbation

expansion at the stochastic mean behavior (considering only the first term of the expansion) was used

in the above mentioned references. In computing the mean behavior the Authors took the advantage

of bounding media approximation. Although this method doesn’t suffer from computational difficulty

associated with Monte Carlo method for problems having no closed-form solution, it inherits ”closure

problem” and the ”small coefficient of variation” requirements for the material parameters. Closure

problem refers to the need for higher order statistical moments in order to calculate lower order statistical

moments Kavvas (2003). The small COV requirement claims that the perturbation method can be used

(with reasonable accuracy) for probabilistic simulations of solids and structures with uncertain properties
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only if their COV < 20 % (Sudret and Der Kiureghian, 2000). For soils and other natural materials,

COVs are rarely below 20 % (Lacasse and Nadim (1996); Phoon and Kulhawy (1999a,b)). Furthermore,

with bounding media approximation, difficulty arises in computing the mean behavior when one considers

uncertainties in internal variable(s) and/or direction(s) of evolution of internal variable(s).

The focus of present work is on development of methodology for the probabilistic simulation of

constitutive behavior of elastic–plastic materials with uncertain properties. Recently, Kavvas (2003)

obtained a generic Eulerian–Lagrangian (EL) form of FPK equation, exact to second-order, corresponding

to any non–linear ordinary differential equation with random coefficients and random forcing. The

approach using EL form of the FPK equation doesn’t suffer from the drawbacks of Monte Carlo method

and perturbation technique. In this paper the authors applied developed EL form of the FPK equation

to obtain probabilistic formulation for a general, one-dimensional incremental elastic–plastic constitutive

equation with random coefficient. The solution methodology is designed with several applications in

mind, namely to

• obtain probabilistic stress–strain behavior from spatial average form (upscaled form) of constitutive

equation, when input uncertain material properties to the constitutive equation are random fields;

and

• obtain probabilistic stress-strain behavior from point-location scale constitutive equation, when

input uncertain material properties to the constitutive equation are random variables.

Application of the developed methodology is demonstrated on a particular point-location scale one-

dimensional constitutive equation, namely Drucker–Prager associative linear hardening elastic–plastic

material model. In this paper, derivation is made of the EL form of FPK equation that govern the 1D

probabilistic elastic–plastic material models with uncertain material parameters. This general formulation

is then specialized to a particular 1D Drucker–Prager associative linear hardening material model. In

the companion paper the solution methodology of the FPK equation corresponding to Drucker–Prager

associative linear hardening material model is described, along with illustrative examples. The method-

ology is general enough that it allows extension to three-dimensions and incorporation into a general

stochastic finite element framework. This work is underway and will be reported in future publications.

105.2.2 Probabilistic Elasto-Plasticity: General Formulation

The incremental form of spatial-average elastic-plastic constitutive equation can be written as

dσij(xt , t)
dt

= Dijkl(xt , t)
dϵkl(xt , t)

dt
(105.1)
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where the continuum stiffness tensor Dijkl(xt , t) can be either elastic or elastic-plastic

Dijkl =



Del
ijkl ; f < 0 ∨ (f = 0 ∧ df < 0)

Del
ijkl –

Del
ijmn

∂U
∂σmn

∂f
∂σpq

Del
pqkl

∂f
∂σrs

Del
rstu

∂U
∂σtu

–
∂f
∂q∗

r∗
; f = 0 ∨ df = 0

(105.2)

and where Del
ijkl is the elastic stiffness tensor, Dep

ijkl is the elastic–plastic continuum stiffness tensor, f

is the yield function, which is a function of stress (σij) and internal variables (q∗), U is the plastic

potential function (also a function of stress and internal variables). The internal variables (q∗) could

be scalar(s) (for perfectly-plastic and isotropic hardening models), second-order tensor (for translational

and rotational kinematic hardening) or fourth-order tensor (for distortional hardening). Therefore, the

most general form of incremental constitutive equation in terms of its parameters can be written as

dσij(xt , t)
dt

= βijkl(σij , Dijkl, q∗, r∗; xt , t)
dϵkl(xt , t)

dt
(105.3)

Due to randomnesses in elastic constants (Del
ijkl) and internal variables (q∗) and/or rate of evolution of

internal variables (r∗) the material stiffness operator βijkl in Eq. (105.3) becomes stochastic. It follows

that the Equation (105.1) becomes a linear/non-linear ordinary differential equations with stochastic co-

efficients. Similarly, randomness in he forcing term (ϵkl) of Equation (105.3) results in Equation (105.3)

becoming linear/non-linear ordinary differential equations with stochastic forcing. This can be gener-

alized, so that randomnesses in material properties and forcing function of Equation (105.3) results in

Equation (105.3) becoming a linear/non-linear ordinary differential equation with stochastic coefficients

and stochastic forcing.

In order to gain better understanding of the effects of random material parameters and forcing on

response, focus is shifted from a general 3D case to a 1D case. In what follows, the probabilistic formu-

lation for 1-D constitutive elastic–plastic incremental equation with stochastic coefficient and stochastic

forcing is derived. In addition to that, the probabilistic formulation for 1-D elastic linear constitutive

equation is obtained as a special case of non-linear general derivation.

Focusing on 1-D behavior, the Eq. (105.3) is written as

dσ(xt , t)
dt

= β(σ, D, q, r; xt , t)
dϵ(xt , t)

dt
(105.4)

which is a non-linear ordinary differential equation with stochastic coefficient and stochastic forcing. The

right hand side of Eq. (105.4) is replaced with the function η as

η(σ, D, q, r, ϵ; x, t) = β(σ, D, q, r; xt , t)
dϵ(xt , t)

dt
(105.5)
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so that now Eq. (105.4) can be written as

∂σ(xt , t)
∂t

= η(σ, D, q, r, ϵ; x, t) (105.6)

with initial condition,

σ(x, 0) = σ0 (105.7)

In the above Eq. (105.6) σ can be considered to represent a point in the σ-space and hence, the

Eq. (105.6) determines the velocity for the point in that σ-space. This may be visualized, from the

initial point, and given initial condition σ0, as a trajectory that describes the corresponding solution of

the non-linear stochastic ordinary differential equation (ODE) (Eq. (105.6)). Considering now a cloud

of initial points (refer to Fig. 105.2), described by a density ρ(σ, 0) in the σ-space.

Figure 105.2: Movements of Cloud of Initial Points, described by density ρ(σ, 0), in the σ-space

The phase density ρ of σ(x, t) (movement of any point dictated by Eq. (105.6)) varies in time

according to a continuity equation which expresses the conservation of all these points in the σ-space.

This continuity equation can be expressed in mathematical terms, using Kubo’s stochastic Liouville

equation (Kubo, 1963):

∂ρ(σ(x, t), t)
∂t

= –
∂

∂σ
η[σ(x, t), D(x), q(x), r(x), ϵ(x, t)].ρ[σ(x, t), t] (105.8)

with an initial condition,

ρ(σ, 0) = δ(σ – σ0) (105.9)
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where δ is the Dirac delta function and Eq. (105.9) is the probabilistic restatement in the σ-phase space

of the original deterministic initial condition (Eq. (105.7)). Here it proves useful to recall Van Kampen’s

Lemma (Van Kampen, 1976), which states that the ensemble average of a phase density is the probability

density

< ρ(σ, t) >= P(σ, t) (105.10)

where, the symbol < · > denotes the expectation operation, and P(σ, t) denotes evolutionary probability

density of the state variable σ of the constitutive rate equation (Eq. (105.4)).

In order to obtain the deterministic probability density function (PDF) (σ, t) of the state variable, σ,

it is necessary to obtain the deterministic partial differential equation (PDE) of the σ-space mean phase

density < ρ(σ, t) > from the linear stochastic PDE system (Eqs. (105.8) and (105.9)). This necessitates

the derivation of the ensemble average form of Eq. (105.8) for < ρ(σ, t) >. This ensemble average was

recently derived by (Kavvas and Karakas, 1996; Kavvas, 2003) as

∂ ⟨ρ(σ(xt , t), t)⟩
∂t

=

–
∂

∂σ

{[〈
η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t))

〉
–

∫ t

0
dτCov0

[
η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t));

∂η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ )ϵ(xt–τ , t – τ )
∂σ

]]
⟨ρ(σ(xt , t), t)⟩

}
+

∂

∂σ

{[∫ t

0
dτCov0 [η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t));

η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ ))]
]
∂ ⟨ρ(σ(xt , t), t)⟩

∂σ

}
(105.11)

to exact second order (to the order of the covariance time of η). In Eq. (105.11), Cov0[·] is the time

ordered covariance function defined by

Cov0 [η(x, t1), η(x, t2)] = ⟨η(x, t1)η(x, t2)⟩ – ⟨η(x, t1)⟩ · ⟨η(x, t2)⟩ (105.12)

By combining Eqs. (105.11) and (105.10) and rearranging the terms yields the following Fokker-

Planck equation (FPE, also known as Forward–Kolmogorov Equation or Fokker–Planck–Kolmogorov
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FPK Equation) (Risken (1989), Gardiner (2004), Schüeller (1997)):

∂P(σ(xt , t), t)
∂t

=

–
∂

∂σ

[{〈
η(σ(xt , t), D(xt), q(xt), r(xt)ϵ(xt , t))

〉
+

∫ t

0
dτCov0

[
∂η(σ(xt , t), D(xt), q(xt), r(xt)ϵ(xt , t))

∂σ
;

η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ )
]}

P(σ(xt , t), t)
]

+
∂2

∂σ2

[{∫ t

0
dτCov0

[
η(σ(xt , t), D(xt , t), q(xt , t), r(xt , t), ϵ(xt , t));

η1(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ ))
]}

P(σ(xt , t), t)
]

(105.13)

to exact second order. This is the most general relation for probabilistic behavior of inelastic (non–linear,

elastic–plastic) 1-D stochastic incremental constitutive equation. The solution of this deterministic linear

FPE (Eq. (105.13)), in terms of the probability density P(σ, t), under appropriate initial and boundary

conditions will yield the PDF of the state variable σ of the original 1-D non-linear stochastic constitutive

rate equation (Eq. (105.4)). It is important to note that while the original equation (Eq. (105.4)) is

non-linear, the FPE (Eq. (105.13)) is linear in terms of its unknown, the probability density P(σ, t) of the

state variable σ. This linearity, in turn, provides significant advantages in the solution of the probabilistic

behavior of the incremental constitutive equation (Eq. (105.4)).

One should also note that Eq. (105.13) is a mixed Eulerian-Lagrangian equation. This stems from

the fact that while the real space location xt at time t is known, the location xt–τ is an unknown. If one

assumes small strain theory, one can relate the unknown location xt–τ from the known location xt by

using the strain rate, ϵ̇ (=dϵ/dt) as,

xt–τ = (1 – ϵ̇τ )xt (105.14)

Once the probability density function P(σ, t) is obtained it can be used to obtain the mean of state

variable (σ) by usual expectation operation

< σ(t) >=
∫
σ(t)P(σ(t))dσ(t) (105.15)

Another possible way to obtain the mean of state variable is to use the equivalence between FPE

and Itô stochastic differential equation (Gardiner, 2004). In this case Itô stochastic differential equation
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equivalent to Eq. (105.13) is

dσ(x, t) =
{〈

η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t))
〉

+
∫ t

0
dτCov0

[
∂η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t))

∂σ
;

η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ ))
]}

dt

+ b(σ, t)dW (t) (105.16)

where,

b2(σ, t) = 2
∫ t

0
dτCov0

[
η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t));

η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ ))
]

(105.17)

and, dW (t) is an increment of Wiener process W with < dW (t) >= 0. It is also interesting to note

that all the stochasticity of the original equation (Eq. (105.4)) are lumped together in the last term

(Wiener increment term) of the right-hand-side of Eq. (105.16). By taking advantage of the independent

increment property of the Wiener process (< dW (t) >= 0), one can derive the differential equation which

describes the evolution of mean of state variable (σ) of the nonlinear constitutive rate equation in time

and space as, (e.g. (Kavvas, 2003))

< dσ(x, t) >
dt

=
〈
η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t))

〉
+
∫ t

0
dτCov0

[
∂η(σ(xt , t), D(xt), q(xt), r(xt), ϵ(xt , t))

∂σ
;

η(σ(xt–τ , t – τ ), D(xt–τ ), q(xt–τ ), r(xt–τ ), ϵ(xt–τ , t – τ ))
]

(105.18)

Eq. (105.18) is a nonlocal integro-differential equation in Eulerian-Lagrangian form, since, although

the location xt at time t is known, the Lagrangian location xt–τ is an unknown which is determined by

Eq. (105.14). It is important to note that the state variable appearing within η(·) on the right-hand-side

of Eq. (105.18) is random and needs to be treated accordingly.

This concludes the development of relation for probabilistic behavior of 1-D elastic–plastic constitutive

incremental equation with stochastic coefficients and stochastic forcing in most general form. In the

following section the developed general relation is specialized to two particular types of point-location

scale constitutive modeling: a) 1-D (shear) linear elastic constitutive behavior, and b) 1-D (shear)

elastic-plastic Drucker-Prager associative linear hardening constitutive behavior.
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105.2.3 Probabilistic Elasto-Plasticity: Elastic–Plastic Probabilistic 1-D Constitutive Incremental

Equation

For materials obeying Drucker-Prager yield criteria (without cohesion), the yield surface can be written

as:

f =
√

J2 – αI1 (105.19)

where J2 = 1
2Sijsij is the second invariant of the deviatoric stress tensor sij = σij – 1/3δijσkk, and I1 = σii

is the first invariant of the stress tensor, and α, an internal variable, is a function of friction angle

(α = 2 sin(ϕ)/(
√

(3)(3 – sinϕ)), where ϕ is the friction angle (e.g. (Chen and Han, 1988b)).

By assuming associative flow rule, so that the yield function has the same derivatives as the plastic

flow function

∂f
∂σij

=
∂U
∂σij

(105.20)

one can expand parts of the tangent constitutive tensor given in Eq. (105.2) (from Page 424), to read2

Akl =
∂f
∂σpq

Dpqkl = Akl
∂f
∂I1

(
2G
(
∂I1
∂σ11

δ1lδ1k +
∂I1
∂σ22

δ2lδ2k +
∂I1
∂σ33

δ3lδ3k

)
+

(
K –

2
3

G
)

∂I1
∂σcd

δcdδkl

)
+

∂f
∂
√

J2

(
2G

∂
√

J1
∂σij

δikδjl +
(

K –
2
3

G
)
∂
√

J2
∂σab

δabδkl

)
(105.21)

and,

B =
∂f
∂σrs

Drstu
∂f
∂σtu

=(
∂f
∂I1

)2
(

2G

((
∂I1
∂σ11

)2
+
(
∂I1
∂σ22

)2
+
(
∂I1
∂σ33

)2
)

+
(

K –
2
3

G
)(

∂I1
∂σij

δij

)2

+
(

∂f
∂
√

J2

)2
(

2G
∂
√

J2
∂σij

∂
√

J2
∂σij

+
(

K –
2
3

G
)(

∂
√

J2
∂σij

δij

)2))
(105.22)

where, K and G are the elastic bulk modulus and the elastic shear modulus respectively.

2A more detailed derivation of this probabilistic differentiation is given in the Appendix.
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By further assuming that the evolution of internal variable is a function of equivalent plastic strain3,

ep
eq = 2/3ep

ije
p
ij then one can write

KP = –
∂f
∂qn

rn = –
1√
3
∂f
∂α

dα
dep

eq

∂f
∂
√

J2
(105.23)

It should be noted that since material properties are assumed to be random, the resulting stress tensor will

also become random and hence the derivatives of the stress invariants with respect to stress tensor (σij)

will become random. Therefore, differentiations appearing in Eqs. (105.21), (105.22), and (105.23)

can not be carried out in a deterministic sense.

The parameter tensor in Eq. (105.1) then becomes

Dep
ijkl =


2Gδikδjl +

(
K –

2
3

G
)
δijδkl ; f < 0 ∨ (f = 0 ∧ df < 0)

2Gδikδjl +
(

K –
2
3

G
)
δijδkl –

AijAkl
B + KP

; f = 0 ∨ df = 0

(105.24)

where tensor Aij and scalars B and KP are defined by Eqs. (105.21), (105.22), and (105.23) re-

spectively. The above equation (Eq. 105.24) represents a probabilistic continuum stiffness tensor for

an elastic–plastic material model, in this case Drucker-Prager isotropic linear hardening material with

associated plasticity. By focusing our attention on one dimensional point-location scale shear constitu-

tive relationship between σ12 and ϵ12 for Drucker-Prager material model, one can simplify the function

η(σ, D, q, r, ϵ; x, t) as defined in Eq. (105.5) (on Page 424) to read

η =



2G
dϵ12
dt

; f < 0 ∨ (f = 0 ∧ df < 0)2G –
4G2

(
∂f
∂
√

J2

√
J2

∂σ12

)2

B + KP

 dϵ12
dt

; f = 0 ∨ df = 0
(105.25)

By considering both the material properties (shear modulus G, bulk modulus K , friction angle α, and

rate of change of friction angle (linear hardening) α′) and the strain rate (dϵ12/dt(t)) as random, one

can substitute η as derived in Eq. (105.13) to obtain the particular FPK equation for the probabilistic

behavior of Drucker-Prager associative linear hardening, 1-D point-location scale elastic-plastic shear

constitutive rate equation. In particular, two cases are recognized, one for elastic (pre–yield) behavior of

3This is a fairly common assumption, e.g. (Chen and Han, 1988b)
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material (f < 0 ∨ (f = 0 ∧ df < 0))

∂P(σ12(t), t)
∂t

=

–
∂

∂σ12

[〈
2G

dϵ12
dt

(t)
〉

P(σ12(t), t)
]

+
∂2

∂σ2
12

[{∫ t

0
dτCov0

[
2G

dϵ12
dt

(t); 2G
dϵ12
dt

(t – τ )
]}

P(σ12(t), t)
]

(105.26)

noting that this is the same equation as Eq. (??). In addition to that, the case of elastic–plastic behavior

(f = 0 ∨ df = 0) is described by the following probabilistic equation

∂P(σ12(t), t)
∂t

= –
∂

∂σ12

[{〈(
Gep(t)

) dϵ12
dt

(t)
〉

+
∫ t

0
dτCov0

[
∂

∂σ12

(
Gep(t)

dϵ12
dt

(t)
)

; Gep(t – τ )
dϵ12
dt

(t – τ )
]}

P(σ12(t), t)
]

+
∂2

∂σ2
12

[{∫ t

0
dτCov0

[
Gep(t)

dϵ12
dt

(t); Gep(t – τ )
dϵ12
dt

(t – τ )
]}

P(σ12(t), t)
]

(105.27)

where Gep(a) is defined as probabilistic elastic–plastic kernel and is introduced to shorten the writing

(but will also have other uses later)

Gep(a) =

2G –
4G2

(
∂f

∂
√

J2(a)
∂
√

J2(a)
∂σ12(a)

)2

B(a) + KP(a)

 (105.28)

and a assumes values t or t – τ .

It is important to note that the differentiations appearing in the coefficient terms of the FPK PDE

(Eq. (105.27)), within the probabilistic elastic–plastic kernel Gep(a) (i.e. Eq. (105.28)), are for fixed

values of σ12 and hence those differentiations can be carried out in a deterministic sense. After carrying

out the differentiations, the probabilistic elastic–plastic kernel becomes

Gep(a)|σ12→const. =

2G –
G2

G + 9Kα2 + 1√
3
I1(a)α′

 (105.29)

which, after substitution, result in simplification of the FPK equation (105.27). Further simplification

is possible by noting that the first random process in the covariance term of the first coefficient on the

r.h.s of the equation (105.27) is independent of σ12. Furthermore, since the covariance of zero with any
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random process is zero, the FPK equation (105.27) is further simplified to read

∂P(σ12(t), t)
∂t

=

–
∂

∂σ12

[〈
Gep(t)

dϵ12
dt

(t)
〉

P(σ12(t), t)
]

+
∂2

∂σ2
12

[{∫ t

0
dτCov0

[
Gep(t)

dϵ12
dt

(t); Gep(t – τ )
dϵ12
dt

(t – τ )
]}

P(σ12(t), t)
]

(105.30)

where the probabilistic elastic–plastic kernel Gep(a) is given by the Eq. (105.29).

The evolution of a mean value of shear stress σ12 is obtained by substituting η (derived for Drucker-

Prager material in Eq. (105.18)) as

< dσ12(t) >
dt

=
〈

Gep(t)
dϵ12
dt

(t)
〉

+
∫ t

0
dτCov0

[
∂

∂σ12

(
Gep(t)

dϵ12
dt

(t)
)

; Gep(t – τ )
dϵ12
dt

(t – τ )
]

(105.31)

It is important to note that the derivatives appearing in the mean and covariance term of the above

Eulerian-Lagrangian integro-differential equation (Eq. (105.31) with the probabilistic elastic–plastic ker-

nel defined through the Eq. (105.29)) are random differentiations and need to be treated accordingly.

One possible approach to obtaining these differentiations could be perturbation with respect to mean

(Anders and Hori, 2000) but the ”closure problem” will appear. Hence, in this study the evolution of

mean of σ12 will be obtained by the expectation operation on the PDF (Eq. (105.15)).

105.2.4 Probabilistic Elasto-Plasticity: Initial and Boundary Conditions for the Probabilistic

Elastic–Plastic PDE

The PDE describing the probabilistic behavior of constitutive rate equations can be written in the

following general form:

∂P(σ12, t)
∂t

= –
∂

∂σ12

{
P(σ12, t)N(1)

}
+

∂2

∂σ2
12

{
P(σ12, t)N(2)

}
= –

∂

∂σ12

[
P(σ12, t)N(1) –

∂

∂σ12

{
P(σ12, t)N(2)

}]
= –

∂ζ

∂σ12
(105.32)

where, N(1) and N(2) are coefficients4 of the PDE and represent the expressions within the curly braces

of the first and second terms respectively on the right–hand–side of Eqs. ( ??), (105.26), and (105.27)

These terms are called the advection (N(1)) and diffusion (N(2)) coefficients as the form of Eq. (105.32)

4Indices in brackets are not used in index summation convention.
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closely resembles advection–diffusion equation (Gardiner, 2004). The symbol ζ in Eq. (105.32) can be

considered to be the probability current. This follows from Eq. (105.32), which is a continuity equation

and the state variable of the equation is probability density.

After introducing initial and boundary conditions, one can solve Eq. (105.32) for probability densities

of σ12 with evolution of time. The initial condition could be deterministic or stochastic depending on

the type of problem. For probabilistic behavior of linear elastic constitutive rate equation (Eq. (??)), one

can assume that all the probability mass at time t = 0 is concentrated at σ12 = 0 or at some constant

value of σ12 if there were some initial stresses to begin with (e.g. overburden pressure on a soil mass).

In mathematical term, this translates to,

P(σ12, 0) = δ(σ12) (105.33)

where, δ(·) is the Dirac delta function.

For the post–yield behavior of probabilistic elastic-plastic constitutive rate Equation5 (105.30),

there will be a distribution of σ12, corresponding to the solution of the pre-yield probabilistic behav-

ior (Eq. (105.26)), to begin with. This probability mass (P(σ12(t), t)), dictated by Eq. (105.13), will

advect and diffuse into the domain (σ12, t space) of the system throughout the evolution (in time/s-

train) of the simulation. Since it is required that the probability mass within the system is conserved

i.e. no leaking is allowed at the boundaries, a reflecting barrier at the boundaries will be the preferred

choice. In mathematical term, one can express this condition as (Gardiner, 2004)

ζ(σ12, t)|AtBoundaries = 0 (105.34)

In theory, the stress domain could extend from –∞ to ∞ so that boundary conditions are then

ζ(–∞, t) = ζ(∞, t) = 0 (105.35)

With these initial and boundary conditions, the probabilistic differential equation (with random ma-

terial properties and random strain) for elasto–plasticity, specialized in this case to associated Drucker–

Prager material model with linear hardening, and by using FPK transform described above, can be solved

for probability densities of shear stress (σ12) as it evolves with time/shear strain (ϵ12).

105.2.5 Probabilistic Elasto-Plasticity: Fokker–Planck–Kolmogorov Equation for Probabilistic

Elasticity and Elasto–Plasticity in 1-D

By focusing attention to the randomness of material properties only (i.e. assuming the forcing function

(strain rate) as deterministic), partial differential equation (PDE) describing the evolution of probability

5Specialized to Drucker-Prager associated linear hardening model.
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density function (PDF) of stress can be simplified. In particular, for 1D case, and for linear elastic

material (but still with probabilistic material properties, in this case shear modulus G) one can write the

following PDE

∂P(σ12(t))
∂t

= –
〈

2G
dϵ12
dt

〉
∂P(σ12(t))
∂σ12

+
{∫ t

0
dτCov0

[
2G

dϵ12
dt

; 2G
dϵ12
dt

]}
∂2P(σ12(t))

∂σ2
12

(105.36)

Similarly, for elastic–plastic state, again by neglecting the randomness in strain rate, one can write

the PDE for evolution of PDF of stress in 1D as

∂P(σ12(t))
∂t

= –
〈(

Gep(t)
) dϵ12

dt

〉
∂P(σ12(t))
∂σ12

+
{∫ t

0
dτCov0

[
Gep(t)

dϵ12
dt

; Gep(t – τ )
dϵ12
dt

]}
∂2P(σ12(t))

∂σ2
12

(105.37)

where Gep(a) is the probabilistic elastic–plastic tangent stiffness, (given in Jeremić et al. (2007a))

Gep(a) = 2G –
G2

G + 9Kα2 +
1√
3

I1(a)α′
(105.38)

where in the previous equation (105.38), a assumes values t or t – τ . With appropriate initial and

boundary conditions as described in Jeremić et al. (2007a), one can solve Eqs. (105.36) and (105.37)

for evolution of PDF of shear stress with shear strain.

105.2.6 Probabilistic Elasto-Plasticity: Example Problem Statements

The applicability of proposed FPK equations (Eqs. (105.36) and (105.37)) in describing probabilistic

elasto-plastic behavior, is verified using the following three example problems.

Problem I. Assume the material is linear elastic, probabilistic, with probabilistic shear modulus (G)

given by a normal distribution at a point–location scale with mean of 2.5 MPa and standard deviation

of 0.707 MPa. The aim is to calculated the evolution of PDF of shear stress (σ12) with shear strain

(ϵ12) for a displacement-controlled test with deterministic shear strain increment. The other parameters

are considered deterministic and are as follows: Poisson’s ratio (ν = 0.2, and confining pressure I1 =

0.03 MPa.

Problem II. Assume elastic–plastic material model, composed of linear elastic component and Drucker–

Prager associative isotropic linear hardening elastic–plastic component. The probabilistic shear modulus
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(G) is given through a normal distribution at a point–location scale with mean of 2.5 MPa and standard

deviation of 0.707 MPa. The aim is to calculate the evolution of the PDF of shear stress (σ12) with

shear strain (ϵ12) for a displacement-controlled test with deterministic shear strain increment. The other

parameters are considered deterministic and are as follows: Poisson’s ratio ν = 0.2, confining pressure

I1 = 0.03 MPa, yield parameter6 α = 0.071, plastic slope7 α′ = 5.5.

Problem III. Assume elastic–plastic material model, with linear elastic component and Drucker–Prager

associative isotropic linear hardening elastic–plastic component. The probabilistic yield parameter (α) is

given through a normal distribution at a point-location scale with mean of 0.52 and standard deviation

of 0.1. The aim is to calculate the evolution of the PDF of shear stress (σ12) with shear strain (ϵ12)

for a displacement-controlled test with deterministic shear strain increment. The other parameters are

considered deterministic and are as follows: shear modulus G = 2.5 MPa, Poisson’s ratio ν = 0.2,

confining pressure I1 = 0.03 MPa, and the plastic slope α′ = 5.5.

The above three problems will be solved using the proposed FPK equation approach. In addition

to that, the solution will verified using either variable transformation method, for linear elastic case or

repetitive Monte Carlo type simulations for elastic-plastic case.

105.2.7 Probabilistic Elasto-Plasticity: Determination of Coefficients for Fokker–Planck–Kolmogorov

Equation

To solve Problems I, II, and III, the advection and diffusion coefficients N(1) and N(2) must be determined

for all three problems. For sake of simplicity, a constant strain rate is assumed and hence, terms containing

dϵ12/dt in coefficients of Eqs. (105.36) and (105.37) can be substituted by a constant numerical value

for the entire simulation of the evolution of PDF. It should be noted that the FPK equation (Eqs. (105.36)

or (105.37)) describes the evolution of PDFs of stress with time, while, similarly, strain rate describes

the evolution of strain with time. Combining the two, the evolution of PDF of stress with strain can

be obtained. Time has been brought in this simulation as an intermediate dimension to help in solution

process, and hence, the numerical value of strain rate could be any arbitrary value, which will cancel out

once the time evolution of PDF of stress is converted to strain evolution of PDF of stress. For simulation

of all the three example problems, an arbitrary value of strain rate of dϵ12/dt = 0.0541/s is assumed.

It should also be noted that since the material properties are assumed as random variables at a point-

location scale, the covariance terms appearing within the advection and diffusion coefficients become

variances of random variables. For estimations of means and variances of functions of random variables

6The yield parameter α is an internal variable and is a function of friction angle ϕ given by (α = 2 sin(ϕ)/(
√

(3)(3 – sinϕ))

(e.g. (Chen and Han, 1988b))
7The plastic slope α′ is a rate of change of friction angle governing linear hardening.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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(e.g. for Problems II and III) from basic random variables, commercially available statistical software

mathStatica Rose and Smith (2002) was used.

Substituting the values of deterministic and random material properties and the strain rate, coeffi-

cients N(1) and N(2) of the FPK equations can be obtained for all problems:

Problem I

N(1) =
〈

2G
dϵ12
dt

〉
= 2

dϵ12
dt
⟨G⟩

= 0.27 MPa/s

N(2) =
∫ t

0
dτVar

[
2G

dϵ12
dt

]
= 4t

(
dϵ12
dt

)2
Var[G]

= 0.0058t (MPa/s)2

Problem II

For pre-yield linear elastic case, the coefficients N(1) and N(2) will be the same as those for Problem

I. For post-yield elastic-plastic case the coefficients are

N(1) =

〈2G –
G2

G + 9Kα2 +
1√
3

I1α′

 dϵ12
dt

〉

=
dϵ12
dt

〈
2G –

G2

G + 9Kα2 +
1√
3

I1α′

〉

= 0.147 MPa/s

N(2) = t
(

dϵ12
dt

)2
Var

2G –
G2

G + 9Kα2 +
1√
3

I1α′


= 0.00074t (MPa/s)2
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Problem III

For post-yield elastic-plastic simulation the coefficients N(1) and N(2) are

N(1) =

〈2G –
G2

G + 9Kα2 +
1√
3

I1α′

 dϵ12
dt

〉

=
dϵ12
dt

〈
2G –

G2

G + 9Kα2 +
1√
3

I1α′

〉

= 0.2365 MPa/s

N(2) = t
(

dϵ12
dt

)2
Var

2G –
G2

G + 9Kα2 +
1√
3

I1α′


= 0.0001t (MPa/s)2

It should be noted that for Problem III, since the shear modulus is deterministic, the pre-yield elastic

case is deterministic.

105.2.8 Probabilistic Elasto-Plasticity: Results and Verifications of Example Problems

In this section results are presented for elastic and elastic–plastic probabilistic 1D problem. The results

are obtained by using FPK equation approach described in previous sections and in the companion paper

(Jeremić et al., 2007a). In addition to that, the Monte Carlo based verification of developed solutions

(results) is presented. The effort to verify developed solutions (that are based on FPK approach) plays a

crucial role in presented development of probabilistic elasto–plasticity as there are no previously published

solutions which could have been used for verification. In addition to that, verification and validation

efforts should always be included in any modeling and simulations work (Oberkampf et al., 2002).

For linear elastic constitutive rate equations (Problem-I and pre-yield case of Problem-II) the verifica-

tion is performed by comparing solutions obtained through the use of FPK equation approach with high

accuracy (exact) solution, using a transformation method of random variables (Montgomery and Runger,

2003). This method is applicable as for rate-independent linear elastic case the 1D shear constitutive

equation simplify to a linear algebraic equation of the form,

σ12 = 2Gϵ12 = u(G, ϵ12) (105.39)

Using the definition of strain rate, the above equation can be written in terms of time t as,

σ12 = 2G(0.054t) = v(G, t) (105.40)
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where, 0.054 1/s is the arbitrary strain-rate assumed for this example problem. According to the transfor-

mation method of random variables (Montgomery and Runger, 2003), and, given the continuous random

variable (shear modulus) G, with PDF g(G) and Eqs. (105.39) or (105.40) as one-to-one transformations

between the values of random variables of G and σ12, one can obtain the PDF of shear stress (σ12),

P(σ12) as,

P(σ12) = g(u–1(σ12, ϵ12)) |J| (105.41)

which will allow for predicting the evolution of PDF of σ12 with ϵ12 or,

P(σ12) = g(v–1(σ12, t)) |J| (105.42)

Eq. (105.42) will predict the evolution of PDF of σ12 with t. In Eqs. (105.41) and (105.42),

functions G = u–1(σ12, ϵ12) or G = u–1(σ12, t) are the inverse of functions σ12 = u(G, ϵ12) or σ12 = v(G, t)

respectively and J = du–1(σ12, ϵ12)/dσ12 and J = dv–1(σ12, t)/dσ12 are their respective Jacobians of

transformations.

For non-linear elastic-plastic constitutive rate equations (post-yield cases of Problems II and III)

the verification is done using Monte-Carlo simulation technique by generating sample data for material

properties from standard normal distribution and by repeating solution of the deterministic elastic-plastic

constitutive rate equation for each data generated above. The probabilistic characteristics of resulting

random stress variable for each time (or strain) step are then easily computed. A relatively large number

of data points (1,000,000) were generated for each material constant random variable for this simulation

purpose.

105.2.9 Problem I

The evolution of PDF of shear stress with time and shear strain is shown in Figures 105.3 and 105.4.

Presented PDFs are for linear elastic material with random shear modulus, and were obtained using FPE

approach (Fig. reffigure:ElasticPDF) and transformation method (Fig. 105.4).

The contours of evolution of PDFs are compared in Fig. 105.5. Similarly, comparison of the evolution

of mean and standard deviations are shown in Fig. 105.6. It can be seen from the comparison figure

that even-though the FPK approach predicted the mean behavior exactly, it slightly over-predicted the

standard deviation. This is because of the approximation used to represent the Dirac delta function,

which was used as the initial condition for the FPK. One may note that at ϵ12 = 0, the probability of

shear stress σ12 should theoretically be 1 i.e. all the probability mass should theoretically be concentrated

at σ12 = 0. As such, it would be best described by the Dirac delta function. However, for numerical

simulation of FPK, Dirac delta function as initial condition was approximated with a Gaussian function of
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Figure 105.3: Evolution of PDF of shear stress versus strain (or time) for linear elastic material model

with random shear modulus (Problem I) obtained using FPK equation approach.

mean zero and standard deviation of 0.00001 MPa, as shown in Fig. ??. This error in the initial condition

advected and diffused into the domain with the simulation of the evolution process. This error could be

minimized by better approximating the Dirac delta initial condition (but at higher computational cost).

The effect of approximating the initial condition of the PDF of shear stress at ϵ12 = 0.0426 % is shown

in Fig. 105.7. In this figure the actual PDF at ϵ12 = 0.0426 % obtained using the transformation method

was compared with the PDFs at ϵ12 = 0.0426 % obtained using the FPK approach with three different

approximate initial conditions - all having zero mean but standard deviations of 0.01 MPa, 0.005 MPa

and 0.00001 MPa.

One may also note that finer approximation of initial condition necessitates finer discretization of

stress domain close to (or at) σ12 =0. The finite difference discretization scheme adopted here uses the

same fine discretization uniformly all throughout the entire domain. It is noted that that fine, uniform

discretization is not needed (and is quite expensive) in later stages of calculation of evolution of PDF, but

is kept the same for simplicity sake. In presented examples, to properly capture the approximate initial

condition (as shown in Fig. ??), the stress domain between –0.1 MPa and +0.1 MPa was discretized with

a uniform step size of 0.000005 MPa and hence there is a total of 40, 000 nodes. This not only requires
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Figure 105.4: Evolution of PDF of shear stress versus strain (or time) for linear elastic material model

with random shear modulus (Problem I) obtained using transformation method.

large computational effort but is also very memory sensitive. An adaptive discretization technique will

be a much better approach to solving this problem. Current work is going on in formulating an adaptive

algorithm for the solution of this type of problem.

105.2.10 Problem II

The solution to this problem involves the solving two FPK equations, one corresponding to the pre-

yield elastic part and the other corresponding to the post-yield elastic-plastic part. The elastic part of

this problem is identical to Problem–I. The initial condition for the post-yield elastic-plastic part of the

problem is random and is shown in Fig. 105.8. It may be noted that this initial condition corresponds to

the PDF of shear stress (P(σ12)) at yield obtained from the solution of FPK equation of the pre-yield

elastic part. A view of the surface of evolution of the PDF of shear stress versus shear strain (time)

is shown in Fig. 105.9. Another view to the PDF of stress–strain surface is shown in Fig. 105.10. It

is noted that the yielding of this material occurred at t=0.00789 second (which is equivalent to ϵ12=
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Figure 105.5: Comparison of Contours of Time (or Strain) Evolution of Probability Density Function for

Shear Stress for Elastic Constitutive Rate Equation with Random Shear Modulus (Problem–I) for FPE

Solution and Variable Transformation Method Solution.

0.0426 %). The evolution contours for PDF of shear stress versus strain (time) along with the mean

and standard deviations are shown in Fig. 105.11. It can be seen from that figure that, as expected, the

evolution of mean of shear stress changes slope after the material yielded. Another interesting aspect to

note is the relative slope of the evolution of standard deviation with respect to the evolution of mean.

The relative slope in the pre-yield elastic zone increases at a higher rate during the evolution process

when compared with that in the post-yield elastic-plastic zone. In other words, in the evolution process

the post-yield elastic–plastic constitutive rate equation did not amplify the initial uncertainty as much

as the pre-yield elastic constitutive rate equation did. This can be easily viewed from Fig. 105.12 where

the post-yield elastic-plastic evolution of PDF of shear stress was compared with fictitious extension of

elastic evolution of PDF. Comparing the PDF of shear stress at ϵ12 = 0.0804% (which is equivalent to

t = 0.01489s), one can conclude that the variance of predicted elastic-plastic shear stress is much smaller

(i.e. prediction is less uncertain) as compared to the same if the material were modeled as completely

elastic.

Fig. 105.13 compares the evolution of means and standard deviations of predicted shear stress

obtained using FPK equation approach and transformation method (pre-yield behavior)/Monte-Carlo

approach (post-yield behavior). Although in the pre–yield response the FPK equation approach over-

predicted the evolution of standard deviations because of reasons discussed earlier, in the post-yield
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Figure 105.6: Comparison of Mean and Standard Deviation of Shear Stress for Elastic Constitutive

Rate Equation with Random Shear Modulus (Problem–I) for FPE Solution and Variable Transformation

Method Solution.

response it matched closely at regions further from the yielding region. The somewhat larger difference

between FPK equation solution and the verification one (Monte Carlo solution) close to the yielding

region is attributed to the fact that the initial condition for solution of post-yield elastic-plastic FPK

equation was obtained from the solution of pre-yield elastic FPK equation. One way to better predict the

overall probabilistic elastic-plastic behavior, would probably be to obtain the pre-yield elastic behavior

through the transformation method and then use the FPK approach to predict post-yield elastic-plastic

behavior.

105.2.11 Problem III

In this problem, the pre–yield linear elastic part is deterministic, however, at yield there is a distribution

(with very small standard deviation) in shear stress due to assumed distribution in yield parameter α.

The distribution in shear stress corresponds to the PDF of the random variable αI1 (first invariant of the

stress tensor or mean confining stress) and is assumed to be deterministic. This PDF of shear stress at

yield was assumed to be the initial condition for the solution of post-yield elastic-plastic FPK equation
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Figure 105.7: Effect of Approximating Function of Dirac Delta Initial Condition : PDF of Stress at Yield

for Different Approximation of Initial Condition with Actual (Variable Transformation Method) Solution).

and is shown in Fig. 105.14.

The evolution of PDF for shear stress versus strain (time) is shown in Fig. 105.15. In addition to that

the contours (including mean and standard deviation) of the evolution of PDF for shear stress versus

strain (time) are shown in Fig. 105.16.

Looking at Fig. 105.16 and comparing the slopes of evolution of mean and standard deviation,

one can conclude that the elastic-plastic evolution process didn’t amplify the initial uncertainty in yield

strength significantly. The initial (at yield) probability density function of shear stress just advected

into the domain during the elastic–plastic evolution process without diffusing much. Fig. 105.15 clearly

shows this advection process. The evolution of mean and standard deviations of shear stress obtained

from the FPK equation approach was compared with those obtained from the Monte Carlo simulation

and is shown in Fig. 105.17.
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Figure 105.8: Initial condition for FPK equation for elastic–plastic zone (Problem–II).

105.3 Probabilistic Yielding and Cyclic Loading, 1D FPK Formulation

Modeling of geomaterials is inherently uncertain. These uncertainties stem from natural variability of

geomaterials (spatial uncertainty), and testing and transformation errors (point uncertainty) (Lacasse

and Nadim Lacasse and Nadim (1996), Phoon and Kulhawy Phoon and Kulhawy (1999a)). These uncer-

tainties not only affect the failure characteristics of geomaterials, but also the behavior of geostructures,

made with geomaterials. Traditionally, geotechnical engineering community deals with uncertainties in

geomaterial by applying (large) factor of safety. However, use of large factors of safety results not

only in over-expensive design, but also, sometimes, in unsafe structures (cf. Duncan Duncan (2000b)).

Hence, in recent years, the geotechnical community has seen an increasing emphasis on probabilistic

characterization of soil and subsequent reliability-based design.

One of the important aspects of probabilistic geomechanics simulation that has received less attention

is the probabilistic constitutive problem. Among the few published papers were those by Fenton and

Griffiths (Fenton and Griffiths (2002), Fenton and Griffiths (2003), Fenton and Griffiths (2005)) on
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Figure 105.9: Evolution of PDF of shear stress versus strain (time) for elastic-plastic material with

random shear modulus (Problem–II). View 1.

probabilistic simulation of spatially random c-ϕ soil using Monte Carlo technique, and those by Anders

and Hori (Anders and Hori (1999), Anders and Hori (2000)) on probabilistic simulation of von Mises

elastic-perfectly plastic material using perturbation technique. Both Monte Carlo and perturbation

techniques have their inherent drawbacks (Matthies et al. Matthies et al. (1997), Keese Keese (2003))

and in dealing with those, recently, Jeremić et al. Jeremić et al. (2007b) proposed Eulerian–Lagrangian

form of Fokker–Planck–Kolmogorov equation (FPKE) approach (cf. Kavvas Kavvas (2003)) to modeling

and simulation for probabilistic elasto–plasticity. FPKE approach to probabilistic elasto–plasticity not

only overcomes the drawbacks associated with other probabilistic simulation techniques, but also is

fully compatible with the incremental theory of elasto–plasticity, and hence can easily be applied to

probabilistic modeling and simulation of different elastic–plastic constitutive models. Solution strategies

for FPK partial differential equation, corresponding to elastic–plastic constitutive rate equation and

simulated probabilistic stress-strain responses under monotonic loading, assuming mean stress yielding,

were discussed by Sett et al. (Sett et al. (2007c), Sett et al. (2007d)) for both linear and non-linear
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Figure 105.10: Evolution of PDF of shear stress versus strain (time) for elastic-plastic material with

random shear modulus (Problem-II). View 2.

hardening models. The concept of probabilistic yielding was introduced and its effect on constitutive

simulation under monotonic loading was discussed by Jeremić and Sett Jeremić and Sett (2009b). It was

shown that due to uncertainty in yield function (stress), there is always a possibility, depending upon

the magnitude of uncertainty, that plastic behavior starts at very very low strain and influence of elastic

behavior continues far into plastic domain (at large strains) and hence, the ensemble average (mean) of

all the possibilities or the most probable (mode) possibility differ from deterministic behavior. In addition

to that, a very realistic, smooth transition between elastic and plastic domains was observed even for

elastic perfectly plastic models. Further, nonlinear behavior was observed even for linear hardening

models.

In this paper, the concept of probabilistic yielding is extended to 1–D cyclic simulations of geoma-

terials. Both elastic–perfectly plastic and hardening-type material model are considered. The numerical

technique of solving FPKE cyclically with probabilistic yielding is discussed. Simulated responses were

discussed in terms of probability density function (PDF) and its statistical moments.

Modeling of geomaterials is inherently uncertain. This uncertainty stems from natural variability of

geomaterials (spatial uncertainty), and testing and transformation errors (point uncertainty) (Lacasse
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Figure 105.11: Contour of evolution of PDF for shear stress versus strain (time) for elastic-plastic material

with random shear modulus (Problem–II).

and Nadim Lacasse and Nadim (1996), Phoon and Kulhawy Phoon and Kulhawy (1999a)). These uncer-

tainties not only affect the failure characteristics of geomaterials, but also the behavior of geostructures,

made with geomaterials. Traditionally, geotechnical engineering community deals with uncertainties in

geomaterial by applying (large) factor of safety. However, use of large factors of safety results not

only in over-expensive design, but also, sometimes, in unsafe structures (cf. Duncan Duncan (2000b)).

Hence, in recent years, the geotechnical community has seen an increasing emphasis on probabilistic

characterization of soil and subsequent reliability-based design.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 105.12: Comparison of evolution of PDF for elastic-plastic material and extended elastic material

cases for random shear modulus.
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Figure 105.13: Comparison of mean and standard deviation of shear stress for plastic constitutive rate

equation with random shear modulus (problem-ii) for FPK equation solution and Monte Carlo simulation

solution.

One of the important aspects of probabilistic geomechanics simulation that has received less attention

is the probabilistic constitutive problem. Among the few published papers were those by Fenton and

Griffiths (Fenton and Griffiths (2002), Fenton and Griffiths (2003), Fenton and Griffiths (2005)) on

probabilistic simulation of spatially random c-ϕ soil using Monte Carlo technique, and those by Anders

and Hori (Anders and Hori (1999), Anders and Hori (2000)) on probabilistic simulation of von Mises

elastic-perfectly plastic material using perturbation technique. Both Monte Carlo and perturbation

techniques have their inherent drawbacks (Matthies et al. Matthies et al. (1997), Keese Keese (2003))

and in dealing with those, recently, Jeremić et al. Jeremić et al. (2007b) proposed Eulerian–Lagrangian

form of Fokker–Planck–Kolmogorov equation (FPKE) approach (cf. Kavvas Kavvas (2003)) to modeling

and simulation for probabilistic elasto–plasticity. FPKE approach to probabilistic elasto–plasticity not

only overcomes the drawbacks associated with other probabilistic simulation techniques, but also is

fully compatible with the incremental theory of elasto–plasticity, and hence can easily be applied to

probabilistic modeling and simulation of different elastic–plastic constitutive models. Solution strategies

for FPK partial differential equation, corresponding to elastic–plastic constitutive rate equation and

simulated probabilistic stress-strain responses under monotonic loading, assuming mean stress yielding,

were discussed by Sett et al. (Sett et al. (2007c), Sett et al. (2007d)) for both linear and non-linear

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 105.14: Initial condition for FPK equation for elastic–plastic material with random yield strength

(Problem–III).

hardening models. The concept of probabilistic yielding was introduced and its effect on constitutive

simulation under monotonic loading was discussed by Jeremić and Sett Jeremić and Sett (2009b). It was

shown that due to uncertainty in yield function (stress), there is always a possibility, depending upon

the magnitude of uncertainty, that plastic behavior starts at very very low strain and influence of elastic

behavior continues far into plastic domain (at large strains) and hence, the ensemble average (mean) of

all the possibilities or the most probable (mode) possibility differ from deterministic behavior. In addition

to that, a very realistic, smooth transition between elastic and plastic domains was observed even for

elastic perfectly plastic models. Further, nonlinear behavior was observed even for linear hardening

models.

In this paper, the concept of probabilistic yielding is extended to 1–D cyclic simulations of geoma-

terials. Both elastic–perfectly plastic and hardening-type material model are considered. The numerical

technique of solving FPKE cyclically with probabilistic yielding is discussed. Simulated responses were

discussed in terms of probability density function (PDF) and its statistical moments.
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Figure 105.15: Evolution of PDF for shear stress for elastic–plastic material with random yield strength

(Problem–III) (only plastic zone is shown).

105.3.1 Fokker–Planck–Kolmogorov Approach to Probabilistic Elasto–Plasticity

The Eulerian–Lagrangian form Fokker–Planck–Kolmogorov equation (cf. Kavvas Kavvas (2003)) corre-

sponding to generalized 1–D constitutive rate equation can be written as (Jeremić et al. Jeremić et al.

(2007b)):

∂P(σ(xt , t), t)
∂t

=

∂

∂σ

[{〈
η(σ, D, ϵ; xt , t)

〉
+
∫ t

0
dτCov0

[
∂η(σ, D, ϵ; xt , t)

∂σ
; η(σ, D, ϵ; xt–τ , t – τ

]}
P(σ(xt , t), t)

]
+
∂2

∂σ2

[{∫ t

0
dτCov0

[
η(σ, D, ϵ; xt , t); η(σ, D, ϵ; xt–τ , t – τ )

]}
P(σ(xt , t), t)

]
(105.43)

where, P(σ(xt , t), t) is the probability density of stress (σ) at (pseudo) time t, and η is the operator

variable, obtained by collecting together all the operators and variables on the r.h.s of the generalized

constitutive rate equation:
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Figure 105.16: Contour PDF for shear stress versus strain (time) for elastic–plastic material with random

yield strength (Problem–III).

dσ(xt , t)
dt

= η(σ, D, ϵ; xt , t) (105.44)

In Eq. (105.66), ϵ is the strain, and D is the tangent modulus, which could be elastic or elastic–plastic:
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Figure 105.17: Comparison of Mean and Standard Deviation of Shear Stress for Elastic-Plastic Con-

stitutive Rate Equation with Random Yield Strength (Problem-III) for FPE Solution and Monte Carlo

Simulation Solution

D =



Del elastic

Del –
Del ∂U

∂σ

∂f
∂σ

Del

∂f
∂σ

Del ∂U
∂σ

–
∂f
∂q∗

r∗
elastic-plastic

(105.45)

where, Del, f , U, q∗, and r∗ are elastic modulus, yield surface, plastic potential surface, internal vari-

able(s), and rate(s) of evolution of internal variable(s) respectively.

Eq. (105.65) is the most general form of elastic–plastic constitutive rate equation, written in proba-

bility density space. This equation (Eq. (105.65)) can be written in a more compact form:

∂P(σ(xt , t), t)
∂t

=
∂

∂σ

{
N(1)P(σ(xt , t), t)

}
+
∂2

∂σ2
{

N(2)P(σ(xt , t), t)
}

(105.46)

where, N(1) and N(2) are advection and diffusion coefficients respectively, and are material model spe-

cific. By specializing Eq. (105.46) to (any) particular constitutive model, the resulting FPKE can be
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 105.3. PROBABILISTIC YIELDING AND CYCLIC . . . page: 454 of 3287

solved to obtain the probability density function of stress response, given uncertainties in material prop-

erties and driving strain. However, difference in material behavior in elastic and elastic-plastic regions

necessities solution of FPKE twice - one corresponding to elastic constitutive equation (with Nel
(1) and

Nel
(2), the advection and diffusion coefficients corresponding to elastic constitutive equation) and the

other corresponding to elastic–plastic constitutive equation (with Nep
(1) and Nep

(2), the advection and dif-

fusion coefficients corresponding to elastic–plastic constitutive equation). The switch from elastic to

elastic–plastic region (solution) can be controlled using mean stress yielding:

if ⟨f ⟩ < 0 ∨
(
⟨f ⟩ = 0 ∧ d ⟨f ⟩ < 0

)
use elastic FPKE

or, if ⟨f ⟩ = 0 ∨ d ⟨f ⟩ = 0 use elastic–plastic FPKE
(105.47)

However, difficulty arises if the material yield parameter(s) are uncertain, as the mean yield criteria then

does not account for the complete probabilistic yielding of material. For example, such mean yielding will

neglect the possibilities of elastic–plastic behavior in the elastic region and vice versa. The concept of

probabilistic yielding overcomes this limitation, as it solves Eq. (105.46) once, with equivalent advection

and diffusion coefficients, Neq
(1) and Neq

(2) (Jeremić and Sett Jeremić and Sett (2009b)):

Neq
(1)(σ) = (1 – P[Σy ≤ σ])Nel

(1) + P[Σy ≤ σ]Nep
(1)

Neq
(2)(σ) = (1 – P[Σy ≤ σ])Nel

(2) + P[Σy ≤ σ]Nep
(2)

(105.48)

where (1 – P[Σy ≤ σ]) represents the probability of material being elastic, while P[Σy ≤ σ] represents

the probability of material being elastic–plastic. The probabilities of material being elastic and the

probabilities of material being elastic–plastic can easily be calculated from the cumulative density function

of yield function (stress).

It is worth noting that the probabilistic yield criterion (Eq. (105.48)) represents probabilistic restate-

ment of the deterministic yield criteria. The probabilistic yield criteria is introduced (or, the deterministic

yield criteria is written in probability space) in order to properly model uncertain (probabilistic) yield

strength.

It is also very interesting to note that proposed approach for calculating equivalent advection and

diffusion coefficients is similar to the solution strategy of famous Black–Scholes Black and Scholes

(1973) equation in financial engineering modeling of European option, where probabilities of exercise of

the (European) option, obtained from cumulative density functions, are multiplied with stock price and

present value of option strike price to calculate the option price.
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105.3.2 Elastic–Perfectly Plastic Material

In this section, the FPKE–approach, along with the concept of probabilistic yielding, is applied to simulate

1–D (shear stress–shear strain) cyclic behavior of elastic–perfectly plastic material. Only von Mises

material model has been considered. It may, however, be noted that presented development is general

enough to be used with any material model and that von Mises is just one such model we use for

illustration purposes.

The von Mises yield criteria can be written as:√
J2 – k = 0 (105.49)

where, k is a material parameter (yield strength like) and J2 = 3/2sijsij is the second invariant of deviatoric

stress tensor sij = σij – 1/3σkkδij . For 1–D shear, Eq. (105.49) becomes:

|σ| – σy = 0 or σ = ±σy (105.50)

The yielding occurs at a yield stress of ±σy. It, however, is important to note that both σy and σ

are uncertain and are described by their respective probability density functions. For elastic–perfectly

plastic material, the distribution of yield stress (σy) is given by its experimentally measured initial

distribution, and remains constant. The stress (σ), however, evolves according to the governing FPKE

(Eq. (105.46)) and its distribution is given by the solution of the governing FPKE (Eq. (105.46)).

For 1–D von Mises elastic–perfectly plastic shear constitutive model, the elastic and the elastic–plastic

advection and diffusion coefficients of the governing FPKE (Eq. (105.46)), becomes:

Nel
(1) =

dϵxy
dt
⟨G⟩ ; Nel

(2) = t
(

dϵxy
dt

)2
Var[G]

Nep
(1) = 0 ; Nep

(1) = 0
(105.51)

where, G is the shear modulus, dϵxy is the (deterministic) incremental shear strain, t is the pseudo

time, ⟨·⟩ represents expectation operation and Var[·] represents variance operation. The equivalent

advection and diffusion coefficients (refer Eq. (105.48)) for von Mises elastic–perfectly plastic material,

then, becomes:

Neq
(1)(σ) = (1 – P[Σy ≤ σ])

dϵxy
dt
⟨G⟩

Neq
(2)(σ) = (1 – P[Σy ≤ σ])t

(
dϵxy
dt

)2
Var[G]

(105.52)

One may note that, in deriving the elastic and elastic–plastic advection and diffusion coefficients

(Eq. (105.51)), it was assumed that spatial random field material properties (G, and σy) would be
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first discretized into random variables, for example at Gauss points, by appropriate tools, for exam-

ple Karhunen–Loève expansion (Karhunen Karhunen (1947), Loève Loève (1948), Ghanem and Spanos

Ghanem and Spanos (1991)). In other words, the solution of FPKE, with advection and diffusion coeffi-

cients given by Eq. (105.52), represents point–location scale von Mises elastic–perfectly plastic material

behavior, and not the local–average material behavior. The local–average material behavior, if sought

for, can then be assembled using polynomial chaos expansion (Wiener Wiener (1938), Ghanem and

Spanos Ghanem and Spanos (1991)).

105.3.2.1 Probability Density Function

The FPKE (Eq. (105.46)), with advection and diffusion coefficients given by Eq. (105.52), was solved

incrementally with pseudo time steps using method of lines. The stress domain of the Fokker–Planck–

Kolmogorov PDE was discretized first on a uniform grid by central differences, and thereby obtaining a

series of ODE. The series of ODEs was then solved, after incorporating boundary conditions, simultane-

ously and incrementally, with n pseudo time steps, using a standard open–source ODE solver, SUNDIALS

Hindmarsh et al. (2005), which utilizes ADAMS method and functional iteration.

The yield shear strength (σy) of the material was assumed to have a mean value of 60 kPa with a COV

of 30%, values typical for clay (Federal Highway Administration Federal Highway Administration (2002),

Lacasse and Nadim Lacasse and Nadim (1996)). Also, the yield shear strength was assumed to be either

normal or Weibull (with shape parameter of 3.31 and scale parameter of 0.067) distribution as shown in

Fig. 105.18. The shear modulus (G) was also assumed to be either normal or Weibull distribution, but

Figure 105.18: Elastic–perfectly plastic probabilistic model: PDF of yield stress
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with a mean value of 100 MPa and a COV of 25%. The cyclic probabilistic von Mises, elastic–perfectly

plastic shear stress–shear strain response (evolutionary probability density function (PDF) of shear stress),

for the case where both yield shear strength (σy) and shear modulus (G) are normally distributed, is shown

in Fig. 105.19. Two different views of the loading–unloading–reloading cycle are shown, focusing on the

a)

b)

Figure 105.19: Elastic–perfectly plastic probabilistic model under cyclic loading: evolutionary PDF of

shear stress (a) view from the junction of loading and unloading branches (probability densities of shear

stress are truncated at a value 1500 for clarity of the plot) and (b) view from the junction of unloading

and reloading branches (probability densities of shear stress are truncated at a value of 150 for clarity of

the plot)

transition between loading and unloading, and unloading and reloading branches. As can be seen from

Fig. 105.19, PDF for initial stress (a deterministic Dirac delta function at stress–strain origin) advected

and diffused into the domain, governed by the advection and diffusion coefficients (Eq. (105.52)). It is

very important to also note that, even–though the deterministic response for von Mises elastic–perfectly
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plastic material is bi–linear, due to introduced uncertainties in yielding, the probabilistic response is

non–linear from the beginning. That is, due to uncertainty in yield strength, there is a (small) possibility

that the material becomes elasto–plastic from the very beginning of loading. This possibility has been

quantified from the PDF of the yield strength and taken into consideration implicitly during simulation

using the equivalent advection and diffusion coefficients (Neq
(1) and Neq

(2), refer Eq. (105.52)). Those

coefficients assigns probability weights to the realizations of stress response based on the probability of

material being elastic or elastic–plastic. Initially, in the loading branch, at small strains, the probability of

material being elastic–plastic is very small and hence, the initial probabilistic stress response (ensemble

of all realizations) is closer (but not fully) to linear, elastic response. However, as strain increases, the

probability of elastic–plastic material behaving increases and the probabilistic stress response gradually

becomes more elastic–plastic (Fig. 105.19(a)).

Upon unloading, the material behaves as (mostly) elastic since elastic–plastic probability weights

from the governing PDF of mirror image (negative) of shear strength (Fig. 105.18) are initially very

small. During later stages of unloading (loading in the opposite direction), and similar to the loading

branch, the elastic–plastic probability weights increase and gradually transition the response toward

elasto–plasticity (Fig. 105.19(b)). Similar to this, in the subsequent reloading branch, the probability

weights are again governed the PDF of (positive, loading branch of) shear strength (Fig. 105.18), and

hence the probabilistic response is again initially more linear, elastic, while gradually it transitions to full

elasto–plasticity.

105.3.2.2 Case of Increasing Strain Loops

In Fig. 105.20, the evolutionary PDF of shear stress for von Mises elastic–perfectly plastic material (refer

Fig. 105.19) is plotted in terms of its statistical moments – the evolutionary mean (Fig. 105.20(a)),

and standard deviation (Fig. 105.20(b)) of shear stress – for the first couple of cycles with increasing

strain loops. The mean response, when both the yield shear strength (σy) and the shear modulus (G)

are modeled as Weibull distribution, is also shown in Fig. 105.20(a). The oscillations in the evolution

of standard deviation of shear stress with shear strain are due to step size issue, inherent to the forward

Euler method that has been used in solving the FPKE. Work is underway to implement linearly implicit

mid-point rule for solving the FPKE corresponding to elastic-plastic constitutive rate equation.

The very important observation that can be made using Fig. 105.20(a) is that, if one consider

uncertainties in geomaterial properties, even the simplest elastic–perfectly model, captures some of the

very important features of geomaterial behaviors. For example, reduction of (secant) modulus with cyclic

strain, commonly observed in soil (cf. Vucetic and Dobry Vucetic and Dobry (1991)), is fairly nicely

captured. If using deterministic models, this feature can only be somewhat successfully modeled with
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(a) (b)

Figure 105.20: Elastic–perfectly plastic probabilistic model under cyclic loading with increasing strain

loops: evolution of (a) mean and (b) standard deviation of shear stress

fairly complex models, which require many more parameters. It is important to remark that for our

probabilistic modeling, (only) statistical distributions (probability density functions) of shear modulus

(G) and shear strength (σy), are needed. Expansion of elastic–plastic modeling into probability space

seems to have added significant new capabilities to modeling.

105.3.2.3 Case of Constant Strain Loops

This von Mises elastic–plastic material, however, didn’t exhibit (secant) modulus degradation, commonly

observed in clay (cf. Vucetic and Dobry Vucetic and Dobry (1988)), when the material is cycled repeatedly

at the same strain. Fig. 105.21(a) shows such probabilistic response (mean of shear stress). The material

was cycled repeatedly up to 0.2% strain. Only first three cycles are shown. It is important to note that

the von Mises mean elastic–plastic material behavior is function of both the mean and standard deviation

of both shear modulus (G) and yield shear strength (σy). The same von Mises elastic–perfectly plastic

model with a different set of material properties could, however, be able to capture the degradation of

mean (secant) shear modulus. For example, Japanese stiff clay, when modeled as von Mises elastic–

perfectly plastic material, exhibited modulus degradation with number of cycles (Sett et al. Sett et al.

(2008))

105.3.2.4 Monotonic Loading

For completeness of comparison, the monotonic behavior of this probabilistic von Mises perfectly plastic

material is also shown (refer Fig. 105.22). As can be observed from Fig. 105.22(a), the mean shear
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(a) (b)

Figure 105.21: Elastic–perfectly plastic probabilistic model under cyclic loading with all equal loops:

evolution of (a) mean and (b) standard deviation of shear stress

stress non–linearly increases with shear strain before reaching the perfectly plastic state.

(a) (b)

Figure 105.22: Elastic–perfectly plastic probabilistic model under monotonic loading: evolution of (a)

mean, (b) standard deviation, and (c) mean ± standard deviation of shear stress

Physically, one may visualize the probabilistic soil constitutive response as an ensemble of the be-

haviors of infinite number of soil particles in a representative volume element (RVE), for example, a

laboratory soil specimen. The behavior of an individual soil particle in a RVE is governed, in case of

elastic–perfectly plastic material, by its modulus and strength. However, if the modulus and strength

of each particle are different, for example, governed by their respective PDF, then each particle would

behave differently. The PDF of the response behavior then represents the ensemble of all such behav-

iors, with their respective probability weights. The mean, on the other hand, represents the ensemble

average of all such behaviors. In this context, it is important to note that the behaviors presented in

this paper do not take into account the correlation between soil particles (scale effect). The scale effect
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can be accounted for, among others, using stochastic elastic–plastic finite element technique. Sett Sett

(2007) proposed one such finite element method by extending the spectral approach to stochastic finite

element (cf. Ghanem and Spanos Ghanem and Spanos (1991)) to elastic–plastic problems by updating

the material properties at Gauss integration points using the FPKE approach, as the material plastifies.

Further to the promise of an alternate approach to geomaterial modeling, probabilistic approach also

quantifies our confidence in the simulated behavior of geomaterials. FPKE based probabilistic elasto–

plasticity solves for second-order accurate evolutionary PDF of shear stress (Fig. 105.19). Ability to obtain

the PDF of stress accurately is very important in failure simulation of geomaterials, as they often fail at

low probabilities (tails of PDF). A full PDF contains enormous amount of information. From the PDF,

other than the statistical moments, other useful engineering information, for example, the probability

of exceedance, most probable solution, as well as some derivative application like sensitivity analysis

can be easily obtained or derived. Figs. 105.20(b) and 105.21(b) show one of the important confidence

measuring parameters, the evolutionary standard deviation of shear stress (square-root of second moment

of the evolutionary PDF of shear stress (Fig. 105.19)), for cyclic responses with increasing loops and all

equal loops, respectively. As can be observed from the above figures (Figs. 105.20(b) and 105.21(b)),

inside any branch (loading, unloading, re–loading, re–unloading, ...), as well as in Fig. 105.22(b), where

the monotonic response is shown, the standard deviation, first increases and then decreases. This is

because, initially, when the material is mostly elastic, both the uncertainties in shear modulus (G) and

yield strength (σy) are governing. As material becomes mostly elastic–plastic, the influence of uncertainty

in shear modulus (G) decreases. However, it is important to note that this type of standard deviation

response is not generic to all von Mises elastic–perfectly plastic material. The standard deviation response

is very much dependent on the amount uncertainties present in both shear modulus (G) and yield strength

(σy). For example, Fig. 105.23(b), shows probabilistic response of cyclic behavior of the same material

model, except that COV of yield strength (σy), is now assumed to be 300%. The standard deviation

response shown here is always increasing which is completely different from what was observed in previous

case (Figs. 105.20(b), 105.21(b) and 105.22(b))). This is because, for this material, the COV of shear

modulus (assumed 30%) is non–significant, compared to the COV of yield strength (assumed 300%), and

hence, the standard deviation response (Fig. 105.23(b)) is predominantly influenced by the uncertainty

in yield strength (σy). Similar standard deviation response can be observed in Fig. 105.24(b), where the

material with large COV of yield strength was subjected to monotonic loading.

It is also interesting to compare Figs. 105.21(a) and 105.23(a). Both are mean responses of von Mises

elastic–perfectly plastic material model with same material parameters, except with different COV of yield

strength. COV of yield strength for simulation in Fig. 105.21(a) was 30% and that for simulation in

Fig. 105.23(a) was 300%. It is observed that a completely different responses were obtained. The effect
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(a) (b)

Figure 105.23: Elastic–perfectly plastic probabilistic model under cyclic loading with all equal loops

(probabilistic model parameters are exactly the same as used for simulation in Fig. 105.21, but with very

large yield uncertainty): evolution of (a) mean and (b) standard deviation of shear stress

(a) (b)

Figure 105.24: Elastic–perfectly plastic probabilistic model under monotonic loading (model parameters

are exactly the same as used for simulation in Fig. 105.22, but with very large yield uncertainty): evolution

of (a) mean, mode, (b) standard deviation, and (c) mean ± standard deviation of shear stress

of COV of yield strength on monotonic mean behavior can, similarly, be compared in Figs. 105.22(a)

and 105.24(a).

105.3.2.5 Hardening Material

In this section, the influence of probabilistic yielding is evaluated on cyclic responses of isotropic and

kinematic hardening materials. To this end, the same example, as discussed in the previous section

(Section 105.3.2) is used but with appropriate hardening rule – isotropic or kinematic.

The main difference between the simulations shown in Section 105.3.2 for elastic–perfectly plastic
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 105.3. PROBABILISTIC YIELDING AND CYCLIC . . . page: 463 of 3287

material is that for a hardening material the internal variables (q∗, refer Eq. (105.45)) will evolve as the

material plastifies. Such evolution (change) of internal variables is here assumed to be a function of

plastic strain. The FPKE that govern the probabilistic evolution of internal variable (q) can be written,

in most the general form, as:

∂P(q(xt , t), t)
∂t

=
∂

∂q

{
Neq

(1)IV P(q(xt , t), t)
}

+
∂2

∂q2

{
Neq

(2)IV P(q(xt , t), t)
}

(105.53)

where, Neq
(1)IV and Neq

(2)IV are the equivalent advection and diffusion coefficients, respectively, for the

internal variable. As explained for the case of probabilistic stress response for elastic–perfectly plastic

material (refer Section 105.3.2), since point–location scale FPKE will be solved, the equivalent advection

and diffusion coefficients for the internal variable, Neq
(1)IV and Neq

(2)IV , can be written as:

Neq
(1)IV (q) = P[Σy ≤ σ(q)]

dϵxy
dt

〈
Gr

G +
1√
3

r

〉

Neq
(2)IV (q) = P[Σy ≤ σ(q)]t

(
dϵxy
dt

)2
Var

 Gr

G +
1√
3

r


(105.54)

where, r is the rate of evolution of internal variable (q) with plastic strain. One may note that in the

above equivalent advection and diffusion coefficients (Eq. (105.54)), the contributions of probability

weights that the material being elastic are absent. This is because the evolution rule of internal variable

is governed by the plastic component of strain only. The equivalent advection and diffusion coefficients

for shear stress (Neq
(1) and Neq

(2)) for hardening–type materials, will have contributions from both elastic

and plastic components, just like the elastic–perfectly plastic case. However, unlike the elastic–perfectly

plastic case, those (Neq
(1) and Neq

(2)) will contain the hardening terms:

Neq
(1)(σ) =

dϵxy
dt

(1 – P[Σy ≤ σ]) ⟨G⟩ + P[Σy ≤ σ]

〈
G –

G2

G +
1√
3

r

〉
Neq

(2)(σ) = t
(

dϵxy
dt

)2

(1 – P[Σy ≤ σ])Var[G] + P[Σy ≤ σ]Var

G –
G2

G +
1√
3

r




(105.55)

To obtain the probabilistic response of von Mises hardening material, the FPKE for probabilistic evo-

lution of internal variable (Eq. (105.53), with advection and diffusion coefficients given by Eq. (105.54))

needs to be solved incrementally. This solution needs to be done simultaneously with the FPKE for

probabilistic evolution of shear stress (Eq. (105.46), with advection and diffusion coefficients given by

Eq. (105.55)). Those, in turn, need also to be solved incrementally, with the yield strength random

variable (Σy) in Eqs. (105.54) and (105.55) being updated after each incremental step.
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105.3.2.6 Isotropic Hardening

For von Mises isotropic hardening material, the yield strength (σy) is the internal variable. Yield strength

will evolve probabilistically with plastic strain, following Eq. (105.53), with advection and diffusion

coefficients given by Eq. (105.54). The shear stress, on the other hand, evolves in accordance with

Eq. (105.46), with advection and diffusion coefficients given by Eq. (105.55).

Fig. 105.25 shows the evolutionary mean and standard deviation of shear stress during first couple

of loading–unloading cycles for von Mises isotropic hardening material with a non–dimensional rate

of evolution of internal variable (yield strength, in this case) of 10. All other material parameters are

assumed to be the same as used for simulation of elastic–perfectly plastic material in the previous section

(Section 105.3.2).

(a) (b)

Figure 105.25: Isotropic hardening probabilistic model under cyclic loading with increasing loops: evo-

lution of (a) mean and (b) standard deviation of shear stress

The evolved PDFs of yield strength after each branch (loading, unloading, re–loading, and re–

unloading) are shown in Fig. 105.26. The initial PDFs of yield strength (positive for loading branch

and negative for unloading branch) are the same as assumed for elastic–perfectly plastic material in

Section 105.3.2 (refer Fig. 105.18). As expected (and prescribed by the isotropic hardening model), the

yield strength evolved (grew) isotropically. However, it is interesting to note the change in probability

distributions of yield strength. The normally distributed initial PDFs of yield strength (Fig. 105.18)

evolved into much dispersed non-Gaussian distributions having low kurtosis. In other words, when

the material is cycled through loading–unloading cycles, the uncertainty in yield strength increases.
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Figure 105.26: Isotropic hardening probabilistic model under cyclic loading with increasing loops: evolved

PDF of yield stress after (a) loading branch, (b) unloading branch, (c) re–loading branch, and (d) re–

unloading branch

Mathematically, increase in uncertainty of shear strength is due to the nonlinearity in formulation of

probabilistic yielding , that is, the state variable q appears in both advection and diffusion equations

(refer Eq. (105.54)), and in the evolution equation for internal variable (Eq. (105.53)).

When comparison is made between Figs. 105.25 and 105.20, one can clearly see that, in simulating

cyclic behaviors of geomaterials, isotropic hardening model (Fig. 105.25) performed, as expected, poorly.

That is, the elastic–perfectly plastic probabilistic model (Fig. 105.20) captures (PDF of) stress–strain

loops in a much more realistic way. However, for completeness of comparison, the behavior of isotropic

hardening material, when it was cycled to same level (Fig. 105.27) and when loaded monotonically

(Fig. 105.28) are also shown.

It is noted that monotonic loading curves for both perfectly plastic probabilistic model (Fig. 105.22)

and linear isotropic hardening probabilistic model (Fig. 105.28) do look similar (with a noted difference

of more pronounced hardening for a hardening model), but the real difference in stress–strain predictions

with both probabilistic models becomes obvious in the case of cyclic loading.
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(a) (b)

Figure 105.27: Isotropic hardening probabilistic model under cyclic loading with equal loops: evolution

of (a) mean and (b) standard deviation of shear stress

(a) (b)

Figure 105.28: Isotropic hardening probabilistic model under monotonic loading: evolution of (a) mean,

(b) standard deviation, and (c) mean ± standard deviation of shear stress

105.3.2.7 Kinematic Hardening

Expanding on elastic–plastic hardening probabilistic models, we now focus on a simple linear kinematic

hardening rule based on evolution of back stress (α). By introducing back stress (α) to von Mises yield

criteria, one can write:

√
Jα – k = 0 (105.56)

where, k is again material parameter (yield strength like) and Jα = 3/2(sij –αij)(sij –αij) is the α–modified

second invariant of deviatoric stress tensor (sij). For 1–D shear, Eq. (105.56) becomes:

|σ – α| – σy = 0 or σ = α± σy (105.57)
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Hence, for kinematic hardening material, the yielding occurs at a stress of α±σy, termed in the following

as the equivalent yield stress. Initially, α is zero, and σy is assumed to have a mean value of 60 kPa

with a standard deviation of 20 kPa, resulting in equivalent yield stress of 60 kPa with a COV of 30%,

same as the assumed yield stress for the elastic–perfectly plastic material in Section 105.3.2 and isotropic

hardening material in Section 105.3.2.6. However, the same distribution of equivalent yield stress will

be obtained, if one transfers the initial uncertainty from σy to α. In other words, a deterministic σy of

60 kPa, and an uncertain α of zero mean and a standard deviation of 20 kPa will result in the same

equivalent yield stress. The advantage of keeping σy deterministic is that it will simplify the probabilistic

addition/subtraction in Eq. (105.57), while estimating the equivalent yield stress after each incremental

step of the governing FPKEs, once the back stress (α), the internal variable for kinematic hardening

material, starts evolving.

In this study, the back stress (α) is assumed to evolve with plastic strain and hence, it would

evolve probabilistically similar to probabilistic evolution of the yield strength for isotropic hardening

material. Probabilistic evolution of the back stress will occur according to Eq. (105.53), with advection

and diffusion coefficients given by Eq. (105.54). Shear stress evolves according to Eq. (105.46), with

advection and diffusion coefficients given by Eq. (105.55). One may note that the yield strength random

variable (Σy), appearing in Eqs. (105.54) and (105.55), is the equivalent yield strength and is given by

Eq. (105.57). Fig. 105.29 shows the probabilistic evolution of shear stress in terms of mean, mode, and

standard deviation, when a kinematic hardening material8, was cycled couple of times with increasing

strain loops. All other material parameters are assumed to be the same as for the elastic–perfectly

plastic material in Section 105.3.2. The evolved PDFs of the back stress (α) at the beginning and end of

each branch (loading, unloading, re–loading, and re–unloading) are shown in Fig. 105.30. The evolved

PDFs of equivalent yield stress (refer Eq. (105.57)) after each loading branch are shown in Fig. 105.31.

Similar to the isotropic hardening case the uncertainty in (equivalent) yield strength increased as the

material was cycled through, but unlike the isotropic hardening model, kinematic hardening model

resulted in high kurtosis PDFs of (equivalent) yield strength. It is noted that the cyclic shear stress

response of kinematic hardening material (Fig. 105.29), was more realistic than isotropic hardening

material (Fig. 105.25), however, it didn’t differ much from elastic–perfectly plastic material response

(Fig. 105.20). Qualitatively, those, the elastic–perfectly plastic and the kinematic hardening responses,

are similar. Like the elastic–perfectly plastic material, for kinematic hardening material, the mean and

mode of the evolutionary shear stress (refer Fig. 105.29) are different, although not significantly.

Similarly, when one compares response (mean and standard deviation of shear stress) for loading

cycles to the same strain level, for (i) elastic–perfectly plastic, (Fig. 105.21), (ii) isotropic linear hardening

8with non–dimensional rate of evolution of back stress with plastic strain of 10.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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(a) (b)

Figure 105.29: Kinematic hardening probabilistic model under cyclic loading with increasing loops:

evolution of (a) mean, mode and (b) standard deviation of shear stress

Figure 105.30: Kinematic hardening probabilistic model under cyclic loading with increasing loops:

evolved PDF of back stress at the beginning and end of (a) loading branch, (b) unloading Branch, (c)

re–loading branch, and (d) re–unloading branch
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Figure 105.31: Kinematic hardening probabilistic model under cyclic loading with increasing loops:

evolved PDF of equivalent yield stress after (a) loading branch, (b) unloading branch, (c) re–loading

branch, and (d) re–unloading branch

(Fig. 105.27), and (iii) linear kinematic hardening (Fig. 105.32), probabilistic material models, one can

easily observe the qualitative similarity between elastic–perfectly plastic (i) and kinematic hardening

responses (iii).

Monotonic loading cases, however, for all probabilistic material models ((i) elastic–perfectly plas-

tic, (Fig. 105.22), (ii) isotropic linear hardening (Fig. 105.28), and (iii) linear kinematic hardening

(Fig. 105.33)), are qualitatively similar, with expected differences in rate of hardening.

105.4 Hermite Polynomial Chaos Karhunen-Loève Expansion

Hermite polynomial chaos Karhunen-Loève (PC-KL) expansion is formulated for the general heteroge-

neous random field H(x, θ) of arbitrary marginal distributions. Here θ denotes the uncertainties and x is

the general coordinate that can be either temporal as in the case of uncertain random process motions

or spatial as in the case of random field material parameters.

Random field H(x, θ) with any type of marginal distributions can be discretized with orthogonal

Hermite polynomial chaos Ωi(γ(x, θ)) up to a certain order P Sakamoto and Ghanem (2002):
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(a) (b)

Figure 105.32: Kinematic hardening probabilistic model under cyclic loading with equal loops: evolution

of (a) mean and (b) standard deviation of shear stress

(a) (b)

Figure 105.33: Kinematic hardening probabilistic model under monotonic loading: evolution of (a) mean,

(b) standard deviation, and (c) mean ± standard deviation of shear stress

H(x, θ) =
P∑

i=0
Hi(x)Ωi(γ(x, θ)) (105.58)

where random functions {Ωi} are Hermite polynomials constructed from a zero mean, unit variance

kernel Gaussian random field γ(x, θ). Random functions {Ωi} are determined by the initial condition

Ω0 = 1 and the recursive relation:

Ωi+1(γ) = γΩi(γ) – Ω
′
i(γ) (105.59)

The deterministic PC coefficient field Hi(x) can be calculated by projecting random field H(x, θ) onto PC

basis Ωi. Given the input covariance structure CovH (x1, x2) of the original random field, the underlying
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Gaussian covariance kernel Covγ(x1, x2) can then be determined by solving:

CovH (x1, x2) =
P∑

i=1
Hi(x1) Hi(x2) i ! Covγ(x1, x2)i (105.60)

Following Karhunen-Loève (KL) theorem Ghanem and Spanos (1991), the underlying kernel Gaussian

random field γ(x, θ) can be represented as:

γ(x, θ) =
M∑
i=1

√
λifi(x)ξi(θ) (105.61)

where eigenvalues λi and eigenvectors fi(x) of the covariance kernel Covγ(x1, x2) have to satisfy Fred-

holm’s integral equation of the second kind Sakamoto and Ghanem (2002). Zero mean and unit variance

Gaussian random variables {ξi(θ)} are represented in M independent dimensions.

By combining Equations 105.58 to 105.61, the ultimate PC-KL expansion of the general random

field H(x, θ) into multi-dimensional orthogonal Hermite PC bases {Ψi} of order P and dimension M can

be obtained as:

H(x, θ) =
K∑

i=0
hi(x)Ψi({ξj(θ)}) (105.62)

hi(x) =
p!
⟨Ψ2

i ⟩
Hp(x)

p∏
j=1

√
λk(j)fk(j)(x)√∑M

m=1(
√
λmfm(x))2

(105.63)

where K is the total number of multidimensional Hermite PC bases {Ψi} that depends on order P and

dimension M as K = 1 +
∑P

s=1
1
s!
∏s–1

j=0(M + j). The upper product limit p, in equation 105.63 is the order

of PC basis Ψi({ξj(θ)}). The marginal mean, marginal variance, correlation structure and any other

statistics of the random field H(x, θ) can be synthesized from the above Hermite PC-KL expansion. The

goodness of the PC-KL expansion can be checked by comparing the PC-synthesized statistics with the

input statistics of the random field H(x, θ).

105.5 Galerkin Stochastic Elastoplastic Finite Element Formulations

105.5.1 Stochastic Elastoplastic Finite Element Method

Within the developed time domain stochastic Galerkin formulations, the uncertain material parameters

and the uncertain forcing are modeled as heterogeneous random fields and non-stationary random process,

respectively. As a unified probabilistic discretization scheme, Hermite PC-KL expansion is applied to both

input uncertainties and output uncertainties, e.g., probabilistic displacement and acceleration responses.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 105.5. GALERKIN STOCHASTIC ELASTOPLAS . . . page: 472 of 3287

Stochastic Galerkin projection is performed to minimize the error for estimating response PC coefficients.

The resulting PC coefficients are used to develop statistics and distributions of the probabilistic response.

The weak form of deterministic, dynamic finite elements Jeremić et al. (1989-2025) can be written

as: ∫
De

Nm(x)ρ(x)Nn(x)dV ün(t) +
∫

De
∇Nm(x)E(x)∇Nn(x)dV un(t) – fm(t) = 0 (105.64)

where Nm are the finite element shape functions, and fm(t) is the nodal force vector, while ρ(x) and E(x)

are the deterministic density and deterministic stiffness fields in the deterministic FEM.

105.5.2 Stochastic Elastoplastic Finite Element Method, 1D Polynomial Chaos Formulation

Considering the tangential stiffness field, E(x) to be a heterogeneous random field, and the forcing

function, fm(t) to be a non-stationary random process, both are represented using multidimensional,

Hermite PC expansions with known coefficients:

E(x, θ) =
P1∑
i=0

Ei(x)Ψi({ξr(θ)}) (105.65)

fm(t, θ) =
P2∑
j=0

fmj(t)ψj({ξr(θ)}) (105.66)

When the system with uncertain properties is excited by uncertain forces, the results, displacement

and acceleration responses also become uncertain and can be represented using Hermite PCs with

unknown coefficients expanded up to order P3:

un(t, θ) =
P3∑
k=0

unk(t)ϕk({ξl(θ)}) (105.67)

ün(t, θ) =
P3∑
k=0

ünk(t)ϕk({ξl(θ)}) (105.68)

By substituting Eqs. 105.65, 105.66, 105.67, and 105.68 into Eq. 105.64, and denoting the shape

function gradients ∇Nn(x) as B(x), we obtain:

P3∑
k=0

∫
De

Nm(x)ρ(x)Nn(x)dV ϕk ünk(t) +

P3∑
k=0

P1∑
i=0

∫
De

Bm(x)Ei(x)Bn(x)dV Ψiϕkunk(t) –
P2∑
j=0

fmj(t)ψj = 0 (105.69)
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Performing stochastic Galerkin projection by multiplying both sides of Eq. 105.69 with PC basis ϕl and

taking expectation Ghanem and Kruger (1996), we obtain the following system of ordinary differential

equations (ODEs):

P3∑
k=0
⟨ϕkϕl⟩

∫
De

Nm(x)ρ(x)Nn(x)dV ünk(t) +

P3∑
k=0

P1∑
i=0
⟨Ψiϕkϕl⟩

∫
De

Bm(x)Ei(x)Bn(x)dV unk(t) =
P2∑
j=0
⟨ψjϕl⟩fmj(t) (105.70)

with l = 0, 1, 2, ..., P3 where P3 is the PC expansion order, while m = 1, 2, ..., N where N is the number

of finite element nodes, and the expectation operator is denoted as ⟨·⟩. The expectations of double

products ⟨ϕkϕl⟩, ⟨ψjϕl⟩ and triple products ⟨Ψiϕkϕl⟩ of Hermite PC bases can be analytically computed

beforehand and looked up during the stochastic FEM analysis.

Eq. 105.70 can be written into a matrix-vector form as:

Mü + Ku = F (105.71)

where M, K and F are the stochastic expanded mass matrix, stiffness matrix and force vector, respectively.

Vectors of unknown acceleration and displacement PC coefficients are denoted as ü and u, respectively.

Equation 105.71 is written in index notation, using Einstein summation convention, as:

Mmlnk ünk + Kmlnkunk = Fml (105.72)

where

Mmlnk =
⋃
e
⟨ϕkϕl⟩

∫
De

Nm(x)ρ(x)Nn(x)dV (105.73)

Kmlnk =
⋃
e

P1∑
i=0
⟨Ψiϕkϕl⟩

∫
De

Bm(x)Ei(x)Bn(x)dV (105.74)

Fml =
⋃
e

P2∑
j=0
⟨ψjϕl⟩fmj (105.75)

and
⋃
e

is the assembly operator for elemental mass matrices, stiffness matrices and force vectors. Rayleigh

damping can also be added into Eq. 105.71 as:

Mü + Cu̇ + Ku = F (105.76)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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The stochastic expanded damping matrix C can be represented as:

C = αM + βK (105.77)

where α and β are Rayleigh damping parameters. The Rayleigh damping would produce the damping

ratio ξ dependent on the response frequency ω in a hyperbolic functional form as (Chopra Chopra

(2000)):

ξ =
1
2

(
α

ω
+ βω) (105.78)

Due to the formulation of Rayleigh damping, its uncertainties are inherently considered and modeled

through the uncertainties of the mass and stiffness matrix. In Eq. 105.77, both the matrix M and the

matrix K, are stochastic expanded matrices that reflect the uncertainties from the material density and

stiffness. Additional uncertainties could be included through uncertain Rayleigh damping parameters

α and β. However, these uncertainties are difficult to calibrate. Therefore, in this study, we consider

both the damping parameters α and β to be deterministic. As such, the damping uncertainties come

directly as the combination of the mass uncertainties and the stiffness uncertainties. The same Galerkin

projection scheme is inherently applied to propagate the damping uncertainties to the probabilistic system

response.

The ordinary differential system of equations 105.71 or 105.76 may be solved using any time inte-

gration method, for example Newmark method Newmark (1959). Note that the size of the stochastic

finite element system of equations is much larger when compared to corresponding deterministic finite

element system of equations, depending upon the number of PC terms used to represent the probabilistic

displacement and acceleration response. After solving for the unknown PC coefficients for displacements

unk and accelerations ünk from the stochastic FEM analysis, the complete probabilistic dynamic response

of the system can be determined. Using the resulting PC coefficients for unk and ünk, any probabilistic

measure of the uncertain system response can be obtained. For example, the time-evolving mean and

variance of the probabilistic displacement response at node n can be computed as:

⟨un(t, θ)⟩ = un0(t) (105.79)

Var(un(t, θ)) =
P3∑
k=1
⟨ϕ2

k⟩u2
nk(t) (105.80)

105.5.3 Probabilistic Elastoplastic Constitutive Modeling, 1D Polynomial Chaos Formulation

In the above stochastic elastoplastic FEM formulation, the probabilistic tangential stiffness E(x, θ) needs

to be updated at each incremental step. Probabilistic elastoplastic constitutive modeling is performed at
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each Gauss point to update the uncertain elastoplastic stiffness and stress. For the one dimensional (1D)

stochastic site response analysis in this study, the constitutive behavior of the soil is represented by a 1D

elastoplastic material model with a vanishing elastic region and Armstrong-Frederick nonlinear kinematic

hardening Armstrong and Frederick (1966). Without considering uncertainties in material properties,

the relationship between the stress increment dσ and the strain increment dϵ, in 1D, can be written in

the incremental form as:

dσ = Hadϵ – Crσ|dϵ| (105.81)

where Ha and Cr are model parameters. The shear strength Su given by the model becomes Su = Ha/Cr .

The elastoplastic tangential stiffness is a function of the stress σ as:

E(σ) =
dσ
dϵ

= Ha – Crσ sgn(dϵ) (105.82)

where sgn(dϵ) is the sign function of the strain increment dϵ. This function returns sgn(dϵ) = 1 for the

positive strain strain increment dϵ > 0 and sgn(dϵ) = –1 otherwise, for dϵ < 0.

Here model parameters Ha and Cr are considered to be uncertain and modeled as random fields

Ha(x, θ) and Cr(x, θ). Representation of those two model parameters using Hermite PC bases φi({ξr(θ)})
can be written as:

Ha(x, θ) =
P∑

i=0
Hai(x)φi({ξr(θ)}) (105.83)

Cr(x, θ) =
P∑

i=0
Cri(x)φi({ξr(θ)}) (105.84)

The strain increments dϵ(x, θ), that represent input to the constitutive driver (Equation 105.81), are also

uncertain, since ϵ(x, θ) = B(x)un(t, θ):

dϵ(x, θ) =
P∑

i=0
dϵi(x)φi({ξr(θ)}) (105.85)

As a result, the probabilistic incremental stress dσ(x, θ) and the tangential stiffness E(x, θ) can be

represented using unknown PC coefficients {dσi(x)} and {Ei(x)} as:

dσ(x, θ) =
P∑

i=0
dσi(x)φi({ξr(θ)}) (105.86)

E(x, θ) =
P∑

i=0
Ei(x)φi({ξr(θ)}) (105.87)
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Substituting Equations 105.83 ∼ 105.87 into Equations 105.81 and 105.82, and applying Galerkin pro-

jection on PC basis φi{ξr(θ)} yields:

P∑
m=0

dσm ⟨φmφi⟩ =
P∑

j=0

P∑
k=0

Hajdϵk ⟨φjφkφi⟩ ±
P∑

l=0

P∑
n=0

P∑
s=0

Crlσndϵs ⟨φlφnφsφi⟩ (105.88)

P∑
i=0

Em ⟨φmφi⟩ =
P∑

j=0
Haj ⟨φjφi⟩ ±

P∑
l=0

P∑
n=0

Crlσn ⟨φlφnφi⟩ (105.89)

Solutions to the unknown PC coefficients of the incremental stress dσ(x, θ) and the elastoplastic stiffness

E(x, θ) can be computed using the orthogonality of Hermite PC bases ⟨φiφj⟩ = δij :

dσi =
1

Var[φi]

[
Hajdϵk ⟨φjφkφi⟩ ± Crlσndϵs ⟨φlφnφsφi⟩

]
(105.90)

Ei = Hai ±
1

Var[φi]
Crlσn ⟨φlφnφi⟩ (105.91)

where Var[φi] is the scalar variance of PC basis φi{ξr(θ)}, that equals to ⟨φ2
i ⟩. The Einstein’s summation

convention is followed in equations 105.90 and 105.91 with index i as a free index. The above formulation

for the probabilistic constitutive modeling is implemented in the context of the explicit, forward Euler

algorithm Jeremić et al. (1989-2025).

To illustrate the above probabilistic constitutive model, Figure 105.34 shows the stress-strain behav-

ior using uncertain material parameters Ha with mean 10MPa and coefficient of variation (CV) 25%,

uncertain shear strength Su = Ha/Cr with mean 150kPa and coefficient of variation 25%. The material

is driven by an uncertain cyclic strain with a mean strain increment 10–4 and coefficient of variation of

20%.

It is observed that the probabilistic material response obtained through the intrusive polynomial chaos

modeling matches well with Monte Carlo analysis using 10, 000 samples. It is noted that the intrusive

probabilistic modeling is around 2, 000 times more computationally efficient, faster than Monte Carlo

simulations.

105.5.4 Stochastic Elastoplastic Finite Element Method, 3D Polynomial Chaos Formulation

105.5.5 Probabilistic Elastoplastic Constitutive Modeling, 3D Polynomial Chaos Formulation

105.6 Sobol’ Indices Computation Using Polynomial Chaos Expansion

In global sensitivity analysis, the variance of model output is decomposed into a sum of contributions

from individual random variable, or groups of random variables. Consider a general mathematical model
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Figure 105.34: The hysteretic behavior of 1-D elastoplastic material with uncertain parameters Ha and

Ha/Cr .

with n uncertain inputs represented by vector x and scalar output y as:

y = f (x) x ∈ In (105.92)

where the input parameters x are defined in n dimensional unit cube In without the loss of generality.

The ANOVA (ANalysis Of VAriance) representation of f (x) can be written as Sobol (2001):

f (x1, x2, ..., xn) = f0 +
n∑

i=1
fi(xi) +

∑
1≤i<j≤n

fij(xi, xj) + ... + f1,2,...,n(x1, ..., xn) (105.93)

There are 2n summands in total. Constant f0 is the mean value of the function:

f0 =
∫

In
f (x)dx (105.94)

The integral of each summand in Equation 105.93 over any of its independent variable is zero:

∫ 1

0
fi1,...,is(xi1 , xi2 , ..., xis) dxik = 0 for 1 ≤ k ≤ s (105.95)

From Equation 105.95, it can be seen that the summands are orthogonal to each other in the following

sense:∫
In

fi1,...,is(xi1 , xi2 , ..., xis)fj1,...,jt (xj1 , xj2 , ..., xjt ) dx = 0 for {i1, ..., is} ≠ {j1, .., jt} (105.96)
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For given mathematical model f (x), the above ANOVA representation is unique and can be derived

analytically. For example, the univariate terms can be solved as:

fi(xi) =
∫

In–1
f (x) dx∼i – f0 (105.97)

where
∫

In–1(·) dx∼i denotes the integration over all dimensions except xi. Similarly, the bivariate terms

can be derived as follows:

fij(xi, xj) =
∫

In–2
f (x) dx∼[ij] – fi(xi) – fj(xj) – f0 (105.98)

Following this procedure, any summand fi1,...,is(xi1 , xi2 , ..., xis) can be constructed from some multidi-

mensional integral of f (x).

Considering uncertain input parameters X to be independent random variables following uniform

distribution in [0, 1]:

X = [X1, ..., Xn], Xi ∼ U(0, 1), for i = 1, ..., n (105.99)

Then the total variance of the probabilistic model response y = f (X) can be computed as:

D = Var[f (X)] =
∫

In
f 2(x) dx – f 2

0 (105.100)

Using Equations 105.93 and 105.96, the total variance D can be decomposed as follows:

D =
n∑

i=1
Di +

∑
1≤i<j≤n

Dij + ... + D1,2,...,n =
n∑

s=1

∑
i1<...<is

Di1...is (105.101)

where the variance contribution from individual summand is given as follows:

Di1...is =
∫

Is
f 2
i1...is(xi1 , ..., xis) dxi1 , ...dxis , with 1 ≤ i1 < ... < is ≤ n, s = 1, ..., n (105.102)

The Sobol’ indices Si1...is are defined as:

Si1...is = Di1...is /D (105.103)

The Sobol’ indices Si1...is quantifies the fractional contributions from random inputs {Xi1 , ..., Xis} to the

total variance D. The first order indices Si gives the influence of each uncertain input parameter Xi when

considered individually. The high order terms describe the mixed influence when a group of uncertain

input parameters are considered collectively. Clearly, from Equation 105.101 we have:

n∑
i=1

Si +
∑

1≤i<j≤n
Sij + ... + S1,2,...,n = 1 (105.104)
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The Sobol’ indices for global sensitivity analysis can be used for the following purposes: (1) Ranking

of input uncertain parameters X = [X1, ..., Xn]. (2) Neglect of inessential uncertain parameters and

high order terms in Equation 105.93. The total sensitivity indices Stotal
i is defined to evaluate the total

influence of a certain input parameter Xi as:

Stotal
i =

∑
Si

Di1...is (105.105)

where set Si contains all the indexes involving index i defined as Equation 105.106 and Sobol’ indices

set {Di1...is} is the collection of all partial sensitivity indices that are related to parameter Xi.

Si = {(i1, ..., is) : ∃k, 1 ≤ k ≤ s, ik = i} (105.106)

Using Hermite PC expansion Ghanem and Spanos (1991), the probabilistic model response y = f (X)

can be represented as:

y =
P–1∑
j=0

yjΨj(ξ), ξ = {ξ1, ..., ξM} (105.107)

where {Ψj} are multi-dimensional, mutually orthogonal Hermite PC bases of order p constructed from

M dimension, independent, standard Gaussian random vector ξ. The total number of PC bases P is

related to the dimension M and order p as:

P =

M + p

p

 =
(M + p)!

M!p!
(105.108)

It is noted that the input random vector X of any prescribed joint PDF or any given marginal

PDF and correlations can be approximately transformed to standard Gaussian random vector ξ using

transformation techniques such as iso-probabilistic transform and Nataf transform Lebrun and Dutfoy

(2009):

X = T (ξ) (105.109)

Therefore, the probabilistic model response can be evaluated and represented with Hermite PC expansion

as:

y = f (X) = f ◦ T (ξ) =
P–1∑
j=0

yjΨj(ξ), ξ = {ξ1, ..., ξM} (105.110)

Here we transform the input random vector X into standard Gaussian random vector ξ and perform

Hermite polynomial chaos expansion. We can also transform the input random vector X into other types
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of basic random variables, e.g., uniform distribution, and represent model response y with associated

generalized PC expansion Xiu and Karniadakis (2002).

Since the PC bases {Ψj(ξ)} are zero-mean (j ≥ 1) and mutually orthogonal, the mean y and total

variance of model response DPC can be calculated from its PC representation:

y = E[f (X)] = y0

DPC = Var

P–1∑
j=0

yjΨj

 =
P–1∑
j=1

y2
j E
[
Ψ2

j

] (105.111)

To compute the Sobol’ indices, the above PC expansion of y should be organized into the ANOVA

form Sudret (2008). The multi-dimensional polynomial chaos bases {Ψj(ξ)} can be decomposed into

the multiplication of single dimension polynomial chaos bases of different orders:

Ψj(ξ) =
n∏

i=1
ϕαi (ξi) (105.112)

where ϕαi (ξi) is the single dimensional, order αi, polynomial function of underlying basic random variable

ξi. The functional form of the generalized polynomial chaos function ϕαi (ξi) depends on the selected

underlying basic random variable ξi Xiu and Karniadakis (2002). For example, when the basic ran-

dom variable ξi follows standard Gaussian distribution, Hermite polynomial functions ϕαi (ξi) should be

constructed as follows:

ϕ0 = 1; ϕk+1(ξi) = ξiϕk(ξi) – ϕ
′
k(ξi) for all k ≥ 1 (105.113)

Each multidimensional polynomial chaos basis can be uniquely characterized by vector α = (α1, ...,αn).

The connection between the PC expansion and the ANOVA representation of model response y can be

established by defining set S from α as Sudret (2008):

Si1,...,is = {α : ∀k = 1, ..., n, when k ∈ (i1, ..., is), αk > 0, otherwise, αk = 0} (105.114)

For example, Si would correspond to the PC bases depending only on dimension ξi. Following Equa-

tion 105.114, the PC expansion shown in Equation 105.110 could be written into ANOVA representation:

y = y0 +
n∑

i=1

∑
α∈Si

yαΨα(ξi) +
∑

1≤i1<i2≤n

∑
α∈Si1,i2

yαΨα(ξi1 , ξi2) + ...

+
∑

1≤i1<...<is≤n

∑
α∈Si1,...,is

yαΨα(ξi1 , ..., ξis) + ...

+
∑

α∈S1,2,...,n

yαΨα(ξ1, ..., ξn)

(105.115)
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where the term
∑

α∈Si1,...,is
yαΨα(ξi1 , ..., ξis) denotes the summation of polynomial chaos expansions

depending on all the basic random variables {ξi1 , ..., ξis} and only on them. From the above ANOVA

representation of probabilistic model response, the PC-based Sobol’ indices SPC
i1...is can be derived as:

SPC
i1...is =

∑
α∈Si1,...,is

y2
αE

[
Ψ2
α

]
/DPC (105.116)

The total Sobol’ indices SPC,total
j1...jt for any group of parameters {ξj1 , ..., ξjt} can then be computed as:

SPC,total
j1...jt =

∑
(i1,...,is)∈Sj1,...,jt

SPC
i1...is (105.117)

where set Sj1,...,jt is defined as:

Sj1,...,jt = {(i1, ..., is) : (j1, ..., jt) ⊂ (i1, ..., is)} (105.118)

From the above formulations, it can be observed that once the PC representation of probabilistic model

response is established, Sobol’ sensitivity indices can be analytically evaluated with very small computa-

tional expense.
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106.1 Chapter Summary and Highlights

106.2 Continuum Mechanics Preliminaries: Kinematics

106.2.1 Deformation

In modeling the material nonlinear behavior of solids, plasticity theory is applicable primarily to those

bodies that can experience inelastic deformations considerably greater than the elastic deformation. If

the resulting total deformation, including both translations and rotations, are small enough, we can apply

small deformation theory in solving these problems. If, however strains and rotations are finite, one must

resort to the theory of large deformations. In doing so, we will be using two sets of representations1,

namely:

• Material coordinates in the undeformed configuration, also called Lagrangian coordinates,

• Spatial coordinates in the deformed configuration, also called Eulerian coordinates.

Figure 106.1 shows the displacement of a particle from its initial position XI to the current position xi,

defined by the deformation equation:

xi = xi (X1, X2, X3, t) (106.1)

d

d

X

X u

x

x i

i

iI

I

Figure 106.1: Displacement, stretch and rotation of material vector dXI to new position dxi.

The initial position XI of the particle now occupying the position xi is given by the Eulerian equation:

XI = XI (x1, x2, x3, t) (106.2)

1See Malvern (1969).
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The two positions are connected by the displacement uI :

xi = XI + ui ; XI = xi – ui (106.3)

106.2.2 Deformation Gradient

The deformation gradients are the gradients of the functions on the right–hand side of equations (106.1)

and (106.2). To emphasize the difference between the material, Lagrangian setting and the spatial,

Eulerian setting, we will use capital letters for the material coordinate indices and lower case letters

for the spatial coordinate indices. We limit our work to the rectangular Cartesian coordinates, thus

simplifying the tensor notation to the covariant indices only.

The deformation gradient is defined as the two–point tensor whose rectangular Cartesian components

are the partial derivatives:

FkK =
∂xk
∂XK

= xk,K (106.4)

The deformation gradient FkK transforms (convects) on an arbitrary infinitesimal material vector dXI at

XI to associate it with a vector dxi at xi:

dxk = FkKdXK =
∂xk
∂XK

dXK = xk,KdXK (106.5)

The the spatial deformation gradients are tensors referred to the deformed, Eulerian configuration:

(FKk)–1 =
∂XK
∂xk

= XK ,k (106.6)

Similarly to the deformation gradient FkK , spatial deformation gradient (FKk)–1 operates on an arbitrary

infinitesimal material vector dxi at xi to associate it with a vector dXI at XI :

dXK = (FKk)–1 dxk =
∂XK
∂xk

dxk = XK ,kdxk (106.7)

The spatial deformation gradient (FKk)–1 at xi is the inverse to the two–point tensor FkK at XI :

FiJ
(
FJk
)–1 = δik and

(
FIj
)–1 FjK = δIK (106.8)

The Jacobian of the mapping (106.4) can be represented as:

J = det (FkK ) =
1
6

eijkePQRFiPFjQFkR (106.9)
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The relative deformation gradient fkm is the gradient for the relative motion function:

ξ = χt (xi, τ ) (106.10)

and is defined as:

fkm = ξk,m ≡
∂ξk
∂xm

(106.11)

If the fixed reference position XI , the current position xi and the variable position ξi are all referred to

the rectangular Cartesian coordinate system, the chain rule of differentiation yields:

∂ξk
∂XI

=
∂ξk
∂xm

∂xm
∂XI

or FkI = fkm FmI (106.12)

The polar decomposition theorem permits the unique representation2:

Fij = RikUkj = vikRkj (106.13)

where Ukj , vik are positive definite symmetric tensors, called right stretch tensors and left stretch tensors,

respectively, and Rkj is an orthogonal tensor such that:

RikRjk = δij and also RkiRkj = δij (106.14)

Equation (106.13), as well as Figure 106.2.2 demonstrate that the motion and deformation of an

infinitesimal volume element at Xi consist of consecutive applications of:

• a stretch by Ukj ,

• a rigid body rotation by Rik,

• a rigid body translation to xi

or alternatively:

• a rigid body translation to xi

• a rigid body rotation by Rkj ,

• a stretch by vik,

2referring xi and Xi to the same reference axes and using lower case indices for both. This reference to the same

coordinate system will be applied only for the polar decomposition example presented here.
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d

d

X

X u

x

x i

i

i

I

I

Figure 106.2: Illustration of the equation Fij = RikUkj = vikRkj .

106.2.3 Strain Tensors, Deformation Tensors and Stretch

The strain tensors EIJ and eij are defined so that they give the change in the square length of the material

vector dXI . For the Lagrangian formulation we write:

(ds)2 – (dS)2 = 2dXIEIJdXJ (106.15)

and for the Eulerian formulation:

(ds)2 – (dS)2 = 2dxieijdxj (106.16)

The deformation tensors CIJ and cij are connecting the squared lengths in Lagrangian and Eulerian

configurations. The Green deformation tensor3 CIJ , referred to the undeformed configuration, gives the

new squared length (ds)2 of the element into which the given element dXI is deformed:

(ds)2 = dXICIJdXJ (106.17)

The Cauchy deformation tensor cij , sometimes also denoted as4
(
bij
)–1

, gives the initial squared length

(dS)2 of an element dxi identified in the deformed configuration:

(dS)2 = dxicijdxj (106.18)

3Also called right Cauchy–Green tensor.
4Another name for bij is Finger deformation tensor or left Cauchy–Green tensor.
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Substituting equation (106.17) into (106.15) yield:

2EIJ = CIJ – δIJ (106.19)

and similarly, substituting equation (106.18) into (106.16) we obtain:

2eij = δij – cij (106.20)

By using equation (106.5) we can express (ds)2 as:

(ds)2 = dxkdxk = (FkIdXI )(FkJdXJ ) =

(xk,IdXI )(xk,JdXJ ) = dXI (FkIFkJ )dXK = dXICIJdXK (106.21)

so we have obtained the connection between the deformation tensor CIJ and the deformation gradient

FkI in the form:

CIJ = (FkIFkJ ) = xk,IdXIxk,JdXJ (106.22)

Similarly, by using equation (106.7) and the expression for (dS)2 we can establish the connection between

the deformation tensor cij and the deformation gradient FKi as:

(dS)2 = dSKdXK = (FKidxi)(FKjdxj) =

(XK ,idxi)(XK ,jdxJ ) = dxi(FKiFKj)dxk = dxicijdxk ⇒

cij = (FKi)–1 F–1
Kj (106.23)

The expressions for the strain tensors in Lagrangian and Eulerian description5 is obtained from

equations (106.19) and (106.20):

L: EIJ =
1
2
(
(FkIFkJ ) – δIJ

)
; E: eij =

1
2

(
δij – (FKi)–1 (FKj

)–1
)

(106.24)

If one starts from the displacement equation (106.3), referenced to the same axes for both XI and xi

xI = XI + uI ; XI = xI – uI

the general expression for the Lagrangian strain tensor EIJ in terms of displacements is:

EIJ =
1
2

((FKIFKJ ) – δIJ ) =

1
2
((
δKI + uK ,I

) (
δKJ + uK ,J

)
– δIJ

)
=

1
2
(
δKIδKJ + δKIuK ,J + uK ,IδKJ + uK ,IuK ,J – δIJ

)
=

1
2
(
δIJ + uI ,J + uJ,I + uK ,IuK ,J – δIJ

)
=

1
2
(
uI ,J + uJ,I + uK ,IuK ,J

)
(106.25)

5Lagrangian format will be denoted by L: while Eulerian format by E:.
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Similarly, the general expression for the Eulerian strain tensor eij in terms of displacements is:

eij =
1
2

(
δij – (Fki)–1 (Fkj

)–1
)

=

1
2
(
δij –

(
δki – uk,i

) (
δkj – uk,j

))
=

1
2
(
δij – δkiδkj + δkiuk,j + uk,iδkj – uk,iuk,j

)
=

1
2
(
δij – δij + ui,j + uj,i – uk,iuk,j

)
=

1
2
(
ui,j + uj,i – uk,iuk,j

)
(106.26)

It is worthwhile noting that equations (106.25) and (106.26) represent the complete finite strain tensor.

They involve only linear and quadratic terms in the components of displacement gradients.

The stretch is a measure of extension of an infinitesimal element and is a function of direction of an

element, in either deformed or undeformed configuration. By denoting NI a unit vector in the undeformed

configuration and ni a unit vector in the deformed configuration, we denote material stretch as Λ(N) of

those elements whit initial direction NI and spatial stretch λ(n) of those elements with initial direction

ni. By dividing equations (106.15) and (106.16) by (ds)2 and (dS)2 respectively and by using:

NI =
dXI
dS

and ni =
dxi
ds

(106.27)

we obtain the Cartesian form of stretch in the Lagrangian and Eulerian descriptions:

L: Λ2
(N) =

dXI
dS

CIJ
dXJ
dS

and E: λ2
(n) =

dxi
ds

cij
dxj
ds

(106.28)

General strain tensors can be defined by considering a scale function (Hill, 1978) for the stretch.

Scale function is any smooth, monotonic function of stretch f (λ) such that:

f (λ) ; λ ∈ [0,∞) subject to f (1) = 0, f ′(1) = 1 (106.29)

Scale function is often taken in the form (λ2m – 1)/2m, where m may have any value. If we choose m to

be an integer, the corresponding strain tensor is:

EIJ =
(
U2m

IJ – δIJ
)

2m
where FIJ = RIKUKJ = vIKRKJ (106.30)

Table 106.1 shows different Lagrangian strain measures obtained for a particular choice of parameter m.

In the Eulerian setting, generalized strain tensor is defined as

eij =

(
δij – v2m

ij

)
2m

; FIJ = RIKUKJ = vIKRKJ (106.31)
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Table 106.1: Different Lagrangian strain measures.

Strain measure name parameter m expression for Em
IJ

Green–Lagrange 1 EGL
IJ =

(
U2

IJ – δIJ
)

/2

Almansi -1 EA
IJ =

(
δIJ – U–2

IJ
)

/2

Biot 1/2 EB
IJ = (UIJ – δIJ )

Hencky 0 EH
IJ = ln (UIJ )

106.2.4 Rate of Deformation Tensor

The rate of deformation tensor6 describes the tangent motion in terms of velocity components vi = dxi/dt.

The spatial coordinates are:

vi = vi (x1, x2, x3, t) (106.32)

P

Q

p

q

d

d

Xi

v
i

i

i i
+dv v

vi

dx

u

i

Figure 106.3: Relative velocity dvi of particle Q at point q relative to particle P at point p.

In Figure 106.3 the dashed lines represents the trajectories of particles P and Q. The velocity vectors

vi at p and vi + dvi at q are tangent to the two trajectories. The relative velocity components dvi of

particle at q relative to the particle at p are given by:

dvk =
∂vk
∂xm

dxm = vk,mdxm = Lkmdxm (106.33)

6Also called stretch tensor or velocity strain.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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The spatial gradient of the velocity Lkm can be decomposed as the sum of the symmetric, rate of

deformation tensor Dkm, and a skew symmetric spin tensor Wkm as follows:

Lkm =
1
2

(Lkm + Lmk) +
1
2

(Lkm – Lmk) = Dkm + Wkm (106.34)

where:

Dkm =
1
2

(Lkm + Lmk) = Dmk and Wkm =
1
2

(Lkm – Lmk) = –Wmk (106.35)

An alternate way of deriving the rate of deformation tensor goes as follows. The rate of change of

squared length (ds)2 is given as:

d (ds)2

dt
= 2

d (ds)
dt

ds (106.36)

since (ds)2 = dxkdxk it follows:

d (ds)2

dt
= 2

d (dxk)
dt

dxk (106.37)

and with dxk = (∂xk/∂Xm)dXm it follows:

d (dxk)
dt

=
d
(
∂xk
∂Xm

dXm
)

dt
=

d
(
∂xk
∂Xm

)
dt

dXm +
d (dXm)

dt
∂xk
∂Xm

=
d
(
∂xk
∂Xm

)
dt

dXm (106.38)

since d (dXm) /dt ≡ 0, because the initial relative position vector dXm does not change with time. By

interchanging the order of differentiation we get:

d (dxk)
dt

= dvk =
d
(
∂xk
∂XM

)
dt

dXm =
∂vk
∂Xm

dXm where vk =
∂xk
dt

(106.39)

From equation (106.33) dvk = Lkmdxm and equation (106.39) it follows that:

∂vk
∂Xm

dXm = Lkmdxm ⇒ d (dxk)
dt

= dvk = Lkmdxm = vk,mdxm (106.40)

and then the equation (106.37) becomes:

d (ds)2

dt
= 2

d (dxk)
dt

dxk = 2dxkvk,mdxmdxk = 2dxkLkmdxmdxk =

= 2dxkDkmdxmdxk + 2dxkWkmdxmdxk = 2dxkDkmdxmdxk (106.41)

since dxkdxm ≡ dxmdxk and Wkm is skew symmetric such that Wkm = –Wmk. Finally we obtain:

d (ds)2

dt
= 2dxkDkmdxm (106.42)

and thus it follows that the rate of change of the squared length (ds)2 of the material instantaneously

occupying any infinitesimal relative position dxk at point p is determined by the tensor Dkm at point p.
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In order to compare the strain rate to the rate of deformation, we differentiate equation (106.15)

with respect to time:

d
(
(ds)2 – (dS)2

)
dt

= 2
d (dXIEIJdXJ )

dt
=

=
d
(
(ds)2

)
dt

= 2dXI
d (EIJ )

dt
dXJ (106.43)

since (dS)2 and dXI are constant through time. From the equations (106.42) and (106.43) it follows

that:

d (ds)2

dt
= 2dxkDkmdxmd = 2 (dXIFIk) Dkm (FmJdXJ ) = 2dXI (FIkDkmFmJ ) dXJ

(106.44)

and from equations (106.43) and (106.44) it follows that:

dEIJ
dt

= FIkDkmFmJ (106.45)

or inversely:

Dkm = (FIk)–1 dEIJ
dt

(FmJ )–1 (106.46)

To obtain the rate of change of the deformation gradient we start from equations (106.4) and

differentiate it with respect to time:

dFkK
dt

=
d
(
∂xk
∂XK

)
dt

=
∂
(

dxk
dt

)
∂XK

=
∂vk
∂XK

=
∂vk
∂xm

∂xm
∂XK

= vk,mxm,K =
dxk,K

dt
=

= LkmFmK = ḞkK (106.47)

or inversely:

vk,m =
dxk,K

dt
XK ,m =

dFkK
dt

(FKm)–1 =

= ḞkK (FKm)–1 = Lkm (106.48)
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106.3 Constitutive Relations: Hyperelasticity

106.3.1 Introduction

A material is called hyperelastic or Green elastic, if there exists an elastic potential function W , also

called the strain energy function per unit volume of the undeformed configuration, which represents a

scalar function of strain of deformation tensors, whose derivatives with respect to a strain component

determines the corresponding stress component. The most general form of the elastic potential function,

is described in equation 106.49, with restriction to pure mechanical theory, by using the axiom of locality

and the axiom of entropy production7:

W = W (XK , FkK ) (106.49)

By using the axiom of material frame indifference8, we conclude that W depends only on XK and CIJ ,

that is:

W = W (XK , CIJ ) or: W = W
(
XK , cij

)
(106.50)

By assuming hyperelastic response, the following are the constitutive equations for the material stress

tensors:

• 2. Piola–Kirchhoff stress tensor:

SIJ = 2
∂W
∂CIJ

(106.51)

• Mandel stress tensor:

TIJ = CIKSKJ = 2CIK
∂W
∂CKJ

(106.52)

• 1. Piola–Kirchhoff stress tensor

PiJ = SIJ (FiI )t = 2
∂W
∂CIJ

(FiI )t (106.53)

and the spatial, Kirchhoff stress tensor is defined as:

• Kirchhoff stress tensor

τij = 2
∂W
∂bij

= 2 FiA(FjB)t
∂W
∂CAB

= FiA(FjB)tSAB (106.54)

7See Marsden and Hughes (1983) pp. 190.
8See Marsden and Hughes (1983) pp. 194.
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Material tangent stiffness relation is defined from:

dSIJ = 2
∂2W

∂CIJ ∂CKL
dCKL =

1
2
LIJKL dCKL (106.55)

where

LIJKL = 4
∂2W

∂CIJ ∂CKL
(106.56)

The spatial tangent stiffness tensor Eijkl is obtained by the following push–forward operation with

the deformation gradient:

Eijkl = FiIFjJ (FkK )t(FlL)tLIJKL (106.57)

106.3.2 Isotropic Hyperelasticity

In the case of material isotropy, the strain energy function W (XK , CIJ ) belongs to the class of isotropic,

invariant scalar functions. It satisfies the relation:

W (XK , CKL) = W
(
XK , QKICIJ (QJL)t

)
(106.58)

where QKI is the proper orthogonal transformation. If we choose QKI = RKI , where RKI is the orthogonal

rotation transformation, defined by the polar decomposition theorem in equation (106.13), then:

W (XK , CKL) = W (XK , UKL) = W (XK , vkl) (106.59)

Right and left stretch tensors, UKL, vkl have the same principal values9 λi ; i = 1, 3 so the strain

energy function W can be represented in terms of principal stretches, or similarly in terms of principal

invariants of deformation tensor:

W = W (XK ,λ1,λ2,λ3, ) = W (XK , I1, I2, I3) (106.60)

where:

I1
def= CII

I2
def=

1
2

(
I2
1 – CIJCJI

)
I3

def= det (CIJ ) =
1
6

eIJKePQRCIPCJQCKR = J2 (106.61)

Left and right Cauchy–Green tensors were defined by equations (106.22) and (106.23), respectively as:

CIJ = (FkI )tFkJ ; (c–1)ij = bij = FiK (FjK )t (106.62)

9Principal stretches.
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The spectral10 decomposition theorem for symmetric positive definite tensors11 states that:

CIJ = λ2
A

(
N (A)

I N (A)
J

)
A

where A = 1, 3 (106.63)

and NI are the eigenvectors12 of CIJ . Values λ2
A are the roots of the characteristic polynomial

P(λ2
A) def= –λ6

A + I1 λ6
A – I2 λ4

A + I3 = 0 (106.64)

It should be noted that no summation is implied over indices in parenthesis13.

The mapping of the eigenvectors can be deduced from equation (106.5) and is given by

λ(A) n(A)
i = FiJ N (A)

J (106.65)

where ∥n(A)
i ∥ ≡ 1. The spectral decomposition of FiJ , RiJ and bij is then given by

FiJ = λA
(

n(A)
i N (A)

J

)
A

(106.66)

RiJ =
3∑

A=1
n(A)

i N (A)
J (106.67)

bij = λ2
A

(
n(A)

i n(A)
j

)
A

(106.68)

Spectral decomposition from equation (106.63) is valid for the case of non–equal principal stretches,

i.e. λ1 ̸= λ2 ̸= λ3. If two or all three principal stretches are equal, we shall introduce a small perturbation

to the numerical values for principal stretches in order to make them distinct. The case of two or

all three values of principal stretches being equal is theoretically possible and results for example from

standard triaxial tests or isotropic compression tests. However, we are never certain about equivalence

of two numerical numbers, because of the finite precision arithmetics involved in calculation of these

numbers. From the numerical point of view, two number are equal if the difference between them is

smaller than the machine precision (macheps) specific to the computer platform on which computations

are performed. Our perturbation will be a function of the macheps.

The characteristic polynomial P(λ2
A) from equation (106.64) can be solved14 for λA:

λA =
1√
3

√
I1 + 2

√
I2
1 – 3I2 cos

(
Θ + 2πA

3

)
(106.69)

10See Simo and fTaylor (1991).
11Cauchy–Green tensor CIJ for example.
12So that ∥NI∥ = 1.
13For example, in the present case N (A)

I is the Ath eigenvector with members N (A)
1 , N (A)

2 and N (A)
3 , so that the actual

equation CIJ = λ2
A

(
N (A)

I N (A)
J

)
A
can also be written as CIJ =

∑A=3
A=1 λ

2
(A)N

(A)
I N (A)

J . In order to follow the consistency of indicial

notation in this work, we shall make an effort to represent all the tensorial equations in indicial form.
14See also Morman (1986) and Schellekens and Schellekens and Parisch (1994).
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where

Θ = arccos
2I3

1 – 9I1I2 + 27I3

2
√(

I2
1 – 3I2

)3 (106.70)

Recently, Ting (1985) and Morman (1986) have used Serrin’s representation theorem in order to

devise a useful representation for generalized strain tensors15 EIJ and eij through Cm
IJ and bm

ij . Morman

(1986) has shown that bm
ij can be stated as

bm
ij = λ2m

A

 (b2)ij –
(

(I1 – λ2
(A)

)
bij + I3λ–2

(A)δij

2λ4
(A) – I1λ2

(A) + I3λ–2
(A)


A

(106.71)

By comparing equations (106.71) and (106.68) it follows that the Eulerian eigendiad n(A)
i n(A)

j can be

written as

n(A)
i n(A)

j =
(b2)ij –

(
I1 – λ2

(A)

)
bij + I3λ–2

(A)δij

2λ4
(A) – I1λ2

(A) + I3λ–2
(A)

(106.72)

The Lagrangian eigendiad N (A)
I N (A)

J , from equation (106.63), can be derived, if one substitutes mapping

of the eigenvectors, (106.65), into equation (106.72) to get:

N (A)
I N (A)

J = λ2
(A)

CIJ –
(

I1 – λ2
(A)

)
δIJ + I3λ–2

(A)(C
–1)IJ

2λ4
(A) – I1λ2

(A) + I3λ–2
(A)

(106.73)

where it was used that:

CIJ = (FiI )–1 (b2)ij (FjJ )–t (106.74)

δIJ = (FiI )–1 bij (FjJ )–t (106.75)

(C–1)IJ = (FiI )–1 δij (FjJ )–t (106.76)

It should be noted that the denominator in equations (106.72) and (106.73) can be written as:

2λ4
(A) – I1λ2

(A) + I3λ–2
(A) =

(
λ2

(A) – λ2
(B)

)(
λ2

(A) – λ2
(C)

) def= D(A) (106.77)

where indices A, B, C are cyclic permutations of 1, 2, 3. It follows directly from the definition of D(A)

in equation (106.77) that λ1 ̸= λ2 ̸= λ3 ⇒ D(A) ̸= 0 for equations (106.72) and (106.73) to be valid.

Similarly to equations (106.63) and (106.68) we can obtain:

(C–1)IJ = λ–2
A

(
N (A)

I N (A)
J

)
A

(106.78)

(b–1)ij = λ–2
A

(
n(A)

i n(A)
j

)
A

(106.79)

15Defined by equations (106.30) and (106.31).
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106.3.3 Volumetric–Isochoric Decomposition of Deformation

It proves useful to separate deformation in volumetric and isochoric parts by a multiplicative split of a

deformation gradient as

FiI = F̃iβ
volFβI where F̃iβ = FiIJ– 1

3 ; volFβI = J
1
3 δβI (106.80)

where xβ represents an intermediate configuration such that deformation XI → xβ is purely volumetric

and xβ → xi is purely isochoric. It also follows from equation (106.80) that F̃βI and FiI have the same

eigenvectors.

FiI

Fiβ

isoFβI

vol

xβ

xi

XI

Figure 106.4: Volumetric isochoric decomposition of deformation.

The isochoric part of the Green deformation tensor CIJ , defined in equation (106.63) can be defined

as

C̃IJ = J– 2
3 CIJ = λ̃2

A

(
N (A)

I N (A)
J

)
A

(106.81)

while the isochoric part of the Finger deformation tensor bij can be defined similarly as

b̃ij = J– 2
3 bij = λ̃2

A

(
n(A)

i n(A)
j

)
A

(106.82)

where the isochoric principal stretches are defined as

λ̃A = J– 1
3λA = (λ1λ2λ3)–

1
3λA (106.83)

The free energy W is then decomposed additively as:

W
(
XK ,λ(A)

)
= isoW

(
XK , λ̃(A)

)
+ volW (XK , J) (106.84)

106.3.4 Simo–Serrin’s Formulation

In Section (106.3.2) we have presented the most general form of the isotropic strain energy function W

in terms of of principal stretches:

W = W (XK ,λ1,λ2,λ3, ) (106.85)

It was also shown in Section (106.3.1) that it is necessary to calculate the gradient ∂W /∂CIJ in order
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to obtain 2. Piola–Kirchhoff stress tensor SIJ and accordingly other stress measures. Likewise, it was

shown that the material tangent stiffness tensor LIJKL (as well as the spatial tangent stiffness tensor

Eijkl) requires second order derivatives of strain energy function ∂2W /(∂CIJ ∂CKL). In order to obtain

these quantities we introduce16 a second order tensor M(A)
IJ

M(A)
IJ

def= λ–2
(A) N (A)

I N (A)
J (106.86)

= (FiI )–1
(

n(A)
i n(A)

j

)
(FjJ )–t

=
1

D(A)

(
CIJ –

(
I1 – λ2

(A)

)
δIJ + I3λ–2

(A)(C
–1)IJ

)
from (106.73)

where D(A) was defined by equation (106.77). With M(A)
IJ defined by equation (106.86), we get from

equation (106.63) that:

CIJ = λ4
A

(
M(A)

IJ

)
A

(106.87)

and also from equation (106.78) it follows that:

(C–1)IJ = M(1)
IJ + M(2)

IJ + M(3)
IJ (106.88)

It can also be concluded that:

δIJ = λ2
(1)M

(1)
IJ + λ2

(2)M
(2)
IJ + λ2

(3)M
(3)
IJ = λ2

A

(
M(A)

IJ

)
A

(106.89)

since, from the orthogonal properties of eigenvectors

δIJ =
3∑

A=1
N (A)

I N (A)
J =

(
N (A)

I

)
A

(
N (A)

J

)
A

(106.90)

We are now in a position to define the Simo–Serrin fourth order tensor MIJKL as:

M(A)
IJKL

def=
∂M(A)

IJ
∂CKL

=

1
D(A)

(
IIJKL – δKLδIJ + λ2

(A)

(
δIJ M(A)

KL + M(A)
IJ δKL

)
+

+ I3λ–2
(A)

(
(C–1)IJ (C–1)KL +

1
2

(
(C–1)IK (C–1)JL + (C–1)IL(C–1)JK

))
–

– λ–2
(A) I3

(
(C–1)IJ M(A)

KL + M(A)
IJ (C–1)KL

)
– D′

(A) M(A)
IJ M(A)

KL

)
(106.91)

Complete derivation of MIJKL is given in Appendix (704.2).

16See Runesson (1996).
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106.3.5 Stress Measures

In Section (106.3.1) we have defined various stress measures in terms of derivatives of the free energy

function W . With the free energy function decomposition, as defined in equation (106.84) we can

appropriately decompose all the previously defined stress measures:

• 2. Piola–Kirchhoff stress tensor:

SIJ = 2
∂W
∂CIJ

= 2
∂isoW
∂CIJ

+ 2
∂volW
∂CIJ

= isoSIJ + volSIJ (106.92)

• Mandel stress tensor:

TIJ = CIKSKJ = 2CIK
∂W
∂CKJ

= 2CIK
∂isoW
∂CKJ

+ 2CIK
∂volW
∂CKJ

= isoTIJ + volTIJ (106.93)

• 1. Piola–Kirchhoff stress tensor

PiJ = SIJ (FiI )t = 2
∂W
∂CIJ

(FiI )t = 2
∂isoW
∂CIJ

(FiI )t + 2
∂volW
∂CIJ

(FiI )t

= isoPiJ + volPiJ (106.94)

• Kirchhoff stress tensor

τab = 2
∂W
∂eij

= FaI (FbJ )tSIJ = 2FaI (FbJ )t
∂isoW
∂CIJ

+ 2FaI (FbJ )t
∂volW
∂CIJ

= FaI (FbJ )t isoSIJ + FaI (FbJ )tvolSIJ

= isoτab + volτab (106.95)
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The derivative of the volumetric part of the free energy function is

∂volW (J)
∂CIJ

=
∂volW (J)
∂J

∂J
∂CIJ

=
1
2
∂volW (J)
∂J

J (C–1)IJ (106.96)

where equation (704.9) was used, while the derivative of the isochoric part of the free energy function

yields

∂isoW (λ̃(A))
∂CIJ

=
∂isoW (λ̃(A))
∂λ(A)

∂λ(A)
∂CIJ

=
1
2
∂isoW (λ(A))
∂λ(A)

λ(A)(M
(A)
IJ )A =

1
2

wA(M(A)
IJ )A

(106.97)

where equation (704.7) was used and wA is derived in Appendix 704.5 as:

wA =
∂isoW (λ(A))

∂λ̃B

∂λ̃B
∂λ(A)

λ̃(A) = –
1
3
∂isoW (λ̃(A))

∂λ̃B
λ̃B +

∂isoW (λ̃(A))
∂λ̃(A)

λ̃(A) (106.98)

The decomposed 2. Piola–Kirchhoff stress tensor is

SIJ = volSIJ + isoSIJ

=
∂volW (J)
∂J

J (C–1)IJ + wA (M(A)
IJ )A (106.99)

The derivative of the free energy is then:

∂W (λ(A))
∂CIJ

=
∂volW (λ(A))

∂CIJ
+
∂isoW (λ(A))

∂CIJ

=
1
2
∂volW (J)
∂J

J (C–1)IJ +
1
2

wA (M(A)
IJ )A (106.100)

It is obvious that the only material dependent parts are derivatives in the form ∂volW /∂J and wA,

while the rest is independent of which hyperelastic material model we choose.

106.3.6 Tangent Stiffness Operator

The free energy function decomposition (106.84) is used together with the appropriate definitions made

in section (106.3.1) toward the tangent stiffness operator decomposition

LIJKL = volLIJKL + isoLIJKL = 4
∂2
(

volW
)

∂CIJ ∂CKL
+ 4

∂2 (isoW)
∂CIJ ∂CKL

(106.101)

The volumetric part ∂2
(

volW
)

/(∂CIJ ∂CKL) can be written as:

∂2volW
∂CIJ ∂CKL

=

1
4

J2
∂2
(

volW
)

∂J∂J
+ J

∂
(

volW
)

∂J

 (C–1)KL(C–1)IJ +
1
2

J
∂
(

volW
)

∂J
I(C–1)
IJKL

(106.102)

and the complete derivation is again given in appendix 704.3.
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The isochoric part ∂2 (isoW)/(∂CIJ ∂CKL) can be written in the following form:

∂2isoW (λ(A))
∂CIJ∂CKL

=
1
4

YAB (M(B)
KL )B (M(A)

IJ )A +
1
2

wA (M(A)
IJKL)A (106.103)

and the complete derivation is given in the appendix (704.4).

Finally, one can write the volumetric and isochoric parts of the tangent stiffness tensors as:

volLIJKL =

J2∂
2volW (J)
∂J∂J

(C–1)KL(C–1)IJ + J
∂volW (J)
∂J

(C–1)KL(C–1)IJ + 2J
∂volW (J)
∂J

I(C–1)
IJKL

(106.104)

Liso
IJKL = YAB (M(B)

KL )B (M(A)
IJ )A + 2 wA (M(A)

IJKL)A (106.105)

In a similar manner to the stress definitions it is clear that the only material model dependent parts

are YAB and wA. The remaining second and fourth order tensors M(A)
IJ and M(A)

IJKL are independent of

the choice of the material model. This observation has a practical consequence in that it is possible to

create a template derivations for various hyperelastic isotropic material models. Only first and second

derivatives of strain energy function with respect to isochoric principal stretches (λ̃A) and Jacobian (J)

are needed in addition to the independent tensors, for the determination of various stress and tangent

stiffness tensors.

106.3.7 Isotropic Hyperelastic Models

The strain energy function for isotropic solid in terms of principal stretches is represented as:

W = W (λ1,λ2,λ3) (106.106)

The only restriction is that W is a symmetric function of λ1,λ2,λ3, although an appropriate natural

configuration condition requires that:

W (1, 1, 1) = 0 and
∂W (1, 1, 1)

∂λi
= 0 (106.107)

The strain energy function W can either be regarded as a function of principal stretches or the principal

invariants of stretches17:

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2

I3 = λ2
1λ

2
2λ

2
3 (106.108)

17See also equation (106.61).
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A slightly more general formulation is obtained by using principal stretches in the strain energy

function definition. A widely exploited family of compressible hyperelastic models18 are defined (Ogden,

1984) as an infinite series in powers of (I1 – 3), (I2 – 3) and (I3 – 1) as:

W =
N→∞∑
p,q,r=0

cpqr (I1 – 3)p (I2 – 3)q (I3 – 1)r (106.109)

The regularity condition that W is continuously differentiable an infinitely number of times is satisfied.

The requirement that energy vanishes in the reference configuration is met provided c000 = 0. Reference

configuration is stress free iff c100 +2c010 +c001 = 0. Isochoric deviatoric decoupling is possible by setting

cpqr = 0 (r = 1, 2, 3, ...) and cpqr = 0 (p, q = 1, 2, 3, ..) to obtain:

W = isoW + volW (106.110)

where:

isoW =
N→∞∑
p,q=0

cpq0 (I1 – 3)p (I2 – 3)q

volW =
N→∞∑

r=0
c00r (I3 – 1)r (106.111)

In what follows, we will present a number of widely used strain energy functions for isotropic elastic

solids.

106.3.7.1 Ogden Model

A very general set of hyperelastic models was defined by Ogden (1984). The strain energy is expressed

as a function of principal stretches as:

W =
N→∞∑

r=1

cr
µr

(
λ
µr
1 + λµr

2 + λµr
3 – 3

)
(106.112)

The isochoric strain energy function can be written as:

isoW =
N→∞∑

r=1

cr
µr

(
λ̃
µr
1 + λ̃µr

2 + λ̃µr
3 – 1

)
(106.113)

where the following was used λ̃i = J– 1
3λi.

Derivatives needed for building tensors wA and YAB are given by the following formulae:

∂isoW
∂λ̃A

=
N→∞∑

r=1
cr
(
λ̃A
)µr–1

(106.114)

18Used mainly for rubber–like materials.
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∂2 (isoW)
∂λ̃2

A
=

N→∞∑
r=1

cr (µr – 1)
(
λ̃A
)µr–2

(106.115)

∂2 (isoW)
∂λ̃A∂λ̃B

= 0 (106.116)

106.3.7.2 Neo–Hookean Model

The general isotropic hyperelastic model defined in terms of invariants of principal stretches contains the

Neo–Hookean model as special cases. The isochoric part of Neo–Hookean isotropic elastic model can

be obtained by selecting N = 1, q = 0, cp00 = G/2, to get:

isoW =
G
2

(
λ̃2

1 + λ̃2
2 + λ̃2

3 – 3
)

(106.117)

while the volumetric part can be defined by choosing N = 2, c001 = 0, c002 = Kb/2, as:

volW =
Kb
2

(
λ2

1λ
2
2λ

2
3 – 1

)2
=

Kb
2

(
J2 – 1

)2
(106.118)

where G and Kb are the shear and bulk moduli respectively.

Derivatives needed for building tensors wA and YAB are given by the following formulae:

∂isoW
∂λ̃A

= G λ̃A (106.119)

∂2 (isoW)
∂λ̃2

A
= G (106.120)

∂2 (isoW)
∂λ̃A∂λ̃B

= 0 (106.121)

106.3.7.3 Mooney–Rivlin Model

Mooney proposed a strain energy function for isochoric behavior of the form:

isoW =
N→∞∑

n=0

(
an
(
λ̃2n

1 + λ̃2n
2 + λ̃2n

3 – 3
)

+ an
(
λ̃–2n

1 + λ̃–2n
2 + λ̃–2n

3 – 3
))

=
N→∞∑

n=0

(
an
(
λ̃2n

1 + λ̃2n
2 + λ̃2n

3 – 3
)

+ an

((
λ̃2λ̃3

)–2n
+
(
λ̃3λ̃1

)–2n
+
(
λ̃1λ̃2

)–2n
– 3
))

(106.122)

with an and bn being the material parameters and a volume preserving constrain λa = 1/(λbλc, and a, b, c

are cyclic permutations of (1, 2, 3). A more general form was proposed by Rivlin:

isoW =
N→∞∑
p,q=0

cpq (I1 – 3)p (I2 – 3)q (106.123)
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which is actually quite similar to the isochoric part of the general isotropic representation from equation

(106.111). Both Mooney and Rivlin strain energy functions become similar, if one chooses to set N = 1

and c10 = C1 and c01 = C2 to obtain:

isoW =
(

C1
(
λ̃2

1 + λ̃2
2 + λ̃2

3 – 3
)

+ C2
(
λ̃–2

1 + λ̃–2
2 + λ̃–2

3 – 3
))

=
(
C1
(
Ĩ1 – 3

)
+ C2

(
Ĩ2 – 3

))
(106.124)

Derivatives needed for building tensors wA and YAB are given by the following formulae:

∂isoW
∂λ̃A

= 2 C1 λ̃A – 2 C2 λ̃
–3
A (106.125)

∂2 (isoW)
∂λ̃2

A
= 2 C1 + 6 C2 λ̃

–4
A (106.126)

∂2 (isoW)
∂λ̃A∂λ̃B

= 0 (106.127)

106.3.7.4 Logarithmic Model

By choosing an alternative set of isochoric principal stretch invariants in the form:

Ĩ ln
1 = 2

(
ln λ̃1

)2
+ 2
(

ln λ̃2
)2

+ 2
(

ln λ̃3
)2

=
(
λ̃ln

1

)2
+
(
λ̃ln

2

)2
+
(
λ̃ln

3

)2

Ĩ ln
2 = 4

(
ln λ̃2

)2 (
ln λ̃3

)2
+ 4
(

ln λ̃3
)2 (

ln λ̃1
)2

+ 4
(

ln λ̃1
)2 (

ln λ̃2
)2

=
(
λ̃ln

2

)2 (
λ̃ln

3

)2
+
(
λ̃ln

3

)2 (
λ̃ln

1

)2
+
(
λ̃ln

1

)2 (
λ̃ln

2

)2
(106.128)

where the isochoric logarithmic stretch λ̃ln
i was used:

λ̃ln
i =
√

2 ln λ̃i =
1√
2

ln λ̃2
i (106.129)

The general representation of the isochoric part of the strain energy function in terms of Ĩ ln
1 and Ĩ ln

2

was proposed by Simo and Miehe (1992). A somewhat simpler isochoric strain energy function can be

presented in the form:

isoW = G
((

ln λ̃1
)2

+
(

ln λ̃2
)2

+
(

ln λ̃3
)2
)

(106.130)

while the volumetric part is suggested in the form:

volW =
Kb
2

(ln J)2 (106.131)
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Derivatives needed for building tensors wA and YAB are given by the following formulae:

∂isoW
∂λ̃A

= 2 G
(
λ̃A
)–1

(106.132)

∂2 (isoW)
∂λ̃2

A
= –2 G

(
λ̃A
)–2

(106.133)

∂2 (isoW)
∂λ̃A∂λ̃B

= 0 (106.134)

d
(

volW
)

dJ
= Kb J–1 ln J (106.135)

d2
(

volW
)

dJ2 = Kb J–2 – Kb J–2 ln J (106.136)

106.3.7.5 Simo–Pister Model

Another form or a volumetric part of strain energy function was proposed by Simo and Pister (1984) in

the form:

Wvol(J) =
1
4

Kb

(
J2 – 1 – 2 ln J

)
(106.137)

The first and second derivatives with respect to J are then given as:

dvolW (J)
dJ

=

(
–2
J + 2 J

)
Kb

4
(106.138)

d2volW (J)
dJ2 =

(
2 + 2

J2

)
Kb

4
(106.139)

106.4 Finite Deformation Hyperelasto–Plasticity

106.4.1 Introduction

The mathematical structure and numerical analysis of classical small deformation elasto–plasticity is

generally well established. However, development of large deformation elastic–plastic algorithms for

isotropic and anisotropic material models is still a research area. Here, we present a new integration

algorithm, based on the multiplicative decomposition of the deformation gradient into elastic and plastic

parts. The algorithm is novel in that it is designed to be used with isotropic as well as anisotropic material
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models. Consistent derivation is based on the idea from the infinitesimal strain algorithm developed

earlier by Jeremić and Sture (1997). The algorithm is not an extension of earlier developments, but

rather a novel development which consistently utilizes Newton’s method for numerical solution scheme

for integrating pertinent constitutive equations. It is also shown that in the limit, the proposed algorithm

reduces to the small strain counterpart.

In what follows, we briefly introduce the multiplicative decomposition of the deformation gradient and

pertinent constitutive relations. We then proceed to present the numerical algorithm and the algorithmic

tangent stiffness tensor consistent with the presented algorithm.

106.4.2 Kinematics

An appropriate generalization of the additive strain decomposition is the multiplicative decomposition

of displacement gradient. The motivation for the multiplicative decomposition can be traced back to

the early works of Bilby et al. (1957), and Kröner (1960) on micromechanics of crystal dislocations

and application to continuum modeling. In the context of large deformation elastoplastic computations,

the work by Lee and Liu (1967), Fox (1968) and Lee (1969) stirred an early interest in multiplicative

decomposition.

The appropriateness of multiplicative decomposition technique for soils may be justified from the

particulate nature of the material. From the micromechanical point of view, plastic deformation in soils

arises from slipping, crushing, yielding and plastic bending19 of granules comprising the assembly20. It

can certainly be argued that deformations in soils are predominantly plastic, however, reversible defor-

mations could develop from the elasticity of soil grains, and could be relatively large when particles are

locked in high density specimens.

The reasoning behind multiplicative decomposition is a rather simple one. If an infinitesimal neigh-

borhood of a body xi, xi + dxi in an inelastically deformed body is cut–out and unloaded to an unstressed

configuration, it would be mapped into x̂i, x̂i + dx̂i. The transformation would be comprised of a rigid

body displacement21 and purely elastic unloading. The elastic unloading is a fictitious one, since mate-

rials with a strong Baushinger’s effect, unloading will lead to loading in an other stress direction, and,

if there are residual stresses, the body must be cut–out in small pieces and then every piece relieved

of stresses. The unstressed configuration is thus incompatible and discontinuous. The position x̂i is

arbitrary, and we may assume a linear relationship between dxi and dx̂i, in the form22:

19For plate like clay particles.
20See also Lambe and Whitman (1979) and Sture (1993).
21Translation and rotation.
22referred to same Cartesian coordinate system.
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Figure 106.5: Multiplicative decomposition of deformation gradient: schematics.

dx̂k =
(
Fe

ik
)–1 dxi (106.140)

where
(
Fe

ik
)–1

is not to be understood as a deformation gradient, since it may represent the incompatible,

discontinuous deformation of a body. By considering the reference configuration of a body dXi, then the

connection to the current configuration is23:

dxk = FkidXi ⇒ dx̂k =
(
Fe

ik
)–1 FijdXj (106.141)

23See section 106.2.2.
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so that one can define:

Fp
kj

def=
(
Fe

ik
)–1 Fij ⇒ Fij

def= Fe
kiF

p
kj (106.142)

The plastic part of the deformation gradient, Fp
kj represents micro–mechanically, the irreversible

process of slipping, crushing dislocation and macroscopically the irreversible plastic deformation of a

body. The elastic part, Fe
ki represents micro–mechanically a pure elastic reversal of deformation for the

particulate assembly, macroscopically a linear elastic unloading toward a stress free state of the body,

not necessarily a compatible, continuous deformation but rather a fictitious elastic unloading of small

cut outs of a deformed particulate assembly or continuum body.

106.4.3 Constitutive Relations

We propose the free energy density W , which is defined in Ω̄, as follows

ρ0W (C̄e
ij ,κα) = ρ0We(C̄e

ij) + ρ0Wp(κα) (106.143)

where We(C̄e
ij) represents a suitable hyperelastic model in terms of the elastic right deformation tensor

C̄e
ij , whereas Wp(κα) represents the hardening. It has been shown elsewhere (Runesson, 1996), that the

pertinent dissipation inequality becomes

D = T̄ij L̄p
ij +
∑
α

K̄α κ̇α ≥ 0 (106.144)

where T̄ij is the Mandel stress24 and L̄p
ij is the plastic velocity gradient defined on Ω̄.

We now define elastic domain B as

B = {T̄ij , K̄α | Φ(T̄ij , K̄α) ≤ 0} (106.145)

When Φ is isotropic in T̄ij (which is the case here) in conjunction with elastic isotropy, we can conclude

that T̄ij is symmetrical and we may replace T̄ij by τij in Φ.

As to the choice of elastic law, it is emphasized that this is largely a matter of convenience since we

shall be dealing with small elastic deformations. Here, the Neo–Hookean elastic law is adopted. The

generic situation is T̄ij = T̄ij( ˜̄Ue
kl, J̄

e), where we have used the isochoric/volumetric split of the elastic

right stretch tensor as Ūe
kl = ˜̄Ue

kl (J̄e)1/3.

The constitutive relations can now be written as

T̄ij = T̄ij( ˜̄Ue
kl, J̄

e) (106.146)

L̄p
ij := Ḟp

ik

(
Fp

jk

)–1
= µ̇

∂Φ∗

∂T̄ij
= µ̇M̄ij (106.147)

24See section 106.3.1.
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K̄α = K̄α(κ̄β) (106.148)

˙̄κβ = µ̇
∂Φ∗

∂Kβ
, κβ(0) = 0 (106.149)

where Fp
ik = (F̄e

li)
–1Flk is the plastic part of the deformation gradient.

106.4.4 Implicit Integration Algorithm

The incremental deformation and plastic flow are governed by the system of evolution equations (106.147)

and (106.149):

Ḟp
ik

(
Fp

jk

)–1
= µ̇M̄ij (106.150)

˙̄κβ = µ̇
∂Φ∗

∂Kβ
, κβ(0) = 0 (106.151)

The flow rule from equation (106.150) can be integrated to give

n+1Fp
ij = exp

(
∆µn+1M̄ik

)
nFp

kj (106.152)

By using the multiplicative decomposition

Fij = F̄e
ik Fp

kj ⇒ F̄e
ik = Fij

(
Fp

kj

)–1
(106.153)

and equation (106.152) we obtain

n+1F̄e
ij = n+1Fim

(nFp
mk
)–1 exp

(
–∆µn+1M̄kj

)
= n+1F̄e,tr

ik exp
(

–∆µn+1M̄kj

)
(106.154)

where we used that

n+1F̄e,tr
ik = n+1Fim

(nFp
km
)–1

(106.155)

The elastic deformation is then

n+1C̄e
ij

def=
(

n+1F̄e
im

)T n+1F̄e
mj

= exp
(

–∆µn+1M̄T
ir

) (
n+1F̄e,tr

rk

)T n+1F̄e,tr
kl exp

(
–∆µn+1M̄lj

)
= exp

(
–∆µn+1M̄T

ir

)
n+1C̄e,tr

rl exp
(

–∆µn+1M̄lj

)
(106.156)

By recognizing that the exponent of a tensor can be expanded in Taylor series25

exp
(

–∆µn+1M̄lj

)
= δlj – ∆µn+1M̄lj +

1
2

(
∆µn+1M̄ls

)(
∆µn+1M̄sj

)
+ · · · (106.157)

25See for example Pearson (1974).
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and by using the first order expansion in the equation (106.156), we obtain

n+1C̄e
ij =

(
δir – ∆µn+1M̄ir

)
n+1C̄e,tr

rl

(
δlj – ∆µn+1M̄lj

)
=
(

n+1C̄e,tr
il – ∆µn+1M̄ir

n+1C̄e,tr
rl

)(
δlj – ∆µn+1M̄lj

)
= n+1C̄e,tr

ij – ∆µn+1M̄ir
n+1C̄e,tr

rj – ∆µ n+1C̄e,tr
il

n+1M̄lj

+∆µ2 n+1M̄ir
n+1C̄e,tr

rl
n+1M̄lj (106.158)

Remark 106.4.1 The Taylor’s series expansion from equation (106.157) is a proper approximation for

the general nonsymmetric tensor M̄lj . That is, the approximate solution given by equation (106.158) is

valid for a general anisotropic solid. This contrasts with the spectral decomposition family of solutions26

which are restricted to isotropic solids.

Remark 106.4.2 Taylor’s series expansion27 is proper for “small” values of plastic flow tensor ∆µn+1M̄lj .

This is indeed the case for small increments, when ∆µ→ 0 which are required for following the equilib-

rium path for path–dependent solids.

Remark 106.4.3 In the limit, when the displacements are sufficiently small, the solution (106.158) col-

lapses to

lim
Fij→δij

δij + 2n+1ϵij = + δij + 2n+1ϵe,tr
ij

– ∆µn+1M̄ir
(
δrj + 2n+1ϵe,tr

rj

)
– ∆µ

(
δil + 2n+1ϵe,tr

il

)
n+1M̄lj

+ ∆µ2 n+1M̄ir
(
δrl + 2n+1ϵe,tr

rl

)
n+1M̄lj

= + δij + 2n+1ϵe,tr
ij

– ∆µn+1M̄ij – 2∆µn+1M̄ir
n+1ϵtrrj

– ∆µ n+1M̄ij – 2∆µ n+1ϵtril
n+1M̄lj

+ ∆µ2 n+1M̄il
n+1M̄lj + 2∆µ2 n+1M̄ir

n+1ϵtrrl
n+1M̄lj

= δij + 2n+1ϵe,tr
ij – 2∆µ n+1M̄ij

⇒ n+1ϵij = n+1ϵtrij – ∆µ n+1M̄ij (106.159)

which is a small deformation elastic predictor–plastic corrector equation in strain space. In working out

26See Simo (1992).
27It should be called MacLaurin’s series expansion, since expansion is about zero plastic flow state (no incremental plastic

deformation).
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the small deformation counterpart (106.159) it was used that

lim
Fij→δij

n+1C̄e
ij = δij + 2n+1ϵij

2∆µ n+1ϵtril
n+1M̄lj ≪ n+1M̄ij

∆µ ≪ 1 (106.160)

By neglecting the higher order term with ∆µ2 in equation (106.158), the solution for the right elastic

deformation tensor n+1C̄e
ij can be written as

n+1C̄e
ij = n+1C̄e,tr

ij – ∆µ
(

n+1M̄ir
n+1C̄e,tr

rj + n+1C̄e,tr
il

n+1M̄lj

)
(106.161)

The hardening rule (106.151) can be integrated to give

n+1κα = nκα + ∆µ
∂Φ∗

∂Kα

∣∣∣∣
n+1

(106.162)

Remark 106.4.4 It is interesting to note that equation (106.161) resembles the elastic predictor–plastic

corrector equation for small deformation elastic–plastic incremental analysis. That resemblance will be

used to build an iterative solution algorithm in the next section.

The incremental problem is defined by equations (106.161), (106.162), and the constitutive relations

n+1̄SIJ = 2
∂W
∂CIJ

∣∣∣∣
n+1

(106.163)

n+1Kα = –
∂W
∂κα

∣∣∣∣
n+1

(106.164)

and the Karush–Kuhn–Tucker (KKT) conditions

∆µ < 0 ; n+1Φ ≤ 0 ; ∆µ n+1Φ = 0 (106.165)

where

Φ = Φ(T̄ij , Kα) (106.166)

Remark 106.4.5 The Mandel stress tensor T̄ij can be obtained from the second Piola–Kirchhoff stress

tensor S̄kj and the right elastic deformation tensor C̄e
ik as

T̄ij = C̄e
ik S̄kj (106.167)
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This set of nonlinear equations will be solved with a Newton type procedure, described in the next

section. For a given n+1Fij , or n+1C̄e,tr
ij , the upgraded quantities n+1̄SIJ and n+1Kα can be found, then the

appropriate pull–back to B0 or push–forward to B will give n+1SIJ and n+1τij

n+1SIJ =
(

n+1Fp
iI

)–1 n+1̄SIJ
(

n+1Fp
jJ

)–T
(106.168)

n+1τij = n+1F̄e
iI

n+1̄SIJ
(

n+1Fe
jJ

)–1
(106.169)

The elastic predictor, plastic corrector equation

n+1C̄e
ij = n+1C̄e,tr

ij – ∆µ
(

n+1M̄ir
n+1C̄e,tr

rj + n+1C̄e,tr
il

n+1M̄lj

)
= n+1C̄e,tr

ij – ∆µ n+1Zij (106.170)

is used as a starting point for a Newton iterative algorithm. In previous equation, we have introduced

tensor Zij to shorten writing. The trial right elastic deformation tensor is defined as

n+1C̄e,tr
ij =

(
n+1F̄e,tr

ri

)T (n+1F̄e,tr
rj

)
(

n+1FrM
(nFp

iM
)–1)T

(
n+1FrS

(
nFp

jS

)–1
)

(106.171)

We introduce a tensor of deformation residuals

Rij = C̄e
ij︸︷︷︸

current

–
(

n+1C̄e,tr
ij – ∆µ n+1Zij

)
︸ ︷︷ ︸

BackwardEuler

(106.172)

Tensor Rij represents the difference between the current right elastic deformation tensor and the Backward

Euler right elastic deformation tensor. The trial right elastic deformation tensor n+1C̄e,tr
ij is maintained

fixed during the iteration process. The first order Taylor series expansion can be applied to the equation

(106.172) in order to obtain the iterative change, the new residual Rnew
ij from the old Rold

ij

Rnew
ij = Rold

ij + dC̄e
ij + d(∆µ) n+1Zij + ∆µ

∂n+1Zij
∂T̄mn

dT̄mn + ∆µ
∂n+1Zij
∂Kα

dKα (106.173)

By using that

T̄mn = C̄e
mk S̄kn ⇒

(
C̄e

sk
)–1 T̄sn = S̄kn (106.174)

we can write

dT̄mn = dC̄e
mk S̄kn + C̄e

mk dS̄kn

= dC̄e
mk S̄kn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq from (106.55)

= dC̄e
mk
(
C̄e

sk
)–1 T̄sn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq from (106.174) (106.175)
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and the equation (106.173) can be rewritten as

Rnew
ij = Rold

ij + dC̄e
ij + d(∆µ) n+1Zij +

+ ∆µ
∂n+1Zij
∂T̄mn

(
dC̄e

mk
(
C̄e

sk
)–1 T̄sn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq

)
+

+ ∆µ
∂n+1Zij
∂Kα

dKα

= Rold
ij + dC̄e

ij + d(∆µ) n+1Zij +

+ ∆µ
∂n+1Zij
∂T̄mn

dC̄e
mk
(
C̄e

sk
)–1 T̄sn +

+
1
2
∆µ

∂n+1Zij
∂T̄mn

C̄e
mk L̄e

knpq dC̄e
pq +

+ ∆µ
∂n+1Zij
∂Kα

dKα

= Rold
ij + dC̄e

ij + d(∆µ) n+1Zij +

+ ∆µ
∂n+1Zmn
∂T̄ik

(
C̄e

sj

)–1
T̄sk dC̄e

ij + dummy indices rearrangement

+
1
2
∆µ

∂n+1Zpq
∂T̄mn

C̄e
mk L̄e

knij dC̄e
ij + dummy indices rearrangement

+ ∆µ
∂n+1Zij
∂Kα

dKα (106.176)
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The goal is to have Rnew
ij = 0 so one can write

0 = Rold
ij + dC̄e

ij + d(∆µ) n+1Zij +

+ ∆µ
∂n+1Zmn
∂T̄ik

(
C̄e

sj

)–1
T̄sk dC̄e

ij +

+
1
2
∆µ

∂n+1Zpq
∂T̄mn

C̄e
mk L̄e

knij dC̄e
ij +

+ ∆µ
∂n+1Zij
∂Kα

dKα

= Rold
ij + d(∆µ) n+1Zij

+ ∆µ
∂n+1Zij
∂Kα

dKα +

+ dC̄e
ij +

+ ∆µ
∂n+1Zmn
∂T̄ik

(
C̄e

sj

)–1
T̄sk dC̄e

ij +

+
1
2
∆µ

∂n+1Zpq
∂T̄mn

C̄e
mk L̄e

knij dC̄e
ij

= Rold
ij + d(∆µ) n+1Zij + ∆µ

∂n+1Zij
∂Kα

dKα +

+
(
δimδnj + ∆µ

∂n+1Zmn
∂T̄ik

(
C̄e

sj

)–1
T̄sk +

1
2
∆µ

∂n+1Zmn
∂T̄pq

C̄e
pk L̄e

kqij ) dC̄e
ij

(106.177)

Upon introducing notation

Tmnij = δimδnj + ∆µ
∂n+1Zmn
∂T̄ik

(
C̄e

sj

)–1
T̄sk +

1
2
∆µ

∂n+1Zmn
∂T̄pq

C̄e
pk L̄e

kqij (106.178)

we can solve (106.177) for dC̄e
ij

dC̄e
ij =

(
Tmnij

)–1
(

–Rold
mn – d(∆µ) n+1Zmn – ∆µ

∂n+1Zmn
∂Kα

dKα

)
(106.179)

or, by rearranging indices

dC̄e
pq =

(
Tmnpq

)–1
(

–Rold
mn – d(∆µ) n+1Zmn – ∆µ

∂n+1Zmn
∂Kα

dKα

)
(106.180)

By using that

dKα =
∂Kα
∂κβ

dκβ = –d(∆µ)
∂Kα
∂κβ

∂Q
∂Kβ

= –d(∆µ) Hαβ
∂Q
∂Kβ

(106.181)
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it follows from (106.180)

dC̄e
pq =

(
Tmnpq

)–1
(

–Rold
mn – d(∆µ) n+1Zmn + ∆µ

∂n+1Zmn
∂Kα

d(∆µ) Hαβ
∂Q
∂Kβ

)
(106.182)

A first order Taylor series expansion of a yield function yields

newΦ(T̄ij , Kα) = oldΦ(T̄ij , Kα) +

+
∂Φ(T̄ij , Kα)
∂T̄mn

dT̄mn

+
∂Φ(T̄ij , Kα)

∂Kα
dKα

= oldΦ(T̄ij , Kα) +

+
∂Φ(T̄ij , Kα)
∂T̄mn

(
dC̄e

mk
(
C̄e

sk
)–1 T̄sn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq

)
+

∂Φ(T̄ij , Kα)
∂Kα

dKα

= oldΦ(T̄ij , Kα) +

+
∂Φ(T̄ij , Kα)

∂T̄pn

(
C̄e

sq

)–1
T̄sn dC̄e

pq dummy indices rearrangement

+
1
2
∂Φ(T̄ij , Kα)
∂T̄mn

C̄e
mk L̄e

knpq dC̄e
pq

+
∂Φ(T̄ij , Kα)

∂Kα
dKα

= oldΦ(T̄ij , Kα) +

+
(
∂Φ(T̄ij , Kα)

∂T̄pn

(
C̄e

sq

)–1
T̄sn +

1
2
∂Φ(T̄ij , Kα)
∂T̄mn

C̄e
mk L̄e

knpq

)
dC̄e

pq

+
∂Φ(T̄ij , Kα)

∂Kα
dKα (106.183)

By using (106.181), equation (106.183) becomes

newΦ(T̄ij , Kα) = oldΦ(T̄ij , Kα) +

+
(
∂Φ(T̄ij , Kα)

∂T̄pn

(
C̄e

sq

)–1
T̄sn +

1
2
∂Φ(T̄ij , Kα)
∂T̄mn

C̄e
mk L̄e

knpq

)
dC̄e

pq

– d(∆µ)
∂Φ(T̄ij , Kα)

∂Kα
Hαβ

∂Φ∗

∂Kβ
(106.184)

Upon introducing the following notation

Fpq =
∂Φ(T̄ij , Kα)

∂T̄pn

(
C̄e

sq

)–1
T̄sn +

1
2
∂Φ(T̄ij , Kα)
∂T̄mn

C̄e
mk L̄e

knpq (106.185)
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and with the solution for dC̄e
pq from (106.182), (106.184) becomes

newΦ(T̄ij , Kα) = oldΦ(T̄ij , Kα) +

+ Fpq

((
Tmnpq

)–1
(

–Rold
mn – d(∆µ) n+1Zmn + d(∆µ) ∆µ

∂n+1Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ

))

– d(∆µ)
∂Φ(T̄ij , Kα)

∂Kα
Hαβ

∂Φ∗

∂Kβ
(106.186)

After setting newΦ(T̄ij , Kα) = 0 we can solve for the incremental inconsistency parameter d(∆µ)

d(∆µ) =
oldΦ – Fpq

(
Tmnpq

)–1 Rold
mn

Fpq
(
Tmnpq

)–1 n+1Zmn – ∆µ Fpq
(
Tmnpq

)–1 ∂n+1Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ
+
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ
(106.187)

Remark 106.4.6 In the perfectly plastic case, the increment inconsistency parameter d(∆µ) is

d(∆µ) =
oldΦ – Fpq

(
Tmnpq

)–1 Rold
mn

Fpq
(
Tmnpq

)–1 n+1Zmn

(106.188)

Remark 106.4.7 In the limit, for small deformations, isotropic response, the increment inconsistency

parameter d(∆µ) becomes

d(∆µ) =

oldΦ –
(
nmn Emnpq

) (
δpmδnq + ∆µ

∂mmn
∂σij

Eijpq

)–1
Rold

mn

nmn Emnpq

(
δmpδqn + ∆µ

∂mpq
∂σij

Eijmn

)–1
n+1mmn +

∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ

(106.189)

since in the limit, as deformations are getting small

Tmnpq → δpmδnq + ∆µ
∂mmn
∂σij

Eijpq

Fpq → 1
2

∂Φ

∂σmn
Emnpq

Zpq → 2 mpq

Rpq → 2 ϵpq (106.190)

Upon noting that residual Rpq is defined in strain space, the increment inconsistency parameter d(∆µ)

compares exactly with it’s small strain counterpart (Jeremić and Sture, 1997).

The procedure described below summarizes the implementation of the return algorithm.
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Trial State Given the right elastic deformations tensor nC̄e
pq and a set of hardening variables nKα at a

specific quadrature point in a finite element, compute the relative deformation gradient n+1fij for a given

displacement increment ∆n+1ui, and the right deformation tensor

n+1fij = δij + ui,j (106.191)

n+1C̄e,tr
ij =

(
n+1fir nFe

rk

)T (n+1fkl
nFe

lj

)
=
(nFe

rk
)T (n+1fir

)T (n+1fkl
nFe

lj

)
(106.192)

Compute the trial elastic second Piola–Kirchhoff stress and the trial elastic Mandel stress tensor

n+1̄Se,tr
ij = 2

∂W
∂n+1C̄e,tr

ij
(106.193)

n+1T̄e,tr
ij = n+1C̄e,tr

il
n+1̄Se,tr

lj (106.194)

Evaluate the yield function n+1Φtr(T̄e,tr
ij , Kα). If n+1Φtr ≤ 0 there is no plastic flow in current increment

n+1C̄e
ij = n+1C̄e,tr

ij
n+1Kα = nKα
n+1Tij = nTe,tr

ij

and exit constitutive integration procedure.

Return Algorithm If yield criteria has been violated (n+1Φtr > 0) proceed to step 1.

step 1. kth iteration. Known variables

n+1C̄e(k)
ij ; n+1κ(k)

α ; n+1K (k)
α ; n+1T (k)

ij ; n+1∆µ(k)

evaluate the yield function and the residual

Φ(k) = Φ(n+1T̄e(k)
ij , n+1K (k)

α )

R(k)
ij = n+1C̄e,(k)

ij –
(

n+1C̄e,tr
ij – n+1∆µ(k)n+1Z(k)

ij

)
step 2. Check for convergence, Φ(k) ≤ NTOL and ∥R(k)

ij ∥ ≤ NTOL. If convergence criteria is satisfied set

n+1C̄e
ij = n+1C̄e(k)

ij
n+1κα = n+1κ(k)

α

n+1Kα = n+1K (k)
α

n+1Tij = n+1T (k)
ij

n+1∆µ = n+1∆µ(k)

Exit constitutive integration procedure.
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step 3.28 If convergence is not achieved, i.e. Φ(k) > NTOL or ∥R(k)
ij ∥ > NTOL then compute the

elastic stiffness tensor Lijkl

L̄(k)
ijkl = 4

∂2W

∂C̄e(k)
ij ∂C̄e(k)

kl
(106.195)

step 4. Compute the incremental inconsistency parameter d(∆µ(k+1))

d(∆µ(k+1)) =
Φ(k) – F̄ (k)

mn Rmn(k)

F̄ (k)
mn Zmn(k) – ∆µ(k) F̄mn(k) ∂Zmn(k)

∂Kα
H̄α(k) +

∂Φ(k)

∂Kα
H̄α(k)

(106.196)

where

H̄α(k) = Hαβ
(k) ∂Φ

∗,(k)

∂Kβ
; F̄mn

(k) = Fpq
(k)
(
Tmnpq

(k)
)–1

Fpq =
∂Φ(T̄ (k)

ij , K (k)
α )

∂T̄pn

(
C̄e,(k)

sq

)–1
T̄ (k)

sn +
1
2
∂Φ(T̄ (k)

ij , K (k)
α )

∂T̄mn
C̄e,(k)

mk L̄
e,(k)
knpq

Tmnij = δimδnj + ∆µ(k) ∂Z(k)
mn

∂T̄ (k)
ik

(
C̄e,(k)

sj

)–1
T̄ (k)

sk +
1
2
∆µ(k) ∂Z(k)

mn
∂T̄pq

C̄e,(k)
pk L̄e,(k)

kqij

step 5. Updated the inconsistency parameter ∆µ(k+1)

∆µ(k+1) = ∆µ(k) + d(∆µ(k+1)) (106.197)

step 6. Updated the right deformation tensor, the hardening variable and the Mandel stress

dC̄e,(k+1)
pq =(
T (k)

mnpq

)–1
(

–R(k)
mn – d(∆µ(k+1)) n+1Z(k)

mn + ∆µ(k) ∂Z(k)
mn

∂Kα
d(∆µ(k+1)) H̄(k)

α

)
(106.198)

dκ(k+1)
α = d(∆µ(k+1))

∂Φ∗,(k)

∂Kβ
(106.199)

dK (k+1)
α = –d(∆µ(k+1)) H(k)

αβ

∂Φ∗,(k)

∂Kβ
(106.200)

28From step 3. to step 9. all of the variables are in intermediate n + 1 configuration. For the sake of brevity we are

omitting superscript n + 1.
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dT̄ (k+1)
mn = dC̄e,(k+1)

mk

(
C̄e,(k)

sk

)–1
T̄ (k)

sn +
1
2

C̄e,(k)
mk L̄

e,(k)
knpq dC̄e,(k+1)

pq (106.201)

step 7. Update right deformation tensor C̄e,(k+1)
pq , hardening variable K (k+1)

α and Mandel stress T̄ (k+1)
mn

C̄e,(k+1)
pq = C̄e,(k)

pq + d(C̄e,(k+1)
pq )

κ(k+1)
α = κ(k)

α + d(κ(k+1)
α )

K (k+1)
α = K (k)

α + d(K (k+1)
α )

T̄ (k+1)
mn = T̄ (k)

mn + d(T̄ (k+1)
mn ) (106.202)

step 8. evaluate the yield function and the residual

Φ(k+1) = Φ(T̄e(k+1)
ij , K (k+1)

α ) ; R(k+1)
ij = C̄e,(k+1)

ij –
(

C̄e,tr
ij – ∆µ(k+1)Z(k+1)

ij

)
(106.203)

step 9. Set k = k + 1

∆µ(k) = ∆µ(k+1)

C̄e,(k)
pq = C̄e,(k+1)

pq

κ(k)
α = κ(k+1)

α

K (k)
α = K (k+1)

α

T̄ (k)
mn = T̄ (k+1)

mn (106.204)

and return to step 2.

106.4.5 Algorithmic Tangent Stiffness Tensor

Starting from the elastic predictor–plastic corrector equation

n+1C̄e
ij = n+1C̄e,tr

ij – ∆µ n+1Zij (106.205)

and taking the first order Taylor series expansion we obtain

dC̄e
ij = dC̄e,tr

ij – d(∆µ) Zij – ∆µ
∂Zij
∂T̄mn

dT̄mn – ∆µ
∂Zij
∂Kα

dKα

= dC̄e,tr
ij – d(∆µ) Zij

–∆µ
∂Zij
∂T̄mn

(
dC̄e

mk
(
C̄e

sk
)–1 T̄sn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq

)
from (106.175)

–∆µ
∂Zij
∂Kα

dKα (106.206)

Previous equation can be written as

dC̄e
ij + ∆µ

∂Zij
∂T̄mn

(
C̄e

sk
)–1 T̄sn dC̄e

mk + ∆µ d(∆µ)
∂Zij
∂T̄mn

1
2

C̄e
mk L̄e

knpq dC̄e
pq

= dC̄e,tr
ij – d(∆µ) Zij + ∆µ d(∆µ)

∂Zij
∂Kα

Hαβ
∂Φ∗

∂Kβ
(106.207)
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or as

dC̄e
ij
(
Tmnij

)
= dC̄e,tr

ij – d(∆µ) Zij + ∆µ d(∆µ)
∂Zij
∂Kα

Hαβ
∂Φ∗

∂Kβ
(106.208)

where

Tmnij = δimδnj + ∆µ(k) ∂Z(k)
mn

∂T̄ (k)
ik

(
C̄e,(k)

sj

)–1
T̄ (k)

sk +
1
2
∆µ(k) ∂Z(k)

mn
∂T̄pq

C̄e,(k)
pk L̄e,(k)

kqij

The solution for the increment in right elastic deformation tensor is then

dC̄e
ij =

(
Tmnij

)–1
(

dC̄e,tr
ij – d(∆µ) Zij + ∆µ d(∆µ)

∂Zij
∂Kα

Hαβ
∂Φ∗

∂Kβ

)
(106.209)

We next use the first order Taylor series expansion of yield function dΦ(T̄ij , Kα) = 0

∂Φ

∂T̄mn
dT̄mn +

∂Φ

∂Kα
dKα =

∂Φ

∂T̄mn

(
dC̄e

mk
(
C̄e

sk
)–1 T̄sn +

1
2

C̄e
mk L̄e

knpq dC̄e
pq

)
+
∂Φ

∂Kα
dKα =

∂Φ

∂T̄pn

(
C̄e

sq

)–1
T̄sn dC̄e

pq +
1
2

∂Φ

∂T̄mn
C̄e

mk L̄e
knpq dC̄e

pq +
∂Φ

∂Kα
dKα =(

∂Φ

∂T̄pn

(
C̄e

sq

)–1
T̄sn +

1
2

∂Φ

∂T̄mn
C̄e

mk L̄e
knpq

)
dC̄e

pq –
∂Φ

∂Kα
d(∆µ) Hαβ

∂Φ∗

∂Kβ
=

Fpq dC̄e
pq –

∂Φ

∂Kα
d(∆µ) Hαβ

∂Φ∗

∂Kβ
= 0

(106.210)

where

Fpq =
∂Φ

∂T̄pn

(
C̄e

sq

)–1
T̄sn +

1
2

∂Φ

∂T̄mn
C̄e

mk L̄e
knpq (106.211)

By using solution for dC̄e
ij from 106.209 we can write

Fpq
(
Tmnpq

)–1
(

dC̄e,tr
mn – d(∆µ) Zmn + ∆µ d(∆µ)

∂Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ

)
–
∂Φ

∂Kα
d(∆µ) Hαβ

∂Φ∗

∂Kβ
= 0

(106.212)

We are now in the position to solve for the incremental inconsistency parameter d(∆µ)

d(∆µ) =
Fpq

(
Tmnpq

)–1 dC̄e,tr
mn

Γ
(106.213)

where we have used Γ to shorten writing

Γ = Fpq
(
Tmnpq

)–1 n+1Zmn – ∆µFpq
(
Tmnpq

)–1 ∂n+1Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ
+
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ
(106.214)
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Since

dS̄kn =
1
2
L̄e

knpq dC̄e
pq (106.215)

and by using 106.209 we can write

dC̄e
pq =(
Tmnpq

)–1
(
δmv δnt –

Fop
(
Trsop

)–1
δrv δst

Γ
Zmn+

∆µ
Fop

(
Trsop

)–1
δrv δst

Γ

∂Zij
∂Kα

Hαβ
∂Φ∗

∂Kβ

)
dC̄e,tr

vt (106.216)

Then

dC̄e
pq = P̄pqvt dC̄e,tr

vt (106.217)

where

P̄pqvt =
(
Tmnpq

)–1
δmv δnt –

Fop
(
Trsop

)–1
δrv δst

Γ
Zmn

+ ∆µ
Fop

(
Trsop

)–1
δrv δst

Γ

∂Zij
∂Kα

Hαβ
∂Φ∗

∂Kβ

= (Tmnpq)–1
(
δmvδnt –

Fab(Tvtab)–1

Γ

(
Zmn – ∆µ

∂n+1Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ

))
(106.218)

Algorithmic tangent stiffness tensor L̄ijkl (in intermediate configuration Ω̄) is then defined as

L̄ATS
knvt = L̄e

knpq P̄pqvt (106.219)

Pull–back to the reference configuration Ω0 yields the algorithmic tangent stiffness tensor Lijkl in

reference configuration Ω0

n+1LATS
ijkl = n+1Fp

im
n+1Fp

jn
n+1Fp

kr
n+1Fp

ls
n+1L̄ATS

mnrs (106.220)

Remark 106.4.8 In the limit, for small deformations, isotropic response, the Algorithmic Tangent Stiffness

tensor LATS
ijkl becomes

lim L̄ATS
vtpq = EATS

vtpq = Eknpq

(
Υ–1

mnpq

(
δmvδnt –

ncdEcdabΥ
–1
vtabHmn

Γ

))

= Eknpq

(
Υ–1

vtpq –
Υ–1

mrpqncdEcdabΥ
–1
vtabHmr

Γ

)

= EknpqΥ
–1
vtpq –

EknpqΥ
–1
mrpqncdEcdabΥ

–1
vtabHmr

Γ

= Rknvt –
ncdRcdvtRknmrHmr

Γ
(106.221)
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since

lim T̄mnpq = Υmnpq = δpmδnq + ∆µ
∂Zmn
∂T̄pk

(
C̄e

sq

)–1
T̄sk +

1
2
∆µ

∂Zmn
∂T̄rs

C̄e
rkL̄e

kspq

= δpmδnq + ∆µ
∂mmn
∂σrs

Ee
kspq (106.222)

limFab = lim
(
∂Φ

∂T̄ad

(
C̄e

sb
)–1 T̄sd +

1
2
∂Φ

∂T̄cd
C̄e

ckL̄e
kdab

)
=

1
2

ncdEe
cdab (106.223)

Hmn = mmn – ∆µ
∂mmn
∂Kα

Hαβ
∂Φ∗

∂Kβ
(106.224)

lim Γ = lim

(
Fpq

(
Tmnpq

)–1 n+1Zmn – ∆µFpq
(
Tmnpq

)–1 ∂n+1Zmn
∂Kα

Hαβ
∂Φ∗

∂Kβ
+
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ

)

= nabEabpqΥ
–1
mnpqmmn – ∆µnabEabpqΥ

–1
mnpq

∂mmn
∂Kα

Hαβ
∂Φ∗

∂Kβ
+
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ

= nabEabpqΥ
–1
mnpq

(
mmn – ∆µ

∂mmn
∂Kα

Hαβ
∂Φ∗

∂Kβ

)
+
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ

= nabRabmnHmn +
∂Φ

∂Kα
Hαβ

∂Φ∗

∂Kβ
(106.225)

It is noted that the Algorithmic Tangent Stiffness tensor given by 106.221 compares exactly with it’s

small strain counterpart (Jeremić and Sture, 1997).
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ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 107

Solution of Static Equilibrium Equations

(1994-2016-)

(In collaboration with Dr. Yuan Feng)

522



Je
re
m
ić
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107.1 Chapter Summary and Highlights

107.2 The Residual Force Equations

This chapter is based on Felippa (1993).

In previous Chapters we have derived the basic equations for (material and/or geometric) nonlinear

analysis of solids. Discretization of such problems by finite element methods results in a set of nonlinear

algebraic equations called residual force equations:

r(u,λ) = fint(u) – λfext = 0 (107.1)

where fint(u) are the internal forces which are functions of the displacements, u, the vector fext is a fixed

external loading vector and the scalar λ is a load–level parameter that multiplies fext . Equation (107.1)

describes the case of proportional loading in which the loading pattern is kept fixed.

All solution procedures of practical importance are strongly rooted in the idea of ”advancing the solution”

by continuation. Except in very simple problems, the continuation process is multilevel and involves

hierarchical breakdown into stages, incremental steps and iterative steps. Processing a complex nonlinear

problem generally involves performing a series of analysis stages. Multiple control parameters are not

varied independently in each stage and may therefore be characterized by a single stage control parameter

λ. Stages are only weakly coupled in the sense that end solution of one may provide the starting point

for another.

107.3 Constraining the Residual Force Equations

Various forms of path following methods1 have stemmed from the original work of Riks (1972), Riks

(1979) and Wempner (1971). They aimed at finding the intersection of equation (107.1) with s =

constant where s is the arc-length , defined as2:

s =
∫

ds (107.2)

where:

ds =

√√√√ ψ2
u

u2
ref

duT Sdu + dλ2ψ2
f (107.3)

1also called arc-length methods with various methods of approximating the exact length of an arc.
2A bit different form in that it is scaled with scaling matrix S, introduced by Felippa (1984).
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Differential form (107.3) can be replaced with an incremental form:

a = (∆s)2 – (∆l)2 =

(
ψ2

u
u2

ref
∆uT S∆u + ∆λ2ψ2

f

)
– (∆l)2 (107.4)

where ∆l is the radius of the desired intersection3 and represents an approximation to the incremental

arc length. Scaling matrix S is usually diagonal non-negative matrix that scales the state vector ∆u

and uref is a reference value with the dimension of
√
∆uT S∆u. It is important to note that the vector

∆u and scalar ∆λ are incremental and not iterative values, and are starting from the last converged

equilibrium state.

∆ l

u∆ 1

Load

fδλ

1fδλ

fδλ

0

2

λf

ext

ext

ext

(u λ f, ext0 0

∆λ1f
ext

∆λ f2 ext

∆λ f3 ext

δu0
δu1

δu2

(u λ f,2 2 ext
(u λ f,3 3 ext

Displacement

u

Constraint
Hypersurface

)

)

fλ0 ext

Equilibrium
Path

)

or
(u λ f, ext

(u1 λ1f, ext)

)p p

u
0 2

u∆
3

u∆

Figure 107.1: Spherical arc-length method and notation for one DOF system.

The main essence of the arc-length methods is that the load parameter λ becomes a variable. With

load parameter λ variable we are dealing with n + 1 unknowns4. In order to solve this problem we have

n equilibrium equations (107.1) and the one constraint equation (107.4). We can solve the augmented

3See Figure (107.1).
4n unknown displacement variables and on extra unknown in the form of load parameter.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 107.3. CONSTRAINING THE RESIDUAL FORCE . . . page: 525 of 3287

system of n + 1 equations by applying the Newton-Raphson5 method to equations (107.1) and (107.4)

rnew(u,λ) = rold(u,λ) +
∂r(u,λ)
∂u

δu +
∂r(u,λ)
∂λ

δλ =

= rold(u,λ) + Kt δu – fext δλ =

= 0 (107.5)

anew = aold + 2
ψ2

u
u2

ref
∆uT Sδu + 2∆λδλ ψ2

f = 0 (107.6)

where Kt = ∂r(u,λ)
∂u is the tangent stiffness matrix. The aim is to have rnew(u,λ) = 0 and anew = 0 so

the previous system can be written as:

 Kt –fext

2 ψ2
u

u2
ref
∆uT S 2∆λ ψ2

f

 δu

δλ

 = –

 rold

aold

 (107.7)

One can solve previous system of two equations for δu and δλ:

 δu

δλ

 = –

 Kt –fext

2 ψ2
u

u2
ref
∆uT S 2∆λ ψ2

f

–1  rold

aold

 (107.8)

or by defining the augmented stiffness matrix6 K as:

K =

 Kt –fext

2 ψ2
u

u2
ref
∆uT S 2∆λ ψ2

f

 (107.9)

the equation (107.8) can be written as:

 δu

δλ

 = –K–1

 rold

aold

 (107.10)

It should be mentioned that the augmented stiffness matrix remains non-singular even if Kt is singular.

5By using a truncated Taylor series expansion.
6Or augmented Jacobian.
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107.4 Load Control

107.5 Displacement Control

107.6 Generalized, Hyper–Spherical Arc-Length Control

In section (107.3) we have introduced an constraining equation that is intended to reduce the so called

drift error in the incremental nonlinear finite element procedure. The constraining equation was given

in a rather general form. Some further comments and observations are in order. By assigning various

numbers to parameters ψu, ψf , S and uref one can obtain different constraining schemes from (107.4).

Constraint
Hypersurfaces

Equilibrium
Path

ψuψf =

ψuψf < ψuψf <<

∆ l

Load λf

Displacement

u

Equilibrium
Path

ψuψf = ψuψf >

ψuψf >>

Constraint
Hypersurfaces

∆ l

Load λf

Displacement

u

Figure 107.2: Influence of ψu and ψf on the constraint surface shape.

Coefficients ψu and ψf may not be simultaneously zero. Useful choices for S are I, Kt and diag (Kt).

If S = I and uref = 1 the method is called the arclength method7. If we choose S = diag (Kt) nice

scaling is obtained8 but otherwise no physical meaning can be attributed to this scaling type. With

S = Kt and ψf ≡ 0 one ends up with something very similar to the external work constraint of Bathe

and Dvorkin (1983). A rather general equation (107.4) can be further specialized to load (λ) control

with ψu ≡ 0;ψf ≡ 1 and state control9 with ψu ≡ 1;ψf ≡ 0 and S = I. In the finite element literature,

the term displacement control has been traditionally associated with the case in which only one of the

components of the displacement vector u10 is specified. This may be regarded either as a variant of state

7It actually reduces to the original work of fRiks (1972), Riks (1979) and Wempner (1971).
8For example if FEM model includes both translational and rotational DOFs.
9That is the cylindrical constraint, or general displacement control.

10Say ui.
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control, in which a norm that singles out the ith component is used, or as a variant of the λ control if

the control parameter is taken as λui. It is, of course, possible to make the previous parameters variable,

functions of different unknowns. For example if one defines uref = ∆uT S∆u then close to the limit point

∆u → 0 ⇒ ψ2
u

u2
ref
≫ ψ2

f that makes our constraint from equation (107.4) behave like state control. One

important aspect of scaling constraint equations by using S = diag (Kt) or S = Kt is the possibility of

non–positive definite stiffness matrix Kt . It usually happens that after the limit point is passed, at least

one of the eigenvalues of Kt is non–positive, thus rendering the constraint hypersurface non–convex.

In order to get better control of the solution to the system of equations (107.10) one may directly

introduce the constraint from equation (107.6) by following the approach proposed by Batoz and Dhatt

(1979), as described by Crisfield (1991) and Felippa (1993).

The iterative displacement δu is split into two parts, and with the Newton change at the new unknown

load level:

λnew = λold + δλ (107.11)

becomes:

δu = –K–1
t r
(

uold ,λ
)

= –K–1
t

(
fint(uold) – λnewfext

)
= –K–1

t

(
fint(uold) –

(
λold + δλ

)
fext

)
= –K–1

t

((
fint(uold) – λoldfext

)
– δλfext

)
= –K–1

t

(
r
(

uold ,λold
)

– δλfext

)
= –K–1

t rold + δλK–1
t fext = δū + δλδut (107.12)

where δut = K–1
t fext is the displacement vector corresponding to the fixed load vector fext , and δū is

an iterative change that would stem from the standard load-controlled Newton-Raphson, at a fixed load

level λold . With the solution11 for the δu from (107.12), the new incremental displacements are:

∆unew = ∆uold + δu = ∆uold + δū + δλδut (107.13)

where δλ is the only unknown. The constraint from equation (107.4) can be used here, and by rewriting

it as:

(
ψ2

u
u2

ref

(
∆unew)T S

(
∆unew) +

(
∆λnew)2 ψ2

f

)
= (∆l)2 (107.14)

11But having in mind that δλ is still unknown!
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then by substituting ∆unew from equation (107.13) into equation (107.14) and by recalling that λnew =

λold + δλ one ends up with the following quadratic scalar equation:

(
ψ2

u
u2

ref

(
∆uold + δū + δλδut

)T
S
(
∆uold + δū + δλδut

)
+
(
∆λold + δλ

)2
ψ2

f

)
= (∆l)2

(107.15)

or, by collecting terms:

(
ψ2

u
u2

ref
δuT

t Sδut + ψ2
f

)
δλ2 +

+2

(
ψ2

u
u2

ref
δuT

t S
(
∆uold + δū

)
+ ∆λoldψ2

f

)
δλ +

+

(
ψ2

u
u2

ref

(
∆uold + δū

)T
S
(
∆uold + δū

)
– ∆l2 +

(
∆λold

)2
ψ2

f

)
= 0 (107.16)

or:

a1δλ
2 + 2a2δλ + a3 = 0 (107.17)

where:

a1 =
ψ2

u
u2

ref
δuT

t Sδut + ψ2
f

2a2 = 2

(
ψ2

u
u2

ref
δuT

t S
(
∆uold + δū

)
+ ∆λoldψ2

f

)

a3 =
ψ2

u
u2

ref

(
∆uold + δū

)T
S
(
∆uold + δū

)
– ∆l2 +

(
∆λold

)2
ψ2

f

The quadratic scalar equation (107.17) can be solved for δλ:

δλ = δλ1 =
–a2 +

√
a2

2 – a1a3

a1
; δλ = δλ2 =

–a2 –
√

a2
2 – a1a3

a1
(107.18)

or, if a1 = 0, then:

δλ = –
a3
2a2

(107.19)
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and then the complete change is defined from equation (107.13):

∆unew = ∆uold + δū + δλδut (107.20)

An ambiguity is introduced in the solution for δλ from (107.18). The tangent at the regular point

on the equilibrium path has two possible directions, which generally intersect the constraint hypersurface

at two points. However, some exceptions from that rule are possible, so the solutions from (107.18) can

be categorized as:

• Real roots of opposite signs. This occurs when the iteration process converges normally and there

is no limit or turning point enclosed by the constraint hypersurface. The root is chosen by applying

one of the schemes proposed below.

• Real roots of equal sign opposite to that of ∆λold . This usually happens when going over a ”flat”

limit point.

• Real roots of equal sign same as that of ∆λold . This is an unusual case. It may signal a turning

point or be triggered by erratic iteration behavior.

• Complex roots. This is an unusual case too. It may signal a sharp turning point, a bifurcation

point, erratic or divergent iterates.

For the first two cases, the correct ∆λ can be chosen by applying one of the following schemes.

107.6.1 Traversing Equilibrium Path in Positive Sense

107.6.1.1 Positive External Work

The simplest rule requires that the external work expenditure over the predictor step be positive:

∆W = fT
ext∆u = fT

extK–1
t fextδλ > 0 (107.21)

The simple conclusion is that δλ should have the sign of fT
extK–1

t fext . This condition is particularly

effective at limit points. However, it fails when fext and K–1
t fext are orthogonal:

fT
extK–1

t fext = 0 (107.22)

This can happen at:

• Bifurcation points,
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Figure 107.3: Simple illustration of Bifurcation and Turning point.

• Turning points,

The treatment of bifurcation points is of a rather special nature and is left for the near future.

Turning points12 can be traversed by a modification of a previous rule, as described in the next section.

107.6.1.2 Angle Criterion

Near a turning point application of the positive work rule (107.21) causes the path to double back upon

itself. When it crosses the turning point it reverses so the turning point becomes impassable. Physically,

a positive work rule is incorrect because in passing a turning point the structure releases external work

until another turning point is encountered.

To pass a turning point imposing a condition on the angle of the prediction vector proves more

effective. The idea is to compute both solutions δλ1 and δλ2 and then both ∆pnew
1 and ∆unew

1 :

∆unew
1 = ∆uold + δū + δλ1δut (107.23)

∆unew
2 = ∆uold + δū + δλ2δut (107.24)

12One might ask ”why treating turning points in a material nonlinear analysis?”. The answer is rather simple: ”try to

prevent all unnecessary surprises”. For a good account of some of surprises in material nonlinear analysis one might take a

look at some examples in Crisfield (1991) pp. 270.
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The one that lies closest to the old incremental step direction ∆uold is the one sought. This should

prevent the solution from double backing. The procedure can be implemented by finding the solution

with the minimum angle between ∆uold and ∆pnew, and hence the maximum cosine of the angle:

cosϕ =

(
∆uold

)T
(∆unew)

∥∆uold∥ ∥∆unew∥ =

(
∆uold

)T (
∆uold + δū + δλδut

)
∥∆uold∥ ∥∆uold + δū + δλδut∥

(107.25)

where δū = –K–1
t rold and δut = K–1

t fext . Once the turning point has been crossed, the work criterion

should be reversed so the external work is negative.

By directly introducing the constraint from equation (107.6) and following the method through

equations (107.12) to (107.25) a limitation is introduced. Precisely at the limit point, Kt is singular and

the equations cannot be solved. However, Batoz and Dhatt (1979) and Crisfield (1991) report that no

such problem has occurred, because one appears never to arrive precisely at limit point.

107.6.2 Predictor step

The predictor solution is achieved by applying one forward Euler, explicit step from the last obtained

equilibrium point:

∆up = K–1
t ∆qe = ∆λpK–1

t fext = ∆λpδut (107.26)

where Kt is the tangent stiffness matrix at the beginning of increment. Substituting equation (107.26)

into the constraint equation (107.14) one obtains:

(
ψ2

u
u2

ref

(
∆unew)T S

(
∆unew) +

(
∆λnew)2 ψ2

f

)
=(

ψ2
u

u2
ref

∆λ2
pδuT

t Sδut

)
+
(
∆λp

)2
ψ2

f =

∆λ2
p

(
ψ2

u
u2

ref
δuT

t Sδut + ψ2
f

)
= (∆l)2 (107.27)

The solution for ∆λp is readily found:

∆λp = ± ∆l√
ψ2u
u2

ref
|δuT

t Sδut | + ψ2
f

(107.28)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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where ∆l > 0 is the given increment length. The absolute value of |δuT
t Sδut | is needed if the stiffness

matrix is chosen as a scaling matrix, i.e. S = Kt , since, after passing limit point, the stiffness matrix is

non–positive definite so δuT
t Sδut ≤ 0. The question of choosing the right sign + or – in (107.28) is still

a vigorous research topic. In the simplified procedure13 the negative sign – is chosen with respect to the

occurrence of one negative pivot during factorization of the tangent stiffness matrix Kt . If more than

one pivot happens to be negative, one is advised14 to stop the analysis and try to restart from previously

converged solution with smaller step size.

107.6.3 Automatic Increments

A number of workers have advocated different strategies for controlling the step length size. In this work

we will follow the strategy advocated by Crisfield (1991). The idea is to find the new incremental length

by applying:

∆lnew = ∆lold
(

Idesired
Iold

)n
(107.29)

where ∆lold is the old incremental factor for which Iold iterations were required, Idesired is the input,

desired number of iterations15 and the parameter n is set to 1
2 as suggested by Ramm (1982) Ramm

(1981).

107.6.4 Convergence Criteria

Introduction of an iterative scheme calls for the introduction of an iteration termination test. There are

several convergence criteria that can be applied.

• Absolute Displacement Convergence Criteria. The change in the last correction δu of the state

vector u, measured in an appropriate norm, should not exceed a given tolerance ϵu. For example,

if we use Euclidean norm16 the termination criteria can be written as:

∥δu∥absolute =
√

(δu)T S (δu) ≤ ϵu (107.30)

Scaling matrix S is used in order to ensure that for a problem involving mixed units17, all parameters

have the same unit. Here, an obvious choice for the scaling matrix is S = diag(K–1
t ). If, on the

13Which is not guaranteed to work if one takes into account bifurcation phenomena.
14For more details see Crisfield (1991).
15Say Idesired ≈ 3.
16The so called 2–norm.
17For example, if rotations and displacements are involved.
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other hand we don’t have mixed variables in state vector u then the simplest choice for scaling

matrix is S = I.

Currently used within FEI and the Real-ESSI program is an absolute convergence criteria with unit

scaling matrix S = I. This means that absolute tolerance criteria mixes units for different Degrees

of Freedom (DoFs). Supplied tolerance is converted to basic units of the system (meter and

Newton) and that is used for comparison and convergence decisions.

• Relative Displacement Convergence Criteria. It is beneficial to use the relative convergence criteria

in order to relax convergence criteria for problems where one or few displacements dominate. In

order to to that, use of ratio of Euclidean norm of iterative displacement ∥δu∥scaled and Euclidean

norm of total displacement ∥u∥scaled is recommended:

∥δu∥relative
∥u∥scaled

≤ ϵu (107.31)

Again it is important to note that currently used within FEI and the Real-ESSI program is an

absolute convergence criteria with unit scaling matrix S = I. This means that relative tolerance

criteria mixes units for different Degrees of Freedom (DoFs). Supplied tolerance is converted to

basic units of the system (meter and Newton) and that is used for comparison and convergence

decisions.

• Average Displacement Convergence Criteria. The change in the last correction δu of the state

vector u, measured in an appropriate norm, should not exceed a given tolerance ϵu, divided by the

total number of DoFs:

∥δu∥average =
√

(δu)T S (δu)
nDoFs

≤ ϵu (107.32)

This is important in order to preserve objectivity of displacement convergence criteria for similar

(same) models that are discretized with a different number of finite elements (and therefor feature

different number of nodes and DoFs). For example, a cantilever (simplest model) can be discretized

using 5 DoFs and 5,000,000 DoFs. Since equation 107.32 essentially sums up absolute values of

all displacements, it is expected that in the case of larger number of DoFs, larger norm will be

calculated. This will create a problem since specified tolerance will then be a function of a number

of DoFs a model features. Hence, a norm of all iterative displacements is divided by the total

number of DoFs.

One more time, it is important to note that currently used within FEI and the Real-ESSI program is

an absolute convergence criteria with unit scaling matrix S = I. Therefor average tolerance criteria
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mixes units. Supplied tolerance is converted to basic units of the system (meter and Newton) and

that is used for comparison and convergence decisions.

• Absolute Residual Force Convergence Criteria. Since the residual r(u,λ) measures the departure

from the equilibrium path, an appropriate convergence test would be to compare Euclidean norm

of residual with some predefined tolerance:

∥r(u,λ)∥scaled =
√

(r)T S (r) ≤ ϵr (107.33)

Here, an obvious choice for scaling matrix is S = diag(Kt)

Much the same as for displacement based convergence criteria, currently used within FEI and

the Real-ESSI program is a convergence criteria with unit scaling matrix S = I. This means that

absolute tolerance criteria mixes units for different Degrees of Freedom (DoFs). Supplied tolerance

is converted to basic units of the system (meter and Newton) and that is used for comparison and

convergence decisions.

• Relative Residual Force Convergence Criteria. In order to provide scaling of residual forces that

are used to tolerance criteria, (previously defined) absolute residual force norm is divided (scaled)

by a a norm of residual forces at the beginning of the iterative step:

∥r(u,λ)∥relative =
√

(r)T S (r)√
(r0)T S (r0)

≤ ϵr (107.34)

Here, an obvious choice for scaling matrix is S = diag(Kt), however, within FEI and the Real-ESSI

program, for this convergence criteria, a unit scaling matrix S = I is used, therefor relative tolerance

criteria will feature mixed units.

• Average Residual Force Convergence Criteria. With the residual r(u,λ), which measures the

departure from the equilibrium path, there is a need to take into the account number of DoFs, in

order to reduce the influence of a model discretization (number of DoFs) on norm of the residual

force vector:

∥r(u,λ)∥scaled =
√

(r)T S (r)
nDoFs

≤ ϵaverage (107.35)

Here, an obvious choice for scaling matrix is S = diag(Kt) however, again, as noted avove, within

FEI and the Real-ESSI program, for this convergence criteria, a unit scaling matrix S = I is used,

therefor relative tolerance criteria will feature mixed units.
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• Energy Based Convergence Criteria. The previous convergence criteria can be combined in a single

work change criterion:

∥ (δu)T (r) ∥ =
√

(δu)T (r) ≤ ϵuϵr (107.36)

A word of caution is appropriate at this point. As pointed out by Crisfield (1991), it follows that:

∥ (δu)T (r) ∥ = ∥ (δu)T
(

K–1
t Kt

)
(r) ∥ = ∥ – (δu)T Kt (δu) ∥ ≤ ϵuϵr (107.37)

where the iterative change was (δu) = –K–1
t r. It should be noted that equations (107.37) give a

measure of the ”stiffness” of Kt . This merely implies that a stationary energy position has been

reached in the current iterative direction, δu. This can occur when the solution is still far away

from equilibrium.

Since u and r usually have physical unites, so do necessarily ϵu and ϵr . For a general purpose

implementation of Newton–Raphson iteration this dependency on physical units is undesirable and it is

more convenient to work with ratios that render the ϵu and ϵr dimensionless. Displacement Convergence

Criteria can be rendered dimensionless by using ratio of scaled Euclidean norm of iterative displacement

∥δu∥scaled and scaled Euclidean norm of total displacement ∥u∥scaled :

∥δu∥scaled
∥u∥scaled

≤ ϵu (107.38)

The similar approach can be used for Residual Convergence Criteria:

∥r∥scaled
∥rpredictor∥scaled

≤ ϵr (107.39)

Another important thing to be considered is Divergence. The Newton–Raphson scheme is not

guaranteed to converge. Some sort of divergence detection scheme is therefor necessary in order to

interrupt an erroneous iteration cycle. Divergence can be diagnosed if either of following inequalities

occur:

∥δu∥scaled
∥u∥scaled

≥ gu (107.40)

∥r∥scaled
∥rpredictor∥scaled

≥ gr (107.41)

where gu and gr are dangerous growth factors that can be set to, for example gu = gr = 100.
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In some cases, the Newton–Raphson iteration scheme will neither diverge nor converge, but rather

exhibit oscillatory behavior. To avoid excessive bouncing around, a good practice is to put upper limit

to the number of iterations performed in one iteration cycle. Typical limits to the iteration number are

20 to 50.

107.6.5 The Algorithm Progress

The progress of the scheme will be briefly described, in relation with the Figure (107.1). The pro-

cedure starts from a previously converged solution (u0,λ0fext). An incremental, tangential predictor

step ∆u1,∆λ1 is obtained18 and the next point obtained is (u1,λ1fext). The first iteration would then

use quadratic equation 107.17 where constants a1, a2 and a3 should be computed with ∆uold = ∆u1

and ∆λold = ∆λ1, to calculate δλ1 and19 δu1 = –K–1
t r (u1,λ1) + δλ1K–1

t fext . After these values are

calculated, the updating procedure20 would lead to:

∆λ2 = ∆λ1 + δλ1 and ∆u2 = ∆u1 + δu1 (107.42)

When added to the displacements u0 and load level λ0, at the end of the previous increment this process

would lead to the next point (u2,λ2fext).

The next iteration would then again use quadratic equation 107.17 where constants a1, a2 and a3

should be computed with ∆uold = ∆u2 and ∆λold = ∆λ2, to calculate δλ3 and δu3 = δū + δλ2δut .

After these values are calculated, the updating procedure would lead to:

∆λ3 = ∆λ2 + δλ2 and ∆u3 = ∆u2 + δu2 (107.43)

When added to the displacements u0 and load level λ0, at the end of the previous increment this process

would lead to the next point (u3,λ3fext).

18As explained in Section (107.6.2).
19From equation (107.12).
20See (107.11) and (107.13)
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ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 108

Solution of Dynamic Equations of Motion

(1989-2006-2016-2018-2019-)

(In collaboration with Dr. Nima Tafazzoli and Prof. José Abell)
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108.1 Chapter Summary and Highlights

108.2 The Principle of Virtual Displacements in Dynamics

(see section 102.2 on page 100).

Great reading on this subject is a book by Argyris and Mlejnek (1991).

108.3 Direct Integration Methods for the Equations of Dynamic Equilibrium

This section follows Argyris and Mlejnek (1991) and Hughes (1987).

need to rewrite and improve! BJ

108.3.1 Newmark Integrator

The Newmark time integration method (Newmark, 1959) uses two parameters, β and γ, and is defined

by the following two equations:

n+1x = nx + ∆t nẋ + ∆2t [(
1
2

– β) nẍ + β n+1ẍ] (108.1)

n+1ẋ = nẋ + ∆t [(1 – γ) nẍ + γ n+1ẍ] (108.2)

These equatons give relationship between knowns variables at time step n to the unknown variables at

next time step n + 1. Method is in general an implicit one, except when β = 0 and γ = 1/2.

There are several possible implementation methods for Newmark Integrator. One possible approach to

integrating equations of motion using Newmark algorithm is to use displacement as the basic unknowns,

and the following difference relations are used to relate n+1ẋ and n+1ẍ to n+1x and the response quantities

are

n+1ẋ =
γ

β∆t

(
n+1x – nx

)
+
(

1 –
γ

β

)
nẋ +

(
1 –

γ

2β

)
nẍ (108.3)

n+1ẍ =
1

β∆t2
(

n+1x – nx
)

–
1
β∆t

nẋ +
(

1 –
1

2β

)
nẍ (108.4)

The predictors are then:

n+1ẋ⋄ = –
γ

β∆t
nx +

(
1 –

γ

β

)
nẋ + ∆t

(
1 –

γ

2β

)
nẍ (108.5)

n+1ẍ⋄ = –
1

β∆t2
nx –

1
β∆t

nẋ +
(

1 –
1

2β

)
nẍ (108.6)

and the correctors:

n+1ẋ = n+1ẋ⋄ +
γ

β∆t
n+1x (108.7)

n+1ẍ = n+1ẍ⋄ +
1

β∆t2
n+1x (108.8)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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The Newton integration method becomes[
M

β∆t2
+
γC
∆t

+ K
]
∆x = –n+1R (108.9)

Equation 108.5 to 108.9 constitute an iterative solving procedure (Argyris and Mlejnek, 1991).

If the parameters β and γ satisfy

γ ≥ 1
2

, β ≥ 1
4

(γ +
1
2

)2 (108.10)

the procedure is unconditionally stable and second-order accurate. Any γ value greater than 0.5 will

introduce numerical damping. Well-known members of the Newmark time integration method family

include: trapezoidal rule or average acceleration method for β = 1/4 and γ = 1/2, linear acceleration

method for β = 1/6 and γ = 1/2, and (explicit) central difference method for β = 0 and γ = 1/2. If

and only if γ = 1/2, the accuracy is second-order Hughes (1987). For values of β = 1 and γ = 2/3, the

strongest numerical damping is obtained, as spectral ratio ρ∞ = 0 (Hughes (1987), page 502)

108.3.2 HHT Integrator

Numerical damping introduced in the Newmark time integration method will degrade the order of ac-

curacy. The Hilber-Hughes-Tailor (HHT) time integration α-method (Hilber et al., 1977), (Hughes and

Liu, 1978a) and (Hughes and Liu, 1978b) using an alternative residual form by introducing an addition

parameter α to improve the performance:

n+1R = M n+1ẍ + (1 + α)F(n+1ẋ, n+1x) – αF(nẋ, nx) – n+1f (108.11)

but retaining the Newmark finite-difference formulas 108.1 and 108.2 or 108.3 and 108.4. If α = 0, the

HHT time integration method becomes exactly the same Newmark time integration method. Decreasing

α value increase numerical dissipation (Hughes, 1987).

The iteration method for HHT time integration is similar to that of Newmark time integration. Due

to the change of Equation 108.11, Equation 108.9 becomes[
M + (1 + α)γ∆tC + (1 + α)β∆t2K

]
∆ẍ = –n+1R (108.12)

for acceleration iteration and[
1

β∆t2
M +

(1 + α)
γ∆t

C + (1 + α)K
]
∆x = –n+1R (108.13)

for displacement iteration.

If the parameters α, β and γ satisfy

–1/3 ≤ α ≤ 0, γ =
1
2

(1 – 2α), β =
1
4

(1 – α)2 (108.14)

it is unconditionally stable and second-order accurate (Hughes, 1987).
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108.4 Synthetic Viscous Damping for Solids and Structures

Presented here are commonly used, viscous damping methods for time domain analysis of solids and

structures. These methods, Rayleigh and Caughey damping, are mimicking viscous damping of of the

solids and structures by generating the damping matrix C using mass and stiffness matrices.

These synthetic viscous damping approaches should be distinguished from a natural viscous damping

that is created during interaction of fluid and soil. For example, a natural viscous damping occurs when

pore fluid and porous solid have differential displacements, as described in section 102.12.1.4 on page

143 (see for example equation ?? on page ??).

108.4.1 Synthetic Viscous Damping Approaches

There are different numerical methods available to simulate the seismic wave propagation through the

soil-structure systems such as boundary elements, finite elements, finite differences, meshfree methods,

and spectral elements. There are advantages of using methods such as finite elements or spectral

elements for complex geometries or modeling the nonlinearities but also disadvantage such as numerical

dispersion for low-order finite elements or reflection of the motions from the boundaries of the model

(Semblat et al. (2010)).

Boundary element method can deal better with the issue of reflecting the motions from boundaries

comparing to other numerical methods. Research has been done on coupling this method with other

numerical methods for better applications. Domain reduction method is also available for large models

implemented in finite element in order to reduce the problem of reflection (Bielak et al. (2003a)).

There are methods so called non-reflecting boundary conditions which directly can attenuate the

reflections at the mesh boundaries. One of the commonly used method is absorbing boundary conditions.

Absorbing boundary conditions have special conditions at the model boundaries in order to approximate

the radiation condition for seismic waves (Givoli (1991)).

Another method applicable in finite element methods is so called infinite element method. These

elements can absorb the waves using decaying laws at model boundaries at infinity (Nenning and Schanz

(2010); Kallivokas et al. (1997)). In this method it is assumed that the element and nodes of the boundary

are in infinity. In this case the seismic waves have enough distance to dissipate at the boundaries and

not to reflect back to the model.

There has been a recently developed method to prevent reflection of the waves from boundaries

called Perfectly Matched Layers (PML). This absorbing layer is based on attenuation laws with specific

properties and finite thickness located at the model boundaries. There are several PML formulations

proposed for finite element methods which allows the treatment of surface waves as well as body waves
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 108.4. SYNTHETIC VISCOUS DAMPING FOR . . . page: 541 of 3287

(Festa and Nielsen (2003); Basu (2009)).

Bilbao et al. (2006) proposed two energy-based methods to model damping in structures with added

viscoelastic dampers. these methods approximate the effects of the added viscoelastic dampers with a

damping matrix in the form of Caughey damping matrix.

The method to be used here is so called Caughey Absorbing Layer Method. The 2nd order of this

method is also known as a Rayleigh damping. Caughey damping is a classical method in which the

damping matrix is built based on the mass and stiffness matrices. Since the stiffness and mass matrices

of have to be created for solving the system of equations, they are used for creating the damping matrix

as well.

Considering the relationship between internal friction and frequency for damping, it is possible to

build a model involving the same attenuation/frequency dependence for Caughey damping (Semblat

(1997)). The relation of the inverse of the quality factor Q–1 and the damping ratio ξ can be written as:

Q–1 ≈ 2ξ (108.15)

Caughey damping formulation in general can be expressed as

C = [M]
m–1∑
j=0

aj([M]–1[K])j (108.16)

where the order to be used depends on number of modes to be considered for damping in the problem.

The way it is implemented in ESSI Simulator gives the opportunity to the user to use different types

of damping for different elements. There might not be a need to use damping for all the elements of

the model. In this case, damping could be used for particular elements and leave the rest of them with

no physical Caughey damping. It can also be used for damping out the residual waves coming out of

the domain reduction boundary layer.

108.4.2 Caughey Damping 2nd Order, aka Rayleigh Damping

The second order Caughey damping, is also known as a Rayleigh damping, with j = 1 in Equation

(108.16). From dynamic parameters and formulation of the system following equations can be observed:

ξn =
Cn

2Mnωn
(108.17)

Kn = ω2
nMn (108.18)
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Considering the first two terms in Caughey damping formulation, if the damping matrix formulation

is written separately for each term:

C = a0M (108.19)

Based on Equation (108.17), a0 can be written as:

a0 = 2ξω (108.20)

Writing the damping matrix based on the second coefficient:

C = a1K = a1ω
2M (108.21)

Then a1 can be obtained as:

a1 =
2ξ
ω

(108.22)

So the damping ratio of the nth mode of the system is:

ξn =
a0
2

1
ωn

+
a1
2
ωn (108.23)

Presenting Equation (108.23) for first two modes in matrix form leads to:

1
2

 1
ωi

ωi
1
ωj

ωj

a0

a1

 =

ξi
ξj

 (108.24)

The following procedure given by Hall (2006) is useful to conveniently determine Rayleigh damping

coefficients a0 and a1. Select a desired amount of damping ξ and a frequency range from ω̂ to Rω̂,

where R > 1. Compute ∆ from:

∆ = ξ
1 + R – 2

√
R

1 + R + 2
√

R
(108.25)
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where ∆ determines bounds on the damping ratios that are imparted to those modes within the specified

frequency range. Any such mode will have a damping ratio bounded by ξmax = ξ + ∆ and ξmin = ξ – ∆.

If these bounds are satisfactorily narrow, the constants a0 and a1 are then calculated from:

a0 = 2ξω̂
2R

1 + R + 2
√

R
(108.26)

a1 = 2ξ
1
ω̂

2
1 + R + 2

√
R

(108.27)

and can be used to compute an actual damping value ξn for mode n from Equation (108.23).

Figure 108.1: Actual damping ratio ξn of mode n as a function of frequency ωn of mode n when using

Rayleigh damping (Hall (2006)).

Figure (108.1) shows that ξn = ξmax if ωn = ω̂ or ωn = Rω̂, and that ξn = ξmin if ωn =
√

Rω̂. If ωn

is outside the range ω̂ to Rω̂, then ξn > ξmax. Above Rω̂, ξn increases with ωn, approaching a linear

relation as the last term in Equation (108.23) dominates.

Note: It’s worth pointing out that damping could be unrealistically high for motions outside the

prescribed frequency range, if the frequency range is not well-chosen.

108.4.3 Caughey Damping 3rd Order

Following the same logic as the 2nd order, the last coefficient of the 3rd order Caughey damping formu-

lation can be written as following:
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C = a2KM–1K = a2ω
4M (108.28)

So a2 can be obtained as:

a2 =
2ξ
ω3 (108.29)

Considering the last coefficient in the formulation, the damping ratio of the system can now be shown

as:

ξn =
a0
2

1
ωn

+
a1
2
ωn +

a2
2
ω3

n (108.30)

By solving the following set of equations, 3rd order Caughey damping coefficients can be found:

1
2


1
ωi

ωi ω3
i

1
ωj

ωj ω3
j

1
ωk

ωk ω3
k




a0

a1

a2

 =


ξi

ξj

ξk

 (108.31)

108.4.4 Caughey Damping 4th Order

The 4th coefficient of the Caughey damping formulation cab obtained as:

C = a3KM–1KM–1K = a3ω
6M (108.32)

a3 =
2ξ
ω5 (108.33)

ξn =
a0
2

1
ωn

+
a1
2
ωn +

a2
2
ω3

n +
a3
2
ω5

n (108.34)

So the damping coefficients can be obtained by solving the following set of equations:
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1
2


1
ωi

ωi ω3
i ω5

i
1
ωj

ωj ω3
j ω5

j
1
ωk

ωk ω3
k ω5

k
1
ωl

ωl ω3
l ω5

l




a0

a1

a2

a3

 =


ξi

ξj

ξk

ξl

 (108.35)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 109.1. CHAPTER SUMMARY AND HIGHLIGHTS page: 547 of 3287

109.1 Chapter Summary and Highlights

109.2 Seismic Energy Propagation and Dissipation

Jeremić (2010)

109.2.1 Seismic energy input into SSI system

Earthquakes release large amounts energy at the source1 Part of released energy is radiated as mechanical

waves (≈ 1.6× 10–5) and part of that energy makes it to the surface where SSI system is located.

Mechanical seismic wave energy enters the SSI system through a closed surface Γ that encompasses

(significant) soil volume as well as foundation system and the structure (see Figure 109.7). Kinetic

energy flux through closed surface Γ includes both incoming and outgoing waves and can be calculated

using Domain Reduction Method (Bielak et al., 2003a) as:

Eflux =[
0; –MΩ+

be ü0
e – KΩ+

be u0
e ; MΩ+

eb ü0
b + KΩ+

eb u0
b

]
i
× ui

where MΩ+
be , MΩ+

eb , KΩ+
be , KΩ+

eb are mass and stiffness matrices, respectively for a single layer of elements

just outside of the boundary Γ, while ü0
e and u0

e are accelerations and displacements from a free field

model for nodes belonging to that layer of elements. Alternatively, energy flux can be calculated using

((Aki and Richards, 2002), page 122):

Eflux = ρAc
∫ t

0
u̇2

i dt

Outgoing kinetic energy can be obtained from outgoing wave field wi, (from DRM, Bielak et al. (2003a)),

while the difference then represents the incoming kinetic energy that needs to be dissipated with SSI

region.

109.2.2 Seismic Energy Dissipation in SSI System

Seismic energy that enters the SSI system will be dissipated in a number of ways. Part of the energy

that enters SSI system is reflected and radiated back into domain outside Γ by

• wave reflection from impedance boundaries (free surface, soil/rock layers, foundations, etc.).

• SSI system oscillates and emits, radiates waves back into the domain

1for example, some of the recent large earthquake energy releases are listed: Northridge, 1994, MRichter = 6.7, Er =

6.8 × 1016J; Loma Prieta, 1989, MRichter = 6.9, Er = 1.1 × 1017J; Sumatra-Andaman, 2004, MRichter = 9.3, Er = 4.8 × 1020J;

Valdivia, Chile, 1960, MRichter = 9.5, Er = 7.5 × 1020J;
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The rest of seismic energy is dissipated through one of the following mechanisms within SSI system:

• Inelastic, elasto-plastic behavior of soil and rock

• Inelastic, elasto-plastic, damage behavior of the foundation system

• Inelastic, elasto-plastic, damage behavior of the structure

• Viscous coupling of porous solid with pore fluid (air, water)

• Viscous coupling of structure with surrounding, internal and external fluids (air, water)

It is also important to note that in numerical simulations, part of the energy can be dissipated or

produced by purely numerical means. That is, numerical energy dissipation (damping) or production

(negative damping) has to be carefully controlled (Argyris and Mlejnek, 1991), (Hughes, 1987).

109.2.2.1 Energy Dissipation by Plasticity

Elastic-plastic deformation of soil, foundation and structure is probably responsible for major part of the

energy dissipation for large earthquakes. This, displacement proportional dissipation is a result of plastic

dissipation and is present in all three components of the system (soil, foundation and the structure).

A note about plastic dissipation is important at this point. There is a misconception about plastic

energy dissipation that is being widely used. Here are some details:

• Origins of the Misconception: The paper by Uang and Bertero (1990) has been considered the

definitive work in using energy as a measure of structural demand by many researchers (Léger

and Dussault, 1992; Cosenza et al., 1993; Kalkan and Kunnath, 2007, 2008; Symans et al., 2008;

Chopra, 2000; Gajan and Saravanathiiban, 2011; Moustafa, 2011; Moustafa and Mahmoud, 2014;

Mezgebo and Lui, 2017; Deniz et al., 2017). An energy analysis methodology based on absolute

input energy (or energy demand) was presented and discussed. Numerical analysis results were

compared with experiments on a multi-story building. In this paper, hysteretic energy is calculated

indirectly by taking the difference of absorbed energy and elastic strain energy. The term absorbed

energy of each time step was simply defined as force times incremental displacement. It was

stated that hysteretic energy is irrecoverable, which indicates that this parameter was considered

the same as hysteretic dissipation or plastic dissipation. An equation for energy balance is given:

Ei = Ek + Eξ + Ea = Ek + Eξ + Es + Eh (109.1)

where Ei is the (absolute) input energy, Ek is the (absolute) kinetic energy, Eξ is the viscous

damping energy, Ea is the absorbed energy, which is composed of elastic strain energy Es and

hysteretic energy Eh.
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The problem of this theory is the absence of plastic free energy, which is necessary to correctly

evaluate energy dissipation of elastic-plastic materials and to uphold the second law of thermo-

dynamics. There was no direct plot of plastic dissipation (hysteretic energy) in this paper, since

it was not defined directly. There were plots of other energy components and plastic dissipation

can be easily calculated or deducted from these plots. After doing this, indications of negative

incremental energy dissipation, which violates the basic principles of thermodynamics, were found

in various sections of the paper.

This misconception could be clarified by renaming hysteretic energy to plastic work, which is the

combination of plastic dissipation and plastic free energy. Both plastic work and plastic free energy

can be incrementally negative, but plastic dissipation (defined as the difference of plastic work and

plastic free energy) must be incrementally non-negative during any time period. Unfortunately,

this misconception has been inherited (if not magnified) by almost all following studies on energy

analysis of earthquake soils and structures.

Besides, another issue regarding energy dissipation is found in in this paper. Viscous damping

energy (or viscous damping energy) was calculated directly using damping coefficient and velocity.

The author stated that this term should always be non-negative. But it was ignored that the

incremental viscous energy dissipation should also be non-negative. In fact, the equation used

to compute viscous energy dissipation should be able to ensure that it remains non-negative

incrementally. However, it appeared in one of the plots that (accumulated) viscous damping

energy was clearly dropping during certain time periods, which was in contradiction with the

equation derived in the same paper. Such result was also a violation of thermodynamics.

• Misconception in Other Studies: Although input energy was the key parameter used in Uang and

Bertero (1990), the misconception of energy dissipation has been carried on in a vast number of

studies on energy analysis of ESSI systems.

Léger and Dussault (1992) used Equation 109.1 from Uang and Bertero (1990) to perform energy

response analysis of multi-story buildings under earthquake loading. It was stated that the total

input energy at the end of ground motion is approximately equal to the total dissipated energy.

This statement is only valid if plastic free energy remains constant, which is generally not true in

elastic-plastic materials.

Kalkan and Kunnath (2007) calculated energy dissipation of a single-degree-of-freedom (SDOF)

oscillator under earthquake loading. Inelastic material was used so plastic energy dissipation ap-

peared in the results. Negative incremental hysteretic energy (plastic dissipation) was observed in

the plots, which is a clear violation of thermodynamics. The change of plastic free energy was not
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considered in this study. Several papers by the same authors performed energy analysis on various

structures using the same theory, and similar misconceptions can be noticed in these publications.

Symans et al. (2008) summarized current practice and recent developments in the application of

passive energy dissipation systems for seismic protection of structures. There was no consideration

of plastic free energy in the energy balance equation, which was very close to the ones present

by Uang and Bertero (1990) and Léger and Dussault (1992). It was stated that the cumulative

hysteretic energy is equal to the energy demand (absolute input energy) at the end of earthquake.

Although no direct violation of thermodynamics was observed, such statement clearly indicated

the same misconception of plastic work and plastic dissipation appeared in other publications.

Gajan and Saravanathiiban (2011) performed both numerical simulations and centrifuge experi-

ments on a rocking foundation system. Energy dissipation in foundation soil and structural ele-

ments were calculated. It can be observed that hysteretic energy dissipation in both the soil and

the structure was decreasing during certain time periods, which is a direct violation of thermo-

dynamics. Again, this was a misconception of plastic work and plastic energy dissipation. The

change in plastic free energy of the system was significant in this case, since large drops of plastic

work were noticed in the plots.

Chopra (2000) used similar set of equations in section 7.9, and equation 7.9.6 is clearly wrong!

A number of recent studies Moustafa (2011); Moustafa and Mahmoud (2014); Mezgebo and Lui

(2017); Deniz et al. (2017) performed energy analysis on ESSI systems without considering plastic

free energy. Misleading results were obtained using the wrong energy balance equation. This

means that the misconception of plastic work and plastic energy dissipation is still not realized

by many researchers. Note that the influence of this mistake could be negligible or significant,

depending on the case analyzed. Nevertheless, plastic free energy should not be ignored without

plausible reasoning or experimental evidences.

• Early Studies on Plastic Free Energy (Cold Work): This issue has been pointed out and studied

extensively by researchers from mechanical engineering and material science. In the early 20th

century, Taylor and his colleagues Farren and Taylor (1925), Taylor and Quinney (1934) performed

experiments on metals and proved that a large part, but not all, of the input mechanical energy

is converted into heat. The remaining part of the non-recoverable plastic work is known as the

stored energy of cold work. The ratio of plastic work converted into heating (Quinney–Taylor

coefficient), usually denoted as β, has been used in almost all later papers on this topic. Based on

large amount of experimental data, this ratio was assumed to be a constant between 0.6 to 1.0

in many studies (e.g. Clifton et al. (1984), Belytschko et al. (1991), Zhou et al. (1996), Dolinski

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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et al. (2010), Ren and Li (2010), Osovski et al. (2013)). It has been realized that this assumption

is not valid in all cases, but it’s simply too complicated to involve the evolution of Quinney–Taylor

coefficient in thermomechanical constitutive models.

Decades later, Mason et al. (1994) showed that the fraction of plastic work converted into heat

is both strain and strain rate dependent. Infrared imaging was used in this study (and almost all

future studies) to obtain temperature distribution in the material, because it is the only effective

approach to directly measure energy dissipation (heat). In the recent 20 years, there has been

many developments on this issue. Rittel (Rittel, 2000; Rittel and Rabin, 2000; Rittel et al., 2003)

published several insightful papers on the energy dissipation (heat generation) of polymers during

cyclic loading, presenting both experimental and theoretical works. Rosakis et al. (2000) presented

a constitutive model based on thermoplasticity to model the evolution of in metal. This model is

capable of calculating the evolution of energy dissipation and material properties, and is validated

by sets of experiments. There are some follow-up papers by Rosakis and his colleagues (Hodowany

et al., 2000; Ravichandran et al., 2002) on the same issue with some assumptions to simply the

problem. One widely used assumption is the adiabatic condition, since air conducts heat much

slower than metal. This assumption is reasonable in rapid monotonic or cyclic loading (impact,

vibration, earthquake). One application of this theory in geotechnical engineering is presented

in papers of (Veveakis et al., 2007, 2012), in which thermoporomechanics is used to model the

heating and pore pressure increase in large landslides, like the 1963 Vajont slide in Italy.

In the field of civil engineering, the basic principles of thermodynamics are frequently used to

derive new constitutive models Dafalias and Popov (1975); Ziegler and Wehrli (1987); Collins

and Houlsby (1997); Houlsby and Puzrin (2000); Collins (2002); Collins and Kelly (2002); Collins

(2003); Feigenbaum and Dafalias (2007). to enforce the second law of thermodynamics for devel-

oped constitutive models. Note that plastic free energy is the same concept as cold work. The

former term is more popular in solid physics and geotechnical engineering, while the latter is used

in mechanical engineering. energy dissipation due to plasticity and plastic work, which is often a

source of a confusion. through a conceptual example that is analyzed on particle scale. develop-

ment of plastic free energy is caused by particle rearrangement in granular assembly under external

loading.

Ideally, majority of the incoming energy would be dissipated in soil, before reaching foundation and

structures. The possibility to direct energy dissipation to soil can be used in design by recognizing energy

dissipation capacity for different soils. For example, simple elastic-plastic models of stiff and soft clay as

well as dense and loose send predict different energy dissipation capacities, as shown in Figure 109.1, for
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single loading-unloading-reloading cycle. While Figure 109.1 shows that stiff clay and dense sand have

Figure 109.1: Energy dissipation capacity for one cycle at various strains for four generic soils.

much higher dissipation capacity, it is important to note that soft/loose soils can undergo much larger

deformation/strain, thus offering increased energy dissipation capacity through flexibility.

109.2.2.2 Energy Dissipation by Viscous Coupling

Viscous coupling of pore fluid (air, water...) and soil particles and/or foundation or structural components

is responsible for velocity proportional energy dissipation. In particular, viscous coupling of porous solid

and fluid results in Evc = n2k–1(U̇i – u̇i)2 energy loss per unit volume. It is noted that this type of

dissipation is realistically modeled using u – p – U formulation (Jeremić et al., 2008).

109.2.2.3 Numerical Energy Dissipation and Production

As noted above, numerical integration of nonlinear equations of motions affects calculated energy in var-

ious ways. Most common effect for nonlinear (elastic-plastic) systems is the positive (energy dissipation)

and negative (energy production) damping. For example Newmark (N) (Newmark, 1959) and Hilber–

Hughes–Taylor (HHT) (Hilber et al., 1977) are energy preserving for linear elastic system with proper

choice of constants (α = 0.0;β = 0.25, γ = 0.5). Both methods can also be used to dissipate higher fre-

quency modes for linear elastic models by changing constants so that for N: γ ≥ 0.5, β = 0.25(γ+0.5)2,

while for HHT: –0.33̇ ≤ α ≤ 0, γ = 0.5(1 – 2α), β = 0.25(1 – α)2. However, for nonlinear problems it

is impossible to maintain energy of the system throughout computations (Argyris and Mlejnek, 1991).

109.2.2.4 Energy Dissipation by Nonlinearities in Soil/Rock

Elasto-plasticity of solid skeleton

Viscous (coupling) effects
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109.2.2.5 Energy Dissipation by Nonlinearities in Soil/Rock – Foundation Interface Zone

Gap, Slip

Dry

Saturated

109.2.2.6 Energy Dissipation by Nonlinearities in Seismic Isolators

109.2.2.7 Energy Dissipation by Nonlinearities in Structures, Systems and Components

109.2.2.8 Numerical Energy Dissipation and Production

109.2.3 Seismic Motions: Empirical Models
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109.2.4 1D/1C Wave Propagation Modeling

The theory of wave propagation is associated with vertical propagation of shear and/or comporessional

waves through the linear viscoelastic system is described in this section. Developments shown here follow

standard approach, as found by, for example, Kramer (1996a). Shown in Figure 109.2 is a 1C wave

propagation setup. The model consists of N horizontal layers, that extend to infinity in the horizontal

direction. At the bottom of layers is bedrock that represents a halfspace. Each layer is homogeneous

and isotropic and is characterized by the thickness h, mass density ρ, shear wave velocity Vs2, and

compressional wave velocity Vp3 and damping factor, β.

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

Vs1, Vp1, ρ1, β1

Vs2, Vp2, ρ2, β2

Vsm, Vpm, ρm, βm

layer #1

layer #2

layer #m

bedrock

. . .

. . .

surface

Figure 109.2: Problem Description: Wave Propagation

Vertical propagation of shear or compressional waves will cause only horizontal of vertical displace-

ments respectively.

u = u(z, t) (109.2)

Focusing on vertical propagation of shear waves, and with a presence of displacements in x direction

only, a wave equation, that describes wave propagation in vertical, z directions can be written as

ρ
∂2u
∂t2

= G
∂2u
∂z2 + η

∂3u
∂z2∂t

(109.3)

2Shear Wave velocity is used to obtain shear shear modulus G, Vs =
√

G/ρ, G = V2
s ρ, G = E/(2(1+ν)), E = (9KG)/(3K +g),

E = (G(3M – 4G))/(M – G)).
3Compressional wave velocity is lused to obtain constrained modulus M Vp =

√
M/ρ, M = V2

p ρ, M = K + 4G/3, M =

E(1 – ν)/((1 + ν)(1 – 2ν))).
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Harmonic oscillation, displacements with frequency ω, can be written in the as:

u(z, t) = U(z) · eiωt (109.4)

Substituting Eq (109.4) into Eq (109.3) one obtains

(G + iωη)
∂2u
∂z2 = ρω2U (109.5)

which has the general solution:

U(z) = Eeikz + Fe–ikz (109.6)

in which

k2 =
ρω2

G + iωη
=
ρω2

G∗ (109.7)

where k is the complex wave number and G∗ is the complex shear modulus. The critical damping ratio,

β, is related to the viscosity η by

ωη = 2Gβ (109.8)

For convenience, one can use use soil damping ratio β to represent the complex shear modulus.

G∗ = G + iωη = G(1 + 2iβ) (109.9)

By combine Eq. (109.4) and Eq. (109.6) one obtains the wave equation for a harmonic motion of

frequency ω.

u(z, t) = Eei(kz+ωt) + Fe–i(kz–ωt) (109.10)

where the first term represents the incident wave traveling in the upward, in positive z direction and the

second term represents the reflected wave traveling in the negative, downward z–direction.

This equation is valid for each of the soil and rock layers.

Introducing a local coordinate system Z for each layer, the displacements at the top and bottom of

layer m are :

um(z = 0) = (Em + Fm)eiωt (109.11)

um(z = hm) = (Em · eikmhm + Fme–ikmhm) · eiωt (109.12)
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The shear stress on a horizontal plane is

τ (z, t) = G · ∂u
∂z

+ η
∂u
∂z∂t

= G∗∂u
∂z

(109.13)

In another form,

τ (z, t) = ikG∗(Eeikz – Fe–ikz)eiωt (109.14)

and the shear stress at the top and bottom of layer m are respectively:

τm(z = 0) = ikmG∗
m(Em – Fm)eiωt (109.15)

τm(z = hm) = ikmG∗
m(Eeikmhm – Fe–ikmhm)eiωt (109.16)

Stresses and displacements must be continuous at all interfaces. Hence, by Eq (109.11), (109.12),

(109.15) and (109.16), the coefficients are

Em+1 + Fm+1 = Emeikmhm + Fme–ikmhm (109.17)

Em+1 – Fm+1 =
kmG∗

m
km+1G∗

m+1
(Emeikmhm – Fme–ikmhm) (109.18)

Subtraction and addition Eqs. 15 and 16 yield the following recursion formulas for the amplitudes, Em+1

and Fm+1, of the incident and reflected wave in layer m+1, expressed in terms of the amplitudes in layer

m:

Em+1 =
1
2

Em(1 + αm)eikmhm +
1
2

Fm(1 – αm)e–ikmhm (109.19)

Fm+1 =
1
2

Em(1 – αm)eikmhm +
1
2

Fm(1 + αm)e–ikmhm (109.20)

where αm is the complex impedance ratio

αm =
kmG∗

m
km+1G∗

m+1
= (

ρmG∗
m

ρm+1G∗
m+1

)1/2 (109.21)

At the free surface, the shear stresses must be zero. In addition, according to Eq. (109.15), it obtains

E1 = F1. Namely, the amplitudes of the incident and reflected waves are always equal at the free surface.

Beginning with the surface layer, repeated use of Eq (109.19) and Eq (109.20) to build the wave field:

Em = em(ω)E1 (109.22)
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Fm = fm(ω)E1 (109.23)

The transfer function em and fm are simply the amplitudes for the case E1 = F1 = 1, and can be

determined by substituting this condition into the above recursion formulas. Other transfer functions are

easily obtained from the e m and f m functions. The transfer function A n,m between the displacements

at level n and m is defined by:

An,m(ω) =
um
un

(109.24)

and can be represented by

An,m(ω) =
em(ω) + fm(ω)
en(ω) + fn(ω)

(109.25)

Based on these equations, the transfer function A(w) can be found between any two layers in the

system. Hence, if the motion is known in any one layer in the system, the motion can be computed in

any other layer.

In summary, after the E and F are computed for all layers in the system, the accelerations are

expressed by the equaction:

ü(z, t) =
∂2u
∂t2

= –ω2(Eei(kz+ωt)+Fe–i(kz–ωt)
) (109.26)

109.2.5 Seismic Motions: 3D/3C Analytic Wave Propagation Modeling

Thomson (1950); Haskell (1953)

This is based in part on Wang et al. (2020a).

Considered is the inclined wave propagation in the layered ground as shown in Fig. 109.3. There

are n layers with layer thickness dm, density ρm, compressional velocity αm and shear wave velocity βm

(m = 1, 2, .., n). Since the incidence of out-of-plane SH wave is simpler (no mode conversion), here we

focus on the incidence of P and SV wave and account for the mode conversion between them. The

wave potential formulations below are general and also applicable to incident SH wave (Haskell, 1953).

Without loss of generality, incident waves is considered to be monochromatic with angular frequency w

and horizontal phase velocity c. For incident waves with arbitrary time signal and multiple frequencies,

free field motions can be Fourier synthesized from the monochromatic solutions.

According to Helmholtz decomposition theorem (Arfken and Weber, 1999), the displacement of wave

propagation Eq. (109.27) in linear elastic media can be expressed with P wave scalar potential ϕ and

S wave vector potential Ψ as shown in Eq. 109.28, where ϕ is the curl free part corresponding to

volumetric deformation and Ψ is divergence free part corresponding to deviatoric deformation.
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Figure 109.3: 2D layered ground and free field motion

ρü = (λ + 2µ)∇∇ · u – µ∇×∇× u (109.27)

u = ∇ϕ +∇×Ψ (109.28)

Therefore, the unknown variables for mth layer are simplified into incident P wave potential magnitude

ϕ
′
m, reflected P wave potential magnitude ϕ

′′
m, incident SV wave potential magnitude Ψ

′
m and reflected

SV wave potential magnitude Ψ
′′
m.

ϕm = [ϕ
′
meik(x–γαmz) + ϕ

′′
meik(x+γαmz)]e–iwt

Ψm = [Ψ
′
meik(x–γβmz) + Ψ

′′
meik(x+γβmz)]e–iwt

(109.29)

The P and SV wave potential can be expressed as Eq. (109.29), where k is the horizontal wave

number, equals to w/c. And cot–1γαm and cot–1γβm are incident and reflected angles for P and SV

wave, respectively. The harmonic nature of the potential field is characterized by the time factor e–iwt .

It will be understood and omitted hereafter. γαm and γβm can be determined by Snell’s law (equation

??). Note that when αm or βm is greater than c, the incidence from P or SV wave is beyond the critical
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angle. γαm and γβm become complex numbers. The plane wave magnitude exponentially decays along

the depth. To be consistent with the original formulation by Haskell (1953), dilatational wave solutions

∆m and rotational wave solutions ωm are first introduced as Eq. (109.30).

∆ =
∂ux
∂x

+
∂uz
∂z

ω =
1
2

(
∂ux
∂z

–
∂uz
∂x

)
(109.30)

ϕm and Ψm are related to ∆m and ωm as follows:

ϕm = –(
αm
w

)2∆m

Ψm = 2(
βm
w

)2ωm

(109.31)

The displacements (ux, uy) and interfacial stresses (σzz, τzx) can be expressed in wave potential mag-

nitudes ϕ and Ψ.

From Eqs. (109.28)-(109.31), the displacement and stress field of mth layer can be calculated from

the dilatational wave and rotational wave solutions ∆m and ωm as follows:

ux = {–ik(
αm
ω

)2[(∆
′
m + ∆

′′
m)cos(kγαmz) – i(∆

′
m – ∆

′′
m)sin(kγαmz)]

+2ikγβm(
βm
ω

)2[(ω
′
m – ω

′′
m)cos(kγβmz) + i(ω

′′
m + ω

′
m)sin(kγβmz)]}eikx

(109.32)

uz = {ikγαm(
αm
ω

)2[(∆
′
m – ∆

′′
m)cos(kγαmz) – i(∆

′′
m + ∆

′
m)sin(kγαmz)]

+2ik(
βm
ω

)2[(ω
′
m + ω

′′
m)cos(kγβmz) – i(ω

′
m – ω

′
m)sin(kγβmz)]}eikx

(109.33)

σzz = ρm{α2
m(1 – 2

β2
m

c2 )[(∆
′
m + ∆

′′
m)cos(kγαmz) – i(∆

′
m – ∆

′′
m)sin(kγαmz)]

+4
β4

m
c2 γβm[(ω

′
m – ω

′′
m)cos(kγβmz) – i(ω

′
m + ω

′′
m)sin(kγβmz)]}eikx (109.34)

τzx = 2ρmβ
2
m{–γαm(

αm
c

)2[(∆
′
m – ∆

′′
m)cos(kγαmz) – i(∆

′′
m + ∆

′
m)sin(kγαmz)]

+[1 – 2(
βm
c

)2][(ω
′
m + ω

′′
m)cos(kγβmz) – i(ω

′
m – ω

′′
m)sin(kγβmz)]}eikx

(109.35)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 109.2. SEISMIC ENERGY PROPAGATION AND . . . page: 560 of 3287

Define the displacement and stress solution at mth interface as S(m), which is equal to [u̇x(zm =

dm)/c, u̇z(zm = dm)/c,σzz(zm = dm), τzx(zm = dm)]T . Eqs. (109.32) - (??) can be reduced to the following

matrix notations (Haskell, 1953):

S(m–1) = Em[∆
′′
m + ∆

′
m,∆

′′
m – ∆

′
m,ω

′′
m – ω

′
m,ω

′′
m + ω

′
m]T (109.36)

S(m) = Dm[∆
′′
m + ∆

′
m,∆

′′
m – ∆

′
m,ω

′′
m – ω

′
m,ω

′′
m + ω

′
m]T (109.37)

where transformation matrix Em and Dm are given in Appendix (Eqs. ?? and ??). The recurrence

relation between S(m) and S(m–1) then can be established as Eq. 109.38, where Gm = DmE–1
m .

S(m) = DmE–1
m S(m–1) = GmS(m–1) (109.38)

Recursively applying Eq. 109.38 leads to Eq. 109.39. Using the relation between S(m–1) and ∆m, ωm,

Eq. 109.40 bridges the gap between the upper boundary (i.e., response at ground surface S(0)) and lower

boundary (i.e., solutions of wave incident layer ∆n and ωn ), upon which specific boundary conditions

can be imposed.

S(n–1) =
n–1∏
i=1

GiS(0) (109.39)

S(0) = L[∆
′′
n + ∆

′
n,∆

′′
n – ∆

′
n,ω

′′
n – ω

′
n,ω

′′
n + ω

′
n]T

L = (
n–1∏
i=1

Gi)–1En
(109.40)

Following boundary conditions are incorporated: (1) At nth layer, the incident in-plane P and SV

wave potential magnitude ϕ
′
n and Ψ

′
n are given as K1 and K2; (2) At the ground surface (z = 0), the

traction is free (i.e., the third and fourth component of S(0) is 0). Therefore, the reflected dilatational

wave magnitude and rotational wave magnitude can be solved by Eq. 109.41, where ∆
′
n is –K1ω

2/α2
n

and ω
′
n is K2w2/(2β2

n ).∆′′
n

ω
′′
n

 =

L31 + L32 L33 + L34

L41 + L42 L43 + L44

–1 (L32 – L31)∆
′
n + (L33 – L34)ω

′
n

(L42 – L41)∆
′
n + (L43 – L44)ω

′
n


(109.41)
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Finally, recurrence relation Eq. 109.42 can be used to trace back dilatational wave magnitude ∆m

and rotational wave magnitudes ωm for the rest n – 1 layers. Based on these solved dilatational and

rotational magnitudes of each layer, the whole displacement and stress field can be easily computed

following Eqs. (109.32)-(??).


∆

′′
m–1 + ∆

′
m–1

∆
′′
m–1 – ∆

′
m–1

ω
′′
m–1 – ω

′
m–1

ω
′′
m–1 + ω

′
m–1

 = D–1
m–1Em


∆

′′
m + ∆

′
m

∆
′′
m – ∆

′
m

ω
′′
m – ω

′
m

ω
′′
m + ω

′
m

 (109.42)

In addition, viscosity can also be included with slight modification. Considering Kelvin-Voigt vis-

coelastic material (Chiriţă et al., 2008), viscosity can be handled with complex Lame modulus and wave

velocities as shown in Eq. 109.43, where ξ is the damping ratio.

G∗ = G(1 + 2ξi) β∗m ≃ βm(1 + ξi) α∗m ≃ αm(1 + ξi) (109.43)

109.2.6 Seismic Motions: Large Scale Geophysical Models

109.2.6.1 Regional Seismic Motion Modeling using Serpentine Wave Propagation, SW4
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109.2.7 Site Response

Site response is ...

This is part of free field motions section and just uses free field motions for producing site response.

109.2.8 Seismic Motion Incoherence

Seismic motion incoherence (as it is called for frequency domain analysis, for time domain analysis it is

called lack of correlation) is a phenomena that results in spatial variability of ground motions over small

distances. Significant work has been done in researching seismic motion incoherence over the last few

decades. The main sources of lack of spatial correlation, according to Zerva (2009) are due to:

• Attenuation effects,

• Wave passage effects,

• Scattering effects,

• Extended source effects

Figure 109.4 shows an illustration of main sources of lack of correlation.

���
���
���

���
���
���

Attenuation

Wave Front(s)

1 2

Fault

Figure 109.4: Four main sources contributing to the lack of correlation of seismic waves as measured

at two observation points.

1. Attenuation effects are responsible for change in amplitude and phase of seismic motions due to

the distance between observation points and losses (damping, energy dissipation) that seismic

wave experiences along that distance. This is a significant source of lack of correlation for long

structures (bridges), however for NPPSSS it is not of much significance.

2. Wave passage effects contribute to lack of correlation due to difference in recorded wave field at

two location points as the (surface) wave travels, propagates from first to second point.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 109.2. SEISMIC ENERGY PROPAGATION AND . . . page: 563 of 3287

3. Scattering effects are responsible to lack of correlation by creating a scattered wave field. Scat-

tering is due to (unknown or not known enough) subsurface geologic features that contribute to

modification of wave field.

4. Extended source effects contribute to lack of correlation by creating a complex wave source field,

as the fault ruptures, rupture propagates and generate seismic sources along the fault. Seismic

energy is thus emitted from different points (along the rupturing fault) and will have different

travel path and timing as it makes it observation points.

Early studies concluded that the correlation of motions increases as the separation distance between

observation points decreases. In addition to that, correlation increased for decrease in frequency of

observed motions. Moreover, there is a strong probabilistic nature of this phenomena, as significant

uncertainty is present in relation to all four sources of lack of correlation, mentioned above. A number

of excellent references are available on the subject of incoherent (or lacking correlation) seismic motions

Abrahamson et al. (1991); Roblee et al. (1996); Abrahamson (1992a, 2005, 1992b); Zerva and Zervas

(2002); Liao and Zerva (2006); Zerva (2009)

It is very important to note that all current models for modeling incoherent seismic motions make

an ergodic assumption. That is all the models assume that a variability of seismic motions at a single

site – source combination will be the same as variability in the ground motions from a data set that was

collected over different site and source locations Walling (2009). Unfortunately, there does not exist

a large enough data set for east North American seismic seismic events that can be used to develop

incoherence models. Rather, there are models that are used to model possible incoherent behavior for

east North American seismic wave propagations.

109.2.8.1 Lack of Correlation Modeling and Simulation

Incorporation of lack of correlation effects in seismic motions can be done using the following methods:

• along 1D, in one direction, usually one of the horizontal directions, where all the points that are

the same distance (in 1D) from a control point, plane) share a single lack of correlation,

• along 2D, in two directions, usually in a vertical plane or in a horizontal plane, where all the points

in a set of vertical planes or a set of horizontal planes, share same lack of correlation, and

• in full 3C, where every point of interest (in a 3D volume of soil/rock) has it own, specified, lack

of correlation.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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The method used here is using the so called seed motions, motions obtained through DRM in full 3C

(inclined, body and surface waves), that are than enriched with appropriate uncorrelated (incoherent)

components. It is important to note that only translational motions are used to model incoherence

effects, while the rotational motions are not perturbed/made incoherent. This stems from the fact that

currently vast majority of seismic recording stations only record translational motions and that only those

translational motions are used to develop incoherent motions models. Code developed by Abrahamson

(1992b) is used for this purpose.

109.2.9 Lack of Volume Change Data for Soil

Use of G/Gmax and damping curves for describing and calibrating material behavior of soil is missing a

very important (crucial) information about soil/rock volume change during shearing deformation. Volume

change data is very important for soil behavior. It is important to emphasize that soil behavior is very

much a function of volumetric response during shear. During shearing of soil there are two essential

types of soil behavior:

• Dilative (dense) soils will increase volume due to shearing

• Compressive (loose) soils will decrease volume due to shearing

The soil volume response, that is not provided by G/Gmax and damping curves data can significantly

affect affect response due to volume constraints of soil. For example, for one dimensional site response

(1C wave propagation, vertically propagating (SV) shear waves) the soil will try to change its volume

(dilate if it is dense or compress if it is loose). However, such volume change can only happen vertically

(since there is no constraint (foundation for example) on top, while horizontally the soil will be constraint

by other soil. That means that any intended volume change in horizontal direction will be resisted by

change in (increase for dense and decrease for loose soil) horizontal stress. For example for dilative

(dense) soil, additional horizontal stress will contribute to the increase in mean pressure (confinement)

of the soil, thus increasing the stiffness of that soil. It is the opposite for compressive soil where shearing

will result in a reduction of confinement stress. Figure 109.5 shows three responses for no-volume change

(left), compressive (middle) and dilative (right) soil with full volume constraint, resulting in changes in

stiffness for compressive (reduction in stiffness), and dilative (increase in stiffness).

Changes in stiffness of soil during shearing deformation will influence wave propagation and amplifi-

cation of different frequencies. Figure 109.6 shows response of no-volume change soil (as it is/should be

assumed if only G/Gmax and damping curves are available, with no volume change data) and a response

of a dilative soil which stiffens up during shaking due to restricted intent to dilate. It is clear that dilative

soil will show significant amplification of higher frequencies.
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Figure 109.5: Constitutive Cyclic response of soils with constraint volumetric deformation: (left) no

volume change (soil is at the critical state); (middle) compressive response with decrease in stiffness;

(right) dilative response with increase in stiffness.
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Figure 109.6: One dimensional seismic wave propagation through no-volume change and dilative soil.

Please note the (significant) increase in frequency of motions for dilative soil. Left plot is a time history

of motions, while the right plot shows amplitudes at different frequencies.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 109.3. EARTHQUAKE SOIL STRUCTURE INTE . . . page: 566 of 3287

109.3 Earthquake Soil Structure Interaction

Current design practice for structures subject to earthquake loading regards dynamic SSII to be mainly

beneficial to the behavior of structures (Jeremić and Preisig, 2005). Including the flexibility of the

foundation reduces the overall stiffness of a system and therefore reduces peak loads caused by a given

ground motion. Even if this is true in most cases there is the possibility of resonance occurring as a

result of a shift of the natural frequencies of the SSI-system. This can lead to large inertial forces acting

on a structure.

As a result of these large inertial forces caused by the structure oscillating in it’s natural frequency

the structure as well as the soil surrounding the foundation can undergo plastic deformations. This in

turn further modifies the overall stiffness of the SSI-system and makes any prediction on the behavior

very difficult.

Dynamic SSII also becomes important in the design of large infrastructure projects. As authorities

and insurance companies try to introduce the concept of performance based design to the engineering

community more sophisticated models are needed in order to obtain the engineering demand parameters

(EDP’s). A good numerical model of a soil-foundation-structure system can therefore not only prevent

the collapse or damage of a structure but also help to save money by optimizing the design to withstand

an earthquake with a certain return period.

A variety of methods of different levels of complexity are currently being used by engineers. In

the following an overview over the most important ones is presented. A more thorough discussion on

methods and specific aspects of dynamic SSII is available in Wolf (1985) and more recently in Wolf and

Song (2002).

• No SSII

The ground motion is applied directly to the base of the building. Alternatively, instead of applying

the ground motion directly to the base of the structure, effective earthquake forces proportional

to the base acceleration can be applied to the nodes.

This procedure is reasonable only for flexible structures on very stiff soil or rock. In this case

the displacement of the ground doesn’t get modified by the presence of the structure. For stiffer

structures on soil the ground motion has to be applied to the soil. The model has to incorporate

propagation of the motion through the soil, its interaction with the structure and the radiation

away from the structure.

• Direct methods

Direct methods treat the SSI-system as a whole. The numerical model incorporates the spatial
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discretization of the structure and the soil. The analysis of the entire system is carried out in one

step. This method provides most generality as it is capable of incorporating all nonlinear behavior

of the structure, the soil and also the interface between those two (sliding, uplift).

• Substructure methods

Substructure methods refer to the principle of superposition. The SSI-system is generally subdi-

vided into a structure part and a soil part. Both substructures can be analyzed separately and the

total displacement can be obtained by adding the contributions at the nodes on the interface.

This method reduces the size of the problem considerably. As the time needed for an analysis

doesn’t increase linearly with an increasing number of equations the substructure method is much

faster than the direct method. The biggest drawback of the method however is the fact that

linearity is assumed. For nonlinear systems the substructure method cannot be used.

For the direct method different levels of sophistication are possible:

• Foundation stiffness approach

The behavior of the soil is accounted for by simple mechanical elements such as springs, masses

and dash pots. Different configurations of the subsoil can be taken into account by connecting

several springs, masses and dash pots whose parameters have been determined by a curve fitting

procedure Wolf (1994). This approach is very popular among structural engineers as it is relatively

easy to be integrated in a commonly used finite element code.

Other methods use frequency dependent springs and dash pots and therefore require an analysis in

frequency domain. Relatively complex configurations of layered subsoil and embedded foundations

can be modeled with good accuracy by replacing the (elastic) soil with a sequence of conical rods

Wolf and Song (2002) and Wolf and Preisig (2003).

• p-y methods

Attempts have been made to apply the static p-y approach for evaluating lateral loading on pile

foundations to dynamic problems. Mostafa and El Naggar (2002) lists several references and

provides a parametric study of single piles and pile groups in different soil types under simplified

loading cases.

Even if p-y curves are widely used for estimating lateral loading on piles they are rarely used in full

dynamic soil-structure interaction analysis. Current work trying to implement these methods into

finite element codes is likely to make them more popular with the engineering community.
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• Full 3d

Full nonlinear three-dimensional modeling of dynamic soil-foundation-structure interaction can be

regarded as the ’brute force’ approach. Displacements and forces can be obtained not only for the

structure as in the above mentioned methods but also for the soil. In spite of the computational

resources and modeling effort required for an analysis it is the only method that remains valid for

all kinds of problems involving material nonlinearities, contact/interface problems, different loading

cases and complex geometries.

109.4 Earthquake Soil Structure Interaction Modeling Details

109.4.1 Seismic Motions Input into Finite Element Model

A number of methods is used to input seismic motions into finite element model. Most of them are

based on simple intuitive approaches, and as such are not based on rational mechanics. Most of those

currently still widely used methods cannot properly model all three components of body waves as well as

always present surface waves. There exist a method that is based on rational mechanics and can model

both body and surface seismic waves input into finite element models with high accuracy. That method

is called the Domain Reduction Method (DRM) (Bielak et al., 2003a; Yoshimura et al., 2003a)). The

DRM aims to reduce the large computational domain, encompassing fault, rock, soil and the structure,

to a much smaller domain, encompassing only local soil and the structure. The method was developed

with earthquake ground motions in mind, with the main idea to replace the force couples at the fault

with their counterpart acting on a continuous surface surrounding local feature of interest. The local

feature can be any geologic or man made object that constitutes a difference from the simplified large

domain, free field, for which displacements and accelerations are easier to obtain.

The DRM is applicable to a much wider range of problems. It is essentially a variant of global–local

set of methods and as formulated can be used for any problems where the local feature can be bounded

by a continuous surface (that can be closed or not). The local feature in general can represent a soil–

foundation–structure system (bridge, building, dam, tunnel...), or it can be a crack in large domain, or

some other type of inhomogeneity that is fairly small compared to the size of domain where it is found.

In what follow, the DRM is developed in a somewhat different way than it was done in original papers

by Bielak et al. (2003a); Yoshimura et al. (2003a)). The main features of the DRM are then analyzed

and appropriate practical modeling issues addressed.
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109.4.1.1 The Domain Reduction Method (DRM) Development

A large physical domain is to be analyzed for dynamic behavior. The source of disturbance is a known

time history of a force field Pe (t ). That source of loading is far away from a local feature which is

dynamically excited by Pe (t ) Pe (t ) (see Figure 109.7).

Pe(t)

ui

ub

ue

Γ

Large scale domain

Local feature

+
Ω

Ω

Seismic source

Figure 109.7: Large physical domain with the source of load Pe (t ) and the local feature (in this case

a soil-structure system.

The system to be analyzed can be quite large, for example earthquake hypocenter can be many

kilometers away from the local feature of interest. Similarly, the small local feature in a machine part

can be many centimeters away from the source of dynamic loading which influences this local feature.

In this sense the term large domain is relative to the size of the local feature and the distance to the

dynamic forcing source.

It would be beneficial not to analyze the complete system, as we are only interested in the behavior

of the local feature and its immediate surrounding, and can almost neglect the domain outside of some

relatively close boundaries. In order to do this, we need to somehow transfer the loading from the source

to the immediate vicinity of the local feature. For example we can try to reduce the size of the domain

to a much smaller model bounded by surface Γ as shown in Figure 109.7. In doing so we must ensure

that the dynamic forces Pe (t ) are appropriately propagated to the much smaller model boundaries Γ.

DRM Formulation In order to appropriately propagate dynamic forces Pe (t ) one actually has to solve the

large scale problem which will include the effects of the local feature. Most of the time this is impossible

as it involves all the complexities of large scale computations and relatively small local feature. Besides,

the main goal of presented developments is to somehow reduce the large scale domain as to be able to
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analyze in details behavior of the local feature.

In order to propagate consistently the dynamic forces Pe (t ) we will make a simplification in that

we will replace a local feature with a simpler domain that is much easer to be analyzed. That is, we

replace the local feature (bridge, building. tunnel, crack) with a much simpler geometry and material.

For example, Figure 109.8 shows a simplified model, without a foundation–building system.

0ub

ui
0

Pe(t)
0ue

0
Ω

Γ

Simplified large scale domain

Ω
+

Seismic source

Figure 109.8: Simplified large physical domain with the source of load Pe (t ) and without the local

feature (in this case a soil–foundation–building system. Instead of the local feature, the model is simplified

so that it is possible to analyze it and simulate the dynamic response as to consistently propagate the

dynamic forces Pe (t )

The idea is to simplify the model so that it is much easier to consistently propagate the dynamic

forces to the boundary Γ. The notion that it is much easier to propagate those dynamic forces is of course

relative. This is still a very complex problem, but at least the influence of local feature is temporarily

taken out.

It is convenient to name different parts of domain. For example, the domain inside the boundary Γ

is named Ω0. The rest of the large scale domain, outside boundary Γ, is then named Ω+. The outside

domain Ω+ is still the same as in the original model, while the change, simplification, is done on the

domain inside boundary Γ. The displacement fields for exterior, boundary and interior of the boundary

Γ are ue, ub and ui, respectively, on the original domain.

The equations of motions for the complete system can be written as[
M
]{

ü
}

+
[

K
]{

u
}

=
{

Pe

}
(109.44)

or, if written for each domain (interior, boundary and exterior of Γ) separately, the equations obtain the
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following form:
MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb + MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

üe

 +


KΩ

ii KΩ
ib 0

KΩ
bi KΩ

bb + KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

ue

 =


0

0

Pe


(109.45)

In these equations, the matrices M and K are mass and stiffness matrices respectively; the subscripts

i, e, and b are referencing nodes in either the interior (i) or exterior (e) domain or on their common

boundary (b), while the superscripts Ω and Ω+ reference domains to which matrices belong.

The previous equation can be separated provided that we maintain the compatibility of displacements

and equilibrium. The resulting two equations of motion are MΩ
ii MΩ

ib

MΩ
bi MΩ

bb

 üi

üb

 +

 KΩ
ii KΩ

ib

KΩ
bi KΩ

bb

 ui

ub

 =

 0

Pb

 , inΩ (109.46)

and  MΩ+
bb MΩ+

be

MΩ+
eb MΩ+

ee

 üb

üe

 +

 KΩ+
bb KΩ+

be

KΩ+
eb KΩ+

ee

 ub

ue

 =

 –Pb

Pe

 , inΩ+ (109.47)

Compatibility of displacements is maintained automatically since both equations contain boundary dis-

placements ub (on boundary Γ), while the equilibrium is maintained through action–reaction forces Pb.

In order to simplify the problem, the local feature is removed from the interior domain. Thus, the

interior domain is significantly simplified. In other words, the exterior region and the material therein are

identical to those of the original problem as the dynamic force source. On the other hand, the interior

domain (denoted as Ω0), is simplified, the localized features is removed (as seen in figure 109.8).

For this simplified model, the displacement field (interior, boundary and exterior, respectively) and

action–reaction forces are denoted by u0
i , u0

b, u0
e and P0

b. The entire simplified domain Ω0 and Ω+ is now

easier to analyze.

The equations of motion in Ω+ for the auxiliary problem can now be written as: MΩ+
bb MΩ+

be

MΩ+
eb MΩ+

ee

 ü0
b

ü0
e

 +

 KΩ+
bb KΩ+

be

KΩ+
eb KΩ+

ee

 u0
b

u0
e

 =

 –P0
b

Pe

 (109.48)

Since there was no change to the exterior domain Ω+ (material, geometry and the dynamic source are

still the same) the mass and stiffness matrices and the nodal force Pe are the same as in Equations

(109.46) and (109.47).

Previous equation 109.48 can be used to obtain the dynamic force Pe:

Pe = MΩ+
eb ü0

b + MΩ+
ee ü0

e + KΩ+
eb u0

b + KΩ+
ee u0

e (109.49)
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The total displacement, ue, can be expressed as the sum of the free field u0
e (from the background,

simplified model) and the residual field we (coming from the local feature) as following:

ue = u0
e + we (109.50)

It is important to note that this is just a change of variables and not an application of the principle of

superposition. The residual displacement field, we is measured relative to the reference free field u0
e .

By substituting Equation 109.50 in Equation 109.45 one obtains:
MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb + MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ü0
e + ẅe

 +


KΩ

ii KΩ
ib 0

KΩ
bi KΩ

bb + KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

u0
e + we

 =


0

0

Pe


(109.51)

which, after moving the free field motions u0
e to the right hand side, becomes

MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb + MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ẅe

 +


KΩ

ii KΩ
ib 0

KΩ
bi KΩ

bb + KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

we

 =


0

–MΩ+
be ü0

e – KΩ+
be u0

e

–MΩ+
ee ü0

e – KΩ+
ee u0

e + Pe

 (109.52)

By substituting Equation 109.49 in previous Equation 109.52, the right hand side can now be written

as


MΩ

ii MΩ
ib 0

MΩ
bi MΩ

bb + MΩ+
bb MΩ+

be

0 MΩ+
eb MΩ+

ee




üi

üb

ẅe

 +


KΩ

ii KΩ
ib 0

KΩ
bi KΩ

bb + KΩ+
bb KΩ+

be

0 KΩ+
eb KΩ+

ee




ui

ub

we

 =


0

–MΩ+
be ü0

e – KΩ+
be u0

e

MΩ+
eb ü0

b + KΩ+
eb u0

b

 (109.53)

The right hand side of equation 109.53 is a dynamically consistent replacement force, the so called ef-

fective force, Peff for the dynamic source forces Pe. In other words, the dynamic force Pe was consistently
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replaced by the effective force Peff :

Peff =


Peff

i

Peff
b

Peff
e

 =


0

–MΩ+
be ü0

e – KΩ+
be u0

e

MΩ+
eb ü0

b + KΩ+
eb u0

b

 (109.54)

DRM Discussion

Single Layer of Elements used for Peff . The Equation (109.54) shows that the effective nodal forces

Peff involve only the sub-matrices Mbe, Kbe, Meb, Keb. These matrices vanish everywhere except the

single layer of finite elements in domain Ω+ adjacent to Γ. The significance of this is that the only

wave-field (displacements and accelerations) needed to determine effective forces Peff is that obtained

from the simplified (auxiliary) problem at the nodes that lie on and between boundaries Γ and Γe, as

shown in Figure 109.9.

0
ub

ui

0

Pe(t) 0
ue

0
ue Γe

Γ+

Ω
+

Γ

b

b

e

e

ΓΓ e

Local feature

Ω

Figure 109.9: DRM: Single layer of elements between Γ and Γe is used to create Peff , for a section of

8 node brick.

Figure 109.10 show boundary and external nodes for a section of a 27 node brick. Please note that

for a 20, 20-17 and 27 node bricks, boundary nodes are nodes that belong to Γ surface, so for 27 node

brick there are 9 nodes on that face, while the external nodes are all the nodes that are not boundary

nodes, there will be 18 of those nodes.

Only residual waves outgoing. Another interesting observation is that the solution to problem described

in Equation (109.53) comprises full unknowns (displacements and accelerations) inside and on the bound-

ary Γ (ui and ub respectively). On the other hand, the solution for the domain outside single layer of

finite elements (outside Γe ) is obtained for the residual unknown (displacement and accelerations) field,
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0
ub

ui

0

Pe(t)
0

ue

0
ue Γe

Γ+

Ω
+

Γ

b

ΓΓ e

Local feature

Ω

b

b

e e

e

e

e

e

Figure 109.10: DRM: Single layer of elements between Γ and Γe is used to create Peff , for 20, 20-17

and 27 node Brick.

we only. This residual unknown field is measured relative to the reference free field of unknowns (see

comments on page 572). That effectively means that the solution to the equation Equation (109.53)

outside the boundary Γe will only contain additional waves field resulting from the presence of a local

feature. This in turn means that if the interest is in behavior of local feature and the surrounding media

(all within boundary Γ) one can neglect the behavior of the full model (outside Γe in Ω+) and provide

appropriate supports (including fixity and damping) at some distance from the boundary Γe into region

Ω+. This is significant for a number of reasons:

• large models can be reduced in size to encompass just a few layers of elements outside boundary

Γe (significant reduction for, say earthquake problems where the size of a local feature is orders of

magnitudes smaller then the distance to the dynamic source force Pe (earthquake hypocenter).

• the residual unknown field can be monitored and analyzed for information about the dynamic

characteristics of the local feature. Since the residual wave field is we is measured relative to the

reference free field ue
0, the solution for we has all the characteristics of the additional wave field

stemming from the local feature.

Inside domain Ω can be inelastic. In all the derivations in section 109.4.1.1 no restriction was made on

the type of material inside the plastic bowl (inside Γe). That is, the assumption that the material inside

is linear elastic is not necessary as the DRM is not relying on principle of superposition. The Equation

109.50 was only describing the change of variables, and clearly there was no use of the principle of

superposition, which is only valid for linear elastic solids and structures. It is therefore possible to

assume that the derivations will still be valid with any type of material (linear or nonlinear, elastic
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or inelastic) inside Γe. With this in mind, the DRM becomes a very powerful method for analysis of

soil–foundation–structure systems.

All types of realistic seismic waves are modeled. Since the effective forcing Peff consistently replaces

the effects of the seismic source, all appropriate (real) seismic waves are properly (analytically ) modeled,

including body (SV, SH, P) and surface (Rayleigh, Love, etc...) waves.

Properties of finite elements inside the DRM Layer. The DRM layers, a single layer of finite elements

just outside Γ surfaces, where effective DRM forces Peff are applied, needs to be carefully modeled. A

number of conditions regarding the DRM layer need to be taken into account:

• The finite elements within the DRM layer need to be linear elastic.

• Material models for the finite elements within the DRM layer need to have same, or very similar

material properties as the elastic part of material properties as the material inside the DRM layer.

Although material inside the DRM layer can be elastic-plastic, it is beneficial if the linear elastic

portion of material properties, for example for nonlinear elastic material at zero strain or for elastic-

plastic material, elastic properties inside yield surface, for the DRM layer, is same, similar to the

material used inside the DRM layer. All of the used elastic material properties need to be same as

elastic material properties used for free field analysis in order to have consistent wave field.

• Dimensions of the DRM layer finite elements (thickness of the DRM layer) need to follow the same

rule for element size (depending on chosen stiffness) so that there is no artificial (mesh dependent)

filtering above certain frequencies. That means that 10 linear interpolation finite elements (8 node

bricks) or 2 quadratic interpolation elements (27 node bricks) are needed per wave length (Bathe

and Wilson, 1976; Hughes, 1987; Argyris and Mlejnek, 1991). For example if maximum modeling

frequency is fmax = 20 Hz, and wave length is given as λmin = v/fmax, where v is the wave velocity,

maximum grid spacing (element size) for linear interpolation elements ∆hLE should not exceed

∆hLE ≤ λ

10
=

v
10 fmax

=
v

10× 20 Hz
=

v
200 Hz

while for quadratic interpolation elements such grid spacing (element size) ∆hQE is limited to

∆hQE ≤ λ

2
=

v
2 fmax

=
v

2× 20 Hz
=

v
40 Hz

The wave velocity v is the lowest wave velocity that is of interest in the simulation, usually the

shear wave velocity.
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Properties of the finite elements outside of the DRM Layer. Finite elements outside DRM layer need

special considerations as well.

• Material outside the DRM layer needs to be linear elastic with addition of viscous damping,

Caughey, Rayleigh, etc.

• At least one layer of finite elements outside DRM layer needs to be provided. If damping of

outgoing waves, the so called radiation damping, is to be modeled, then more than one layer of

finite elements outside DRM needs to be provided.

• If radiation damping is modeled, it is recommended to have more than just two layers, outside

DRM layer. For example 4 or 5 additional layers work quite well.

• First layer outside DRM layer needs to be linear elastic, of similar/same properties as material

inside DRM layer, and with NO viscous damping. The reason for this requirement, is explained by

the fact that Peff force, see equation 109.54 on page 573, is applied to finite elements within DRM

layer. If finite elements that are outside/adjacent to the DRM layer have large viscous damping,

then Peff forces will be producing potentially significant reaction forces from large viscous damping

that is placed on nodes of elements that are shared with DRM finite element nodes, and nodes of

finite elements just outside DRM layer, and are connected to DRM finite elements. These reaction,

viscous forces, will affects, change Peff forces in a way that will not be consistent with seismic

wave field that was used to develop Peff .

• Viscous damping, Caughey, Rayleigh, should be placed on finite elements outside this first layer

of elements, that is outside, adjacent to DRM layer, in order to damp out outgoing waves, the

differential wave field, the ”we” waves, see equation 109.50 on page 572. Additional viscous

damping layers are added to damp out any additional waves, the so called radiation damping from

structural oscilations. Damping in those additional layers is to be progressively larger, much larger

than physical viscous damping. Values of equivalent damping of 20%, then 30%, then 50%, or

higher have been used in order to damp outgoing waves, to model radiation damping.

A Note on Input Motions for DRM. Seismic motions (free field) that are used for input into a DRM

model need to be consistent. In other words, a free field seismic wave that is used needs to fully satisfy

equations of motion. For example, if free field motions are developed using a tool (SHAKE, or EDT or

SW4, or fk, &c.) using time step ∆t = 0.01s and then you decide that you want to run your analysis

with a time step of ∆t = 0.001s, simple interpolation (10 additional steps for each of the original steps)

might create problems. Simple linear interpolation actually might (will) not satisfy wave propagation
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equations and if used will introduce additional, high frequency motions into the model. It is a very good

idea to generate free field motions with the same time step as it will be used in ESSI simulation.

Similar problem might occur if spacial interpolation is done, that is if location of free field model

nodes is not very close to the actual DRM nodes used in ESSI model. Spatial interpolation problems

are actually a bit less acute, however one still has to pay attention and test the ESSI model for free

conditions and only then add the structure(s) on top.

Input motions for the DRM are based on Free Field motions, that can be developed by a number of

methods, as described in section 502.2.3 on page 2266.

DRM in Action, 1C vs 6C Free Field Motions

• One component of motions, 1C from 6C

• Excellent fit, however wrong physics

Figure 109.11: 6C real and 1C ”horizontal motions fit” seismic motions. (Figure is a link to mp4

animation).

DRM in Action, 6C Free Field Motions, Variation in Input Frequency, Inclinded wave at θ = 60o.
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Figure 109.12: 6C real motions, variation in input frequency, inclined wave at θ = 60o.
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110.1 Chapter Summary and Highlights

110.2 Introduction

110.2.1 High Performance Computing on DMPs, SMPs, GPGPUs, FPGA

110.2.1.1 Distributed Memory Parallel (SMP) Computations

110.2.1.2 Shared Memory Parallel (SMP) Computations

110.2.1.3 General Purpose Graphical Processiong Units (GPGPUs)

110.2.1.4 Fast Programmable Gate Arrays (FPGAs)

110.2.2 Parallel Computing for Elastic-Plastic Solids and Structures

110.2.3 Problem Requirements

Stages, Increments, Iterations

For many classes of scientific simulations, an initial (static) decomposition of a finite element mesh

needs to be computed such that the number of mesh elements assigned to each processor is roughly equal

and the number of mesh elements that are adjacent to elements assigned to other processors (i.e., the

size of the subdomain boundary) is minimized. Ensuring that the number of mesh elements is balanced

will result in a load-balanced computation, while minimizing the size of the subdomain boundary will

minimize the inter-processor communications overhead. Such a decomposition is usually obtained by

a graph partitioning algorithm. Recently, a number of multilevel graph partitioning algorithms (e.g.

Hendrickson and Leland (1995), Karypis and Kumar (1998b,a), Monien et al. (1999), Walshaw and

Cross (1999)) have been developed that are able to compute excellent static decompositions for a wide

range of scientific simulations.

110.2.3.1 Finite Element Computations in Geomechanics

The distinct feature of elasto–plastic finite element computations is the presence of two iteration levels.

In a standard displacement based finite element implementation, constitutive driver at each Gauss point

iterates in stress and internal variable space, computes the updated stress state, constitutive stiffness

tensor and delivers them to the finite element functions. Finite element functions then use the updated

stresses and stiffness tensors to integrate new (internal) nodal forces and element stiffness matrix. Then,

on global level, nonlinear equations are iterated on until equilibrium between internal and external forces

is satisfied within some tolerance. In more details:
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Elastic computations. In the case of elastic computations constitutive driver has a simple task

of computing increment in stresses (∆σij) for a given deformation increment (∆ϵkl), through a

closed form equation (∆σij = Eijkl∆ϵkl) (Jeremić and Sture, 1997). It is important to note that in

this case the amount of work per Gauss point is known in advance. The amount of computational

work is the same for every integration point. If we assume the same number of integration points

per element, it follows that the amount of computational work is the same for each element and

it is known in advance.

Elasto–plastic computations. On the other hand, for elasto–plastic problems, for a given incre-

mental deformation the constitutive driver is iterating in stress and internal variable space until

consistency condition is satisfied (F = 0). The number of iterations is not known in advance.

Initially, all Gauss points are in elastic range, but as we incrementally apply loads, the plastic zones

develop. For Gauss points still in elastic range, there are no iterations, the constitutive driver

just computes incremental stresses from closed form solution. Computational load will increase

significantly for integration of constitutive equations in plastic range. In particular, constitutive

level integration algorithms (Jeremić et al., 1998, 1999; Jeremić and Yang, 2002) for soils are

very computationally demanding. From the experience of the PI, more than 70% of wall clock

time during an elasto–plastic finite element analysis is spent in constitutive level iterations. This

is in sharp contrast with elastic computations where the dominant part is solving the system of

equations which consumes about 80% of run time. The extent of additional, constitutive level

iterations is not known before the actual computations are over. In other words, the extent of

elastic-plastic domain is not known ahead of time.

The traditional preprocessing type of DD method (also known as topological DD) splits domain

based on the initial geometry and assigns roughly the same number of elements to every com-

putational node and minimizes the size of subdomain boundaries. This approach might result in

serious computational load imbalance for elasto–plastic problems. For example one domain might

be assigned all of the elasto–plastic elements and spend large amount of time in constitutive level

iterations. The other domains will have elements in elastic state and thus spend far less computa-

tional time in computing stress increments. This results in program having to wait for the slowest

domain (the one with large number of elasto–plastic finite elements) to complete constitutive level

iterations and only proceed with global system iterations after that.

This illustrates a two–fold challenge with computational load balancing for elastic–plastic simulations

in geomechanics.
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110.2.3.2 Adaptive Computation

First, these computations are dynamic in nature. That is, the structure of elastic and elastic–plastic

domains changes dynamically and unpredictably during the course of the computation. For this reason,

a static decomposition computed as a pre-processing step is not sufficient to ensure the computational

load-balance of the entire computation. Instead, periodic computational load-balancing is required

during the course of the computation. The problem of computing a dynamic decomposition shares

the same requirements as that of computing the initial decomposition (i.e., balance the mesh elements

and minimize the inter-processor communications), while also requiring that the cost associated with

redistributing the data in order to balance the computational load is minimized. This last requirement

prevents us from simply computing a whole new static partitioning from scratch each time computational

load-balancing is required.

Often, the objective of minimizing the data redistribution cost is at odds with the objective of min-

imizing the inter-processor communications. For applications in which the computational requirements

of different regions of the domain change rapidly, or the amount of state associated with each element is

relatively high, minimizing the data redistribution cost is preferred over minimizing the communications

incurred during parallel processing.

For applications in which computational load-balancing occurs very infrequently, the key objective of

a load-balancing algorithm is in obtaining the minimal inter-processor communications. For many appli-

cation domains, it is straightforward to select a primary objective to minimize (i.e., minimize whichever

cost dominates). However, one of the key issues concerning the elastic-plastic computation is that the

number of iterations between computational load-balancing phases is both unpredictable and dynamic.

For example, in the case of static problems, zones in the 3D solid may become plastic and then unload

to elastic (during increments of loading) so that the extent of plastic zone is changing. The change

can be both slow and rapid. Slow change usually occurs during initial loading phases, while the later

deformation tends to localize in narrow zones rapidly and the rest of the solid unloads rapidly (becomes

elastic again). The narrow, localized zone has heavy computational load on the constitutive level (in each

integration point within elements). Similar phenomena is observed in seismic soil–structure interaction

computations where stiff structure interacts with soft soil and elastic and elastic–plastic zones change

significantly during loading cycles. In this type of computation, it is extremely difficult to select the

type of computational load-balancing algorithm to employ. Furthermore, the preferred computational

load-balancing algorithm is liable to change during the course of the computation, and so the selection

must be made dynamically.
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110.2.3.3 Multi-phase Computation

The second challenge associated with computational load-balancing elastic-plastic computations in ge-

omechanics is that these are two-phase computations. That is, plastic computations follow up the

elastic computations. There is a synchronization phase between the computations, as only after the

elastic computation is finished is it possible to check if the plastic computation is required for a given

integration (Gauss) point within an element. For regions of the mesh in which this check indicates that

the plastic computation is necessary, lengthy plastic computations are then performed. The existence

of the synchronization step between the two phases of the computation requires that each phase be

individually load balanced. That is, it is not sufficient to simply sum up the relative times required for

each phase and to compute a decomposition based on this sum. Doing so may lead to some processors

having too much work during the elastic computation (and so, these may still be working after other

processors are idle), and not enough work during the plastic computation, (and so these may be idle

while other processors are still working), and vice versa. Instead, it is critical that every processor have

an equal amount of work from both of the phases of the computation.

110.2.4 Parallel Computing Hardware

110.2.4.1 DMPs and SMPs

Scalability issues for SMPs Cache coherence

Compute Nodes, CPUs, Cores,

GPUs (band-with and latency with the main memeory)

Networks (band-with and latency) 10, 100, 1,000, 10,000, Infiniband,

Large parallel supercomputers

small, user owned parallel machines (clusters of clusters)

ESSI Computer

• 208 (784) CPU cores,

• 288GB (1056GB) of distributed RAM,

• 24TB (48TB) of distributed disk space, and

• dual neetwork, InfiniBand for MPI, and GigaBit for file system

Small ESSI Computer

• 32 CPU cores (AMD), 24 CPU cores (Intel)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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• 64GB RAM,

• 4TB

• on-board network

110.2.5 Parallel Computing Software

110.2.5.1 Amdahl’s Law

n is a number of parallel processes

B is the fraction of algorithm that is serial

Total time to finish (wall clock time) with n parallel processes T (n)

T (n) = T (1)(B +
1
n

(1 – B)) (110.1)

Theoretical speedup

S(n) =
T (1)
T (n)

=
T (1)

T (1)(B + 1
n (1 – B))

=
1

(B + 1
n (1 – B))

(110.2)

110.2.5.2 Static and Dynamic Graph Partitioning

google search, data mining etc.

110.2.5.3 Real parallel and embarrassingly parallel

Finite Element matrices computations (elastic and elastic-plastic)

System of equation solvers (non-iterative and iterative)

Examples for

elastic (elements (Seq) + solver(P))

elastic (elements (P) + solver (Seq))

elastic (elements (P) + solver (P))

elastic-plastic (Seq) + solver (P)

elastic-plastic (P) + solver (Seq)

elastic-plastic (P) + solver (P)
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110.2.5.4 Parallel Computing for Elastic-Plastic FEM

• Current Parallel FEM are

– Well developed for elastic FEM

– Undeveloped for elastic–plastic FEM

– Well developed for homogeneous distributed memory parallel (DMP) computers,

– Undeveloped for multiple performance (multi–generation) DMPs (example MOOSE, ESSI...)

• Need: dynamic computational load balancing for

– multiple element types,

– multiple material models

– multiple compute node performances

– multiple network performance performances

110.2.5.5 Plastic Domain Decomposition

• Multi-objective optimization problem (minimize both the inter-processor communications, the data

redistribution costs and create balanced partitions)

• computational load balancing adds overhead Toverhead := Tcomm + Tregen

– Tcomm data communication load depending on network conditions.

– Tregen model regeneration for new partitioning, application (model) dependent

• Computional load among CPUs Tj :=
∑nel

i=1 ElemCompLoad[i], j = 1, ..., nCPU

• Goal: minimize maximum compute time (slowest CPU) Tmax := max(Tj) j = 1, ..., nCPU

• Total compute time (not wall clock time) Tsum := sum(Tj)

• Best execution time (perfect load balancing) Tbest := Tsum/nCPU, ⇒ Tj ≡ Tbest for each j =

1, ..., nCPU

• Best performance gain Tgain := Tmax – Tbest

• Computational load balancing is beneficial iff Tgain ≥ Toverhead = Tcomm + Tregen

• Scalability (saturation, superlinear ...)
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110.2.5.6 Template Meta-programs

Fine grained parallelism

110.3 Plastic Domain Decomposition Algorithm

110.3.1 Introduction

Domain Decomposition approach is the most popular and effective method to implement parallel finite

element method. The underlying idea is to physically divide the problem domain into subdomains and

finite element calculations will be performed on each individual domain in parallel. Domain Decomposi-

tion can be overlapping or non-overlapping. The overlapping domain decomposition method divides the

problem domain into several slightly overlapping subdomains. Non-overlapping domain decomposition is

extensively used in continuum finite element modeling due to the relative ease to program and organize

computations and is the one that will be examined in this chapter.

In general, a good non-overlapping decomposition algorithm should be able to

• handle irregular mesh of arbitrarily shaped domain.

• minimize the interface problem size by delivering minimum boundary connectivity, which will help

reducing the communication overheads.

The well-known idea of domain decomposition method can be found in a 1870 paper by the father

of domain decomposition, H.A. Schwarz (Rixena and Magoulès, 2007). Domain decomposition method

is also the underlying paradigm of substructuring methods developed in the sixties, which aim at reduc-

ing the dimension of models in structural analysis by applying static condensation-type techniques to

subdomains.

Other than static condensation, Farhat and Roux (1991a); Farhat (1991); Farhat and Geradin (1992)

proposed FETI (Finite Element Tearing and Interconnecting) method for domain decomposition analysis.

In FETI method, Lagrange multipliers are introduced to enforce compatibility at the interface nodes.

Rigid body modes are eliminated in parallel from each local problem and a direct scheme is applied

concurrently to all subdomains in order to recover each partial local solution. The contributions of

these modes are then related to the Lagrange multipliers through an orthogonality condition. This FETI

method has been shown that it can deliver high efficiency for parallel implicit transient simulations in

structural mechanics (Crivelli and Farhat, 1993).

Domain decomposition itself has become a active topic as parallel processing techniques receive

much more attention in mathematics and engineering world during recent years. Domain decomposition
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was revived as a natural paradigm for parallel solvers (Rixena and Magoulès, 2007). Many papers have

discussed two algorithms that are currently receiving much research effort, namely the FETI-DP (or

Dual Primal Finite Element Tearing and Interconnecting) method and the even more recent BDDC (or

Balancing Domain Decomposition by Constraints).

FETI-DP is the third generation FETI method (Bavestrello et al., 2007) developed for the fast,

scalable, and domain-decomposition-based iterative solution of symmetric systems of equations arising

from the finite element (FE) discretization of static, dynamic, structural and acoustic problems (Farhat

et al., 2001, 2000).

BDDC, on the other hand, derives its formulation from substructuring method by enforcing con-

straints associated with disjoint sets of nodes on substructure boundaries using constrained energy min-

imization concepts (Dohrmann, 2003; Mandel and Dohrmann, 2003).

An early endeavor on dynamic computational load balancing was presented by McKenna (1997).

Limited number of examples show that run time, dynamic computational load balancing can indeed

improve parallel program performance in some cases, particularly when nonlinearities are involved.

Although many works have been presented on domain decomposition methods, the most popular

methods such as FETI-type and BDDC all stem from the root of subdomain interface constraints han-

dling. The merging of iterative solving with domain decomposition-type preconditioning is promising as

shown by many researchers (Pavarino, 2007; Li and Widlund, 2007). Schwartz-type preconditioners for

parallel domain decomposition system solving have also shared part of the spotlight (Hwang and Cai,

2007; Sarkis and Szyld, 2007).

In solid finite element methods, it has been assumed that the equation solving is the most computa-

tional expensive part so it is totally reasonable that all focus has been set on equation solver during the

past decades.

Work presented in this chapter, however, has originated from the observation that for highly nonlinear

materials, the constitutive level computation can be at least equally costly as equation solving, if not more

expensive. The novelty of this chapter is to break out of the existing substructuring or FETI frameworks

to further address the fundamental load balance issue of parallel computing. Namely, in order to achieve

better parallel performance, we want to keep all processors equally busy. Load imbalance issue resulted

from nonlinear constitutive level computations is too important to be neglected. This chapter proposes

the Plastic Domain Decomposition algorithm which focuses on adaptive load balancing operation for

nonlinear finite elements.

From the implementation point of view, for mesh-based scientific computations, domain decomposi-

tion corresponds to the problem of mapping a mesh onto a set of processors, which is well defined as a

graph partitioning problem (Schloegel et al., 1999).
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Formally, the graph partitioning problem is as follows. Given a weighted, undirected graph G = (V ; E)

for which each vertex and edge has an associated weight, the k-way graph partitioning problem is to

split the vertices of V into k disjoint subsets (or subdomains) such that each subdomain has roughly an

equal amount of vertex weight (referred to as the balance constraint), while minimizing the sum of the

weights of the edges whose incident vertices belong to different subdomains (i. e., the edge-cut).

In computational solid mechanics, the element graph is naturally used in parallel finite element

method due to the fact that elemental operation forms the basis of finite element method. On the other

hand, for material nonlinearity simulations, the element calculations represent the most computationally

expensive part. In order to facilitate consistent interfaces for computational load measuring and data

migration, element graph has been utilized as fundamental graph structure in this chapter, although

it has been shown that the node-graph can be used as well for structure dynamics problem and the

element-cut partitioning can make certain algorithms simpler (Krysl and Bittnar, 2001).

The graph partitioning problem is known to be NP-complete 1. Therefore, generally it is not possible

to compute optimal partitioning for graphs of interesting size in a reasonable amount of time. Various

heuristic approaches have been developed, which can be classified as either geometric, combinatorial,

spectral, combinatorial optimization techniques, or multilevel methods (Dongarra et al., 2003).

In finite element simulations involving nonlinear material response, static graph partitioning men-

tioned above does not guarantee even load distribution among processors. Plastification introduces work

load that is much heavier than pure elastic computation. So for this kind of multiphase simulation, adap-

tive computational load balancing scheme has to be considered to keep all processing units equally busy

as much as possible. Traditional static graph partitioning algorithm is not adequate to do multiphase

partition/repartitioning. A parallel multilevel graph partitioner has been introduced in this research to

achieve dynamic load balancing for inelastic finite element simulations.

In this chapter, the algorithm of Plastic Domain Decomposition (PDD) is proposed. The adap-

tive multi-level graph partitioning kernel of the PDD algorithm is implemented through the ParMETIS

interface. Studies are performed to extract optimal algorithmic parameters for our specific applications.

110.3.2 Inelastic Parallel Finite Element

The distinct feature of inelastic (elastic-plastic) finite element computations is the presence of two

iteration levels. In a standard displacement based finite element implementation, constitutive driver

1The complexity class NP is the set of decision problems that can be solved by a non-deterministic Turing machine in

polynomial time. the NP-complete problems are the most difficult problems in NP (”non-deterministic polynomial time”)

in the sense that they are the smallest subclass of NP that could conceivably remain outside of P, the class of deterministic

polynomial-time problems, http://en.wikipedia.org/wiki/NP-complete
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at each Gauss point iterates in stress and internal variable space, computes the updated stress state,

constitutive stiffness tensor and delivers them to the finite element functions. Finite element functions

then use the updated stresses and stiffness tensors to integrate new (internal) nodal forces and element

stiffness matrix. Then, on global level, nonlinear equations are iterated on until equilibrium between

internal and external forces is satisfied within some tolerance.

• Elastic Computations

In the case of elastic computations constitutive driver has a simple task of computing increment

in stresses (∆σij) for a given deformation increment (∆ϵkl), through a closed form equation

(∆σij = Eijkl∆ϵkl) It is important to note that in this case the amount of work per Gauss point

is known in advance. The amount of computational work is the same for every integration point.

If we assume the same number of integration points per element, it follows that the amount of

computational work is the same for each element and it is known in advance.

• Elastic-Plastic Computations

On the other hand, for elastic-plastic problems, for a given incremental deformation the constitutive

driver is iterating in stress and internal variable space until consistency condition is satisfied (F = 0).

The number of iterations is not known in advance. Initially, all Gauss points are in elastic range, but

as we incrementally apply loads, the plastic zones develop. For Gauss points still in elastic range,

there are no iterations, the constitutive driver just computes incremental stresses from closed form

solution. Computational load will increase significantly for integration of constitutive equations

in plastic range. In particular, constitutive level integration algorithms for soils, concrete, rocks,

foams and other granular materials are very computationally demanding. More than 70% of wall

clock time during an elastic-plastic finite element analysis is spent in constitutive level iterations.

This is in sharp contrast with elastic computations where the dominant part is solving the system

of equations which consumes about 80% of run time. The extent of additional, constitutive level

iterations is not known before the actual computations are over. In other words, the extent of

elastic-plastic domain is not known ahead of time.

The traditional preprocessing type of Domain Decomposition method (also known as topological

DD) splits domain based on the initial geometry and assigns roughly the same number of elements

to every computational node and minimizes the size of subdomain boundaries. This approach

might result in serious computational load imbalance for elastic-plastic problems. For example one

domain might be assigned all of the elastic-plastic elements and spend large amount of time in

constitutive level iterations. The other domains will have elements in elastic state and thus spend

far less computational time in computing stress increments. This results in program having to wait
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for the slowest domain (the one with large number of elastic-plastic finite elements) to complete

constitutive level iterations and only proceed with global system iterations after that.

This illustrates a two-fold challenge with computational load balancing for inelastic simulations in

mechanics. These two challenges is described below in some more detail.

110.3.2.1 Adaptive Computation

First, these computations are dynamic in nature. That is, the structure of elastic and elastic-plastic

domains changes dynamically and unpredictably during the course of the computation. For this reason,

a static decomposition computed as a pre-processing step is not sufficient to ensure the computational

load-balance of the entire computation. Instead, periodic computational load-balancing is required

during the course of the computation. The problem of computing a dynamic decomposition shares

the same requirements as that of computing the initial decomposition (i.e., balance the mesh elements

and minimize the inter-processor communications), while also requiring that the cost associated with

redistributing the data in order to balance the computational load is minimized. This last requirement

prevents us from simply computing a whole new static partitioning from scratch each time computational

load-balancing is required.

Often, the objective of minimizing the data redistribution cost is at odds with the objective of min-

imizing the inter-processor communications. For applications in which the computational requirements

of different regions of the domain change rapidly, or the amount of state associated with each element is

relatively high, minimizing the data redistribution cost is preferred over minimizing the communications

incurred during parallel processing.

For applications in which computational load-balancing occurs very infrequently, the key objective of

a load-balancing algorithm is in obtaining the minimal inter-processor communications. For many appli-

cation domains, it is straightforward to select a primary objective to minimize (i.e., minimize whichever

cost dominates). However, one of the key issues concerning the elastic-plastic computation is that the

number of iterations between computational load-balancing phases is both unpredictable and dynamic.

For example, in the case of static problems, zones in the 3D solid may become plastic and then unload

to elastic (during increments of loading) so that the extent of plastic zone is changing. The change

can be both slow and rapid. Slow change usually occurs during initial loading phases, while the later

deformation tends to localize in narrow zones rapidly and the rest of the solid unloads rapidly (becomes

elastic again). The narrow, localized zone has heavy computational load on the constitutive level (in each

integration point within elements). Similar phenomena is observed in seismic soil-structure interaction

computations where stiff structure interacts with soft soil and elastic and elasto-plastic zones change
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significantly during loading cycles. In this type of computation, it is extremely difficult to select the

type of computational load-balancing algorithm to employ. Furthermore, the preferred computational

load-balancing algorithm is liable to change during the course of the computation, and so the selection

must be made dynamically.

110.3.2.2 Multiphase Computation

The second challenge associated with computational load-balancing elastic-plastic computations in ge-

omechanics is that these are two-phase computations. That is, elastic-plastic computations follow up

the elastic computations. There is a synchronization phase between the computations, as only after

the elastic computation is finished is it possible to check if the elastic-plastic computation is required

for a given integration (Gauss) point within an element. For regions of the mesh in which this check

indicates that the elastic-plastic computation is necessary, lengthy elastic-plastic computations are then

performed. The existence of the synchronization step between the two phases of the computation re-

quires that each phase be individually load balanced. That is, it is not sufficient to simply sum up the

relative times required for each phase and to compute a decomposition based on this sum. Doing so may

lead to some processors having too much work during the elastic computation (and so, these may still

be working after other processors are idle), and not enough work during the elastic-plastic computation,

(and so these may be idle while other processors are still working), and vice versa. Instead, it is critical

that every processor have an equal amount of work from both of the phases of the computation.

110.3.2.3 Multiconstraint Graph Partitioning

Elastic-plastic FE computation can be understood as a two-phase calculation, which is also dynamic in

nature. Traditional graph partitioning formulations are not adequate to ensure its efficient execution on

high performance parallel computers. In this chapter very recent progresses from the graph partitioning

algorithm research will be investigated. We need new adaptive graph partitioning formulations, which can

compute adaptive partitioning-repartitionings that can satisfy an arbitrary number of balance constraints.

• Static Graph Partitioning

Given a weighted, undirected graph G = (V , E), for which each vertex and edge has an associated

weight, the k-way graph partitioning problem is to split the vertices of V into k disjoint subsets (or

subdomains) such that each subdomain has roughly an equal amount of vertex weight (referred to

as the balance constraint), while minimizing the sum of the weights of the edges whose incident

vertices belong to different subdomains (i.e., the edge-cut).
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1. Geometric Techniques

Compute partitioning based solely on the coordinate information of the mesh nodes, with-

out considering edge-cut. Popular methods include, Coordinate Nested Dissection (CND

or Recursive Coordinate Bisection), Recursive Inertial Bisection (RIB), Space-Filling Curve

techniques and Sphere-Cutting approach.

2. Combinatorial Techniques

Attempt to group together highly connected vertices whether or not these are near each other

in space. That is combinatorial partitioning schemes compute a partitioning based only on the

adjacency information of the graph; they do not consider the coordinates of the vertices. They

tend to have lower edge-cuts but generally slower. Popular methods include, Levelized Nested

Dissection (LND) and Kernighan-Lin/Fiduccia-Mattheyses (KL/FM) partitioning refinement

algorithm, which needs an initial partition input to do swapping refinement.

3. Multilevel Schemes

The multilevel paradigm consists of three phases: graph coarsening, initial partitioning, and

multilevel refinement. Firstly, we form coarse graph by collapsing together selected vertices

of the input graph. After rounds of coarsening, we get coarsest graph, on which an initial

bisection will be performed. Then the KL/FM algorithm can be used to refine the partition

back to the finest graph.

The multilevel paradigm works well for two reasons. First, a good coarsening scheme can

hide a large number of edges on the coarsest graph, which makes the task of computing high-

quality partitioning easier. Second reason, incremental refinement schemes such as KL/FM

become much more powerful in the multilevel context.

Popular algorithms include Multilevel Recursive Bisection and Multilevel k-Way Partitioning.

• Adaptive Graph Partitioning

For large scale elasto-plastic FE simulations, it is necessary to dynamically load-balance the com-

putations as the analysis progresses due to unpredictable plastification inside the domain. This

dynamic load balancing can be achieved by using a graph partitioning algorithm.

Adaptive graph partitioning shares most of the requirements and characteristics of static graph

partitioning but also adds an additional objective. That is, the amount of data that needs to be

redistributed among the processors in order to balance the load should be minimized. If the vertex

weight represents the computational cost of the work carried by the vertex, another metric, size

of the vertex needs to be considered as well, which reflects distribution cost of the vertex. Thus,

the repartitioner should attempt to balance the partitioning with respect to vertex weight while
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minimizing vertex migration with respect to vertex size.

Different approaches are available. One can simply compute a new graph from scratch, so called

Scratch-Remap Repartitioner, which expectedly introduces more data redistribution than necessary.

Diffusion-Based Repartitioner attempt to minimize the difference between the original partitioning

and the final repartitioning by making incremental changes in the partitioning to restore balance.

This method has been an very active topic during recent years, Dongarra et al. (2003) gives

up-to-date review.

• Multiconstraint Graph Partitioning

We can see traditional graph partitioning typically balances only a single constraint (i.e., the vertex

weight) and minimizes only a single objective (i.e., the edge-cut). If we replace the vertex weight,

which is a single number, with a weight vector of size m, then the problem becomes that of finding

a partitioning that minimizes the edge-cuts subject to the constraints that each of the m weights

is balanced across subdomains.

Multilevel graph partitioning algorithms for solving multiconstraint/multiobjective problems have

been very successful Schloegel et al. (1999). The software libraries METIS and ParMETIS are

widely used in computational mechanics research.

110.3.2.4 Adaptive PDD Algorithm

In this chapter, the Plastic Domain Decomposition (PDD) has been developed using multi-level, multi-

objective graph partitioning algorithm. This algorithm automatically monitors load balancing condition

and updates element graph structure accordingly as the simulation progresses. Element redistribution will

be triggered to achieve load balance when nonlinearity of materials brings down the parallel performance.

110.3.3 Adaptive Multilevel Graph Partitioning Algorithm

Kaypis and Kumar (1998) present a k-way multilevel partitioning algorithm whose run time is linear in

the number of edges |E| (i.e., O(|E|)); whereas the run time of multilevel recursive bisection schemes

is O(|E|logk) for k-way partitioning. Kaypis and Kumar (1998) show that the proposed multilevel

partitioning scheme produces partitioning that are of comparable or better quality than those produced

by multilevel recursive bisection, while requiring substantially less time. This paradigm consists of three

phases: graph coarsening, initial partitioning, and multilevel refinement. In the graph coarsening phase, a

series of graphs is constructed by collapsing together selected vertices of the input graph in order to form

a related coarser graph. This newly constructed graph then acts as the input graph for another round

of graph coarsening, and so on, until a sufficiently small graph is obtained. Computation of the initial
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bisection is performed on the coarsest (and hence smallest) of these graphs, and so is very fast. Finally,

partition refinement is performed on each level graph, from the coarsest to the nest (i.e., original graph)

using a KL/FM-type algorithm Dongarra et al. (2003). Figure 110.1 illustrates the multilevel paradigm.

This algorithm is available in METIS Karypis and Kumar (1998d) which is used in this research to provide

initial static partitioning.

Figure 110.1: Multilevel Graph Partitioning Scheme Karypis et al. (2003)

Adaptive graph repartitioning algorithm can be used to achieve dynamic load balancing of multiphase

elastic-plastic finite element simulations. Adaptive graph partitioning differs from static graph partition-

ing algorithm in the sense that one additional objective has to be targeted. That is, the amount of data

the needs to be redistributed among the processors in order to balance the load should be minimized.

In order to measure this redistribution cost, not only does the weight of a vertex, but also its size have

to be considered. In our implementation for the purpose of this research, the vertex weight represents

the computational load of each finite element, while the size reflects its redistribution cost. Thus, the

application of adaptive graph partitioning algorithm aims at balancing the partitioning with respect to

vertex weight while minimizing vertex migration with respect to vertex size.

A repartitioning of a graph can be obtained simply by partitioning a new graph from a scratch, which

tends to bring much more unnecessary communications because the old distribution has not been taken
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into account. Diffusion-based Repartitioner is more popular in which one attempts to minimize the

difference between the original partitioning and the final repartitioning by making incremental changes

in the partitioning to restore balance. Dongarra et al. (2003) gives a comprehensive review on this

subject. Adaptive repartitioning is available in ParMETIS Karypis et al. (2003) and Jostle Warshaw

(1998). The former is chosen in this research considering the fact that ParMETIS provides seamless

interface for METIS 4.0 which makes the comparison between static and adaptive partitioning schemes

more consistent.

PARMETIS is an MPI-based parallel library that implements a variety of algorithms for partition-

ing and repartitioning unstructured graphs and for computing fill-reducing orderings of sparse matri-

ces Karypis et al. (2003). PARMETIS is particularly suited for parallel numerical simulations involving

large unstructured meshes. In this type of computation, PARMETIS dramatically reduces the time spent

in communication by computing mesh decompositions such that the numbers of interface elements are

minimized. The algorithms in PARMETIS are based on the multilevel partitioning and fill-reducing

ordering algorithms that are implemented in the widely-used serial package METIS Karypis and Ku-

mar (1998c). However, PARMETIS extends the functionality provided by METIS and includes routines

that are especially suited for parallel computations and large-scale numerical simulations. In particular,

PARMETIS provides the following functionality Karypis et al. (2003):

• Partition unstructured graphs and meshes.

• Repartition graphs that correspond to adaptively refined meshes.

• Partition graphs for multi-phase and multi-physics simulations.

• Improve the quality of existing partitioning.

• Compute fill-reducing orderings for sparse direct factorization.

• Construct the dual graphs of meshes.

Both METIS and PARMETIS are used in this research. METIS routines are called to construct static

partitioning for commonly used one-step static domain decomposition, while adaptive load-balancing

is achieved by calling PARMETIS routines regularly during the progress of nonlinear finite element

simulations.

Adaptive load-balancing through domain repartitioning is a multi-objective optimization problem, in

which repartitionings should minimize both the inter-processor communications incurred in the iterative

mesh-based computation and the data redistribution costs required to balance the load. PARMETIS
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provides the routine ParMETIS V3 AdaptiveRepart for repartitioning the previous unbalanced compu-

tational domain. This routine assumes that the existing decomposition is well distributed among the

processors, but that (due to plastification of certain nonlinear elements) this distribution is poorly load

balanced.

Figure 110.2: A diagram illustrating the execution of adaptive scientific simulations on high performance

parallel computers Schloegel et al. (1999)

Figure 110.2 Schloegel et al. (2000) shows common steps involved in the execution of adaptive mesh-

based simulations on parallel computers. Initially, the mesh is equally distributed on different processors.

As all elements are elastic at the very beginning (carrying the same amount of elemental calculation

work), computation load balance can be guaranteed with a even distribution. A number of iterations of

the simulation are performed in parallel, after which plasticity occurs in certain nonlinear elements thus

introducing some amount of load imbalance. A new partitioning based on the unbalanced domain is

computed to re-balance the load, and then the mesh is redistributed among the processors, respectively.

The simulation can then continue for another number of iterations until either more mesh adaptation is

required or the simulation terminates.

If we consider each round of executing a number of iterations of the simulation, mesh adaptation,

and load-balancing to be an epoch, then the run time of an epoch can be described by, Schloegel et al.
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(2000)

(tcomp + f (|Ecut |))n + trepart + g(|Vmove|) (110.3)

where n is the number of iterations executed, tcomp is the time to perform the computation for a

single iteration of the simulation, f (|Ecut |) is the time to perform the communications required for a single

iteration of the simulation, and trepart and g(|Vmove|) represent the times required to compute the new

partitioning and to redistribute the data. Here, the inter-processor communication time is described as a

function of the edge-cut of the partitioning and the data redistribution time is described as a function of

the total amount of data that is required to be moved in order to realize the new partitioning. Adaptive

repartitioning affects all of terms in Equation 110.3. How well the new partitioning is balanced influences

tcomp. The inter-processor communications time is dependent on the edge-cut of the new partitioning.

The data redistribution time is dependent on the total amount of data that is required to be moved in

order to realize the new partitioning. It is critical for adaptive partitioning schemes to minimize both the

edge-cut and the data redistribution when computing the new partitioning. Viewed in this way, adaptive

graph partitioning is a multi-objective optimization problem.

There are various approaches how to handle this dual-objective problem. In general, two approaches

have primarily been taken when designing adaptive partitioners. Schloegel et al. (2000) gives a com-

prehensive review on this topic. The first approach is to attempt to focus on minimizing the edge-cut

and to minimize the data redistribution only as a secondary objective. This family of methods can be

called scratch-remap repartitioner. These use some type of state-of-the-art graph partitioner to compute

a new partitioning from scratch and then attempt to intelligently remap the subdomain labels to those

of the original partitioning in order to minimize the data redistribution costs. Since a state-of-the-art

graph partitioner is used to compute the partitioning, the resulting edge-cut tends to be extremely good.

However, since there is no guarantee as to how similar the new partitioning will be to the original par-

titioning, data redistribution costs can be high, even after remapping. The second approach is to focus

on minimizing the data redistribution cost and to minimize the edge-cut as a secondary objective, or

so-called diffusion-based repartitioner. These schemes attempt to perturb the original partitioning just

enough so as to balance it. This strategy usually leads to low data redistribution costs, especially when

the partitioning is only slightly imbalanced. However, it can result in higher edge-cuts than scratch-

remap methods because perturbing a partitioning in order to balance it also tends to adversely affect its

quality.

These two types of repartitioner allow the user to compute partitioning that focus on minimizing

either the edge-cut or the data redistribution costs, but give the user only a limited ability to control the

tradeoffs among these objectives. This control of the tradeoffs is sufficient if the number of iterations
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that a simulation performs between load-balancing phases (i.e. the value of n in Equation 110.3 ) is

either very high or very low. However, when n is neither very high nor very low, neither type of scheme

precisely minimizes the combined costs of f (Ecut |)n and g(|Vmove|). Another disadvantage exists for

applications in which n is difficult to predict or those in which n can change dynamically throughout

the course of the computation. As an example, one of the key issues concerning the elastic-plastic soil-

structure interaction computations required for earthquake simulation is that the number of iterations

between load-balancing phases is both unpredictable and dynamic. Here, zones in the 3D solid may

become plastic and then unload (during increments of loading) so that the extent of the plastic zone is

changing. The change can be both slow and rapid. Slow change usually occurs during initial loading

phases, while the later deformation tends to localize in narrow zones rapidly and the rest of the solid

unloads rapidly (becomes elastic again) Jeremić and Xenophontos (1999).

Schloegel et al. (2000) presents a parallel adaptive repartitioning scheme (called the Unified Repartitioning

Algorithm) for the dynamic load-balancing of scientific simulations that attempts to solve the pre-

cise multi-objective optimization problem. By directly minimizing the combined costs of f (Ecut |)n and

g(|Vmove|), the proposed scheme is able to gracefully tradeoff one objective for the other as required

by the specific application. The paper shows that when inter-processor communication costs are much

greater in scale than data redistribution costs, the proposed scheme obtains results that are similar

to those obtained by an optimized scratch-remap repartitioner and better than those obtained by an

optimized diffusion-based repartitioner. When these two costs are of similar scale, the scheme obtains

results that are similar to the diffusive repartitioner and better than the scratch-remap repartitioner.

When the cost to perform data redistribution is much greater than the cost to perform inter-processor

communication, the scheme obtains better results than the diffusive scheme and much better results

than the scratch-remap scheme. They also show in the paper that the Unified Repartitioning Algorithm

is fast and scalable to very large problems.

110.3.3.1 Unified Repartitioning Algorithm

A key parameter used in Unified Repartitioning Algorithm (URA) is the Relative Cost Factor (RCF).

This parameter describes the relative times required for performing the inter-processor communications

incurred during parallel processing and to perform the data redistribution associated with balancing the

load. Using this parameter, it is possible to unify the two minimization objectives of the adaptive graph

partitioning problem into the unified cost function

|Ecut | + α|Vmove| (110.4)
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where α is the Relative Cost Factor, |Ecut | is the edge-cut of the partitioning, and |Vmove| is the total

amount of data redistribution. The Unified Repartitioning Algorithm attempts to compute a repartition-

ing while directly minimizing this cost function.

The Unified Repartitioning Algorithm is based upon the multilevel paradigm that is illustrated in

Figure 110.1, which can be described as three phases: graph coarsening, initial partitioning, and un-

coarsening/refinement Schloegel et al. (2000). In the graph coarsening phase, coarsening is performed

using a purely local variant of heavy-edge matching. That is, vertices may be matched together only

if they are in the same subdomain on the original partitioning. This matching scheme has been shown

to be very effective at helping to minimize both the edge-cut and data redistribution costs and is also

inherently more scalable than global matching schemes.

110.3.3.2 Study of ITR in ParMETIS

The RCF in the URA implementation controls the tradeoff between two objectives, minimizing data

redistribution cost or edge-cut. In our application, ParMETIS library has been linked to a MOSS (Modi-

fied OpenSees Services) analysis model to facilitate the partitioning/adaptive repartitioning scheme. The

RCF is defined as a single parameter ITR in ParMETIS Karypis et al. (2003). This parameter describes

the ratio between the time required for performing the inter-processor communications incurred during

parallel processing compared to the time to perform the data redistribution associated with balancing

the load. As such, it allows us to compute a single metric that describes the quality of the repartition-

ing, even though adaptive repartitioning is a multi-objective optimization problem. As recommended

by Karypis et al. (2003), appropriate values to pass for the ITR Factor parameter can be determined

depending on the times required to perform

1. all inter-processor communications that have occurred since the last repartitioning, and

2. the data redistribution associated with the last repartitioning/load balancing phase.

Simply divide the first time measurement by the second time measurement. The result is the correct

ITR Factor. In case these times cannot be ascertained (e.g., for the first repartitioning/load balancing

phase), Karypis et al. (2003) suggests that values between 100 and 1000 work well for a variety of

situations. By default ITR is between 0.001 and 1000000. If ITR is set high, a repartitioning with a low

edge-cut will be computed. If it is set low, a repartitioning that requires little data redistribution will be

computed.
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110.4 Performance Studies on PDD Algorithm

110.4.1 Introduction

In this chapter, parallel performance of the proposed PDD algorithm is thoroughly investigated. There

are two major focuses for the timing analysis. Firstly we want to see how much performance gain we

can have by introducing the PDD algorithm into inelastic finite element calculations. Secondly, we also

want to show how scalable the proposed PDD algorithm is.

As our final objective is to apply PDD in large scale SFSI finite element simulations, finite element

models of SFSI have been set up to study the parallel performance of the PDD based parallel program.

Implicit constitutive integration scheme Jeremić and Sture (1997) has been used to expose the load

imbalance by plasticity calculation. Only continuum element has been studied due to the fact they can

be easily visualized to obtain partition and/or repartition figures.

Distributed memory Linux/Unix clusters are major platforms used in this chapter for speed up analysis.

110.4.2 Parallel Computers

Performance measurement has been carried out on two SMP-based clusters.

• IBM eServer p655

The DataStar IBM eServer p655 cluster consists of 176 8-way P655+ nodes at San Diego Super-

computer Center. System configuration is shown in Fig 110.3. The network benchmark is shown

in Table 110.1.

Table 110.1: Latency and Bandwidth Comparison (as of August 2004)

MPI Latencies (µsec) Bandwidth (MBs)

Intra-node 3.9 3120.4

Inter-node 7.65 1379.1

• TeraGrid IA-64 Intel-Based Linux Cluster

The TeraGrid project was launched by the the National Science Foundation with $53 million

in funding to four sites: the National Center for Supercomputing Applications (NCSA) at the

University of Illinois, Urbana-Champaign, the San Diego Supercomputer Center (SDSC) at the

University of California, San Diego, Argonne National Laboratory in Argonne, IL, and Center for

Advanced Computing Research (CACR) at the California Institute of Technology in Pasadena.
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Figure 110.3: System Configuration of DataStar http://www.sdsc.edu/user services/datastar/ (2020)

SDSC’s TeraGrid cluster currently consists of 256 IBM cluster nodes, each with dual 1.5 GHz Intel

Itanium 2 processors, for a peak performance of 3.1 teraflops. The nodes are equipped with four

gigabytes (GBs) of physical memory per node. The cluster is running SuSE Linux and is using

Myricom’s Myrinet cluster interconnect network. Table 110.2 shows the technical configuration of

the IA64 cluster, on which the second part of the performance study has been done.

110.4.3 Soil-Foundation Interaction Model

A soil-shallow-foundation interaction model as shown in Figure 110.4 has been set up to study the parallel

performance. 3D brick element with 8 integration (Gaussian) points is used. The soil is modeled by

Template3D elasto-plastic material model (Drucker-Prager model with Armstrong Frederick nonlinear

kinematic hardening rule) and linear elasticity is assumed for the foundation. More advanced constitutive

laws can be applied through Template3D model although the model used here suffices the purpose of

this research to show repartitioning triggered by plastification. It is shown in this research that the

speedup by adaptive load balancing is significant even for seemingly simple constitutive model. The

material properties are shown in Table 110.3 and the vertical loading is applied at 5.0kN increments.

The performance analysis has been carried out on DataStar supercomputer at San Diego Supercomputing

Center (P655+ 8-way nodes).
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Table 110.2: Technical Information of IA64 TeraGrid Cluster at SDSC

IA-64 Cluster (tg-login.sdsc.teragrid.org)

COMPONENT DESCRIPTION

Architecture Linux Cluster

⋆ quad-processor

Access Nodes ⋆ ECC SDRAM memory: 8 GB

⋆ 2 nodes (8 processors)

⋆ dual-processor

Compute Nodes ⋆ ECC SDRAM memory: 4 GB

⋆ 262 nodes (524 processors)

⋆ Intel Itanium 2, 1.5 GHz

Processor ⋆ Integrated 6 MB L3 cache

⋆ Peak performance 3.1 Tflops

Network Interconnect Myrinet 2000, Gigabit Ethernet, Fiber Channel

Disk 1.7 TB of NFS, 50 TB of GPFS (Parallel File System)

Operating System Linux 2.4-SMP (SuSE SLES 8.0)

Compilers ⋆ Intel: Fortran77/90/95 C C++

⋆ GNU: Fortran77 C C++

Batch System Portable Batch System (PBS) with Catalina Scheduler

Table 110.3: Material Constants for Soil-Foundation Interaction Model

Soil

Elastic modulus E = 17400kPa

Poisson ratio ν = 0.35

Friction angle ϕ = 37.1̊

Cohesion c = 0

Isotropic Hardening Linear

Kinematic Hardening A/F nonlinear (ha = 116.0, Cr = 80.0)

Foundation

Elastic modulus E = 21GPa

Poisson ratio ν = 0.2
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Figure 110.4: Example Finite Element Model of Soil-Foundation Interaction (Indication Only, Real

Model Shown in Each Individual Section)

110.4.4 Numerical Study for ITR

As described in Section 110.3.3.2, the parameter ITR in ParMETIS describes the ratio between the time

required for performing the inter-processor communications incurred during parallel processing compared

to the time to perform the data redistribution associated with balancing the load. It acts like a switch

on algorithmic approaches of ParMETIS repartitioning kernel. With ITR factor being very small, the

ParMETIS tends to do that repartitioning which can minimize data redistribution cost. If the ITR factor

is set to be very large, ParMETIS tends to minimize edge-cut of the final repartition.

In parallel design of PDD, if repartitioning is necessary to achieve load balance after each load

increment, the whole AnalysisModel McKenna (1997) has to be wiped off thus a new analysis container
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can be defined to reload subsequent analysis steps. The data redistribution cost can be much higher

than communication overhead only. In order to determine an adequate ITR value for our application,

preliminary study needs to be performed to investigate the effectiveness of the URA. In this research,

two extreme values of the ITR (0.001 and 1, 000, 000) are prescribed and then parallel analysis is carried

out on 2, 4 and 8 processors to see how the partition/repartition algorithm behaves. Two soil-structure

interaction models as shown in Figure 110.6 have been used in this parametric study. Timing data and

partition figures have been collected to investigate the performance of different approaches. The one

that tends to bring better performance will be adopted in subsequent parallel analysis for prototype 3D

soil structure interaction problems. Figure 110.7 to Figure 110.12 shows the initial partition and final

repartition figures for two different types of algorithms. With ITR factor to be very small, the URA

tends to present results that minimize data redistribution cost, in which diffusive repartitioning approach

is used. On the other hand, if the ITR factor is set to be very large, then the URA algorithm tends to

give repartitioning with lowest edge cut but with considerably higher data redistribution cost.
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Figure 110.5: FE Models (1,968 Elements, 7,500 DOFs) for Studying Soil-Foundation Interaction Prob-

lems

Figure 110.6: FE Models (4,938 Elements, 17,604 DOFs) for Studying Soil-Foundation Interaction

Problems
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Figure 110.7: Partition and Repartition on 2 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)

Figure 110.8: Partition and Repartition on 2 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 110.9: Partition and Repartition on 4 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)

Figure 110.10: Partition and Repartition on 4 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)
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Figure 110.11: Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)

Figure 110.12: Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs)
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Figure 110.13: Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (4,938

Elements, 17,604 DOFs)

Figure 110.14: Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (4,938

Elements, 17,604 DOFs)
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Figure 110.15: Timing Data of ITR Parametric Studies (1,968 Elements, 7,500 DOFs, Imbal. Tol. 5%)
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Figure 110.16: Relative Speedup of ITR=1e-3 over ITR=1e6 (1,968 Elements, 7,500 DOFs, Imbal.

Tol. 5%)
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Figure 110.17: Timing Data of ITR Parametric Studies (4,938 Elements, 17,604 DOFs, Imbal. Tol.

5%)
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Figures 110.15, 110.16 and 110.17 show the speedup data of parametric study on ITR factors. The

purpose is to expose the the more efficient approach to do repartitioning for our specific parallel SFSI

simulations, either scratch-remap approach (ITR = 1e6) or diffusive approach (ITR = 1e – 3). Through

the study of this chapter, some conclusions can be drawn.

1. Smaller value of ITR (1e-3) outperforms larger value (1e6). The performance gain is up to 22.1%

for 7 processors. As the model gets larger, the speedup tends to get better.

2. With small ITR value, the URA algorithm tends to give results for diffusive partition/repartitioning

scheme, which is good for performance for our application in overall due to the fact that the

overhead associated with data redistribution in this research is very high. Diffusive approach

minimizes possible data movement thus delivers better performance. The drawback is the diffusive

approach typically gives very bad or even disconnected graphs with very high edge-cut as shown

in Figures 110.7, 110.9 and 110.11. So careful attention must be paid to these graph structures

when programing the finite element calculation. In this sense, the diffusive algorithm is not as

robust as scratch/remapping. One very important observation was that repetitive repartitionings

tend to yield totally ill-connected graph.

3. With large ITR value, the URA algorithm adopts the scratch/remapping scheme which inevitably

introduce huge data redistribution cost. But this approach gives high quality graph and the integrity

of original graph is well preserved as shown Figures 110.8, 110.10 and 110.12. This will be of

great meaning for parallel finite element method based on substructure-type methods. Another

important observation was, the scratch/remapping approach performed much more repartitionings

than diffusive approach for same analysis. Repetitive repartitionings by scratch/remapping method

tends to totally migrate all elements out of their initial partitioning and repartitioning never stops

even though the computation is stabilized (in the sense of formation of plastic zones). This also

explains in part why the diffusive approach can substantially outperform scratch/remapping.

4. Based on the timing analysis performed in this chapter, ITR=1e-3 is the best choice that brings

substantially better performance over large ITR values. With the increase of number of processing

units or the model size, the performance gain is more significant as shown in Figures 110.15, 110.16

and 110.17. Robustness of the diffusive approach has not caused much trouble in our application.

110.4.5 Parallel Performance Analysis

Timing routines have been implemented in PDD (MOSS and other used libraries, such as Template3DEP/NewTemplate3Dep)

to study the parallel performance. The preprocessing unit, like reading model data from file, has not

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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been timed so the speed up here reflects only algorithmic gain by graph partitioning. In the current

phase of this research, the equation solving problem has not been addressed yet. More meaningful per-

spective would be to consider performance gains by simply switching from plain graph partitioning to

adaptive graph partitioning, which is also the basic aim of this research. As we can see from the re-

sults below, adaptive graph partitioning improves the overall performance of elasto-plastic finite element

computations. The partitioning/repartitioning overhead has been minimized by using parallel partitioner.

As stated in previous sections of this chapter, there are a couple of key parameters that control

performance of the adaptive load balancing algorithm. One is the ITR factor, and the other is the

computational load imbalance tolerance.

1. ITR is the key parameter which determines the algorithmic approach of the adaptive load balancing

scheme. Depending on different applications and network interconnections, this value can be set

to very small (0.001) or very large (up to 1,000,000) and algorithm focus will be set to minimizing

data redistribution or edge-cut respectively as explained in previous sections.

2. Computational Imbalance Load Tolerance is the other key factor affecting greatly the overall

performance of the whole application codes. Basically speaking, with larger finite element model,

the tolerance should be set higher due to the fact that data redistribution and subsequent analysis-

restarting overhead can be substantially higher as the finite element model size increases.

The performance tunings on ITR factor tend to yield consistent results as stated previously that

smaller ITR (0.001) brings better performance over large ITR values. Diffusive repartitioning algorithm

outperforms scratch/remapping in our application.

While on the other hand, tuning on load imbalance studies has been more illusive. The first conclusion

is that load imbalance tolerance larger than 5% was not able to work robustly as the size of finite element

model increases in the application study of this chapter.

Detailed parametric studies have been performed on DataStar IBM Power4 and IA64 Intel clusters to

indicate the effectiveness of the proposed adaptive PDD algorithm. Models with different sizes have been

tested on various number of processors to show the scalability of computational performance. All results

will be compared with static one-step Domain Decomposition approach to investigate the advantage of

proposed PDD algorithm in nonlinear elastic-plastic finite element calculations.

In the following sections, timing data and partition/repartition figures will be presented and results

will be discussed at the end of this chapter.

110.4.5.1 Soil-Foundation Model with 4,035 DOFs

The partition/repartition figures by PDD have been shown in Figure 110.18, 110.19, 110.20.
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Figure 110.18: 4,035 DOFs Model, 2 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition

Figure 110.19: 4,035 DOFs Model, 4 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition
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Figure 110.20: 4,035 DOFs Model, 8 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition

Figure 110.21: Timing Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5%
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Table 110.4: Test Cases of Performance Studies

Model Sizes (DOF) 4,035, 17,604, 32,091, 68,451

# of CPUs 3, 5, 7, 16, 32, 64

ITR Factors 0.001, 1,000,000

Imbalance Tolerance 5%, 10%, 20%

Figure 110.22: Absolute Speedup Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol

5%
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Figure 110.23: Relative Speedup of PDD over Static DD on 4,035 DOFs Model, ITR=1e-3, Imbal Tol

5%
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 110.4. PERFORMANCE STUDIES ON PDD ALG . . . page: 619 of 3287

110.4.5.2 Soil-Foundation Model with 4,938 Elements, 17,604 DOFs

This is the same model as described before but with more elements as shown in 110.24. Timing data

has been collected to indicate performance gains by adaptive load balancing Partition and repartition

figures are shown from Figure 110.28 to 110.30. The partition/repartition figures by PDD have been

Figure 110.24: Finite Element Model of Soil-Foundation Interaction (4,938 Elements, 17,604 DOFs)

shown in Figure 110.28, 110.29, 110.30.
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Figure 110.25: Timing Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal

Tol 5%
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Figure 110.26: Absolute Speedup Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model,

ITR=1e-3, Imbal Tol 5%
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Figure 110.27: Relative Speedup of PDD over Static DD on 4,938 Elements, 17,604 DOFs Model,

ITR=1e-3, Imbal Tol 5%

Figure 110.28: 4,938 Elements, 17,604 DOFs Model, 2 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%
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Figure 110.29: 4,938 Elements, 17,604 DOFs Model, 4 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%

Figure 110.30: 4,938 Elements, 17,604 DOFs Model, 8 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%
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110.4.5.3 Soil-Foundation Model with 9,297 Elements, 32,091 DOFs

The mesh is shown in Figure 110.31. Speed up results are shown from Figure 110.32 to Figure 110.34.

Partition and repartition figures are shown from Figure 110.35 to Figure 110.39.

Figure 110.31: Finite Element Model of Soil-Foundation Interaction (9,297 Elements, 32,091 DOFs)
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Figure 110.32: Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal

Tol 5%
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Figure 110.33: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 5%
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Figure 110.34: Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 5%

Figure 110.35: 9,297 Elements, 32,091 DOFs Model, 3 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%
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Figure 110.36: 9,297 Elements, 32,091 DOFs Model, 5 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%

Figure 110.37: 9,297 Elements, 32,091 DOFs Model, 7 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%
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Figure 110.38: 9,297 Elements, 32,091 DOFs Model, 16 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%

Figure 110.39: 9,297 Elements, 32,091 DOFs Model, 32 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5%
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 110.4. PERFORMANCE STUDIES ON PDD ALG . . . page: 630 of 3287

110.4.6 Algorithm Fine-Tuning

From performance analysis results in previous sections, it has been shown that adaptive graph partitioning

algorithm based on element graph can improve overall load balance for nonlinear elastic-plastic finite

element calculations. Speed up has been observed on example problems. While on the other hand, we

can also see as the model size increases, the efficiency of proposed PDD algorithm dropped sharply as

shown in Figures 110.33 and 110.34.

So the naive implementation of PDD does not work as expected. With load balancing, one expects

that the performance of PDD should not be worse than the DD case. It otherwise implies that the PDD

does not bring performance gain that can completely offset its own extra load balancing operations-

related overheads.

In this chapter, more detailed algorithm fine-tuning has been performed to address the problems we

had in previous sections of the naive PDD implementation.

In order to improve the overall efficiency of proposed PDD algorithm. we have to consider two levels

of costs when one wishes to balance the computational load among processing units. One is the data

communication cost, and the other one is finite element model regeneration overhead associated with

specific application problems.

Currently the adaptive graph partitioning algorithm does not consider the fact that the network

communication patterns might differ much among processing nodes. The single ITR value indicates the

algorithmic approach of the graph partitioning algorithm, but the real communication performance has

not been addressed in the implementation.

On the other hand, certain applications impose extra problem-dependent overhead to repartitioning

operations. For example, whenever data communications happen, the finite element model has to be

wiped off and regenerated. This is not inherent with the graph partitioning algorithm but still needs

to be addressed in order to get the best performance. As observed in this chapter, model regeneration

overhead increases when the finite element model becomes bigger.

In order to improve the overall performance of our application, we hope to consider both data

communication and model regeneration cost and create a new strategy through which we can adaptively

monitor the extra overheads to assure that load balancing operation can offset both costs.

This chapter will first investigate the effect of load balance tolerance on performance and then a

new globally adaptive strategy will be proposed to handle both communication and model regeneration

overhead. Speedup analysis have been done to show performance gains.
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110.4.7 Fine Tuning on Load Imbalance Tolerance

If one finds out that the application-associated overhead (say, model regeneration cost) overwhelms when

repartitioning happens, the most natural way to improve performance is to increase the load imbalance

tolerance of the adaptive repartition routine. In this way, one hopes to increase the critical load imbalance

that can trigger the balancing routine and so that the repartition counts can be reduced. As a result,

model regeneration cost can do less harm to the overall performance.

This should rather viewed as a work-around and has not been effective in our application.

The tuning approach aims at improving efficiency of previous runs that failed showing speedup over

static domain decomposition method. Shallow foundation model with 9,297 Elements, 32,091 DOFs has

been chosen to study the effect of imbalance tolerance on parallel performance. Model setup has been

the same as in previous sections.

Speedup analysis results have been shown in Figures 110.40, 110.41 and 110.42.

Figure 110.40: Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal

Tol 20%
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 110.4. PERFORMANCE STUDIES ON PDD ALG . . . page: 632 of 3287

Figure 110.41: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 20%
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Figure 110.42: Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 20%
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From the performance results, we can see that increasing load imbalance tolerance does not lead to

efficiency for our application. As the number of processing units increases, the whole performance of

application codes deteriorates. It is also important to note that the adaptive graph partitioning/repar-

titioning kernel in ParMETIS has not been capable of producing adequate partitions for finite element

calculations when the load imbalance tolerance is larger than the recommended 5% Karypis et al. (2003).

The application crushed with 20% imbalance tolerance for same models tested in previous sections.

The conclusion reached for the application in this chapter is that load imbalance tolerance larger

than 5% has not been proved more efficient. This can also be explained in more details.

In the implementation of ParMETIS, load imbalance tolerance is one of the most important param-

eters in the sense that this value determines whether repartition will be switched on. The other equally

significant implication of this value comes from the fact that it also establishes target load imbalance

residual to be achieved after adaptive load balancing. That means for each repartition, the ParMETIS

will only reduce the load imbalance to the provided tolerance.

In current implementation, the load imbalance tolerance is set to be the same for both switch-on

and target values, which is not capable of bringing the best performance into our application due to the

fact that aside from data redistribution cost, analysis model reconstruction is equally expensive. The

dilemma is described by numerical example as shown in Table 110.5.

Table 110.5: Observation on Load Imbalance Tolerance %5

Model 20,476 Elements, 68,451 DOFs

CPUs 32

Imbalance Before 7.018%

Imbalance After 4.9%

Model Regeneration 57.2934 seconds

Total Step Time 140.961 seconds

We can easily see that tiny portion of data movement to balance out 7.018 – 4.9 = 2.228% loads

still invoked analysis model regeneration, which accounts for extra overhead that is about 40.6% of total

step time.

Because the load balance tolerance is also the target value that the repartitioning operation hopes

to achieve. The implication is that after repartitioning, the load distribution among processing units is

barely under this acceptable tolerance. The performance study conducted so far showed that continuous

plastification can easily creates load imbalance over this tolerance so another round of repartitioning

would be launched again. It greatly brings down the performance of the whole application when the
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huge data redistribution overhead is taken just to overcome a tiny imbalance. This explains why changing

the tolerance was not able to bring better performance in our application.

In order to improve performance while still minimizing load imbalance, we hope to maximize the

efficiency of model regeneration routine in our application. This is a two-fold statement, firstly, we don’t

want to blindly increase the load imbalance because it basically claims we fail our adaptive PDD algorithm

by not switching on repartitioning (5% is suggested by the author of ParMETIS Karypis et al. (2003)

and has been proved to be the most stable value in this chapter), secondly, with each repartitioning, we

hope to achieve ”perfect balance” as much as possible and in this way, the huge model regeneration cost

can be offset by performance gain. What was proposed as future extension of this chapter is the idea

of dual load imbalance tolerances. Load balancing triggering tolerance and the target tolerance can be

defined separately. We can set higher triggering tolerance to reduce the number of repartition counts,

while on the other hand a strict target tolerance can be set close to 1.0 to get better load distribution

out of the balancing routine. With proposed approach, our application in this chapter will be able to

fully take advantage of the repartition routines without sacrificing too much on model regenerations.

110.4.8 Globally Adaptive PDD Algorithm

One significant drawback of current implementation is that neither network communication nor model

regeneration cost has been considered in element-graph-based type domain decomposition algorithm. El-

ement graph only records computational load carried by each element. Only one ITR factor characterizes

algorithmic approach of the load balancing operation and this is apparently too crude for complicated

network/hardware configurations. The ignorance of the repartitioning-associated overheads inherent

with application codes can lead to serious performance drop of the proposed PDD algorithm as shown

in Figure 110.43.

This drawback can harm the overall performance of the whole application code more seriously when

the simulation is to be run on heterogeneous networks, which means we can have different network

connections and nodes with varied computational power. The dilemma is, without exact monitoring of

network communication and local model regeneration costs, we can easily sacrifice the performance gain

by load balancing operations.

A second approach proposed in this chapter was the idea of modified Globally Adaptive PDD algo-

rithm. The novelty comes from the fact that both data redistribution and analysis model regeneration

costs will be monitored during execution. Load balancing will be triggered only when the performance

gain necessarily offset the extra cost associated with the whole program. Domain graph structures will be

kept intact till successful repartitioning happens. Meanwhile all elemental calculations will be timed to

provide graph vertex weights. Data will be accumulated till algorithm restart happens, when all analysis
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Figure 110.43: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 5%

model and vertex weights will be nullified.

This improvement aims at handling network communication and any specific application-associated

overheads automatically at the global level in order to remedy the drawback that the element graph

repartitioning kernel currently supported by ParMETIS is not capable of directly reflecting this application

level overheads. The new strategy is to automatically monitor network communication and local model

regeneration timings which will be integrated to the entry of load balancing routines to act as additional

triggers of the operation along with the load imbalance tolerance.

Performance study shows that PDD algorithm with the new additions significantly improve perfor-

mance even when the number of processing units is large. This modification fixes the drawback shown

in previous sections that the performance of PDD was beaten by static domain decomposition when the

number of processors increases.

This strategy is called to be globally adaptive because both data communication and model regen-

eration costs are monitored at the application level, which tells best how the real application performs

on all kinds of networks. Whatever the network/hardware configurations might be, real application runs

always deliver the most accurate performance counters. This information can be applied on top of graph
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partitioning algorithm as a supplement to account for the drawback that the algorithm kernel is not

capable of integrating global data communication costs.

110.4.8.1 Implementations

We can define the global overhead associated with load balancing operation as two parts, data commu-

nication cost Tcomm and finite element model regeneration cost Tregen,

Toverhead := Tcomm + Tregen (110.5)

Performance counters have been setup to study both.

• Tcomm

Data communication patterns characterizing the network configuration can be readily measured

as the program runs the initial partitioning. As described in previous sections, initial domain

decomposition needs to be done to send elements over to processing nodes. This step is necessary

for parallel finite element processing and it provides perfect initial estimate how the communication

pattern of the application performs on specific networks. Timing routines have been added to

automatically measure the communication cost. This cost is inherently changing as the network

condition might vary as simulation progresses, so whenever data redistribution happens, this metric

will be automatically updated to reflect the network conditions.

• Tregen

Model regeneration cost basically comes from the fact that if data redistribution happens, the

analysis model needs to be regenerated to reflect changes of nodes and elements inside the domain.

Detailed operations include renumbering DOFs and rehandling constraints. This part of cost is

application-dependent. In current implementation of PDD, efforts have been made to set up timing

stop at the entry and exit of model regeneration routines to get the accurate data for the extra

overhead. It is also important to note that model regeneration happens when the initial data

distribution finishes, again the initial domain decomposition phase provides perfect initial estimate

of the model regeneration cost on any specific hardware configurations.

Naturally, for the load balancing operations to pay off, the Toverhead has to be offset by the per-

formance gain Tgain. This chapter also creates a strategy to estimate the performance gain Tgain even

before the load balancing operation happens and this metric provides global control on top of the existing

graph repartitioning algorithm.

As implemented in previous sections, the computational load on each element is represented by the

associated vertex weight vwgt[i]. If the SUM operation is applied on every single processing node, the
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exact computational distribution among processors can be obtained as total wall clock time for each

CPU as shown in Equation 110.6,

Tj :=
n∑

i=1
vwgt[i], j = 1, 2, . . . , np (110.6)

in which n is the number of elements on each processing domain and np is the number of CPUs.

If we define,

Tsum := sum(Tj), Tmax := max(Tj), and Tmin := min(Tj), j = 1, 2, . . . , np (110.7)

one always hope to minimize Tmax because in parallel processing, Tmax controls the total wall clock

time. By load balancing operations, we mean to deliver evenly distributed computational loads among

processors. So theoretically, the best execution time is,

Tbest := Tsum/np, and Tj ≡ Tbest , j = 1, 2, . . . , np (110.8)

if the perfect load balance is to be achieved.

Based on definitions above, the best performance gain Tgain one can obtain from load balancing

operations can be calculated as,

Tgain := Tmax – Tbest (110.9)

Finally, the load balancing operation will be beneficial IF AND ONLY IF

Tgain ≥ Toverhead = Tcomm + Tregen (110.10)

110.4.8.2 Performance Results

The newly improved design has been compared to the old design to see the effectiveness of the globally

adaptive switch of PDD algorithm.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 110.44: Performance of Globally Adaptive PDD on 9,297 Elements, 32,091 DOFs Model,

ITR=1e-3, Imbal Tol 5%
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Figure 110.45: Performance of Globally Adaptive PDD on 20,476 Elements, 68,451 DOFs Model,

ITR=1e-3, Imbal Tol 5%
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From Figures 110.44 and 110.45, advantage of the improved globally adaptive PDD algorithm have

clearly been shown. After considering the effect of both data communication and model regeneration

costs, the adaptive PPD algorithm necessarily outperforms the static Domain Decomposition approach

as expected. This new design also significantly improves the overall scalability of the proposed PDD

algorithm as shown in Figure 110.46 and 110.47.

Figure 110.46: Scalability Study on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal Tol 5%
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Figure 110.47: Scalability Study on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal Tol 5%
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110.4.9 Scalability Study on Prototype Model

The ultimate purpose of this chapter is to develop an efficient parallel simulation tool for large scale

earthquake analysis on prototype SFSI system. After in-depth development-refining process conducted

in previous sections, real 3-bent production models have been set up to study the parallel performance

of the proposed PDD algorithm using real world earthquake ground motions.

110.4.9.1 3 Bent SFSI Finite Element Models

As described in later sections, various sizes of a 3 bent bridge SFSI system has been developed to study

dynamic behaviors of the whole system in different frequency domain. These models provide perfect test

cases for parallel scalability study of our proposed PDD algorithm.

Detailed model description will be presented in later chapters of this chapter and only model size

and mesh pictures are shown here to indicate the range of model sizes we have covered.

Figure 110.48: Finite Element Model - 3 Bent SFSI, 56,481 DOFs, 13,220 Elements, Frequency Cutoff

> 3Hz, Element Size 0.9m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1%
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Figure 110.49: Finite Element Model - 3 Bent SFSI, 484,104 DOFs, 151,264 Elements, Frequency Cutoff

10Hz, Element Size 0.3m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1%

Figure 110.50: Finite Element Model - 3 Bent SFSI, 1,655,559 DOFs, 528,799 Elements, Frequency

Cutoff 10Hz, Element Size 0.15m, Minimum G/Gmax 0.02, Maximum Shear Strain γ 5%
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110.4.9.2 Scalability Runs

The models with different detail levels have been subject to 1997 Northridge earthquake respectively for

certain time steps and total wall clock time has been recorded to analyze the parallel scalability of our

proposed PDD. The result is presented in Figure 110.51.
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Figure 110.51: Scalability Study on 3 Bent SFSI Models, DRM Earthquake Loading, Transient Analysis,

ITR=1e-3, Imbal Tol 5%, Performance Downgrade Due to Increasing Network Overhead
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110.4.10 Conclusions

Through detailed performance studies as presented in previous sections, some conclusions can be drawn

and future directions can be noted.

• Plastic Domain Decomposition (PDD) algorithm based on adaptive multilevel graph partitioning

kernels has been shown to be effective for elastic-plastic parallel finite element calculations. PDD

algorithm consistently outperforms classical Domain Decomposition method for models tested so

far in this chapter as shown in Figures 110.52 and 110.54.

Figure 110.52: Relative Performance of PDD over DD, Shallow Foundation Model, Static Loading,

ITR=1e-3, Imbal Tol 5%
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• There are some parameters that can be calibrated in the current implementation. As indicated by

results of thorough numerical tests, ITR=0.001 and load imbalance tolerance ubvec=1.05 (5%)

should be adopted and studies on our application in this chapter have shown they are adequate

and able to bring performance not worse than the commonly used domain decomposition method

in parallel finite element analysis.

• For the parameters suggested in the chapter, we can see a general trend that the efficiency of

PDD will drop as the number of processors increases. This can be explained. The implication of

increasing processing units is that the subdomain problem size will decrease. It is naturally evident

that the repartition load balancing won’t be able to recover the overhead by balancing off small size

local calculations. The improved design of globally adaptive PDD algorithm has been implemented

in this chapter and both data communication and model regeneration costs associated with graph

repartitioning have been integrated into the new globally adaptive strategy. With the new design,

it has also been shown that the PDD algorithm consistently outperforms classic one step domain

decomposition algorithm and better scalability can be obtained as shown in Figure 110.53. It has

been shown that even for large number of processors, the current implementation can always guar-

antee that the performance of PDD is not worse than static DD method as shown in Figure 110.54.

(the repartition routine has less than 5% overhead of the total wall clock time).
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• If the problem size is fixed, there exists an optimum number of processors that can bring the

best performance of the proposed load balancing algorithm. As the number of processing units

increases after this number, the efficiency of proposed algorithm drops, which is understandable

because the local load imbalance is so small overall that balancing gain won’t offset the extra

cost associated with repartitioning. But still the bottom line of proposed adaptive PDD algorithm

is that it can run as fast as static one-step domain decomposition approach with less than 5%

overhead of repartitioning routine calls. On the other hand, if the number of processing units is

fixed, bigger finite element model will exhibit better performance. The conclusion is shown clearly

in 3D in Figure 110.54.

• It is also worthwhile to point out that even without comparing with classical DD, PDD itself exhibits

deteriorating performance as the number of processing units increases. Here the reproduction of

Figure 110.53 is presented with some downside performance noted as shown in Figure 110.55.
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The implication is explained as follows:

– The performance drop partly is due to the communication overhead gets bigger and bigger

so parallel processing will not be able to offset the communication loss.

– It is also noted that as the number of processing units increases, the elemental level calcu-

lation drops very scalably with the number of CPUs. This is inherently advantage of the

proposed PDD algorithm. PDD through domain decomposition is very scalable for local level

calculations because inherently local comp is element-based. when elements are distributed,

loads are spread out evenly (during initial and redistribution). So as the number of CPU

increases, the equation solving becomes more expensive.

For the case of 56,481 DOFs prototype model with DRM earthquake loading, it has been

observed that for sequential case (1 CPU), elemental computation takes 70% of time. As for

parallel case (8 CPUs), we optimized parallel elemental computations through PDD, elemental

computation only accounts for about 40%. As the number of CPU increases, parallel case

(32 CPUs), the local level computation will only take less than 10% of total wall clock time.

In other words, as the number of CPUs increases, PDD loses scalability because of the

equation solving now dominates. As being discussed in Chapter 110.5, the parallel direct

solver itself is not scalable up to large number of CPUs Demmel et al. (1999a). Parallel

iterative solver is much more scalable but difficult to guarantee convergence. This is now

also the most important topic in the whole scientific computing community.

For one set of fixed algorithm parameters, such as ITR and load imbalance tolerance, basic conclusion

is there exists an optimal number of processors that can bring best performance and as finite element

model size increases, this number increases as listed in Table 110.6.

Table 110.6: Best Performance Observed for ITR=0.001, Load Imbalance Tolerance %5

# of DOFs Speedup # of CPUs

4,035 1.553 4

17,604 1.992 7

32,091 1.334 7

68,451 1.068 16

The second point is related to the implementation of the multilevel graph partitioning algorithm. In

current implementation of ParMETIS used in this chapter, vertex weight can only be specified as an

int. That means in order to get timing data from local level calculation for each element, double data

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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returned by MPI timing routine has to be converted to int. Significant digit loss can happen depending

on what accuracy the system clock can carry. We can also adjust the vertex weight by amplifying the

timing by scale factors in order to save effective digits. 10 millisecond has been used in this chapter to

represent the effective timing digits when converting from double to int.

110.5 Application of Project-Based Iterative Methods in SFSI Problems

110.5.1 Introduction

Finite element method has been the most extensively used numerical method in computational mechanics.

Equation solver is the numerical kernel of any finite element package. Gauss elimination type direct solver

has dominated due to its robustness and predictability in performance.

As modern computer becomes more and more powerful, more advanced and detailed models need to

be analyzed by numerical simulation. Direct solver is not the favorite choice for large scale finite element

calculations because of high memory requirements and the inherent lack of parallelism of the method

itself.

The motivation for presented work on iterative solvers stems from the need to expand the toolset of

parallel iterative solvers for large scale simulation problems related to Earthquake-Soil-Structure interac-

tion problems

In this section, the effectiveness of Krylov iterative methods has been tested in solving soil-structure

interaction problems. Preconditioning techniques have been introduced. Robustness of iterative solvers

has been investigated on equation systems from real soil-structure interaction problems. Several popular

parallel algorithms and tools have been collected and implemented on PETSc platform to solve the

SFSI problems. Performance study has been carried out using IA64 super computers at San Diego

Supercomputing Center. A complete implementation has been developed within our computational

system, within MOSS libraries, with extensive use of ParMETIS, and other material and numerical

libraries.

110.5.2 Projection-Based Iterative Methods

Projection techniques are defined as methods to find approximate solutions x̂ for Ax = b (A ∈ Rn×n) in

a subspace W of dimension m. Then in order to determine x̂, we need m independent conditions. One

way to obtain these is by requiring the residual b – Ax̂ is orthogonal to a subspace V of dimension m,

i.e.,

x̂ ∈ W , b – Ax̂ ⊥ V (110.11)
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The conditions shown in Equation 110.11 are known as Petrov-Galerkin conditions (Bai, 2007).

There are two key questions to answer if one wants to use projection techniques in solving large scale

linear systems. Different answers lead to many variants of the projection method.

• Choice of Subspaces

Krylov subspaces have been the favorite of most researchers and a large family of methods have

been developed based on Krylov subspaces. Typically people choose either V = W or V = AW
with V and W both Krylov subspaces.

• Enforcement of Petrov-Galerkin Conditions

Arnoldi’s procedure and Lanczos algorithm are two choices for building orthogonal or biorthogonal

sequence to enforce the projection conditions.

The iterative methods discussed in this section are generally split into two categories, one based on

Arnoldi’s procedure and the other on Lanczos biorthoganalization. The most popular for the first family

are Conjugate Gradient and General Minimum Residual methods, while Bi-Conjugate Gradient and

Quasi-Minimum Residual methods represent the Lanczos family.

110.5.2.1 Conjugate Gradient Algorithm

The conjugate gradient (CG) algorithm is one of the best known iterative techniques for solving sparse

symmetric positive definite (SPD) linear systems. This method is a realization of an orthogonal pro-

jection technique onto the Krylov subspace Km(A, r0), where r0 is the initial residual. Because A is

symmetry, some simplifications resulting from the three-term Lanczos recurrence will lead to more ele-

gant algorithms (Demmel, 1997).

ALGORITHM CG (Saad, 2003)

1. Compute r0 := b – Ax0, p0 := r0

2. For j = 0, 1, · · · , until convergence, Do
3. αj := (rj , rj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj – αjApj

6. βj := (rj+1, rj+1)/(rj , rj)

7. pj+1 := rj+1 + βjpj

8. EndDo
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• Applicability

Matrix A is SPD.

• Subspaces

Choose W = V = Km(A, r0), in which initial residual r0 = b – Ax0.

• Symmetric Lanczos Procedure

This procedure can be viewed as a simplification of the Arnoldi’s procedure when A is symmetric.

Great three-term Lanczos recurrence is discovered when the symmetry of A is considered (Demmel,

1997).

• Optimality

If A is SPD and one chooses W = V, enforcing Petrov-Galerkin conditions minimizes the A-norm

of the error over all vectors x ∈ W, i.e., x̂ solves the problem,

min
x∈W

∥x – x∗∥A, x∗ = A–1b (110.12)

From the lemma above, one can derive global minimization property of the Conjugate Gradient

method. The vector xk in the Conjugate Gradient method solves the minimization problem

min
x
ϕ(x) =

1
2
∥x – x∗∥2A, x – x0 ∈ Kk(A, r0) (110.13)

• Convergence

In exact arithmetic, the Conjugate Gradient method will produce the exact solution to the linear

system Ax = b in at most n steps and it owns the superlinear convergence rate. The behavior of

Conjugate Gradient algorithm in finite precision is much more complex. Due to rounding errors,

orthogonality is lost quickly and finite termination does not hold anymore. What is more meaningful

in application problems would be to use CG method for solving large, sparse, well-conditioned linear

systems in far fewer than n iterations.

110.5.2.2 GMRES

The Generalized Minimum Residual method is able to deal with more general type of matrices.
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ALGORITHM GMRES (Saad, 2003)

1. Compute r0 := b – Ax0, β := ∥r0∥2, and v1 := r0/β

2. For j = 1, 2, · · · , m, Do

3. Compute ωj := Avj

4. For i = 1, · · · , j, Do

5. hij := (ωj , vi)

6. ωj := ωj – hijvi

7. EndDo

8. hj+1,j = ∥ωj∥2. If hj+1,j = 0 set m := j and go to 11

9. vj+1 = ωj /hj+1,j

10. EndDo

11. Define the (m + 1)× m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m

12. Compute ym, the minimizer of ∥βie1 – H̄my∥2, and xm = x0 + Vmym

• Applicability

Matrix A is nonsingular.

• Subspaces

Choose W = Km(A, r0) and V = AW = AKm(A, r0), in which initial residual r0 = b – Ax0.

• Arnoldi’s Procedure

Classic Arnoldi’s procedure (modified Gram-Schmidt) is followed in GMRES (Bai, 2007).

• Optimality

If one chooses V = AW, enforcing Petrov-Galerkin conditions solves the least square problem

∥b – Ax̃∥2 = min
x∈W

∥b – Ax∥2 (110.14)

• Convergence

It has been shown that in exact arithmetic, GMRES can not breakdown and will give exact solutions

in at most n steps. In practice, the maximum steps GMRES can run depends on the memory due

to the fact it needs to store all Arnoldi vectors. Restarting schemes have been proposed for a fixed

m, which is denoted by GMRES(m). Typical value for m can be m ∈ [5, 20]. GMRES(m) can

not breakdown in exact arithmetic before the exact solution has been reached. But it may never

converge for m < n (Bai, 2007).
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110.5.2.3 BiCGStab and QMR

These two methods are based on nonsymmetric Lanczos procedure, which is quite different from Arnoldi’s

in the sense that it formulates biorthogonal instead of orthogonal sequence. They are counterparts of CG

and GMRES method, which follows similar derivation procedure except the Lanczos biorthogonalization

is used instead of Arnoldi’s procedure (Bai, 2007).

110.5.3 Preconditioning Techniques

Lack of robustness is a widely recognized weakness of iterative solvers relative to direct solvers. Using

preconditioning techniques can greatly improve the efficiency and robustness of iterative methods. Pre-

conditioning is simply a means of transforming the original linear system into one with the same solution

but easier to solve with an iterative solver. Generally speaking, the reliability of iterative techniques,

when dealing with various applications, depends much more on the quality of the preconditioner than

on the particular Krylov subspace accelerator used.

The first step in preconditioning is to find a preconditioning matrix M. The matrix M can be defined

in many different ways but there are a few minimal requirements the M is supposed to satisfy (Benzi,

2002).

1. From practical point of view, the most important requirement of M is that it should be inexpensive

to solve linear system Mx = b. This is because the preconditioned algorithm will all require a linear

system solution with the matrix M at each step.

2. The matrix M should be somehow close to A and it should not be singular. We can see that

actually most powerful preconditioners are constructed directly from A.

3. The preconditioned M–1A should be well-conditioned or has very few extreme eigenvalues thus M

can accelerate convergence dramatically.

Once a preconditioner M is available, there are three ways to apply it.

1. Left Preconditioning

M–1Ax = M–1b (110.15)

2. Right Preconditioning

AM–1u = b, x ≡ M–1u (110.16)
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3. Split Preconditioning

It is a very common situation that M is available in factored form M = MLMR, in which, typically,

ML and MR are triangular matrices. Then the preconditioning can be split,

M–1
L AM–1

R u = b, x ≡ M–1
R u (110.17)

It is imperative to preserve symmetry when the original matrix A is symmetric, so the split precon-

ditioner seems mandatory in this case.

Consider that a matrix A that is symmetric and positive definite and assume that a preconditioner

M is available. The preconditioner M is a matrix that approximates A in some yet-undefined sense. We

normally require that the M is also symmetric positive definite.

In order to preserve the nice SPD property, in the case when M is available in the form of an

incomplete Cholesky factorization, M = LLT , people can simply just use the split preconditioning, which

yields the SPD matrix

L–1AL–T u = L–1b, x ≡ L–T u (110.18)

However, it is not necessary to split the preconditioner in this manner in order to preserve symmetry.

Observe that M–1A is self-adjoint for the M inner product

(x, y)M ≡ (Mx, y) = (x, My) (110.19)

since

(M–1Ax, y)M = (Ax, y) = (x, Ay) = (x, M(M–1A)y) = (x, M–1Ay)M (110.20)

Therefore, an alternative is to replace the usual Euclidean inner product in the CG algorithm with the

M inner product (Saad, 2003).

If the CG algorithm is rewritten for this new inner product, denoting by rj = b–Axj the original residual

and by zj = M–1rj the residual for the preconditioned system, the following sequence of operations is

obtained, ignoring the initial step:

1. αj := (zj , zj)M /(M–1Apj , pj)M ,

2. xj+1 := xj + αjpj ,

3. rj+1 := rj – αjApj and zj+1 := M–1rj+1,

4. βj := (zj+1, zj+1)M /(zj , zj)M ,
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5. pj+1 := zj+1 + βjpj .

Since (zj , zj)M = (rj , zj) and (M–1Apj , pj)M = (Apj , pj), the M inner products do not have to be com-

puted explicitly. With this observation, the following algorithm is obtained.

ALGORITHM Preconditioned CG (Saad, 2003)

1. Compute r0 := b – Ax0, z0 := M–1r0, p0 := z0

2. For j = 0, 1, · · · , until convergence, Do
3. αj := (rj , zj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj – αjApj

6. zj+1 := M–1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)

8. pj+1 := zj+1 + βjpj

9. EndDo

110.5.4 Preconditioners

Finding a good preconditioner to solve a given sparse linear system is often viewed as a combination

of art and science. Theoretical results are rare and some methods work surprisingly well, often despite

expectations. As it is mentioned before, the preconditioner M is always close to A in some undefined-yet

sense. Some popular preconditioners will be introduced in this section.

110.5.4.1 Jacobi Preconditioner

This might be the simplest preconditioner people can think of. If A has widely varying diagonal entries,

we may just use diagonal preconditioner M = diag(a11, · · · , ann). One can show that among all possible

diagonal preconditoners, this choice reduces the condition number of M–1A to within a factor of n of its

minimum value.

110.5.4.2 Incomplete Cholesky Preconditioner

Another simple way of defining a preconditioner that is close to A is to perform an incomplete Cholesky

factorization of A. Incomplete factorization formulates an approximation of A ≈ L̂L̂T , but with less or

no fill-ins relative to the complete factorization A = LLT (Demmel, 1997).
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ALGORITHM Incomplete Cholesky Factorization (Saad, 2003)

1. For j = 1, 2, · · · , n, Do

3. ljj :=
√

ajj –
∑j–1

k=1 l2jk
4. For i = j + 1, · · · , n, Do

5. lij = (aij –
∑j–1

k=1 likljk)/ljj
6. Apply dropping rule to lij
7. EndDo

8. EndDo

There are many ways to control the number of fill-ins in IC factorization. No fill-in version of

incomplete Cholesky factorization IC(0) is rather easy and inexpensive to compute. On the other hand,

it often leads to a very crude approximation of A, which may result in the Krylov subspace accelerator

requiring too many iterations to converge. To remedy this, several alternative incomplete factorizations

have been developed by researchers by allowing more fill-in in L, such as incomplete Cholesky factorization

with dropping threshold IC(ϵ). In general, more accurate IC factorizations require fewer iterations to

converge, but the preprocessing cost to compute the factors is higher.

110.5.4.3 Robust Incomplete Factorization

Incomplete factorization preconditioners are quite effective for many application problems but special

care must be taken in order to avoid breakdowns due to the occurrence of non-positive pivots during the

incomplete factorization process.

The existence of an incomplete factorization A ≈ L̂L̂T has been established for certain classes of

matrices. For the class of M-matrices, the existence of incomplete Cholesky factorization was proved

for arbitrary choices of the sparsity pattern (Meijerink and van der Vorst, 1977). The existence result

was extended shortly thereafter to a somewhat larger class (that of H-matrices with positive diagonal

entries) (Manteuffel, 1980; Varga et al., 1980; Robert, 1982). Benzi and Tůma (2003) presents reviews

on the topic of searching for robust incomplete factorization algorithms and an robust algorithm based

on A-Orthogonalization has been proposed.

In order to construct triangular factorization of A, the well-known is not the only choice. Benzi

and Tůma (2003) shows how the factorization A = LDLT (root-free factorization) can be obtained by

means of an A-orthogonalization process applied to the unit basis vectors e1, e2, · · · , en. This is simply

the Gram-Schmidt process with respect to the inner product generated by the SPD matrix A. This

idea is not new and as a matter of fact, it was originally proposed at as early as 1940’s in Fox et al.

(1948). It has been observed in Hestenes and Stiefel (1952) that A-orthogonalization of the unit basis
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vectors is closely related to Gaussian elimination but this algorithm costs twice as much as the Cholesky

factorization in the dense case.

Factored Approximate Inverse Preconditioner In reference Benzi et al. (1996) A-orthogonalization has

been exploited to construct factored sparse approximate inverse preconditioners noting the fact that

A-orthogonalization also produces the inverse factorization A–1 = ZD–1ZT (with Z unit upper triangular

and D diagonal). Because the A-orthogonaliza-tion, even when performed incompletely, is not subject

to pivot breakdowns, these preconditioners are reliable (Benzi et al., 2000). However, they are often less

effective than incomplete Cholesky preconditioning at reducing the number of PCG iterations and their

main interest stems from the fact that the preconditioning operation can be applied easily in parallel

because triangular solve is not necessary in approximate inverse preconditioning.

Reference Benzi and Tůma (2003) investigates the use of A-orthogonalization as a way to compute

an incomplete factorization of A rather than A–1 thus a reliable preconditioning algorithm can be devel-

oped. The basic A-orthogonalization procedure can be written as follows (Benzi et al., 2000).

ALGORITHM Incomplete Factored Approximate Inverse (Benzi et al., 1996)

1. Let z(0)
i = ei, for i = 1, 2, · · · , n

2. For i = 1, 2, · · · , n, Do

3. For j = i, i + 1, · · · , n, Do

4. p(i–1)
j := aT

i z(i–1)
j

5. EndDo

6. For j = i + 1, · · · , n, Do

7. z(i)
j := z(i–1)

j – (
p(i–1)

j

p(i–1)
i

)

8. Apply dropping to z(i)
j

9. EndDo

10. EndDo

11. Let zi := z(i–1)
i and pi := p(i–1)

i , for i = 1, 2, · · · , n.

12. Return Z = [z1, z2, · · · , zn] and D = diag(p1, p2, · · · , pn).

The basic algorithm described above can suffer a breakdown when a negative or zero value of a pivot

pi. When no dropping is applied, pi = zT
i Azi > 0. The incomplete procedure is well defined, i.e., no

breakdown can occur, if A is an H-matrix (in the absence of round-off). In the general case, breakdowns

can occur. Breakdowns have a crippling effect on the quality of the preconditioner. A negative pi would

result in an approximate inverse which is not positive definite; a zero pivot would force termination of

the procedure, since step (7) cannot be carried out.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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The way proposed to avoid non-positive pivots is simply to recall that in the exact A-orthogonalization

process, the pi’s are the diagonal entries of matrix D which satisfies the matrix equation

ZT AZ = D (110.21)

hence for 1 < i < n

pi = zT
i Azi > 0 (110.22)

since A is SPD and zi ̸= 0. In the exact process, the following equality holds

pi = zT
i Azi = aT

i zi and pj = zT
i Azj = aT

i zj (110.23)

Clearly it is more economical to compute the pivots using just inner product aT
i zi rather than the middle

expression involving matrix-vector multiply. However, because of dropping and the resulting loss of A-

orthogonality in the approximate z̄-vectors, such identities no longer hold in the inexact process and for

some matrices one can have

aT
i z̄i ≪ z̄T

i Az̄i (110.24)

The robust algorithm requires that the incomplete pivots p̄i’s be computed using the quadratic form

z̄T
i Az̄i throughout the AINV process, for i = 1, 2, · · · , n.

ALGORITHM Stabilized Incomplete Approximate Inverse (Benzi et al., 2000)

1. Let z(0)
i = ei, for i = 1, 2, · · · , n

2. For i = 1, 2, · · · , n, Do

3. vi := Az(i–1)
i

4. For j = i, i + 1, · · · , n, Do

5. p(i–1)
j := vT

i z(i–1)
j

6. EndDo

7. For j = i + 1, · · · , n, Do

8. z(i)
j := z(i–1)

j – (
p(i–1)

j

p(i–1)
i

)

9. Apply dropping to z(i)
j

10. EndDo

11. EndDo

12. Let zi := z(i–1)
i and pi := p(i–1)

i , for i = 1, 2, · · · , n.

13. Return Z = [z1, z2, · · · , zn] and D = diag(p1, p2, · · · , pn).
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Obviously, the robust (referred to as SAINV) and plain algorithm are mathematically equivalent.

However, the incomplete process obtained by dropping in the z-vectors in step (9) of the robust algorithm

leads to a reliable approximate inverse. This algorithm, in exact arithmetic, is applicable to any SPD

matrix without breakdowns. The computational cost of SAINV is higher than basic AINV and special

care has to be taken to do sparse-sparse matrix-vector multiply.

Incomplete Factorization by SAINV Consider now the exact algorithm (with no dropping) and write

A = LDLT with L unit lower triangular and D diagonal. Observe that L in the LDLT factorization of A

and the inverse factor satisfy

AZ = LD or L = AZD–1 (110.25)

where D is the diagonal matrix containing the pivots. This easily follows from

ZT AZ = D and ZT = L–1 (110.26)

If we recall that pivot dj = pj = zT
j Azj = ⟨Azj , zj⟩, then by equating corresponding entries of AZD–1 and

L = [lij] we find that (Benzi and Tůma, 2003; Bollhöfer and Saad, 2001)

lij =
⟨Azj , zi⟩
⟨Azj , zj⟩

i ≥ j (110.27)

Hence, the L factor of A can be obtained as a by-product of the A-orthogonal-ization, at no extra cost.

In the implementation of SAINV, the quantities lij in Equation 110.27 are the multipliers that are used in

updating the columns of Z. Once the update is computed, they are no longer needed and are discarded.

To obtain an incomplete factorization of A, we do just the opposite; we save the multipliers lij , and

discard the column vectors zj as soon as they have been computed and operated with. Hence, the

incomplete L factor is computed by columns; these columns can be stored in place of the zj vectors,

with minimal modifications to the code. Here, we are assuming that the right-looking form of SAINV

is being used. If the left-looking one is being used, then L would be computed by rows. Please refer

to Benzi and Tůma (2003) for more implementation details.

110.5.5 Numerical Experiments

Matrices from soil-structure interaction finite element analysis have been extracted from simulation

system to study the performance of different preconditioning techniques on PCG method. The prototype

of soil structure model has been shown in Figures 110.56 and 110.57. In order to introduce both of

the nonlinear theories for soil and structures, we use continuum elements to model the soil and beam

elements for the structures. Matrices from static pushover analysis and dynamic ground motion analysis

have been collected for this research.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 110.56: Finite Element Mesh of Soil-Structure Interaction Model
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Figure 110.57: Finite Element Mesh of Soil-Structure Interaction Model
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Figure 110.58: Matrices N = 3336 (Continuum FEM)

Figure 110.59: Matrices N = 5373 (Continuum FEM)
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Figure 110.60: Matrices N = 33081 (Continuum FEM)

Figure 110.61: Matrices N = 8842 (Soil-Beam Static FEM)
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Table 110.7: Matrices in FEM Models

Continuum Model (Static)

Matrix Property Dimension # Nonzeros

m1188 SPD 3336 220283

m1968 SPD 5373 364877

m11952 SPD 33081 2424543

Soil-Beam Model (Static and Dynamic)

Matrix Property Dimension # Nonzeros

SoilBeam SPD 8442 547678

SoilBeamDyn SPD 8442 547671

Figure 110.62: Matrices N = 8842 (Soil-Beam Dynamic FEM)
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SPD matrices have been studied using Conjugate Gradient method with or without preconditioning.

Performance has been summarized in Table 110.8.

Table 110.8: Performance of CG and PCG Method (Continuum FEM)

3336 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density2

- 4376 - 54.82 54.82 -

Jacobi 1612 0.01 20.18 20.19 -

IC(0) 413 2.19 11.07 13.26 1.00

IC(1e-6) 5 5.90 0.47 6.37 5.88

RIF2(1e-2) 571 9.37 14.94 24.31 0.94

RIF3(1e-2) 541 6.80 14.13 20.93 0.94

5373 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 4941 - 103.78 103.78 -

Jacobi 1711 0.01 36.61 36.62 -

IC(0) 437 6.5 20.38 26.88 1.00

IC(1e-6) 6 19.81 1.3 21.11 8.10

RIF2(1e-2) 599 25.71 26.55 52.26 0.96

RIF3(1e-2) 566 21.31 25.23 46.54 0.96

33081 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 6754 - 952.53 952.53 -

Jacobi 2109 0.03 308.46 308.49 -

IC(0) 565 273.83 173.05 446.88 1.00

IC(1e-6)3

RIF2(1e-2) 694 1172.7 211.88 1384.58 0.99

RIF3(1e-2) 664 1245.4 202.67 1448.07 0.99
2Density is defined as the number of non-zeros of the incomplete factor divided

by the number of non-zeros in the lower triangular part of A.

3Could not continue because memory requirement larger than 1.4GB.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 110.63: Convergence of CG and PCG Method (3336 DOFs Model)

Figure 110.64: Convergence of CG and PCG Method (5373 DOFs Model)
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Table 110.9: Performance of CG and PCG Method (Soil-Beam FEM)

8842 DOFs Soil-Beam FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density4

- 3274 - 102.5 102.5 -

Jacobi 1687 0.01 54.56 54.57 -

IC(0) 26 15.77 1.95 17.72 1.00

IC(1e-6) 6 110.17 2.79 112.96 15.11

RIF2(1e-6)5 23 3364.8 3.44 3368.24 4.32

RIF3(1e-6)5 31 34541 9.26 34550.26 16.37

8842 DOFs Soil-Beam FEM (Dynamic)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 3276 - 136.7 136.7 -

Jacobi MaxIt

IC(0) MaxIt

IC(1e-6) MaxIt

RIF2(1e-2) MaxIt

RIF3(1e-2) MaxIt
4Density is defined as the number of non-zeros of the incomplete factor divided by the number

of non-zeros in the lower triangular part of A.
5Iteration with tolerance 1e-2 failed to converge.

110.5.6 Conclusion and Future Work

1. For the soil-structure interaction problems investigated in this section, Conjugate Gradient method

works fine and the convergence is acceptable for most cases.

2. Incomplete Cholesky factorization preconditioner has been shown to be very powerful in static

pushover problems.

3. Dynamic problems formulated by Newmark integration scheme have not been extensively tested.

But according to the data available so far, neither IC nor RIF preconditioners performed well and

further testing is necessary to reach a more persuasive conclusion. The difficulty in dynamic analysis

results from the fact that consistent mass and damping matrices used in continuum finite element

formulations significantly degrade the conditioning number of the final system. This situation

deteriorates when penalty handler is used to apply multiple point constraints, which introduces

huge off-diagonal numbers to stiffness, mass and damping matrices (Cook et al., 2002).

4. Robust incomplete factorization preconditioning based on A-orthogonalization has not been shown

competitive with IC preconditioners in this research. It is also worth noting that all timings are
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Figure 110.65: Convergence of CG and PCG Method (33081 DOFs Model)

taken in MATLAB. There are much more improvement can be achieved with a carefully coded

FORTRAN program.

5. Static analysis has been extensively studied and it can be safely concluded that IC(0) and Jacobi

preconditioners are good choices for the nonlinear soil-beam interaction simulations.

6. Dynamic analysis has also been studied but more work is needed to draw any detailed conclusion.

Generally speaking, one should be alert if iterative solver is to be used for dynamic analysis. This

partially comes from the fact that mass and damping matrices undoubtedly alter the structures

of the coefficient matrix. This situation becomes more complicated if penalty handler is used to

introduce off-diagonal numbers when handling multi-point constraints. So direct solver would be

a more stable option for solving dynamic equations.

110.6 Performance Study on Parallel Direct/Iterative Solving in SFSI

The motivation of this section is to introduce a robust and efficient parallel equation solver into our

parallel finite element analysis framework. Aside from sparsity, which has been well known as the
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Figure 110.66: Convergence of CG and PCG Method (Soil-Beam Static Model)

Figure 110.67: Convergence of CG and PCG Method (Soil-Beam Dynamic Model)
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result of compact support that is inherent with finite element method, there exist some other special

considerations that make the equation solving in finite element simulation a more involved problem.

In nonlinear finite element simulations, handling of constraints significantly affects the condition

number of assembled equation systems. In SFSI simulations, multiple-point constraint is necessary

to enforce the connection between soil and pile elements. In this research, penalty handler has been

adopted to impose multiple point constraints on the assembled equation systems. Transformation and

Lagrange multipliers are among those popular methods as well (Belytschko et al., 2000; Cook et al.,

2002). The method of Lagrange multipliers adds extra constraints to the system and the resulted

coefficient matrix will lose symmetric positive definiteness. Transformation is favorable especially in the

sense that it reduces the order of the equation systems by condensing out slave/constrained DOFs. But

the transformation is the most difficult to code and the situation of one single main/retained node with

multiple follower/constrained nodes further complicates the problem.

Penalty method is chosen in this research due to the fact that it well preserves the symmetric positive

definiteness of the system if the nice property is observed. Another consideration comes from the easiness

with which the penalty methods can handle the single main/retained multiple follower/constrained situ-

ations. This is proven to be extremely valuable when data redistribution is required in adaptive parallel

processing because the DOF Graph object can be clearly tracked during partition and repartition phases.

The incapability of handling constraints accurately has been long known as the weakness of penalty

method. The choice of the key penalty number seems arbitrary and largely depends on experience. The

dilemma is with larger penalty number, the system can handle constraints more accurately while the

coefficient matrix can become very ill-conditioned. This can lead to serious convergence problem for

iterative solvers.

The majority of coefficient matrices resulted from finite element analysis are inherently symmetric

positive definite, for which lots of numerical algorithms have been proposed and solving SPD, symmet-

ric or closely symmetric systems has been relatively maturer than more common unsymmetric cases.

Unfortunately, in geotechnical finite element simulations, unassociated constitutive models lead to un-

symmetric stiffness matrices (Jeremić, 2004). More general parallel solvers must be coded to solve the

problem.

In this section, both iterative and direct solvers are coded using the consistent PETSc interface (Balay

et al., 2001, 2004, 1997). Popular direct solvers for general unsymmetric systems such as MUMPS,

SPOOLES, SuperLU, PLAPACK have been introduced and performance study has been carried out

to investigate the efficiency of different solvers on large scale SFSI simulations with penalty-handled

unsymmetric equation systems. GMRES is always the first choice of iterative method when general

unsymmetric systems are concerned. Preconditioning techniques have been thoroughly studied in this
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research to explore possible advantage of preconditioned iterative solver over direct solving. Jacobi,

incomplete LU decomposition and approximate inverse preconditioners represent the most popular choices

for Krylov methods and they are chosen in this performance survey.

All numerical algorithms have been implemented through interface of PETSc, which provides a

consistent platform on which implementation issues can be avoided to expose individual algorithmic

performance.

110.6.1 Parallel Sparse Direct Equation Solvers

The methods that we consider for the solution of sparse linear equations can be grouped into four

main categories: general techniques, frontal methods, multifrontal approaches and supernodal algo-

rithms (Dongarra et al., 1996).

110.6.1.1 General Techniques – SPOOLES

The so-called general approach can be viewed as parallel versions of sparse LU decomposition. Special

cares must be taken to handle the sparse data structures. Sparsity ordering is crucial in parallel sparse

equation solving in order to reduce fill-in and discover large-grain parallelism (Demmel et al., 1993).

Freely available package SPOOLES provides minimum degree (multiple external minimum degree (Liu,

1985)), generalized nested dissection and multisection ordering schemes for matrix sparsity ordering.

Fundamental supernode tree built on top of vertex elimination tree is used to explore granularity in

parallel (Ashcraft, 1999; Ashcraft et al., 1999).

110.6.1.2 Frontal and Multifrontal Methods – MUMPS

Frontal methods have their origins in the solution of finite element problems from structural analysis.

The usual way to describe the frontal method is to view its application to finite element problems where

the matrix A is expected as a sum of contributions from the elements of a finite element discretiza-

tion (Dongarra et al., 1996). That is,

A =
m∑

l=1
A[l], (110.28)

where A[l] is nonzero only in those rows and columns that correspond to variables in the lth element.

If aij and a[l]
ij denote the (i, j)th entry of A and A[l], respectively, the basic assembly operation when

forming A is of the form

aij ⇐ aij + a[l]
ij . (110.29)
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It is evident that the basic operation in Gaussian elimination

aij ⇐ aij + aip[app]–1apj . (110.30)

may be performed as soon as all the the terms in the triple product 110.30 are fully summed (that is,

are involved in no more sums of the form 110.29). The assembly and Gaussian elimination processes

can therefore be interleaved and the matrix A is never assembled explicitly. This allows all intermediate

working to be performed in a dense matrix, termed frontal matrix, whose rows and columns correspond

to variables that have not yet been eliminated but occur in at least one of the elements that have been

assembled.

For general problems other than finite element, the rows of A (equations) are added into the frontal

matrix one at a time. A variable is regarded as fully summed whenever the equation in which it last

appears is assembled. The frontal matrix will, in this case, be rectangular.

The idea of multifrontal method is to couple a sparsity ordering with the efficiency of a frontal matrix

kernel so allowing good exploitation of high performance computers. The basic approach is to develop

separate fronts simultaneously which can be chosen using a sparsity preserving ordering such as minimum

degree.

Elimination tree, again is the most important notion in the factorization process and also utilized

to discover the potential of parallelism. An elimination tree defines the a precedence order within the

factorization. The factorization commences at the leaves of of the tree and data is passed towards the

root along the edges in the tree. To complete the work associated with a node, all the data must have

been obtained from the children of the node, otherwise work at different nodes is independent.

Freely available package MUMPS (MUltifrontal Massively Parallel sparse direct Solver) has been used

in this research to investigate the performance of multifrontal methods (http://graal.ens-lyon.fr/MUMPS/,

2006).

MUMPS is a package for solving systems of linear equations of the form Ax = b, where A is a

square sparse matrix that can be either unsymmetric, symmetric positive definite, or general symmetric.

MUMPS uses a multifrontal technique which is a direct method based on either the LU or the LDLT

factorization of the matrix. MUMPS exploits both parallelism arising from sparsity in the matrix A and

from dense factorizations kernels.

The main features of the MUMPS package include the solution of the transposed system, input of

the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative

refinement, scaling of the original matrix, and return of a Schur complement matrix. MUMPS offers

several built-in ordering algorithms, a tight interface to some external ordering packages such as METIS

and PORD, and the possibility for the user to input a given ordering. Finally, MUMPS is available in
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various arithmetics (real or complex, single or double precision).

The software is written in Fortran 90 although a C interface is available. The parallel version of

MUMPS requires MPI for message passing and makes use of the BLAS, BLACS, and ScaLAPACK

libraries. The sequential version only relies on BLAS.

MUMPS distributes the work tasks among the processors, but an identified processor (the host) is

required to perform most of the analysis phase, to distribute the incoming matrix to the other processors

(slaves) in the case where the matrix is centralized, and to collect the solution. The system Ax = b is

solved in three main steps:

1. Analysis. The host performs an ordering based on the symmetrized pattern A + AT, and carries out

symbolic factorization. A mapping of the multifrontal computational graph is then computed, and

symbolic information is transferred from the host to the other processors. Using this information,

the processors estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will participate in the

numerical factorization. The numerical factorization on each frontal matrix is conducted by a

main compute processor (determined by the analysis phase) and one or more slave processors

(determined dynamically). Each processor allocates an array for contribution blocks and factors;

the factors must be kept for the solution phase.

3. Solution. The right-hand side b is broadcast from the host to the other processors. These

processors compute the solution x using the (distributed) factors computed during Step 2, and the

solution is either assembled on the host or kept distributed on the processors.

Each of these phases can be called separately and several instances of MUMPS can be handled

simultaneously. MUMPS allows the host processor to participate in computations during the factorization

and solve phases, just like any other processor.

For both the symmetric and the unsymmetric algorithms used in the code, a fully asynchronous

approach with dynamic scheduling of the computational tasks has been chosen. Asynchronous commu-

nication is used to enable overlapping between communication and computation. Dynamic scheduling

was initially chosen to accommodate numerical pivoting in the factorization. The other important reason

for this choice was that, with dynamic scheduling, the algorithm can adapt itself at execution time to

remap work and data to more appropriate processors. In fact, the main features of static and dynamic

approaches have been combined and the estimation obtained during the analysis to map some of the

main computational tasks has been used; the other tasks are dynamically scheduled at execution time.

The main data structures (the original matrix and the factors) are similarly partially mapped according

to the analysis phase.
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110.6.1.3 Supernodal Algorithm – SuperLU

The left-looking or column Cholesky algorithm can be implemented for sparse system and can be blocked

by using a supernodal formulation. The idea of a supernode is to group together columns with the same

nonzero structure, so they can be treated as a dense matrix for storage and computation. Supernodes

were originally used for (symmetric) sparse Cholesky factorization (Demmel et al., 1999a). In the factor-

ization A = LLT (or A = LDLT), a supernode is a range (r : s) of columns of L with the same nonzero

structure below the diagonal; that is, L(r : s; r : s) is full lower triangular and every row of L(r : s; r : s)

is either full or zero.

Then in left-looking Cholesky algorithm, all the updates from columns of a supernode are summed

into a dense vector before the sparse update is performed. This reduces indirect addressing and allows the

inner loops to be unrolled. In effect, a sequence of col-col updates is replaced by a supernode-column

(sup-col) update. The sup-col update can be implemented using a call to a standard dense Level 2

BLAS matrix-vector multiplication kernel. This idea can be further extended to supernode-supernode

(sup-sup) updates, which can be implemented using a Level 3 BLAS dense matrix-matrix kernel. This

can reduce memory traffic by an order of magnitude, because a supernode in the cache can participate

in multiple column updates (Demmel et al., 1999a). It has been reported in (Ng and Peyton, 1993) that

a sparse Cholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 times as fast as a col-col

algorithm. Indeed, supernodes have become a standard tool in sparse Cholesky factorization.

To sum up, supernodes as the source of updates help because of the following (Demmel et al.,

1999a):

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS is replaced by dense

Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save memory references. (Level

1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

3. Elements of the source supernode can be reused in multiple columns of the destination supernode

to reduce cache misses. (Level 2 BLAS is replaced by Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization, before the numeric

factorization begins. However, in sparse LU, the nonzero structure cannot be predicted before numeric

factorization, so supernodes must be defined dynamically. Furthermore, since the factors L and U are

no longer transposes of each other, the definition of a supernode must be generalized.
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Freely available package SuperLU proposed a couple of ways to generalize the symmetric definition

of supernodes to unsymmetric factorization (Demmel et al., 1999a). It is now not possible to use Level

3 BLAS efficiently for unsymmetric systems. The implementation in SuperLU performs a dense matrix

multiplication of a block of vectors and, although these can not be written as another dense matrix, it

has been shown that this Level 2.5 BLAS has most of the performance characteristics of Level 3 BLAS

since the repeated use of the same dense matrix allows good use of cache and memory hierarchy.

There are three versions of libraries collectively referred as SuperLU (Demmel et al., 2003),

• Sequential SuperLU is designed for sequential processors with one or more layers of memory

hierarchy (caches).

• Multithreaded SuperLU (SuperLU MT) is designed for shared memory multiprocessors (SMPs),

and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices in order to

speed up the computation (Demmel et al., 1999b).

• Distributed SuperLU SuperLU DIST is designed for distributed memory parallel processors, using

MPI for interprocess communication. It can effectively use hundreds of parallel processors on

sufficiently large matrices (Li and Demmel, 2003).

Parallelizing sparse direct solver for unsymmetric systems is more complicated than parallel sparse

Cholesky case. The advantage of sparse Cholesky over the unsymmetric case is that pivots can be chosen

in any order from the main diagonal while guaranteeing stability. This lets us perform pivot choice before

numerical factorization begins, in order to minimize fill-in, maximize parallelism. precompute the nonzero

structure of the Cholesky factor, and optimize the (2D) distributed data structures and communication

pattern (Li and Demmel, 2003).

In contrast, for unsymmetric or indefinite systems, distributed memory codes can be much more

complicated for at least two reasons. First and foremost, some kind of numerical pivoting is necessary

for stability. Classical partial pivoting or the sparse variant of threshold pivoting typically cause the

fill-ins and workload to be generated dynamically during factorization. Therefore, we must either design

dynamic data structures and algorithms to accommodate these fill-ins, or else use static data structures

which can grossly overestimate the true fill-in. The second complication is the need to handle two

factored matrices L and U, which are structurally different yet closely related to each other in the filled

pattern. Unlike the Cholesky factor whose minimum graph representation is a tree (elimination tree), the

minimum graph representations of the L and U factors are directed acyclic graphs (elimination DAGs).

In SuperLU DIST, a static pivoting approach, called GESP (Gaussian Elimination with Static Piv-

oting) (Li and Demmel, 1998) is used. In order to parallelize the GESP algorithm, a 2D block-cyclic
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mapping of a sparse matrix to the processors is used. An efficient pipelined algorithm is also designed

to perform parallel factorization. With GESP, the parallel algorithm and code are much simpler than

dynamic pivoting.

The main algorithmic features of SuperLU DIST solver are summarized as follows (Li and Demmel,

2003):

• supernodal fan-out (right-looking) based on elimination DAGs,

• static pivoting with possible half-precision perturbations on the diagonal,

• use of an iterative algorithm using the LU factors as a preconditioner, in order to guarantee stability,

• static 2D irregular block-cyclic mapping using supernodal structure, and

• loosely synchronous scheduling with pipelining.

In particular, static pivoting can be performed before numerical numerical factorization, allowing us

to use all the techniques in good sparse Cholesky codes: choice of a (symmetric) permutation to minimize

fill-in and maximize parallelism, precomputation of the fill pattern and optimization of 2D distributed

data structures and communication patterns. Users are referred to Li and Demmel (2003) for algorithm

details.

110.6.2 Performance Study on SFSI Systems

In this section, performance study on popular parallel direct and iterative solvers has been conducted.

The purpose is to provide some guidelines on appropriate use of different solvers with the parallel finite

simulation framework. Matrix systems from SFSI analysis are used as test cases. The performance

investigation uses IA64 Intel-based cluster at SDSC.

110.6.2.1 Equation System
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Figure 110.68: Matrices N = 33081 (Continuum FEM)
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110.6.2.2 Performance Results

Table 110.10: Performance Study on SFSI Systems (N=33081)

Direct Solvers

Solvers Num of CPUs Time (s)

4 6.0312

MUMPS 8 7.0534

16 5.3472

4 20.358

SuperLU DIST 8 13.803

16 13.755

4 10.696

SPOOLES 8 7.5338

16 6.2448

Iterative Solvers (GMRES)

Preconditioner Num of CPUs Time (s)

Jacobi 16 96.441

4 277.49

Parallel ILU(0) 8 276.07

16 135.78

110.6.3 Conclusion

This section presents the parallel solvers implemented in parallel finite element framework. Table 110.10,

draws several conclusions about appropriate use of solvers:

• Direct solvers outperforms the iterative solver significantly for general cases. It is worthwhile to

note that nonsymmetric solvers are used here due to their generality. For special cases such as

SPD system, preconditioned CG will show much better performance.

• The Conjugate Gradient method applies only to Symmetric Positive Definite (SPD) system. This

puts restriction on the material models we can use in our simulations. Generally speaking, elastic

material will yield a SPD stiffness matrix. Plastic material with associative flow rule also satisfies
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this category. Plastic material with non-associative flow rule has non-symmetric element stiffness

matrix and so will be the global coefficient matrix of the equation system.

• Another category of matrix that deserves attention is the stiffness matrix from softening materials,

which possesses at least one negative eigenvalue so the SPD property will be broken. For advanced

geo-materials subject to complicated loadings, as the material develops nonlinearity, the condition

of stiffness matrix might vary greatly from SPD (elastic phase), to singular (elastic-perfectly-

plastic), and non-symmetric non-positive-definite (elastic-non-associative-plastic-softening) cases.

This poses another challenge when one tries to use iterative solver for production runs. The

unpredictability of stiffness matrix will disable the application of powerful solvers such as Conjugate

Gradient for iterative case and Cholesky for direct case.

• The reason why iterative solver exhibits poor efficiency is partly due to the problem size. We can

also see from the Table 110.10 that parallel direct solver is not scalable in general. Iterative solver,

on the other hand, is more scalable and it is safe to project that when the size of matrix increases,

iterative solver has the advantage from the memory requirement point of view.

Parallel equation solving itself is a complicated topic in numerical computing community. In this sec-

tion, the main purpose is to introduce a robust and generally efficient parallel solver for finite element

simulations. So in this sense, parallel direct solvers such as MUMPS and SPOOLES are recommended.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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111.1 Chapter Summary and Highlights

111.2 Introduction

The analysis of problems several civil engineering fields often requires a study of fluid-structure systems

that are excited by dynamic loads. For example, the evaluation of the structural integrity of nuclear

reactor components involves the analysis of structures of complex shape and their interaction with the

fluid in which they are embedded Donea et al. (1982). In these cases, both the fluid and the structure

might undergo non-linear response.

These needs for safety evaluations have motivated the development of computational methods ca-

pable to treat transient, non-linear fluid-structure interaction problems. Donea et al. (1982) presented

an arbitrary Lagrangian-Eulerian (ALE) finite element method with automatic and continuous rezoning

technique of the fluid mesh. With this method, dynamic response of nuclear reactor under solid fluid

interaction has been simulated. Recently Park et al. (2014) examined the modal characteristics of Reac-

tor vessel internals (RVIs) based on scale-similarity analysis with fluid-structure interaction (FSI). It was

observed that the added-mass (A-M) model for submerged structures is considerably dependent on mode

shapes and natural frequencies. Sigrist et al. (2006) conducted comparative dynamic analysis with FSI

modeling for pressure vessel and internals in a nuclear reactor. They proved that the coupling effect is

significant, whereas the effect of added-stiffness on global behavior is negligible. Je et al. (2017) stressed

that improvement of numerical analysis methods has been required to solve complicated phenomena that

occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for

accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. They

investigated the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power

plant. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S)

model as well as the traditional added-mass model.

Though numerous efforts have been made on simulation of SFI problem in nuclear reactors, to the

author’s best knowledge, high fidelity modeling of this dynamic nonlinear phenomena with complex

geometry is still unavailable. Full sets of Navier-stokes (N-S) equation is rarely solved for fully solid

fluid coupling. Instead, many simplified analysis procedure is adopted: like added-mass (A-M) model (as

shown in equation 111.1) Park et al. (2014); Sigrist et al. (2006) and simplified acoustic wave equation

Je et al. (2017) (equation 111.2). These simplified methods introduce great modeling uncertainty to the

simulation system.
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[Ms]{ü} + [Cs]{u̇} + [Ks]{u} = {fe} + {ff }

ff =
∫

S
{Np}T{n}{P}dS = –[Ma]{ü}

(111.1)

[Mf ]{P̈} + [Cf ]{Ṗ} + [Kf ]{P} + ρ[Rint]T{ü} = 0 (111.2)

On the other hand, ALE method, which was originally put forward as a powerful tool for fluid

dynamics with deforming boundary Hirt et al. (1974), has been applied to fully solve the coupled N-

S equation and solid mechanic equation Le Tallec and Mouro (2001); Murea and Sy (2017). The

freedom in moving the fluid mesh offered by the ALE formulation is very attractive. However, it can

be overshadowed by the burden of specifying grid velocities, well suited to a particular problem. As

a consequence, the practical implementation of the ALE description requires that an automatic mesh

displacement prescription algorithm to be supplied. Many methods have been put forward to overcome

this difficulty. For example, pseudo-solid method was adopted by Van Loon et al. (2007) and Jasak

and Tukovic (2006) came up with a simplified procedure by solving a Laplacian equation 111.3 of grid

velocity with finite element discretization.

∇ · (γ∇u) = 0

xnew = xold + u∆t
(111.3)

Seemingly, introducing these additional equations to specify the movement of fluid mesh can well

resolve the inherent problem of ALE method. Based on specified grid velocity, solutions to ALE-formed

N-S equations 111.4 can give precise response of fluid flow.

∂

∂t
(ρJ) = J∇ · (w – v)

∂

∂t
(ρvJ) = J∇ · v(w – v) + J(ρb – ∇p)

(111.4)

However, mathematically the system equations (seen in section 111.3.1) to represent physical phenomena

of SFI itself is sufficient and complete. Theoretically, no additional equations need to be added to the

coupled system. The authors think that the ease gained here by introducing extra mesh movement

equations to ALE method is sacrificed with the accuracy of the result of pressure field. Because in

equation 111.4, the pressure is dependent on both absolute velocity v and relative velocity (v – w).

Different configuration of mesh velocity can result in different relative velocity under the same absolute

velocity, which in turn causes different pressure field.
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This could be fine for pure fluid dynamics problem, where engineers care more about the fluid flow

(i.e. velocity field). However, this may not be good enough for SFI, where hydrodynamic pressure at

solid fluid interface is of great of importance for accurate Neumann boundary condition of solid domain.

Therefore, precise pressure field is desired and indispensable in high-fidelity simulation of SFI.

The research presented here aims at realistic SFI modeling in nuclear reactors with solutions to fully

coupled FSI system (i.e. N-S equations, solid mechanics equations and interface constraint equations).

Geometric conformity is also achieved in this work. The great emphasis was put on accurate pressure

field at solid fluid interface. A full sets of verification and validation tests are provided to guarantee the

reliability of our modeling.

The limitation of current work is that relatively large displacement of solid fluid interface and ac-

companying Eulerian mesh distortion problem are not well resolved. Further development are needed for

these topics.

111.3 Theoretical Formulation

111.3.1 Solid Fluid Interaction

The mathematical description of physical phenomenon of solid fluid interaction includes three parts

Van Loon et al. (2007): The response of solid domain Ωs is controlled by the theory of general continuum

solid mechanics (equation 111.5). The governing equation in fluid domain is Navier-Stokes equation (N-S

equations), which basically consists of mass conservation and momentum conservation equation (shown

in equation 111.6). In the equations below, symbols u, σ, f , p, G, ρ and η denote velocity, Cauchy

stress tensor, body force, pressure, solid shear modulus, density and fluid viscosity. F is deformation

gradient tensor defined as F = ∇χ(X, t).

ρs dus

dt
= ∇ · σs + ρsf s in Ωs (111.5a)

det(F) = 1 in Ωs (111.5b)

σs = G(F · FT – I) – psI in Ωs (111.5c)

ρf ∂uf

∂t
+ = ∇ · σf + ρf f f in Ωf (111.6a)

∇ · uf = 0 in Ωf (111.6b)

σf = 2ηD(uf ) – pf I in Ωf (111.6c)
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At the solid fluid interface D = ∂Ωs ∩ ∂Ωf , kinematic and dynamic constraints should be met, as

shown in equation 111.7.

us – uf = 0 in D (111.7a)

σs · n + σf · n = 0 in D (111.7b)

111.3.2 Finite Volume Discretization

For general purpose, the standard form pf the transport equation for a scalar property ϕ is considered

here in 111.8. It is a second order equation as the diffusion term includes the second derivative of ϕ in

space. Finite volume discretization will be applied to the integral form regarding to control volume Vp

(equation 111.9) in both spatial and temporal sense Moukalled et al. (2016).

∂ρϕ

∂t︸︷︷︸
temporal derivative

+ ∇ · (ρUϕ)︸ ︷︷ ︸
convection term

–∇ · (ρΓϕ∇ϕ)︸ ︷︷ ︸
diffusion term

= Sϕ(ϕ)︸ ︷︷ ︸
source term

(111.8)

∫
Vp

∂ρϕ

∂t
dV︸ ︷︷ ︸

temporal derivative

+
∫

Vp
∇ · (ρUϕ)dV︸ ︷︷ ︸

convection term

–
∫

Vp
∇ · (ρΓϕ∇ϕ)dV︸ ︷︷ ︸
diffusion term

=
∫

Vp
Sϕ(ϕ)dV︸ ︷︷ ︸

source term

(111.9)

• Spatial discretization

The spatial discretization of equation 111.9 includes three parts: discretization of convection term,

diffusion term and source term, respectively. Using divergence theorem, the semi-discrete form of

convection term at arbitrary control volume Vp can be given in equation 111.10, where F denotes

the mass flux through the face defined in equation 111.11. In this semi-discrete form, we still need

to calculate the face value ϕf and face mass flux F in order to evaluate the whole volume integral

of convection term.
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∫
Vp

∇ · (ρUϕ)dV =
∑

f
S · (ρUϕ)f (111.10a)

=
∑

f
S · (ρU)f ϕf (111.10b)

=
∑

f
Fϕf (111.10c)

F = S · (ρU)f (111.11)

The face value ϕf at face center f can be obtained from face interpolation scheme using ϕ value

at control volume center ϕp and value at neighboring volume center ϕN (equation 111.12).

ϕf = fxϕp + (1 – fx)ϕN (111.12)

Here fx is the interpolation factor defined as the ratio of distances fN and PN :

fx =
fN
PN

(111.13)

Similarly, for diffusion term the semi-discrete form is presented in equation 111.14. With the

semi-discrete form, (∇ϕ)f still needs to be evaluated to achieve full discretization. For orthogonal

mesh, following equation 111.15 can be used to simplify our analysis, where |d| is the magnitude

of vector PN .

∫
Vp

∇ · (ρΓϕ∇ϕ)dV =
∑

f
S · (ρΓϕ∇ϕ)f (111.14a)

=
∑

f
(ρΓϕ)f S · (∇ϕ)f (111.14b)

S · (∇ϕ)f = |S|ϕN – ϕP
|d| (111.15)
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The source term Sϕ(ϕ) can be a general function of ϕ. Before the actual discretization, the source

term is first linearized, where Su and Sp also depend on ϕ. Then the volume integral of source

term can be evaluated with equation 111.17.

Sϕ(ϕ) = Su + Spϕ (111.16)

∫
Vp

Sϕ(ϕ)dV = SuVp + SpVpϕp (111.17)

• Temporal discretization

Conducting time integration from t to t + ∆t with both sides of equation 111.9 yields equation

111.18.

∫ t+∆t

t
[
∂

∂t

∫
Vp
ρϕdV +

∫
Vp

∇ · (ρUϕ)dV –
∫

Vp
∇ · (ρΓϕ∇ϕ)]dt =

∫ t+∆t

t
(
∫

Vp
Sϕ(ϕ)dV )dt (111.18)

Substituting the spatial semi-discretization shown above (equations 111.10, 111.14 and 111.17)

into equation 111.18 and assuming that the control volumes do not change in time, equation

111.18 can be written as ;

∫ t+∆t

t
[(
∂ρϕ

∂t
)pVp +

∑
f

Fϕf –
∑

f
(ρΓϕ)f S · (∇ϕ)f ]dt =

∫ t+∆t

t
(SuVp + SpVpϕp)dt (111.19)

Here further temporal discretization are needed to evaluate equation 111.19:

(
∂ρϕ

∂t
)p =

ρn
Pϕ

n
P – ρ0

Pϕ
0
p

∆t
(111.20a)∫ t+∆t

t
ϕ(t)dt =

1
2

(ϕ0 + ϕn)∆t (111.20b)

where

ϕn = ϕ(t + ∆t)

ϕ0 = ϕ(t)
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Assuming that the density and diffusivity do not change in time, the final semi-discrete form

including both spatial and temporal discretization can be given in equation 111.21. Since in

equation 111.21, ϕn
f , (∇ϕ)nf can be expressed with ϕ values at control cell ϕP and neighboring

cells ϕN with equation 111.12 and 111.15. Therefore, equation 111.21 can be finalized into

algebraic equation form (equation 111.22).

ρPϕ
n
P – ρpϕ0

P
∆t

Vp +
1
2
∑

f
Fϕn

f +
1
2
∑

f
Fϕ0

f

–
1
2
∑

f
(ρΓϕ)f S · (∇ϕ)nf –

1
2
∑

f
(ρΓϕ)f S · (∇ϕ)0f

= SuVp +
1
2

SpVPϕ
n
P +

1
2

SpVPϕ
0
P

(111.21)

aPϕ
n
P +
∑
N

aNϕ
n
N = RP (111.22)

For every control volume, one equation of this form is assembled. The value of ϕn
P depends on the

values in the neighboring cells, thus creating a system of algebraic equations 111.23, where [A] is

a sparse matrix, with coefficients aP on the diagonal and aN off the diagonal, [ϕ] is the vector of

ϕ-s for all control volumes and [R] is the source term vector.

[A][ϕ] = [R] (111.23)

111.3.3 Volume of Fluid Method

The physical phenomena of earthquake soil structure interaction in fluid domain is essentially free surface

flow. There are three types of problems in the numerical treatment of free boundaries: (1) their discrete

representation, (2) their evolution in time, and (3) the manner in which boundary conditions are imposed

on them.

Volume of Fluid method is originally put forward by Hirt and Nichols (1981) to solve free surface flow

problems (free boundary problems). Different from traditional one-phase method, VOF method considers

more general two-phase flow problem. In special case where we take one phase as air and another phase

as any liquid that needs to be simulated, then VOF becomes also applicable for free surface flow.

The idea of Volume of Fluid method is to introduce a new field variable - volume fraction value (α)

for each control volume, which is defined in equation ?? where Vi is the total volume of cell i and Vw
i

is the volume of water contained in the cell. From the definition, it can be seen that α values range

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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between 0 and 1. If the cell is completely filled with fluid then α = 1 and if it is filled with void phase

then its value should be 0. In VOF method, momentum equation and continuity equation are solved for

one composite fluid phase characterized by volume fraction α. The physical properties of this one fluid

are calculated as weighted averages based on the volume fractions of two phases in one cell. E.g., the

density of any point in the domain is calculated with equation 111.24.

ρ = αρw + (1 – α)ρa (111.24)

The evolution of volume fraction α is controlled by an additional convection transport equation 111.26.

By solving this equation, the distribution of volume fraction α can be obtained. Then the free fluid

interface can be automatically identified as the zone where the volume fraction α ranges between 0 to

1. In this way, the fluid flow can be represented as the redistribution of α along with the time.

αi =
Vw

i
Vi

(111.25)

∂α

∂t
+ ∇ · (αU) = 0 (111.26)

The free surface flow solver used here is interFoam implemented based on OpenFOAM. In interFoam, the

necessary compression of the phase interface is achieved by introducing an extra artificial compression

term into the transport convection equation of α, as shown in equation 111.27. Ur is the velocity field

suitable to compress the interface. This artificial term is active only in the interface region due to the

term α(1 – α).

∂α

∂t
+ ∇ · (αU) + ∇ · (α(1 – α)Ur) = 0 (111.27)

111.3.4 Pressure-velocity coupling: PISO algorithm

For incompressible form of the fluid system (equation 111.28), two issues require special attention: non-

linearity of the momentum equation and the pressure-velocity coupling Jasak (1996). The non-linear

term in equation 111.29 is ∇ · (UU), i.e. velocity is “being transported by itself”. The discretized

form of this expression would be quadratic in velocity and the resulting system of algebraic equations

would therefore be non-linear. There are two possible solutions for this problem - either use a solver for

non-linear systems, or linearize the convection term.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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∇ · U = 0 (111.28)

∂U
∂t

+ ∇ · (UU) – ∇ · (ν∇U) = –∇p (111.29)

According to section 111.3.2, convection term can be discretized with equation 111.30, where F,

aP and aN are a function of U. The important issue is that the fluxes F should satisfy the continuity

equation 111.28. Linearization of the convection term implies than an existing velocity (flux) field that

satisfies equation 111.28 will be used to calculate aP and aN .

∇ · (UU) =
∑

f
S · (U)f (U)f

=
∑

f
F(U)f

= aPUP +
∑
N

aNUN

(111.30)

PISO (Pressure-Implicit Splitting of Operators) procedure proposed by Venier et al. (2017) is used here

for pressure-velocity coupling in transient calculations. In order to derive the pressure equation, a semi-

discrete form (equation 111.31) of momentum equation is adopted, where pressure gradient term is not

discretized at this stage. The H(U) term consists of two parts: the “transport part”, including the matrix

coefficients for all neighbors multiplied by corresponding velocities and the “source part” including the

source part of the transient term.

aPUP = H(U) – ∇p

H(U) = –
∑
N

aNUN +
U0

∆t

(111.31)

In addition, the discrete form of continuity equation is:

∇ · U =
∑

f
S · Uf = 0 (111.32)

From equation 111.31, U can be explicitly expressed with equation 111.33. Then from the explicit

solution UP velocities at cell face Uf can be calculated through face interpolation (equation 111.34).

Substituting equation 111.34 into equation 111.32 yields the equivalent form of continuity condition

(equation 111.35).
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UP =
H(U)

aP
–

1
aP

∇p (111.33)

Uf = (
H(U)

aP
)f – (

1
aP

)f (∇p)f (111.34)

∑
f

S · [( 1
aP

)f (∇p)f ] =
∑

f
S · (H(U)

aP
)f (111.35)

The fully discrete form of momentum equation is given in equation 111.36. Equation 111.35 and

equation 111.36 constitute the discrete form of incompressible Navier-Stokes system. The face flux F can

be calculated using equation 111.37. When equation 111.35 is satisfied, the face fluxes are guaranteed

to be conservative.

aPUP = H(U) –
∑

f
S(p)f (111.36)

F = S · Uf = S · [(H(U)
aP

)f – (
1

aP
)f (∇p)f ] (111.37)

With all the discrete form of system equations prepared, the PISO algorithm can be described as

follows:

• The momentum equation is solved first. The exact pressure gradient source term is not known

at this stage – the pressure field from the previous time-step is used instead. This stage is

called the momentum predictor. The solution of the momentum equation, Eqn. 111.36, gives an

approximation of the new velocity field.

• Using the predicted velocities, the H(U) operator can be assembled and the pressure equation can

be formulated. The solution of the pressure equation 111.35 gives the first estimate of the new

pressure field. This step is called the pressure correction.

• Eqn. 111.37 provides a set of conservative fluxes consistent with the new pressure field. The

velocity field should also be corrected as a consequence of the new pressure distribution. Velocity

correction is done in an explicit manner, using Eqn. 111.36. This is the explicit velocity correction

stage.
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• Eqn. 111.36 reveals that velocity correction consists of two parts: a correction due to the change in

the pressure gradient and the transported influence of corrections of neighboring velocities. Explicit

velocity correction means that the latter part is neglected. The whole velocity error is assumed

to come from the error in pressure term. This is not true. It is therefore necessary to correct the

H(U) term and repeat pressure correction and explicit velocity correction stage. In other words,

the PISO loop consists of an implicit momentum predictor followed by a series of pressure solutions

and explicit velocity corrections. The loop is repeated until a pre-determined tolerance is reached.

111.3.5 Explicit transient algorithm

The algorithm for solid fluid coupling is an explicit segregated approach. The solving of system equation

111.5 in solid domain and system equation 111.6 in fluid domain are performed by RealESSI and Inter-

Foam respectively. A new container called SSFI is implemented in RealESSI to control all the boundary

information of solid fluid interface. The algorithm is illustrated in figure 111.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start SSFI:: Geometric mapping 

InterFoam:: VOF method  
(MULES) 

 
 

InterFoam::  Momentum equation 

InterFoam::  Pressure equation 

InterFoam::  PIMPLE iteration 
SSFI::  Interface pressure  

updating 

RealESSI:: Transient analysis 

SSFI:: Geometry updating 

SSFI:: Interface velocity 
& fractions updating 

End 

t = 0  

t = t + △t 

Converged 

Not converged 

t < tend 

t = tend 

Figure 111.1: Flowchart of explicit transient algorithm

Initially all the geometric mapping information of solid fluid interaction is built by SSFI. There are 4
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types of geometric mapping in SSFI: Foam node (interface node in fluid domain) maps to foam surface

(interface surfaces in fluid domain), ESSI node (interface node in solid domain) maps to foam nodes,

foam surface maps to ESSI nodes and foam node maps to ESSI nodes. The specific definitions of

these geometric mappings and implementation details can be found in section 111.4.4. These geometric

mapping information is indispensable part while conducting the interpolation for interface pressure,

velocity and nodal displacement.

Then the equilibrium state of fluid domain is solved first by Interfoam based on the boundary con-

ditions from the response of solid domain at last time step. Here the PIMPLE algorithm Chen et al.

(2014) is implemented in InterFoam to couple pressure and velocity, which is a hybrid of the PISO

and SIMPLE (Semi-Implicit Method for Pressure-Link Equations) algorithms. In the PIMPLE loop, the

transport equation of volume fraction (equation 111.26) is firstly calculated based on existing velocities

and surface fluxes. Following that, there is an implicit momentum predictor and several pressure-velocity

correctors. After the fluid domain achieves equilibrium for the new time step, the pressures at fluid

interface are transformed to equivalent nodal force and applied at the solid interface. This operation is

called interface pressure updating.

With updated nodal force at solid interface and some other transient boundary conditions, the

response of solid domain for the new step is obtained through transient analysis of RealESSI (Jeremić

et al. (1988-2025)). Based on the latest location of solid interface, the geometry of fluid interface is

updated correspondingly to make sure the geometric conformity of both domains.

No slip boundary condition is adopted here for the velocity at fluid interface. Therefore, the new

boundary velocities are also calculated from the response of solid domain. In addition, it is crucially

important to update volume fractions so that mass conservation is guaranteed. The detailed information

about interpolation and updating of these physical fields (i.e. pressure, velocity and volume fractions) is

presented in section 111.4.6 and 111.4.5.

For the above explicit transient algorithm, both solid domain and fluid domain can individually reach

equilibrium states through iterations at both sides with updated interface boundary conditions. However,

this two equilibrium states are not achieved at the same time. Current equilibrium state of solid domain

matches with the equilibrium sate of fluid domain at the last time step. Therefore, the algorithm is only

valid and accurate when time step is small enough. Different time step lengths in solid domain and fluid

domain can also be handled through Shepherd method. SSFI can go through transient analysis in solid

domain and fluid domain alternatively according to different time step length.
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111.4 Implementation Details

111.4.1 Installation of OpenFoam

The official website of Openfoam: www.openfoam.com/down load/install-source.php gives detailed in-

struction about how to build Openfoam from source on different operating systems. Installation of

customized version of OpenFOAM, that can interact, connect to Real-ESSI is described in some detail

in chapter 209.6 on page 1335.

Note that after installation of Openfoam, you need to source the OpenFOAM environment by exe-

cuting, e.g. for bash shells and OpenFoam version v1706:

source /OpenFOAM/OpenFOAM-v1706/etc/bashrc

111.4.2 Integrated Preprocessor-gmFoam

gmFoam is designed as an integrated preprocessor developed for analysis of solid fluid interaction. It

enables user to build an integrated geometric model (including both solid part and fluid part) in Gmsh

and generate input files for both RealESSI and interFoam in a very easy way. Some simple examples can

be seen in figure 111.2. Its main functions are listed below:

                              

 

Fluid Domain
       (air)

Fluid  Domain
       (water)

Solid Domain

Figure 111.2: Numerical models built with gmFoam
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• Mesh separation

Note that FVM mesh supported by Openfoam is very flexible. It can be any types of convex

polyhedron as shown in figure 111.3). And the geometric description of FVM mesh required by

Openfoam is totally different from that of FEM mesh. The description of FVM mesh is face-based.

Faces (including both boundary surfaces and exterior surfaces) of control volumes are defined by

a list a point IDs that consist of the face. Also the owner cell ID and neighbor cell ID of each face

have to be specified. In contrast, the description of FEM mesh is element-based. After defining

all the nodes in the model, the element is described by a list of node IDs. gmFoam supports both

types of mesh description. User can build an integrated geometric model in Gmsh and define solid

part and fluid part as different physical volume groups. After meshing it, gmFoam can separate

the mesh information about solid domain and fluid domain and transfer them to FEM mesh and

FVM mesh, respectively.

Figure 111.3: Mesh for FVM

• GmESSI incorporation

gmFoam perfectly incorporates current RealESSI preprocessor GmESSI so that it can quickly gen-

erate ESSI input files for the simulation of solid part. Also it has the capability to quickly generate

input files for Openfoam. Currently the input file organization of Openfoam is very complicated.

Several folders and files are needed to prepare in order to complete a very simple simulation. But

with gmFoam all these basic information can be written in one single file with suffix as .gmfoam

and gmFoam will automatically parse the content inside and produce all the input folders and files.

In addition, with the help of physical group, gmFoam enables user to set different boundary con-

ditions in a very convenient way. This is extremely helpful when we conduct solid fluid interaction
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analysis for big models with complicated boundary conditions.

• Interface geometry extraction

gmFoam can extract the geometric information of solid-fluid interface and write down correspond-

ing information as input files. The information is used to initialize SSFI object and build important

geometric interface mapping.

• Support discontinuous mesh

Discontinuous mesh is supported. This is very important, especially for large-scale simulation for

solid fluid interaction. Usually refined mesh is needed for fluid part to get accurate enough result

using VOF. Discontinuous mesh enables us to arbitrarily refine fluid mesh without changing solid

mesh. Therefore, increase of computational efforts in solid part can be avoided. Figure 111.4

shows a model with discontinuous mesh (fluid mesh size : solid mesh size=1:3).

Figure 111.4: Numerical model with discontinuous mesh

111.4.3 Interface Domain-SSFI

An interface class SSFI was implemented in RealESSI to couple computations between solid domain and

fluid domain. SSFI behaves like a container (called interface domain) to control geometric mapping,

sequence of computation and boundary data interpolation and transmission. SSFI class contains and
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operates the objects of four base classes: ESSINode, ESSISurface, FoamNode, FoamSurface. Two

core member functions: SSFI::FoamToESSIUpdate(double t) and SSFI::ESSIToFoamUpdate(Domain*

theDomain, double t) are designed to perform all necessary updates on solid domain and fluid domain,

respectively.

111.4.4 Geometric Mapping

Following geometrical mappings are built and maintained in SSFI.

• Foam node mapping to Foam surfaces

For each foam node in solid fluid interface, this mapping returns all the IDs of its surrounding

foam surfaces. For example, as shown in figure 111.5(a), foam node 5 is mapped to foam surface

1,2,3 and 4.

Foam node → Foam Surfaces

5 (1,2,3,4)

• ESSI node mapping to Foam nodes

For each ESSI node in solid fluid interface, this mapping returns all the IDs of its surrounding foam

nodes within certain search radius (by default the radius is set as 0.1 meters). If the mesh size is

very refined, reducing the searching radius helps to improve accuracy.

• Foam face mapping to ESSI nodes

For each foam face in solid fluid interface, this mapping returns 4 vertex node IDs of an ESSI

surface that contains the center of this foam face. Like in figure 111.5(b), foam face 1 (consists

of foam node 1,2,3 and 4) is mapped to ESSI nodes 1,2,3 and 4.

Foam face → ESSI nodes

1 (1,2,3,4)

• Foam node mapping to ESSI nodes

For each foam node in solid fluid interface, this mapping returns 4 vertex node IDs of an ESSI

surface that contains the Foam node. In figure 111.5(b), foam node 1 is mapped to ESSI nodes

1,3,8 and 7.

Foam node → ESSI nodes

1 (1,3,8,7)
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5

1 2 3

4 6

7 8 9

① ②

③④

1 2

3 4

1 2

3 4

5 6

①

7

8

9

Foam Surface ESSI Surface Foam Surface

(a) (b)

Figure 111.5: Geometric mapping in SSFI

111.4.5 SFI Interpolation

After building all of these geometric mapping, interpolation scheme is also needed to fully determine the

values of interface variables (pressure, velocity and displacement) and update these values during the

interaction process. There are three types of interpolation and updating involved here:

• Pressure interpolation

The interpolation and updating of interface pressure happen during the process of FOAM to ESSI

updating. After the fluid domain achieves its equilibrium, the new pressure values at interface

foam faces need to be interpolated and transfered to corresponding ESSI nodes. The pressure

interpolation scheme is following:

Firstly, using the mapping from foam node to foam surfaces, pressure at each interface foam node

is calculated by taking the average pressure values of its surrounding foam surfaces. Like in figure

111.5(a), the pressure at interface foam node 5 is the average value of pressure at interface foam

surface 1,2,3 and 4. Then according to the mapping from ESSI node to foam nodes, the updated

pressure at interface ESSI node is calculated as the average pressure value of corresponding foam

nodes.

• Velocity interpolation

Velocity interpolation takes place during the process of ESSI to FOAM updating. After RealESSI
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conducts transient analysis for solid domain, the velocities at interface ESSI nodes need to be fed

back to corresponding interface foam surface. The velocity interpolation scheme is following:

The mapping from Foam face to ESSI nodes can give four vertex interface ESSI node ID. For

example, in figure 111.5(b), foam face 1 is mapped to four ESSI nodes (1,2,3,4). With coordinates

of foam face center and four ESSI nodes already known, inverse isoparametric mapping Hua (1990)

is used here to determine the local coordinates (ζ, η) of foam face center. The formula of inverse

isoparametric mapping is shown below:

Figure 111.6: Illustration of isoparametric mapping Hua (1990)


a1 a2

b1 b2

c1 c2

 =


1 –1 1 –1

–1 1 1 –1

–1 –1 1 1




x1 y1

x2 y2

x3 y3

x4 y4

 (111.38)

d1 = 4x – (x1 + x2 + x3 + x4)

d2 = 4y – (y1 + y2 + y3 + y4)
(111.39)

A compact notation to represent the determinant of a 2 matrix is introduced as

rs =

∣∣∣∣∣∣r1 s1

r2 s2

∣∣∣∣∣∣ = r1s2 – r2s1 (111.40)
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where r, s = a, b, c, d. Notice that rs = –sr .

With all the notations well defined, the solutions to local coordinate given by Hua (1990) are

shown below:

– a1a2abac ̸= 0

abζ
2 + (cb + da)ζ + dc = 0

η = (ad + baζ)/ac

where ζ ∈ [–1, 1]

– a1 = 0 and a2c1 ̸= 0

abζ
2 + (cb + da)ζ + dc = 0

η = (ad + baζ)/ac

where ζ ∈ [–1, 1]

– a2 = 0 and a1b2 ̸= 0

abζ
2 + (cb + da)ζ + dc = 0

η = (ad + baζ)/ac

where ζ ∈ [–1, 1]

– a1a2 ̸= 0 and ab = 0

ζ = (a1dc)/(b1ac + a1ad)

η = ad /ac

– a1a2 ̸= 0 and ac = 0

ζ = ad /ab

η = (a1db)/(c1ab + a1ad)

– All other conditions

ζ = dc/(a1d2 + bc)

η = bd /(a2d1 + bc)

After obtaining local coordinates (ζ, η) corresponding to foam surface center, isoparametric map-

ping can be conducted through the shape function of 4-node quadrilateral element. The interpo-
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lated velocity can be calculated with equation 111.41.

N1 =
1
4

(1 – ζ)(1 – η)

N2 =
1
4

(1 + ζ)(1 – η)

N3 =
1
4

(1 + ζ)(1 + η)

N4 =
1
4

(1 – ζ)(1 + η)

v = N1v1 + N2v2 + N3v3 + N4v4

(111.41)

• Displacement interpolation

Displacement interpolation also takes place during ESSI to FOAM updating. In order to meet the

geometric conformity, the Eulerian mesh of fluid domain should dynamically move along with the

real-time response of solid domain. Therefore, it is necessary to interpolate the displacement of

interface ESSI nodes to interface foam nodes. The displacement interpolation scheme is similar

to velocity interpolation scheme and shown below:

The mapping from Foam node to ESSI nodes can give four vertex interface ESSI node ID. In-

verse isoparametric mapping is first performed to compute local coordinate of Foam node. Then

displacement of foam node is interpolated from displacement of four vertex ESSI nodes through

isoparametric mapping.

111.4.6 Mass Conservation

There are two levels of mass conservation conditions needed to be satisfied during the SFI.

One is local level: Regarding each control volume, the amount of fluid flows in should equal to

the amount of fluid that flows out for incompressible fluid. This local mass conservation condition is

mathematically represented by continuity equation in equation 111.6 and can be approximately met

through finite volume discretization. Another level of mass conservation is global level: For a closed

fluid domain (no fluid transfer with other external fluid system), the total amount of fluid should keep

constant during SFI. The global level of mass conservation is trivial for pure fluid flow system with static

Eulerian boundary mesh. Since for this kind of flow system, global level of mass conservation is free and

automatically holds based on local level of mass conservation.

However, for flow system with deforming boundary, especially when Lagrangian movement of Eulerian

mesh is involved (like Arbitrary Lagrangian method Souli and Zolesio (2001)), the local level of mass
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conservation does not guarantee the mass conservation of global level. Demirdžić and Perić (1988)

pointed out that for moving mesh, one more conservation equation so called space conservation needed

to be solved simultaneously with the mass, momentum and energy conservation equations. Otherwise

artificial mass addition or reduction is generated which may cause the solution to be greatly in error.

The space conservation law is expressed by equation 111.42, where J is the determinant of the metric

tensor and vg is the grid velocity of the mesh. Correspondingly, the finite volume discrete evaluation of

volume integral of equation 111.42 can be given in equation 111.43, where δV = Vn – V0 is the change

of cell volume during ∆t, vg(f ) is the mesh velocity of cell face and S is cell face vector.

∂J
∂t

– J∇ · vg = 0 (111.42)

Vn – V0

∆t
=
∑

f
vg(f ) · S (111.43)

In our implementation, consider the coupling with VOF method and our SFI simulation is generally

for small deformation of fluid boundary, a simplified procedure is adopted here to guarantee the global

level of mass conservation: Only the location of foam nodes at solid fluid interface is updated with

Lagrangian motion of corresponding ESSI nodes while interior foam nodes remain static. After geometry

updating of the mesh, the volume of foam cells at interface is re-evaluated and volume fraction values

are also updated according to equation 111.44 to ensure the mass conservation. Then the transport

equation 111.27 is solved based on new α values.

α =
∫
α0dV0∫

dV
=
α0V0

V
(111.44)
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201.1 Chapter Summary and Highlights

201.2 Introduction to the Real-ESSI Simulator System

The Real-ESSI Simulator ( Realistic Modeling and Simulation of Earthquakes, and/or Soils, and/or

Structures and their Interaction) is a software, hardware and documentation system for high performance,

sequential or parallel, time domain, linear or nonlinear, elastic and inelastic, deterministic or probabilistic,

finite element modeling and simulation of

• statics and dynamics of soil,

• statics and dynamics of rock,

• statics and dynamics of structures,

• statics of and dynamics of soil-structure systems,

• dynamics of earthquakes, and

• dynamic earthquake-soil-structure interaction.

The Real-ESSI Simulator systems is used for design and for assessment of static and dynamic behavior

of infrastructure objects, including buildings, bridges, dams, nuclear installations, tunnels, etc.

Design: Multiple linear elastic load cases can be combined and design quantities, sectional forces

exported for design.

Assessment: Practical, realistic, inelastic, nonlinear load staged analysis, with accurate modeling of

elastic and inelastic, nonlinear components, and with all the simulation, algorithmic features available,

as listed below, is performed to assess design, current safety margins and economy of objects.

The Real-ESSI Simulator is developed at the University of California, Davis, in collaboration and with

partial financial support from the USDOE, USNRC, USNSF, USBR, USFEMA, CalTrans, CNSC-CCSN,

UN-IAEA, Shimizu, Private Donors, etc. The Real-ESSI Simulator develops methods and models that

inform and predict rather than (force) fit.

The Real-ESSI Simulator systems consists of the Real-ESSI Program, Real-ESSI Pre-Processing and

Post-Processing tools, Real-ESSI Computer and Real-ESSI Notes.

201.2.1 Real-ESSI Program

The Real-ESSI program is a general purposes finite element program that features models and methods

for analyzing static and dynamic behavior of Civil Engineering objects, such as buildings, bridges, dams,

nuclear installations, tunnels, etc.
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201.2.2 Real-ESSI Pre-Processing tools

The Real-ESSI Pre-Processing tools are a set of programs, scripts and modules that are used to de-

velop Real-ESSI models. Mesh generation relies on Gmsh (Geuzaine and Remacle, 2009) and our own

plugins Gm-ESSI, while there are also mesh translators from other input formats to Real-ESSI input

format/language.

201.2.3 Real-ESSI Post-Processing tools

The Real-ESSI Post-Processing tools rely on Paraview (Ayachit, 2015) visualization platform, with our

own plugins, as well as on a number of programs and scripts to visualize output using matlab, python,

etc.

201.2.4 Real-ESSI Computer

The Real-ESSI Computer can be any single CPU, multiple CPU, and/or cluster of single/multiple CPUs

computers using Linux operating system. The reason for using Linux is that state of the art development

tools are available, and that Linux is used on virtually all large supercompters, so that the very same

sources can be compiled and executables developed for small desktop computers, large server computers,

local clusters of computers and large supercomputers. There is a possibility to build Real-ESSI and create

executables on Macintosh and Windows platforms, as long as standard software tools and compiles, C++

and Fortran, are available. However, such work is not currently pursued.

201.2.5 Real-ESSI Notes

The Real-ESSI notes, documentation for the Real-ESSI Simulator System, is available through Lecture

Notes by Jeremić et al. (1989-2025).
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201.2.6 Real-ESSI Name

The Real-ESSI Simulator System name is based on an acronym: Realistic Modeling and Simulation of

Earthquakes, and/or Soils, and/or Structures and their Interaction. Pronunciation of Real-ESSI is similar

to ”real easy”, as in ”as easy as pie”. Translation of name Real ESSI to languages of developers and

users is:

- Vrlo prosto,

- Stvarno prosto,

- Stvarno lako,

- Prosto k’o pasuǉ,

- Vrlo prosto,

- Stvarno prosto,

- ,

- Muy fácil,

- ,

- ,

- Molto facile,

- ,

- Πραγματικά εύκολο,

- ,

- Très facile,

- Vistinski lesno,

- Wirklich einfach,

-

- Zelo enostavno

- Zares enostavno

- Muito Fácil

- Res lahko

- Dziecinna igraszka

- Çocuk oyuncaği
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202.1 Chapter Summary and Highlights

202.2 Object-Oriented Design Basics

Booch (1994); Gamma et al. (1995); Coplien (1992); Koenig (1989 - 1993); Stroustrup (1986); Strous-

trup (1994); Ellis and Stroustrup (1990); Johnson (1994); Felippa (1992a); Dubois-Pelerin (1992);

Dubois-Pèlerein and Zimmermann (1993); Raphael and Krishnamoorthy (1993); Menéntrey and Zim-

mermann (1993); Zimmermann et al. (1992a); Donescu and Laursen (1996); Zimmermann and Eyhera-

mendy (1996); Eyheramendy and Zimmermann (1996); Jeremić and Sture (1998); Forde et al. (1990);

Miller (1991); Scholz (1992); Fenves (1990); Eyheramendy (1997); Dubois-Pélerin and Zimmermann

(1992); Zimmermann et al. (1992b); Dubois-Pélerin and Pegon (1998); Eyheramendy and Zimmermann

(2001);

Veldhuizen (1995a); Veldhuizen (1995b); Veldhuizen (1996); Veldhuizen and Jernigan (1997);

Archer (1996); Archer et al. (1999); McKenna (1997);

202.3 Object-Oriented Design of the Plastic Domain Decomposition (PDD)

202.3.1 Introduction

This section describes the object oriented design of the proposed PDD algorithm and its implementa-

tion into MOSS library framework. At the beginning of this section, the Object-Oriented approach to

programming the Finite Element Method is reviewed based on the existing (as of 2005) implementation

of OpenSees. Object-Oriented parallel design is then extended from the existing framework. Parallel

algorithm adopts Main-Follower paradigm and the new design of data structures have strictly followed

the Object-Oriented principle using C++ language. External utility libraries such as ParMETIS and

PETSc have been incorporated to provide seamless parallel numerical manipulations including partition-

ing/repartitioning and equation solving.

In this chapter, the algorithm overview will be presented first. Then the implementation details in

C++ will follow. The challenges of achieving load balancing in parallel Finite Element simulation have

been divided into two parts, global level equation solving and constitutive level iterations. This research

presents the PDD algorithm to demonstrate how to balance each stage systematically in applications.

202.3.2 Object-Oriented Parallel Finite Element Algorithm

Parts of OpenSees software framework (McKenna, 1997) have been used in this chapter. Object-Oriented

design of OpenSees enables software reuse that greatly shortens the development life cycle of application
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codes.

OpenSees is comprised of a set of classes and objects that represent models perform computations

for solving the governing equations, and provide access to processing results. There are four types of

class objects in OpenSees McKenna (1997).

• Modeling Classes are used to create the Finite Element Model Classes for a given problem.

• Finite Element Model Classes are used to describe the finite element model and to store the

results of the analysis performed on the model. Main class abstractions used in OpenSees are Node,

Element, Constraint, Load and Domain. The relationship amongst these classes can be shown using

the class diagram Figure 202.2 using the Rumbaugh notation as shown in Figure 202.1 Rumbaugh

et al. (1991).

• Analysis Classes are used to perform the finite element analysis, i.e., to form and solve the global

system of equations

• Numerical Classes are used to handle numerical operations in the solution procedure. Also included

in this category are data structure classes such as Vector, Matrix and Tensor.

Figure 202.1: Rumbaugh Notation of-Object Oriented Design

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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202.3.2.1 Modeling Classes

The modeling classes are responsible of creating the necessary components of the finite element model,

such as nodes, elements, loads and constraints. There are a number of approaches proposed by various

researchers. In some works, the user has the responsibility to create the finite element model in a single

driver-type file Ross et al. (1992); Zeglinski et al. (1994); Cardona et al. (1994). In other works, an

input file containing the model data is used to be read by the main program to create the model Forde

et al. (1990); Dubois-Pelerin et al. (1992); Dubois-Pelerin and Zimmermann (1993); Menéntrey and

Zimmermann (1993). Graphical interface for building models visually has also been proposed Ostermann

et al. (1995); Mackie (1995).

In this research, the existing ModelBuilder interface class is reused to facilitate the finite element

model construction. As shown in Figure 202.2, the ModelBuilder is associated with a single finite element

Domain object. The interface (pure virtual function) buildFE Model() must be redefined depending on

the specific type of finite element model users want to build.

In parallel processing, PartitionedModelBuilder is used instead, in which the building process includes

higher level control of building Subdomains from the PartitionedDomain. For each Subdomain, the

PlaneFrameModelBuilder-type is invoked to build the finite element model on each Subdomain.

The Object-Oriented interface design of ModelBuilder through pure virtual function provides a con-

sistent framework from which all kinds of engineering model can be readily extended.

202.3.2.2 Finite Element Model Class

In most of the works presented, main class abstractions used to describe a finite element model are:

Node, Element, Constraint, Load and Domain Forde et al. (1990); Zimmermann et al. (1992a); Dubois-

Pelerin et al. (1992); Dubois-Pelerin and Zimmermann (1993); Menéntrey and Zimmermann (1993);

Pidaparti and Hudli (1993); Cardona et al. (1994); Chudoba and Bittnar (1995); Zahlten et al. (1995);

Rucki and Miller (1996).

Node The most important feature of the Node class is the associativity with DOF class which contains

the degree of freedoms of any specific instance of the Node class. The response quantities such as

displacements of each DOF object will be stored in the Node class. Routines are available to set/get

those solution quantities.

Element The functionality of an Element object is to provide the tangent stiffness, mass and the residual

force corresponding to current loadings. Element class contains reference to its associated Node objects.
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Element class is one of the most fundamental abstractions in Object-Oriented finite element soft-

ware design. In this research, Element also acts as a container for material models, which is critical

for simulations with nonlinear materials. Chudoba and Bittnar (1995) proposed a MaterialPoint object

which is associated with GaussPoint object. In Zahlten et al. (1995), class abstractions such as cross

section, material point, material law, yield surface, hardening rule and flow rule are introduced to model

complicated materials within the Element class in an Object-Oriented flavor.

Jeremić and Yang (2002) present the complete formulation of Template3Dep material class, which

is wrapped inside the Element class to enable a consistent interface for complex elastic-plastic material

modeling.

Constraint There are two types of constraints in finite element simulations,

1. Single-Point constraints, which are applied to a specific DOF object;

2. Multi-Point constraints, which describe the relationship between more than one DOF objects.

In current implementation of OpenSees (version from 2005), the two classes SP Constraint and MP Contraint

are designed but they do not handle the constraints. These two classes are responsible of setting up

relations between Nodes and the constrained DOF Groups. This will be covered shortly in Analysis class

design.

Load There are also two types of loads that are commonly seen in finite element analysis:

1. node loads that act on specific Nodes;

2. element loads that act on specific Elements, which can be due to body forces, surface tractions,

initial stresses and temperature gradients.

In the current (version version 2005) implementation of OpenSees, three extra classes are introduced to

handle loading conditions, LoadPattern, NodalLoad and ElementLoad. The LoadPattern is a container

class that provides methods in its interface to allow NodalLoad and ElementalLoad objects to be created,

traversed and removed. As shown in Figure 202.2, each NodalLoad or ElementalLoad object is associated

with a Node or Element object and is responsible of applying nodal or elemental loads to that object.

Domain The Domain class is the most important container class that is responsible of holding all com-

ponents of the finite element model, i.e. all the Nodes, Elements, Constraints and Loads. Domain class

acts as the interface between Analysis class and all the individual components of the finite element model.

The interface of Domain enables component creation, information access and component removal.
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202.3.2.3 Analysis

The Analysis class (McKenna, 1997) is responsible for forming and solving the governing equations for

the finite element model. As for nonlinear problems, incremental solution techniques are required and

iterative schemes such as Newton-Raphson needed to solver the nonlinear system of equations.

For incremental solution algorithm, the computational tasks are more involved for the finite element

analysis.

• Assign equation numbers and map these to the nodal DOFs. This step can be of significant

influence on the bandwidth of the coefficient matrix, which is inherently sparse due to the compact

support of finite element formulation.

• Form the matrix equations using contributions from elements and nodes.

• Apply the constraints, which may involve transforming the element and nodal contributions or

adding additional terms and unknowns to the matrix equations depending the method employed

to handle constraints.

• Solve the matrix equations for the incremental nodal displacements.

• Determine the internal state and stresses in the elements.

The Object-Oriented design of the Analysis class is done by firstly breaking down the main tasks

performed in a finite element analysis, abstracting them into separate classes, and then specifying the

interface for these classes. The Analysis class is an aggregation of all the sub-functionality classes of

following types:

1. SolutionAlgorithm class describes the complete computation procedure (steps) in the analysis.

2. AnalysisModel is a container class that stores and provides access to the following types of classes:

(a) DOF Group class represents the DOF at the Nodes or new DOF introduced into the analysis

to enforce the constraints;

(b) FE Element class represents the real Elements in the Domain or they are introduced to add

stiffness and/or load to the system of equations in order to enforce the constraints.

It is worthwhile to mention that the FE Elements and DOF Groups have very important

design implications although they might seem redundant at the first sight. The significance

comes from the facts that

i. they record the mapping between DOFs and equation numbers in the global system

which greatly simplifies the interfaces of Node and Element class;
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ii. they also provide the interfaces for forming tangent and residual vectors which are used

to form the global system of equations;

iii. they are major utility classes of handling constraints.

3. Integrator defines how the FE Elements and DOF Groups contribute to the system of equations

and how the response quantities should be updated given the solution to the global system of

equations.

4. ConstraintHandler handles the constraint by creating adequate FE Elements and DOF Groups.

5. DOF Numberer maps the equation number to the DOFs in the DOF Groups.

6. SystemOfEqn encapsulates the global system of equations.

The aggregation of the Analysis object is shown in Figure 202.3.
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Traditional program flow diagrams are used to describe how is the nonlinear finite element algorithm

control flow implemented in OpenSees. These flow charts are organized as following:

Figure 202.4 shows the overall analysis algorithm flow for nonlinear finite elements.

Then this overall analysis flow is broken down into detailed subroutines, such as theIntegrator::newStep()

and theAlgorithm::solveCurrentStep().

• Figure 202.5 explains in detail the function flow of theIntegrator::newStep(), which illustrates the

(fairly standard) incremental finite element solution techniques implemented in OpenSees.

• Figure 202.6 shows the function flow of forming the tangent stiffness matrix, which is a loop

assembling the global equation system involved in function theIntegrator::newStep().

• Figure 202.7 further describes the Newton-Raphson type iterative solution schemes involved in

function theAlgorithm::solveCurrentStep().
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Figure 202.5: Detailed View: theIntegrator::newStep() - Incremental Solution Techniques for Nonlinear

Finite Element Analysis
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Figure 202.6: Detailed View: Assembly of Global Equation System in theIntegrator::newStep()
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Figure 202.7: Detailed View: theAlgorithm::solveCurrentStep() - Newton-Raphson Iterative Schemes

for Nonlinear Finite Element Analysis
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Finite element simulations inherently are element-based operations, so little modification is needed

to parallelize the algorithms described above, although special attention has to be paid to synchronize

the computation among different processors. Figure 202.8 shows the activity flow for parallel nonlinear

finite element simulations.

Figure 202.8: Parallel Activity Flow Diagram of Nonlinear Finite Element Analysis
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202.3.2.4 Object-Oriented Domain Decomposition

There are three most notable designs of Domain Decomposition method in literature McKenna (1997).

1. Sause and Song (1994) presents an Object-Oriented design for linear static analysis using sub-

structuring. The interface is restricted to substructuring or FETI Farhat and Roux (1991b) only,

and repeated geometry limits the applicability of this design to large problems.

2. Archer (1996) proposes a SuperElement class that is a subclass of Element and has a Domain

class aggregated. This design is conceptually inappropriate and it results excessive method calls

as methods that are for the SuperElement must be called by the SuperElement on the associated

Domain McKenna (1997).

3. Miller and Rucki (1993) introduces the Partition class which is associated with an Algorithm

class. The Algorithm class is responsible for updating the state of a Partition so that it will be in

equilibrium. Again, this design is good for substructuring type Domain Decomposition analysis. If

we want to solve a problem before the interface solution can be determined, the design fails.

The current design of OpenSees McKenna (1997) proposes many new classes to facilitate flexible

Object-Oriented Domain Decomposition. The main abstractions include PartitionedDomain, DomainDe-

compAnalysis, DomainDecompSolver Subdomain, DomainPartitioner and GraphPartitioner. The class

diagram is shown in Figure 202.9.
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PartitionedDomain The PartitionedDomain class is a subclass of Domain whose objects can be parti-

tioned into Subdomain objects. Aside from common functionality inherited from Domain, Partitioned-

Domain class provides methods for partitioning the Domain and retrieving information from Subdomains.

PartitionedDomain the aggregation of Subdomains and is the major containing class in main compute

process.

DomainPartitioner The DomainPartitioner class is responsible for performing the actual operation to

split the PartitionedDomain. The DomainPartitioner will call its associated GraphPartitioner to partition

the PartitionedDomain. It also provides the methods to migrate Elements, Nodes, Constraints, Loads

amongst Subdomains.

DomainPartitioner is one of the most important utility class in OpenSees in the sense that all

partitioning routine and data migration operations will be rooted from this class.

GraphPartitioner This class utilizes external graph partitioner to color the finite element connectivity

graph, which will be constructed from the PartitionedDomain. The result will be fed back to Domain-

Partitioner to facilitate subsequent data distribution.

GraphPartitioner introduces graph partitioning into OpenSees and the main functionality of this class

is to call API and provide necessary data structures from the specific application.

Subdomain The Subdomain class inherits from both Element and Domain. This has a dual-level design

implication:

1. for the top PartitionedDomain, superclass Element is a proxy class of subclass Subdomain, in the

sense that all the relevant operations on Elements invoked by PartitionedDomain will be redirected

to the specific Subdomain;

2. for any specific Subdomain, it inherits all the interfaces of Domain to do all the computations

required by PartitionedDomain.

202.3.2.5 Parallel Object-Oriented Finite Element Design

There has been much effort by researchers on parallel implementation of finite element computations,

which can be categorized into either domain decomposition methods or parallel equation solving.

Domain decomposition is favored by many researchers due to its nice “divide and conquer” approach.

The subdomains in the domain decomposition method are each assigned to a processing node, which

will perform all the computations on that subdomain.
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Of the domain decomposition methods, the substructuring method has been the most popular choice

although other methods such as iterative substructuring Carter et al. (1989) and FETI (Finite Element

Tearing and Interconnecting) Farhat and Roux (1991b); Farhat and Crivelli (1994) have also been used.

In the substructuring method presented, static condensation is typically performed on the assembled

system of equations.

Earlier works on parallel processing for inelastic mechanics focused on structural problems. We

mention work by Noor et al. (1978); Utku et al. (1982); Storaasli and Bergan (1987) in which they used

substructuring to achieve partitions. Fulton and Su (1992) developed techniques to account for different

types of elements but used substructures of same element types (non–balanced computations). Hajjar

and Abel (1988) developed techniques for dynamic analysis of framed structures with the objective of

minimizing communications. Klaas et al. (1994) developed parallel computational techniques for elastic–

plastic problems but tied the algorithm to the specific multiprocessor computers used (and specific

network connectivity architecture). Farhat (1987) developed the so–called Greedy domain partitioning

algorithm but stayed short of using redistribution of domains as a function of developed nonlinearities.

The major parallel programming model in OpenSees (McKenna, 1997) is the so-called Actor model,

which is a mathematical model of concurrent computation that has its origins in Hewitt et al. (1973) .

Actors Agha (1984) are autonomous and concurrently executing objects which execute asynchronously.

Actors can create new actors and can send messages to other actors. The Actor model is an Object-

Oriented version of message passing in which the Actors represent processes and the methods sent

between Actors represent communications.

The Actor model adopts the philosophy that everything is an Actor. This is similar to the everything

is an Object philosophy used by object-oriented programming languages, but differs in that object-

oriented software is typically executed sequentially, while the Actor model is inherently concurrent,

http://en.wikipedia.org/wiki/Actor_model.

An Actor is a computational entity with a behavior such that in response to each message received

it can concurrently:

• send a finite number of messages to (other) Actors;

• create a finite number of new Actors;

• designate the behavior to be used for the next message received.

Note that there is no assumed sequence to above actions and that they could in fact be carried out in

parallel.

Communications with other Actors occur asynchronously (i.e. the sending Actor does not wait until

the message has been received before proceeding with computation), which is the unblocking behavior.
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Messages are sent to specific Actors, identified by address (sometimes referred to as the Actor’s

“mailing address”). As a result, an Actor can only communicate with Actors for which it has an address

which it might obtain in the following ways:

• The address is in the message received;

• The address is one that the Actor already had, i.e. it was already an “acquaintance”;

• The address is for a just created Actor.

The Actor model is characterized by inherent concurrency of computation within and among Actors,

dynamic creation of Actors, inclusion of Actor addresses in messages, and interaction only through direct

asynchronous message passing with no restriction on message arrival order.

In order to minimize the changes to the sequential Domain Decomposition design presented in

previous sections, McKenna (1997) introduces the Shadow class. A Shadow object is an object in an

Actor’s local address space. Each Shadow is associated with one Actor or multiple Actors in the case

of an aggregation. The Shadow object represents the remote object to the objects in the local Actor’s

space. The Shadow object is responsible for sending an appropriate message to the remote Actor or

Actors if broadcasting. The remote Actor(s) will then, if required, return the result to the local Shadow

object, which in turn replies to the local object. The communication process is shown in Figure 202.10.

Figure 202.10: Communication Pattern of Actor-Shadow Models McKenna (1997)

Some other new classes of parallel finite element programming are:

• Channel is the bridge through which the Actors and Shadows can communicate.

• Address represents the location of a Channel object in the machine space. Channel objects send/re-

ceive information to/from other Channel objects, whose locations are given by the Address objects.
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• MovableObject is an object which can send its state from one actor process to another.

• ObjectBroker is an object in a local actor process for creating new objects.

• MachineBroker is an object in a local actor process that is responsible for creating remote actor

processes at the request of Shadow objects in the same local process.

The relation between these classes is shown in Figure 202.11.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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202.3.3 Dual-Phase Adaptive Load Balancing

From the Figure 202.7, one can easily identify two computational phases that are fundamental to nonlin-

ear elastic-plastic finite element simulations. One is well known as global level equation solving and the

other is local level elemental calculations during which the elemental update happens for each element.

In nonlinear elastic-plastic finite element simulations, the local computational phase can be much more

expensive than the global equation solving phase due to the presence of complex material models and

nonlinearity.

In this chapter, the implementation of proposed PDD algorithm has considered load balancing issues

on both elemental level elastic-plastic computations and global level equation solving.

202.3.3.1 Elemental Level Load Balancing

The load balancing operation on constitutive level is built on the foundation of adaptive multilevel graph

partitioning algorithm available through ParMETIS.

In this chapter, element-based graph is constructed from the Finite Element mesh on which the graph

partitioning algorithm acts on to obtain partitions and/or repartitions. Each element will be assigned a

vertex tag for identification.

When two elements at least share a single node, we assign an edge to both vertices because the

element graph is deemed to be undirected, which means the edge is equally identified by two vertices

without ordering required.

We creatively specify vertex weight to represent elemental level computational load for each vertex

(element). In the implementation of this chapter, the vertex weight will be automatically updated as

simulation progresses to reflect element computation cost. Performance timing has been added for

constitutive update routines and the graph data structure will be refreshed every single iteration.

The last metric used is the vertex size of each vertex which basically contains the information that

how much memory each vertex (element) requires in order to reproduce itself to other processes during

data distribution. Adaptive load balancing is a multi-objective operation in the sense that both edge cut

and data migration cost must be minimized simultaneously. The vertex size exactly describes the size of

data that need to be shipped via communication. This metric must be correctly obtained for all available

element types in order for the multi-objective load balancing algorithm to ensure the best performance.

202.3.3.2 Equation Solving Load Balancing

Parallel equation solving algorithm falls into two major different categories, direct solver and iterative

solver.
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Direct solver stems from Gaussian-type elimination and effective elimination tree is determined by

the sparsity pattern of the stiffness matrix. Load balancing issue is addressed inherently when forming

the elimination tree. Various packages such as SPOOLES and SuperLU provide scalable direct solutions

to parallel equation systems. Chapter 110.5 discusses in further details about parallel direct solvers that

are available as part of the release of this chapter.

Iterative solver has been the focus of this chapter in the sense that special care has been paid to

achieve dynamic load balancing for each partition/repartition. The kernel of project-based iterative

solvers is matrix-vector multiply. The issues of how to evenly distribute the stiffness matrix in parallel

among different processors and how to reorder the sparse matrix to reduce data communications have

been the focus of this chapter.

In order to achieve load balancing for parallel iterative solvers, parallel matrix/vector storage scheme

and sparse matrix ordering are key factors. In the implementation of this chapter, even row-distribution

of stiffness matrix among processing units is assumed. As shown in Figure 202.12, each processing unit

has equal number of rows stored locally. The right hand side of the system is the force vector, which

will be replicated for each processing unit. In this way, one can expect fastest matrix-vector multiply

with the least amount of data needed to be communicated through network. As matrix-vector multiply

is performed in parallel, load balancing issue is related to the number of nonzero numbers of the sparse

stiffness matrix, which directly determines how many floating point multiplications are needed. In finite

element computations, this nonzero pattern is determined by DOF numbering. Bandwidth reducing

numbering scheme, or matrix ordering scheme, such as RCM Dongarra et al. (2003), can effectively

lead to a sparse pattern that has similar number of nonzero elements on majority of rows as shown in

Figure 202.12.

Finite element method inherently possesses compact support. Off-diagonal data of the stiffness

matrix need to be synchronized among different processors. In order to reduce the extra overhead

involved, in this chapter, several implementation solutions have been considered.

• Graph Partitioning Phase. As stated in previous chapters, minimizing edge-cut is one of the

main objectives of the partitioning operation on the element graph. One extra benefit is that the

bandwidth of the stiffness matrix will be greatly reduced. The number of nodes that need to be

synchronized will be greatly reduced.

• DOF Numbering Phase. This phase is to renumber the DOFs of the finite element model after

data redistribution in order to make sure contributions from local elements will sit on rows that

are stored locally. This is done every time when the data migration is triggered. The idea is to

start numbering the DOFs from local elements in Processor 1 to local elements in Processor N.
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Proc 0

Proc 1

Proc 2

Proc N

......

Communication P0 <−> P1

Communication P2 <−> P3

Communication P1 <−> P2

Figure 202.12: Parallel Data Organization of SFSI Equation System

In this way, when the global matrix is formed, local element stiffness matrix will always become

clustered along the diagonal.

202.3.4 Object-Oriented Design of PDD

The parallel design of PDD basically follows Main-Follower algorithm structure as shown in Figure 202.13

and MPI has been adopted to facilitate inter-processor communications. The Actor/Shadow model

described in previous sections is the used in PDD implementation and does nicely interact with parts of

OpenSees framework, which uses Actor and Shadow classes to facilitate the inter-process communication

between the main compute process and tied/follower compute processes.

• Main Compute Process

Main compute process assumes the role to orchestrate the whole computation process. OpenSees

uses tcl as an interpreter (or any other interpreted language that can be embedded into c or C++)

to read input scripts from user. In parallel implementation of described here, main compute process
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PartitionedDomain

Domain

ActorSubdomain

Actor Subdomain

ActorSubdomain

Actor Subdomain

ShadowSubdomain ShadowSubdomain

MPI Master−Slave Communication MPI Master−Slave Communication

MPI Slave−Slave
Communication

Master Process

Slave ProcessSlave Process

Figure 202.13: Main-Follower design used for PDD development.

is responsible for establishing the whole model for analysis and then distributing data among sub-

processors. An important improvement in this chapter is that the main compute process does not

actually create all finite element objects, whose memory space will only be allocated after they are

sent to subdomains. This design helps avoid the high memory requirement on the main compute

process side. Initial partitioning is done solely by main compute process process or in parallel by all

working processes. Data movement is coordinated by the main compute process process, in which

a complete element graph is kept intact.

As for repartitioning, the main compute process is still responsible for issuing commands to migrate

data from this subprocessor to another even though the data is not in main compute process.

• Follower Compute Process

The actor model has been used and modifications have been added to avoid unnecessary data com-

munications. Basically speaking, actors in follower compute processes will be waiting for orders

untill main compute process issues one and then do corresponding work on their own copy of data.

The original design in OpenSees framework has disabled follower compute process to initiate com-

munication, which means in order for a sub-processor to communicate with another sub-processor,
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it has to send all the data back to the main compute process first. This is highly inefficient and

needed to be redeveloped, improved. In this research actor model has been implemented to enable

direct communications between sub-processes and this improvement greatly reduced unnecessary

communications.

All of the class designs for sequential version of OpenSees can be reused in parallel version following

the Object-Oriented paradigm. There are some very important additions however in order to facilitate

main–follower parallel processing. In this section, these classes will be revisited and updated/changes/im-

provements originally developed during this research will be explained thereafter.

• PartitionedDomain

The PartitionedDomain class basically inherits all functionality from the Domain class in sequential

version. This class acts as a container class in the main compute process. It differs from Domain

class in the respect that all actions performed on the domain will be propagated to all subdomains

when doing parallel processing.

• Subdomain

The Subdomain is a child class of Domain. This class will be instanced by each follower compute

process and it covers all functionality of the Domain class in sequential version. It can be called

as an instance of Domain taking care of components only for the local follower compute process.

• ActorSubdomain & ShadowSubdomain

The Actor/Shadow Subdomain classes are the most important classes for parallel version OpenSees.

They are assuming the roles to initiate and facilitate all communications between main and follower

compute processes. Both Actor/Shadow Subdomain will be instanced automatically when user

creates follower compute process.

ShadowSubdomain sits on main compute process. The function of this class is to represent a

specific follower compute process in main compute process. Main compute process does not

directly interact with follower compute process. Whatever action that needs to be performed by

the follower compute process will be issued to ShadowSubdomain. This extra layer smooths the

communication between main and follower nodes.

On the other hand, ActorSubdomain sits on follower compute process and it hides main compute

process from follower compute processes/nodes. All commands from main compute node will be

received by ActorSubdomain and ActorSubdomain will match the command with some actions

performed by Subdomain.

Actor/Shadow Subdomain are extremely important classes in the parallel implementation of this
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chapter. They carry all communication functionality required to finish the partition and adaptive

repartition.

• Channel

Channel is the class that really does the job of sending/receiving data between processors. Only

MPI channel has been used in this chapter. Specific data structure, such as ID (integer array),

vector (double array) or matrix needs to provide its own implementation for send/receive function-

ality.

• FEMObjectBroker

This class is instanced only at follower compute processors, which is in charge of creating new

model data for subdomains. This design isolates model creation from communication classes.

• Address

Address class identifies parallel processes. With MPI channel used, the address corresponds to

global process ID.

• DomainPartitioner

DomainPartitioner assumes the responsibilities of invoking the GraphPartitioner and feeding nec-

essary data to finish the partition/repartition. This class will also be in charge of data migration

after partition/repartition is done.

• SendSelf & RecvSelf

These two should be called functions rather than classes. SendSelf & RecvSelf are functions

implemented to provide copy of model data to finish sending/receiving operations.

The old parallel design of OpenSees is not capable of performing elastic–plastic computations since

it was designed and implemented for a single stage loading only. This single stage loading works fine

for elastic analysis, but since elastic–plastic materials do have memory, staged loading is essential for

any realistic computations with elastic–plastic material. This is particularly true for geotechnical and

structural models, where simulations support for staged loading (self weight of soil medium for initial

stress, construction process and subsequent static or dynamic loading) is essential if any modeling ac-

curacy is to be achieved. One of new developments in this chapter was the addition of multi-stage

elastic-plastic analysis. This improvement included modification of 3D solid and beam elements, Tem-

plate3Dep/NewTemplate3Dep material models and DRM loading pattern for seismic analysis. Some

of the old utility commands, such as “wipeAnalysis”, were improved/redeveloped to enable parallel

multi-stage analysis.
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The most significant significant improvement developed during research over the old parallel de-

sign of OpenSees is the introduction of load balancing technique by adaptive graph partitioning algo-

rithm through ParMETIS. Major improvements/updates have been introduced in PartitionedDomain,

Actor/ShadowSubdomain, DomainPartitioner, FEM ObjectBroker and Subdomain. Modifications done

in this chapter also focus very much on performance issue. In order to reduce unnecessary data com-

munication during partitioning/repartitioning, some functions have been rewritten. The functionality of

Actor and ShadowSubdomain have been expanded so that any ActorSubdomain can initiate communi-

cation to another ActorSubdomain. The old design of OpenSees had to use main compute process as

intermediate layer if subdomains want to exchange information.

For example, if Subdomain No. 1 needs to migrate an Element to Subdomain No. 2, the old

design would issue a “remove Element” command from main compute process PartitionedDomain to

Subdomain No. 1, then Subdomain No. 1 would remove the Element and send the Element back to

main compute process, finally the Element would be migrated to Subdomain No. 2. We can clearly

recognize the communication to main compute process is not necessary here. In order to develop

adaptive load balancing while minimizing data redistribution cost, the improvement in this chapter is

to allow ActorSubdomain at source Subdomain initiates communication with ActorSubdomain at target

Subdomains and they can exchange information without recourse to main compute process. So the

new communication pattern will be, again for the “migrate element” case, the main compute process

will issue an “export element” command to Subdomain No. 1 and a “receive element from Subdomain

No. 1” command to Subdomain No. 2, and then the element information will be directly sent from

Subdomain No. 1 to No. 2.

Details of implementation are given in following sections.

202.3.4.1 MPI Channel

• Functions sendnDarray and recvnDarray have been added to facilitate the data communication of

Template3D material classes, which are based on nDarray tensor data structures.

int MPI Channel::sendnDarray(int,int, const nDarray&, ChannelAddress*)

int MPI Channel::recvnDarray(int,int, const nDarray&, ChannelAddress*)

202.3.4.2 MPI ChannelAddress

• Function getOtherTag has been added to get MPI global ID for the specific MPI Channel. This

function is mainly used for data migration. It provides the MPI global communicator ID of the

target process which the next communication will be directed to.
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int MPI ChannelAddress::getOtherTag(void)

202.3.4.3 FEM ObjectBroker

• New functionality to instance 3D continuum brick elements has been added to getNewElement

function.

Element* FEM ObjectBroker::getNewElement(EightNodeBrickTag)

• New functionality to instance Template3D/NewTemplate3D material models for continuum brick

elements has been added to getNewNDMaterial function.

NDMaterial* FEM ObjectBroker::getNewNDMaterial(int)

• Template3D material is a stand-alone material library designed for general elastic-plastic materials.

User can define separately YieldSurface, PotentialSurface, Scalar Evolution Law and Tensorial

Evolution Law. Various material models have been implemented in OpenSees Jeremić and Yang

(2002), such as Cam Clay, Drucker Prager and von Mises yield/potential surfaces, Armstrong

Frederick nonlinear kinematic hardening law and bounding surface plasticity. All the material

models have to be instanced by FEM ObjectBroker during parallel processing.

YieldSurface* FEM ObjectBroker::getYieldSurfacePtr(int)

PotentialSurface* FEM ObjectBroker::getPotentialSurfacePtr(int)

EvolutionLaw S* FEM ObjectBroker::getEL S(int)

EvolutionLaw T* FEM ObjectBroker::getEL T(int)

• NewTemplate3D material is a newly designed material library which includes more advanced elastic-

plastic constitutive models for geomaterials, such as Dafalias and Manzari 2004 model. The

design of NewTemplate3D extends the principle of Template3D, in which key parameters describing

plasticity model are abstracted as different class objects, such as YieldFunction, PlasticFlow, etc.

In order to reduce unnecessary data allocation, new MaterialParameter class has been developed

to carry all material parameters. New ElasticState has been used to store all intermediate and/or

committed stress/strain data. All these material classes have to be instanced by FEM ObjectBroker

during parallel processing and new functions have been implemented in this chapter.

MaterialParameter* FEM ObjectBroker::getNewMaterialParameterPtr(void)

ElasticState* FEM ObjectBroker::getNewElasticStatePtr(int)

YieldFunction* FEM ObjectBroker::getNewYieldFunctionPtr(int)

PlasticFlow* FEM ObjectBroker::getNewPlasticFlowPtr(int)

ScalarEvolution* FEM ObjectBroker::getNewScalarEvolutionPtr(int)

TensorEvolution* FEM ObjectBroker::getNewTensorEvolutionPtr(int)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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202.3.4.4 Domain

• Timing routines have been added to update function to measure computation time of constitu-

tive level iterations for each element during every single loading increment. This metric will be

assigned to the corresponding vertex of the element graph as the vertex weight. This metric rep-

resents element-level computational load against which subsequent load balancing techniques will

be applied.

202.3.4.5 PartitionedDomain

• addElementalLoad function has been added to add ElementalLoad into LoadPattern, which was

not supported in the old design.

bool PartitionedDomain::addElementalLoad(ElementalLoad*, int)

• repartition function has been implemented to initiate adaptive repartitioning on the element graph

of the Domain after every loading increment.

int PartitionedDomain::repartition(int)

202.3.4.6 Node & DOF Group

• sendSelf and recvSelf functions for Node class have been changed mainly to deal with the DOF Group

object associated with the Node. In the old design of parallel version of OpenSees, only one-step

static domain partitioning would be invoked so that there is no need to pass the DOF Group.

But in this chapter, adaptive load balancing is developed to achieve better performance. The

Node class should keep the information of its own DOF Group, which guarantees the consistency

of the DOF Graph of the whole Domain. This point is extremely important when user tries to

invoke Transformation constraint handler on the DOF Graph. The addition of this feature in Node

improved the robustness of the whole program.

• DOF Group is a class carries information about the DOF Graph of the analysis model, which will

be used to finish assembling the stiff/mass/damping matrices. Each Node has its own DOF Group

to record the IDs of degree of freedoms in the global analysis model. Function unSetMyNode has

been introduced to avoid segmentation fault. The reason is that after each round of repartitioning,

if data movement is required, the AnalysisModel will be wiped off but Nodes are still in existence.

Introduction of unSetMyNode function separates Node from its DOF Group so the DOF Group

can be wiped and regenerated for the new model. void DOF Group::unSetMyNode(void)
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202.3.4.7 DomainPartitioner

DomainPartitioner is one of the most extensively changed classes in this chapter. This class acts as the

entry point for PartitionedDomain to do domain decomposition and it basically has been rewritten to

introduce new partition/repartition functionality and new data structures.

• Function repartition is implemented to do repartitioning after each loading increment. Partition

and repartition are both implemented in parallel through ParMETIS library in this chapter. This

function will collect ElementGraph from each Subdomain and pass them to GraphPartitioner. The

global ElementGraph will be kept intact from which connectivity/adjacency information will be

gathered to assemble child ElementGraphs and provide initial graph distribution data for reparti-

tion routines. After repartitioning by ParMETIS finishes, the function will verify the new partition

against the original one to see if data redistribution is required to achieve load balancing. This

repartition function also acts as a commander to control the data migration for adaptive load

balancing. It issues commands to ShadowSubdomain to export/import Nodes, Elements, Con-

straintss, Loads, etc.

• The old design of OpenSees used multiplication of prime numbers as index number to record which

partitions a specific node belongs to. This is a very good idea because with this approach, we only

need one integer for each node to keep track of node partitions, which can be called as an index

number for the node. The idea was to name each Subdomain with one specific prime number, if a

node belongs to this Subdomain, we would multiply the index number of the node with the prime

number of this Subdomain. In order to determine if a node belongs to on specific Subdomain,

all we need is to divide the index number of the node with the prime number the Subdomain

represents to see if we can get zero residual.

• The drawback of the old data structure based on prime numbers is that it only works when the

number of processing units is small, say less than 16. In 3D continuum models, a single node might

belong to up to 8 partitions simultaneously, which happens when a corner node sits on intersections

of different Subdomains. As we know, prime numbers grow up very fast, multiplication with 8

prime numbers can easily overflow the index number of the node. A new data structure inspired

by the Compressed Sparse Row (CSR) storage format popular in sparse matrix calculations has

been introduced into in this chapter to solve the problem. One integer array has been used to

store the partition data of all nodes, i.e. which partitions this node belongs to. Another integer

array has been employed to record the count of partitions for each node. With these two arrays,

we can load as many partitions as we want in our parallel processing.
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202.3.4.8 Shadow/ActorSubdomain

As mentioned in previous sections of this chapter, Shadow/ActorSubdomain are the most important

classes in parallel design of OpenSees McKenna (1997). ShadowSubdomains represent Subdomains in

the main compute process PartitionedDomain. If PartitionedDomain requires one specific Subdomain to

carry out some operations, it will send out orders to the ShadowSubdomain associated with the target

Subdomain. Then the ShadowSubdomain sets up communication channel to communicate with the

Subdomain through ActorSubdomain. ActorSubdomain, on the other hand, sits on each child process as

an agent receiving and processing incoming operation requests. The major improvements in this chapter

include new functionality for adaptive repartitioning and data migration, and several other minor changes

to reduce unnecessary data communications, such as when the Subdomain is required to removeElement,

the new design won’t send the element information out, etc. New features will be introduced in this

section.

• ShadowActorSubdomain Partition

New design used ParMETIS to do parallel graph partitioning instead of sequential partitioning by

METIS in old design. This improvement helps to reduce partition/repartition overhead and enable

the parallel adaptive repartitioning for PDD algorithms proposed in this chapter.

• ShadowActorSubdomain BuildElementGraph

In order to provide input graphs for adaptive load balancing, all Subdomains have to construct

their own subElementGraph, which will be fed into ParMETIS routines for repartitioning.

• ShadowActorSubdomain Repartition

The repartitioning is implemented in parallel in this chapter so this entry point is set in the

ActorSubdomain for each Subdomain.

• ShadowActorSubdomain reDistributeData

If data migration is needed to achieve load balancing, the main compute process will orchestrate

the data redistribution process and the functionality here helps to facilitate the data communi-

cations between processes. This is one of the major additions to the existing design. Starting

from this point, the ActorSubdomain is able to handle all required data movement on its own

and ActorSubdomains representing other Subdomains will connect to the current working Actor-

Subdomain to receive/send data. Logically only one ActorSubdomain will be doing ShadowActor-

Subdomain reDistributeData while others including the main compute process will be listening to

separate MPI port for data migration requests.
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• ShadowActorSubdomain recvChangedNodeList

This function is used to simplify the data migration routine. With this function, only Nodes/Ele-

ments and their associated Constraints, Loads etc. need to be moved between processors.

• ShadowActorSubdomain ChangeMPIChannel

This function prepares the current ActorSubdomain for messages from some specific processes. It

changes the destination/source for subsequent outgoing/incoming communications, which helps

redistributing data after load balancing.

• ShadowActorSubdomain restoreChannel

The default communication pattern in the old design of OpenSees was one to one, main to follower

computer processes. This function helps restoring communication patterns of the whole model after

data redistribution finishes.

• ShadowActorSubdomain swapNodeFromInternalToExternal

Nodes that only belongs to one single Subdomain is called internal nodes whose information will

be stored only in that specific Subdomain. While for those nodes that belong to more than

one Subdomains, their information should be accessible from all Subdomains with which the

nodes are associated. Those nodes are called external nodes instead. It is possible that former

internal nodes to one Subdomain become external after the adaptive repartitioning. What the old

design would do is to remove the internal nodes from that Subdomain, gather the information

back to the main compute process and then distribute it externally among those Subdomains as

indicated by the newly obtained partitions. The improvement in this chapter avoids unnecessary

data communication between current working Subdomain and the main compute process Domain.

We can just swap the node in working Subdomain from internal status to external status and then

export them to other specified Subdomains. This new design can improve performance if the data

migration is extensive by avoiding unnecessary communications.

• ShadowActorSubdomain swapNodeFromExternalToInternal

This function is introduced due to the same reason as described previously although now the

swapping direction is in reverse. It is noted that along with the swapping, removing operations

must be invoked for those Subdomains that does not contain the node anymore.

• ShadowActorSubdomain exportInternalNode

This function handles the situation when a Node does not belong to the current Subdomain

after adaptive repartitioning. The node will be removed from current Subdomain and exported to
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other Subdomains specified by the graph repartitioning. This again avoids the unnecessary data

communication to/from main compute process by directly sending data to other Subdomains.

• ShadowActorSubdomain resetRecorders

The Recorders have to be reset after data migration to reflect component changes in each Sub-

domain.

202.3.4.9 Send/RecvSelf

As stated in previous sections, Send/RecvSelf must be provided by all domain components to finish data

communication operations, such as Nodes, Elements, Loads, Constraints, Materials etc. In this chapter,

new communication functions have been developed for EightNodeBrick element, ElasticIsotropic3D ma-

terial, Template3Dep/NewTemplate3Dep material. The basic requirement to implement Send/RecvSelf

is to replicate the source object instance in target process. For the old design, only one-step initial

partitioning is performed and thus greatly simplifies the Send/RecvSelf routines because all the analysis-

related information is null or void and only geometry-related data need to be transferred. But in this

chapter, data migration is needed periodically to achieve load balance so the Send/RecvSelf has to be

redesigned to carry analysis-related information besides the geometry model data. This is extremely

important for Element and Material classes because they contain intermediate iteration/solution data of

nonlinear finite element simulations. Figure 202.15 shows the class diagrams of brick Element and the

associated Template3Dep material model. Send/RecvSelf operations have been implemented also for all

classes associated with Template3Dep which are necessary to define a complete material model, such as

Cam Clay, Drucker Prager and von Mises PotentialSurfaces, Cam Clay, Drucker Prager and von Mises

YieldSurfaces, linear and nonlinear isotropic and kinematic hardening rules, etc.

202.3.5 Graph Partitioning

Graph partitioning approach has been extensively used in implementing domain decomposition type

parallel finite element method. The element-based graph naturally becomes the favorite due to the fact

that elemental operation forms the fundamental calculation unit in finite element analysis.

In this chapter, element graph has been constructed upon which graph partitioning algorithm acts

to get domain decomposition for parallel finite element analysis. In the current implementation of

this chapter, vertices of the element graph represent elements of the analysis model. Vertex weight is

then specified as the computational load of each element. In elastic-plastic finite element simulations,

the most expensive part has shown to be the elemental level calculations, which include constitutive-

level stress update (strain-driven constitutive driver assumed) and formulation of elastic-plastic modulus
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(or so-called tangent stiffness tensor/matrix). In this research, the wall clock time used by elemental

calculations has been dynamically collected and specified as the corresponding vertex weight for each

element. The elemental calculation time clearly tells whether the element is elastic or plastified. With

this timing metric, the graph can effectively reflect load distribution among elements thus load balancing

repartition can be triggered on the graph to redistribute element between processors to achieve more

balanced elastic-plastic calculation.

On the other hand, vertex size has to be defined for repartitioning problem as mentioned in previous

sections. In this research, vertex size has been specified to be redistribution cost associated with each

element. This information depends on the parallel implementation of the software and is discussed in

the section immediately following.

202.3.5.1 Construction of Element Graph

Each element is considered as one vertex in the element graph. An edge is formed when two elements

share a common node. In this chapter, the graph structure is assumed to be undirected, which means

the same edge will be added to both vertex ends. The edge is weightless in our application considering

the fact that the purpose of minimizing edge-cut is to reduce the data migration when assembling global

stiffness matrix. In that sense, the edge of element graph should carry the same weight or, more directly

no weight at all.

202.3.5.2 Interface to ParMETIS/METIS

Interfaces to both ParMETIS and METIS have been implemented in this chapter. ParMETIS is the

parallel implementation of METIS and new adaptive repartitioning functionality is only available through

ParMETIS.

All of the graph routines in ParMETIS/METIS take as input the adjacency structure of the graph,

the weights of the vertices and edges (if any), and an array describing how the graph is distributed

among the processors Karypis et al. (2003). The structure of the graph is represented by the compressed

storage format (CSR), extended for the context of parallel distributed-memory computing. We will first

describe the CSR format for serial graphs and then describe how it has been extended for storing graphs

that are distributed among processors.

• Serial CSR Format The CSR format is a widely-used scheme for storing sparse graphs. Here, the

adjacency structure of a graph is represented by two arrays, xadj and adjncy. Weights on the

vertices and edges (if any) are represented by using two additional arrays, vwgt and adjwgt. For

example, consider a graph with n vertices and m edges. In the CSR format, this graph can be
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described using arrays of the following sizes:

xadj[n + 1], vwgt[n], adjncy[2m], and adjwgt[2m] (202.1)

Note that the reason both adjncy and adjwgt are of size 2m is because every edge is listed twice

(i.e., as (v, u) and (u, v)). Also note that in the case in which the graph is unweighted (i.e., all

vertices and/or edges have the same weight), then either or both of the arrays vwgt and adjwgt

can be set to NULL. ParMETIS V3 AdaptiveRepart additionally requires a vsize array. This array

is similar to the vwgt array, except that instead of describing the amount of work that is associated

with each vertex, it describes the amount of memory that is associated with each vertex.

The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts

from 0 (C style), the adjacency list of vertex i is stored in array adjncy starting at index xadj[i]

and ending at (but not including) index xadj[i + 1] (in other words, adjncy[xadj[i]] up through and

including adjncy[xadj[i+1]–1]). Hence, the adjacency lists for each vertex are stored consecutively

in the array adjncy. The array xadj is used to point to where the list for each specific vertex

begins and ends. Figure 202.14(a) illustrates the CSR format for the 15-vertex graph shown in

Figure 202.14(b). If the graph has weights on the vertices, then vwgt[i] is used to store the weight

of vertex i . Similarly, if the graph has weights on the edges, then the weight of edge adjncy[j] is

stored in adjwgt[j]. This is the format that is used by (serial) METIS library routines.

• Distributed CSR Format ParMETIS uses an extension of the CSR format that allows the vertices

of the graph and their adjacency lists to be distributed among the processors. In particular,

PARMETIS assumes that each processor Pi stores ni consecutive vertices of the graph and the

corresponding mi edges, so that n =
∑

i ni , and 2m =
∑

i mi. Here, each processor stores its

local part of the graph in the four arrays xadj[ni + 1], vwgt[ni], adjncy[mi], and adjwgt[mi], using

the CSR storage scheme. Again, if the graph is unweighted, the arrays vwgt and adjwgt can

be set to NULL. The straightforward way to distribute the graph for PARMETIS is to take n/p

consecutive adjacency lists from adjncy and store them on consecutive processors (where p is the

number of processors). In addition, each processor needs its local xadj array to point to where

each of its local vertices’ adjacency lists begin and end. Thus, if we take all the local adjncy arrays

and concatenate them, we will get exactly the same adjncy array that is used in the serial CSR.

However, concatenating the local xadj arrays will not give us the serial xadj array. This is because

the entries in each local xadj must point to their local adjncy array, and so, xadj[0] is zero for all

processors. In addition to these four arrays, each processor also requires the array vtxdist[p + 1]

that indicates the range of vertices that are local to each processor. In particular, processor Pi

stores the vertices from vtxdist[i] up to (but not including) vertex vtxdist[i + 1].
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Figure 202.14: An example of the parameters passed to PARMETIS in a three processor case Karypis

et al. (2003).

Figure 202.14(c) illustrates the distributed CSR format by an example on a three-processor system.

The 15-vertex graph in Figure 202.14(a) is distributed among the processors so that each processor

gets 5 vertices and their corresponding adjacency lists. That is, Processor Zero gets vertices 0

through 4, Processor One gets vertices 5 through 9, and Processor Two gets vertices 10 through

14. This figure shows the xadj, adjncy, and vtxdist arrays for each processor. Note that the vtxdist

array will always be identical for every processor. All five arrays that describe the distributed CSR

format are defined in PARMETIS to be of type idxtype. By default idxtype is set to be equivalent

to type int (i.e., integers). However, idxtype can be made to be equivalent to a short int for certain

architectures that use 64-bit integers by default. (Note that doing so will cut the memory usage

and communication time required approximately in half.) The conversion of idxtype from int to
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short can be done by modifying the file parmetis.h. (Instructions are included there.) The same

idxtype is used for the arrays that store the computed partitioning and permutation vectors.

When multiple vertex weights are used for multi-constraint partitioning, the c vertex weights for

each vertex are stored contiguously in the vwgt array. In this case, the vwgt array is of size nc,

where n is the number of locally stored vertices and c is the number of vertex weights (and also

the number of balance constraints).

New GraphPartitioner class ParMETIS has been developed in this chapter to provide seamless inter-

face to adaptive partitioning/repartitioning routines.

202.3.6 Data Redistribution

Data redistribution after repartitioning has been a challenging problem which needs careful study to

guarantee correctness of subsequent analysis. In this research, Object-Oriented philosophy has been fol-

lowed to abstract container classes to facilitate analysis and model data redistribution after repartition.

As for the initial partitioning, only model data, such as geometry parameters, has to be exported to

sub-processors, while in adaptive repartitioning finite element simulation, analysis data has to be moved

as well. It is extremely important to have well-designed container classes to carry data around. Basic

units of finite element analysis, such as nodes and elements naturally become our first choices. Not

to give up generality, the design in OpenSees adopts basic iterative approach for nonlinear finite ele-

ment analysis Crisfield (1997b), important intermediate analysis data include trial data, commit data,

incremental data, element residual, element tangent stiffness, etc. Vertex size of each element has been

defined as the total number of bytes that have to be transferred between sub-processors.

1. Node

Other than geometric data such as node coordinates and number of degree of freedoms, the Node

class contains nodal displacement data which should be sent together with the node to preserve

continuity of the analysis model.

2. Element

Element class is the basic construction unit in finite element model. In the design of this research,

Element class keeps internal links to Template3D material class Jeremić and Yang (2002). In order

to facilitate elastic-plastic simulation, EPState class is constructed to hold all the intermediate

response data. This object-oriented abstraction greatly systematize the communication pattern.

The information on class design is shown in the class diagram Figure 202.15 by Rational Rose Boggs

and Boggs (2002).
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All data communication operations have been implemented through the standard Send/RecvSelf inter-

face, which forms a complete set of consistent point-to-point communication patterns and is convenient

for future additions of new element/materials.
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203.1 Chapter Summary and Highlights

Veldhuizen (2005); Stroustrup (2005); Ramey (2005); Veldhuizen (2005);

203.1.1 Finite Elements

203.1.1.1 Single Phase Solid Elements

8 Node Brick

20 Node Brick

27 Node Brick

8-20 Node Brick

203.1.1.2 Fully Coupled, Two-Phase (Porous Solid – Pore Fluid) Solid Elements

u-p-U

u-p

203.1.1.3 Structural Elements

Truss

Beam

203.1.1.4 Special Elements

Contact Element

Seismic Isolator Element

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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203.1.2 Constitutive Integration and Material Models

203.1.2.1 Explicit Integration

203.1.2.2 Implicit Integration

203.1.2.3 Material Models

203.1.3 Modified OpenSees Services Library

PDD...
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204.1 Chapter Summary and Highlights

204.2 Introduction

Bloch (2005);

Dmitriev (2004); Stroustrup (2005); Niebler (2005); Mernik et al. (2005); Ward (2003);

204.3 Application Programming Interface for Domain Specific Language (DSL)

204.3.1 Modeling

Start new loading stage:

int start_new_stage(string CurrentStageName);

define_model_name(string theModelName)

obtain_pseudo_time()

wipe_model()

check_mesh(string outputfilename)
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204.3.1.1 Modeling: Material Models

int add_constitutive_model_NDMaterial_linear_elastic_isotropic_3d(int MaterialNumber,

double ElasticModulus,

double nu,

double rho)

MaterialNumber: Number of the predefined ND material to be used;

ElasticModulus: elastic modulus;

nu: Poisson’s ratio;

rho: density;

add_constitutive_model_NDMaterial_linear_elastic_crossanisotropic(int MaterialNumber,

double Ehp,

double Evp,

double nuhvp,

double nuhhp,

double Ghvp,

double rhop)

MaterialNumber: Number of the ND material to be used ; Ehp: Elastic modulus on ”horizontal”

direction ; Evp: Elastic modulus on ”vertical” direction ; nuhvp: Poisson ratio for ”horizontal” - ”verti-

cal” direction ; nuhhp: Poisson ratio for ”horizontal” - ”horizontal” direction ; Ghvp: Shear moduls for

”horizontal” - ”vertical” direction ; rhop: density ;

add_constitutive_model_NDMaterial_vonmises_perfectly_plastic(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: Number of the ND material to be used ; Algorithm: Explicit (=0) or Implicit

(=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial radius of von Mises cylinder ;

initialconfiningstress: initial confining pressure (possitive for compression) ;

add_constitutive_model_NDMaterial_vonmises_isotropic_hardening(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

double H,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: Number of the ND material to be used ; Algorithm: Explicit (=0) or Implicit

(=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial radius of von Mises cylinder

; H: rate of isotropic hardening ; initialconfiningstress: initial confining pressure (possitive for

compression) ;

add_constitutive_model_NDMaterial_vonmises_kinematic_hardening(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,
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double k,

double ha,

double Cr,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: Number of the ND material to be used ; Algorithm: Explicit (=0) or Implicit

(=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial radius of von Mises cylinder ;

ha: Armstrong-Frederick nonlinear kinematic hardening constant, initial slope ; Cr: Armstrong-Frederick

nonlinear kinematic hardening constant, asymptote ; initialconfiningstress: initial confining pres-

sure (possitive for compression) ;

add_constitutive_model_NDMaterial_vonmises_linear_kinematic_hardening(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

double H,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: Number of the ND material to be used ; Algorithm: Explicit (=0) or Implicit

(=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial radius of von Mises cylin-

der ; H: Kinematic hardening rate; initialconfiningstress: initial confining pressure (possitive for

compression) ;
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add_constitutive_model_NDMaterial_druckerprager_perfectly_plastic(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: numer/Number of the nD material to be used ; AlgorithmType: Explicit (=0)

or Implicit (=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial equivalent friction

angle ; initialconfiningstress: initial confining pressure (positive for compression) ;

add_constitutive_model_NDMaterial_druckerprager_isotropic_hardening(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

double H,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: number/Number of the nD material to be used ; AlgorithType: Explicit (=0)

or Implicit (=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial equivalent friction

angle ; H: rate of isotropic hardening ; initialconfiningstress: initial confining pressure (positive

for compression) ;
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 204.3. APPLICATION PROGRAMMING INTERF . . . page: 761 of 3287

add_constitutive_model_NDMaterial_druckerprager_kinematic_hardening(int MaterialNumber,

int Algorithm,

double rho,

double E,

double v,

double k,

double ha,

double Cr,

double initialconfiningstress,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: number/Number of the ND material to be used ; Algorithm: Explicit (=0) or

Implicit (=1) ; rho: density ; E: Elastic modulus ; v: Poisson’s ratio ; k: initial equivalent friction angle ;

ha: Armstrong-Frederick nonlinear kinematic hardening constant, initial slope ; Cr: Armstrong-Frederick

nonlinear kinematic hardening constant, asymptote ; initialconfiningstress: initial confining pres-

sure (positive for compression) ;

add_constitutive_model_NDMaterial_camclay(int MaterialNumber,

int Algorithm,

double rho,

double e0,

double M,

double lambda,

double kappa,

double v,

double Kc,

double P0,

double initialconfiningstress,
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int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: number/Number of the material to be used ; AlgorithmType: Explicit (=0) or

Implicit (=1) ; rho: density ; e0: initial void ratio ; M: slope of the critical state line ; lambda: slope

of the Normal Consolidation Line (NCL) ; kappa: slope of the Unloading-Reloading Line (URL) ; v:

Poisson ratio ; Kc: Bulk modulus ; initialconfiningstress: initial confining stress/pressure (positive

for compression) ;

add_constitutive_model_NDMaterial_sanisand_2004(int MaterialNumber,

int Algorithm,

double rho,

double e0,

double G0,

double nu,

double Pat,

double p_cut,

double Mc,

double c,

double lambda_c,

double xi,

double ec_ref,

double m,

double h0,

double ch,

double nb,

double A0,

double nd,

double z_max,

double cz,

double initialconfiningstress,
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int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: number/Number of the nD material to be used ; AlgorithmType: Explicit (=0)

or Implicit (=1) ; rho: density ; e0: initial viod ratio ; G0: elastic shear modulus (same unit as stress)

; nu: Poisson’s ratio ; Pat: atmospheric pressure ; p_cut: pressure cut-off ratio ; Mc: ; c: tension-

compression strength ratio ; lambda_c: parameter for critical state line ; xi: parameter for critical

state line ; ec_ref: reference void ratio for critical state line, ; ec = er lambda(pc/Pat)xi m: opening

of the yield surface ; h0: bounding parameter ; ch: bounding parameter ; nb: bounding parameter ;

A0: dilatancy parameter ; nd: dilatancy parameter ; z_max: fabric parameter ; cz: fabric parameter ;

initialconfiningstress initial confining pressure (positive for compression) ;

add_constitutive_model_NDMaterial_sanisand_2008(int MaterialNumber,

int Algorithm,

double rho,

double e0,

double G0,

double K0,

double Pat,

double k_c,

double alpha_cc,

double c,

double lambda,

double xi,

double ec_ref,

double m,

double h0,

double ch,

double nb,

double A0,

double nd,
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double p_r,

double rho_c,

double theta_c,

double X,

double z_max,

double cz,

double p0,

double p_in,

int number_of_subincrements,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

MaterialNumber: Number of the ND material to be used ; Algorithm: Explicit (=0) or Implicit

(=1) ; rho: density ; e0: initial void ratio at zero strain ; G0: Reference elastic shear modulus (same

unit as stress) ; K0: Reference elastic bulk modulus (same unit as stress) ; Pat: atmospherics pressure

for critical state line ; k_c: cut-off factor; for p < kcPat , use p = kcPat for calculation of G; (a default

value of kc = 0.01 should work fine) ; alpha_cc: critical state stress ratio ; c: tension-compression

strength ratio ; lambda: parameter for critical state line ; xi: parameter for critical state line ; ec_ref:

reference void for critical state line, ; ec = er lambda(pc/Pat)xi ; m: opening of the yield surface ; h0:

bounding parameter ; ch: bounding parameter ; nb: bounding parameter ; A0: dilatancy parameter ;

nd: dilatancy parameter ; p_r: LCC parameter ; rho_c: LCC parameter ; theta_c: LCC parameter ;

X: LCC parameter ; z_max: fabric parameter ; cz: fabric parameter ; p0: yield surface size ; p_in ;

add_constitutive_model_NDMaterial_pisano(int tag,

double E_in,

double v_in,

double M_in,

double kd_in,

double xi_in,

double h_in,

double m_in,

double rho_in,
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double initialconfiningstress_in,

double beta_min_in)

add_constitutive_model_NDMaterial_accelerated_vonmises_perfectly_plastic(int MaterialNumber,

double rho,

double E,

double v,

double k,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_vonmises_isotropic_hardening(int MaterialNumber,

double rho,

double E,

double v,

double k,

double H,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_vonmises_kinematic_hardening(int MaterialNumber,

double rho,

double E,

double v,

double k,

double ha,

double Cr,

double initialconfiningstress,
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int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_vonmises_linear_kinematic_hardening(int MaterialNumber,

double rho,

double E,

double v,

double k,

double H,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_druckerprager_perfectly_plastic(int MaterialNumber,

double rho,

double E,

double v,

double k,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_druckerprager_isotropic_hardening(int MaterialNumber,

double rho,

double E,

double v,
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double k,

double H,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_druckerprager_kinematic_hardening(int MaterialNumber,

double rho,

double E,

double v,

double k,

double ha,

double Cr,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)

add_constitutive_model_NDMaterial_accelerated_camclay(int MaterialNumber,

double rho,

double e0,

double M,

double lambda,

double kappa,

double v,

double Kc,

double p0,

double initialconfiningstress,

int maximum_number_of_iterations,

double tolerance_1,

double tolerance_2)
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add_constitutive_model_uniaxial_elastic(int MaterialNumber,

double elasticmodulus,

double eta)

MaterialNumber: unique material Number ; elasticmodulus: elastic modulus of the material ;

eta: damping tangent ;

add_constitutive_model_uniaxial_concrete02(int MaterialNumber,

double fpc, double epsc0, double fpcu,

double epscu, double rat, double ft,

double Ets)

MaterialNumber: unique material Number ; fpc: compressive strength ; epsc0: strain at com-

pressive strength ; fpcu: crushing strength ; epsU: strain at crushing strength ; lambda: ratio between

unloading slope at epscu and initial slope ; ft: tensile strength ; Ets: tension softening stiffness (absolute

value) (slope of the linear tension softening branch) ;

int add_constitutive_model_uniaxial_steel01(int MaterialNumber,

double fy,

double Ep,

double Hd,

int a1,

int a2,

int a3,

int a4)

MaterialNumber: unique material Number ; fy: yield strength ; Ep: initial elastic tangent ; Hd:

strain-hardening ratio (ratio between post-yield tangent and initial elastic tangent) ; a1, a2, a3, a4:

isotropic hardening parameters ; a1: isotropic hardening parameter, increase of compression yield en-

velope as proportion of yield strength after a plastic strain of a2*(fy/Ep). ; a2: isotropic hardening

parameter (see explanation under a1) ; a3: isotropic hardening parameter, increase of tension yield
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 204.3. APPLICATION PROGRAMMING INTERF . . . page: 769 of 3287

envelope as proportion of yield strength after a plastic strain of a4*(fy/Ep) ; a4: isotropic hardening

parameter (see explanation under a3) ;

int add_constitutive_model_uniaxial_steel02(int MaterialNumber,

double fy, double E0, double b,

double R0, double cR1, double cR2,

double a1, double a2, double a3, double a4)

MaterialNumber: unique material object Number ; fy: yield strength ; E0: initial elastic tangent ; b:

strain-hardening ratio (ratio between post-yield tangent and initial elastic tangent) ; R0, cR1, cR2:

control the transition from elastic to plastic branches. Recommended values: R0=between 10 and 20,

cR1=0.925, cR2=0.15 ; a1, a2, a3, a4: isotropic hardening parameters ; a1: isotropic hardening

parameter, increase of compression yield envelope as proportion of yield strength after a plastic strain

of a2*(Fy/E). ; a2: isotropic hardening parameter (see explanation under a1) ; a3: isotropic hardening

parameter, increase of tension yield envelope as proportion of yield strength after a plastic strain of

a4*(Fy/E) ; a4: isotropic hardening parameter (see explanation under a3) ;

204.3.1.2 Modeling: Nodes

int add_node(int NodeNumber,

int number_of_DOFs,

double coordinate_x,

double coordinate_y,

double coordinate_z)

NodeNumber: integer Number identifying node ; number_of_DOFs: number of degrees of freedom

for node ; coordinate_x: x coordinate of the node ; coordinate_y: y coordinate of the node ;

coordinate_z: z coordinate of the node ;

int remove_node(int NodeNumber)
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NodeNumber: integer Number identifying the node to be removed ;

int add_mass_to_node(int NodeNumber,

double massvalue1,

double massvalue2,

double massvalue3)

int add_mass_to_node(int NodeNumber,

double massvalue1,

double massvalue2,

double massvalue3,

double massvalue4,

double massvalue5,

double massvalue6)

int add_mass_to_node(int NodeNumber,

double massvalue1,

double massvalue2,

double massvalue3,

double massvalue4,

double massvalue5,

double massvalue6,

double massvalue7)

NodeNumber: integer Number of the node that mass would be applied to ; massvalue(#): the

amount of mass assigned to each degree of freedom ;

204.3.1.3 Modeling: Finite Elements

add_element_truss(int ElementNumber,

int iNode,

int jNode,

int MaterialNumber,

double sectionarea,
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double rho)

ElementNumber: unique element object Number ; dimension: number of dimensions of the beam

; iNode , jNode: end nodes ; MaterialNumber: Number of the uniaxial material to be used ;

sectionarea: section area of the truss element ; rho: density ;

add_element_beam_elastic(int ElementNumber,

double A,

double E,

double G,

double Jx,

double Iy,

double Iz,

int iNode,

int jNode,

double rho,

double vecxzPlane_X, double vecxzPlane_Y, double vecxzPlane_Z,

double jntOffsetI_X, double jntOffsetI_Y, double jntOffsetI_Z,

double jntOffsetJ_X, double jntOffsetJ_Y, double jntOffsetJ_Z)

ElementNumber: unique element object Number ; A: section area ; E: Young’s modulus ; G: Shear

Modulus ; Jx: polar moment of inertia ; Iy: moment of inertia around y ; Iz: moment of inertia around

z ; iNode , jNode: end nodes ; TransformationNumber: identifier for previously-defined coordinate-

transformation (CrdTransf) object ; rho: density ; sectionTag: identifier for previously-defined section

object ;

add_element_beam_elastic_lumped_mass(int ElementNumber,

double A,

double E,

double G,

double Jx,

double Iy,
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double Iz,

int iNode,

int jNode,

double rho,

double vecxzPlane_X, double vecxzPlane_Y, double vecxzPlane_Z,

double jntOffsetI_X, double jntOffsetI_Y, double jntOffsetI_Z,

double jntOffsetJ_X, double jntOffsetJ_Y, double jntOffsetJ_Z)

ElementNumber: unique element object Number ; A: section area ; E: Young’s modulus ; G: Shear

Modulus ; Jx: polar moment of inertia ; Iy: moment of inertia around y ; Iz: moment of inertia around

z ; iNode , jNode: end nodes ; TransformationNumber: identifier for previously-defined coordinate-

transformation (CrdTransf) object ; rho: density ; sectionTag: identifier for previously-defined section

object ;

add_element_brick_8node(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int MaterialNumber)

elementTag: unique element object Number ; node_numb_#: eight node numbers specified in ap-

propriate order ; materialTag: material Number associated with previsouly-defined NDMaterial object

;

add_element_brick_8node_elastic(int ElementNumber,

int node_numb_1,

int node_numb_2,
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int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int MaterialNumber)

elementTag: unique element object Number ; node_numb_#: eight node numbers specified in ap-

propriate order ; materialTag: material Number associated with previsouly-defined NDMaterial object

;

add_element_brick_20node(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,
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int MaterialNumber)

ElementNumber: unique element object Number ; node_numb_#: eight node numbers specified in

appropriate order ; MaterialNumber: material Number associated with previsouly-difined NDMaterial

object ;

add_element_brick_20node_elastic(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int MaterialNumber)

ElementNumber: unique element object Number ; node_numb_#: eight node numbers specified in

appropriate order ; MaterialNumber: material Number associated with previsouly-difined NDMaterial

object ;
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int add_element_brick_27node(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int node_numb_21,

int node_numb_22,

int node_numb_23,

int node_numb_24,

int node_numb_25,

int node_numb_26,

int node_numb_27,

int MaterialNumber)

ElementNumber: unique element object Number ; node_numb_#: eight node numbers specified in

appropriate order ; MaterialNumber: material Number associated with previsouly-difined NDMaterial

object ;
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int add_element_brick_27node_elastic(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int node_numb_21,

int node_numb_22,

int node_numb_23,

int node_numb_24,

int node_numb_25,

int node_numb_26,

int node_numb_27,

int MaterialNumber)

ElementNumber: unique element object Number ; node_numb_#: eight node numbers specified in

appropriate order ; MaterialNumber: material Number associated with previsouly-difined NDMaterial

object ;
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add_element_brick_8node_up(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int MaterialNumber,

double porosity,

double alpha,

double rho_s,

double rho_f,

double k_x,

double k_y,

double k_z,

double K_s,

double K_f)

add_element_brick_8node_upU(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int MaterialNumber,

double porosity,

double alpha,

double rho_s,
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double rho_f,

double k_x,

double k_y,

double k_z,

double K_s,

double K_f)

add_element_brick_20node_upU(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int MaterialNumber,

double porosity,

double alpha,

double rho_s,

double rho_f,
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double k_x,

double k_y,

double k_z,

double K_s,

double K_f)

add_element_brick_8node_variable_number_of_gauss_points(int ElementNumber,

int number_of_gauss_points,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int MaterialNumber)

add_element_brick_20node_variable_number_of_gauss_points(int ElementNumber,

int number_of_gauss_points,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,
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int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int MaterialNumber)

add_element_brick_27node_variable_number_of_gauss_points(int ElementNumber,

int number_of_gauss_points,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

int node_numb_5,

int node_numb_6,

int node_numb_7,

int node_numb_8,

int node_numb_9,

int node_numb_10,

int node_numb_11,

int node_numb_12,

int node_numb_13,

int node_numb_14,

int node_numb_15,

int node_numb_16,

int node_numb_17,

int node_numb_18,

int node_numb_19,

int node_numb_20,

int node_numb_21,
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int node_numb_22,

int node_numb_23,

int node_numb_24,

int node_numb_25,

int node_numb_26,

int node_numb_27,

int MaterialNumber)

add_element_brick_variable_node_8_to_27(int ElementNumber, int number_of_gauss_points,

int node_numb_1, int node_numb_2, int node_numb_3,

int node_numb_4, int node_numb_5, int node_numb_6,

int node_numb_7, int node_numb_8, int node_numb_9,

int node_numb_10, int node_numb_11, int node_numb_12,

int node_numb_13, int node_numb_14, int node_numb_15,

int node_numb_16, int node_numb_17, int node_numb_18,

int node_numb_19, int node_numb_20, int node_numb_21,

int node_numb_22, int node_numb_23, int node_numb_24,

int node_numb_25, int node_numb_26, int node_numb_27,

int MaterialNumber)

add_element_contact_3dof_to_3dof(int ElementNumber,

int iNode,

int jNode,

double Knormal,

double Ktangent,

double frictionRatio,

double x_local_1,

double x_local_2,

double x_local_3)

add_element_contact_nonlinear_3dof_to_3dof(int ElementNumber,

int iNode,
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int jNode,

double Knormal,

double Ktangent,

double frictionRatio,

double maxmimum_gap,

double maximum_normal_stiffness,

double x_local_1,

double x_local_2,

double x_local_3)

add_element_contact_nonlinear_3dof_to_7dof(int ElementNumber,

int iNode,

int jNode,

double Knormal,

double Ktangent,

double frictionRatio,

double maximum_gap,

double maximum_normal_stiffness,

double x_local_1,

double x_local_2,

double x_local_3)

add_element_shell_andes_3node(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

double thickness,

int MaterialNumber)

add_element_shell_andes_4node(int ElementNumber,

int node_numb_1,

int node_numb_2,
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int node_numb_3,

int node_numb_4,

double thickness,

int MaterialNumber)

add_element_shell_MITC4(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

double thickness,

int MaterialNumber)

add_element_shell_NewMITC4(int ElementNumber,

int node_numb_1,

int node_numb_2,

int node_numb_3,

int node_numb_4,

double thickness,

int MaterialNumber)

add_element_penalty(int ElementNumber,

int node1,

int node2,

double penalty_stiffness,

int dof)

add_element_penalty_for_applying_generalized_displacement(int ElementNumber,

int Exist_Node,

double penalty_stiffness,

int direction)
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add_element_rank_one_deficient_elastic_pinned_fixed_beam(int ElementNumber,

double A,

double E,

double G,

double Jx,

double Iy,

double Iz,

int iNode,

int jNode,

double rho,

double vecxzPlane_X, double vecxzPlane_Y, double vecxzPlane_Z,

double jntOffsetI_X, double jntOffsetI_Y, double jntOffsetI_Z,

double jntOffsetJ_X, double jntOffsetJ_Y, double jntOffsetJ_Z)

add_element_beam_displacement_based(int ElementNumber,

int iNode,

int jNode,

int numberofintegrationpoints,

int SectionNumber,

double rho,

string integrationrule,

double vecInLocXZPlane_x, double vecInLocXZPlane_y, double vecInLocXZPlane_z,

double rigJntOffset1_x, double rigJntOffset1_y, double rigJntOffset1_z,

double rigJntOffset2_x, double rigJntOffset2_y, double rigJntOffset2_z)

int remove_element(int ElementNumber)

ElementNumber: number identifying the element to be removed ;

204.3.1.4 Modeling: Damping
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int add_damping_rayleigh(int dampingNumber,

double a0,

double a1,

string which_stiffness_to_use)

dampingNumber: damping Number number to be used in element definition ; a0, a1: Rayleigh order

damping coefficients ; which_stiffness_to_use: Initial_Stiffness/Current_Stiffness/Last_Commited_Stiffness

add_damping_caughey3rd(int dampingNumber, double a0, double a1, double a2, string which_stiffness_to_use)

add_damping_caughey4th(int dampingNumber, double a0, double a1, double a2, double a3, string which_stiffness_to_use)

int add_damping_to_element(int elementNumber,

int dampingNumber)

dampingNumber: damping number to be assigned to element ; elementNumber: element number

which damping is going to be assigned to ;

int add_damping_to_node(int nodeNumber,

int dampingNumber)

dampingNumber: damping number to be assigned to node (note that only the mass proportional

coefficient will be used for node) ; nodeNumber: node number which damping is going to be assigned

to ;

204.3.1.5 Modeling: Constraints, Supports, Tied Nodes Connections, etc.

int add_support_to_all_dofs_of_node(int NodeNumber)

NodeNumber: integer Number of the node to be fixed ;
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int add_support_to_node(int NodeNumber,

int dof_number)

NodeNumber: integer Number identifying the node to be constrained ; dof_number: dof to be fixed

;

int add_equaldof_to_two_nodes(int nodeRetain,

int nodeConstr,

int dofID1,

int dofID2,

...,

int dofID7)

nodeRetain: integer Number identifying the retained, or master node (rNode) ; nodeConstr:

integer Number identifying the constrained, or slave node (cNode) ; dofID: nodal degrees-of-freedom

that are constrained at the nodeConstr to be the same as those at the nodeRetain Valid range is from

1 to 7. ;

int remove_support_from_node_by_fixity_number(int FixityNumber)

FixityNumber: integer Number identifying the fixity to be removed ;

remove_support_from_node(int NodeNumber, int dofNumber)

NodeNumber: integer Number identifying the node number ; dofNumber: integer Number identifying

the dof number ;

int remove_equaldof_from_node(int NodeNumber)

FixityNumber: integer Number identifying the fixity to be removed ;
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204.3.1.6 Modeling: Static Loads

add_force_time_history_linear(int PatternNumber,

int NodeNumber,

int dof_to_be_shaken,

double final_load_value)

add_force_time_history_path_series(int PatternNumber,

int NodeNumber,

int dof_to_be_shaken,

double TimeIncrement,

double LoadFactor,

string Forceinputfilename)

add_force_time_history_path_time_series(int PatternNumber,

int NodeNumber,

int dof_to_be_shaken,

double LoadFactor,

string Forceinputfilename)

add_load_selfweight_to_element(int SelfWeightNumber,

int ElementNumber, int AccelerationFieldNumber)

add_acceleration_field(int GravityFieldNumber,

double accelerationfield_x,

double accelerationfield_y,

double accelerationfield_z)
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add_load_constant_normal_pressure_to_8node_brick_surface(int SurfaceLoadNumber,

int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

double SurfaceLoadMagnitude)

add_load_different_normal_pressure_to_8node_brick_surface(int SurfaceLoadNumber,

int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

double SurfaceLoadMagnitude1,

double SurfaceLoadMagnitude2,

double SurfaceLoadMagnitude3,

double SurfaceLoadMagnitude4)

add_load_constant_normal_pressure_to_20node_brick_surface(int SurfaceLoadNumber,

int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

int Node_5,

int Node_6,

int Node_7,

int Node_8,

double SurfaceLoadMagnitude)
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add_load_different_normal_pressure_to_20node_brick_surface(int SurfaceLoadNumber,

int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

int Node_5,

int Node_6,

int Node_7,

int Node_8,

double SurfaceLoadMagnitude1,

double SurfaceLoadMagnitude2,

double SurfaceLoadMagnitude3,

double SurfaceLoadMagnitude4,

double SurfaceLoadMagnitude5,

double SurfaceLoadMagnitude6,

double SurfaceLoadMagnitude7,

double SurfaceLoadMagnitude8)

add_load_constant_normal_pressure_to_27node_brick_surface(int SurfaceLoadNumber,

int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

int Node_5,

int Node_6,

int Node_7,

int Node_8,

int Node_9,

double SurfaceLoadMagnitude)

add_load_different_normal_pressure_to_27node_brick_surface(int SurfaceLoadNumber,
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int ElementNumber,

int Node_1,

int Node_2,

int Node_3,

int Node_4,

int Node_5,

int Node_6,

int Node_7,

int Node_8,

int Node_9,

double SurfaceLoadMagnitude1,

double SurfaceLoadMagnitude2,

double SurfaceLoadMagnitude3,

double SurfaceLoadMagnitude4,

double SurfaceLoadMagnitude5,

double SurfaceLoadMagnitude6,

double SurfaceLoadMagnitude7,

double SurfaceLoadMagnitude8,

double SurfaceLoadMagnitude9)

add_penalty_displacement_time_history_linear(int PatternNumber,

int PenaltyElementNumber,

int dof_to_be_shaken,

double Final_Displacement_Value)

add_penalty_displacement_time_history_path_series(int PatternNumber,

int PenaltyElementNumber,

int dof_to_be_shaken,

double TimeIncrement,

double LoadFactor,

string Displacementinputfilename)
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add_single_point_constraint_to_node(int NodeNumber,

int dof_number,

double DOFvalue)

204.3.1.7 Modeling: Dynamic Loads

add_load_pattern_domain_reduction_method

add_load_pattern_domain_reduction_method(int PatternNumber,

double dt,

double factor,

int numberofsteps,

int numberofdrmnodes,

int numberofdrmelements,

double xpositive,

double xminus,

double ypositive,

double yminus,

double zpositive,

double zminus,

string ElementNumbersFilename,

string NodeNumbersFilename,

string DisplacementTimeHistoryFilename,

string AccelerationTimeHistoryFilename)

Inputs: PatternNumber: number assigned to DRM load pettern ; dt: time interval of input

files for time histories ; factor: factor to multiply to the input time history ; numberofsteps:

Number of the time steps in acceleration/displacement time history ; numberofdrmnodes: Num-

ber of the nodes in DRM layer ; numberofdrmelements: Number of the elements in DRM layer ;

xpositive, xminus: boundary layer range in x direction ; ypositive, yminus: boundary layer range

in y direction ; zpositive, zminus: boundary layer range in z direction ; ElementNumbersFilename:
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File including element numbers inside the platic bowl (1 element number per line in the input file) ;

NodeNumbersFilename: File including node numbers inside the platic bowl (1 node number per line

in the input file) ; DisplacementTimeHistoryFilename: File including displacement time history (in

each line write the values of displacement in time for first degree of freedom of the first node defined in

NodeNumbersFilename, next line should have the values for second dof of the first node and continue

for all degrees of freedom. Then move to the second node defined in NodeNumbersFilename and ... ;

AccelerationTimeHistoryFilename: File including acceleration time history (in each line write the

values of displacement in time for first degree of freedom of the first node defined in NodeNumbersFile-

name, next line should have the values for second dof of the first node and continue for all degrees of

freedom. Then move to the second node defined in NodeNumbersFilename and ... ;

remove_load(int LoadPatternNumber)

add_load_pattern_domain_reduction_method_save_forces(int PatternNumber,

double dt,

double factor,

int numberofsteps,

int numberofdrmnodes,

int numberofdrmelements,

double xpositive,

double xminus,

double ypositive,

double yminus,

double zpositive,

double zminus,

string ElementNumbersFilename,

string NodeNumbersFilename,

string DisplacementTimeHistoryFilename,

string AccelerationTimeHistoryFilename,

string ForceTimeHistoryFilename)

add_load_pattern_domain_reduction_method_restore_forces(int PatternNumber,
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double dt,

double factor,

int numberofsteps,

int numberofdrmnodes,

int numberofdrmelements,

double xpositive,

double xminus,

double ypositive,

double yminus,

double zpositive,

double zminus,

string ElementNumbersFilename,

string NodeNumbersFilename,

string ForceTimeHistoryFilename)

204.3.1.8 Modeling: Prescribed Displacements

add_imposed_motion(int GroundMotionNumber,

int NodeNumber,

int degree_of_freedom,

double timestep,

double displacement_scale,

string displacementfilename,

double velocity_scale,

string velocityfilename,

double acceleration_scale,

string accelerationfilename)

204.3.1.9 Solid-Fluid Interface

Two new APIs and corresponding DSL commands have been added to RealESSI.

• define solid fluid interface “interface name”

This API is used to define solid fluid interface. Passing parameters into RealESSI to initialize our

interface class SSFI.
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• simulate No. steps using solid fluid interaction transient algorithm time step = < time >

This API aims to launch solid fluid transient interaction analysis. The time step defined here refers

to the time step for the transient analysis in solid domain. The time step for fluid domain can be

different and defined in the input files for OpenFOAM.

204.3.1.10 Outputs to mySQL database

restore_response_of_model_mysql_format(int Node_Number, int DOF_Number, int Step_Number,

string databaseName, string host,

string username, string password, unsigned int port,

string socket)

restore_state_of_model_mysql_format(string databaseName, string host,

string username, string password, unsigned int port,

string socket)

save_response_of_model_mysql_format(string databaseName, string host,

string username, string password, unsigned int port,

string socket)

save_state_of_model_mysql_format(string databaseName, string host,

string username, string password, unsigned int port,

string socket)

204.3.2 Simulation

204.3.2.1 Simulation: Solvers

Definition of system of equation (linear) solvers to be used.

int define_solver_profilespd_for_analysis()
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 204.3. APPLICATION PROGRAMMING INTERF . . . page: 795 of 3287

int define_solver_umfpack_for_analysis()

int define_solver_petsc_for_analysis()

204.3.2.2 Simulation: Static Solution Advancement

Definition of static solution advancement algorithms (see more in section 107.6 on page 526).

int define_static_solution_advancement_integrator_displacement_control(int node_number,

int doftomove,

double dispincrement)

dispincrement: increment of displacement in each step of analysis ; node_number: node whose

response controls the solution ; doftomove: degree-of-freedom whose response controls the solution.

Valid range is from 1 through the number of nodal degrees-of-freedom. ;

int define_static_solution_advancement_integrator_load_control(double loadstep)

loadstep: load step size ;

204.3.2.3 Simulation: Dynamic Solution Advancement

Definition of dynamic, time integration/advancement algorithms (see more in section 108.3 on page 538).

int define_dynamic_solution_advancement_integrator_hilber_hughes_taylor(double HHT_Alpha)

HHT_Alpha: HHT α parameter ;

int define_dynamic_solution_advancement_integrator_newmark(double gamma, double beta)

newmark_gamma, newmark_beta: Newmark γ and β parameters ;
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204.3.2.4 Simulation: Solution Algorithms

Definition of solution algorithms to be used:

int define_algorithm_with_no_convergence_check_for_analysis()

int define_algorithm_newton_for_analysis()

int define_algorithm_modifiednewton_for_analysis()

204.3.2.5 Simulation: Convergence Criteria

int define_convergence_test_energyincrement_for_analysis(double theTol,

int maxIter,

int PrintFlag)

theTol: convergence tolerance ; maxIter: maximum number of iterations that will be performed

before ”failure to converge” is returned ; PrintFlag: flag used to print information on convergence

(optional) : 0: no print output ; 1: print information on each step ; 2: print information when convergence

has been achieved ; 4: print norm, dU and dR vectors ; 5: at convergence failure, carry on, print error

message, but do not stop analysis ;

int define_convergence_test_normdisplacementincrement_for_analysis(double theTol,

int maxIter,

int PrintFlag)

theTol: convergence tolerance ; maxIter: maximum number of iterations that will be performed

before ”failure to converge” is returned ; PrintFlag: flag used to print information on convergence

(optional) ; 0: no print output ; 1: print information on each step ; 2: print information when convergence

has been achieved ; 4: print norm, dU and dR vectors ; 5: at convergence failure, carry on, print error

message, but do not stop analysis ;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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int define_convergence_test_normunbalance_for_analysis(double theTol,

int maxIter,

int PrintFlag)

theTol: convergence tolerance ; maxIter: maximum number of iterations that will be performed

before ”failure to converge” is returned ; PrintFlag: flag used to print information on convergence

(optional) ; 0: no print output ; 1: print information on each step ; 2: print information when convergence

has been achieved ; 4: print norm, dU and dR vectors ; 5: at convergence failure, carry on, print error

message, but do not stop analysis ;

204.3.2.6 Simulating Response

int simulate_using_static_multistep(int numSteps)

numSteps: number of static analysis steps which will advance the solution, ;

int simulate_using_static_onestep()

int simulate_using_transient_multistep(double dT,

int numSteps)

dT: time-step increment ; numSteps: number of time steps ;

int simulate_using_transient_onestep()

int simulate_using_transient_variable_multistep(double dT,

int numSteps,

double dtMin,

double dtMax,

int Jd)
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dT: time-step increment ; numSteps: number of time steps ; dtMin, dtMax: minimum and maxi-

mum time steps ; Jd: ideal number of iterations performed at each step ;

int simulate_using_transient_variable_onestep()

int simulate_using_eigen_analysis(int number_of_eigen_values)

204.4 Application Programming Interface for Constitutive Simulations

204.5 Application Programming Interface for Finite Elements
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204.6 Adding a New Command into Real-ESSI Simulator

This section describes how to add a new command, needed for the generation of random fields, into

Real-ESSI Simulator by modifying an existing command.

204.6.1 Introduction

So far, random fields have been generated using the discrete form of auto-covariance. The size of the

auto-covariance matrix is n× n with n equal to the number of Gauss points (GPs). In the case of a fine

FE mesh, i.e., many GPs, this may result in a large computation time. Here, ”shear beam” element is

used. It has only one GP, in the middle of an element. Hence the number of GPs is here equal to the

number of FE elements. It is easier for a user to input the number of FE elements than to input the

number of GPs.

Generation of a random field in Real-ESSI is here extended with the possibility of the use of much

less discrete points in the solution of the eigenproblem of auto-covariance (now, with the continuous

form of auto-covariance using the PCE of auto-covariance function with Legendre polynomials, i.e., the

eigenvalues and eigenfunctions are obtained instead of the eigenvalues and eigenvectors) than the GPs

in the FEM.

204.6.2 Parser

Parser reads the DSL from input file ∗.fei and interpretes it. flex and bison are used.

HERMITE POLYNOMIAL CHAOS DIMENSION is the chosen number of the first eigenvalues and eigen-

functions (or eigenvectors) of the auto-covariance function (or matrix) that will be calculated.

Copy existing commands that take

1 HERMITE POLYNOMIAL CHAOS DIMENSION

and modify them by adding number of fe elements.

For example, copy:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with
2 Hermite polynomial chaos dimension <.> order <.> ←↩

correlation_kernel_inverse_order = <.>;

and modify it into:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with
2 Hermite polynomial chaos dimension <.> order <.> ←↩

correlation_kernel_inverse_order = <.> number_of_fe_elements = <.>;
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In .../GLOBAL RELEASE/Real-ESSI/DSL/, modify 2 files:

• feiparser.yy = grammar part handled by bison

• feiparser.l = lexical part handled by flex.

204.6.3 feiparser.yy

Change:

1 %token KARHUNEN LOEVE DIMENSION correlation_kernel_inverse_order AS GLOBAL ←↩
dimension_file TRIPLE PRODUCT shape_parameter scale_parameter WEIBULL ←↩
TRIANGULAR

into:

1 %token KARHUNEN LOEVE DIMENSION correlation_kernel_inverse_order AS GLOBAL ←↩
dimension_file TRIPLE PRODUCT shape_parameter scale_parameter WEIBULL ←↩
TRIANGULAR number_of_fe_elements

Then, copy the existing commands, like:

1 | HERMITE POLYNOMIAL CHAOS KARHUNEN LOEVE EXPANSION TO RANDOM FIELD TEXTNUMBER ←↩
exp WITH HERMITE POLYNOMIAL CHAOS DIMENSION exp ORDER exp ←↩
correlation_kernel_inverse_order '=' exp

2 {
3 args.clear(); signature.clear();
4 args.push_back($11); ←↩

signature.push_back(this_signature("RandomField_tag", ←↩
&isAdimensional));

5 args.push_back($17); ←↩
signature.push_back(this_signature("Dimension_num", &isAdimensional));

6 args.push_back($19); signature.push_back(this_signature("Order_num", ←↩
&isAdimensional));

7 args.push_back($22); ←↩
signature.push_back(this_signature("correlation_kernel_inverse_order", ←↩
&isAdimensional));

8 $$ = new FeiDslCaller4<int, int, int, ←↩
int>(&Hermite_polynomial_chaos_Karhunen_Loeve_expansion_inverse_order, ←↩
args, signature,

9 "Hermite_polynomial_chaos_Karhunen_Loeve_expansion_inverse_order");
10 for(int i = 1; i <= 4; i++) nodes.pop();
11 nodes.push($$);
12 }

and modify it into:

1 | HERMITE POLYNOMIAL CHAOS KARHUNEN LOEVE EXPANSION TO RANDOM FIELD TEXTNUMBER ←↩
exp WITH HERMITE POLYNOMIAL CHAOS DIMENSION exp ORDER exp ←↩
correlation_kernel_inverse_order '=' number_of_fe_elements '=' exp
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2 {
3 args.clear(); signature.clear();
4 args.push_back($11); ←↩

signature.push_back(this_signature("RandomField_tag", ←↩
&isAdimensional));

5 args.push_back($17); ←↩
signature.push_back(this_signature("Dimension_num", &isAdimensional));

6 args.push_back($19); signature.push_back(this_signature("Order_num", ←↩
&isAdimensional));

7 args.push_back($22); ←↩
signature.push_back(this_signature("correlation_kernel_inverse_order", ←↩
&isAdimensional));

8 args.push_back($25); ←↩
signature.push_back(this_signature("number_of_fe_elements", ←↩
&isAdimensional));

9 $$ = new FeiDslCaller5<int, int, int, int, ←↩
int>(&Hermite_polynomial_chaos_Karhunen_Loeve_expansion_inverse_order_FE_elements, ←↩
args, signature,

10 "Hermite_polynomial_chaos_Karhunen_Loeve_expansion_inverse_order_FE_elements");
11 for(int i = 1; i <= 5; i++) nodes.pop();
12 nodes.push($$);
13 }

204.6.4 feiparser.l

Just add:

1 "number_of_fe_elements" {return token::number_of_fe_elements;}

204.6.5 create parallel.sh

create parallel.sh takes feiparser.l and feiparser.yy, and creates files needed for compilation

of essi.parallel. For example, it creates feiparser.lex.cpp. In feiparser.lex.cpp: ∗yytext
and yyleng will be defined twice and the compiler will complain during linking for essi.parallel.

The second definitions of ∗yytext and yyleng need to be found in feiparser.lex.cpp and deleted

manually. For this purpose, in create parallel.sh, there are 2 lines:

sed -i ’319d’ feiparser.lex.cpp

sed -i ’5642d’ feiparser.lex.cpp

and lines, here 319 and 5643 (mind the preceding removal of 319), in feiparser.lex.cpp will be

deleted.
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204.6.6 create sequential.sh and create parallel.sh

In .../GLOBAL RELEASE/Real-ESSI/DSL/, one can find create sequential.sh and create parallel.sh.

Run both.

204.6.7 Application Programming Interface (API)

In .../GLOBAL RELEASE/Real-ESSI/API/MODELING/, copy the following files:

Hermite polynomial chaos Karhunen Loeve expansion inverse order.h

Hermite polynomial chaos Karhunen Loeve expansion inverse order hdf5 input.h

and change their names to:

Hermite polynomial chaos Karhunen Loeve expansion inverse order FE elements.h

Hermite polynomial chaos Karhunen Loeve expansion inverse order hdf5 input FE elements.h

and modify them to account for the number of GPs (= the number of FE elements here).

In .../GLOBAL RELEASE/Real-ESSI/API/, there is file api.h. In api.h, add the following lines:

#include "MODELING/Hermite polynomial chaos Karhunen Loeve expansion inverse order FE elements.h"

#include "MODELING/Hermite polynomial chaos Karhunen Loeve expansion inverse order hdf5 input FE elements.h"

In this case, existing files RandomField.cpp and RandomField.h will be modified and no new files

∗.cpp and ∗.h have to be created. If new files, for example, RandomFieldGaussianCorrelation.cpp

and RandomFieldGaussianCorrelation.h, are created, then additionally in ESSI API.h, one needs

to add:

#include <../CompGeoMechUCD StochasticFEM/PolynomialChaos/RandomFieldGaussianCorrelation.h>
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204.7 Adding New Finite Element into Real-ESSI Simulator

This section illustrates how to add a new element in Real-ESSI simulator. A detailed description of each

steps involved is given. The developer is expected to understand these steps and replicate it for their new

element. Also, it is quite useful to look at some previous elements already implemented in Real-ESSI.

204.7.1 Introduction

This documents provides detailed description of steps for adding a new element into the Real-ESSI

Simulator. New Element Template source (.ccp) and header (.h) files can be located inside source code

in CompGeoMechUCD FiniteElements directory, and are also shown below in subsection 204.7.3 and

subsection 204.7.4.

The list of all the steps to be followed are listed below

1. SubSec 204.7.2:: Creating New Element Directory and Linking to Real-ESSI

2. SubSec 204.7.3:: Writing the New Element Header File

3. SubSec 204.7.4:: Writing the New Element Source File

4. SubSec 204.7.5:: Setting the ELE TAG NewElement class tag and its description

5. SubSec 204.7.6:: Integrating new element with parser.

6. SubSec 204.7.7:: Compiling Real-ESSI

7. SubSec 204.7.8:: Verification of Implementation

These steps are shown in each sub-section. The first step starts creating a directory for the new

element. After step [3], the new element would be linked with Real-ESSI source code. So, its good to

start compiling (step [6]) and fixing bugs rather than going to step [4] or further ahead.

204.7.2 Getting Started:: Creating New Element Directory

The new element can be added in CompGeoMechUCD FiniteElements directory of Real-ESSI source. A

directory for new element lets say NewElement must be created. The next step is to add CMakeLists.txt

and place into that directory. The contents of the cmake file is

1 # Builds all the CompGeoMechUCD_FiniteElements/NewElement module
2 # message("scanning newelements module...")
3

4 BUILD_LIB("newelements" ESSI_LIBS)
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Also, in that directory new element header (NewElement.h) and source files (NewElement.cpp) must

be placed. The contents of the cpp files are shown in subsection 204.7.3 and subsection 204.7.4.

The new element then must be included to the header file of Real-ESSI Elements i.e. CompGe-

oMechUCD FiniteElements.h . The element header file is loaded in CompGeoMechUCD FiniteElements

directory. So, just add the new element header as

1 // /////////////////////////////////////////////////
2 // New Elements [XYZ, Month, Year]
3 // /////////////////////////////////////////////////
4

5 #include "./NewElement/NewElement.h"

This would link the new element source code to Real-ESSI. Next is to write the source code and

header files of the new element.
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204.7.3 Element Header File

The header file is self documented (read fully and carefully).

1 // Rename the header guard
2 #ifndef NewElementTemplate_h
3 #define NewElementTemplate_h
4

5 #include <Element.h>
6 #include <Matrix.h>
7 #include <Vector.h>
8

9 class Node;
10 class Channel;
11

12 class NewElementTemplate: public Element
13 {
14

15 public:
16 // Constructor
17 NewElementTemplate(int tag, int node1, .....); //You must implement this
18 // Empty constructor
19 NewElementTemplate();
20 //Destructor
21 ~NewElementTemplate();
22

23 /************************************************************************/
24 /********* Functions to obtain information about dof & connectivity *****/
25 /************************************************************************/
26 // returns the number of external nodes of the element
27 int getNumExternalNodes(void) const;
28 // returns the ID of external nodes of the element
29 const ID &getExternalNodes(void);
30 // returns the node pointers array to the nodes of the elements
31 Node **getNodePtrs(void);
32 // rerturn the total number of degrees of freedom for the element
33 int getNumDOF(void);
34 // returns the DofList containing number of degrees of freedom for each node
35 const ID &getDofList();
36 // update all the necessary variables before simulation starts
37 void setDomain(Domain *theDomain);
38 /************************************************************************/
39 /**************** Functions to set the state of the element *************/
40 /************************************************************************/
41 // Functions to update the state of the element on obtaining convergence
42 int commitState(void);
43 // Function to revert to the last commited (converged) state
44 int revertToLastCommit(void);
45 // Function to revert to the start of the state of the element at the ←↩

beginning of simulation
46 int revertToStart(void);
47 // Update the element variables for each iteration
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48 int update(void);
49 // Remove the load from element
50 void zeroLoad(void);
51 // Add Element load
52 int addLoad(ElementalLoad *theLoad, double loadFactor);
53 // Send Current Intertial Load of the element
54 int addInertiaLoadToUnbalance(const Vector &accel);
55 /************************************************************************/
56 /********** Functions to obtain stiffness, mass and residual ***********/
57 /************************************************************************/
58 // return the current tangent stiffness of the element
59 const Matrix &getTangentStiff(void);
60 // return the initial tangent stiffness of the element
61 const Matrix &getInitialStiff(void);
62 // return the damping stiffness of the element
63 const Matrix &getDamp(void);
64 // return the mass of the element
65 const Matrix &getMass(void);
66 // return the resisting force of the element (static case)
67 const Vector &getResistingForce(void);
68 // return the resisting force of the element (dynamic case)
69 const Vector &getResistingForceIncInertia(void);
70 /************************************************************************/
71 /********** Functions to implement parallel processing ***********/
72 /************************************************************************/
73 // Send the variables to the other CPU in a unique order
74 int sendSelf(int commitTag, Channel &theChannel);
75 // For the send order to recieve the information
76 int receiveSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker ←↩

&theBroker);
77 /************************************************************************/
78 /********** Function to Print information about elemnt ***********/
79 /************************************************************************/
80 // Print out element info
81 void Print(ostream &s, int flag = 0);
82 // Check element correctness
83 int CheckMesh(ofstream &);
84 // Give the element a name
85 std::string getElementName() const
86 {
87 return "NewElementTemplate";
88 }
89 /************************************************************************/
90 /****************** Generate Output of the Element *********************/
91 /************************************************************************/
92 /************************************************************************/
93 /* No. of Element Outputs should be as per the Element_Class_tag_Desc
94 /* See the classtags.h for more description on encoding of Class_tag ←↩

Descriptions.
95 /* For Optimization all the information about elements are encoded
96 /* in the Element_Class_tag Description

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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97 /* NOTE:- Element_Class_Description [see classTags.h] must be obeyed
98 /**************************************************************************/
99 // Declare if there is element output except at gauss points

100 const vector<float> &getElementOutput() ;
101 // Declare only if there is any gauss point and there is 18 outputs
102 // per gauss points i.e stress, strain and plastic strain
103 const vector<float> &getGaussOutput();
104 // Send the Gauss Coordinates of the Elements
105 Matrix &getGaussCoordinates(void);
106

107 protected:
108 /**************************************************************************/
109 //Implementation-specific member functions...
110 // Should be protected, because they're not going to be called
111 // from outside the class, but you might want to inherit them
112 /**************************************************************************/
113

114 private:
115 /**************************************************************************/
116 // All data must be private. Provide setter and getter methods if
117 // this class interacts with other classes.
118 /**************************************************************************/
119 // Declare if there is element output except at gauss points
120 static vector<float> Element_Output_Vector() ;
121 // Declare only if there is any gauss point and there are 18
122 // outputs per gauss points i.e stress, strain and plastic strain
123 static vector<float> Gauss_Output_Vector();
124 // Contains information about Number of Dof for each node of the element
125 static ID DofList;
126 };
127 #endif
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204.7.4 Element Source File

The source file is self documented (read fully and carefully).

1 #include <NewElement.h>
2 // Must define the class tag for
3 // the new element in this file.
4 #include <classTags.h>
5

6 // NOTE!! Follow the Element_Class_Desc Encoding
7 // See classTags.h for more details about encoding
8 // Declare if there is element output except at gauss points
9 vector<float> ←↩

NewElementTemplate::Element_Output_Vector(number_of_Element_outputs) ;
10 // Declare only if there is any gauss point and there is
11 // 18 outputs per gauss points i.e stress, strain and plastic strain
12 vector<float> NewElementTemplate::Gauss_Output_Vector(number_of_gauss_points*18);
13 // Contains information about Number of Dof for each node of the element
14 ID NewElementTemplate::DofList(number_of_element_nodes);
15

16 //****************************************************************
17 // Constructor. Receive all input parameters. Should not allocate resources!
18 // * Input: Defined by user. At least should receive an integer tag, so that base
19 // class can be initialized.
20 // * Output: void
21 NewElementTemplate::NewElementTemplate(int tag, int node1, .....):
22 Element(tag, ELE_TAG_NewElement),
23 // add more initializers
24 {
25 //ATTENTION!
26 // ELE_TAG_NewElement !! Define the class tag in classTags.h
27 // with provided encoding formula
28 // for setting the material id to the element
29 this->setMaterialTag(material->getTag());
30 // fill DofList container with number of dofs for each node
31 you must implement
32 }
33

34 //****************************************************************
35 // Empty constructor. Create an empty element (with possibly a bad state)
36 // * Input: Defined by user. At least should receive an integer tag,
37 // so that base class can be initialized.
38 // * Output: void
39 NewElementTemplate::NewElementTemplate():
40 Element(0, ELE_TAG_NewElement),
41 // add more initializers setting internal variables to null values
42 {
43 //ATTENTION!
44 // ELE_TAG_NewElement !! Define the class tag in classTags.h
45 // with provided encoding formula
46 // fill DofList container with number of dofs for each node
47 you must implement
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48 }
49

50 //****************************************************************
51 // Destructor. Deallocate resources used by element.
52 // * Input: void
53 // * Output: void
54 NewElementTemplate::~NewElementTemplate()
55 {
56 you must implement
57 }
58

59 //****************************************************************
60 // returns the number of nodes of the element.
61 // * Input: void
62 // * Output: number of nodes
63 int NewElementTemplate::getNumExternalNodes(void) const
64 {
65 you must implement
66 return number_of_nodes;
67 }
68

69 //****************************************************************
70 // Return an ID (integer vector) with the external nodes
71 // * Input: void
72 // * Output: ID with tags of external nodes
73 const ID &NewElementTemplate::getExternalNodes(void)
74 {
75 you must implement
76 return external_nodes;
77 }
78

79 //****************************************************************
80 // Return pointer array to the nodes
81 // * Input: void
82 // * Output: node pointer array.
83 Node **NewElementTemplate::getNodePtrs(void)
84 {
85 you must implement
86 return nodes;
87 }
88

89 //****************************************************************
90 //Return the number of dofs in the element.
91 // * Input: void
92 // * Output: number of dofs (sum of dofs over all of element's nodes)
93 int NewElementTemplate::getNumDOF(void)
94 {
95 you must implement
96 }
97

98 //****************************************************************
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99 //Return the number of dofs in the element.
100 // * Input: void
101 // * Output: DofList containing number of degrees of freedom for each node
102 const ID &getDofList(){
103

104 you must implement
105 return this->DofList;
106 }
107

108 //****************************************************************
109 // Receives a domain pointer, and sets the local domain pointer through
110 // calling the base class setDomain.
111 // At this point the domain is defined and set, one can allocate resources
112 // (get nodal pointers, compute some internal variables like lengths, volumes, ←↩

etc. ).
113 // Usually we'll set the node pointers here (will be needed for getNodePtrs ←↩

function).
114 // Also, we'll check that the given nodes are defined (you get a valid pointer ←↩

to them) and
115 // that they have the right number of DOFS (implementation specific)
116 // * Input: domain pointer (see Domain.h)
117 // * Output: void
118 void NewElementTemplate::setDomain(Domain *theDomain)
119 {
120 // check Domain is not null - invoked when object removed from a domain
121 if (theDomain == 0)
122 {
123 //set node pointers to null
124 }
125 else
126 {
127 //Use the domain to set the node pointers...
128 //nodePointers[0] = theDomain->getNode(Nd1);
129 //nodePointers[1] = theDomain->getNode(Nd2);
130 // Check the pointers...
131 // if (nodePointers == 0)
132 // {
133 // bad error, usually means node was never
134 // return;
135 // }
136 // Check the number of DOFs
137 // if(nodePointers[0]->getNumberDOF() != MY_NUMBER_OF_DOFS)
138 // {
139 // print a tantrum
140 // return;
141 // }
142 //
143 // More checks maybe
144 //
145 // Set the base class domain pointer
146
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147 this->DomainComponent::setDomain(theDomain);
148 }
149

150 //Additionally one can allocate resources at this point.
151 you must implement
152

153 }
154

155 //****************************************************************
156 // Accept current state of the element and save it. (If applicable)
157 // I this is a gauss-point based element, one calls commitState on
158 // the material pointers (Gauss points) owned by this element.
159 // return 0 if success.
160 // * Input: void
161 // * Output: error flag, 0 if success
162 int NewElementTemplate::commitState(void)
163 {
164 you must implement
165 return 0;
166 }
167

168 //****************************************************************
169 // Revert the state of the element to the last committed state.
170 // Must call for gausspoints if needed.
171 // * Input: void
172 // * Output: error flag, 0 if success
173 int NewElementTemplate::revertToLastCommit(void)
174 {
175 you must implement
176 return 0;
177 }
178

179 //****************************************************************
180 // Revert the state of the element to the initial state.
181 // Must call for gausspoints if needed.
182 // * Input: void
183 // * Output: error flag, 0 if success
184 int NewElementTemplate::revertToStart(void)
185 {
186 you must implement
187 return 0;
188 }
189

190 //****************************************************************
191 // Update the state of the element. I.E. compute new tangent stiffness,
192 // compute new resisting force, advance state variables.
193 // These changes should not be permanent until commit function is called.
194 // * Input: void
195 // * Output: error flag, 0 if success
196 int NewElementTemplate::update(void)
197 {
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198 you must implement
199 return 0;
200 }
201

202 //****************************************************************
203 // (optionl) Set the elemental load to zero.
204 // * Input: void
205 // * Output: void
206 void NewElementTemplate::zeroLoad(void)
207 {
208 // optional to implement
209 return 0;
210 }
211

212 //****************************************************************
213 // (optionl) Add a new elemental load. This will modify the
214 // resisting force vector.
215 // * Input: ElementalLoad pointer and a loadFactor.
216 // * Output: error flag, 0 if success
217 // Notes:
218 // * ElementalLoads have a type interger (a tag defined elsewhere) and a Vector ←↩

(array
219 // of doubles) with data. Use these to generate the elemental load scaled by the
220 // load factor (which is also the time-step of the analysis).
221 int NewElementTemplate::addLoad(ElementalLoad *theLoad, double loadFactor)
222 {
223 // optional to implement
224 //
225 // Some code to get the type and data. Example is for self_weight.
226 // int type;
227 // const Vector &data = theLoad->getData(type, loadFactor);
228 //
229 // if (type == LOAD_TAG_ElementSelfWeight) // Load tags are defined in ←↩

classTags.h
230 // {
231 // do something, like add a the forces to the resisting_force vector.
232 // }
233 return 0;
234 }
235

236 //****************************************************************
237 // Add intertial terms to resisting force vector.
238 // * Input: A vector with nodal accelerations???
239 // * Output: error flag, 0 if success
240 // Notes: use node pointers to get accelerations from nodes,
241 // form an acceleration vector and multiply this with the mass matrix, then
242 // add this into the load unbalance (with negative sign, cause it is inertia)
243 int NewElementTemplate::addInertiaLoadToUnbalance(const Vector &accel)
244 {
245 you must implement
246 return 0;
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247 }
248

249 //****************************************************************
250 // Functions to obtain stiffness, mass, damping and residual information
251 // * Input: void
252 // * Output: reference to tangent stiffness matrix (of size nDOF x nDOF,
253 // where nDOF = NewElementTemplate::getNumDOF();
254 // Pro tip. If this matrix computes the tangent stiffness, then
255 // it can be stored as a static member variable so that all elements share
256 // the same memory space (each element overwrites the tangent). This saves
257 // memory.
258 const Matrix &NewElementTemplate::getTangentStiff(void)
259 {
260 you must implement
261 return K;
262 }
263

264 //****************************************************************
265 // Functions to obtain initial stiffness
266 // * Input: void
267 // * Output: reference to initial tangent stiffness matrix (of size nDOF x nDOF,
268 // where nDOF = NewElementTemplate::getNumDOF();
269 const Matrix &NewElementTemplate::getInitialStiff(void)
270 {
271 you must implement
272 return *K;
273 // --suggested variable name for stiffness :).
274 // Will be a pointer, so that it can be after construction.
275 }
276

277 //****************************************************************
278 // (optional) If element provides its own damping matrix, then this
279 // function returns it
280 // * Input: void
281 // * Output: reference to damping stiffness matrix (of size nDOF x nDOF,
282 // where nDOF = NewElementTemplate::getNumDOF();
283 const Matrix &NewElementTemplate::getDamp(void)
284 {
285 // optional to you must implement
286 }
287

288 //****************************************************************
289 // (optional) If element provides its own damping matrix, then this
290 // function returns it
291 // * Input: void
292 // * Output: reference to damping stiffness matrix (of size nDOF x nDOF,
293 // where nDOF = NewElementTemplate::getNumDOF();
294 const Matrix &NewElementTemplate::getMass(void)
295 {
296 // optional to implement
297 }
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298

299 //****************************************************************
300 // (optional) If element provides its own damping matrix,
301 // then this function returns it
302 // * Input: void
303 // * Output: reference to damping stiffness matrix (of size nDOF x nDOF,
304 // where nDOF = NewElementTemplate::getNumDOF();
305 const Vector &NewElementTemplate::getResistingForce(void)
306 {
307 you must implement
308 }
309

310 //****************************************************************
311 // (optional) Add inertial terms to resisting force.
312 // * Input: void
313 // * Output: Vector of doubles with new resisting force.
314 // Note: Regularly, this function calls getResistingForce() and then
315 // adds inertial terms.
316 const Vector &NewElementTemplate::getResistingForceIncInertia(void)
317 {
318 // (optional to implement)
319 }
320

321 //****************************************************************
322 // (optional, a must if you want to do parallel processing)
323 // Send all state data of the element through a channel (usually an MPI_Channel)
324 // * Input: a reference to the Channel to use.
325 // * Output: error flag, 0 if success
326 // Note: This function is usually very involved, and should do a lot of checking
327 // for pointers and for success of the send.
328 // Note2: setDomain(...) *might* not be called before using this function.
329 int NewElementTemplate::sendSelf(int commitTag, Channel &theChannel)
330 {
331 // Useful constructs
332 // int error_flag;
333 // error_flag = theChannel.sendVector(0, 0, double_data); // the first two ←↩

parameters are deprecated
334 //
335 // Check that error_flag is not < 0
336 //
337 // theChannel.sendID(0, 0, integer_data); // the first two parameters are ←↩

deprecated
338 //
339 // Check that error_flag is not < 0
340 you must implement
341 return 0;
342 }
343

344 //****************************************************************
345 // (optional, a must if you want to do parallel processing)
346 // Receive all state data of the element through a channel
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347 // (usually an MPI_Channel). This data comes from an element
348 // that is calling sendSelf in some other process.
349 // * Input: a reference to the Channel to use.
350 // * Output: error flag, 0 if success
351 // Note: This function is called after setDomain() so all resources should be ←↩

made available.
352 int NewElementTemplate::receiveSelf(int commitTag, Channel &theChannel, ←↩

FEM_ObjectBroker &theBroker)
353 {
354 // Useful constructs
355 // int error_flag;
356 // theChannel.receiveVector(0, 0, double_data); // the first two parameters ←↩

are deprecated
357 // Check that error_flag is not < 0
358 // theChannel.receiveID(0, 0, integer_data); // the first two parameters ←↩

are deprecated
359 // Check that error_flag is not < 0
360

361 you must implement
362 return 0;
363 }
364

365 //****************************************************************
366 // Print out element info
367 // * Input: an ostream to print stuff into, and a flag
368 // * Output: void
369 // Print stuff into the ostream by using the "<<" operator.
370 // The flag can be used to request different levels of printing, ie.
371 // a flag of 0 might be very basic information, while flag > 0 might
372 // give increasing ammount of info.
373 void NewElementTemplate::Print(ostream &s, int flag = 0)
374 {
375 you must implement
376 }
377

378 //****************************************************************
379 // Check element correctness
380 // * Input: an ostream to print stuff into (print details of what is being ←↩

checked here.)
381 // * Output: an error flag (<0 if element is not right in some way)
382 // Note: be verbose print element tag, etc. Print out only if an error is ←↩

encountered.
383 int NewElementTemplate::CheckMesh(ofstream &)
384 {
385 you must implement
386 }
387

388 //****************************************************************
389 // Output interface functions
390 // * Input: void
391 // * Output: Vector (array of doubles) with the element output.
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392 const vector<float> &NewElementTemplate::getElementOutput()
393 {
394

395 Fill the Element_Output_Vector
396

397 return Element_Output_Vector;
398 }
399

400 //****************************************************************
401 // Output interface functions
402 // * Input: void
403 // * Output: Vector (array of doubles) with the element output.
404 const vector<float> &NewElementTemplate::getGaussOutput()
405 {
406 Fill the Gauss_Output_Vector
407

408 NOTE!!! - Exactly 18 outputs should be there per gauss point
409

410 return Gauss_Output_Vector;
411 }
412

413 //****************************************************************
414 // Return a Matrix with the coordinates of Gauss points (or points
415 // where outputs are generated, could be the endpoints of a beam)
416 // * Input: void
417 // * Output: Matrix (array of doubles) with the gauss coordinates
418 // Note: Format is
419 // gauss_coordinates[0,:] = [x_0,y_0,z_0] -- Coordinates of first Gauss point
420 // gauss_coordinates[1,:] = [x_1,y_1,z_1] -- Coordinates of second Gauss point
421 // ...
422 // gauss_coordinates[Ngauss,:] = [x_Ngauss,y_Ngauss,z_Ngauss]
423 // -- Coordinates of Ngauss-th Gauss point
424 Matrix &NewElementTemplate::getGaussCoordinates(void)
425 {
426 you must implement
427 }
428

429 //****************************************************************
430 // Add you own member functions at the end!
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204.7.5 Element Class Tag Description

This subsection describes how to set up the ELE TAG NewElement for the new element. All the tags

for element, material, load etc, must be included in ClassTags.h located in ModifiedOpenSeesServices

directory. Each element has unique identifiers:

• Element Tag :: It is a unique tag given to each new element type. The element tags are in

sequential order. So the new tag must be the next available tag in sequence.

• Element Tag Description :: It is an encoding containing information about the elements such as,

type of element, number of nodes, number of gauss points , number of outputs etc. The element

tag has 9 digits and follows a strict encoding a shown below

1 // All elements class tags would be in serial
2 // numbers from 1-N for optimization
3 /*********************************************************************
4 * Desc is [Dimension][N. Nodes][Dof per nodes][N. Gauss][No.of Outputs]
5 * <1-digit> <2-digit> <1-digit> <3-digit> <2-digit>
6 * - - - - - - - - - - - - - -- - - - - - - - -- - - - -
7 *
8 * [ElementCategory] = <num_of_digits = 1> Category of the element
9 * 1-> Structural Elements

10 * 2-> Contact Elements
11 * 3-> Brick Elements
12 * 4-> Special elements
13 *
14 * [N. Nodes] = <num_of_digits = 2> Number of nodes in elements
15 * xx-> number of nodes
16 *
17 * [Dof per nodes] = <num_of_digits = 1> Degree of freedom per node
18 * x-> DOFS per node
19 *
20 * [N. Gauss] = <num_of_digits = 3> Number of gauss points in elements
21 * xxx-> number of gauss points
22 *
23 * [No.of Outputs] = <num_of_digits = 2> no. of outputs other than at gauss ←↩

points.
24 * xx-> no. of outputs other than at gauss points.
25 *
26 * Default Features
27 * - - - - - -- - -
28 * 1) Per gauss point there are in total 18 outputs
29 * of stress, plastic strain and total strain
30 * 2) No.of Outputs -> here means the extra outputs by an element
31 * except gauss points. For example:
32 * for eight node brick there is 000 No. of Outputs.
33 ***************************************************************************/
34

35 //###----------------------------------------
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36 //### NOTE!! :- Every Element have a responsibility to set
37 //### their tag_description Array. Based on the above encoding
38 //### NOTE!! :- Also increase the ELE_TAG_DESC_ARRAY_SIZE to the
39 //### number of element tags
40 //### -----------------------------------------

For example: Eight node brick element has element tag description as 308300800. Simple truss

element has 102300002 as element tag description.

In order to set up the element tag, look for the next available element tag. Usually, the next available

element tag would be equal to the ELE TAG DESC ARRAY SIZE which can be found inside ClassTag.h

file below the initial element tags. The available number should be added as new element tag and the

ELE TAG DESC ARRAY SIZE should be increased by 1.

This should be followed by appending the element class tag description in ELE TAG DESC ARRAY.

All the steps are shown below,

ClassTags.h Before:

1 ........
2 #define ELE_TAG_DispBeamColumn3d 94 // 102600012
3 #define ELE_TAG_Cosserat_8node_brick 95 // 408600800
4

5 #define ELE_TAG_DESC_ARRAY_SIZE 96
6

7 .........................
8 ..........................
9

10

11 #define ELE_TAG_DESC_ARRAY int ele_tag_desc_array[] = \
12 {ELE_TAG_DESC_ENCODING, \
13 100000000, \
14 308300800, \
15 308400800, \
16 308700800, \
17 308300100, \
18 308400100, \
19 ........
20 ........
21 202300009, \
22 102300002, \
23 102600024, \
24 103600006, \
25 104600000, \
26 302300100, \
27 102600012, \
28 102600012, \
29 408600800, \
30 }
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ClassTags.h After:

1 ........
2 #define ELE_TAG_DispBeamColumn3d 94 // 102600012
3 #define ELE_TAG_Cosserat_8node_brick 95 // 408600800
4 #define ELE_TAG_NewElement 96 // XXXXXXXXX
5

6 #define ELE_TAG_DESC_ARRAY_SIZE 97
7

8 .........................
9 ..........................

10

11

12 #define ELE_TAG_DESC_ARRAY int ele_tag_desc_array[] = \
13 {ELE_TAG_DESC_ENCODING, \
14 100000000, \
15 308300800, \
16 308400800, \
17 308700800, \
18 308300100, \
19 308400100, \
20 ........
21 ........
22 202300009, \
23 102300002, \
24 102600024, \
25 103600006, \
26 104600000, \
27 302300100, \
28 102600012, \
29 102600012, \
30 408600800, \
31 XXXXXXXXX, \
32 }
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204.7.6 Integrating New Finite Element into Parser

Next is to integrate the new element with the parser using feiparser.yy,feiparser.l files located in DSL

directory located in Real-ESSI source. This step requires some knowledge of yacc and lex. The NewEle-

ment DSL should added along with other defined element DSL’s in feiparser.yy file. A typical parser for

an element looks like as shown below

1 | TEXTNUMBER exp TYPE NewElement WITH NODES
2 '(' exp ',' exp ',' exp ',' exp ')'
3 USE MATERIAL TEXTNUMBER exp
4 parameter1 '=' exp
5 parameter2 '=' exp
6 {
7 args.clear(); signature.clear();
8 args.push_back($2); signature.push_back(this_signature("number", ←↩

&isAdimensional));
9 args.push_back($8); signature.push_back(this_signature("node1", ←↩

&isAdimensional));
10 args.push_back($10); signature.push_back(this_signature("node2", ←↩

&isAdimensional));
11 args.push_back($12); signature.push_back(this_signature("node3", ←↩

&isAdimensional));
12 args.push_back($14); signature.push_back(this_signature("node4", ←↩

&isAdimensional));
13 args.push_back($19); signature.push_back(this_signature("material", ←↩

&isAdimensional));
14

15 args.push_back($22); signature.push_back(this_signature("parameter1", ←↩
&isThisUnit<-1,3,1>));

16 //L^3*T/M
17 args.push_back($25); signature.push_back(this_signature("parameter2", ←↩

&isThisUnit<-1,3,1>));
18

19 $$ = new FeiDslCaller8<int,int,int,int,int,int,
20 double,double>(&add_element_new_element, args, signature, ←↩

"add_element_new_element");
21

22 for(int ii = 1;ii <=8; ii++) nodes.pop();
23 nodes.push($$);
24 }

where, the code for DSL of the element corresponds as

1 TEXTNUMBER exp TYPE NewElement WITH NODES
2 '(' exp ',' exp ',' exp ',' exp ')'
3 USE MATERIAL TEXTNUMBER exp
4 parameter1 '=' exp
5 parameter2 '=' exp
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which would look like the following in DSL language

1 add element # <.> type NewElement with nodes
2 (<.>, <.>, <.>, <.>) use material # 1
3 parameter1 = <.>
4 parameter2 = <.>;

In the above DSL each word represents a token which must be included in feiparser.yy and defined

in feiparser.l. There are some already defined tokens, which needs not to be defined. One can find if the

token exits by searching it in feiparser.l or feiparser.yy.

In the above DSL, the tokens are TEXTNUMBER, TYPE, NewElement, WITH, NODES, USE, MA-

TERIAL, TEXTNUMBER, parameter1 and parameter2. Among them, some of them like TEXTNUM-

BER, TYPE, NODES, .. etc are already defined and could be searched. But the tokens NewElement,

parameter1 and parameter2 needs to be defined. First, these all undefined tokens needs to be included

in feiparser.yy and then defined in feiparser.l.

204.7.6.1 feiparser.yy

The new tokens must be added in the beginning of the feiparser, where other tokens are defined.

The new tokens can be included as described below.

1 // Tokens for elements
2 %token EightNodeBrick TwentyNodeBrick TwentySevenNodeBrick
3 %token NewElement
4

5 // Element options tokens
6 %token porosity alpha rho_s rho_f k_x k_y k_z K_s K_f pressure cross_section ←↩

shear_modulus
7 %token friction_ratio maximum_gap
8 %token parameter1 parameter2

204.7.6.2 feiparser.l

The tokens needs to be defined as the following.

1 "HardContact" {return token::HardContact;}
2 "SoftContact" {return token::SoftContact;}
3 "NewElement" {return token::NewElement;}

204.7.6.3 Argument Stack, Signature and Units

Returning back to the code in parser:
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1 | TEXTNUMBER exp TYPE NewElement WITH NODES
2 '(' exp ',' exp ',' exp ',' exp ')'
3 USE MATERIAL TEXTNUMBER exp
4 parameter1 '=' exp
5 parameter2 '=' exp
6 {
7 args.clear(); signature.clear();
8 args.push_back($2); signature.push_back(this_signature("number", ←↩

&isAdimensional));
9 args.push_back($8); signature.push_back(this_signature("node1", ←↩

&isAdimensional));
10 args.push_back($10); signature.push_back(this_signature("node2", ←↩

&isAdimensional));
11 args.push_back($12); signature.push_back(this_signature("node3", ←↩

&isAdimensional));
12 args.push_back($14); signature.push_back(this_signature("node4", ←↩

&isAdimensional));
13 args.push_back($19); signature.push_back(this_signature("material", ←↩

&isAdimensional));
14

15 args.push_back($22); signature.push_back(this_signature("parameter1", ←↩
&isThisUnit<-1,3,1>));

16 //L^3*T/M
17 args.push_back($25); signature.push_back(this_signature("parameter2", ←↩

&isThisUnit<-1,3,1>));
18

19 $$ = new FeiDslCaller8<int,int,int,int,int,int,
20 double,double>(&add_element_new_element, args, signature, ←↩

"add_element_new_element");
21

22 for(int ii = 1;ii <=8; ii++) nodes.pop();
23 nodes.push($$);
24 }

Each variable or parameter in Real-ESSI has units. So, for each of the variables UNIT must be

specified. In the above code. args is a stack that should be filled with the tokens that are the parameters

of element. The first step is to clear the args and the signature stacks. Pushing the element parameter

tokens is done as described below

1 args.push_back($2); signature.push_back(this_signature("number", ←↩
&isAdimensional));

2 args.push_back($22); signature.push_back(this_signature("parameter1", ←↩
&isThisUnit<-1,3,1>));

3 //L^3*T/M

Here, $2 responds to the the second token i.e exp after TEXTNUMBER. Similarly, 5th token in

TYPE. In signature, the string can be anything, but should usually be the parameter name. The last
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 204.7. ADDING NEW FINITE ELEMENT INTO . . . page: 823 of 3287

is enforcing the units for each of the parameters by defining the required units. There are many units,

such as isAdimensional, isAdimensional, isMass, isLength, isTime, isFrequency, isArea, isVolume, isForce,

isEnergy, isTorque, isPressure, isBodyForce, isDensity, isVelocity, isAcceleration, isAreaMomentOfInertia,

isMassMomentOfInertia. If the parameter has some other units then the other units can be defined as

isThisUnit< m, l, t >

which refers to the unit MmLlT t in standard units. Here, M, L, T are mass, length and time respectively.

204.7.6.4 FeiDslCaller

The next step is to send all the parameters to DSL Header File. The header file contains the code to

create a new element inside simulation domain. The code that does this is

1 $$ = new FeiDslCaller8<int,int,int,int,int,int,
2 double,double>
3 (&add_element_new_element, args,
4 signature, "add_element_new_element");
5

6 for(int ii = 1;ii <=8; ii++) nodes.pop();
7 nodes.push($$);

FeiDslCaller takes all the arguments and passes to the add element new element.h header file. In

the above code, the number 8 in function FeiDslCaller corresponds to the total number of arguments to

the element and following that, the type of the arguments is defined. Here, the type of 8 arguments are

int, int, int,int, int, int, double, double. The last step is the remove everything from the node stack by

popping it equal to the number of times of argument and then finally pushing the FeiDslCaller to the

nodes stack.

204.7.6.5 New DSL Header File

The header file of the new DSL must be created in /API/MODELING directory. The header file must

also be included in /API/api.h header file. Here, the header file add element new element.h has been

created, which is called by FeiDslCaller.

1 int add_element_new_element(int ElementNumber, int Node1, int Node2, int Node3,
2 int Node4, int MaterialId, double Parameter1, double Parameter2)
3 {
4 Element* theElement = 0;
5 theElement = new NewElement(ElementNumber, Node1, Node2, Node3, Node4,
6 MaterialId, Parameter1, Parameter2);
7

8 if (theElement == NULL){
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9 cerr << "Error: (add_element_new_element)
10 memory allocation problem for theElement!" << endl;
11 return -1;
12 }
13

14 if (theDomain.addElement(theElement) == false){
15 cerr << "WARNING (add_element_new_element)
16 could not add element to the domain\n";
17 cerr << "Element Number: " << ElementNumber << endln;
18 return -1;
19 }
20

21 return 0;
22 };

Header file in /API/api.h file needs to be included:

1 // ##########################
2 // New Element [ABCD Month, Year]
3 // ##########################
4

5 #include "MODELING/add_element_new_element.h"

204.7.7 Compiling Real-ESSI

It is assumed that the person reading this document is developer and thus should already have the Real-

ESSI dependencies. To compile Real-ESSI with the new element, it should be build from the beginning.

Assuming that the build directory in build inside Real-ESSI source code, the steps to recompile are

1 cd build
2 rm -r *
3 cmake ..
4 make -j 20

204.7.8 Verification of Implementation

Once, the element is fully integrated with Real-ESSI Simulator, the developer should fully verify the

implementation by carrying out verification runs. In addition, the developer should be able to run their

examples in sequential and parallel and verify the implementation.
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205.1 Chapter Summary and Highlights

205.2 Introduction

This chapter presents the domain specific language developed for the Real-ESSI. The language was

designed with a primary goal of developing FEA models and interfacing them with various Real-ESSI

functionalities. In addition to that, syntax is used to self-document models, provide physical-unit safety,

provide common flow control structures, provide modularity to scripting via user functions and “include”

files, and provide an interactive environment within which models can be created, validated and verified.

The development of Real-ESSI Domain specific language (DSL) (the Finite Element Interpreter, FEI)

is based on LEX (Lesk and Schmidt, 1975) and YACC (Johnson, 1975).

Self-documenting ensures that the resulting model script is readable and understandable with little

or no reference to the users manual. This is accomplished by providing a command grammar structure

and wording similar to what would be used in a natural language description of the problem.

FEA analysis is unitless, that is, all calculations are carried out without referencing a particular unit

system. This leaves the task of unit correctness up to the user of FEA analysis. This represents a recurring

source of error in FEA analysis. Physical unit safety is enforced in Real-ESSI by implementing all base

variables as physical quantities, that is, all variables have a unit associated with it. The adimensional

unit is the base unit for those variables which have no relevant unit (like node numbers). Command

calls are sensitive to units. For example, the node creation command call expects the node coordinates

to be input with the corresponding units (length in this case). Additionally, the programming/command

language naturally supports operation with units like arithmetic operations (quantities with different

unit types will not add or subtract but may be multiplied). This approach to FEA with unit awareness

provides an additional layer of security to FEA calculations, and forces the user to carefully think about

units. This can help catch some common mistakes.

The Real-ESSI language provides modularity through the include directive/command, and user

functions. This allows complex analysis cases to be parameterized into modules and functions which can

be reused in other models.

Finally, an emphasis is placed on model verification and validation. To this end, Real-ESSI provides

an interactive programming environment with all the ESSI syntax available. By using this environment.

the user can develop tests to detect errors in the model that are not programming errors. For example,

the user can query nodes and elements to see if they are set to appropriate states. Also, several standard

tools are provided to check element validity (Jacobian, etc.).

The ESSI language provides reduced model development time by providing the aforementioned fea-
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tures along with meaningful error reporting (of syntax and grammatical errors), a help system, command

completion and highlighting for several open source and commercial text editors.

Some additional ideas are given by Dmitriev (2004), Stroustrup (2005), Niebler (2005), Mernik et al.

(2005), Ward (2003), etc.

205.3 Domain Specific Language (DSL), English Language Binding

Overview of the language syntax.

• Each command line has to end with a semicolon ”;”

• Comment on a line begins with either ”//” or ”!” and last until the end of current line.

• Units are required (see more below) for all quantities and variables.

• Include statements allow splitting source into several files

• All variables are double precision (i.e. floats) with a unit attached.

• All standard arithmetic operations are implemented, and are unit sensitive.

• Internally, all units are represented in the base SI units (m - s - kg).

• The syntax ignores extra white spaces, tabulations and newlines. Wherever they appear, they are

there for code readability only. (This is why all commands need to end with a semicolon).

• The user should be familiar with the list of the reserved keywords from Section 205.7 on page 1163.

205.3.1 Running Real-ESSI

At the command line type ”essi”, to get to the ESSI prompt and start Real-ESSI in interactive mode.

Command line output

The Finite Element Interpreter Endeavor

The Real -ESSI Simulator
Modeling and Simulation of Earthquakes , and Soils , and ←↩

Structures and their Interaction

Sequential processing mode.

Version Name : Real -ESSI Global Release , June2018. Release ←↩
date: Jun 13 2018 at 11:02:19. Tag: adc085ae70

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Version Branch : GLOBAL_RELEASE
Compile Date : Jun 13 2018 at 14:36:56
Compile User : jeremic
Compile Sysinfo : sokocalo 4.13.0 -43 - generic x86_64 GNU/Linux
Runtime User : jeremic
Runtime Sysinfo : sokocalo 4.13.0 -43 - generic x86_64 GNU/Linux
Time Now : Jun 13 2018 at 15:32:52
Days From Release : 0
PostProcessing Compatible Version: ParaView 5.1.2
PostProcessing Compatible Version: ESSI -pvESSI Date: Feb 15 2018 ←↩

at 11:00:28. Tag: 58 fe430a19

Static startup tips:
* Remember: Every command ends with a semicolon ';'.
* Type 'quit;' or 'exit;' to finish.
* Run 'essi -h' to see available command line options.

ESSI >

A number of useful information about Real-ESSI is printed on the screen. From here, commands can

be input manually or a file may be included via the include command which is as follows.

1 include "foobar.fei";

to include the file foobar.fei.

A more efficient way to start Real-ESSI and analyze an example is to pass input file name to the

command line. Real-ESSI command to execute an input file immediately is done by issuing the following

command: essi -f foobar.fei. This will execute essi directly on input file foobar.fei. After

executing the file, the essi interpreter will continue in interactive mode unless the command line flag

-n or --no-interactive is set. A list of command line options is available by calling essi from the

command line as essi -h.

Command line output

The Finite Element Interpreter Endeavor

The Real -ESSI Simulator
Modeling and Simulation of Earthquakes , and Soils , and ←↩

Structures and their Interaction

Sequential processing mode.

Version Name : Real -ESSI Global Release , June2018. Release ←↩
date: Jun 13 2018 at 11:02:19. Tag: adc085ae70

Version Branch : GLOBAL_RELEASE
Compile Date : Jun 13 2018 at 14:36:56

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Compile User : jeremic
Compile Sysinfo : sokocalo 4.13.0 -43 - generic x86_64 GNU/Linux
Runtime User : jeremic
Runtime Sysinfo : sokocalo 4.13.0 -43 - generic x86_64 GNU/Linux
Time Now : Jun 13 2018 at 16:22:08
Days From Release : 0
PostProcessing Compatible Version: ParaView 5.1.2
PostProcessing Compatible Version: ESSI -pvESSI Date: Feb 15 2018 ←↩

at 11:00:28. Tag: 58 fe430a19

Static startup tips:
* Remember: Every command ends with a semicolon ';'.
* Type 'quit;' or 'exit;' to finish.
* Run 'essi -h' to see available command line options.

The Real -ESSI Simulator
Modeling and Simulation of Earthquakes , and Soils , and Structures ←↩

and their Interaction

Usage: essi [-cfhnsmbe FILENAME]
-c --cpp -output : Output cpp version of the model.
-f --filename [FILENAME] : run ESSI on a FILENAME.
-h --help : Print this message.
-n --no -interactive : Disable interactive mode.
-s --set -variable : Set a variable from the ←↩

command line.
-d --dry -run : Do not execute ESSI API calls. ←↩

Just parse.
-m --model -name [NAME] : Set the model name from the ←↩

command line.
-p --profile -report [FILENAME] : Set the filename for the ←↩

profiler report (and activate lightweight profiling)

Example to set a variable name from command line:
essi -s a=10,b=20,c=30

Runs ESSI with variables a, b, and c set to 10, 20 and 30 ←↩
respectively.

At this time , only ESSIunits :: unitless variables can be set.

205.3.2 Finishing Real-ESSI Program Run

To properly finish Real-ESSI program run, and save and close all the output files, user has to use final,

closure command:

1 bye;

Command bye; has to be included at the end of input file script, or at the end of each interactive/in-

terpretative session. Command bye; ensures that Real-ESSI program gracefully exits simulation, and

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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that all the output files are properly saved and closed. Proper finishing of simulation using Real-ESSI

Simulator is very much necessary, while the choice of command bye; is done as an homage to Professor

Knuth and his Literate Programming endeavor (Knuth, 1984), that is driving much of the Real-ESSI

DSL development.

There are a number of alternative final commands, for example:

1 exit;
2 quit;
3 zdravo;
4 vozdra;
5 dvojka;
6 voljno;
7 zaijian;
8 tschuess;
9 geia-sou;

10 tchau;
11 sair;
12 khoda-hafez;
13 doei;
14 nasvidenje;
15 ajde-bok;
16 izhod;
17 konec;
18 czesc;
19 ciao;
20 hoscakal;

These additional, alternative final commands can all be written using original scripts:

zdravo ↔ zdravo

vozdra ↔ vozdra

dvojka ↔ dvojka

voljno ↔ voǉno

zaijian ↔

tschuess ↔ tschüss

geia-sou ↔

khoda-hafez ↔

hoscakal ↔ hoşçakal

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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205.3.3 Real-ESSI Variables, Basic Units and Flow Control

Variables are defined using the assignment (=) operator. For example,

1 var_x = 7; //Results in the variable x be set to 7 (unitless)
2 var_y = 3.972e+2; //Scientific notation is available.

The language contains a list of reserved keywords. Throughout this documentation, reserved key-

words are highlighted in blue or red.

All standard arithmetic operations are available between variables. These operations can be combined

arbitrarily and grouped together with parentheses.

1 var_a = var_x + var_y; // Addition
2 var_b = var_x - var_y; // Subtraction
3 var_c = var_x * var_y; // Product
4 var_d = var_x / var_y; // Quotient
5 var_e = var_y % var_x; // Modulus (how many times x fits in y)

The ’print’ command can be used to display the current value of a variable.

1 print var_x;
2 print var_y;
3 print var_a;
4 print var_b;
5 print var_c;
6 print var_d;
7 print var_e;

Command line output

var_x = 7 []
var_y = 397.2 []
var_a = 404.2 []
var_b = -390.2 []
var_c = 2780.4 []
var_d = 0.0176234 []
var_e = 5.2 []

Here the “unit” (sign) [] means that the quantities are unitless.

The command ’whos’ is used to see all the currently defined variables and their values. After a fresh

start of essi, needed to clear up all the previously defined variables, command whos;’ produces a list of

predefined variables:

Command line output

ESSI > whos;

Declared variables:
* Day = 86400 [s]

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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* GPa = 1 [GPa]
* Hour = 3600 [s]
* Hz = 1 [Hz]
* MPa = 1 [MPa]
* Minute = 60 [s]
* N = 1 [N]
* Pa = 1 [Pa]
* Week = 604800 [s]
* cm = 1 [cm]
* feet = 0.3048 [m]
* ft = 0.3048 [m]
* g = 9.81 [m*s^-2]
* inch = 0.0254 [m]
* kN = 1 [kN]
* kPa = 1 [kPa]
* kg = 1 [kg]
* kip = 4448.22 [N]
* km = 1 [km]
* ksi = 6.89476e+06 [Pa]
* lbf = 4.44822 [N]
* lbm = 0.453592 [kg]
* m = 1 [m]
* mile = 1609.35 [m]
* mm = 1 [mm]
* pi = 3.14159 []
* psi = 6894.76 [Pa]
* s = 1 [s]
* yard = 0.9144 [m]

* = locked variable
ESSI >

Predefined variables shown above have a preceding asterisk to show they are locked variables which

cannot be modified. The purpose of these locked variables are to provide names for units. Imperial units

are also supported as shown above.

The units for variable are shown between the brackets. Note that unit variables have the same name

as their unit, which is not the case for user defined variables. Variables preceded by a star (*) are locked

variables which can’t be modified.

For example, the variable ’m’ defines ’meter’. So to define a new variable L1 which has meter units

we do:

1 L1 = 1*m; // Defines L1 to 1 m.
2 L2 = 40*mm; // Defines L2 to be 40 millimeters.

Even though L2 was created with millimeter units, it is stored in base units.

print L2; displays

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Command line output

L2 = 0.04 [m]

As additional examples, let us define few forces:

1 F1 = 10*kN;
2 F2 = 300*N;
3 F3 = 4*kg*g;

Here g is the predefined acceleration due to gravity.

Arithmetic operations do check (and enforce) for unit consistency. For example, foo = L1 + F1;

produces an error because units are not compatible. However, bar = L1 + L2; is acceptable. On the

other hand, multiplication, division and modulus, always work because the result produces a quantity

with new units (except when the adimensional quantity is involved).

1 A = L1*L2;
2 Stress_n = F1 / A;

Units for all variables are internally converted to SI units (kg – m – s) and stored in that unit system.

Variables can be displayed using different units by using the [] operator. This does not change the

variable, it just displays the value of variable with required unit. For example,

1 print Stress_n; //Print in base SI units.
2 print Stress_n in Pa; //Print in Pascal
3 print Stress_n in kPa; //Print in kilo Pascal

Command line output

Stress_n = 250000 [kg*m^-1*s^-2]

Stress_n = 250000 [Pa]

Stress_n = 250 [kPa]

The DSL provides functions to test the physical units of variables. For example,

print isForce(F1);

Will print an adimensional, Boolean 1 because F1 has units of force. While,

print isPressure(F);

will print an adimensional, Boolean 0. The language also provides comparison of quantities with

same units (remember all values are compared in SI Units).

print F1 > F2;

will print an adimensional, Boolean 1 since F1 is greater than F2.

The program flow can be controlled with if and while statements, i.e.:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 834 of 3287

1 if (isForce(F1))
2 {
3 print F1; // This will be executed
4 };
5

6 if (isForce(L1))
7 {
8 print L1; // This will not.
9 };

Note the necessary semicolon (;) at the closing brace. Unlike C/C++, the braces are always necessary.

Closing colon is also always necessary.

The “else” statement is also available:

1 if (isForce(L1))
2 {
3 print L1; // This will not execute
4 }
5 else
6 {
7 print L2; // This will execute instead
8 };

While loops are also available:

1 i = 0;
2 while( i < 10)
3 {
4 print i;
5 i = i +1;
6 };

205.3.4 Modeling

This section details ESSI modeling commands. Angle brackets <> are used for quantity or variable

placeholder, that is, they indicate where user input goes. Within the angle brackets, the expected unit

type is given as well, i.e.. <L> means the command expects an input with a value and a length unit.

The symbol <.> represents the adimensional quantity.

In addition to that, the vertical bar | (“OR” sign)) is used to separate two or more keyword options,

i.e. [a|b|c] is used indicate keyword options a or b or c. The symbol |...| is used to denote where

several long options exist and are explained elsewhere (an example of this is available below in a material

model definitions).

All commands require unit consistency. Base units, SI or other can be used as indicated below:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• length, symbol L, units [m, inch, ft]

• mass, symbol M, units [kg, lbm],

• time, symbol T , units [s]

Derived units can also be used:

• angle, symbol rad (radian), unit [dimensionless, L/L]

• force, symbol N (Newton), units [N , kN , MN , M ∗ L/T2],

• stress, symbol Pa (Pascal), units [Pa, kPa, MPa, N /L2, M/L/T2]

• strain, symbol (no symbol), units [L/L]

• mass density, symbol (no symbol), units [M/L3]

• force density, symbol (no symbol), units [M/L2/T2]

All models have to be named: model name "model_name_string"; This is important as output

files are named based on model name.

Each loading stage has to be named as well. A new loading stage1 is defined like this:

new loading stage "loading stage name string";

In addition to model name, loading stage name is used for output file name for given loading stage.

1See more in section 101.4.5 on page 97 in Jeremić et al. (1989-2025).
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205.3.4.1 Modeling, Material Model: Adding a Material Model to the Finite Element Model

Adding constitutive material model to the finite element model/domain is done using command:

1 add material # <.> type |...|
2 mass_density = <M/L^3>
3 (more model dependent parameters) ;

• Material number # (or alternatively No) is a distinct integer number used to uniquely identify this

material.

• Mass density should be defined for each material (even if only static analysis is performed, for

example if self weight is to be used as a loading stage).

• Depending on material model, there will be additional material parameters that are defined for

each material model/type below:

Starting with version 03-NOV-2015 all elastic-plastic material models require explicit specification of

the constitutive integration algorithm. More information on this can be found in 205.3.5.15. Only the

material linear_elastic_isotropic_3d_LT ignores this option.

Choices for material_type are listed below.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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205.3.4.2 Modeling, Material Model: Linear Elastic Isotropic Material Model

The command is:

1 add material # <.> type linear_elastic_isotropic_3d
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is an isotropic modulus of elasticity of a material (units: stress)

• poisson_ratio is a Poisson’s ratio [dimensionless]

More on this material model can be found in Section 104.6.1 on Page 220 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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205.3.4.3 Modeling, Material Model: Cross Anisotropic Linear Elastic Material Model

The command is:

1 add material # <.> <material_number>
2 type linear_elastic_crossanisotropic
3 mass_density = <M/L^3>
4 elastic_modulus_horizontal = <F/L^2>
5 elastic_modulus_vertical = <F/L^2>
6 poisson_ratio_h_v = <.>
7 poisson_ratio_h_h = <.>
8 shear_modulus_h_v = <F/L^2>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus_horizontal is an anisotropic modulus of elasticity for horizontal plane of a

material [F/L2]

• elastic_modulus_vertical is an anisotropic modulus of elasticity for vertical direction of a

material [F/L2]

• poisson_ratio_h_v is a Poisson’s ratio for horizontal-vertical directions [dimensionless]

• poisson_ratio_h_h is a Poisson’s ratio for horizontal-horizontal directions [dimensionless]

• shear_modulus_h_v is a shear modulus for horizontal-vertical directions [F/L2]

It is assumed that vertical axes is global Z axes.

More on this material model can be found in Section 104.6.1 on Page 220 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.4 Modeling, Material Model: von Mises Associated Material Model with Linear Isotropic and/or

Kinematic Hardening

Implements von Mises family of constitutive models, with linear kinematic and/or isotropic hardening.

The command is:

1 add material # <.> type vonMises
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <F/L^2>
6 kinematic_hardening_rate = <F/L^2>
7 isotropic_hardening_rate = <F/L^2> ;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• von_mises_radius is the radius of the deviatoric section of the von Mises yield surface [F/L2]

• kinematic_hardening_rate is the rate of the kinematic hardening [F/L2]

• isotropic_hardening_rate is the rate of the kinematic hardening [F/L2]

More on this material model can be found in Section 104.6.6 on Page 226 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.5 Modeling, Material Model: von Mises Associated Material Model with Isotropic Hardening

and/or Armstrong-Frederic Nonlinear Kinematic Hardening

This command is for von Mises family of constitutive models, with Armstrong-Frederick kinematic and/or

isotropic hardening.

The command is:

1 add material # <.> type vonMisesArmstrongFrederick
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <.>
6 armstrong_frederick_ha = <F/L^2>
7 armstrong_frederick_cr = <.>
8 isotropic_hardening_rate = <F/L^2> ;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• von_mises_radius is the radius of the deviatoric section of the von Mises yield surface [F/L2]

• armstrong_frederick_ha controls rate of the kinematic hardening [F/L2]

• armstrong_frederick_cr controls the saturation limit for kinematic hardening [Dimensionless]

• isotropic_hardening_rate is the rate of the kinematic hardening [F/L2]

More on this material model can be found in Section 104.6.6 on Page 226 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.6 Modeling, Material Model: Drucker-Prager Associated Material Model with Linear Isotropic

and/or Kinematic Hardening

This command is for Drucker-Prager family of constitutive models, with linear kinematic and/or isotropic

hardening. This material uses associate plastic flow rule.

The command is:

1 add material # <.> type DruckerPrager
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_k = <.>
6 kinematic_hardening_rate = <F/L^2>
7 isotropic_hardening_rate = <F/L^2>
8 initial_confining_stress = <F/L^2> ;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• druckerprager_k slope of the Drucker-Prager yield surface in p-qm space (equivalent to M

parameter) [dimensionless]

• kinematic_hardening_rate is the rate of the kinematic hardening [F/L2]

• isotropic_hardening_rate is the rate of the isotropic hardening [F/L2]

More on this material model can be found in Section 104.6.7 on Page 232 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.7 Modeling, Material Model: Drucker-Prager Associated Material Model with Isotropic Hard-

ening and/or Armstrong-Frederick Nonlinear Kinematic Hardening

A Drucker-Prager constitutive model with associative plastic-flow rule, Armstrong-Frederick kinematic

hardening, and linear isotropic hardening and linear elastic isotropic elasticity law.

The command is:

1 add material # <.> type DruckerPragerArmstrongFrederickLE
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_k = <.>
6 armstrong_frederick_ha = <F/L^2>
7 armstrong_frederick_cr = <.>
8 isotropic_hardening_rate = <F/L^2>
9 initial_confining_stress = <F/L^2>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• druckerprager_k slope of the Drucker-Prager yield surface in p-qm space (equivalent to M

parameter) [Dimensionless]

• armstrong_frederick_ha controls rate of the kinematic hardening [F/L2]

• armstrong_frederick_cr controls the saturation limit for kinematic hardening [Dimensionless]

• isotropic_hardening_rate is the rate of the isotropic hardening [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]

More on this material model can be found in Section 104.6.7 on Page 232 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.8 Modeling, Material Model: Drucker-Prager Associated Material Model with Isotropic Hard-

ening and/or Armstrong-Frederick Nonlinear Kinematic Hardening and Nonlinear Duncan-

Chang Elasticity

A Drucker-Prager constitutive model with associative plastic-flow rule, Armstrong-Frederick kinematic

hardening, and Duncan-Chang non-linear isotropic elasticity law.

The command is:

1 add material # <.> type DruckerPragerArmstrongFrederickNE
2 mass_density = <M/L^3>
3 DuncanChang_K = <.>
4 DuncanChang_pa = <F/L^2>
5 DuncanChang_n = <.>
6 DuncanChang_sigma3_max = <F/L^2>
7 DuncanChang_nu = <.>
8 druckerprager_k = <.>
9 armstrong_frederick_ha = <F/L^2>

10 armstrong_frederick_cr = <.>
11 isotropic_hardening_rate = <F/L^2>
12 initial_confining_stress = <F/L^2>;

where:

• mass_density is the mass density of material [M/L3]

• DuncanChang_K parameter controlling Young’s modulus [< . >]

• DuncanChang_pa reference pressure [F/L2]

• DuncanChang_n exponent [< . >]

• DuncanChang_sigma3_max maximum value for σ3 (σ3 < 0) elastic properties are constant for

greater values of σ3 [F/L2]

• DuncanChang_nu Poisson’s ratio [F/L2]

• druckerprager_k slope of the Drucker-Prager yield surface in p-qm space (equivalent to M

parameter) [Dimensionless]

• armstrong_frederick_ha controls rate of the kinematic hardening [F/L2]

• armstrong_frederick_cr controls the saturation limit for kinematic hardening [Dimensionless]

• isotropic_hardening_rate is the rate of the isotropic hardening [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]
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More on this material model can be found in Section 104.6.7 on Page 232 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.9 Modeling, Material Model: Drucker-Prager Nonassociated Material Model with Linear Isotropic

and/or Kinematic Hardening

This command defines Drucker-Prager family of constitutive models, with linear kinematic and/or

isotropic hardening. This material uses non-associate plastic flow rule.

The command is:

1 add material # <.> type DruckerPragerNonAssociateLinearHardening
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_k = <.>
6 kinematic_hardening_rate = <F/L^2>
7 isotropic_hardening_rate = <F/L^2>
8 initial_confining_stress = <F/L^2>
9 plastic_flow_xi = <.>

10 plastic_flow_kd = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• druckerprager_k slope of the Drucker-Prager yield surface in p-qm space (equivalent to M

parameter) [Dimensionless]

• kinematic_hardening_rate is the linear rate of the kinematic hardening [F/L2]

• isotropic_hardening_rate is the linear rate of the isotropic hardening [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]

• plastic_flow_xi governs the amplitude of plastic volume changes. The higher ξ, the higher the

dilatancy. If ξ = 0, the material model will only produce deviatoric plastic strains. [.]

• plastic_flow_kd governs the size of the dilatancy surface, a cone in the stress space on which

no plastic volume changes occur. kd governs the size of this cone: if kd is equal to zero, the

dilatancy surface shrinks to a line (the hydrostatic axis), so that only dilative soil deformation is

possible. [.]

More on this material model can be found in Section 104.6.7 on Page 232 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.10 Modeling, Material Model: Drucker-Prager Nonassociated Material Model with Linear

Isotropic and/or Armstrong-Frederick Nonlinear Kinematic Hardening

This command defines Drucker-Prager family of constitutive models, with nonlinear kinematic and/or

linear isotropic hardening. This material uses non-associated plastic flow rule.

The command is:

1 add material # <.> type DruckerPragerNonAssociateArmstrongFrederick
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 druckerprager_k = <.>
6 armstrong_frederick_ha = <F/L^2>
7 armstrong_frederick_cr = <.>
8 isotropic_hardening_rate = <F/L^2>
9 initial_confining_stress = <F/L^2>

10 plastic_flow_xi = <.>
11 plastic_flow_kd = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• druckerprager_k slope of the Drucker-Prager yield surface in p-qm space (equivalent to M

parameter) [Dimensionless]

• armstrong_frederick_ha a kinematic hardening parameter, which governs the initial stiffness

after the yield [F/L2]

• armstrong_frederick_cr a kinematic hardening parameter. ha
cr

governs the limit of the back-

stress [Dimensionless]

• isotropic_hardening_rate is the rate of the kinematic hardening [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]

• plastic_flow_xi governs the amplitude of plastic volume changes - the higher ξ, the higher the

dilatancy. If ξ = 0, the material model will only produce deviatoric plastic strains. [.]

• plastic_flow_kd governs the size of the dilatancy surface, a cone in the stress space on which

no plastic volume changes occur. kd governs the size of this cone: if kd is equal to zero, the
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 847 of 3287

dilatancy surface shrinks to a line (the hydrostatic axis), so that only dilative soil deformation is

possible. [.]

More on this material model can be found in Section 104.6.7 on Page 232 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).

Figure 205.1: The physical meanings of ha and cr

Figure 205.2: The physical meanings of ξ and kd

The physical meanings of ha, cr , ξ, and kd are shown in Figure (205.1) and Figure (205.2).
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205.3.4.11 Modeling, Material Model: Hyperbolic Drucker-Prager Nonassociated Material Model with

Linear Isotropic and/or Armstrong-Frederick Nonlinear Kinematic Hardening

This command defines a hyperbolic Drucker-Prager constitutive model, with nonlinear kinematic and/or

linear isotropic hardening. This material uses non-associated plastic flow rule.

The command is:

1 add material # <.> type HyperbolicDruckerPragerNonAssociateArmstrongFrederick
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 friction_angle = <.>
6 cohesion = <F/L^2>
7 rounded_distance = <F/L^2>
8 armstrong_frederick_ha = <F/L^2>
9 armstrong_frederick_cr = <.>

10 isotropic_hardening_rate = <F/L^2>
11 initial_confining_stress = <F/L^2>
12 plastic_flow_xi = <.>
13 plastic_flow_kd = <.>;

where:

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio for material [ ]

• friction_angle is the initial friction angle of the material. If isotropic hardening is present,

friction angle will evolve. [rad]

• cohesion is a material constant that defines the cohesion of the material [F/L2]

• rounded_distance is the parameter that controls the shape of the rounded apex of yield surface

[F/L2]

• armstrong_frederick_ha a kinematic hardening parameter, that governs the initial stiffness

after the yield [F/L2]

• armstrong_frederick_cr a kinematic hardening parameter. It is noted that ratio ha
cr

controls

the asymptote the back-stress, that can be related to the ultimate shear strength [.]

• isotropic_hardening_rate is the rate of the isotropic hardening [F/L2]
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• initial_confining_stress initial confining (mean) pressure, a small value just get initial stress

out of cone zone [F/L2]

• plastic_flow_xi governs the amplitude of plastic volume changes - the higher ξ, the higher the

dilatancy. If ξ = 0, the material model will only produce deviatoric plastic strains. [.]

• plastic_flow_kd governs the size of the dilatancy surface, a cone in the stress space on which

no plastic volume changes occur. kd governs the size of this cone: if kd is equal to zero, the

dilatancy surface shrinks to a line (the hydrostatic axis), so that only dilative soil deformation is

possible. [.]

More on this material model can be found in Section 104.6.8.5 on Page 247 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.12 Modeling, Material Model: Rounded Mohr-Coulomb Associated Linear Isotropic Hardening

Material Model

The command is:

1 add material # <.> type roundedMohrCoulomb
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 RMC_m = <.>
6 RMC_qa = <F/L^2>
7 RMC_pc = <F/L^2>
8 RMC_e = <.>
9 RMC_eta0 = <.>

10 RMC_Heta = <F/L^2>
11 initial_confining_stress = <F/L^2>

where

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material [ ]

• RMC_m 0 < m < 1 parameter of the RMC yield function. Controls roundness of apex in p-q space.

[ ]

• RMC_qa qa parameter of the RMC yield function. Controls roundness of apex in p-q space. [F/L2]

• RMC_pc p pressure offset [F/L2]

• RMC_e e parameter controls roundness of the deviatoric cross-section of the yield surface. 0.5 <

e <= 1, e = 0.5 results in a triangular deviatoric section while e = 1 is round. [ ]

• RMC_eta0 controls the opening of the yield surface [ ]

• RMC_Heta isotropic (linear) hardening of the yield surface [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]

More on this material model can be found in Section 104.6.9 on Page 250 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.13 Modeling, Material Model: Cam Clay Material Model

The command is:

1 add material # <.> type CamClay
2 mass_density = <M/L^3>
3 M = <.>
4 lambda = <.>
5 kappa = <.>
6 e0 = <.>
7 p0 = <F/L^2>
8 poisson_ratio = <.>
9 initial_confining_stress = <F/L^2>

where

• mass_density is the mass density of material [M/L3]

• e0 void ratio (e0) at the reference pressure, [dimensionless]

• M Cam-Clay slope of the critical state line in stress space, [dimensionless]

• lambda Cam-Clay normal consolidation line slope, (unit: dimensionless)

• kappa Cam-Clay unload-reload line slope, (unit: dimensionless)

• poisson_ratio Constant Poisson-ratio

• p0 Cam-Clay parameter (p0). Tip of the yield surface in q-p space. [F/L2]

• initial_confining_stress initial confining (mean) pressure [F/L2]

More on this material model can be found in Section 104.6.10 on Page 251 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.14 Modeling, Material Model: von Mises Associated Multiple Yield Surface Material Model

The command is:

1 add material # <.> type vonMisesMultipleYieldSurface
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 total_number_of_yield_surface = <.>
6 radiuses_of_yield_surface = <string>
7 radiuses_scale_unit = <F/L^2>
8 hardening_parameters_of_yield_surfaces = <string>
9 hardening_parameters_scale_unit = <F/L^2> ;

where

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of the material [F/L2]

• poisson_ratio is the constant Poisson-ratio [dimensionless]

• total_number_of_yield_surface is the total number of yield surfaces. [dimensionless]

• radiuses_of_yield_surface is the radius list of multiple yield surfaces. This parameter gives

the radiuses of each yield surface from the smallest to the biggest. This parameter should be a

string which contains the dimensionless radiuses. The radiuses should be separated by a blank

space or a comma. [string]

• radiuses_scale_unit is the unit of the each yield surface. This parameter also provides a

method to scale up or scale down the radiuses of each yield surfaces. [F/L2]

• hardening_parameters_of_yield_surfaces is the hardening parameters corresponding to each

yield surface. This parameter should be a string which contains the dimensionless hardening

parameters. The hardening parameters should be separated by a blank space or a comma. [string]

• hardening_parameters_scale_unit The unit of the each hardening parameter. This parameter

also provides a method to scale up or scale down the hardening parameter of each yield surfaces.

[F/L2]
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205.3.4.15 Modeling, Material Model: von Mises Associated Multiple Yield Surface Material Model

that Matches G/Gmax Curves

The command is:

1 add material # <.> type vonMisesMultipleYieldSurfaceGoverGmax
2 mass_density = <M/L^3>
3 initial_shear_modulus = <F/L^2>
4 poisson_ratio = <.>
5 total_number_of_shear_modulus = <.>
6 GoverGmax = <string>
7 ShearStrainGamma = <string> ;

Command Example is

1 add material # 1 type vonMisesMultipleYieldSurfaceGoverGmax
2 mass_density = 0.0*kg/m^3
3 initial_shear_modulus = 3E8 * Pa
4 poisson_ratio = 0.0
5 total_number_of_shear_modulus = 9
6 GoverGmax =
7 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
8 ShearStrainGamma =
9 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01";

where

• mass_density is the mass density of material [M/L3]

• initial_shear_modulus is the initial maximum shear modulus, namely, the Gmax. [F/L2]

• poisson_ratio is the constant Poisson-ratio. [dimensionless]

• total_number_of_shear_modulus is the total number of shear modulus, including the initial

maximum shear modulus. The total number of yield surface is one less than the total number of

shear modulus. Namely, (N+1) areas are divided by N surfaces. [dimensionless]

• GoverGmax is the G/Gmax from experiments, including the initial shear modulus. Namely, the

first element should be 1.0. Each element is dimensionless. The input should be separated by a

blank space or a comma. [string]

• ShearStrainGamma is the shear strain γ corresponding to the GoverGmax. Note that γ = 2ε

when the input is prepared. The first element should be 0.0 corresponding to the initial shear

modulus. Each element is dimensionless. The input should be separated by a blank space or a

comma. [string]
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205.3.4.16 Modeling, Material Model: Drucker-Prager Nonassociated Multi-Yield Surface Material

Model

The command is:

1 add material # <.> type DruckerPragerMultipleYieldSurface
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 initial_confining_stress = <F/L^2>
6 reference_pressure = <F/L^2>
7 pressure_exponential_n = <.>
8 cohesion = <F/L^2>
9 dilation_angle_eta = <.>

10 dilation_scale = <.>
11 total_number_of_yield_surface = <.>
12 sizes_of_yield_surfaces = <string>
13 yield_surface_scale_unit = <F/L^2>
14 hardening_parameters_of_yield_surfaces = <string>
15 hardening_parameters_scale_unit = <F/L^2>;

where

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of the material [F/L2]

• poisson_ratio is the constant Poisson-ratio [dimensionless]

• initial_confining_stress is the initial confining (mean) pressure [F/L2]

• reference_pressure is the reference pressure for the initial modulus. This parameter is usually

101kPa. [F/L2]

• pressure_exponential_n is the exponential number of the pressure dependent modulus. [di-

mensionless]

• cohesion is the attraction force is the soil. [F/L2]

• dilation_angle_eta controls the dilation and compaction of the material. When the stress ratio

is smaller than this parameter, plastic compaction takes place. When the stress ratio is greater

than this parameter, the plastic dilation takes place. [dimensionless]

• dilation_scale controls the rate of the dilation or compaction in the plastic flow. [dimensionless]

• total_number_of_yield_surface is the total number of yield surfaces. [dimensionless]
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• radiuses_of_yield_surface is the radius list of multiple yield surfaces. This parameter gives

the radiuses of each yield surface from the smallest to the biggest. This parameter should be a

string which contains the dimensionless radiuses. The radiuses should be separated by a blank

space or a comma. [string]

• radiuses_scale_unit is the unit of the each yield surface. This parameter also provides a

method to scale up or scale down the radiuses of each yield surfaces. [F/L2]

• hardening_parameters_of_yield_surfaces is the hardening parameters corresponding to each

yield surface. This parameter should be a string which contains the dimensionless hardening

parameters. The hardening parameters should be separated by a blank space or a comma. [string]

• hardening_parameters_scale_unit The unit of the each hardening parameter. This parameter

also provides a method to scale up or scale down the hardening parameter of each yield surfaces.

[F/L2]
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205.3.4.17 Modeling, Material Model: Drucker-Prager Nonassociated Material Model that Matches

G/Gmax Curves

The command is:

1 add material # <.> type DruckerPragerMultipleYieldSurfaceGoverGmax
2 mass_density = <M/L^3>
3 initial_shear_modulus = <F/L^2>
4 poisson_ratio = <.>
5 initial_confining_stress = <F/L^2>
6 reference_pressure = <F/L^2>
7 pressure_exponential_n = <.>
8 cohesion = <F/L^2>
9 dilation_angle_eta = <.>

10 dilation_scale = <.>
11 total_number_of_shear_modulus = <.>
12 GoverGmax = <string>
13 ShearStrainGamma = <string>

Command Example is

1 add material # 1 type DruckerPragerMultipleYieldSurfaceGoverGmax
2 mass_density = 0.0*kg/m^3
3 initial_shear_modulus = 3E8 * Pa
4 poisson_ratio = 0.0
5 initial_confining_stress = 1E5 * Pa
6 reference_pressure = 1E5 * Pa
7 pressure_exponential_n = 0.5
8 cohesion = 0. * Pa
9 dilation_angle_eta =1.0

10 dilation_scale = 0.0
11 total_number_of_shear_modulus = 9
12 GoverGmax =
13 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
14 ShearStrainGamma =
15 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01";

where

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of the material [F/L2]

• poisson_ratio is the constant Poisson-ratio [dimensionless]

• initial_confining_stress is the initial confining (mean) pressure [F/L2]

• reference_pressure is the reference pressure for the initial modulus. This parameter is usually

101kPa. [F/L2]
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• pressure_exponential_n is the exponential number of the pressure dependent modulus. [di-

mensionless]

• cohesion is the attraction force is the soil. [F/L2]

• dilation_angle_eta controls the dilation and compaction of the material. When the stress ratio

is smaller than this parameter, plastic compaction takes place. When the stress ratio is greater

than this parameter, the plastic dilation takes place. [dimensionless]

• dilation_scale controls the rate of the dilation or compaction in the plastic flow. For this

automatic G/Gmax match, the dilation scale has to be zero, which means only deviatoric plastic

flow is allowed. If the users want to have volumetric dilation, they can match the G/Gmax manually

with the other DruckerPragerMultipleYieldSurface command. [dimensionless]

• total_number_of_shear_modulus is the total number of shear modulus, including the initial

maximum shear modulus. The total number of yield surface is one less than the total number of

shear modulus. Namely, (N+1) areas are divided by N surfaces. [dimensionless]

• GoverGmax is the G/Gmax from experiments, including the initial shear modulus. Namely, the

first element should be 1.0. Each element is dimensionless. The input should be separated by a

blank space or a comma. [string]

• ShearStrainGamma is the shear strain γ corresponding to the GoverGmax. Note that γ = 2ε

when the input is prepared. The first element should be 0.0 corresponding to the initial shear

modulus. Each element is dimensionless. The input should be separated by a blank space or a

comma. [string]
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205.3.4.18 Modeling, Material Model: Rounder Mohr-Coulomb Nonassociated Multi-Yield Surface Ma-

terial Model

The command is:

1 add material # <.> type RoundedMohrCoulombMultipleYieldSurface
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 initial_confining_stress = <F/L^2>
6 reference_pressure = <F/L^2>
7 pressure_exponential_n = <.>
8 cohesion = <F/L^2>
9 RMC_shape_k =<.>

10 dilation_angle_eta = <.>
11 dilation_scale = <.>
12 total_number_of_yield_surface = <.>
13 sizes_of_yield_surfaces = <string>
14 yield_surface_scale_unit = <F/L^2>
15 hardening_parameters_of_yield_surfaces = <string>
16 hardening_parameters_scale_unit = <F/L^2>;

where

• mass_density is the mass density of material [M/L3]

• elastic_modulus is the elastic modulus of the material [F/L2]

• poisson_ratio is the constant Poisson-ratio [dimensionless]

• initial_confining_stress is the initial confining (mean) pressure [F/L2]

• reference_pressure is the reference pressure for the initial modulus. This parameter is usually

101kPa. [F/L2]

• pressure_exponential_n is the exponential number of the pressure dependent modulus. [di-

mensionless]

• cohesion is the attraction force is the soil. [F/L2]

• RMC_shape_k controls the shape of the rounded Mohr-Coulomb yield surface. [dimensionless]

• dilation_angle_eta controls the dilation and compaction of the material. When the stress ratio

is smaller than this parameter, plastic compaction takes place. When the stress ratio is greater

than this parameter, the plastic dilation takes place. [dimensionless]

• dilation_scale controls the rate of the dilation or compaction in the plastic flow. [dimensionless]
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• total_number_of_yield_surface is the total number of yield surfaces. [dimensionless]

• radiuses_of_yield_surface is the radius list of multiple yield surfaces. This parameter gives

the radiuses of each yield surface from the smallest to the biggest. This parameter should be a

string which contains the dimensionless radiuses. The radiuses should be separated by a blank

space or a comma. [string]

• radiuses_scale_unit is the unit of the each yield surface. This parameter also provides a

method to scale up or scale down the radiuses of each yield surfaces. [F/L2]

• hardening_parameters_of_yield_surfaces is the hardening parameters corresponding to each

yield surface. This parameter should be a string which contains the dimensionless hardening

parameters. The hardening parameters should be separated by a blank space or a comma. [string]

• hardening_parameters_scale_unit The unit of the each hardening parameter. This parameter

also provides a method to scale up or scale down the hardening parameter of each yield surfaces.

[F/L2]
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205.3.4.19 Modeling, Material Model: Tsinghhua Liquefaction Material Model

The command is:

1 add material # <.> type TsinghuaLiquefactionModel
2 mass_density = <M/L^3>
3 poisson_ratio = <.>
4 initial_confining_stress = <F/L^2>
5 liquefaction_G0 = <.>
6 liquefaction_EXPN = <.>
7 liquefaction_c_h0 = <.>
8 liquefaction_mfc = <.>
9 liquefaction_mdc = <.>

10 liquefaction_dre1 = <.>
11 liquefaction_Dre2 = <.>
12 liquefaction_Dir = <.>
13 liquefaction_Alpha = <.>
14 liquefaction_gamar = <.>
15 liquefaction_pa = <.>
16 liquefaction_pmin = <.>

Command Example is

1 add material # 1 type TsinghuaLiquefactionModel
2 mass_density = 0.0*kg/m^3
3 poisson_ratio = 0.1
4 initial_confining_stress = 1E5 *Pa
5 liquefaction_G0 = 800
6 liquefaction_EXPN = 0.5
7 liquefaction_c_h0 = 1.0
8 liquefaction_mfc = 1.2
9 liquefaction_mdc = 0.4

10 liquefaction_dre1 = 0.5
11 liquefaction_Dre2 = 1500
12 liquefaction_Dir = 0.1
13 liquefaction_Alpha = 0.01
14 liquefaction_gamar = 0.01
15 liquefaction_pa = 1E5
16 liquefaction_pmin = 100 ;

where

• mass_density is the mass density of material [M/L3]

• poisson_ratio is the constant Poisson ratio [dimensionless]

• initial_confining_stress is the initial confining (mean) pressure [F/L2]

• liquefaction_G0 is initial modulus scale at the reference pressure. For medium dense soil, G0 is

800. [dimensionless]
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• liquefaction_EXPN is the exponential number of the pressure dependent modulus. [dimension-

less]

• liquefaction_c_h0 is the plastic modulus coefficient. This parameter should be determined by

the G/Gmax curve. When the G/Gmax curve is hyperbolic, h is 1.2. The range of h is 0.7-1.2

[dimensionless].

• liquefaction_mfc is the slope of the failure surface in p-q plane. The range of Mf ,c is 1.4-1.8

[dimensionless].

• liquefaction_mdc is the slope of the phase transition surface in p-q plane. The range of Md,c

is 0.3-1.0 [dimensionless].

• liquefaction_dre1 is the accumulation coefficient of the reversible dilatancy. This parameter is

usually 0.4 [dimensionless].

• liquefaction_Dre2 is the release coefficient of the reversible dilatancy. This range of dre,2 is

1000-1500 [dimensionless].

• liquefaction_Dir is the coefficient of irreversible dilatancy. The parameter dir controls the initial

slope of the irreversible strain development with respect to the number of reversible loadings.

Intuitively, when dir is bigger, the soil becomes liquefaction faster. The parameter dir can be

around 0.2 [dimensionless].

• liquefaction_Alpha is the limit of the irreversible strain. Intuitively, α controls the maximum

strain after the liquefaction. The parameter α can be around 0.03 [dimensionless].

• liquefaction_gamar is the maximum shear strain length in one liquefaction loading. Intuitively,

this parameter controls the maximum strain size of one loop. This parameter can be around 0.05

[dimensionless].

• liquefaction_pa is the reference pressure. Usually, this parameter is 10000 [dimensionless].

• liquefaction_pmin is the minimum pressure in the calculation. If the pressure is smaller than

pmin during the calculation, the pressure will be set to pmin. This parameter can be 1. Increasing

this parameter can avoid the potential numerical errors on small numbers [dimensionless].
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205.3.4.20 Modeling, Material Model: SANISand Material Model, version 2004

The command is:

1 add material # <.> type sanisand2004
2 mass_density = <M/L^3>
3 e0 = <.>
4 sanisand2004_G0 = <.>
5 poisson_ratio = <.>
6 sanisand2004_Pat = <.>
7 sanisand2004_p_cut = <.>
8 sanisand2004_Mc = <.>
9 sanisand2004_c = <.>

10 sanisand2004_lambda_c = <.>
11 sanisand2004_xi = <.>
12 sanisand2004_ec_ref = <.>
13 sanisand2004_m = <.>
14 sanisand2004_h0 = <.>
15 sanisand2004_ch = <.>
16 sanisand2004_nb = <.>
17 sanisand2004_A0 = <.>
18 sanisand2004_nd = <.>
19 sanisand2004_z_max = <.>
20 sanisand2004_cz = <.>
21 initial_confining_stress = <F/L^2>;

where

• MaterialNumber: Material tag

• mass_density is the mass density of material [M/L3]

• sanisand2004_e0 initial void ratio [ ]

• sanisand2004_G0 normalized elastic shear modulus [ ]

• poisson_ratio Poisson’s ratio [ ]

• sanisand2004_Pat atmospheric pressure [F/L2]

• sanisand2004_p_cut pressure cut-off ratio [F/L2]

• sanisand2004_Mc Critical stress ratio at triaxial compression [ ]

• sanisand2004_c tension-compression strength ratio c = Me/Mc [ ]

• sanisand2004_lambda_c parameter for critical state line [ ]

• sanisand2004_xi parameter for critical state line [ ]
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• sanisand2004_ec_ref reference void for critical state line [ ]

• sanisand2004_m opening of the yield surface [ ]

• sanisand2004_h0 bounding surface parameter [ ]

• sanisand2004_ch bounding surface parameter [ ]

• sanisand2004_nb bounding surface parameter [ ]

• sanisand2004_A0 dilatancy parameter [ ]

• sanisand2004_nd dilatancy parameter [ ]

• sanisand2004_z_max maximum z fabric parameter [ ]

• sanisand2004_cz fabric hardening parameter [

• initial_confining_stress is the initial confining stress p = –1/3σii and it is positive in com-

pressions (since there is that – (minus) sign in front of sum of normal stresses (σii indicial notation

summation convention applies) that are positive in tension [stress].

More on this material model can be found in section 104.6.11 on Page 255 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).

Important note: This material model should be used together with explicit constitutive algorithms,

e.g. Forward Euler or Forward Euler Subincrement. For better result, it is suggested to apply strain

increments, or sub-increments, smaller than 1e-4.
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205.3.4.21 Modeling, Material Model: SANISand Material Model, version 2008

The command is:

1 add material # <.> type sanisand2008
2 mass_density = <M/L^3>
3 e0 = <.>
4 sanisand2008_G0 = <.>
5 sanisand2008_K0 = <.>
6 sanisand2008_Pat = <.>
7 sanisand2008_k_c = <.>
8 sanisand2008_alpha_cc = <.>
9 sanisand2008_c = <.>

10 sanisand2008_lambda = <.>
11 sanisand2008_ec_ref = <.>
12 sanisand2008_m = <.>
13 sanisand2008_h0 = <.>
14 sanisand2008_ch = <.>
15 sanisand2008_nb = <.>
16 sanisand2008_A0 = <.>
17 sanisand2008_nd = <.>
18 sanisand2008_p_r = <.>
19 sanisand2008_rho_c = <.>
20 sanisand2008_theta_c = <.>
21 sanisand2008_X = <.>
22 sanisand2008_z_max = <.>
23 sanisand2008_cz = <.>
24 sanisand2008_p0 = <F/L^3>
25 sanisand2008_p_in = <F/L^3>
26 algorithm = explicit (or) implicit
27 number_of_subincrements = <.>
28 maximum_number_of_iterations = <.>
29 tolerance_1 = <.>
30 tolerance_2 = <.>;

where

• MaterialNumber: Number of the ND material to be used ;

• Algorithm: Explicit (=0) or Implicit (=1) ;

• rho: density ;

• e0: initial void ratio at zero strain ;

• G0: Reference elastic shear modulus [stress];

• K0: Reference elastic bulk modulus [stress];

• sanisand2008_Pat: atmospheric pressure for critical state line ;
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• sanisand2008_k_c: cut-off factor; for p < kcPat , use p = kcPat for calculation of G; (a default

value of kc = 0.01 should work fine) ;

• sanisand2008_alpha_cc: critical state stress ratio ;

• sanisand2008_c: tension-compression strength ratio ;

• sanisand2008_lambda: parameter for critical state line ;

• sanisand2008_xi: parameter for critical state line ;

• sanisand2008_ec_ref: reference void for critical state line, ; ec = er lambda(pc/Pat)xi ;

• sanisand2008_m: opening of the yield surface ;

• sanisand2008_h0: bounding surface parameter ;

• sanisand2008_ch: bounding surface parameter ;

• sanisand2008_nb: bounding surface parameter ;

• sanisand2008_A0: dilatancy parameter ;

• sanisand2008_nd: dilatancy parameter ;

• sanisand2008_p_r: LCC parameter ;

• sanisand2008_rho_c: LCC parameter ;

• sanisand2008_theta_c: LCC parameter ;

• sanisand2008_X: LCC parameter ;

• sanisand2008_z_max: fabric parameter ;

• sanisand2008_cz: fabric parameter ;

• sanisand2008_p0: yield surface size ;

• sanisand2008_p_in ;

• number_of_subincrements number of subincrements in constitutive simulation

• maximum_number_of_iterations maximum number of iterations
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• tolerance_1 Explicit: tolerance for intersection point (distance between two consecutive points)

Implicit: yield function tolerance

• tolerance_2 Implicit: residual tolerance

More on this material model can be found in Section 104.6.12 on Page 262 in Lecture Notes by

Jeremić et al. (1989-2025) (Lecture Notes URL).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 867 of 3287

205.3.4.22 Modeling, Material Model: Cosserat Linear Elastic Material Model

The command is:

1 add material # <.> type Cosserat_linear_elastic_isotropic_3d
2 mass_density = <M/L^3>
3 lambda = <F/L^2>
4 mu = <F/L^2>
5 chi = <F/L^2>
6 pi1 = <F>
7 pi2 = <F>
8 pi3 = <F>
9 ;

• MaterialNumber unique material Number.

• mass_density the density of the material.

• lambda, mu, chi, pi1, pi2, pi3 are the 6 Cosserat elastic constants (Eringen, 2012).

The relations between elastic constants is as follows Eringen (2012). Note the Young’s modulus and

the Poisson’s ratio are different from the classical elasticity:

• Young’s modulus E = (2µ + χ)(3λ + 2µ + χ).

• Shear modulus G = µ + 1/2χ.

• Poisson’s ratio ν = λ/(2λ + 2µ + χ).

• Characteristic length for torsion lt = ((π2 + π3)/(2µ + χ))1/2.

• Characteristic length for bending lb = (π3/2(2µ + χ))1/2.

• Coupling number N = (χ/2(µ + χ))

• Polar ratio Φ = (π2 + π3)/(π1 + π2 + π3)

According to Eringen Eringen (2012), the 6 elastic constants should satisfy the following conditions

3λ + 2µ + χ ≥ 0 , 2µ + χ ≥ 0 , χ ≥ 0 ,

3π1 + π2 + π3 ≥ 0 , π3 + π2 ≥ 0 , π3 – π2 ≥ 0 .
(205.1)
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205.3.4.23 Modeling, Material Model: von Mises Cosserat Material Model

The command is:

1 add material # <.> type Cosserat_von_Mises
2 mass_density = <M/L^3>
3 lambda = <F/L^2>
4 mu = <F/L^2>
5 chi = <F/L^2>
6 pi1 = <F>
7 pi2 = <F>
8 pi3 = <F>
9 plastic_internal_length = <L>

10 von_mises_radius = <F/L^2>
11 isotropic_hardening_rate = <F/L^2>
12 ;

• MaterialNumber unique material Number.

• mass_density the density of the material.

• lambda, mu, chi, pi1, pi2, pi3 are the 6 Cosserat elastic constantsEringen (2012).

• plastic_internal_length is the characteristic length in the plasticity.

• von_mises_radius is radius of the unified yield surface of force-stress and couple-stress.

• isotropic_hardening_rate is the rate of isotropic hardening.
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205.3.4.24 Modeling, Material Model: Uniaxial Linear Elastic, Fiber Material Model

The command is:

1 add material # <.> type uniaxial_elastic
2 elastic_modulus = <F/L^2>
3 viscoelastic_modulus = <mass / length / time> ;

where

• MaterialNumber unique material Number.

• elastic_modulus elastic modulus of the material.

• viscoelastic_modulus damping tangent.

More on this material model can be found in Section ?? on Page ?? in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

As the name implies, uniaxiale_elastic material model works with uniaxial element only. For 3D

elements, for example solid brick elements, please use 3D material models, for example, linear_elastic_isotropic_3d.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 870 of 3287

205.3.4.25 Modeling, Material Model: Stochastic Uniaxial Linear Elastic Model

The command is:

1 add material # <.> type stochastic_uniaxial_elastic uncertain_elastic_modulus = ←↩
random variable # <.> elastic_modulus_scale_unit = <F/L^2>;

where

• uncertain_elastic_modulus specify uncertain elastic modulus of the material through a defined

random variable.

• elastic_modulus_scale_unit specify the unit scale factor that would be multiplied with the

polynomial chaos coefficients of the random variable.

As the name implies, stochastic_uniaxial_elastic material model works with stochastic uniaxial

element only.

For example:

1 add material # 1 type stochastic_uniaxial_elastic uncertain_elastic_modulus = ←↩
random variable # 1 elastic_modulus_scale_unit = 1*Pa;

Add material #1 as stochastic_uniaxial_elastic material with uncertain elastic modulus char-

acterized by the polynomial chaos coefficients of random variable 1 and scale factor 1 ∗ Pa.
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205.3.4.26 Modeling, Material Model: Stochastic Uniaxial Nonlinear Armstrong Frederick Model

The command is:

1 add material # <.> type stochastic_uniaxial_Armstrong_Frederick
2 constitutive triple product # <.>
3 armstrong_frederick_ha = random variable # <.>
4 armstrong_frederick_ha_scale_unit = <F/L^2>
5 armstrong_frederick_cr = random variable # <.>

or

1 add material # <.> type stochastic_uniaxial_Armstrong_Frederick
2 constitutive triple product # <.>
3 armstrong_frederick_ha = random variable # <.>
4 armstrong_frederick_ha_scale_unit = <F/L^2>
5 armstrong_frederick_cr = random variable # <.>
6 polynomial_chaos_terms_ha = <.>
7 polynomial_chaos_terms_cr = <.>
8 polynomial_chaos_terms_incremental_strain = <.>;

Note that the difference between these two commands is that the first command would by default

use the full polynomial chaos (PC) bases defined in the provided constitutive triple product

for probabilistic constitutive modeling. The second command would support user-specified number

of polynomial chaos terms for uncertain armstrong_frederick_ha, armstrong_frederick_cr and

incremental_strain. This enables users to perform truncation of PC bases for probabilistic constitutive

modeling.

The command input parameters are:

• constitutive triple product # specifies the ID of the triple product, that would be used

in probabilistic constitutive updating. In stochastic finite element method (FEM), the first and

second PC basis for this triple product should come from the joint PC representation of uncertain

parameters armstrong_frederick_ha and armstrong_frederick_cr. The third PC basis for

this triple product should come from the PC representation of uncertain FEM system response,

e.g., uncertain structural displacement.

• armstrong_frederick_ha = random variable # specifies the uncertain Armstrong Frederick

parameter ha through a defined random variable.

• armstrong_frederick_ha_scale_unit specifies the unit scale factor that would be multiplied

with the polynomial chaos coefficients of the random variable of uncertain Armstrong Frederick

parameter ha.
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• armstrong_frederick_cr = random variable # specifies the uncertain Armstrong Frederick

parameter cr through a defined random variable.

• polynomial_chaos_terms_ha specifies the number of polynomial chaos basis of uncertain ha

involved in the probabilistic constitutive updating.

• polynomial_chaos_terms_cr specifies the number of polynomial chaos basis of uncertain cr

involved in the probabilistic constitutive updating.

• polynomial_chaos_terms_incremental_strain specifies the number of polynomial chaos basis

of uncertain incremental strain dϵ involved in the probabilistic constitutive updating.

As the name implies, stochastic_uniaxial_Armstrong_Frederick material model works with

stochastic uniaxial element only.

For example:

1 add material # 1 type stochastic_uniaxial_Armstrong_Frederick
2 constitutive triple product # 1
3 armstrong_frederick_ha = random variable # 1
4 armstrong_frederick_ha_scale_unit = 1*Pa
5 armstrong_frederick_cr = random variable # 2
6 polynomial_chaos_terms_ha = 10
7 polynomial_chaos_terms_cr = 10
8 polynomial_chaos_terms_incremental_strain = 30;

Add material # 1 as stochastic_uniaxial_Armstrong_Frederick material with triple product

# 1 for probabilistic constitutive updating.

Uncertain parameter ha is characterized by random variable # 1 using scale unit 1∗Pa.

Uncertain parameter cr is characterized by random variable # 2. The number of polynomial chaos

basis for uncertain parameters ha, cr and incremental strain in probabilistic constitutive updating are 10,

10 and 30, respectively.
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205.3.4.27 Modeling, Material Model: Uniaxial Nonlinear Concrete, Fiber Material Model, version 02

The command is:

1 add material # <.> type uniaxial_concrete02
2 compressive_strength = <F/L^2>
3 strain_at_compressive_strength = <.>
4 crushing_strength = <F/L^2>
5 strain_at_crushing_strength = <.>
6 lambda = <.>
7 tensile_strength = <F/L^2>
8 tension_softening_stiffness = <F/L^2>;

• compressive_strength compressive strength.

• strain_at_compressive_strength strain at compressive strength.

• crushing_strength crushing strength.

• strain_at_crushing_strength strain at crushing strength.

• lambda ratio between unloading slope at epscu and initial slope.

• tensile_strength tensile strength.

• tension_softening_stiffness tension softening stiffness (absolute value) (slope of the tension

softening branch).

More on this material model can be found in Section ?? on Page ?? in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.28 Modeling, Material Model: Faria-Oliver-Cervera Concrete Material

The command is:

1 add material No (or #) <material_number>
2 type FariaOliverCerveraConcrete
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 tensile_yield_strength = <F/L^2>
6 compressive_yield_strength = <F/L^2>
7 plastic_deformation_rate = <.>
8 damage_parameter_Ap = <.>
9 damage_parameter_An = <.>

10 damage_parameter_Bn = <.>

where

• No (or #)<material_number> is a unique material integer number (does not have to be se-

quential, any unique positive integer number can be used).

• type FariaOliverCerveraConcrete is the material type.

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material.

• tensile_yield_strength is the tensile yield strength [F/L2]

• compressive_yield_strength is the compressive yield strength [F/L2]
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205.3.4.29 Modeling, Material Model: Plane Stress Layered Material

The command is:

1 add material No (or #) <element_number>
2 type PlaneStressLayeredMaterial
3 number_of_layers = <.>
4 thickness_array = <string>
5 thickness_scale_unit = <L>
6 with material # <string>
7 ;

where

• No (or #)<material_number> is a unique material integer number (does not have to be se-

quential, any unique positive integer number can be used).

• type PlaneStressLayeredMaterial is the material type.

• number_of_layers is the number of layers in this layered material. For reinforced concrete wall

element, this will be just 3 layers, inside/confined concrete, reinforcement, and outside/unconfined

concrete.

• thickness_array is the thickness ratio of each individual material.

• thickness_scale_unit set the length unit and the scale factor for the thickness of the layered

material.

• material # <string> is the string of predefined individual material tags.
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205.3.4.30 Modeling, Material Model: Uniaxial Nonlinear Steel, Fiber Material Model, version 01

The command is:

1 add material # <.> type uniaxial_steel01
2 yield_strength = <F/L^2>
3 elastic_modulus = <F/L^2>
4 strain_hardening_ratio = <.>
5 a1 = <.>
6 a2 = <.>
7 a3 = <>
8 a4 = <.> ;

• yield_strength yield strength.

• elastic_modulus initial elastic tangent.

• strain_hardening_ratio strain-hardening ratio (ratio between post-yield tangent and initial

elastic tangent).

• a1, a2, a3, a4 isotropic hardening parameters

– a1: isotropic hardening parameter, increase of compression yield envelope as proportion of

yield strength after a plastic strain of a2*(fy/Ep). ;

– a2: isotropic hardening parameter (see explanation under a1) ;

– a3: isotropic hardening parameter, increase of tension yield envelope as proportion of yield

strength after a plastic strain of a4*(fy/Ep) ;

– a4: isotropic hardening parameter (see explanation under a3) ;

More on this material model can be found in Section ?? on Page ?? in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.31 Modeling, Material Model: Uniaxial Nonlinear Steel, Fiber Material Model, version 02

The command is:

1 add material # <.> type uniaxial_steel02
2 yield_strength = <F/L^2>
3 elastic_modulus = <F/L^2>
4 strain_hardening_ratio = <.>
5 R0 = <.>
6 cR1 = <.>
7 cR2 = <.>
8 a1 = <.>
9 a2 = <.>

10 a3 = <>
11 a4 = <.> ;

• yield_strength: yield strength ;

• elastic_modulus: initial elastic tangent ;

• strain_hardening_ratio: strain-hardening ratio (ratio between post-yield tangent and initial

elastic tangent) ;

• R0, cR1, cR2: control the transition from elastic to plastic branches. Recommended values:

R0=between 10 and 20, cR1=0.925, cR2=0.15 ;

• a1, a2, a3, a4: isotropic hardening parameters ;

– a1: isotropic hardening parameter, increase of compression yield envelope as proportion of

yield strength after a plastic strain of a2*(Fy/E). ;

– a2: isotropic hardening parameter (see explanation under a1) ;

– a3: isotropic hardening parameter, increase of tension yield envelope as proportion of yield

strength after a plastic strain of a4*(Fy/E) ;

– a4: isotropic hardening parameter (see explanation under a3) ;

More on this material model can be found in Section ?? on Page ?? in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.32 Modeling, Material Model: Plane Stress Plastic Damage Concrete Material

This is a plane stress version of the plastic damage concrete model developed by Faria et al. (1998).

This material was implemented as part of the endeavor to model reinforced concrete shells, plates and

shear walls. It should only be used together with Inelastic Layered Shell Section and 4 Node Shell

NLDKGQ/Xin-Zheng-Lu, see page 915.

The command is:

1 add material No (or #) <material_number> type PlasticDamageConcretePlaneStress
2 elastic_modulus = <F/L^2>
3 poisson_ratio = <.>
4 tensile_yield_strength = <F/L^2>
5 compressive_yield_strength = <F/L^2>
6 plastic_deformation_rate = <.>
7 damage_parameter_Ap = <.>
8 damage_parameter_An = <.>
9 damage_parameter_Bn = <.>

where

• No (or #)<material_number> is a unique material integer number (does not have to be se-

quential, any unique positive integer number can be used).

• elastic_modulus is the elastic modulus of material [F/L2]

• poisson_ratio is the Poisson’s ratio material.

• tensile_yield_strength is the tensile yield strength [F/L2]

• compressive_yield_strength is the compressive yield strength [F/L2]

• plastic_deformation_rate governs the post-yield hardening modulus in the effective (undam-

aged) space and the plastic strain rate

• damage_parameter_Ap governs the tensile fracture energy and affects the ductility of the tensile

response

• damage_parameter_An governs the softening behavior of concrete in compression, it changes the

ductility but does not alter the peak strength

• damage_parameter_Bn governs the softening behavior of concrete in compression, it changes both

the ductility and the peak strength
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205.3.4.33 Modeling, Material Model: Plane Stress Rebar Material

This is a plane stress version of the Uniaxial Nonlinear Steel material. This material was implemented

as part of the endeavor to model reinforced concrete shells, plates and shear walls. This model should

be used together with Inelastic Layered Shell Section and 4 Node Shell NLDKGQ/Xin-Zheng-Lu, see

page 915.

The command is:

1 add material No (or #) <material_number> type PlaneStressRebarMaterial
2 with uniaxial_material # <.>
3 angle = <degree> ;

where

• No (or #)<material_number> is a unique material integer number (does not have to be se-

quential, any unique positive integer number can be used).

• with uniaxial_material # is the material tag of predefined uniaxial steel material

• angle is the angle of uniaxial steel rebars. The angle is 0 along the direction formed by the first

two nodes of a 4 Node Shell element.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 880 of 3287

205.3.4.34 Modeling, Nodes: Adding Nodes

Nodes can be added to the finite element model.

The command is:

1 add node # <.> at (<L>,<L>,<L>) with <.> dofs;

For example:

1 add node No 1 at (1.0*m, 2.5*m, 3.33*m) with 3 dofs;

adds a node number 1 at coordinates x = 1.0m, y = 2.5m and z = 3.33m with 3 dofs. The nodes can

be of 3dofs [ux, uy, uz], 4dofs []ux, uy, uz, p] (u-p elements) , 6dofs [ux, uy, uz, rx, ry, rz] (beams and shells)

and 7 dofs [ux, uy, uz, p, Ux, Uy, Uz] (upU element) types. Description of output for nodes of different

dof types can be found in section 206.6
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205.3.4.35 Modeling, Nodes: Adding Stochastic Nodes

Nodes can be added to the stochastic finite element model. Different from deterministic finite element

analysis, nodes in stochastic FEM should specify the number of polynomial chaos (PC) terms for each

physical nodal degree of freedom (dof).

The command is:

1 add node # <.> at (<L>,<L>,<L>) with <.> dofs polynomial_chaos_terms = <.>;

Where:

• polynomial_chaos_terms specifies the number of polynomial chaos terms for each physical nodal

dof.

The stochastic nodes can also be added as:

1 add node # <.> at (<L>,<L>,<L>) with <.> dofs polynomial_chaos_terms as random ←↩
field # <.>;

Which specifies the number of polynomial chaos terms for each physical nodal dof using the number

of Hermite PC basis of a defined random field.

For example:

1 add node # 1 at (1.0*m, 0.0*m, 0.0*m) with 3 dofs polynomial_chaos_terms = 10;

Add a node # 1 at coordinates x = 1.0m, y = 0.0m and z = 0.0m with 3 physical dofs. For each physical

dof, the number of terms for polynomial chaos expansion is 10.

1 add node # 1 at (1.0*m, 0.0*m, 0.0*m) with 3 dofs polynomial_chaos_terms as ←↩
random field # 2;

Add a node # 1 at coordinates x = 1.0m, y = 0.0m and z = 0.0m with 3 physical dofs. For each

physical dof, the number of terms for polynomial chaos expansion is equal to the number of PC basis of

random field # 2.
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205.3.4.36 Modeling, Nodes: Define Nodal Physical Group

Physical Group for nodes can be defined as well.

The command is:

1 define physical_node_group "string";

For example:

1 define physical_node_group "my_new_node_group";

this would create a new physical node group with name ”my new node group”.

Description of output for physical groups can be found in section 206.5.5
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205.3.4.37 Modeling, Nodes: Adding Nodes to Nodal Physical Group

Already created nodes can be added to the (any) physical node group.

The command is:

1 add nodes (<.>,<.>,...) to physical_node_group "string";

For example:

1 add nodes (1,2,3) to physical_node_group "my_new_node_group";

this would add node tag (1,2 and 3) to already created physical node group ”my new node group”.

Please note that the nodes (1,2 and 3) must be added to the model before they are added to the

physical node group.

Description of output for physical groups can be found in section 206.5.5
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205.3.4.38 Modeling, Nodes: Removing Nodal Physical Group

Already defined node physical group physical node group can be removed.

The command is

1 remove physical_node_group "string";

For example:

1 remove physical_node_group "my_new_node_group";

this would delete the physical node group ”my new node group”.
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205.3.4.39 Modeling, Nodes: Print Nodal Physical Group

Printing already defined nodal physical grouop physical node group is possible too.

The command is:

1 print physical_node_group "string";

For example:

1 print physical_node_group "my_new_node_group";

this would print the information about physical node group ”my new node group”.

1 PHYSICAL_NODE_GROUP my_new_node_group
2 [1 2 3]
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205.3.4.40 Modeling, Nodes: Removing Nodes

Nodes can be removed from the finite element model, for example during excavation, removal of finite

elements.

The command is:

1 remove node No (or #) <.>;

For example:

1 remove node # 1;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 887 of 3287

205.3.4.41 Modeling, Nodes: Adding Nodal Mass, for 3DOFs and/or 6DOFs

Nodal mass can be added to nodes with 3 DOFs and/or 6DOFs. This is in addition to nodal mass that

is obtained from finite elements.

The command for 3DOFs nodes (truss, solids, wall) is:

1 add mass to node # <.>
2 mx = <M>
3 my = <M>
4 mz = <M>;

Simularly, the command for 6DOFs nodes (beams and shells) is:

1 add mass to node # <.>
2 mx = <M>
3 my = <M>
4 mz = <M>
5 Imx = <M*L^2>
6 Imy = <M*L^2>
7 Imz = <M*L^2>;
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205.3.4.42 Modeling, Finite Element: Adding Finite Elements

The basic structure for adding any finite element is:

1 add element No (or #)
2 type <finite_element_type>
3 with nodes (<.>, ..., <.>)|
4 {element dependent parameters};

Choices for finite_element_type are listed below
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205.3.4.43 Modeling, Finite Element: Define Finite Element Physical Group

Physical group for finite elements can be defined.

The command is:

1 define physical_element_group "string";

For example:

1 define physical_element_group "my_new_element_group";

this would create a new physical element group with name ”my new element group”.

Description of output for physical groups can be found in Section 206.5.5.
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205.3.4.44 Modeling, Finite Element: Adding Elements to Physical Element Group

Finite elements, that already exist in the finite element domain, can be added to the physical element group.

The command is:

1 add elements (<.>,<.>,...) to physical_node_group "string";

For example:

1 add elements (1,2,3) to physical_node_group "my_new_node_group";

this would add elements with tags/numbers (1,2 and 3) to already created physical element group

”my new element group”. Please note that the elements (1,2 and 3) must be added to the model before

they are added to the physical element group.

Description of output for physical groups can be found in Section 206.5.5.
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205.3.4.45 Modeling, Finite Element: Remove Physical Finite Element Group

Finite elements can also be removed from the physical element group.

The command is:

1 remove physical_element_group "string";

For example:

1 remove physical_element_group "my_new_element_group";

this would delete the physical element group ”my new element group”.
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205.3.4.46 Modeling, Finite Element: Print Physical Finite Element Group

Details of the physical element group can be printed.

The commands is:

1 print physical_element_group "string";

For example:

1 print physical_element_group "my_new_element_group";

this would print the information about physical element group ”my new element group”.

1 PHYSICAL_ELEMENT_GROUP my_new_element_group
2 [1 2 3]
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205.3.4.47 Modeling, Finite Element: Remove Finite Element

Finite elements can be removed, for example if modeling requires excavation, removal of finite elements

and nodes.

The command is:

1 remove element # <.>;

For example,

1 remove element # 1;
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205.3.4.48 Modeling, Finite Element: Truss Element

The command is:

1 add element No (or #) <element_number> type truss
2 with nodes (n1, n2)
3 use material No (or #) <material_number>
4 section_area <section_area> [unit];
5 mass_density <mass_density> [unit];

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• type truss is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• use material No (or #) is the material number which makes up the element. Material has to

be a uniaxial material, and it can be either elastic or one of the elastic-plastic materials defined

for uniaxial behavior.

• section_area is the cross section area [L2]

Description of output by this element can be found in Section 206.8.1. more on this finite element can

be found in Section 102.6 on Page 126 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes

URL).
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205.3.4.49 Modeling, Finite Element: Kelvin-Voigt Element

The command is:

1 add element # <.> type Kelvin_Voigt
2 with nodes (<.>, <.>)
3 axial_stiffness = <F/L>
4 axial_viscous_damping = <F/L*T>;

where

• No (or #)<element_number> is a unique element integer number, that does not have to be

sequential, any unique positive integer number can be used

• type Kelvin_Voigt is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• axial_stiffness represents the stiffness in the axial direction, [F/L]

• axial_viscous_damping represents the viscosity, or viscous damping coefficient, in the axial

direction, [F/L ∗ T ]

Note: Nodes defining this element cannot be at the same location, that is, this is a two node element

and direction of this element is calculated from two distinct locations/coordinates of nodes.
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205.3.4.50 Modeling, Finite Element: Inerter Element

The command is:

1 add element # <.> type Inerter
2 with nodes (<.>, <.>)
3 inertance = <M>;

where

• No (or #)<element_number> is a unique element integer number, that does not have to be

sequential, any unique positive integer number can be used

• type Inerter is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• inertance represents the inertance in the axial direction, [M]

Note: Nodes defining this element cannot be at the same location, that is, this is a two node element

and direction of this element is calculated from two distinct locations/coordinates of nodes.
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205.3.4.51 Modeling, Finite Element: Shear Beam Element

The command is:

1 add element # <.> type ShearBeam
2 with nodes (<.>, <.>)
3 cross_section = <l^2>
4 use material # <.>;

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element. NOTE: element

is supposed to be alligned along vertical, Z direction !!

• use material No (or #) is the material (LT-based material) number which makes up the ele-

ment.

• section_area is the cross section area [L2]

Description of output by this element can be found in Section 206.8.3. more on this finite element can

be found in Section 102.9 on page 135 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes

URL).
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205.3.4.52 Modeling, Finite Element: Stochastic Shear Beam Element

Add stochastic shear beam element for stochastic finite element analysis.

1 add element # <.> type stochastic_shear_beam with nodes (<.>, <.>)
2 use material # <.>
3 triple product # <.>
4 cross_section = <L^2>
5 mass_density = <M/L^3>;

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used).

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element.

• use material No (or #) is the stochastic uniaxial material number that makes up the element.

• triple product # specifies the ID of the triple product, that would be used in the formation

of elemental stochastic stiffness matrix. In stochastic finite element method (FEM), the first PC

basis for this triple product should come from the PC representation of uncertain element stiffness.

The second and third PC basis for this triple product should come from the PC representation of

uncertain FEM system response, e.g., uncertain structural displacement.

• section_area is the cross section area [L2].

• mass_density is the density [M/L3].

For example:

1 add element # 1 type stochastic_shear_beam with nodes (1, 2) use material # 1 ←↩
triple product # 1 cross_section = 1*m^2 mass_density = 2000*kg/m^3;

Add a stochastic shear beam element # 1 with stochastic nodes 1 and 2 using stochastic uniaxial

material # 1.

The cross section of the element is 1 m2 and mass density is 2000 kg/m3.
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205.3.4.53 Modeling, Finite Element: Elastic Beam–Column Element

The command is:

1 add element # <.> type beam_elastic with nodes (<.>, <.>)
2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 xz_plane_vector = (<.>, <.>, <.> )

10 joint_1_offset = (<L>, <L>, <L> )
11 joint_2_offset = (<L>, <L>, <L> );

Global coordinates

Lo
ca

l c
oordinates
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y

z

x

y

z

Node 2

Node 1

joint_1_offset = (dx, dy, dz)

dx

dy

dz

dx

dy

dzjoint_2_offset = (dx, dy, dz)

 xz_plane_vector = (vx, vy, vz ):
Is used to orient the 'web' of the element. It is
given global coordinate system and is contained
within the local x-z plane of the beam.

Figure 205.3: Beam Element, sketch of main geometric components.

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• type beam_elastic is the element type
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• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector a vector which defines the orientation of the local (beam coordinate system)

xz plane in global coordinates. NOTE: Please make sure that your xz_plane_vector is a bit

away from the actuall local x axes, the axes that runs along the beam elelent, in order to prevent

numerical problems that might appear when vector cross products are performed inside the pro-

gram... It is suggested that your xz_plane_vector be closer to local z axes... See Figure 205.4

on Page 901 for more in depth explanation of xz_plane_vector.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]

Description of output by this element can be found in Section 206.8.4

more on this finite element can be found in Section 102.7 on Page 126 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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Figure 205.4: Beam Element, details of vector in X-Z plane.
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205.3.4.54 Modeling, Finite Element: Large Displacement Elastic Beam–Column Element, with Coro-

tational Transformation

The command is:

1 add element # <.> type beam_elastic_corotational with nodes (<.>, <.>)
2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 xz_plane_vector = (<.>, <.>, <.> )

10 joint_1_offset = (<L>, <L>, <L> )
11 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• type beam_elastic is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector a vector which defines the orientation of the local (beam coordinate system)

xz plane in global coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]
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205.3.4.55 Modeling, Finite Element: Timoshenko Elastic Beam–Column Element

The command is:

1 add element # <.> type beam_elastic_Timoshenko with nodes (<.>, <.>)
2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 shear_correction_coefficient = <.>

10 xz_plane_vector = (<.>, <.>, <.> )
11 joint_1_offset = (<L>, <L>, <L> )
12 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• type beam_elastic is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• shear_correction_coefficient a parameter for shear correction. When this parameter be-

comes very large, the Timoshenko beam element becomes Euler-Bernoulli beam. If not specifically

calibrated, can use 1.0 for this parameter.

• xz_plane_vector a vector which defines the orientation of the local (beam coordinate system)

xz plane in global coordinates.
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• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]

Description of output by this element can be found in Section 206.8.4. more on this finite element

can be found in Section 102.7 on Page 126 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture

Notes URL).
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205.3.4.56 Modeling, Finite Element: Timoshenko Elastic Beam–Column Element with Directional

Shear Correction Coefficients

The command is:

1 add element # <.> type beam_elastic_Timoshenko_directional with nodes (<.>, <.>)
2 cross_section = <L^2>
3 elastic_modulus = <F/L^2>
4 shear_modulus = <F/L^2>
5 torsion_Jx = <length^4>
6 bending_Iy = <length^4>
7 bending_Iz = <length^4>
8 mass_density = <M/L^3>
9 shear_correction_coefficient_y = <.>

10 shear_correction_coefficient_z = <.>
11 xz_plane_vector = (<.>, <.>, <.> )
12 joint_1_offset = (<L>, <L>, <L> )
13 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used)

• type beam_elastic is the element type

• with nodes (n1, n2) are the 2 nodes (node numbers) defining this element

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• shear_correction_coefficient_y parameter for shear correction about local y axis. When this

parameter becomes very large, the Timoshenko beam element becomes Euler-Bernoulli beam. If

not specifically calibrated, can use 1.0 for this parameter.
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• shear_correction_coefficient_z parameter for shear correction about local z axis. When this

parameter becomes very large, the Timoshenko beam element becomes Euler-Bernoulli beam. If

not specifically calibrated, can use 1.0 for this parameter.

• xz_plane_vector a vector which defines the orientation of the local (beam coordinate system)

xz plane in global coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]

Description of output by this element can be found in Section 206.8.4. more on this finite element

can be found in Section 102.7 on Page 126 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture

Notes URL).
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205.3.4.57 Modeling, Finite Element: Adding 1D Fiber to a Beam Cross Section

Fibers can be added to the fiber beam cross section.

The command is:

1 add fiber # <.> using material # <.> to section # <.> fiber_cross_section = ←↩
<area> fiber_location = (<L>,<L>);

For example:

1 add fiber # 1 using material # 1 to section # 1 fiber_cross_section = 5*cm^2 ←↩
fiber_location = (10*cm,10*cm);

adds a fiber number 1 to section number 1 at coordinates y = 10cm, z = 10cm with cross section area

of 5cm2 using material number 1.

The material for fiber must be a uniaxial material, for example uniaxial concrete02, uniaxial elastic,

uniaxial steel01, and uniaxial steel02.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.58 Modeling, Finite Element: Adding Fiber Section to the Finite Element Model

Fiber section can be added to the finite element model.

The command is:

1 add section # <.> type FiberSection
2 TorsionConstant_GJ = <F*L^2);

where

• TorsionConstant_GJ provides a linear torsional stiffness to the element.

Fibers can be added to the section as described in section 205.3.4.57 on page 907.

The command is:

1 add fiber # <.> using material # <.> to section # <.> fiber_cross_section = <area>
2 fiber_location = (<L>,<L>);

where

• fiber_cross_section is the area of the fiber element. (Total cross section are is the sum of all

fiber areas) [L2]

• fiber_location location of the fiber in the beam local Y-Z plane.
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205.3.4.59 Modeling, Finite Element: 3D Displacement Based Fiber Beam-Column Element

1 add element # <.> type BeamColumnDispFiber3d with nodes (<.>, <.>)
2 number_of_integration_points = <.>
3 section_number = <.>
4 mass_density = <M/L^3>
5 xz_plane_vector = (<.>, <.>, <.> )
6 joint_1_offset = (<L>, <L>, <L> )
7 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type BeamColumnDispFiber3d is the element type

• with nodes (n1, n2) are the 2 nodes defining this element

• number_of_integration_points is number of integration points to be used along the beam

element

• section_number is the number of predefined section

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector unit vector which defines the orientation of the web of the beam in global

coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]

Description of output by this element can be found in Section 206.8.6,
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205.3.4.60 Modeling, Finite Element: 3D Displacement Based Fiber Beam-Column Element with Coro-

tational Coordinate Transformation

1 add element # <.> type BeamColumnDispFiber3d_Corotational with nodes (<.>, <.>)
2 number_of_integration_points = <.>
3 section_number = <.>
4 mass_density = <M/L^3>
5 xz_plane_vector = (<.>, <.>, <.> )
6 joint_1_offset = (<L>, <L>, <L> )
7 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type BeamColumnDispFiber3d_Corotational is the element type

• with nodes (n1, n2) are the 2 nodes defining this element

• number_of_integration_points is number of integration points to be used along the beam

element

• section_number is the number of predefined section

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector unit vector which defines the orientation of the web of the beam in global

coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]

Description of output by this element can be found in section 206.8.6.

The co-rotational formulation used in this element is based on Crisfield (1990).
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205.3.4.61 Modeling, Finite Element: 3DOF+6DOF=9DOF Beam-Column Element

1 add element # <.> type beam_9dof_elastic
2 with nodes (<.>, <.>)
3 cross_section = <L^2>
4 elastic_modulus = <F/L^2>
5 shear_modulus = <F/L^2>
6 torsion_Jx = <length^4>
7 bending_Iy = <length^4>
8 bending_Iz = <length^4>
9 mass_density = <M/L^3>

10 xz_plane_vector = (<.>, <.>, <.> )
11 joint_1_offset = (<L>, <L>, <L> )
12 joint_2_offset = (<L>, <L>, <L> );

where

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type beam_9dof_elastic is the element type

• with nodes (n1, n2) are the 2 nodes defining this element, where the first node (n1) is the one

with 3 DOFs and the second (n2) is the one with 6 DOFs

• cross_section is the cross section area, [L2]

• elastic_modulus elastic modulus of the material which makes up the beam, [F/L2]

• shear_modulus shear modulus of the material which makes up the beam, [F/L2]

• torsion_Jx cross section polar (torsional) moment of inertia, [L4]

• bending_Iy cross section moment of inertia about local y axis, [L4]

• bending_Iz cross section moment of inertia about local z axis, [L4]

• mass_density mass per unit volume of the material, [M/L3]

• xz_plane_vector unit vector which defines the orientation of the web of the beam in global

coordinates.

• joint_1_offset vector defining the rigid offset between end of beam and connection node 1, [L]

• joint_2_offset vector defining the rigid offset between end of beam and connection node 2, [L]
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This finite element has only 3DOFs (translations) at the first node, and full 6DOFs at the other,

second node. Due to missing rotational stiffness on first, 3DOF node, this beam has zero torsional

stiffness.

This element is useful for connection of solid (3DOFs per node) and structural (6DOFs per node)

elements It his beam element is used on its own, DOF that corresponds to torsion of the second node

(DOF number 7), should be fixed as this beam does not provide that stiffness.

More on this finite element can be found in Section 102.8 on Page 129 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.62 Modeling, Finite Element: 4 Node ANDES Shell with Drilling DOFs

ANDES based 3D shell element including drilling degrees of freedom. Made up by patching together 4

ANDES shell triangle elements (and then averaging two and two squares made up two and two triangles).

The command is:

1 add element # <.> type 4NodeShell_ANDES
2 with nodes (<.>, <.>, <.>)
3 use material # <.>
4 thickness = <L> ;

Node numbering

is counter-clockwise

x y

z

r2

r1

r3
Normal to element

Orthogonal to r3 and 

contained in the XY-plane

= r3xr1

Local axis definition

in general

x y

z

r1

r3

Paralell to z

Local axis definition

if r3 is nearly vertical

Paralell to y

Paralell to x

r2

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• material # <.> number of a previously defined material. (see add material ...)

• thickness shell thickness, [L]

Description of output by this element can be found in Section 206.8.5.

More on this finite element can be found in Section 102.10 on page 135 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.63 Modeling, Finite Element: 3 Node ANDES Shell with Drilling DOFs

1 add element # <.> type 3NodeShell_ANDES
2 with nodes (<.>, <.>, <.>)
3 use material # <.>
4 thickness = <L> ;

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)
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205.3.4.64 Modeling, Finite Element: 4 Node Shell NLDKGQ, or 4 Node Shell Xin-Zheng-Lu

This is a 3D quadrilateral shell element with membrane and drill DOFs based on the theory of generalized

conforming element. This element accounts for the geometric nonlinearity of large deformation using a

simplified version of updated Lagrangian formulation, where nodal coordinates are updated in each step,

however strains and stresses are still calculated with reference to the original, undeformed system. It can

be used together with elastic or inelastic sections. This element was originally developed by Professor

Xin-Zheng Lu (Tsinghua University) and his students.

The command is:

1 add element # <.> type 4NodeShell_NLDKGQ
2 with nodes (<.>, <.>, <.>, <.>)
3 section_number = <.>;

It can also be called using the alternative command:

1 add element # <.> type 4NodeShell_XinZhengLu_Tsinghua
2 with nodes (<.>, <.>, <.>, <.>)
3 section_number = <.>;

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• with nodes (n1, n2, n3, n4) are the 4 nodes defining this element

• section_number is the number of predefined shell cross section, described on page 916.
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205.3.4.65 Modeling, Finite Element: Inelastic Layered Shell Section

This command is used to add a layered shell section. The section is made up of a number of layers with

different thicknesses and different material properties (i.e., concrete layers or rebar layers). This type of

section is used together with plane stress materials and shell elements.

The command is:

1 add section # <.> type LayeredShellFiber
2 number_of_layers = <.>
3 thickness_array = "<.>,<.>..."
4 with material # "<.>,<.>..."
5 thickness_scale_unit = <L>
6 outofplane_shear_modulus = <F/L^2>;

where

• number_of_layers is the number of layers that the section has

• thickness_array is the relative thickness of each layer

• with material # is the material tag of each layer, only plane stress materials can be used here,

see pages 878 and 879.

• thickness_scale_unit is the total thickness of the section

• outofplane_shear_modulus is the out-of-plane shear modulus of the section
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205.3.4.66 Modeling, Finite Element: ElasticMembranePlaneStress Element (to be removed!)

NOTE: this element is being removed, and will not be available after Real ESSI version 19.07 (current).

This is a 2D finite element, and we only maintain 3D finite elements. This element is replaced by a 3D

27 node elastic and/or elastic-plastic wall/plate/shell brick element.

The command is:

1 add element No (or #) <element_number>
2 type ElasticMembranePlaneStress
3 with nodes (n1, n2, n3, n4)
4 use material No (or #) <material_number>
5 thickness = <L> ;

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used).

• type ElasticMembranePlaneStress is the element type.

• with nodes (n1, n2, n3, n4) are the 4 nodes (node numbers) defining this element.

• use material No (or #) is the material number for linear elastic material that makes up the

element.

• thickness is the thickness of the membrane.
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205.3.4.67 Modeling, Finite Element: InelasticMembranePlaneStress Element (to be removed!)

NOTE: this element is being removed, and will not be available after Real ESSI version 19.07 (current).

This is a 2D finite element, and we only maintain 3D finite elements. This element is replaced by a 3D

27 node elastic or elastic-plastic wall/plate/shell brick element or elastic-plastic shell element.

The command is:

1 add element No (or #) <element_number>
2 type InelasticMembranePlaneStress
3 with nodes (n1, n2, n3, n4)
4 use material No (or #) <material_number>
5 ;

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used).

• type InelasticMembranePlaneStress is the element type.

• with nodes (n1, n2, n3, n4) are the 4 nodes (node numbers) defining this element.

• use material No (or #) is the material number for inelastic material that makes up the el-

ement. Since this is a plane stress element, material needs to have plane stress constitutive

integration algorithm available. In addition, this material should specify thickness of the element.

Different layers and their thicknesses for different materials (for example concrete and steel) will

be defined within material definition. PlaneStressLayeredMaterial is a material of this type.
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205.3.4.68 Modeling, Finite Element: SuperElementLinearElasticImport

The command is:

1 add element No (or #) <element_number>
2 type SuperElementLinearElasticImport
3 with hdf5_file = <string>
4 ;

where

• No (or #)<element_number> is a unique element integer number (does not have to be sequen-

tial, any unique positive integer number can be used).

• type SuperElementLinearElasticImport is the element type.

• hdf5_file specifies the HDF5 filename of the SuperElement with SuperElement data. The HDF5

file should contain the following datasets:

– Node dataset within HDF5 file is organized in a column (a 1D dataset), and it specifies the

node tags/numbers of nodes that make up the SuperElement.

– DofList dataset within HDF5 file is a organized in a column, and it specifies the number of

DOFs per each Node. For example if nodes are representing structural elements, they usually

have 6 DOFs per node, while solids will have 3 DOFs per node. DofList dataset has to

have the same number of entries as Node dataset, as each entry in DofList corresponds to

one node from Node dataset.

– MassMatrix is a matrix, that sets masses/numbers for a mass matrix of the SuperElement.

– StiffnessMatrix is a matrix, that sets stiffness/numbers for a stiffness matrix of the Su-

perElement.

– ConnectNode dataset within HDF5 file is organized in a column (a 1D dataset), and it

specifies the node tags/numbers of nodes that are going to be connected to Real-ESSI mesh.

– ConnectNodeCoordinate dataset within HDF5 file is organized in a matrix (a 2D dataset),

and it specifies the nodal coordinates for nodes that are going to be connected to Real-

ESSI mesh. Since each node has 3 coordinates, the length of ConnectNodeCoordinate is

the same as the length of ConnectNode and each line has three entries, for X, Y and Z

coordinates of given node.

In addition to the minimum dataset requirements above, users can get more output from Real-ESSI:
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– Results for individual finite elements (internal forces, etc.), can be obtained if node, DofList,

mass matrix and stiffness matrix for each finite element within the super element are provided.

– Graphical post-processing can be obtained if coordinates for all nodes and their connectivity

into finite elements are provided (a mesh data).
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205.3.4.69 Modeling, Finite Element: 8 Node Brick Element

The command is:

1 add element # <element_number> type 8NodeBrick
2 using <.> Gauss points each direction
3 with nodes (n1, n2, n3, n4, n5, n6, n7, n8)
4 use material No (or #) <material_number>;

and/or;

1 add element # <element_number> type 8NodeBrick
2 with nodes (n1, n2, n3, n4, n5, n6, n7, n8)
3 use material No (or #) <material_number>;

where:

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type 8NodeBrick is the element type.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element, in the

order as per figure below

r1

r2

r3

1

23

4

5

6
7

8

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.
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For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3),

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

Description of output by this element can be found in section 206.8.2.

More on this finite element can be found in Section 102.4.1 on page 114 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.70 Modeling, Finite Element: 20 Node Brick Element

The command is:

1 add element No (or #) <element_number> type 20NodeBrick
2 using <.> Gauss points each direction
3 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
4 n9, n10, n11, n12, n13, n14, n15, n16,
5 n17, n18, n19, n20 )
6 use material No (or #) <material_number>;

and/or

1 add element No (or #) <element_number> type 20NodeBrick
2 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
3 n9, n10, n11, n12, n13, n14, n15, n16,
4 n17, n18, n19, n20 )
5 use material No (or #) <material_number>;

where:

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type 20NodeBrick is the element type. 20NodeBrick_elastic can be used if elastic material

is used. It this case, the stiffness and mass matrices will not be updated at each step.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20) are the 20 nodes for this

element, written in the order defined as per figure below

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3),

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms)

Description of output by this element can be found in Section 206.8.2.
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More on this finite element can be found in Section 102.4.3 on page 116 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.71 Modeling, Finite Element: 27 Node Brick Element

The command is:

1 add element # <element_number>
2 type 27NodeBrick
3 using <.> Gauss points each direction
4 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
5 n9, n10, n11, n12, n13, n14, n15, n16,
6 n17, n18, n19, n20, n21, n22, n23,
7 n124, n25, n26, n27 )
8 use material # <material_number>;

and/or

1 add element # <element_number>
2 type 27NodeBrick
3 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
4 n9, n10, n11, n12, n13, n14, n15, n16,
5 n17, n18, n19, n20, n21, n22, n23,
6 n124, n25, n26, n27 )
7 use material # <material_number>;

where:

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type 27NodeBrick is the element type.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20)

n21, n22, n23, n24, n25, n26, n27) are the 27 nodes for this element, written in the order

defined as per this figure

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3),

• use material No (or #) is the material number which makes up the element (nonlinear elastic

and/or elastic-plastic material properties for each integration (Gauss) point will evolve indepen-

dently as the element deforms).
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Description of output by this element can be found in Section 206.8.2.

More on this finite element can be found in Section 102.4.4 on page 118 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/


Je
re
m
ić
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205.3.4.72 Modeling, Finite Element: Variable 8-27 Node Brick Element

The command is:

1 add element No (or #) <element_number> type variable_node_brick_8_to_27
2 using <.> Gauss points each direction
3 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
4 n9, n10, n11, n12, n13, n14, n15, n16,
5 n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27)
6 use material No (or #) <material_number>;

and/or

1 add element No (or #) <element_number> type variable_node_brick_8_to_27
2 using <.> Gauss points each direction
3 with nodes (n1, n2, n3, n4, n5, n6, n7, n8,
4 n9, n10, n11, n12, n13, n14, n15, n16,
5 n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27)
6 use material No (or #) <material_number>;

where:

• No (or #)<element_number> is the unique element integer number (does not have to be se-

quential, any unique positive integer number can be used)

• type variable_node_brick_8_to_27 is the element type

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8,

n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20,

n21, n22, n23, n24, n25, n26, n27)

are the 8 to 27 nodes for this element, written in the order defined as per this figure. Nodes 1-8 are

obligatory, while any other nodes can be used but do not have to, the element will automatically

pick proper shape functions. This element is good for transitions in meshing.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3),

• material No (or #) is the material number which makes up the element (nonlinear elastic

and/or elastic-plastic material properties for each integration (Gauss) point will evolve indepen-

dently as the element deforms)
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Description of output by this element can be found in Section 206.8.2.
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205.3.4.73 Modeling, Finite Element: 8 Node Brick u-p Element

The command is:

1 add element # <.> type 8NodeBrick_up
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 8NodeBrick_up
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element, is specified

order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 930 of 3287

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for

unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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Note: the permeability kx, ky, kz is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

More on theory for this finite element can be found in Section 102.12.3.3 on page 156 in Lecture

Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Description of output by this element can be found in Section 206.8.2 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.74 Modeling, Finite Element: 20 Node Brick u-p Element

The command is:

1 add element # <.> type 20NodeBrick_up
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 20NodeBrick_up
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, ←↩
n16, n17, n18, n19, n20) are the 20 nodes for this element, is specified order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for

unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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Note: the permeability kx, ky, kz is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

More on theory for this finite element can be found in section 102.12.3.3 on page 156 in Lecture

Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.75 Modeling, Finite Element: 27 Node Brick u-p Element

The command is:

1 add element # <.> type 27NodeBrick_up
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 27NodeBrick_up
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, ←↩
n16, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27) are the 27 nodes for

this element, is specified order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can
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be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for
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unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

More on theory for this finite element can be found in Section 102.12.3.3 on page 156 of the main

document. Description of output by this element can be found in Section 206.8.2.
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205.3.4.76 Modeling, Finite Element: 8 Node Brick u-p-U Element

The command is:

1 add element # <.> type 8NodeBrick_upU
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 8NodeBrick_upU
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element, is specified

order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for

unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

Please note that the u – p – U element, and the u – p – U formulation is a dynamic formulation and

is meant to be used with dynamic analysis, and not static analysis, so that all the element matrices, as

described in theory section, noted below, are developed and used.

More on theory for this finite element can be found in Section 102.12.1.7 on page 152 in Lecture

Notes by Jeremić et al. (1989-2025) (Lecture Notes URL). Description of output by this element can be

found in Section 206.8.2 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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205.3.4.77 Modeling, Finite Element: 20 Node Brick u-p-U Element

The command is:

1 add element # <.> type 20NodeBrick_upU
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 20NodeBrick_upU
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, ←↩
n16, n17, n18, n19, n20) are the 20 nodes for this element, is specified order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the
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brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for

unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).
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Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

Please note that the u – p – U element, and the u – p – U formulation is a dynamic formulation and

is meant to be used with dynamic analysis, and not static analysis, so that all the element matrices, as

described in theory section, noted below, are developed and used.

More on theory for this finite element can be found in section 102.12.1.8 on page 152 in Lecture

Notes by Jeremić et al. (1989-2025) (Lecture Notes URL). Description of output by this element can be

found in Section 206.8.2.
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205.3.4.78 Modeling, Finite Element: 27 Node Brick u-p-U Element

The command is:

1 add element # <.> type 27NodeBrick_upU
2 using <.> Gauss points each direction
3 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>)
4 use material # <.>
5 porosity = <.>
6 alpha = <.>
7 rho_s = <M/L^3>
8 rho_f = <M/L^3>
9 k_x = <L^3*T/M>

10 k_y = <L^3*T/M>
11 k_z = <L^3*T/M>
12 K_s = <F/L^2>
13 K_f = <F/L^2>;

and/or

1 add element # <.> type 27NodeBrick_upU
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, ←↩

<.>, <.>, <.>,<.>, <.>, <.>, <.>, <.>, <.>, <.>,<.>, <.>, <.>, <.>)
3 use material # <.>
4 porosity = <.>
5 alpha = <.>
6 rho_s = <M/L^3>
7 rho_f = <M/L^3>
8 k_x = <L^3*T/M>
9 k_y = <L^3*T/M>

10 k_z = <L^3*T/M>
11 K_s = <F/L^2>
12 K_f = <F/L^2>;

where:

• No (or #)<element_number> is the unique element integer number that does not have to be

sequential, any unique positive integer number can be used.

• type 8NodeBrick_up is the element type/name.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, ←↩
n16, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27) are the 27 nodes for

this element, is specified order.

• using <.> Gauss points each direction is the number of Gauss points to be used in each

direction (r1, r2, and r3) for integration of finite element matrices (mass and stiffness). There can

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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be from 1 to 6 Gauss points used (uniformly) in each direction (r1, r2, and r3). Command for the

brick finite element (above) without number of Gauss points control is kept for back compatibility.

For 8 node bricks 2 Gauss points are used in each direction (2× 3× 3), while for 20 nodes, 8-20

node and 8-27 node bricks 3 Gauss points are used in each direction (3× 3× 3).

• use material No (or #) is the material number which makes up the element (nonlinear elastic

or elastic-plastic material properties for each integration (Gauss) point will evolve independently

as the element deforms). Use LT version with LT materials.

• porosity is the porosity (n = Vvoids/Vtotal) of material in this element.

• alpha is the parameter controlling level of effective stress analysis. For soils, usually α = 1 is

used, while for other materials (saturated concrete, bone material, etc.) lower values are used

(0 ≤ α ≤ 1).

• rho_s is the density of particles of the solid phase. It is important to note that this is a density

of the actual mineral that makes up solid particles!.

• rho_f is the density of pore fluid. It is usually density of water, however, for unsaturated and

partially saturated materials, this density will be different, as described in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).

• k_x is the permeability in the x direction (global x) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_y is the permeability in the y direction (global y) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• k_z is the permeability in the z direction (global z) of the element. It is also important to note

about the units used for permeability, as noted below. With isotropic permeability, usually the

case, kx = ky = kz.

• K_s is the bulk modulus of the soil phase particles. It is important to note that this is a bulk

modulus of the actual mineral that makes up solid particles!

• K_f is the bulk modulus of the fluid phase that is found in porous material pores. It is usually bulk

modulus of the fluid (physical value of the bulk modulus of fluid, for example water), however, for
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unsaturated and partially saturated materials, this density is a density of a mixture, as described

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Note that, the permeability k is used with dimensions of [length]3[time]/[mass], which is different

from the usual soil mechanics convention, where the permeability has the dimension of velocity, i.e.

[length]/[time]. Their values are related by k = K /ρf g, where g is the gravitational acceleration at which

the permeability is measured.

Please note that the u – p – U element, and the u – p – U formulation is a dynamic formulation and

is meant to be used with dynamic analysis, and not static analysis, so that all the element matrices, as

described in theory section, noted below, are developed and used.

More on theory for this finite element can be found in Section 102.12.1.9 on page 152 of the main

document. Description of output by this element can be found in Section 206.8.2.
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205.3.4.79 Modeling, Finite Element: 8 Node Cosserat Brick Element

The command is:

1 add element # <element_number> type Cosserat8NodeBrick
2 with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>)
3 use material # <.>;

where:

• <element_number> is the unique element integer number (does not have to be sequential, any

unique positive integer number can be used)

• type Cosserat8NodeBrick is the element type.

• with nodes (n1, n2, n3, n4, n5, n6, n7, n8) are the 8 nodes for this element. Each node

should have 6 DOFs for this element. The element should be in the order as per figure below

r1

r2

r3

1

23

4

5

6
7

8

• use material No (or #) is the material number which makes up the element. The element

can use materials Cosserat_linear_elastic_isotropic_3d and Cosserat_von_Mises.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.80 Modeling, Finite Element: Bonded Contact/Interface/Joint Element

The command is:

1 add element # <.> type BondedContact
2 with nodes (<.>, <.>)
3 penalty_stiffness = <F/L>

where

• penalty_stiffness represents the penalty stiffness in the three orthogonal x, y and z directions,

that connects two nodes of this element.
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205.3.4.81 Modeling, Finite Element: Coupled Bonded Contact/Interface/Joint Element

The command is:

1 add element # <.> type CoupledBondedContact
2 with nodes (<.>, <.>)
3 penalty_stiffness = <F/L>
4 axial_viscous_damping = <F/L>
5 shear_viscous_damping = <F/L>
6 contact_plane_vector = (<.>, <.>, <.> );

where

• penalty_stiffness represents the penalty stiffness in the three orthogonal x, y and z directions,

that connects two nodes of this element. The penalty stiffness is used for both solid and fluid

DOFs.

• axial_viscous_damping is the viscous damping in axial.

• shear_viscous_damping is the viscous damping in shear.

• contact_plane_vector defines the normal to the contact/interface/joint plane.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.
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205.3.4.82 Modeling, Finite Element: Force Based Dry Hard Contact/Interface/Joint Element

The command is:

1 add element # <.> type ForceBasedHardContact
2 with nodes (<.>, <.>)
3 axial_stiffness = <F/L>
4 shear_stiffness = <F/L>
5 axial_viscous_damping = <F/L>
6 shear_viscous_damping = <F/L>
7 friction_ratio = <.>
8 contact_plane_vector = (<.>, <.>, <.> );

The axial force Fa and axial stiffness Ea in defined as

Fa = Ea ∗ δa (205.2)

where

δa refers to the axial relative displacement in axial contact/interface/joint direction,

Ea refers to the axial stiffness in axial contact direction, and

• axial_stiffness (b) represents the stiffness in the axial/axial direction (local x axis).

• shear_stiffness Is the stiffness in the tangential (shear, local y or z axis) directions.

• axial_viscous_damping Is the viscous damping in axial/axial.

• shear_viscous_damping Is the viscous damping in shear.

• friction_ratio Coulomb friction ratio.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.83 Modeling, Finite Element: Force Based Dry Soft Contact/Interface/Joint Element

The command is:

1 add element # <.> type ForceBasedSoftContact
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <F/L>
4 stiffening_rate = <1/m>
5 max_axial_stiffness = <F/L>
6 shear_stiffness = <F/L>
7 axial_viscous_damping = <F/L>
8 shear_viscous_damping = <F/L>
9 friction_ratio = <.>

10 contact_plane_vector = (<.>, <.>, <.> );

The axial force Fa and axial stiffness Ea in defined as

Fa = b ∗ exp(a ∗ δa) ∗ δa
Ea = max(b ∗ exp(a ∗ δa) ∗ (1 + a ∗ δa), Emax)

(205.3)

where

δa refers to the axial relative displacement in axial contact/interface/joint direction,

b refers to the axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact/interface/joint direction,

Emax refers to the maximum axial stiffness, and

• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• stiffening_rate (a) Represents exponential stiffening rate exp(a ∗ δa) in axial direction.

• max_axial_stiffness (Emax) Defines the maximum stiffness in the axial direction (local x axis).

• shear_stiffness Is the stiffness in the tangential (shear, local y or z axis) directions.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• friction_ratio Coulomb friction ratio.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.
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IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.84 Modeling, Finite Element: Force Based Coupled Hard Contact/Interface/Joint Element

The command is:

1 add element # <.> type ForceBasedCoupledHardContact
2 with nodes (<.>, <.>)
3 axial_stiffness = <F/L>
4 axial_penalty_stiffness = <F/L>
5 shear_stiffness = <F/L>
6 axial_viscous_damping = <F/L>
7 shear_viscous_damping = <F/L>
8 friction_ratio = <.>
9 contact_plane_vector = (<.>, <.>, <.> );

The axial force Fa and axial stiffness Ea in defined as

Fa = b ∗ δa
Ea = b

(205.4)

where

δa refers to the axial relative displacement in axial contact/interface/joint direction,

b refers to the axial stiffness in axial contact/interface/joint direction, and

• axial_stiffness (b) represents the axial stiffness in the axial direction (local x axis).

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• shear_stiffness Is the stiffness in the tangential (shear, local y or z axis) directions.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• friction_ratio Coulomb friction ratio.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.
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IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.85 Modeling, Finite Element: Force Based Coupled Soft Contact/Interface/Joint Element

The command is:

1 add element # <.> type ForceBasedCoupledSoftContact
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <F/L>
4 stiffening_rate = <1/m>
5 max_axial_stiffness = <F/L>
6 axial_penalty_stiffness = <F/L>
7 shear_stiffness = <F/L>
8 axial_viscous_damping = <F/L>
9 shear_viscous_damping = <F/L>

10 friction_ratio = <.>
11 contact_plane_vector = (<.>, <.>, <.> );

The axial force Fa and axial stiffness Ea in defined as

Fa = b ∗ exp(a ∗ δa) ∗ δa
Ea = max(b ∗ exp(a ∗ δa) ∗ (1 + a ∗ δa), Emax)

(205.5)

where

δa refers to the axial relative displacement in axial contact/interface/joint direction,

b refers to the axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact/interface/joint direction,

Emax refers to the maximum axial stiffness, and

• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• stiffening_rate (a) Represents exponential stiffening rate exp(a ∗ δa) in axial direction.

• max_axial_stiffness (Emax) Defines the maximum stiffness in the axial direction (local x axis).

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• shear_stiffness Is the stiffness in the tangential (shear, local y or z axis) directions.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.
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• friction_ratio Coulomb friction ratio.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.86 Modeling, Finite Element: Stress Based Dry Hard Contact/Interface/Joint Element with

Elastic Perfectly Plastic Shear Behavior

The command is:

1 add element # <.> type StressBasedHardContact_ElPPlShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 axial_viscous_damping = <Pa*s>
6 shear_viscous_damping = <Pa*s>
7 residual_friction_coefficient = <.>
8 shear_zone_thickness = <m>
9 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedHardContact_ElPPlShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 axial_viscous_damping = <Pa*s>
6 shear_viscous_damping = <Pa*s>
7 residual_friction_coefficient = <.>
8 shear_zone_thickness = <m>
9 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.6)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and

• axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.2

• axial_viscous_damping Is the viscous damping in axial.
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• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual friction coefficient described in Sec-

tion 104.7.3.2.

• shear_zone_thickness h Is the shear zone thickness.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.87 Modeling, Finite Element: Stress Based Dry Hard Contact/Interface/Joint Element with

Nonlinear Hardening Shear Behavior

The command is:

1 add element # <.> type StressBasedHardContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 axial_viscous_damping = <Pa*s>
6 shear_viscous_damping = <Pa*s>
7 residual_friction_coefficient = <.>
8 shear_zone_thickness = <m>
9 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedHardContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 axial_viscous_damping = <Pa*s>
6 shear_viscous_damping = <Pa*s>
7 residual_friction_coefficient = <.>
8 shear_zone_thickness = <m>
9 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.7)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact direction ϵa = δa/h,

δa is the relative axial penetration in contact/interface/joint axial direction,

h is the shear zone thickness, and

• axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress, described in Section 104.7.3.4

• axial_viscous_damping Is the viscous damping in axial.
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• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.3

• shear_zone_thickness h Is the shear zone thickness.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.88 Modeling, Finite Element: Stress Based Dry Hard Contact/Interface/Joint Element with

Nonlinear Hardening and Softening Shear Behavior

The command is:

1 add element # <.> type StressBasedHardContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 rate_of_softening = <>
6 size_of_peak_plateau = <>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 peak_friction_coefficient_limit = <>

10 peak_friction_coefficient_rate_of_decrease = <.>
11 residual_friction_coefficient = <.>
12 shear_zone_thickness = <m>
13 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedHardContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 initial_shear_stiffness = <Pa>
5 rate_of_softening = <>
6 size_of_peak_plateau = <>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 peak_friction_coefficient_limit = <>

10 peak_friction_coefficient_rate_of_decrease = <.>
11 residual_friction_coefficient = <.>
12 shear_zone_thickness = <m>
13 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.8)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact direction ϵa = δa/h,

δa is the relative axial penetration in contact/interface/joint axial direction,

h is the shear zone thickness, and

• axial_stiffness (b) represents the stiffness in the axial direction (local x axis).
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• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress, described in Section 104.7.3.4

• rate_of_softening (Rs) Is the parameter to control the rate of frictional softening described in

Section 104.7.3.4. The frictional softening function is an inverse tangent function raised to power

n with incremental form as

∆µ = –
n ∗ Rs(µp – µr)

(π/2)nθ1/n–1 ∗ cos2θ∆γp (205.9)

θ =
µp – µ
µp – µr

(π/2)n (205.10)

where, Rs is the frictional softening rate parameter, ∆γp is the plastic shear strain and n represents

the size of the peak plateau.

∆γp =
√

∆ϵ
p
ij∆ϵ

p
ij (205.11)

• size_of_peak_plateau (n) Is the frictional softening parameter to control the size of plateau

as described in Section 104.7.3.4. The frictional softening function is an inverse tangent function

raised to power n with incremental form as shown in Equation 205.17.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• peak_friction_coefficient_limit (µp0) Is the limit to the peak frictional hardening param-

eter µp.

• peak_friction_coefficient_rate_of_decrease (k) Is the rate of decrease of peak frictional

hardening parameter µp with axial stress, described in Section 104.7.3.4

µp = max(µp0,µp0 – k ∗ log(σa/P0)) (205.12)

where µp0 is the peak frictional hardening limit, k is the peak frictional parameter rate of decrease

and P0 is the reference stress of P0 = 101kPa.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.4

• shear_zone_thickness h Is the shear zone thickness.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.
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• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.89 Modeling, Finite Element: Stress Based Dry Soft Contact/Interface/Joint Element with

Elastic Perfectly Plastic Shear Behavior

The command is:

1 add element # <.> type StressBasedSoftContact_ElPPlShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 residual_friction_coefficient = <.>

10 shear_zone_thickness = <m>
11 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedSoftContact_ElPPlShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 residual_friction_coefficient = <.>

10 shear_zone_thickness = <m>
11 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.13)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,

Emax refers to the maximum axial stiffness,

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and
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• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• stiffening_rate (a) Represents exponential stiffening rate exp(a ∗ ϵa) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.2

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual friction coefficient described in Sec-

tion 104.7.3.2

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.90 Modeling, Finite Element: Stress Based Dry Soft Contact/Interface/Joint Element with

Nonlinear Hardening Shear Behavior

The command is:

1 add element # <.> type StressBasedSoftContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 residual_friction_coefficient = <.>

10 shear_zone_thickness = <m>
11 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedSoftContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 axial_viscous_damping = <Pa*s>
8 shear_viscous_damping = <Pa*s>
9 residual_friction_coefficient = <.>

10 shear_zone_thickness = <m>
11 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.14)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,

Emax refers to the maximum axial stiffness,

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and
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• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for

1m penetration.

• stiffening_rate (a) Represents exponential stiffening rate exp(sr ∗ ϵa) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.3

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.3

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 968 of 3287

205.3.4.91 Modeling, Finite Element: Stress Based Dry Soft Contact/Interface/Joint Element with

Nonlinear Hardening and Softening Shear Behavior

The command is:

1 add element # <.> type StressBasedSoftContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 rate_of_softening = <>
8 size_of_peak_plateau = <>
9 axial_viscous_damping = <Pa*s>

10 shear_viscous_damping = <Pa*s>
11 peak_friction_coefficient_limit = <>
12 peak_friction_coefficient_rate_of_decrease = <.>
13 residual_friction_coefficient = <.>
14 shear_zone_thickness = <m>
15 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedSoftContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 initial_shear_stiffness = <Pa>
7 rate_of_softening = <>
8 size_of_peak_plateau = <>
9 axial_viscous_damping = <Pa*s>

10 shear_viscous_damping = <Pa*s>
11 peak_friction_coefficient_limit = <>
12 peak_friction_coefficient_rate_of_decrease = <.>
13 residual_friction_coefficient = <.>
14 shear_zone_thickness = <m>
15 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.15)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,

Emax refers to the maximum axial stiffness,
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 969 of 3287

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and

• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for

1m penetration.

• stiffening_rate (a) Represents exponential stiffening rate exp(sr ∗ ϵn) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress, described in Section 104.7.3.4

• rate_of_softening (Rs) Is the parameter to control the rate of frictional softening described in

Section 104.7.3.4. The frictional softening function is an inverse tangent function raised to power

n with incremental form as

∆µ = –
n ∗ Rs(µp – µr)

(π/2)nθ1/n–1 ∗ cos2θ∆γp (205.16)

θ =
µp – µ
µp – µr

(π/2)n (205.17)

where, Rs is the frictional softening rate parameter, ∆γp is the plastic shear strain and n represents

the size of the peak plateau.

∆γp =
√

∆ϵ
p
ij∆ϵ

p
ij (205.18)

• size_of_peak_plateau (n) Is the frictional softening parameter to control the size of plateau

as described in Section 104.7.3.4. The frictional softening function is an inverse tangent function

raised to power n with incremental form as shown in Equation 205.17.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• peak_friction_coefficient_limit (µp0) Is the limit to the peak frictional hardening param-

eter µp.
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• peak_friction_coefficient_rate_of_decrease (k) Is the rate of decrease of peak frictional

hardening parameter µp with axial stress, described in Section 104.7.3.4

µp = max(µp0,µp0 – k ∗ log(σa/P0)) (205.19)

where µp0 is the peak frictional hardening limit, k is the peak frictional parameter rate of decrease

and P0 is the reference stress of P0 = 101kPa.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.4

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.92 Modeling, Finite Element: Stress Based Coupled Hard Contact/Interface/Joint Element

with Elastic Perfectly Plastic Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledHardContact_ElPPlShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness = <Pa>
5 initial_shear_stiffness = <Pa>
6 axial_viscous_damping = <Pa*s>
7 shear_viscous_damping = <Pa*s>
8 residual_friction_coefficient = <.>
9 shear_zone_thickness = <m>

10 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledHardContact_ElPPlShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness = <Pa>
5 initial_shear_stiffness = <Pa>
6 axial_viscous_damping = <Pa*s>
7 shear_viscous_damping = <Pa*s>
8 residual_friction_coefficient = <.>
9 shear_zone_thickness = <m>

10 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.20)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact direction ϵa = δa/h,

δa is the relative axial penetration in contact/interface/joint axial direction,

h is the shear zone thickness, and

• axial_stiffness (b) represents the stiffness in the axial direction (local x axis).

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is
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useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.2

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual friction coefficient described in Sec-

tion 104.7.3.2

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.93 Modeling, Finite Element: Stress Based Coupled Hard Contact/Interface/Joint Element

with Nonlinear Hardening Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledHardContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness = <Pa>
5 initial_shear_stiffness = <Pa>
6 axial_viscous_damping = <Pa*s>
7 shear_viscous_damping = <Pa*s>
8 residual_friction_coefficient = <.>
9 shear_zone_thickness = <m>

10 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledHardContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness = <Pa>
5 initial_shear_stiffness = <Pa>
6 axial_viscous_damping = <Pa*s>
7 shear_viscous_damping = <Pa*s>
8 residual_friction_coefficient = <.>
9 shear_zone_thickness = <m>

10 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.21)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact direction ϵa = δa/h,

δa is the relative axial penetration in contact/interface/joint axial direction,

h is the shear zone thickness, and

• axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for 1m pene-

tration.

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of
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fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.3

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.3

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.94 Modeling, Finite Element: Stress Based Coupled Hard Contact/Interface/Joint Element

with Nonlinear Hardening and Softening Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledHardContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness =<Pa>
5 initial_shear_stiffness = <Pa>
6 rate_of_softening = <>
7 size_of_peak_plateau = <>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 peak_friction_coefficient_limit = <>
11 peak_friction_coefficient_rate_of_decrease = <.>
12 residual_friction_coefficient = <.>
13 shear_zone_thickness = <m>
14 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledHardContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 axial_stiffness = <Pa>
4 axial_penalty_stiffness =<Pa>
5 initial_shear_stiffness = <Pa>
6 rate_of_softening = <>
7 size_of_peak_plateau = <>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 peak_friction_coefficient_limit = <>
11 peak_friction_coefficient_rate_of_decrease = <.>
12 residual_friction_coefficient = <.>
13 shear_zone_thickness = <m>
14 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ ϵa
Ea = b

(205.22)

where

Ea = b refers to the axial stiffness in axial contact/interface/joint direction,

ϵa refers to the axial strain in axial contact direction ϵa = δa/h,

δa is the relative axial penetration in contact/interface/joint axial direction,

h is the shear zone thickness, and
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• axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for 1m pene-

tration.

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress, described in Section 104.7.3.4

• rate_of_softening (Rs) Is the parameter to control the rate of frictional softening described in

Section 104.7.3.4. The frictional softening function is an inverse tangent function raised to power

n with incremental form as

∆µ = –
n ∗ Rs(µp – µr)

(π/2)nθ1/n–1 ∗ cos2θ∆γp (205.23)

θ =
µp – µ
µp – µr

(π/2)n (205.24)

where, Rs is the frictional softening rate parameter, ∆γp is the plastic shear strain and n represents

the size of the peak plateau.

∆γp =
√

∆ϵ
p
ij∆ϵ

p
ij (205.25)

• size_of_peak_plateau (n) Is the frictional softening parameter to control the size of plateau

as described in Section 104.7.3.4. The frictional softening function is an inverse tangent function

raised to power n with incremental form as shown in Equation 205.24.

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• peak_friction_coefficient_limit (µp0) Is the limit to the peak frictional hardening param-

eter µp.

• peak_friction_coefficient_rate_of_decrease (k) Is the rate of decrease of peak frictional

hardening parameter µp with axial stress, described in Section 104.7.3.4

µp = max(µp0,µp0 – k ∗ log(σa/P0)) (205.26)

where µp0 is the peak frictional hardening limit, k is the peak frictional parameter rate of decrease

and P0 is the reference stress of P0 = 101kPa.
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• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.4

• shear_zone_thickness h Is the shear zone thickness.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.95 Modeling, Finite Element: Stress Based Coupled Soft Contact/Interface/Joint Element with

Elastic Perfectly Plastic Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledSoftContact_ElPPlShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness = <Pa>
7 initial_shear_stiffness = <Pa>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 residual_friction_coefficient = <.>
11 shear_zone_thickness = <m>
12 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledSoftContact_ElPPlShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness = <Pa>
7 initial_shear_stiffness = <Pa>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 residual_friction_coefficient = <.>
11 shear_zone_thickness = <m>
12 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.27)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,

Emax refers to the maximum axial stiffness,

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and
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• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for

1m penetration.

• stiffening_rate (a) Represents exponential stiffening rate exp(sr ∗ ϵn) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.2

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual friction coefficient described in Sec-

tion 104.7.3.2

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section ??.
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205.3.4.96 Modeling, Finite Element: Stress Based Coupled Soft Contact/Interface/Joint Element with

Nonlinear Hardening Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledSoftContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness = <Pa>
7 initial_shear_stiffness = <Pa>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 residual_friction_coefficient = <.>
11 shear_zone_thickness = <m>
12 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledSoftContact_NonLinHardShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness = <Pa>
7 initial_shear_stiffness = <Pa>
8 axial_viscous_damping = <Pa*s>
9 shear_viscous_damping = <Pa*s>

10 residual_friction_coefficient = <.>
11 shear_zone_thickness = <m>
12 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.28)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,

Emax refers to the maximum axial stiffness,

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and
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• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for

1m penetration.

• stiffening_rate (a) Represents exponential stiffening rate exp(sr ∗ ϵn) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress described in Section 104.7.3.3

• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.3

• shear_zone_thickness h Is the shear zone thickness

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.97 Modeling, Finite Element: Stress Based Coupled Soft Contact/Interface/Joint Element with

Nonlinear Hardening and Softening Shear Behavior

The command is:

1 add element # <.> type StressBasedCoupledSoftContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness =<Pa>
7 initial_shear_stiffness = <Pa>
8 rate_of_softening = <>
9 size_of_peak_plateau = <>

10 axial_viscous_damping = <Pa*s>
11 shear_viscous_damping = <Pa*s>
12 peak_friction_coefficient_limit = <>
13 peak_friction_coefficient_rate_of_decrease = <.>
14 residual_friction_coefficient = <.>
15 shear_zone_thickness = <m>
16 contact_plane_vector = (<.>, <.>, <.> );

and/or;

1 add element # <.> type StressBasedCoupledSoftContact_NonLinHardSoftShear
2 with nodes (<.>, <.>)
3 initial_axial_stiffness = <Pa>
4 stiffening_rate = <>
5 max_axial_stiffness = <Pa>
6 axial_penalty_stiffness =<Pa>
7 initial_shear_stiffness = <Pa>
8 rate_of_softening = <>
9 size_of_peak_plateau = <>

10 axial_viscous_damping = <Pa*s>
11 shear_viscous_damping = <Pa*s>
12 peak_friction_coefficient_limit = <>
13 peak_friction_coefficient_rate_of_decrease = <.>
14 residual_friction_coefficient = <.>
15 shear_zone_thickness = <m>
16 surface_vector_relative_tolerance = <.>;

The axial stress σa and axial stiffness Ea in defined as

σa = b ∗ exp(a ∗ ϵa) ∗ ϵa
Ea = max(b ∗ exp(a ∗ ϵa) ∗ (1 + a ∗ ϵa), Emax)

(205.29)

where

b refers to the initial axial stiffness in axial contact/interface/joint direction,

a refers to the stiffening rate in axial contact direction,
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Emax refers to the maximum axial stiffness,

Ea refers to the axial stiffness,

ϵa refers to the axial strain in axial contact/interface/joint direction ϵa = δa/h,

δa is the relative axial penetration in contact axial direction,

h is the shear zone thickness, and

• initial_axial_stiffness (b) represents the stiffness in the axial direction (local x axis) for

1m penetration.

• stiffening_rate (a) Represents exponential stiffening rate exp(sr ∗ ϵn) in axial direction.

• max_axial_stiffness(Emax) Defines the maximum stiffness in the axial direction (local x axis)

for the contact/interface/joint element.

• axial_penalty_stiffness (Ep) defines the penalty stiffness between Ui degree of freedom

(DoF) (saturated, coupled u-p-U element) and ui DoF (dry u element) to enforce movement of

fluid in u-p-U element with solid in u element in contact/interface/joint axial direction. This is

useful for pumping action, gap opens and draws the fluid from u-p-U element and then gap closes

and pumps, pushes fluid into u-p-U element.

• initial_shear_stiffness (Es) Is the stiffness in the tangential (shear, local y or z axis) direc-

tions at 101kPa axial stress, described in Section 104.7.3.4

• rate_of_softening (Rs) Is the parameter to control the rate of frictional softening described in

Section 104.7.3.4. The frictional softening function is an inverse tangent function raised to power

n with incremental form as

∆µ = –
n ∗ Rs(µp – µr)

(π/2)nθ1/n–1 ∗ cos2θ∆γp (205.30)

θ =
µp – µ
µp – µr

(π/2)n (205.31)

where, Rs is the frictional softening rate parameter, ∆γp is the plastic shear strain and n represents

the size of the peak plateau.

∆γp =
√

∆ϵ
p
ij∆ϵ

p
ij (205.32)

• size_of_peak_plateau (n) Is the frictional softening parameter to control the size of plateau

as described in Section 104.7.3.4. The frictional softening function is an inverse tangent function

raised to power n with incremental form as shown in Equation 205.31.
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• axial_viscous_damping Is the viscous damping in axial.

• shear_viscous_damping Is the viscous damping in shear.

• peak_friction_coefficient_limit (µp0) Is the limit to the peak frictional hardening param-

eter µp.

• peak_friction_coefficient_rate_of_decrease (k) Is the rate of decrease of peak frictional

hardening parameter µp with axial stress, described in Section 104.7.3.4

µp = max(µp0,µp0 – k ∗ log(σa/P0)) (205.33)

where µp0 is the peak frictional hardening limit, k is the peak frictional parameter rate of decrease

and P0 is the reference stress of P0 = 101kPa.

• residual_friction_coefficient (µr) Is the residual frictional parameter as described in Sec-

tion 104.7.3.4

• shear_zone_thickness h Is the shear zone thickness.

• contact_plane_vector Vector defining the normal to the contact/interface/joint plane.

• surface_vector_relative_tolerance defines the relative tolerance to find all the contact/in-

terface/joint normals and create multiple contact elements for a given contact node pairs for a

conforming surface-to-surface mesh.

IMPORTANT NOTE No. 1: contact_plane_vector defines a direction from Node I to Node J,

that is, from the first to the second node. If this normal vector is reversed, the contact/interface/joint

element behaves as a hook and is likely to create convergence issues.

IMPORTANT NOTE No. 2: Two nodes that form the Contact/Interface/Joint Element, need to be

placed at the same physical location, coordinates in order to prevent convergence issues when nodes are

separated and element tries to close the gap in the very first step.

Description of output by this element can be found in Section 206.8.8.
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205.3.4.98 Modeling, Finite Element: Neoprene Isolator Finite Element

(command syntax is in development),

. . .

more on this finite element can be found in Section 102.11 on Page 136 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.99 Modeling, Finite Element: Lead Core Rubber Isolator/Dissipator Element

(command syntax is in development),

. . .

more on this finite element can be found in Section 102.11 on Page 136 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.100 Modeling, Finite Element: Frictional Pendulum Isolator/Dissipator Finite Element ver-

sion01

(command syntax is in development),

. . .

more on this finite element can be found in Section 102.11 on Page 136 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.101 Modeling, Finite Element: Frictional Pendulum Isolator/Dissipator Finite Element ver-

sion03

(command syntax is in development),

. . .

more on this finite element can be found in Section 102.11 on Page 136 in Lecture Notes by Jeremić

et al. (1989-2025) (Lecture Notes URL).
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205.3.4.102 Modeling, Damping: Adding Rayleigh Damping

First, define the Rayleigh damping.

1 add damping # <.> type Rayleigh with a0 = <1/T> a1 = <T> stiffness_to_use = ←↩
<Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

then apply it to element or node.

1 add damping # <.> to element # <.>;

1 add damping # <.> to node # <.>;

NOTE:

• If the simulation model is a distributed mass system (e.g. using solid brick elements with nonzero

density), users should add damping to elements. In other words, if no additional mass were added

to nodes, the command add damping to nodes won’t have any effect in ESSI.

• If the simulation model is a lumped mass model (e.g. using the massless beam/truss with lumped

mass at nodes), users should add damping to nodes.
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205.3.4.103 Modeling, Damping: Adding 3rd Order Caughey Damping

First, define the 3rd-order Caughey damping

1 add damping # <.> type Caughey3rd
2 with a0 = <T> a1 = <1/T> a2 = <T^3> stiffness_to_use = ←↩

<Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

then apply it to element or node.

1 add damping # <.> to element # <.>;

1 add damping # <.> to node # <.>;

NOTE:

• If the simulation model is a distributed mass system (e.g. using solid brick elements with nonzero

density), users should add damping to elements. In other words, if no additional mass were added

to nodes, the command add damping to nodes won’t have any effect in ESSI.

• If the simulation model is a lumped mass model (e.g. using the massless beam/truss with lumped

mass at nodes), users should add damping to nodes.
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205.3.4.104 Modeling, Damping: Adding 4th Caughey Damping

First, define the 4th-order Caughey damping

1 add damping # <.> type Caughey4th
2 with a0 = <1/T> a1 = <T> a2 = <T^3> a3 = <T^5> stiffness_to_use = ←↩

<Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

then apply it to element or node.

1 add damping # <.> to element # <.>;

1 add damping # <.> to node # <.>;

NOTE:

• If the simulation model is a distributed mass system (e.g. using solid brick elements with nonzero

density), users should add damping to elements. In other words, if no additional mass were added

to nodes, the command add damping to nodes won’t have any effect in ESSI.

• If the simulation model is a lumped mass system (e.g. using the massless beam/truss with lumped

mass at nodes), users should add damping to nodes.
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205.3.4.105 Modeling, Constraints and Supports: Adding Constraints or Supports

1 fix node # <.> dofs [ux uy uz p Ux Uy Uz rx ry rz all];

where at least one of the DOF fixity codes (ux uy uz p Ux Uy Uz rx ry rz all) has to be

invoked. These codes are

• ux, translation in x direction, for structures and solids (solid phase only in u – p – U and u – p

elements)

• uy, translation in y direction, for structures and solids (solid phase only in u – p – U and u – p

elements)

• uz, translation in z direction, for structures and solids (solid phase only in u – p – U and u – p

elements)

• p, pore fluid pressure (for fluid phase in u – p – U and u – p elements) )

• Ux, translation of pore fluid phase in x direction (for u – p – U elements)

• Uy, translation of pore fluid phase in y direction (for u – p – U elements)

• Uz, translation of pore fluid phase in z direction (for u – p – U elements)

• rx, rotation around x axes (for structural elements)

• ry, rotation around y axes (for structural elements)

• rz, rotation around z axes (for structural elements)

• all, all applicable DOFs for a given node

Example fix translation x and y for node #3 fix node # 3 dofs ux uy;

Example fix all appropriate DOFs for node #7. fix node # 7 dofs all;
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205.3.4.106 Modeling, Constraints and Supports: Adding Stochastic Constraints or Supports

Define fixities, boundary conditions for a stochastic node. The command would fix all the polynomial

chaos expanded dofs associated with the specified physical dof.

1 fix node # <.> stochastic dofs [ux uy uz all];

where at least one of the DOF fixity codes (ux uy uz all) has to be invoked. These codes are

• ux, translation in x direction, including all the associated polynomial chaos expanded dofs.

• uy, translation in y direction, including all the associated polynomial chaos expanded dofs.

• uz, translation in z direction, including all the associated polynomial chaos expanded dofs.

• all, all applicable DOFs for a given node, including all the associated polynomial chaos expanded

dofs.

For example,

1 fix node # 3 stochastic dofs ux uy;

Fix translation dofs ux and uy, including all the associated polynomial chaos expanded dofs, for stochastic

node # 3.
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205.3.4.107 Modeling, Constraints and Supports: Free Constraint or Support

Free the specified DOFs on a designated node.

1 free node # <.> dofs [ux uy ux p Ux Uy Uz rx ry rz];
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205.3.4.108 Modeling, Constraints and Supports: Add Tied/Connected Main-Fillower Nodes for the

Same DOFs

Add the equal dof for tied/connected nodes for the same degree of freedom.

1 add constraint equal_dof with
2 master node # <.> and
3 slave node # <.>
4 dof to constrain <.>;
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205.3.4.109 Modeling, Constraints and Supports: Adding Tied/Connected, Main-Follower Nodes for

Different DOFs

Add the equal dof for tied/connected nodes for different degree of freedom.

1 add constraint equal_dof with node # <.> dof <.> master and node # <.> dof <.> ←↩
slave;
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205.3.4.110 Modeling, Constraints and Supports: Remove Tied/Connected Main-Follower equal DOFs

Remove the tied/connected nodes equal dofs.

1 remove constraint equal_dof node # <.>
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205.3.4.111 Modeling, Constraints and Supports: Adding Single Point Constraint to Nodes

Define the single point constraint to nodes on a particular degree of freedom for a specified value.

1 add single point constraint to node # <.>
2 dof to constrain <dof_type>
3 constraint value of <.>
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205.3.4.112 Modeling, Acceleration Field: Adding Acceleration/Inertia Field

1 add acceleration field # <.>
2 ax = <acceleration in x direction>*[L/T^2]
3 ay = <acceleration in y direction>*[L/T^2]
4 az = <acceleration in z direction>*[L/T^2];

Example adding acceleration induced loading field for (some) elements

1 add acceleration field # 1
2 ax = 0*m/s^2
3 ay = 0*m/s^2
4 az = -9.81*m/s^2;

NOTE: see note on page 1004 for command

1 add load # <.> to element # <.> type self_weight use acceleration field # <.>;
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205.3.4.113 Modeling, Loads: Nodal Loads

The general signature to add loads is

1 add load # <.> to node # <.>
2 type <load type> <direction> = <force_amplitude>
3 {more parameters};

The load # is a unique number assigned to each load. The node # is the number of a node which

has already been defined. The load type refers to the functional form in time or pseudo-time (for static

analysis) and can be any of the list

• linear Constant rate time dependence.

• path Use an arbitrary function defined in an external file.

Each force type except linear have additional parameters which will be explained later.

The force direction refers to the degree of freedom the force will be added to. These force directions

are the conjugate in energy of the DOFs defined earlier. These are,

• Fx, force in x direction 1

• Fy, force in y direction 1

• Fz, force in z direction 1

• F_fluid_x, force to the pore fluid phase in x direction 2

• F_fluid_y, force to the pore fluid phase in y direction 2

• F_fluid_z, force to the pore fluid phase in z direction 2

• Mx, moment about x axes 3

• My, moment about y axes 3

• Mz, moment about z axes 3

Example command for adding three linear forces (fx = –10 ∗ kN , fy = –10 ∗ kN , fz = –10 ∗ kN) to node

# 1:

1Applies to solid phase only when connected to coupled elements
1Applies to fluid phase when connected to coupled elements. HOWEVER, please note that these are NOT pore fluid

pressures, see section 102.12.1.5 on page 148, in Lecture Notes (Jeremić et al., 1989-2025) (Lecture Notes URL).
1For elements with rotational DOFs, i.e. beams, shells
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1 add load # 1 to node #1 type linear Fx = -10*kN;
2 add load # 2 to node #1 type linear Fy = -10*kN;
3 add load # 3 to node #1 type linear Fz = -10*kN;

The force type refers to the functional dependence in time (or pseudo-time) that the force will have.

The possible functional forms have been listed before. Listed are additional parameters which define

these forces.

1. linear

Receives no extra parameters. In this case the magnitude of the force is interpreted as the mag-

nitude of the force after one second of time (or pseudo-time) has passed.

2. path

How to add path loads is in the next page.
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205.3.4.114 Modeling, Loads: Nodal Path Loads

To add forces which follow a path other than linear, we have the path_series, for equally spaced time

series data, and path_time_series for variable spaced time series data.

The commands are:

1 add load # <.> to node # <.> type path_series
2 FORCETYPE = <force or moment scale factor>
3 time_step = <T>
4 series_file = "STRING";

1 add load # <.> to node # <.> type path_time_series
2 FORCETYPE = <force or moment scale factor>
3 series_file = "STRING";

As before, FORCETYPE can be Fx, Fy, Fz, Mx, My, Mz, F fluidx, F fluidy, F fluidz.

The format of the series file is one column of text for the equally spaced case (path_series) and

double column, one for time and second one for data values, for (path_time_series).
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205.3.4.115 Modeling, Loads: Nodal Loads From Reactions

Loads can be added from reactions.

The command is:

1 add load # <.> to node # <.> type from_reactions;
2 add load # <.> to all nodes type from_reactions;

The load # is a unique number assigned to each load. The node # is the number of a node which

has already been defined. This DSL applies an external load equal to the reaction calculated at that

node. It is useful, for stage loading where a constrained dof gets relaxed. The first command add load

for a specified node whereas, the second command applies load for all nodes.

For example:

1 add load # 3 to node #5 type from_reactions;

Adds an external load to node 5 from its reaction force calculated in previous stage.

1 add load # 3 to all nodes type from_reactions;

Adds an external load to all nodes from their reaction force calculated in previous stage.
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205.3.4.116 Modeling, Loads: Selfweight Element Load

1 add load # <.>
2 to element # <.>
3 type self_weight
4 use acceleration field # <.>;

NOTE: since the gravity acceleration field is g = 9.81m/s2, meaning that there is an increment of

9.81m/s of velocity each second (please note that this defines a rate of increase in velocity), gravity is

then applied in 1 second! This is sometimes (most of the time) too harsh numerically! It helps if one

defines an acceleration field of say 0.0981m/s2 and then apply it in 100 seconds. This is to be done in

command add acceleration field ... on page 999.
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205.3.4.117 Modeling, Loads: Selfweight Nodal Load

1 add load # <.> to node # <.> type self_weight use acceleration field # <.>;

NOTE: For this command to take effect, there should be concentrated mass defined at the node.
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205.3.4.118 Modeling, Loads: 8 Node Brick Surface Load with the Constant Pressure

Surface of 8 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>) ←↩
with magnitude <Pa>;

Note: This command works for the dry 8NodeBrick element and the coupled 8NodeBrick upU

element. For the coupled upU element, this command applies all surface load on the solid phase,

simulating a drained surface loading condition.

A new command for undrained surface loading on upU element will be added soon...
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205.3.4.119 Modeling, Loads: 8 Node Brick Surface Load with Variable Pressure

Surface of 8 node brick element with variable pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>) ←↩
with magnitudes ( <Pa> , <Pa> , <Pa> , <Pa>);

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.120 Modeling, Loads: 20Node Brick Surface Load with the Constant Pressure

Surface of 20 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>) with magnitude <Pa>;
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205.3.4.121 Modeling, Loads: 20 Node Brick, Surface Load with Variable Pressure

Surface of 20 node brick element with variable pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>) with magnitudes ( <Pa> , <Pa> , <Pa> , <Pa>, <Pa>, ←↩
<Pa>, <Pa>, <Pa>);
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205.3.4.122 Modeling, Loads: 27 Node Brick Surface Load with the Constant Pressure

Surface of 27 node brick element with same pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>, <.>) with magnitude <Pa>;
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205.3.4.123 Modeling, Loads: 27 Node Brick Surface Load with Variable Pressure

Surface of 27 node brick element with variable pressure magnitudes at all nodes:

1 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>, <.>) with magnitudes ( <Pa> , <Pa> , <Pa> , <Pa>, <Pa>, ←↩
<Pa>, <Pa>, <Pa>, <Pa>);
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205.3.4.124 Modeling, Loads: Removing Loads

Loads can be removed using:

1 remove load # <.>
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205.3.4.125 Modeling, Loads: Domain Reduction Method, DRM

1 add load # <.> type domain reduction method hdf5_file = <string>;
2 add load # <.> type domain reduction method hdf5_file = <string> scale_factor = ←↩

<.>;

• hdf5_file HDF5 file with information for the DRM specification. See section....

• scale_factor Factor to linearly scale the motion.

Creating DRM input in HDF5 format. As shown in Fig.(205.5), eight components are required for the

DRM input.

Figure 205.5: Components of DRM input in HDF5 format.

The name of the sub-folders must be exactly the same as shown here.

1. Elements: element numbers for DRM elements, a single layer of elements used to add the earth-

quake motion.

2. DRM Nodes: Node numbers for DRM elements.

3. Is Boundary Node: used to describe whether each of nodes in ”DRM Nodes” is a boundary node

or an exterior node.

• If this value is ”1”, the corresponding node in ”DRM Nodes” is a boundary node.

• If this value is ”0”, the corresponding node in ”DRM Nodes” is an exterior node in the DRM

element.

4. Number of Boundary Nodes: the number of boundary nodes.
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5. Number of Exterior Nodes: the number of exterior nodes.

6. Displacements: the displacement components of input earthquake motion on corresponding DRM

Nodes. Displacements are a 2D array,

• column number represents a time-step,

• rows represents the displacement in one direction.

If every node has 3 degrees of freedom (DOFs, say ux, uy, and uz), the first three rows

represent the input displacements on first DRM node in directions of ux, uy, and uz. Then,

next three rows represent the input displacements for the next node. So the total row number

should be three times of the number of DRM Nodes.

7. Accelerations: same data structure as displacements, above.

8. Time: real time for each time-step in the input earthquake motion.

Python example script to generate the DRM HDF5-based input is given below. Please note that

script only generates simplest possible rigid body motion, and that for any realistic motions, those will

have to be created using 1C or 3C seismic motions codes, for example, SW4, SynAcc, fk, Hisada, EDT,

MS ESSI, or even SHAKE for 1C motions.

1 # Created by Jose Antonio Abell Mena
2 # This file reads old-format DRM input files and translates them into new
3 # HDF5-based format.
4 #
5

6 # This file produces a rigid body input to the DRM layer. That is, all DRM
7 # nodes have same X-direction displacement and acceleration. In this case a
8 # sine wave is used. This is not realistic, its just for demonstration
9 # purposes. DRM won't work in this case but can be used to verify input if a

10 # pseudo-static analysis is done (zero density on all elements and apply loads
11 # with transient analysis.)
12 # For real input motions, produced using some other means, say SW4, fk,
13 # Hisada or MS ESSI program, this simple program can be used as an example,
14 # where DRM input file format used here can be (re) used, while those real
15 # motions are read form output of above mentioned programs.
16

17 import scipy as sp
18 import h5py
19 import time
20

21 # Write elements and nodes data
22 elements = sp.loadtxt("DRMelements.txt",dtype=sp.int32)
23 exterior_nodes = sp.loadtxt("DRMexterior.txt",dtype=sp.int32)
24 boundary_nodes = sp.loadtxt("DRMbound.txt",dtype=sp.int32)
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25

26 Ne = sp.array(exterior_nodes.size)
27 Nb = sp.array(boundary_nodes.size)
28

29 Nt = Ne+Nb
30

31 all_nodes = sp.hstack((boundary_nodes, exterior_nodes))
32 is_boundary_node = sp.zeros(Nt, dtype=sp.int32)
33 is_boundary_node[0:Nb] = 1
34

35 h5file = h5py.File("small.h5.drminput","w")
36

37 h5file.create_dataset("Elements", data=elements)
38 h5file.create_dataset("DRM Nodes", data=all_nodes)
39

40 # This array has 1 if the node at the corresponding position in "DRM nodes"
41 # array is a boundary node and zero if not
42 h5file.create_dataset("Is Boundary Node", data=is_boundary_node)
43

44 h5file.create_dataset("Number of Exterior Nodes", data=Ne)
45 h5file.create_dataset("Number of Boundary Nodes", data=Nb)
46

47 # Write timestamp (time format used is that of c "asctime" Www Mmm dd
48 # hh:mm:ss yyyy example: Tue Jan 13 10:17:09 2009)
49 localtime = time.asctime( time.localtime(time.time()) )
50 h5file.create_dataset("Created",data=str(localtime))
51

52 # Generate motions
53 t = sp.linspace(0,10,1001)
54 w = 2*sp.pi/0.5
55 d = sp.sin(w*t)
56 a = -w**2*sp.sin(w*t)
57

58 # Output accelerations, displacements and time-vector
59

60 # Format is:
61 #
62 # Array/matrix for Accelerations and Displacements has the following shape
63 # [3*(N_boundary_nodes + N_exterior_nodes) , Ntimesteps]
64 #
65 # where component
66 # A[3*n], A[3*n+1], A[3*n+2]
67 # correspond to accelerations/displacements in X, Y, and Z directions
68 # at node n.
69 # The location corresponding to node n is that of the n-th component of array
70 # "DRM Nodes"
71

72 # Time vector
73

74 h5file.create_dataset("Time", data=t)
75
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76 acc = h5file.create_dataset("Accelerations", (3*Nt,len(t)), dtype=sp.double)
77 dis = h5file.create_dataset("Displacements", (3*Nt,len(t)), dtype=sp.double)
78

79 for node_index in range(Nt):
80 acc[3*node_index,:] = a
81 acc[3*node_index+1,:] = 0*a #Zero acceleration in y and z
82 acc[3*node_index+2,:] = 0*a
83 dis[3*node_index,:] = d
84 dis[3*node_index+1,:] = 0*d #Zero displacement in y and z
85 dis[3*node_index+2,:] = 0*d
86

87 h5file.close()
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205.3.4.126 Modeling, Wave Field for Creating DRM Loads: Add Wave Field

1 add wave field # <.> with
2 acceleration_filename = <string>
3 unit_of_acceleration = <L/T^2>
4 displacement_filename = <string>
5 unit_of_displacement = <L>
6 add_compensation_time = <T>
7 motion_depth = <L>
8 monitoring_location = <within_soil_layer|equivalent_rock_outcropping>
9 soil_profile_filename = <string>

10 unit_of_Vs = <L/T>
11 unit_of_rho = <M/L^3>
12 unit_of_damping = <absolute|percent>
13 unit_of_thickness = <L>
14 ;

Example adding a wave field

1 add wave field # 1 with
2 acceleration_filename = "acc.txt"
3 unit_of_acceleration = 1 * m/s^2
4 displacement_filename = "dis.txt"
5 unit_of_displacement = 1 * m
6 add_compensation_time = 0.5 * s
7 motion_depth = 0 * m
8 monitoring_location = within_soil_layer
9 soil_profile_filename = "soil_profile.txt"

10 unit_of_Vs = 1 * m/s
11 unit_of_rho = 1 * kg/m^3
12 unit_of_damping = absolute
13 unit_of_thickness = 1*m
14 ;

where:

• No (or #)<.> is the unique wave field ID. The wave field ID does not have to be sequential, any

unique positive integer number can be used. Each wave field is a 1C wave field. The wave field

does not have a direction. Later, if users want to add load with the wave field, users should specify

the direction with each wave field.

• acceleration_filename is the filename of a plain text file, which contains the acceleration of

the input motion. The file should have two columns, where the first column is the accumulated

time and the second column is the corresponding acceleration. For the DRM loading from a wave

field, if the simulation time is longer than the earthquake motion, the remaining simulation will

continue with zero motions. The wave field does NOT conduct any base correction on the input
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motion, so the simulation results may have permanent deformation after the earthquake. If users

want to have base corrections, users should pre-process the earthquake motion by themselves.

• displacement_filename is the filename of a plain text file, which contains the displacement of

the input motion. The file should have two columns, where the first column is the accumulated

time and the second column is the corresponding displacement. For the DRM loading from a wave

field, if the simulation time is longer than the earthquake motion, the remaining simulation will

continue with zero motions. The wave field does NOT conduct any base correction on the input

motion, so the simulation results may have permanent deformation after the earthquake. If users

want to have base corrections, users should pre-process the earthquake motion by themselves.

• add_compensation_time is a feature to add zero-motion in the beginning and at the end of the

earthquake motion. Since the wave propagation theory is solving the wave equation in frequency

domain (steady state), without additional zeros, the beginning and the end of wave may be mixed

up. If the user does not want to add the additional zeros, user can specify 0*s.

• motion_depth is the depth of the input motion. Usually, the motion_depth is at the surface

(namely, 0*m). Later, users can specify the request depth for deconvolution. However, users can

also specify a specific depth of the input motion. In this case, users can request both convolution

and deconvolution.

– If the request depth is deeper than this input acceleration depth, the wave propagation will

generate the deconvolution results.

– If the request depth is shallower than this input acceleration depth, the wave propagation

will generate the convolution results. It is recommended to add a small damping for wave

convolution.

The acceleration depth is the relative depth to the soil surface, so both negative and positive depth

are acceptable and result in the same results.

• monitoring_location is the location of the earthquake monitoring station. When the monitoring

location is within soil layer, the wave propagation is conducted inside the soil layer directly. When

the monitoring location is equivalent rock outcropping, wave deconvolution is conducted back to

the bedrock first and then propagate into the soil layers.

• soil_profile_filename contains the soil properties for each layer. The soil profile file should

have four columns, which are the shear wave velocity, density, damping ratio and thickness of each
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layer respectively. The soil layers should be from the soil surface to the bedrock. The last layer is

bedrock, which has three columns only. User should NOT give the thickness of the last layer.

One Example of soil profile file is given below.

1 // Vs rho damp thickness
2 200 2000 0.03 35
3 250 2000 0.04 35
4 2000 2400 0.05
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205.3.4.127 Modeling, Wave Field for Creating DRM Loads: Deconvolution

This command performs deconvolution or convolution of given motions at surface or certain depth and

writes accelerations, velocities and displacements in 3 directions, in files, that can then be used to create

DRM loads.

1 generate wave propagation results of wave field
2 # <.> at depth <L> to file <output_filename_prefix>

One example of deconvolution is

1 generate wave propagation results of wave field
2 # 1 at depth -60*m to file "Northridge_record" ;

where

• wave field # <.> specifies the wave field number which will be used for wave propagation.

• depth <L> is the request depth of the output motion.

– If the request depth is deeper than the input motion that defined in the wave field, this

command will generate the deconvolution results.

– If the request depth is shallower than the input motion that defined in the wave field, this

command will generate the convolution results. It is recommended to add a small damping

for wave convolution.

The depth specifies the relative location between the soil surface and the request depth, which

means both positive and negative depth are acceptable and will result in the same results.

• output_filename_prefix specified the prefix of the output filenames. This command will gen-

erate 3 output files, whose suffix are at_str(depth)_acc.txt , at_str(depth)_vel.txt ,

at_str(depth)_dis.txt .
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205.3.4.128 Modeling, Wave Field for Creating DRM Input: Motions

This command performs deconvolution or convolution of given motions at surface or certain depth and

directly generates DRM motions in 1, 2, or 3 directions.

1 generate DRM motion file from wave field
2 # <.> in direction <ux|uy|uz>
3 soil_surface at z = <L>
4 hdf5_file = <string> ;

1 generate DRM motion file from wave field
2 # <.> in direction <ux|uy|uz>
3 # <.> in direction <ux|uy|uz>
4 soil_surface at z = <L>
5 hdf5_file = <string> ;

1 generate DRM motion file from wave field
2 # <.> in direction <ux|uy|uz>
3 # <.> in direction <ux|uy|uz>
4 # <.> in direction <ux|uy|uz>
5 soil_surface at z = <L>
6 hdf5_file = <string> ;

One example of deconvolution to DRM is

1 generate DRM motion file from wave field
2 # 1 in direction ux
3 soil_surface at z = 0*m
4 hdf5_file = "input.hdf5" ;

where:

• in direction <ux,uy,uz> specifies the direction of the wave field. Each wave field is a 1C wave

field. At most 3 wave fields can be associated with the load.

• soil_surface specifies the relation between the FEM coordinate systems and the soil profile

depths inside the wave field. The soil surface should always be above the DRM nodes. Namely,

soil surface is generally the surface between the soil and the structure, NOT the bedrock surface.

• hdf5_file specifies the HDF5 file which contain the information about the DRM elements and

DRM nodes.
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205.3.4.129 Modeling, Wave Field for Creating DRM Input: Forces

This command performs deconvolution or convolution of given motions at surface or certain depth and

directly generates DRM motions and forces in 1, 2, or 3 directions.

1 generate DRM force file from wave field
2 # <.> in direction <ux|uy|uz>
3 soil_surface at z = <L>
4 hdf5_file = <string> ;

1 generate DRM force file from wave field
2 # <.> in direction <ux|uy|uz>
3 # <.> in direction <ux|uy|uz>
4 soil_surface at z = <L>
5 hdf5_file = <string> ;

1 generate DRM force file from wave field
2 # <.> in direction <ux|uy|uz>
3 # <.> in direction <ux|uy|uz>
4 # <.> in direction <ux|uy|uz>
5 soil_surface at z = <L>
6 hdf5_file = <string> ;

One example of deconvolution to DRM is

1 generate DRM force file from wave field
2 # 1 in direction ux
3 soil_surface at z = 0*m
4 hdf5_file = "input.hdf5" ;

where:

• in direction <ux,uy,uz> specifies the direction of the wave field. Each wave field is a 1C wave

field. At most 3 wave fields can be associated with the load.

• soil_surface specifies the relation between the FEM coordinate systems and the soil profile

depths inside the wave field. The soil surface should always be above the DRM nodes. Namely,

soil surface is generally the surface between the soil and the structure, NOT the bedrock surface.

• hdf5_file specifies the HDF5 file which contain the information about the DRM elements and

DRM nodes.
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205.3.4.130 Modeling, Wave Field for Creating DRM Loads: Add Inclined Plane Wave Field from

Incident SV Wave Potential Magnitude

1 add wave field # <.> type inclined_plane_wave with
2 anticlockwise_angle_of_SV_wave_plane_from <x|y|z> = <degrees>
3 SV_incident_magnitude = <L^2>
4 SV_incident_angle = <degrees>
5 SV_incident_frequency = <1/T>
6 motion_time_step = <T>
7 number_of_time_steps = <.>
8 soil_profile_filename = <string>
9 soil_surface at <x|y|z> = <L>

10 unit_of_vs_and_vp = <L/T>
11 unit_of_rho = <M/L^3>
12 unit_of_damping = <absolute|percent>
13 unit_of_thickness = <L>
14 ;

Example of adding an inclined plane wave field

1 add wave field # 1 type inclined_plane_wave with
2 anticlockwise_angle_of_SV_wave_plane_from x= 30
3 SV_incident_magnitude = 2*m^2
4 SV_incident_angle = 60
5 SV_incident_frequency = 5/s
6 motion_time_step = 0.01*s
7 number_of_time_steps = 600
8 soil_profile_filename = "soil.txt"
9 soil_surface at z = 0*m

10 unit_of_vs_and_vp = 1*m/s
11 unit_of_rho = 1*kg/m^3
12 unit_of_damping = absolute
13 unit_of_thickness = 1*m;

where:

• No (or #)<.> is the unique wave field ID/number. The wave field ID does not have to be

sequential, any unique positive integer number can be used. Each wave field is an inclined plane

SV wave field.

• anticlockwise_angle_of_SV_wave_plane_from <x|y|z> specifies the orientation of the in-

clined wave field propagation plane. User should give the anticlockwise angle in degrees between

the wave propagation plane and the specified reference axis. The reference axis could be x or y or

z. As shown in figure 205.7, the anticlockwise_angle_of_SV_wave_plane_from x axis is α.

• SV_incident_magnitude specifies the incident SV wave potential magnitude. The displacement

magnitude of incident SV wave is related to the potential magnitude as follows: |u| = ϕω/Vs, where
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Figure 205.6: Orientation of an inclined plane wave with respect to the vertical, v, and horizontal, h1, h2,

directions: a) a SV wave and b) a P-wave. The user defines v, h1, h2 directions. Either α1 or α2 can be

input into the DSL command.

|u| is the displacement magnitude, ϕ is potential magnitude, ω is incident angular frequency and

Vs is the shear wave velocity of the incident soil/rock layer.

• SV_incident_angle specifies the inclination angle of incident SV wave, measured from vertical

axis of wave plane to the wave propagation axis. In figure 205.7, the incident angle of SV wave is

θ.

• motion_time_step is the time step/interval used for discretizing the harmonic motion into time

domain.

• number_of_time_steps is the number of total time steps for the discretized harmonic motion.

• soil_profile_filename is a file name for a file that contains the soil properties for each layer.

The soil profile file should have fives columns: (i) shear wave velocity, (ii) compressional wave

velocity, (iii) density, (iv) damping ratio and (v) thickness of each layer respectively. The soil

layers count from the soil surface to the bedrock. The last layer is bedrock, which has four

columns only. User should NOT give the thickness of the last layer, as it extends into halfspace.

One Example of soil profile file is given below.
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1 // Vs Vp rho damp thickness
2 200 333 2000 0.02 100
3 250 408 2000 0.02 200
4 2000 3400 2400 0.02

• soil_surface at <x|y|z> defines the location of soil surface in the global coordinate system

of Real-ESSI.
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205.3.4.131 Modeling, Wave Field for Creating DRM Loads: Add Inclined Plane Wave Field from

Incident SV Wave Time Series Signal

1 add wave field # <.> type inclined_plane_wave with
2 anticlockwise_angle_of_SV_wave_plane_from <x|y|z> = <degrees>
3 SV_incident_acceleration_filename = <string>
4 unit_of_acceleration = <L/T^2>
5 SV_incident_displacement_filename = <string>
6 unit_of_displacement = <L>
7 SV_incident_angle = <degrees>
8 add_compensation_time = <T>
9 source_location = (<T>, <T>, <T>)

10 soil_profile_filename = <string>
11 soil_surface at <x|y|z> = <L>
12 unit_of_vs_and_vp = <L/T>
13 unit_of_rho = <M/L^3>
14 unit_of_damping = <absolute|percent>
15 unit_of_thickness = <L>
16 ;

Example of adding an inclined plane wave field

1 add wave field # 1 type inclined_plane_wave with
2 anticlockwise_angle_of_SV_wave_plane_from x = 0
3 SV_incident_acceleration_filename = "Kobe_acc.txt"
4 unit_of_acceleration = 1*m/s^2
5 SV_incident_displacement_filename = "Kobe_disp.txt"
6 unit_of_displacement = 1*m
7 SV_incident_angle = 15
8 add_compensation_time = 0.5*s
9 source_location = (-150*m, 0*m, -100*m)

10 soil_profile_filename = "soil_profile.txt"
11 soil_surface at z = 0*m
12 unit_of_vs_and_vp = 1*m/s
13 unit_of_rho = 1*kg/m^3
14 unit_of_damping = absolute
15 unit_of_thickness = 1*m;

where:

• No (or #)<.> is the unique wave field ID/number. The wave field ID does not have to be

sequential, any unique positive integer number can be used. Each wave field is an inclined plane

SV wave field.

• anticlockwise_angle_of_SV_wave_plane_from <x|y|z> specifies the orientation of the in-

clined wave field propagation plane. User should give the anticlockwise angle in degrees between

the wave propagation plane and the specified reference axis. The reference axis could be x or y or
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z. As shown in figure 205.7, the anticlockwise_angle_of_SV_wave_plane_from x axis is α.

Figure 205.7: Orientation of an inclined plane wave with respect to the vertical, v, and horizontal, h1, h2,

directions: a) a SV wave and b) a P-wave. The user defines v, h1, h2 directions. Either α1 or α2 can be

input into the DSL command.

• SV_incident_acceleration_filename is the filename of a plain text file, which contains the

acceleration of the input motion. The file should have two columns, where the first column is the

accumulated time and the second column is the corresponding acceleration. For the DRM loading

from a wave field, if the simulation time is longer than the earthquake motion, the remaining

simulation will continue with zero motions. The wave field implementation in Real-ESSI does

NOT conduct any baseline correction on the input motion. The users should perform baseline

correction for earthquake motions by themselves.

• SV_incident_displacement_filename is the filename of a plain text file, which contains the

displacement of the input motion. The file should have two columns, where the first column is

the accumulated time and the second column is the corresponding displacement. For the DRM

loading from a wave field, if the simulation time is longer than the earthquake motion, the remaining

simulation will continue with zero motions. The wave field implementation in Real-ESSI does NOT

conduct any baseline correction on the input motion. The users should perform baseline correction

for earthquake motions by themselves.
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• SV_incident_angle specifies the inclination angle of incident SV wave, measured from vertical

axis of wave plane to the wave propagation axis. In figure 205.7, the incident angle of SV wave is

θ.

• add_compensation_time is a feature to add zero-motion in the beginning and at the end of

the earthquake motion. If the user does not want to add the additional zeros, user can specify

compensation time as 0*s.

• source_location specify the location of seismic source, where the seismic motion is input as

in SV_incident_acceleration_filename and SV_incident_displacement_filename, it is

used for determining phase of the wave, and the source location can be inside or outside of the

model.

• soil_profile_filename is a file name for a file that contains the soil properties for each layer.

The soil profile file should have fives columns: (i) shear wave velocity, (ii) compressional wave

velocity, (iii) density, (iv) damping ratio and (v) thickness of each layer respectively. The soil

layers count from the soil surface to the bedrock. The last layer is bedrock, which has four

columns only. User should NOT give the thickness of the last layer, as it extends into half-space.

One Example of soil profile file is given below.

1 // Vs Vp rho damp thickness
2 200 333 2000 0.02 100
3 250 408 2000 0.02 200
4 2000 3400 2400 0.02

• soil_surface at <x|y|z> defines the location of soil surface in the global coordinate system

of Real-ESSI.
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205.3.4.132 Modeling, Wave Field for Creating DRM Loads: Add Inclined Plane Wave Field from

Incident P Wave Potential Magnitude

1 add wave field # <.> type inclined_plane_wave with
2 anticlockwise_angle_of_P_wave_plane_from <x|y|z> = <degrees>
3 P_incident_magnitude = <L^2>
4 P_incident_angle = <degrees>
5 P_incident_frequency = <1/T>
6 motion_time_step = <T>
7 number_of_time_steps = <.>
8 soil_profile_filename = <string>
9 soil_surface at <x|y|z> = <L>

10 unit_of_vs_and_vp = <L/T>
11 unit_of_rho = <M/L^3>
12 unit_of_damping = <absolute|percent>
13 unit_of_thickness = <L>
14 ;

Example adding an inclined plane wave field

1 add wave field # 1 type inclined_plane_wave with
2 anticlockwise_angle_of_P_wave_plane_from x= 30
3 P_incident_magnitude = 2*m^2
4 P_incident_angle = 60
5 P_incident_frequency = 5/s
6 motion_time_step = 0.01*s
7 number_of_time_steps = 600
8 soil_profile_filename = "soil.txt"
9 soil_surface at z = 0*m

10 unit_of_vs_and_vp = 1*m/s
11 unit_of_rho = 1*kg/m^3
12 unit_of_damping = absolute
13 unit_of_thickness = 1*m;

where:

• No (or #)<.> is the unique wave field ID/number. The wave field ID does not have to be

sequential, any unique positive integer number can be used. Each wave field is an inclined plane

P wave field.

• anticlockwise_angle_of_P_wave_plane_from <x|y|z> specifies the orientation of the in-

clined wave propagation plane. User should give the anticlockwise angle in degrees between the

wave propagation plane and the specified reference axis. The reference axis could be x or y or z.

As shown in figure 205.7, the anticlockwise_angle_of_P_wave_plane_from x axis is α.

• P_incident_magnitude specifies the incident P wave potential magnitude. The displacement

magnitude of incident P wave is related to the potential magnitude as following: |u| = ϕω/Vp,
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where |u| is the displacement magnitude, ϕ is potential magnitude, ω is incident angular frequency

and Vp is the compressional wave velocity of the incident layer.

• P_incident_angle specifies the inclination of incident P wave. The angle is measured from

vertical axis of wave plane to the wave propagation axis. In figure 205.7, the incident angle of P

wave is θ.

• motion_time_step is the time interval when discretized the harmonic motion into time domain.

• number_of_time_steps is the number of total time steps for the discretized harmonic motion.

• soil_profile_filename is a file name for a file that contains the soil properties for each layer.

The soil profile file should have fives columns: (i) shear wave velocity, (ii) compressional wave

velocity, (iii) density, (iv) damping ratio and (v) thickness of each layer respectively. The soil

layers count from the soil surface to the bedrock. The last layer is bedrock, which has four

columns only. User should NOT give the thickness of the last layer, as it extends into halfspace.

One Example of soil profile file is given below.

1 // Vs Vp rho damp thickness
2 200 333 2000 0.02 100
3 250 408 2000 0.02 200
4 2000 3400 2400 0.02

• soil_surface at <x|y|z> defines the location of soil surface in the global coordinate system

of Real-ESSI.
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205.3.4.133 Modeling, Wave Field for Creating DRM Loads: Add Inclined Plane Wave Field from

Incident P Wave Time Series Signal

1 add wave field # <.> type inclined_plane_wave with
2 anticlockwise_angle_of_P_wave_plane_from <x|y|z> = <degrees>
3 P_incident_acceleration_filename = <string>
4 unit_of_acceleration = <L/T^2>
5 P_incident_displacement_filename = <string>
6 unit_of_displacement = <L>
7 P_incident_angle = <degrees>
8 add_compensation_time = <T>
9 source_location = (<T>, <T>, <T>)

10 soil_profile_filename = <string>
11 soil_surface at <x|y|z> = <L>
12 unit_of_vs_and_vp = <L/T>
13 unit_of_rho = <M/L^3>
14 unit_of_damping = <absolute|percent>
15 unit_of_thickness = <L>
16 ;

Example of adding an inclined plane wave field

1 add wave field # 1 type inclined_plane_wave with
2 anticlockwise_angle_of_P_wave_plane_from x = 0
3 P_incident_acceleration_filename = "Kobe_acc.txt"
4 unit_of_acceleration = 1*m/s^2
5 P_incident_displacement_filename = "Kobe_disp.txt"
6 unit_of_displacement = 1*m
7 P_incident_angle = 15
8 add_compensation_time = 0.5*s
9 source_location = (-150*m, 0*m, -100*m)

10 soil_profile_filename = "soil_profile.txt"
11 soil_surface at z = 0*m
12 unit_of_vs_and_vp = 1*m/s
13 unit_of_rho = 1*kg/m^3
14 unit_of_damping = absolute
15 unit_of_thickness = 1*m;

where:

• No (or #)<.> is the unique wave field ID/number. The wave field ID does not have to be

sequential, any unique positive integer number can be used. Each wave field is an inclined plane

P wave field.

• anticlockwise_angle_of_P_wave_plane_from <x|y|z> specifies the orientation of the in-

clined wave field propagation plane. User should give the anticlockwise angle in degrees between

the wave propagation plane and the specified reference axis. The reference axis could be x or y or
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z. As shown in figure 205.7, the anticlockwise_angle_of_P_wave_plane_from x axis is α.

• P_incident_acceleration_filename is the filename of a plain text file, which contains the

acceleration of the input motion. The file should have two columns, where the first column is the

accumulated time and the second column is the corresponding acceleration. For the DRM loading

from a wave field, if the simulation time is longer than the earthquake motion, the remaining

simulation will continue with zero motions. The wave field implementation in Real-ESSI does

NOT conduct any baseline correction on the input motion. The users should perform baseline

correction for earthquake motions by themselves.

• P_incident_displacement_filename is the filename of a plain text file, which contains the

displacement of the input motion. The file should have two columns, where the first column is

the accumulated time and the second column is the corresponding displacement. For the DRM

loading from a wave field, if the simulation time is longer than the earthquake motion, the remaining

simulation will continue with zero motions. The wave field implementation in Real-ESSI does NOT

conduct any baseline correction on the input motion. The users should perform baseline correction

for earthquake motions by themselves.

• P_incident_angle specifies the inclination angle of incident P wave, measured from vertical axis

of wave plane to the wave propagation axis. In figure 205.7, the incident angle of P wave is θ.

• add_compensation_time is a feature to add zero-motion in the beginning and at the end of

the earthquake motion. If the user does not want to add the additional zeros, user can specify

compensation time as 0*s.

• source_location specify the location of seismic source, where the seismic motion is input as in

P_incident_acceleration_filename and P_incident_displacement_filename, it is used

for determining phase of the wave, and the source location can be inside or outside of the model.

• soil_profile_filename is a file name for a file that contains the soil properties for each layer.

The soil profile file should have fives columns: (i) shear wave velocity, (ii) compressional wave

velocity, (iii) density, (iv) damping ratio and (v) thickness of each layer respectively. The soil

layers count from the soil surface to the bedrock. The last layer is bedrock, which has four

columns only. User should NOT give the thickness of the last layer, as it extends into half-space.

One Example of soil profile file is given below.

1 // Vs Vp rho damp thickness
2 200 333 2000 0.02 100
3 250 408 2000 0.02 200
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4 2000 3400 2400 0.02

• soil_surface at <x|y|z> defines the location of soil surface in the global coordinate system

of Real-ESSI.
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205.3.4.134 Modeling, Wave Field for Creating DRM Loads: DRM Inclined Motion

This command generates inclined DRM motion with pre-defined inclined wave field.

1 generate DRM motion file from wave field # <.> hdf5_file = <string>;

One example of generating inclined DRM motion is:

1 generate DRM motion file from wave field # 1 hdf5_file = "DRMinput.hdf5";

where

• wave field # <.> specifies the inclined plane wave field number which will be used for wave

propagation.

• hdf5_file specifies the HDF5 file which contains the geometric information about the DRM

elements and DRM nodes.
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205.3.4.135 Modeling, Imposed Motions: through Loads, Motion Time History, Constant Time Step

Impose motions (displacements, velocities and accelerations) through loads. This one is used if time

increment is constant during the analysis. Input files have one column only, corresponding file for

displacements, velocities, and accelerations.

1 add load # <.> type imposed motion to node # <.> dof DOFTYPE
2 time_step = <T>
3 displacement_scale_unit = <L>
4 displacement_file = "filename"
5 velocity_scale_unit = <L/T>
6 velocity_file = "filename"
7 acceleration_scale_unit = <L/L^2>
8 acceleration_file = "filename";

The above command generates load to the corresponding node to get the applied imposed motion.
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205.3.4.136 Modeling, Imposed Motions: through Loads, Stochastic Motion Time History, Constant

Time Step

Impose stochastic motions (uncertain displacements, velocities and accelerations) through stochastic

loads. This one is used if time increment is constant during the analysis.

1 add load # <.> type imposed random motions to node # <.> dof DOFTYPE
2 time_step = <T>
3 displacement_scale_unit = <L>
4 displacement_file = "filename"
5 velocity_scale_unit = <L/T>
6 velocity_file = "filename"
7 acceleration_scale_unit = <L/L^2>
8 acceleration_file = "filename"
9 penalty_stiffness = <N/L>

10 using double product # <.>;

where

• DOFTYPE specify the dof to impose the uncertain motion. It can be either ux, uy or uz.

• time_step specify the time step of the imposed uncertain motion.

• displacement_scale_unit specify the scale unit of the imposed uncertain displacement poly-

nomial chaos (PC) coefficients.

• displacement_file specify the filename of a text file containing PC coefficients of uncertain

displacement random process. The number of rows of the file content should be equal to total

number of polynomial chaos basis of the displacement random process. The number of columns of

the file content should be equal to total number of time steps of the displacement random process.

The value at the ith row and jth column of the file gives the PC coefficient of the ith PC basis of

the displacement random process at the jth time step.

• velocity_scale_unit specify the scale unit of the imposed uncertain velocity polynomial chaos

(PC) coefficients.

• velocity_file specify the filename of a text file containing PC coefficients of uncertain velocity

random process. The number of rows of the file content should be equal to total number of

polynomial chaos basis of the velocity random process. The number of columns of the file content

should be equal to total number of time steps of the velocity random process. The value at the ith

row and jth column of the file gives the PC coefficient of the ith PC basis of the velocity random

process at the jth time step.
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• acceleration_scale_unit specify the scale unit of the imposed uncertain acceleration polyno-

mial chaos (PC) coefficients.

• acceleration_file specify the filename of a text file containing PC coefficients of uncertain

acceleration random process. The number of rows of the file content should be equal to total

number of polynomial chaos basis of the acceleration random process. The number of columns of

the file content should be equal to total number of time steps of the acceleration random process.

The value at the ith row and jth column of the file gives the PC coefficient of the ith PC basis of

the acceleration random process at the jth time step.

• penalty_stiffness specify the penalty stiffness for the input of uncertain motion using penalty

method. The penalty stiffness is expected to be several magnitudes, e.g., 103 ∼ 106, larger than

the elemental stiffness.

• double product # specify the ID of the double product that would be used in the formation of

stochastic force. In stochastic finite element method (FEM), the first PC basis for this double

product should come from the PC representation of uncertain FEM system response, e.g., uncertain

structural displacement. The second PC basis for this double product should come from the

uncertain imposed motion representation.
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205.3.4.137 Modeling, Imposed Motions: through Loads, Stochastic Random Process Motions, Con-

stant Time Step

Impose a defined random process motions.

This one is used if time increment is constant during the analysis.

1 add load # <.> type imposed random motions to node # <.> dof DOFTYPE
2 time_step = <T>
3 uncertain_displacement = random field # <.>
4 displacement_scale_unit = <L>
5 penalty_stiffness = <N/L>
6 using double product # <.>;

where

• DOFTYPE specify the dof to impose the uncertain motion. It can be either ux, uy or uz.

• time_step specify the time step of the imposed uncertain motion.

• uncertain_displacement specify the imposed uncertain motion through a defined random field-

/process.

• displacement_scale_unit specify the scale unit of the imposed uncertain displacement.

• penalty_stiffness specify the penalty stiffness for the input of uncertain motion using penalty

method. The penalty stiffness is expected to be several magnitudes, e.g., 103 ∼ 106, larger than

the elemental stiffness.

• double product # specify the ID of the double product that would be used in the formation of

stochastic force. In stochastic finite element method (FEM), the first PC basis for this double

product should come from the PC representation of uncertain FEM system response, e.g., uncertain

structural displacement. The second PC basis for this double product should come from the

uncertain imposed motion representation.
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205.3.4.138 Modeling, Imposed Motions: through Loads, Motion Time History, Variable Time Step

Impose motions (displacements, velocities and accelerations) through loads. This one is used if time

increment is variable during the analysis. Input files have two columns, first column is time and the

second column in corresponding file for displacements, velocities, and accelerations. Time steps have to

be the same in each file.

1 add load # <.> type imposed motion to node # <.> dof DOFTYPE
2 displacement_scale_unit = <displacement>
3 displacement_file = "filename"
4 velocity_scale_unit = <velocity>
5 velocity_file = "filename"
6 acceleration_scale_unit = <acceleration>
7 acceleration_file = "filename";

The above command generates load to the corresponding node to get the applied imposed motion.
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205.3.4.139 Modeling, Imposed Motions: Adding Load for Uniform Acceleration Time History

Defines a non-inertial reference frame from which all displacements are measured. This reference frame

(fixed to the base of the model) accelerates according to a given acceleration record. All output quantities

are derived from this relative coordinate system (not-inertial). To get total displacements, the twice-

integrated acceleration record must be added to the results.

The command is:

1 add load # <.> type uniform acceleration to all nodes dof <.>
2 time_step = <T>
3 scale_factor = <L/T^2>
4 initial_velocity = <L/T>
5 acceleration_file = <string>;

Where

• time_step Is the time step of the record in time units.

• scale_factor Is a dimensionless factor with which the record is scaled before it’s applied.

• initial_velocity Initial velocity for all translational DOFs of the system.

• acceleration_file String containing the path (relative or absolute) to the record text file.

File format is a single value of the record in acceleration units (m/s/s) per line for each time step.

If a time-step different from the record is used for analysis, then the record is interpolated linearly.
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205.3.4.140 Modeling, Imposed Motions: Remove Imposed Motions

Motions can be removed using:

1 remove imposed motion # <.>
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205.3.4.141 Modeling, Random Variable: Adding Gaussian Random Variables

Gaussian random variable can be added for probabilistic analysis.

The command is:

1 add random variable # <.> with Gaussian distribution mean = <.> ←↩
standard_deviation = <.>;

where:

• mean is the mean of the Gaussian random variable

• standard_deviation is the standard deviation of the Gaussian random variable

For example:

1 add random variable # 1 with Gaussian distribution mean = 3.0 ←↩
standard_deviation = 1.0;

Adds a Gaussian random variable 1 with mean equal to 3.0 and standard deviation equal to 1.0.
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205.3.4.142 Modeling, Random Variable: Adding Gaussian Random Variables with Location

Gaussian random variable with spatial location can be added for probabilistic analysis. The location

information of the defined random variable is important to calculate the correlation structure of random

field, that can consist of many random variables.

The command is:

1 add random variable # <.> with Gaussian distribution mean = <.> ←↩
standard_deviation = <.> at (<L>, <L>, <L>);

where:

• mean is the mean of the Gaussian random variable

• standard_deviation is the standard deviation of the Gaussian random variable

For example:

1 add random variable # 1 with Gaussian distribution mean = 3.0 ←↩
standard_deviation = 1.0 at (3*m, 0*m, 0*m);

Adds a Gaussian random variable 1 with mean equal to 3.0 and standard deviation equal to 1.0 at

location x = 3m, y = 0m and z = 0m.
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205.3.4.143 Modeling, Random Variable: Adding Lognormal Random Variables

Lognormal random variable can be added for probabilistic analysis.

The command is:

1 add random variable # <.> with Lognormal distribution mean = <.> ←↩
standard_deviation = <.>;

where:

• mean is the mean of the lognormal random variable

• standard_deviation is the standard deviation of the lognormal random variable

For example:

1 add random variable # 1 with Lognormal distribution mean = 3.0 ←↩
standard_deviation = 1.0;

Adds a Lognormal random variable 1 with mean equal to 3.0 and standard deviation equal to 1.0.
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205.3.4.144 Modeling, Random Variable: Adding Lognormal Random Variables with Location

Lognormal random variable with spatial location can be added for probabilistic analysis. The location

information of the defined random variable is important to calculate the correlation structure of random

field, that can consist of many random variables.

The command is:

1 add random variable # <.> with Lognormal distribution mean = <.> ←↩
standard_deviation = <.> at (<L>, <L>, <L>);

where:

• mean is the mean of the lognormal random variable

• standard_deviation is the standard deviation of the lognormal random variable

For example:

1 add random variable # 1 with Lognormal distribution mean = 3.0 ←↩
standard_deviation = 1.0 at (3*m, 0*m, 0*m);

Adds a Lognormal random variable 1 with mean equal to 3.0 and standard deviation equal to 1.0 at

location x = 3m, y = 0m and z = 0m.
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205.3.4.145 Modeling, Random Variable: Adding Lognormal Random Variables using Logarithmic Input

Lognormal random variable can be added for probabilistic analysis.

The command is:

1 add random variable # <.> with Lognormal distribution lognormal_mean = <.> ←↩
lognormal_standard_deviation = <.>;

where:

• lognormal_mean: µ is the mean of the natural logarithm of the lognormal random variable X

• lognormal_standard_deviation: σ is the standard deviation of the natural logarithm of the

lognormal random variable X

In other words, for lognormal distributed random variable X with parameters µ and σ, we have:

ln(X) ∼ N(µ,σ) (205.34)

It is noted that the mean m and variance v of lognormal random variable X is related to parameters

µ and σ as follows:

m = eµ+σ2/2 (205.35)

v = e2µ+σ2
(eσ

2
– 1) (205.36)

For example:

1 add random variable # 1 with Lognormal distribution lognormal_mean = 3.0 ←↩
lognormal_standard_deviation = 1.0;

adds a Lognormal random variable 1. The natural logarithm of such random variable follows Gaussian

distribution with mean equal to 3.0 and standard deviation equal to 1.0.
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205.3.4.146 Modeling, Random Variable: Adding Lognormal Random Variables using Logarithmic Input

with Location

Lognormal random variable with spatial location can be added for probabilistic analysis. The location

information of the defined random variable is important to calculate the correlation structure of random

field, which can consist of many random variables.

The command is:

1 add random variable # <.> with Lognormal distribution lognormal_mean = <.> ←↩
lognormal_standard_deviation = <.> at (<L>, <L>, <L>);

where:

• lognormal_mean: µ is the mean of the natural logarithm of the lognormal random variable X

• lognormal_standard_deviation: σ is the standard deviation of the natural logarithm of the

lognormal random variable X

In other words, for lognormal distributed random variable X with parameters µ and σ, we have:

ln(X) ∼ N(µ,σ) (205.37)

It is noted that the mean m and variance v of lognormal random variable X is related to parameters

µ and σ as follows:

m = eµ+σ2/2 (205.38)

v = e2µ+σ2
(eσ

2
– 1) (205.39)

For example:

1 add random variable # 1 with Lognormal distribution lognormal_mean = 3.0 ←↩
lognormal_standard_deviation = 1.0 at (3*m, 0*m, 0*m);

Adds a Lognormal random variable 1 at location x = 3m, y = 0m and z = 0m. The natural logarithm

of such random variable follows Gaussian distribution with mean equal to 3.0 and standard deviation

equal to 1.0.
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205.3.4.147 Modeling, Random Variable: Adding Gamma Random Variables using Shape and Scale

Parameters

Random variable following Gamma distribution can be added for probabilistic analysis.

The command is:

1 add random variable # <.> with Gamma distribution shape_parameter = <.> ←↩
scale_parameter = <.>;

where:

• shape_parameter is the shape parameter of the Gamma random variable

• scale_parameter is the scale parameter of the Gamma random variable

For example:

1 add random variable # 1 with Gamma distribution shape_parameter = 5.0 ←↩
scale_parameter = 2.0;

Adds a Gamma random variable 1 with the shape parameter equal to 5.0 and scale parameter equal

to 2.0.
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205.3.4.148 Modeling, Random Variable: Adding Gamma Random Variables using Shape and Scale

Parameters with Location

Random variable following Gamma distribution can be added for probabilistic analysis.

The location information of the defined random variable is important to calculate the correlation

structure of random field, that can consist of many random variables.

The command is:

1 add random variable # <.> with Gamma distribution shape_parameter = <.> ←↩
scale_parameter = <.> at (<L>, <L>, <L>);

where:

• shape_parameter is the shape parameter of the Gamma random variable

• scale_parameter is the scale parameter of the Gamma random variable

For example:

1 add random variable # 1 with Gamma distribution shape_parameter = 5.0 ←↩
scale_parameter = 2.0 at (3*m, 0*m, 0*m);

Adds a Gamma random variable 1 with the shape parameter equal to 5.0 and scale parameter equal

to 2.0 at location x = 3m, y = 0m and z = 0m.
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205.3.4.149 Modeling, Random Variable: Adding Gamma Random Variables using Mean and Standard

Deviation Parameters

Random variable for given mean and standard deviation parameter following Gamma distribution can be

added for probabilistic analysis.

The command is:

1 add random variable # <.> with Gamma distribution mean = <.> standard_deviation ←↩
= <.>;

where:

• mean is the mean of the Gamma random variable

• standard_deviation is the standard deviation of the Gamma random variable

For example:

1 add random variable # 1 with Gamma distribution mean = 5.0 standard_deviation = ←↩
2.0;

Adds a Gamma random variable 1 with mean equal to 5.0 and standard deviation equal to 2.0.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 1051 of 3287

205.3.4.150 Modeling, Random Variable: Adding Gamma Random Variables using Mean and Standard

Deviation Parameters with Location

Random variable for given mean and standard deviation parameter following Gamma distribution can be

added for probabilistic analysis.

The location information of the defined random variable is important to calculate the correlation

structure of random field, that can consist of many random variables.

The command is:

1 add random variable # <.> with Gamma distribution mean = <.> standard_deviation ←↩
= <.> at (<L>, <L>, <L>);

where:

• mean is the mean of the Gamma random variable

• standard_deviation is the standard deviation of the Gamma random variable

For example:

1 add random variable # 1 with Gamma distribution mean = 5.0 standard_deviation = ←↩
2.0 at (3*m, 0*m, 0*m);

Adds a Gamma random variable 1 with mean equal to 5.0 and standard deviation equal to 2.0 at location

x = 3m, y = 0m and z = 0m.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 1052 of 3287

205.3.4.151 Modeling, Random Variable: Adding Weibull Random Variables using Shape and Scale

Parameters

Random variable following Weibull distribution can be added for probabilistic analysis.

The command is:

1 add random variable # <.> with Weibull distribution shape_parameter = <.> ←↩
scale_parameter = <.>;

where:

• shape_parameter is the shape parameter of the Weibull random variable

• scale_parameter is the scale parameter of the Weibull random variable

For example:

1 add random variable # 1 with Weibull distribution shape_parameter = 5.0 ←↩
scale_parameter = 2.0;

Adds a Weibull random variable 1 with the shape parameter equal to 5.0 and scale parameter equal

to 2.0.
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205.3.4.152 Modeling, Random Variable: Adding Weibull Random Variables using Shape and Scale

Parameters with Location

Random variable following Weibull distribution can be added for probabilistic analysis.

The location information of the defined random variable is important to calculate the correlation

structure of random field, which can consist of many random variables.

The command is:

1 add random variable # <.> with Weibull distribution shape_parameter = <.> ←↩
scale_parameter = <.> at (<L>, <L>, <L>);

where:

• shape_parameter is the shape parameter of the Weibull random variable

• scale_parameter is the scale parameter of the Weibull random variable

For example:

1 add random variable # 1 with Weibull distribution shape_parameter = 5.0 ←↩
scale_parameter = 2.0 at (3*m, 0*m, 0*m);

adds a Weibull random variable 1 with the shape parameter equal to 5.0 and scale parameter equal to

2.0 at location x = 3m, y = 0m and z = 0m.
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205.3.4.153 Modeling, Random Variable: Remove Random Variables

Remove random variables.

The command is:

1 remove random variable # <.> ;

For example:

1 remove random variable # 2;

Remove random variable 2 from the analysis.
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205.3.4.154 Modeling, Random Variable: Hermite Polynomial Chaos Expansion

Hermite polynomial chaos expansion Xiu (2010) can be performed for random variable with any type of

distribution.

The command is:

1 Hermite polynomial chaos expansion to random variable # <.> with order <.>;

where:

• order specifies the order of Hermite polynomial chaos expansion

For example:

1 Hermite polynomial chaos expansion to random variable # 1 with order 6;

Performs Hermite polynomial chaos expansion to random variable 1 using Hermite polynomial chaos

up to order 6.
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205.3.4.155 Modeling, Random Variable: Output Hermite Polynomial Chaos Expansion Result

A HDF5 (.hdf5) file contains computed polynomial chaos coefficients of Hermite polynomial chaos

expansion for random variable can be generated.

The command is:

1 generate Hermite polynomial chaos expansion file from random variable # <.> ←↩
hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the output hdf5 file.

The generated hdf5 file contains two datasets:

• Dataset PC is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis. PCij denotes the order of polynomial chaos dimension ξj that contributes to the ith multi-

dimensional Hermite PC basis.

• Dataset PC Coefficients is a column vector. The ith component of PC Coefficients is the polynomial

chaos coefficient corresponding to the ith PC base as described by PC.

For example:

1 generate Hermite polynomial chaos expansion file from random variable # 2 ←↩
hdf5_file = "PC_RV1.hdf5";

Generate HDF5 file named “PC RV2.hdf5” that contains the computed polynomial chaos coefficients

of Hermite polynomial chaos expansion of random variable 2.
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205.3.4.156 Modeling, Random Variable: Hermite Polynomial Chaos Expansion & Output Results

Hermite polynomial chaos expansion Xiu (2010) can be performed for random variable with any type of

distribution. A HDF5 (.hdf5) file contains computed polynomial chaos coefficients of Hermite polynomial

chaos expansion for random variable can be generated.

The command is:

1 generate Hermite polynomial chaos expansion file from random variable # <.> ←↩
with order <.> hdf5_file = "file_name";

where:

• order specifies the order of Hermite polynomial chaos expansion

• file_name is a string that specifies the name of the output hdf5 file.

The generated hdf5 file contains two datasets:

• Dataset PC is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis. PCij denotes the order of polynomial chaos dimension ξj that contributes to the ith multi-

dimensional Hermite PC basis.

• Dataset PC Coefficients is a column vector. The ith component of PC Coefficients is the polynomial

chaos coefficient corresponding to the ith PC base as described by PC.

For example:

1 generate Hermite polynomial chaos expansion file from random variable # 1 with ←↩
order 6 hdf5_file = "PC_RV1.hdf5";

Perform Hermite polynomial chaos expansion to random variable 1 using Hermite polynomial chaos

up to order 6 and generate HDF5 file named “PC RV1.hdf5” that contains the computed polynomial

chaos coefficients.
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205.3.4.157 Modeling, Random Field: Adding Random Field with Dimension and Order

Random field with specific Hermite polynomial chaos dimension and order can be added for probabilistic

analysis.

The command is:

1 add random field # <.> with Hermite polynomial chaos dimension <.> order <.>;

where:

• dimension defines the dimension of Hermite polynomial chaos expansion of the random field

• order defines the order of Hermite polynomial chaos expansion of the random field

For example:

1 add random field # 1 with Hermite polynomial chaos dimension 4 order 3;

adds random field 1 with Hermite polynomial chaos expansion of dimension 4 and order 3.
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205.3.4.158 Modeling, Random Field: Define Global Dimension Index of Random Field

Define the global dimension index of local Hermite polynomial chaos (PC) dimension for the uncertainty

characterization of the random field.

If the global dimension index is not specified, by default Real-ESSI takes the ID of local Hermite

polynomial chaos (PC) dimension as the global dimension index.

Please note that correctly specifying global dimension index for local Hermite PC dimensions of the

random field is very important, especially when there are multiple random fields exist in the system and

need to compute the triple products of Hermite PC basis of these random fields.

The command is:

1 define random field # <> Hermite polynomial chaos dimension # <> as global ←↩
dimension # <>;

where:

• Hermite polynomial chaos dimension defines the local dimension ID for Hermite polynomial

chaos (PC) basis of the random field. It should be an integer no more than the total number

of dimensions adopted in the Hermite polynomial chaos (PC) Karhunen Loève expansion of the

random field.

• global dimension defines the corresponding global dimension index for the local Hermite PC

dimension

For example:

1 define random field # 1 Hermite polynomial chaos dimension # 1 as global ←↩
dimension # 10;

defines the global dimension index of local Hermite PC dimension 1 of random field 1 is 10.
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205.3.4.159 Modeling, Random Field: Define Global Dimension Index of Random Field from File Input

Define the global dimension index of local Hermite polynomial chaos (PC) dimension for the uncertainty

characterization of the random field using inputs from a text file.

If the global dimension index is not specified, by default Real-ESSI takes the ID of local Hermite

polynomial chaos (PC) dimension as the global dimension index.

Please note that correctly specifying global dimension index for local Hermite PC dimensions of the

random field is very important, especially when there are multiple random fields exist in the system and

need to compute the triple products of Hermite PC basis of these random fields.

The command is:

1 define random field # <.> Hermite polynomial chaos dimension from ←↩
dimension_file = "file_name";

where:

• dimension_file specifies the name of a text file that contains two columns: The first column is

local dimension ID of Hermite PC basis; The second column is corresponding global dimension ID

for the local dimension of Hermite PC basis. Comments lines starts with “//”

For example:

1 define random field # 1 Hermite polynomial chaos dimension from dimension_file ←↩
= "dimension_info_RF1.txt";

defines the global dimension index of local Hermite PC dimensions for random field 1 with input from a

text file ”dimension info RF1.txt”.

An example file of ”dimension info RF1.txt” is provided below:

1 //===================================================================
2 // This file specify the global dimension index of local dimensions
3 // of Hermite PC basis
4 // File should have two columns separated by spaces:
5 // The first column is local KL dimension ID
6 // The second column is the global KL dimension ID
7 //===================================================================
8 1 10
9 2 11

10 3 12
11 4 13
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205.3.4.160 Modeling, Random Field: Set Number of Polynomial Chaos Terms of Random Field

Specify the number of polynomial chaos terms of a random field involved in the stochastic finite element

analysis. By default, the full polynomial chaos basis of a random field would be used for uncertainty

propagation. The specified number of polynomial chaos terms in this command is used for truncation

of polynomial chaos basis.

The command is:

1 set random field # <.> polynomial_chaos_terms = <.>;

where:

• polynomial_chaos_terms defines the number of truncated Hermite polynomial chaos basis of

the random field

For example:

1 set random field # 1 polynomial_chaos_terms = 100;

Set the number of truncated Hermite polynomial chaos basis of random field 1 to be 100.
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205.3.4.161 Modeling, Random Field: Adding Random Field with Zero Correlation

Random field with uncorrelated random variables can be added for probabilistic analysis.

The command is:

1 add random field # <.> with zero correlation;
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205.3.4.162 Modeling, Random Field: Adding Random Field with Exponential Correlation

Random field with exponential correlation can be added for probabilistic analysis.

The command is:

1 add random field # <.> with exponential correlation correlation_length = <L> ;

where:

• correlation_length lc defines the correlation length of random field such that the correlation

ρ(RVi, RVj) of any two random variables RVi and RVj is given as:

ρ(RVi, RVj) = exp(–d/lc) (205.40)

Variable d is the Euclidean distance between RVi and RVj , that is calculated from the spatial locations

of random variables within the random field.

For example:

1 add random field # 1 with exponential correlation correlation_length = 10*m;

adds an exponentially correlated random field number 1 with correlation length 10m.
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205.3.4.163 Modeling, Random Field: Adding Random Field with Triangular Correlation

Random field with triangular correlation can be added for probabilistic analysis.

The command is:

1 add random field # <.> with triangular correlation correlation_length = <L> ;

where:

• correlation_length lc defines the correlation length of random field such that the correlation

ρ(RVi, RVj) of any two random variables RVi and RVj is given as:

ρ(RVi, RVj) = max{1 – d/lc, 0} (205.41)

Variable d is the Euclidean distance between RVi and RVj , that is calculated from the spatial locations

of random variables within the random field.

For example:

1 add random field # 1 with triangular correlation correlation_length = 10*m;

Adds an triangular correlated random field number 1 with correlation length 10m.
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205.3.4.164 Modeling, Random Field: Adding Random Field with Exponentially Damped Cosine Cor-

relation

Random field with exponentially damped cosine correlation can be added for probabilistic analysis.

The command is:

1 add random field # <.> with exponentially damped cosine correlation ←↩
correlation_length = <L> ;

where:

• correlation_length lc defines the correlation length of random field such that the correlation

ρ(RVi, RVj) of any two random variables RVi and RVj is given as:

ρ(RVi, RVj) = exp(–d/lc) ∗ cos(d/lc) (205.42)

Variable d is the Euclidean distance between RVi and RVj , that is calculated from the spatial locations

of random variables within the random field.

For example:

1 add random field # 1 with exponentially damped cosine correlation ←↩
correlation_length = 10*m;

adds an exponentially damped cosine correlated random field number 1 with correlation length 10m.
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205.3.4.165 Modeling, Random Field: Adding Random Field with Gaussian Correlation

Random field with Gaussian correlation can be added for probabilistic analysis.

The command is:

1 add random field # <.> with Gaussian correlation correlation_length = <L> ;

where:

• correlation_length lc defines the correlation length of random field such that the correlation

ρ(RVi, RVj) of any two random variables RVi and RVj is given as:

ρ(RVi, RVj) = exp(–d2/l2c ) (205.43)

Variable d is the Euclidean distance between RVi and RVj , that is calculated from the spatial locations

of random variables within the random field.

For example:

1 add random field # 1 with Gaussian correlation correlation_length = 10*m;

adds a random field number 1 with Gaussian correlation and correlation length 10m.
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205.3.4.166 Modeling, Random Field: Remove Random Fields

Remove random Fields.

The command is:

1 remove random field # <.> ;

For example:

1 remove random field # 2;

Remove random field 2 from the analysis.
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205.3.4.167 Modeling, Random Field: Adding Random Variable to Random Field

Add random variable to random field.

The command is:

1 add random variable # <.> to random field # <.>;

For example:

1 add random variable # 2 to random field # 1;

Adds random variable 2 to random field 1.
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205.3.4.168 Modeling, Random Field: Remove Random Variable From Random Field

Remove random variable from random field.

The command is:

1 remove random variable # <.> from random field # <.>;

For example:

1 remove random variable # 2 from random field # 1;

Remove random variable 2 from random field 1.
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205.3.4.169 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Expansion

Perform Hermite polynomial chaos Karhunen Loève expansion for random field of any arbitrary marginal

distribution and correlation structure according to Sakamoto and Ghanem (2002).

The command is:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.>;

Where:

• dimension: specifies the number of dimensions of Hermite polynomial chaos to capture the

correlation structure of the random field

• order: specifies the order of Hermite polynomial chaos to capture the marginal distribution of the

random field

For example:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # 1 with ←↩
Hermite polynomial chaos dimension 4 order 3;

Perform the Hermite polynomial chaos Karhunen Loève expansion for random field 1 using Hermite

polynomial chaos of dimension 4 and order 3.
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205.3.4.170 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Expansion with

Inverse Order

Perform Hermite polynomial chaos Karhunen Loève expansion for random field of any arbitrary marginal

distribution and correlation structure according to Sakamoto and Ghanem (2002).

The user can explicitly state the order used in the inversion of underlying Gaussian correlation kernel.

The command is:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> ←↩
correlation_kernel_inverse_order = <.>;

Where:

• dimension: specifies the number of dimensions of Hermite polynomial chaos to capture the

correlation structure of the random field

• order: specifies the order of Hermite polynomial chaos to capture the marginal distribution of the

random field

• correlation_kernel_inverse_order: specifies the order used in the inversion of underlying

Gaussian correlation kernel. For the exact Gaussian kernel inversion, set up correlation_kernel_inverse_order

equal to order of Hermite polynomial chaos. correlation_kernel_inverse_order should not

exceed order of Hermite polynomial chaos. If correlation_kernel_inverse_order is not

stated, by default linear Gaussian kernel inversion, i.e., correlation_kernel_inverse_order

equal to 1, is performed as the approximation of higher order inversion. See Sakamoto and

Ghanem (2002) for more details.

For example:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # 1 with ←↩
Hermite polynomial chaos dimension 4 order 2 ←↩
correlation_kernel_inverse_order = 2;

Perform the Hermite polynomial chaos Karhunen Loève expansion for random field 1 using Hermite

polynomial chaos of dimension 4 and order 2. The 2nd order Gaussian correlation kernel inversion is

adopted.
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205.3.4.171 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Expansion with

Number of FE Elements Larger than Dimension of Hermite Polynomials

Perform Hermite polynomial chaos Karhunen Loève expansion for random field described by either Gaus-

sian or lognormal distribution and Gaussian auto-correlation coefficient function. The PCE coefficients

are computed using Eq. (11) from Sakamoto and Ghanem (2002).

This command should be used when the number of Gauss points (GPs), i.e., integration points, is

much larger than the number of discrete locations needed to solve the eigenproblem of auto-covariance,

that is, than the dimension of Hermite polynomials. This allows to save some computation time. In

such case, the eigenproblem of auto-covariance function will be solved instead of the eigenproblem of

auto-covariance matrix.

Here, ”shear beam” element is used. It has only one GP, in the middle of an element. Hence the

number of GPs is here equal to the number of FE elements. It is easier for a user to input the number

of FE elements than to input the number of GPs.

The command is:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> ←↩
correlation_kernel_inverse_order = 1 number_of_FE_elements = <.>;

Where:

• dimension: specifies the number of dimensions of Hermite polynomial chaos to capture the

correlation structure of the random field, in other words, it is the number of discrete points used

in the solution of the eigenproblem of auto-covariance

• order: specifies the order of Hermite polynomial chaos to capture the marginal distribution of the

random field

• correlation_kernel_inverse_order = 1: does not specify anything and must be equal to 1

• number_of_FE_elements: here, ”shear beam” element is used and it has only one GP, in the

middle of an element, hence the number of FE elements is here equal to the number of GPs, the

user must provide (via command add random variable...) the type of distribution (here, either

Gaussian or lognormal), mean and standard deviation in the middle of each FE element (mean and

standard deviation at discrete points used in the solution of the eigenproblem of auto-covariance

function are interpolated using the values at GPs), they should be sorted for increasing coordinates

in 1D

number_of_FE_elements = dimension is equivalent to:
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1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> ←↩
with Hermite polynomial chaos dimension <.> order <.> ;

and:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> ←↩
with Hermite polynomial chaos dimension <.> order <.> ←↩
correlation_kernel_inverse_order = 1;

For example:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # 1 with ←↩
Hermite polynomial chaos dimension 4 order 2 ←↩
correlation_kernel_inverse_order = 1 number_of_FE_elements = 20;

Perform the Hermite polynomial chaos Karhunen Loève expansion for random field 1 using Hermite

polynomial chaos of dimension 4 and order 2 with number of FE elements 20 (i.e., with 20 GPs, in the

middle of elements).

Command:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> number_of_FE_elements = <.>;

with optional argument number_of_FE_elements cannot be defined because

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> ←↩
correlation_kernel_inverse_order = <.>;

with optional argument correlation_kernel_inverse_order exists already.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.172 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Expansion Using

HDF5 Input

Add a random field with marginal distribution and correlation information defined in a given HDF5

(.hdf5) file. Perform Hermite polynomial chaos Karhunen Loève expansion for the random field.

The command is:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> hdf5_file = "file_name";

Where:

• dimension: specifies the number of dimensions of Hermite polynomial chaos to capture the

correlation structure of the random field

• order: specifies the order of Hermite polynomial chaos to capture the marginal distribution of the

random field

• hdf5_file: specifies the filename of the input HDF5 file that defines the marginal distribution

and correlation information of the random field

The input HDF5 file should contain the following datasets:

• Dataset Random Field contains a single integer, which is the ID of the random field.

• Dataset Marginal Mean is a column vector specifying marginal mean of the random field corre-

sponding to each random variable.

• Dataset Marginal Variance is a column vector specifying marginal variance of the random field for

each random variable.

• Dataset Marginal Distributions is a column vector integers specifying the marginal distribution IDs

of the random field for each random variable. Specifically, the ID is 1 for Gaussian distribution, 2

for Lognormal distribution, 3 for Gamma distribution and 4 for Weibull distribution.

• Dataset Correlation is a 2D array specifying correlation of the random field among random variables.

• Dataset PC Order contains a single integer, which specifies the order of Hermite polynomial chaos

(PC) Karhunen Loève expansion.

• Dataset PC Dimension contains a single integer, which specifies the dimension of Hermite poly-

nomial chaos (PC) Karhunen Loève expansion.
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• Dataset Index to Global Dimension contains a column vector of integers, which specifies the

index of corresponding global PC dimension for each local PC dimension used in the uncertainty

expansion of the random field.

For example:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # 1 with ←↩
Hermite polynomial chaos dimension 4 order 4 hdf5_file = "PC_RF1.hdf5";

Perform the Hermite polynomial chaos Karhunen Loève expansion for random field 1 using Hermite

polynomial chaos of dimension 4 and order 4 with input marginal distribution and correlation information

defined in HDF5 file ”PC RF1.hdf5”.
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205.3.4.173 Modeling, Random Field: Hermite Polynomial Chaos Karhunen Loève Expansion with

Inverse Order Using HDF5 Input

Add a random field with marginal distribution and correlation information defined in a given HDF5

(.hdf5) file. Perform Hermite polynomial chaos Karhunen Loève expansion for the random field.

The user can explicitly state the order used in the inversion of underlying Gaussian correlation kernel.

The command is:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # <.> with ←↩
Hermite polynomial chaos dimension <.> order <.> ←↩
correlation_kernel_inverse_order = <.> hdf5_file = "file_name";

Where:

• dimension: specifies the number of dimensions of Hermite polynomial chaos to capture the

correlation structure of the random field

• order: specifies the order of Hermite polynomial chaos to capture the marginal distribution of the

random field

• correlation_kernel_inverse_order: specifies the order used in the inversion of underlying

Gaussian correlation kernel. For the exact Gaussian kernel inversion, set up correlation_kernel_inverse_order

equal to order of Hermite polynomial chaos. correlation_kernel_inverse_order should not

exceed order of Hermite polynomial chaos. If correlation_kernel_inverse_order is not

stated, by default linear Gaussian kernel inversion, i.e., correlation_kernel_inverse_order

equal to 1, is performed as the approximation of higher order inversion. See Sakamoto and

Ghanem (2002) for more details.

• hdf5_file: specifies the filename of the input HDF5 file that defines the marginal distribution

and correlation information of the random field

The input HDF5 file should contain the following datasets:

• Dataset Random Field contains a single integer, which is the ID of the random field.

• Dataset Marginal Mean is a column vector specifying marginal mean of the random field corre-

sponding to each random variable.

• Dataset Marginal Variance is a column vector specifying marginal variance of the random field for

each random variable.
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• Dataset Marginal Distributions is a column vector integers specifying the marginal distribution IDs

of the random field for each random variable. Specifically, the ID is 1 for Gaussian distribution, 2

for Lognormal distribution, 3 for Gamma distribution and 4 for Weibull distribution.

• Dataset Correlation is a 2D array specifying correlation of the random field among random variables.

• Dataset PC Order contains a single integer, which specifies the order of Hermite polynomial chaos

(PC) Karhunen Loève expansion.

• Dataset PC Dimension contains a single integer, which specifies the dimension of Hermite poly-

nomial chaos (PC) Karhunen Loève expansion.

• Dataset Index to Global Dimension contains a column vector of integers, which specifies the

index of corresponding global PC dimension for each local PC dimension used in the uncertainty

expansion of the random field.

For example:

1 Hermite polynomial chaos Karhunen Loeve expansion to random field # 1 with ←↩
Hermite polynomial chaos dimension 4 order 4 ←↩
correlation_kernel_inverse_order = 3 hdf5_file = "PC_RF1.hdf5";

Perform the Hermite polynomial chaos Karhunen Loève expansion for random field 1 using Hermite poly-

nomial chaos of dimension 4 and order 4. The 3rd order Gaussian correlation kernel inversion is adopted.

The input marginal distribution and correlation information are defined in HDF5 file ”PC RF1.hdf5”.
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205.3.4.174 Modeling, Random Field: Output Hermite Polynomial Chaos Karhunen Loève Expansion

Result

A HDF5 (.hdf5) file contains all the information for Hermite polynomial chaos Karhunen Loève expansion

for random field can be generated.

The command is:

1 generate Hermite polynomial chaos Karhunen Loeve expansion file from random ←↩
field # <.> hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the output hdf5 file.

The generated hdf5 file contains the following datasets:

• Dataset Random Field contains a single integer, which is the ID of the random field.

• Dataset Random Variables contains a column vector of integers, which are the IDs of the random

variables that constitute the random field.

• Dataset Marginal Mean is a column vector specifying marginal mean of the random field corre-

sponding to each random variable.

• Dataset Marginal Variance is a column vector specifying marginal variance of the random field for

each random variable.

• Dataset Marginal Distributions is a column vector integers specifying the marginal distribution IDs

of the random field for each random variable. Specifically, the ID is 1 for Gaussian distribution, 2

for Lognormal distribution, 3 for Gamma distribution and 4 for Weibull distribution.

• Dataset Correlation is a 2D array specifying correlation of the random field among random variables.

• Dataset PC Order contains a single integer, which specifies the order of Hermite polynomial chaos

(PC) Karhunen Loève expansion.

• Dataset PC Dimension contains a single integer, which specifies the dimension of Hermite poly-

nomial chaos (PC) Karhunen Loève expansion.

• Dataset Index to Global Dimension contains a column vector of integers, which specifies the

index of corresponding global PC dimension for each local PC dimension used in the uncertainty

expansion of the random field.
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• Dataset PC is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis. PCij denotes the order of polynomial chaos dimension ξj that contributes to the ith multi-

dimensional Hermite PC basis.

• Dataset PC Coefficients is a 2D array. The jth component of the ith row is the polynomial chaos

coefficient corresponding to the jth PC base as described by PC for the ith random variable specified

in Random Variables.

• Dataset PC Variance is a column vector specifying the variances of Hermite PC basis.

For example:

1 generate Hermite polynomial chaos Karhunen Loeve expansion file from random ←↩
field # 1 hdf5_file = "PC_RF1.hdf5";

Generate HDF5 file named “PC RF1.hdf5” that contains all the information for Hermite polynomial

chaos Karhunen Loève expansion of random field 1.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.175 Modeling, Random Field: Adding Random Field from Hermite Polynomial Chaos Karhunen

Loève Expansion HDF5 File

Add a random field with marginal distribution, correlation information and multi-dimensional Hermite

polynomial chaos (PC) coefficients specified in a given HDF5 (.hdf5) file.

The command is:

1 add random field # <.> with Hermite polynomial chaos Karhunen Loeve expansion ←↩
hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the input hdf5 file.

The input hdf5 file should contain the following datasets:

• Dataset Random Field contains a single integer, that represents the ID of the random field.

• Dataset Random Variables contains a column vector of integers, that are the IDs of the random

variables that constitute the random field.

• Dataset Marginal Mean is a column vector specifying marginal mean of the random field corre-

sponding to each random variable.

• Dataset Marginal Variance is a column vector specifying marginal variance of the random field for

each random variable.

• Dataset Marginal Distributions is a column vector of integers specifying the marginal distribution

IDs of the random field for each random variable. Specifically, the ID is 1 for Gaussian distribution,

2 for Lognormal distribution, 3 for Gamma distribution and 4 for Weibull distribution.

• Dataset Correlation is a 2D array specifying correlation of the random field among random variables.

• Dataset PC Order contains a single integer, that specifies the order of Hermite polynomial chaos

(PC) Karhunen Loève expansion.

• Dataset PC Dimension contains a single integer, that specifies the dimension of Hermite polynomial

chaos (PC) Karhunen Loève expansion.

• Dataset Index to Global Dimension contains a column vector of integers, that specify the index of

corresponding global PC dimension for each local PC dimension used in the uncertainty expansion

of the random field.
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• Dataset PC is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis. PCij denotes the order of polynomial chaos dimension ξj that contributes to the ith multi-

dimensional Hermite PC basis.

• Dataset PC Coefficients is a 2D array. The jth component of the ith row is the polynomial chaos

coefficient corresponding to the jth PC base as described by PC for the ith random variable specified

in Random Variables.

• Dataset PC Variance is a column vector specifying the variances of Hermite PC basis.

For example:

1 add random field # 1 with Hermite polynomial chaos Karhunen Loeve expansion ←↩
hdf5_file = "PC_RF1.hdf5";

Add random field 1 with the marginal distribution, correlation structure and Hermite polynomial

chaos Karhunen Loève expansion information defined in HDF5 file named “PC RF1.hdf5”.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.3.4.176 Modeling, Random Field: Adding Random Field from Marginal Distribution and Correla-

tion

Add a random field with specified marginal distribution and correlation information.

The command is:

1 add random field # <.> with <distribution_type> distribution
2 marginal_mean_file = "file_name"
3 marginal_standard_deviation_file = "file_name"
4 correlation_file = "file_name";

where:

• distribution_type is a string specifying the marginal distribution type of the random field, can

be Gaussian, Lognormal, or Gamma.

• marginal_mean_file is a string specifying the name of a plain text file that contains a single

column of marginal mean of the random field.

• marginal_standard_deviation_file is a string specifying the name of a plain text file that

contains a single column of marginal standard deviation of the random field.

• correlation_file is a string specifying the name of a plain text file that contains a 2D array of

the correlation structure of the random field.
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205.3.4.177 Modeling, Random Field: Add Triple Product of Hermite Polynomial Chaos Basis

Compute and add triple product of Hermite polynomial chaos basis from three different random fields.

The command is:

1 add triple product # <.> with Hermite polynomial chaos from random field (<.>, ←↩
<.>, <.>);

For example:

1 add triple product # 1 with Hermite polynomial chaos from random field (1, 2, 3);

Compute and add triple product #1 with Hermite polynomial chaos basis from random field 1, 2

and 3;
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205.3.4.178 Modeling, Random Field: Add Double Product of Hermite Polynomial Chaos Basis

Compute and add double product of Hermite polynomial chaos basis from two different random fields.

The command is:

1 add double product # <.> with Hermite polynomial chaos from random field (<.>, ←↩
<.>);

For example:

1 add double product # 1 with Hermite polynomial chaos from random field (2, 3);

Compute and add double product #1 with Hermite polynomial chaos basis from random field 2 and

3;
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205.3.4.179 Modeling, Random Field: Generate Triple Product of Hermite Polynomial Chaos Basis

The computation of triple product of Hermite polynomial chaos basis for different random fields is a key

part for stochastic finite element analysis.

A HDF5 (.hdf5) file contains triple product of Hermite polynomial chaos basis for random fields can

be generated.

The command is:

1 generate triple product of Hermite polynomial chaos from random field (<.>, ←↩
<.>, <.>) hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the output HDF5 file.

The generated HDF5 file contains the following datasets:

• Dataset PC1 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC1ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC1.

• Dataset PC1 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC1.

• Dataset PC1 Variance is a column vector specifying the variances of basis PC1.

• Dataset PC2 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC2ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC2.

• Dataset PC2 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC2.

• Dataset PC2 Variance is a column vector specifying the variances of basis PC2.

• Dataset PC3 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC3ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC3.

• Dataset PC3 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC3.
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• Dataset PC3 Variance is a column vector specifying the variances of basis PC3.

• Dataset Triple Product is a column vector containing the non-zero triple products of polynomial

chaos basis from PC1, PC2 and PC3.

• Dataset Triple Product PC1 Index is a column vector containing the indexes of polynomial chaos

basis from PC1 that contributes to the non-zero triple products in dataset Triple Product.

• Dataset Triple Product PC2 Index is a column vector containing the indexes of polynomial chaos

basis from PC2 that contributes to the non-zero triple products in dataset Triple Product.

• Dataset Triple Product PC3 Index is a column vector containing the indexes of polynomial chaos

basis from PC3 that contributes to the non-zero triple products in dataset Triple Product.

For example:

1 generate triple product of Hermite polynomial chaos from random field (1, 2, 3) ←↩
hdf5_file = "Triple_product_4(3)_4(3)_4(3).hdf5";

Compute the triple product of Hermite polynomial chaos basis of random field 1, 2 and 3 and write

all the results into a HDF5 file named ”Triple product 4(3) 4(3) 4(3).hdf5”;
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205.3.4.180 Modeling, Random Field: Generate Double Product of Hermite Polynomial Chaos Basis

The computation of double product of Hermite polynoial chaos basis for different random fields is a key

part for stochastic finite element analysis.

A HDF5 (.hdf5) file contains double product of Hermite polynomial chaos basis for random fields

can be generated.

The command is:

1 generate double product of Hermite polynomial chaos from random field (<.>, ←↩
<.>) hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the output HDF5 file.

The generated HDF5 file contains the following datasets:

• Dataset PC1 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC1ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC1.

• Dataset PC1 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC1.

• Dataset PC1 Variance is a column vector specifying the variances of basis PC1.

• Dataset PC2 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC2ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC2.

• Dataset PC2 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC2.

• Dataset PC2 Variance is a column vector specifying the variances of basis PC2.

• Dataset Double Product is a column vector containing the non-zero double products of polynomial

chaos basis from PC1 and PC2.

• Dataset Double Product PC1 Index is a column vector containing the indexes of polynomial chaos

basis from PC1 that contributes to the non-zero double products in dataset Double Product.
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• Dataset Double Product PC2 Index is a column vector containing the indexes of polynomial chaos

basis from PC2 that contributes to the non-zero double products in dataset Double Product.

For example:

1 generate double product of Hermite polynomial chaos from random field (1, 2) ←↩
hdf5_file = "doubleproduct_153(2)_150(1).hdf5";

Compute the triple product of Hermite polynomial chaos basis of random field 1 and 2 and write all

the results into a HDF5 file named ”doubleproduct 153(2) 150(1).hdf5”;
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205.3.4.181 Modeling, Random Field: Add Triple Product of Hermite Polynomial Chaos Basis Using

HDF5 Input

Add triple product of Hermite polynomial chaos basis using HDF5 input.

The command is:

1 add triple product # <.> from hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the input HDF5 file.

The input HDF5 file should contain the following datasets:

• Dataset PC1 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC1ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC1.

• Dataset PC1 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC1.

• Dataset PC1 Variance is a column vector specifying the variances of basis PC1.

• Dataset PC2 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC2ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC2.

• Dataset PC2 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC2.

• Dataset PC2 Variance is a column vector specifying the variances of basis PC2.

• Dataset PC3 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC3ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC3.

• Dataset PC3 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC3.

• Dataset PC3 Variance is a column vector specifying the variances of basis PC3.

• Dataset Triple Product is a column vector containing the non-zero triple products of polynomial

chaos basis from PC1, PC2 and PC3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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• Dataset Triple Product PC1 Index is a column vector containing the indexes of polynomial chaos

basis from PC1 that contributes to the non-zero triple products in dataset Triple Product.

• Dataset Triple Product PC2 Index is a column vector containing the indexes of polynomial chaos

basis from PC2 that contributes to the non-zero triple products in dataset Triple Product.

• Dataset Triple Product PC3 Index is a column vector containing the indexes of polynomial chaos

basis from PC3 that contributes to the non-zero triple products in dataset Triple Product.

For example:

1 add triple product # 1 from hdf5_file = "tripleproduct_3(2)_153(2)_153(2).hdf5";

Add triple product #1 using HDF5 input file named ”tripleproduct 3(2) 153(2) 153(2).hdf5”.
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205.3.4.182 Modeling, Random Field: Add Double Product of Hermite Polynomial Chaos Basis Using

HDF5 Input

Add double product of Hermite polynomial chaos basis using HDF5 input.

The command is:

1 add double product # <.> from hdf5_file = "file_name";

where:

• file_name is a string that specifies the name of the input HDF5 file.

The input HDF5 file should contain the following datasets:

• Dataset PC1 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC1ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC1.

• Dataset PC1 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC1.

• Dataset PC1 Variance is a column vector specifying the variances of basis PC1.

• Dataset PC2 is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC)

basis of the first random field. PC2ij denotes the order of polynomial chaos dimension ξj that

contributes to the ith basis of PC2.

• Dataset PC2 Index to Global Dimension contains a column vector of integers, which specifies the

global dimension index of each local PC dimension in basis PC2.

• Dataset PC2 Variance is a column vector specifying the variances of basis PC2.

• Dataset Double Product is a column vector containing the non-zero double products of polynomial

chaos basis from PC1 and PC2.

• Dataset Double Product PC1 Index is a column vector containing the indexes of polynomial chaos

basis from PC1 that contributes to the non-zero double products in dataset Double Product.

• Dataset Double Product PC2 Index is a column vector containing the indexes of polynomial chaos

basis from PC2 that contributes to the non-zero double products in dataset Double Product.

For example:
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1 add double product # 1 from hdf5_file = "doubleproduct_153(2)_150(1).hdf5";

Add double product #1 using HDF5 input file named ”doubleproduct 153(2) 150(1).hdf5”.
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205.3.4.183 Modeling, Solid-Fluid Interaction: Adding Solid-Fluid Interface

For solid-fluid interaction analysis, solid fluid interface should be defined and added to the analysis

domain.

The command is:

1 add solid fluid interface <string>

where:

• <string> specifies the name of the boundary of fluid domain that is solid fluid interface. It is

noted that the boundary name should be consistent with the definition in the OpenFOAM input

file at constant/polyMesh/boundary. More information about the organization and format of

OpenFOAM input files can be found at OpenFOAM User Guide (OpenCFD Ltd, 2019).

For example:

1 add solid fluid interface "bottom_fluid_surface";

Adds fluid boundary named “bottom fluid surface” as one of the interface boundaries between solid

domain and fluid domain.
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205.3.4.184 Modeling, Solid-Fluid Interaction: Defining Solid-Fluid Interface, ESSI Element Nodes

For solid-fluid interaction analysis, solid fluid interface contains information about the Real-ESSI solid

interface and OpenFOAM fluid interface. The Real-ESSI solid interface defines Real-ESSI interface nodes

and faces.

Real-ESSI interface nodes can be defined as the following:

1 define solid fluid interface ESSI nodes <string>;

where:

• <string> specifies the plain text file name that contains the information about Real-ESSI interface

nodes.

The format of such text file containing Real-ESSI interface nodes information is:

• Comment line starts with “//”

• Each line defining a Real-ESSI interface node has four entries separated by space(s):

– 1st entry: Real-ESSI node ID;

– 2nd entry: x coordinate of Real-ESSI interface node;

– 3rd entry: y coordinate of Real-ESSI interface node;

– 4th entry: z coordinate of Real-ESSI interface node;

For example:

1 define solid fluid interface ESSI nodes "ESSI_nodes_info.fei";

Defines Real-ESSI nodes at solid fluid interface with file named “ESSI nodes info.fei”. An example

file of “ESSI nodes info.fei” is provided below:

1 //=====================================================
2 // Files contains information about ESSI nodes at solid fluid interface, have 4 ←↩

columns
3 // 1st column: ESSI node ID
4 // 2nd column: coordinate x
5 // 3rd column: coordinate y
6 // 4th column: coordinate z
7 //======================================================
8 1 0.00 0.00 0.00
9 12 30.00 0.00 0.00

10 33 0.00 0.00 10.00
11 ...
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205.3.4.185 Modeling, Solid-Fluid Interaction: Defining Solid-Fluid Interface, ESSI Element Faces

For solid-fluid interaction analysis, solid fluid interface contains information about Real-ESSI solid inter-

face and OpenFOAM fluid interface. The Real-ESSI solid interface defines Real-ESSI interface nodes

and faces.

Real-ESSI interface faces are quads that can be defined as:

1 define solid fluid interface ESSI faces <string>;

where:

• <string> specifies the plain text file name that contains the information about Real-ESSI interface

elements faces.

The format of such text file containing Real-ESSI interface element faces information is:

• Comment line starts with “//”

• Each line defining a Real-ESSI interface element face, i.e., a face of a brick element, in effect a

quad consisting of four Real-ESSI interface nodes. Each line has six entries separated by spaces:

– 1st entry: Real-ESSI interface face ID;

– 2nd entry: Real-ESSI element ID that contains the Real-ESSI interface face;

– 3rd entry: Real-ESSI node ID for Real-ESSI interface face, i.e., a brick face, a quad, vertex

1;

– 4th entry: Real-ESSI node ID for Real-ESSI interface face, i.e., a brick face, a quad, vertex 2;

– 5th entry: Real-ESSI node ID for Real-ESSI interface face, i.e., a brick face, a quad, vertex 3;

– 6th entry: Real-ESSI node ID for Real-ESSI interface face, i.e., a brick face, a quad, vertex 4;

It is noted that the ordering of the four vertex Real-ESSI nodes is very important. The ordering

should be taken such that the face normal vector points outwards to the fluid domain following

the convention of right hand rule.

For example:

1 define solid fluid interface ESSI faces "ESSI_faces_info.fei";

Defines Real-ESSI faces at solid fluid interface with file named “ESSI faces info.fei”. An example

file of “ESSI faces info.fei” is provided below:
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1 //================================================
2 // Files contains information about ESSI faces (quads) at solid fluid ←↩

interface, have 6 columns
3 // 1st column: ESSI face ID
4 // 2nd column: ESSI Element ID that ESSI face belongs to
5 // 3rd column: ESSI node ID for quad vertex 1
6 // 4th column: ESSI node ID for quad vertex 2
7 // 5th column: ESSI node ID for quad vertex 3
8 // 6th column: ESSI node ID for quad vertex 4
9 //================================================

10 1 276 1 25 272 5
11 2 277 25 26 273 272
12 3 278 26 27 274 273
13 4 279 27 28 275 274
14 ...
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205.3.4.186 Modeling, Solid-Fluid Interaction: Defining Solid-Fluid Interface FOAM Nodes

For solid-fluid interaction analysis, solid fluid interface contains information about the Real-ESSI solid

interface and OpenFOAM fluid interface. The OpenFOAM fluid interface needs to define OpenFOAM

interface nodes and faces.

OpenFOAM interface nodes can be defined as the following:

1 define solid fluid interface FOAM nodes <string>;

where:

• <string> specifies the plain text file name that contains the information about OpenFOAM

interface nodes.

The format of such text file containing OpenFOAM interface nodes information is:

• Comment line starts with “//”

• Each line defining a OpenFOAM interface node has four entries separated by space(s):

– 1st entry: OpenFOAM node ID;

– 2nd entry: x coordinate of OpenFOAM interface node;

– 3rd entry: y coordinate of OpenFOAM interface node;

– 4th entry: z coordinate of OpenFOAM interface node;

For example:

1 define solid fluid interface FOAM nodes "foam_nodes_info.fei";

Defines OpenFOAM nodes at solid fluid interface with file named “foam nodes info.fei”. An example

file of “foam nodes info.fei” can be:

1 //====================================================
2 // Files contains information about Foam nodes at solid fluid interface, have 4 ←↩

columns
3 // 1st column: Foam node ID
4 // 2nd column: coordinate x
5 // 3rd column: coordinate y
6 // 4th column: coordinate z
7 //====================================================
8 1 0.00 0.00 0.00
9 12 30.00 0.00 0.00

10 33 0.00 0.00 10.00
11 ...
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205.3.4.187 Modeling, Solid-Fluid Interaction: Defining Solid-Fluid Interface FOAM Faces

For solid-fluid interaction analysis, solid fluid interface contains information about the Real-ESSI solid

interface and OpenFOAM fluid interface. The OpenFOAM fluid interface needs to define OpenFOAM

interface nodes and faces.

OpenFOAM interface faces are quads that can be defined as the following:

1 define solid fluid interface FOAM faces <string>;

where:

• <string> specifies the plain text file name that contains the information about OpenFOAM

interface faces.

The format of such text file containing OpenFOAM interface faces information is:

• Comment line starts with “//”

• Each line defining a OpenFOAM interface face, i.e., a quad consisting of four OpenFOAM interface

nodes. Each line has five entries separated by space(s):

– 1st entry: OpenFOAM face ID;

– 2nd entry: OpenFOAM node ID for OpenFOAM interface face, i.e., a quad, vertex 1;

– 3rd entry: OpenFOAM node ID for OpenFOAM interface face, i.e., a quad, vertex 2;

– 4th entry: OpenFOAM node ID for OpenFOAM interface face, i.e., a quad, vertex 3;

– 5th entry: OpenFOAM node ID for OpenFOAM interface face, i.e., a quad, vertex 4;

It is noted that the ordering of the four vertex OpenFOAM nodes is very important. The ordering

should be consistent with the OpenFOAM faces definition in the OpenFOAM input file at constan-

t/polyMesh/faces. Detailed information about the organization and format of OpenFOAM input

files can be found at OpenFOAM User Guide (OpenCFD Ltd, 2019).

For example:

1 define solid fluid interface FOAM faces "foam_faces_info.fei";

Defines OpenFOAM faces at solid fluid interface with file named “foam faces info.fei”. An example

file of “foam faces info.fei” can be:
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1 //============================================
2 // Files contains information about Foam faces (quads) at solid fluid ←↩

interface, have 5 columns
3 // 1st column: Foam face ID
4 // 2rd column: Foam node ID for quad vertex 1
5 // 3th column: Foam node ID for quad vertex 2
6 // 4th column: Foam node ID for quad vertex 3
7 // 5th column: Foam node ID for quad vertex 4
8 //============================================
9 50 8 0 4 404

10 51 9 8 404 405
11 52 10 9 405 406
12 53 11 10 406 407
13 54 12 11 407 408
14 55 13 12 408 409
15 ...
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205.3.5 Simulation
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 1101 of 3287

205.3.5.1 Simulation, Solvers: Sequential Solvers

1 define solver sequential <profilespd|umfpack >;

Available sequential solvers are:

• ProfileSPD is used for symmetric matrices

• UMFPack is used for non-symmetric matrices and indefinite matrices

NOTE: USE THE SAME SOLVER FOR EACH ANALYSIS, FOR ALL LOAD STAGES!

Use the same solver, parallel or sequential, with same solver options, for all loading stages in an analysis.

System matrices, mass, damping and stiffness and packaged in a different way for different solvers,

and different solver options, so changing solver type between different stages will affect access to those

matrices, and will affect results...
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205.3.5.2 Simulation, Solvers: Parallel Solvers

1 define solver parallel petsc <petsc_options> ;

NOTE: USE THE SAME SOLVER FOR EACH ANALYSIS, FOR ALL LOAD STAGES!

Use the same solver, parallel or sequential, with same solver options, for all loading stages in an analysis.

System matrices, mass, damping and stiffness and packaged in a different way for different solvers,

and different solver options, so changing solver type between different stages will affect access to those

matrices, and will affect results...

Direct Solvers

Command Example for a direct solver:

1 define solver parallel petsc "-ksp_type preonly -pc_type lu" ;
2 define solver parallel petsc "-pc_type lu -pc_factor_mat_solver_package mumps" ;
3 define solver parallel petsc "-pc_type lu -pc_factor_mat_solver_package ←↩

superlu" ;

As shown in the Command Example, ”-ksp type” represents the solver type, ”-pc type” represents

the preconditioner types. By defining ”preonly”, petsc will use the direct solver, and its type is defined

in the preconditioner types. In addition, ”lu” represents LU factorization in the direct solver. The solver

package ”mumps” is designed for finite-element methods, and can interleave Gauss elimination process

with the assembly process of global stiffness from the local element stiffness matrices. It is also noted

that ”mumps” can solve symmetric indefinite matrices.

The solver package ”superlu” pivots the large-scale sparse matrices to numerous small-scale dense

matrices for acceleration.

Iterative Solvers

Command Example for an iterative solver:

1 define solver parallel petsc "-ksp_type gmres -pc_type jacobi";
2 define solver parallel petsc "-ksp_type cg -pc_type ilu";

PETSc contains many iterative solvers and preconditioner for large-scale problems, and they are all

available in with Real-ESSI.

Tables 205.1 and 205.2 on next pages present a full set of options for iterative solvers and precondi-

tioners.
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Table 205.1: Available Parallel Iterative Solvers

Solver Name Method

”richardson” Richardson

”chebyshev” Chebyshev

”cg” Conjugate Gradient

”bicg” BiConjugate Gradient

”gmres” Generalized Minimal Residual

”fgmres” Flexible Generalized Minimal Residual

”dgmres” Deflated Generalized Minimal Residual

”gcr” Generalized Conjugate Residual

”bcgs” BiCGSTAB

”cgs” Conjugate Gradient Squared

”tfqmr” Transpose-Free Quasi-Minimal Residual (1)

”tcqmr” Transpose-Free Quasi-Minimal Residual (2)

”cr” Conjugate Residual

”lsqr” Least Squares Method

Table 205.2: Available Parallel Iterative Preconditioners

Preconditioner Name Method

jacobi Jacobi

bjacobi Block Jacobi

sor SOR (and SSOR)

eisenstat SOR with Eisenstat trick

icc Incomplete Cholesky

ilu Incomplete LU

asm Additive Schwarz

gasm Generalized Additive Schwarz

gamg Algebraic Multigrid

bddc Balancing Domain Decomposition by Constraints

ksp Linear solver

composite Combination of preconditioners
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For more available solver options please consult the PETSc documentation (http://www.mcs.anl.

gov/petsc/petsc-current/docs/manual.pdf).
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205.3.5.3 Simulation: Static Solution Advancement

1 simulate <.> steps using static algorithm;
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205.3.5.4 Simulation: Dynamic Solution Advancement with the Constant Time Step

1 simulate <.> steps using transient algorithm time_step = <T>;
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205.3.5.5 Simulation: Dynamic Solution Advancement with Variable Time Step

1 simulate <.> steps using variable transient algorithm
2 time_step = <T>
3 minimum_time_step = <.>
4 maximum_time_step = <.>
5 number_of_iterations = <.>
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205.3.5.6 Simulation: Generalized Eigenvalue Analysis

At any given point in an analysis a generalized eigenvalue analysis of the system can be performed, based

on the current mass and tangent stiffness matrices. The command to do this is:

1 simulate using eigen algorithm number_of_modes = <.>;

The first number of modes eigenvalues are displayed on screen after the analysis is performed. If

more eigenvalues are requested than degrees-of-freedom the system has, the excess reported values are

set to NaN (not a number).

Description of output for nodes of different dof types can be found in section 206.5.6.
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205.3.5.7 Simulation: Displacement Control

1 define static integrator displacement_control using node # <.> dof DOFTYPE ←↩
increment <L>;
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205.3.5.8 Simulation: Load, Control, Factor Increment

1 define load factor increment <.>;
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205.3.5.9 Simulation: Dynamic Integrator, Newmark Method

1 define dynamic integrator Newmark with gamma = <.> beta = <.>;

See also the list of the reserved keywords from Section 205.7 on page 1163.
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205.3.5.10 Simulation: Dynamic Integrator, Hilber Hughes Taylor, HHT, α Method

1 define dynamic integrator Hilber_Hughes_Taylor with alpha = <.>;

See also the list of the reserved keywords from Section 205.7 on page 1163.
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205.3.5.11 Simulation: Absolute Convergence Criteria

1 define convergence test
2 < Absolute_Norm_Unbalanced_Force | Absolute_Norm_Displacement_Increment >
3 tolerance = <.>
4 maximum_iterations = <.>;

This command sets the convergence criteria for global iterative solvers. If the system-of-equation to

be solved is

KT∆U = ∆R

where KT is the current tangent stiffness operator/matrix, ∆U is the displacement increment, and ∆R

is the residual. The convergence criteria is based on:

• The l2 norm of the displacement increment: ∥∆U∥2 < TOL.

• The l2 norm of the unbalanced force: ∥∆R∥2 < TOL.

The convergence test should be defined before the algorithms.
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205.3.5.12 Simulation: Average Convergence Criteria

1 define convergence test ←↩
<Average_Norm_Unbalanced_Force|Average_Norm_Displacement_Increment>

2 tolerance = <.>
3 maximum_iterations = <.> ;

This command sets the convergence criteria for global iterative solvers. If the system-of-equation to

be solved is

KT∆U = ∆R

Where KT is the current tangent stiffness operator (dynamic tangent for dynamic analysis), ∆U is

the displacement increment, and ∆R is the residual. The convergence criteria can be based off

• The average l2 norm of the displacement increment: ∥∆U∥2/
√

N < TOL.

• The average l2 norm of the unbalanced force: ∥∆R∥2/
√

N < TOL.

where N is the number of DOFs in the system-of-equations.

The convergence test should be defined before the algorithms.
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205.3.5.13 Simulation: Relative Convergence Criteria

1 define convergence test ←↩
<Relative_Norm_Unbalanced_Force|Relative_Norm_Displacement_Increment>

2 tolerance = <.>
3 minimum_absolute_tolerance = <.>
4 maximum_iterations = <.> ;

This command sets the convergence criteria for global iterative solvers. If the system-of-equation to

be solved is

KT∆U = ∆R

Where KT is the current tangent stiffness operator (dynamic tangent for dynamic analysis), ∆U is

the displacement increment, and ∆R is the residual. The convergence criteria can be based on

• The relative l2 norm of the displacement increment: ∥∆U∥2/∥U0∥2 < TOL or ∥∆U∥2 < MIN ABS TOL.

• The relative l2 norm of the unbalanced force: ∥∆R∥2/∥R0∥2 < TOL or ∥∆R∥2 < MIN ABS TOL.

Where,

R0 is the external force in the beginning

U0 is the solution after the first iteration.

Since U0 is zero before the first iteration, the relative norm of the displacement increment in the first

iteration would be equal to 1.

The convergence test should be defined before the algorithms.
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205.3.5.14 Simulation: Solution Algorithms

1 define algorithm < With_no_convergence_check | linear_elastic | Newton | ←↩
Modified_Newton | Newton_With_LineSearch >;

1 define algorithm < Newton_With_Subincrement >
2 using minimum_time_step = <.> ;

If the current specified load factor ∆λ (for static) or time step ∆t (for dynamic) fails to achieve the

convergence in the specified maximum number of iterations, the algorithm Newton_With_Subincrement

will subdivide the current step into two sub steps of load increment ∆λnew = ∆λ/2 (for static) or time

step ∆tnew = ∆t/2 (for dynamic).

• minimum_time_step specifies the allowed minimum load factor ∆λ (for static) or time step ∆t

(for dynamic), that the algorithm should sub-divide to achieve convergence. If the subdivided step

size becomes less than the minimum_time_step, the algorithm returns failure to convergence.

Note: If any Newton algorithm is used, the convergence test should be defined before the algorithms.
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205.3.5.15 Simulation: Constitutive Integration Algorithm

Starting with version 03-NOV-2015, NDMaterial class of materials require explicit specification of the

constitutive integration algorithm. This is done with the command:

1 define NDMaterial constitutive integration algorithm Forward_Euler;

1 define NDMaterial constitutive integration algorithm Forward_Euler_Subincrement
2 number_of_subincrements = <.> ;

1 define NDMaterial constitutive integration algorithm Backward_Euler
2 yield_function_relative_tolerance = <.>
3 stress_relative_tolerance = <.>
4 maximum_iterations = <.>;

1 define NDMaterial constitutive integration algorithm Backward_Euler_Subincrement
2 yield_function_relative_tolerance = <.>
3 stress_relative_tolerance = <.>
4 maximum_iterations = <.>
5 allowed_subincrement_strain = <.> ;

The command specifies the method, tolerances and maximum number of iterations used to do

material point integrations. The parameters are:

• number_of_subincrements Specify the number of subincrements in forward Euler subincrement

algorithm.

• yield_function_relative_tolerance Specify the relative tolerance of the yield surface value

in the family of backward Euler algorithm.

• stress_relative_tolerance Specify the relative stress tolerance in the family of backward Euler

algorithm. The stress increment is within this tolerance for each step unless the integration fails.

Frobenius norm is used to calculate the stress norm.

• maximum_iterations Specify the maximum number of iterations in backward Euler algorithm.

• allowed_subincrement_strain defines the maximum value of allowed strain increment in back-

ward Euler subincrement method. If one of strain component increments is greater than the user-

defined allowed strain increment, strain increment will be divided into subincrements based on the

allowed subincrement. For example, if the strain_increment is 0.05, and the allowed_subincrement_strain

is 0.01. The number of subincrements will be 0.05/0.01 = 5. A small allowed subincrement leads

to more accurate results, however, it takes more time. For the simple nonlinear materials, like
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von Mises linear hardening, the allowed subincrement can be as big as 5 percent. For the compli-

cated nonlinear materials, like hyperbolic Drucker-Prager Armstrong-Frederick hardening material,

the allowed subincrement should be much smaller in the range of 1E-4.
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205.3.5.16 Simulation: Status Check

All simulate commands set the variable SIMULATE_EXIT_FLAG automatically upon exit. This flag

can be used to check whether the simulation concluded normally (SIMULATE_EXIT_FLAG = 0), failed

(SIMULATE_EXIT_FLAG < 0), or finished with warnings (SIMULATE_EXIT_FLAG > 0).

For example, the following simulations will fail.

1 atmospheric_pressure = 101325*Pa;
2

3 pstart = 3000*kPa;
4

5 //SAniSand 2004 calibration for Toyoura Sand.
6 add material # 1 type sanisand2004
7 mass_density = 2100.0 * kg / m^3
8 e0 = 0.735
9 sanisand2004_G0 = 125. poisson_ratio = 0.05

10 sanisand2004_Pat = atmospheric_pressure
11 sanisand2004_p_cut = 0.1*atmospheric_pressure
12 sanisand2004_Mc = 1.25 sanisand2004_c = 0.712
13 sanisand2004_lambda_c = 0.019 sanisand2004_xi = 0.7
14 sanisand2004_ec_ref = 0.934 sanisand2004_m = 0.01
15 sanisand2004_h0 = 7.05 sanisand2004_ch = 0.968
16 sanisand2004_nb = 1.1 sanisand2004_A0 = 0.704
17 sanisand2004_nd = 3.5 sanisand2004_z_max = 4.
18 sanisand2004_cz = 600.
19 initial_confining_stress = 1*Pa ;
20

21 simulate constitutive testing DIRECT_STRAIN
22 use material # 1
23 scale_factor = 1.
24 series_file = "increments.txt"
25 sigma0 = ( -pstart*kPa , -pstart*kPa , -pstart*kPa , 0*Pa , 0*Pa , 0*Pa )
26 verbose_output = 1;
27

28

29 if(SIMULATE_EXIT_FLAG == 0)
30 {
31 print "All Good!";
32 }
33 else
34 {
35 print "Something went wrong. Error code = ";
36 print SIMULATE_EXIT_FLAG;
37 }
38

39 bye;

The above simulation fails because the integration method for the constitutive model is not set (see

205.3.5.15). Therefore, the second branch of the ‘if’ statement will execute.
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205.3.5.17 Simulation: Save State

Save ESSI system state to a file, to prepare for a restart.

1 save model;

This command will save the state of a model, an ESSI system, in file. Filename for the save file will

be created from a model name, loading stage name, and current loading time.

For example, for a model that contains the following commands in the input file:

1 model name "ESSI_model";
2 . . .
3 new loading stage "Loading_stage_2";
4 . . .
5 simulate 100 steps using transient algorithm time_step = 0.005*s;
6

7 save model;

will be saved in file with the following name:

1 ESSI_model_Loading_stage_2_at_time_0.5second_RESTART.essi

since there were 100 steps with ∆t = 0.005s, and that advances the solution to t = 0.5s.
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205.3.5.18 Simulation: Restart Simulation

Restart simulation after stage or a step, from a saved ESSI system model file.

1 restart model using file "filename";

Here, ESSI system model is saved in a file filename, see command for saving model on page 1120.

For example, to restart simulation from a saved file described above, restart will be initiated in a new

input file by using the following command:

1 restart model using file ←↩
"ESSI_model_Loading_stage_2_at_time_0.5second_RESTART.essi";

All the results from previous loading stages will be saved in the restart file. From here on, analyst can

start new loading stages, etc.
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205.3.5.19 Simulation: Return Value for simulate Command

Simulate command, simulate, returns status of simulation progress. For each successful step, simulate

returns value 0 while for a failed step it returns –1. This is useful as analyst can control solution process,

and change algorithm if predefined algorithm fails to converge.

For example the example if listing 205.8, simulation part of a larger examples, will perform a change

of stepping algorithm from the load control to displacement control upon failure of load control to

converge.

1 step=0;
2 Nsteps = 100;
3 define load factor increment 0.01; // Start with load-control
4

5 simulation_status=simulate 1 steps using static algorithm;
6

7 while (step<(Nsteps-1))
8 {
9 if(simulation_status>=0) // Converged, continue using load-control

10 {
11 simulation_status=simulate 1 steps using static algorithm;
12 }
13 else // Not converged, so change to displacement-control
14 {
15 define static integrator displacement_control using node # 1 dof ux ←↩

increment 1E-3*m;
16 simulate 1 steps using static algorithm;
17 }
18 step=step+1;
19 }

Figure 205.8: Interactive simulation control using feedback (return value) from the simulate command.

It should be noted that the idea for interactive control of simulation process comes from FEAP

(Zienkiewicz and Taylor, 1991b) and later from OpenSEES (Mazzoni et al., 2002) where it was imple-

mented with early extension of OpenSees command language with using Tcl in early 2000s.

An example of the above feedback mechanism is provided below
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 205.3. DOMAIN SPECIFIC LANGUAGE (DSL), . . . page: 1123 of 3287

1 model name "vm";
2 add material # 1 type vonMises
3 mass_density = 0.0*kg/m^3
4 elastic_modulus = 2E7*N/m^2
5 poisson_ratio = 0.0
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 0*Pa
8 isotropic_hardening_rate = 0*Pa;
9 // define the node:

10 add node # 1 at (0*m,0*m,1*m) with 3 dofs;
11 add node # 2 at (1*m,0*m,1*m) with 3 dofs;
12 add node # 3 at (1*m,1*m,1*m) with 3 dofs;
13 add node # 4 at (0*m,1*m,1*m) with 3 dofs;
14 add node # 5 at (0*m,0*m,0*m) with 3 dofs;
15 add node # 6 at (1*m,0*m,0*m) with 3 dofs;
16 add node # 7 at (1*m,1*m,0*m) with 3 dofs;
17 add node # 8 at (0*m,1*m,0*m) with 3 dofs;
18 // Define the element.
19 add element # 1 type 8NodeBrick using 2 Gauss points each direction with nodes ←↩

(1, 2, 3, 4, 5, 6, 7, 8) use material # 1;
20

21 new loading stage "shearing";
22 //fix the bottom totally
23 fix node # 5 dofs all;
24 fix node # 6 dofs all;
25 fix node # 7 dofs all;
26 fix node # 8 dofs all;
27 // Fix the other 2 directions on the top.
28 fix node # 1 dofs uy uz ;
29 fix node # 2 dofs uy uz ;
30 fix node # 3 dofs uy uz ;
31 fix node # 4 dofs uy uz ;
32 add load # 101 to node # 1 type linear Fx = 40 * kN;
33 add load # 102 to node # 2 type linear Fx = 40 * kN;
34 add load # 103 to node # 3 type linear Fx = 40 * kN;
35 add load # 104 to node # 4 type linear Fx = 40 * kN;
36 define solver UMFPack;
37 //define algorithm With_no_convergence_check ←↩

;Norm_Displacement_Increment;Norm_Unbalance
38 define convergence test Absolute_Norm_Displacement_Increment
39 tolerance = 1E-3
40 maximum_iterations = 5
41 ;
42 define algorithm Newton;
43 define NDMaterial constitutive integration algorithm Backward_Euler
44 yield_function_relative_tolerance = 1E-7
45 stress_relative_tolerance = 1E-7
46 maximum_iterations = 100;
47

48 // *****************************************************************************
49 step=0;
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50 Nsteps = 10;
51 define load factor increment 1/Nsteps; // Start with load-control
52 // *****************************************************************************
53 // Simulate with status check:
54 // *****************************************************************************
55 mystatus=simulate 1 steps using static algorithm;
56 while (step<(Nsteps-1)){
57 step=step+1;
58 if(mystatus>=0){ // Converged, so continue using load-control
59 mystatus=simulate 1 steps using static algorithm;
60 }
61 else{ // Not converged, so change to displacement-control
62 define static integrator displacement_control using node # 1 dof ux ←↩

increment 1E-3*m ;
63 simulate 1 steps using static algorithm;
64 }
65 }
66

67 bye;

Resulting terminal output, showing a switch between two solution control mechanisms is provided

below:

1

2

3

4 The Finite Element Interpreter
5

6 MS ESSI
7 Earthquake Soil Structure Interaction Simulator
8

9 Sequential processing mode.
10

11 Version Name : Academic Version. Release date: Apr 14 2017 at 17:19:55. Tag: ←↩
c24e557a56

12 Version Branch : yuan
13 Compile Date : Apr 15 2017 at 20:28:11
14 Compile User : yuan
15 Compile Sysinfo: cml01 4.4.0-72-generic x86_64 GNU/Linux
16 Runtime User : Runtime Sysinfo: Time Now : Apr 15 2017 at 21:15:40
17

18 Static startup tips:
19 * Remember: Every command ends with a semicolon ';'.
20 * Type 'quit;' or 'exit;' to finish.
21 * Run 'essi -h' to see available command line options.
22

23 Including: "main.fei"
24

25

26 Model name is being set to "vm"
27
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28

29

30 Starting new stage: shearing
31

32 changing previous_stage_name from to shearing
33 Setting set_constitutive_integration_method = 2
34

35 Starting sequential static multi-step analysis
36 ====================================================================================================
37 Creating analysis ←↩

model........................................................................Pass!
38 Checking constraint ←↩

handler....................................................................Pass!
39 Checking ←↩

numberer..............................................................................Pass!
40 Checking analysis ←↩

algorithm....................................................................Pass!
41 Checking system of equation ←↩

handler............................................................Pass!
42 Checking static integration ←↩

handler............................................................Pass!
43

44

45 Writing Initial Conditions and (0) - Outputting mesh.
46

47 Static Analysis: [ 1/1 ]
48 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
49 Absolute Norm deltaF: 1.6396e-12
50 Absolute Norm deltaU: 0.0032
51 Average Norm deltaF: 8.1981e-13
52 Average Norm deltaU: 0.0016
53 Relative Norm deltaF: 2.0495e-16
54 Relative Norm deltaU: 0.0032
55 [iteration 2 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
56 Absolute Norm deltaF: 4.5475e-13
57 Absolute Norm deltaU: 5.2683e-19
58 Average Norm deltaF: 2.2737e-13
59 Average Norm deltaU: 2.6341e-19
60 Relative Norm deltaF: 5.6843e-17
61 Relative Norm deltaU: 1.6463e-16
62

63 > Analysis End ←↩
-------------------------------------------------------------------------------

64

65 Starting sequential static multi-step analysis
66 ====================================================================================================
67 Creating analysis ←↩

model........................................................................Pass!
68 Checking constraint ←↩
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handler....................................................................Pass!
69 Checking ←↩

numberer..............................................................................Pass!
70 Checking analysis ←↩

algorithm....................................................................Pass!
71 Checking system of equation ←↩

handler............................................................Pass!
72 Checking static integration ←↩

handler............................................................Pass!
73

74 Static Analysis: [1 /1 ]
75 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
76 Absolute Norm deltaF: 2.7285e-12
77 Absolute Norm deltaU: 0.0032
78 Average Norm deltaF: 1.3642e-12
79 Average Norm deltaU: 0.0016
80 Relative Norm deltaF: 3.4106e-16
81 Relative Norm deltaU: 0.0032
82 [iteration 2 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
83 Absolute Norm deltaF: 3.5225e-12
84 Absolute Norm deltaU: 7.8429e-19
85 Average Norm deltaF: 1.7612e-12
86 Average Norm deltaU: 3.9214e-19
87 Relative Norm deltaF: 4.4031e-16
88 Relative Norm deltaU: 2.4509e-16
89

90 > Analysis End ←↩
-------------------------------------------------------------------------------

91

92 Starting sequential static multi-step analysis
93 ====================================================================================================
94 Creating analysis ←↩

model........................................................................Pass!
95 Checking constraint ←↩

handler....................................................................Pass!
96 Checking ←↩

numberer..............................................................................Pass!
97 Checking analysis ←↩

algorithm....................................................................Pass!
98 Checking system of equation ←↩

handler............................................................Pass!
99 Checking static integration ←↩

handler............................................................Pass!
100

101 Static Analysis: [1 /1 ]
102 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
103 Absolute Norm deltaF: 1.819e-12
104 Absolute Norm deltaU: 0.0032
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105 Average Norm deltaF: 9.0949e-13
106 Average Norm deltaU: 0.0016
107 Relative Norm deltaF: 2.2737e-16
108 Relative Norm deltaU: 0.0032
109 [iteration 2 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
110 Absolute Norm deltaF: 2.5724e-12
111 Absolute Norm deltaU: 5.0807e-19
112 Average Norm deltaF: 1.2862e-12
113 Average Norm deltaU: 2.5403e-19
114 Relative Norm deltaF: 3.2155e-16
115 Relative Norm deltaU: 1.5877e-16
116

117 > Analysis End ←↩
-------------------------------------------------------------------------------

118

119 Starting sequential static multi-step analysis
120 ====================================================================================================
121 Creating analysis ←↩

model........................................................................Pass!
122 Checking constraint ←↩

handler....................................................................Pass!
123 Checking ←↩

numberer..............................................................................Pass!
124 Checking analysis ←↩

algorithm....................................................................Pass!
125 Checking system of equation ←↩

handler............................................................Pass!
126 Checking static integration ←↩

handler............................................................Pass!
127

128 Static Analysis: [1 /1 ]
129 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
130 Absolute Norm deltaF: 3132.5
131 Absolute Norm deltaU: 0.0032
132 Average Norm deltaF: 1566.2
133 Average Norm deltaU: 0.0016
134 Relative Norm deltaF: 0.39156
135 Relative Norm deltaU: 0.0032
136 [iteration 2 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
137 Absolute Norm deltaF: 3132.5
138 Absolute Norm deltaU: 0.001253
139 Average Norm deltaF: 1566.2
140 Average Norm deltaU: 0.0006265
141 Relative Norm deltaF: 0.39156
142 Relative Norm deltaU: 0.39156
143 [iteration 3 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
144 Absolute Norm deltaF: 3132.5
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145 Absolute Norm deltaU: 0.001253
146 Average Norm deltaF: 1566.2
147 Average Norm deltaU: 0.0006265
148 Relative Norm deltaF: 0.39156
149 Relative Norm deltaU: 0.39156
150 [iteration 4 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
151 Absolute Norm deltaF: 3132.5
152 Absolute Norm deltaU: 0.001253
153 Average Norm deltaF: 1566.2
154 Average Norm deltaU: 0.0006265
155 Relative Norm deltaF: 0.39156
156 Relative Norm deltaU: 0.39156
157 [iteration 5 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
158 Absolute Norm deltaF: 3132.5
159 Absolute Norm deltaU: 0.001253
160 Average Norm deltaF: 1566.2
161 Average Norm deltaU: 0.0006265
162 Relative Norm deltaF: 0.39156
163 Relative Norm deltaU: 0.39156
164 [iteration 5/5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001) !!!FAILED TO CONVERGE!!! [EXITING..]
165 Absolute Norm deltaF: 3132.5
166 Absolute Norm deltaU: 0.001253
167 Average Norm deltaF: 1566.2
168 Average Norm deltaU: 0.0006265
169 Relative Norm deltaF: 0.39156
170 Relative Norm deltaU: 0.39156
171 NewtonRaphson::solveCurrentStep() -the ConvergenceTest object failed in test()
172

173 Static Analysis: [1 /1 ] The Algorithm failed at load factor 0.4
174 > Analysis End ←↩

-------------------------------------------------------------------------------
175

176 Starting sequential static multistep analysis
177 ====================================================================================================
178 Creating analysis ←↩

model........................................................................Pass!
179 Checking constraint ←↩

handler....................................................................Pass!
180 Checking ←↩

numberer..............................................................................Pass!
181 Checking analysis ←↩

algorithm....................................................................Pass!
182 Checking system of equation ←↩

handler............................................................Pass!
183 Checking static integration ←↩

handler............................................................Pass!
184

185 Static Analysis: [1 /1 ]
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186 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩
Increment::(tol: 0.001)

187 Absolute Norm deltaF: 9310.6
188 Absolute Norm deltaU: 2.6478e-19
189 Average Norm deltaF: 4655.3
190 Average Norm deltaU: 1.3239e-19
191 Relative Norm deltaF: 0.42857
192 Relative Norm deltaU: 2.6478e-19
193

194 > Analysis End ←↩
-------------------------------------------------------------------------------

195

196 Starting sequential static multistep analysis
197 ====================================================================================================
198 Creating analysis ←↩

model........................................................................Pass!
199 Checking constraint ←↩

handler....................................................................Pass!
200 Checking ←↩

numberer..............................................................................Pass!
201 Checking analysis ←↩

algorithm....................................................................Pass!
202 Checking system of equation ←↩

handler............................................................Pass!
203 Checking static integration ←↩

handler............................................................Pass!
204

205 Static Analysis: [1 /1 ]
206 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
207 Absolute Norm deltaF: 1437.5
208 Absolute Norm deltaU: 1.0012e-18
209 Average Norm deltaF: 718.76
210 Average Norm deltaU: 5.006e-19
211 Relative Norm deltaF: 0.10425
212 Relative Norm deltaU: 1.0012e-18
213

214 > Analysis End ←↩
-------------------------------------------------------------------------------

215

216 Starting sequential static multistep analysis
217 ====================================================================================================
218 Creating analysis ←↩

model........................................................................Pass!
219 Checking constraint ←↩

handler....................................................................Pass!
220 Checking ←↩

numberer..............................................................................Pass!
221 Checking analysis ←↩

algorithm....................................................................Pass!
222 Checking system of equation ←↩
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handler............................................................Pass!
223 Checking static integration ←↩

handler............................................................Pass!
224

225 Static Analysis: [1 /1 ]
226 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
227 Absolute Norm deltaF: 112.08
228 Absolute Norm deltaU: 5.1789e-19
229 Average Norm deltaF: 56.038
230 Average Norm deltaU: 2.5895e-19
231 Relative Norm deltaF: 0.017652
232 Relative Norm deltaU: 5.1789e-19
233

234 > Analysis End ←↩
-------------------------------------------------------------------------------

235

236 Starting sequential static multistep analysis
237 ====================================================================================================
238 Creating analysis ←↩

model........................................................................Pass!
239 Checking constraint ←↩

handler....................................................................Pass!
240 Checking ←↩

numberer..............................................................................Pass!
241 Checking analysis ←↩

algorithm....................................................................Pass!
242 Checking system of equation ←↩

handler............................................................Pass!
243 Checking static integration ←↩

handler............................................................Pass!
244

245 Static Analysis: [1 /1 ]
246 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
247 Absolute Norm deltaF: 7.142
248 Absolute Norm deltaU: 8.6792e-19
249 Average Norm deltaF: 3.571
250 Average Norm deltaU: 4.3396e-19
251 Relative Norm deltaF: 0.001399
252 Relative Norm deltaU: 8.6792e-19
253

254 > Analysis End ←↩
-------------------------------------------------------------------------------

255

256 Starting sequential static multistep analysis
257 ====================================================================================================
258 Creating analysis ←↩

model........................................................................Pass!
259 Checking constraint ←↩

handler....................................................................Pass!
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260 Checking ←↩
numberer..............................................................................Pass!

261 Checking analysis ←↩
algorithm....................................................................Pass!

262 Checking system of equation ←↩
handler............................................................Pass!

263 Checking static integration ←↩
handler............................................................Pass!

264

265 Static Analysis: [1 /1 ]
266 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
267 Absolute Norm deltaF: 0.44693
268 Absolute Norm deltaU: 1.0155e-18
269 Average Norm deltaF: 0.22347
270 Average Norm deltaU: 5.0774e-19
271 Relative Norm deltaF: 8.9267e-05
272 Relative Norm deltaU: 1.0155e-18
273

274 > Analysis End ←↩
-------------------------------------------------------------------------------

275

276 Starting sequential static multistep analysis
277 ====================================================================================================
278 Creating analysis ←↩

model........................................................................Pass!
279 Checking constraint ←↩

handler....................................................................Pass!
280 Checking ←↩

numberer..............................................................................Pass!
281 Checking analysis ←↩

algorithm....................................................................Pass!
282 Checking system of equation ←↩

handler............................................................Pass!
283 Checking static integration ←↩

handler............................................................Pass!
284

285 Static Analysis: [1 /1 ]
286 [iteration 1 /5 ] Convergence Test: Absolute Norm Displacement ←↩

Increment::(tol: 0.001)
287 Absolute Norm deltaF: 0.027935
288 Absolute Norm deltaU: 2.1658e-19
289 Average Norm deltaF: 0.013968
290 Average Norm deltaU: 1.0829e-19
291 Relative Norm deltaF: 5.5866e-06
292 Relative Norm deltaU: 2.1658e-19
293

294 > Analysis End ←↩
-------------------------------------------------------------------------------

295 How polite! Bye, have a nice day!
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205.3.5.20 Simulation: New Elastic Loading Case

For design applications, linear elastic analysis cases are performed and later combined, using factors of

safety (see section 205.3.5.21 on page 1133) to obtain sectional forces for design.

The command for elastic analysis is:

1 new elastic loading case <string> ;

One example is

1 new elastic loading case "case1" ;

In a new elastic loading case, all previous loads, load patterns are removed.

To guarantee a fresh start, all commit-displacement at nodes are reset to 0, and all commit-

stress/strain at Gauss points are reset to 0.

The following components are kept unchanged in a new elastic loading case:

• material properties.

• mesh connectivity

• boundary conditions.

• acceleration fields.

• damping.

If users want to modify the mesh, a new model is suggested instead of a new elastic loading case.
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205.3.5.21 Simulation: Combine Elastic Load Cases

For design applications, elastic load cases, that have been analyzed beforehand, can be superimposed,

combined using factors of safety, to obtain internal forces that used for design.

The command for this is

1 combine elastic load cases
2 hdf5_filenames_list = <string>
3 load_factors_list = <string>
4 output_filename = <string>
5 ;

One example is

1 combine elastic load cases
2 hdf5_filenames_list = "test_case1.h5.feioutput test_case2.h5.feioutput"
3 load_factors_list = "1.2 1.5"
4 output_filename = "combine.h5.feioutput"
5 ;

• hdf5_filenames_list specifies the list of HDF5 output filenames. The list should be separated

by either space or comma.

• load_factors_list specifies the list of scale factors for each loading case. The list should be

separated by either space or comma.

• output_filename specifies one output filename of the combined loading cases.

The number of specified files in hdf5_filenames_list should be equal to the number of scale

factors (factors of safety) in load_factors_list.
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205.3.5.22 Simulation, Dynamic Solution Advancement for Solid-Fluid Interaction

Dynamic analysis of solid-fluid interaction can be performed using:

1 simulate <.> steps using solid fluid interaction transient algorithm time_step ←↩
= <T>;

where:

• <.> is an integer specifying total number of time steps in transient solid fluid interaction analysis.

• time_step = <T> defines the time step for solid fluid interaction transient analysis.

For example:

1 simulate 300 steps using solid fluid interaction transient algorithm time_step ←↩
= 0.01*s;

Performs transient solid fluid interaction analysis for 300 steps with time step 0.01 s.
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205.3.5.23 Simulation, Dynamic Solution Advancement for Stochastic Finite Element Method

Dynamic analysis of stochastic finite element modeling can be performed using:

1 simulate <.> steps using stochastic transient algorithm time_step = <T>;

where:

• <.> is an integer specifying total number of time steps in transient stochastic finite element

analysis.

• time_step = <T> defines the time step for stochastic finite element transient analysis.

Please note that the stochastic transient algorithm is different from the general transient algorithm

in section 205.3.5.4 in the formulation of unbalanced load for each time step. The stochastic transient

algorithm uses directly the incremental external loads to compute the incremental displacements, while

the general transient algorithm accounts for the correction from resisting forces in the formulation of

unbalanced forces.

For deterministic and probabilistic, linear elastic problems, both transient algorithms would produce

the same response. Stochastic transient algorithm is more efficient because there is no need to compute

resisting forces.

For deterministic, nonlinear inelastic problems, the general transient algorithm is more accurate due

to the corrections from resisting forces. The accuracy of stochastic transient algorithm can be improved

using smaller loading increments. For probabilistic, nonlinear inelastic problems, the accuracy of the

general transient algorithm can only be guaranteed if the number of polynomial chaos terms used in

probabilistic constitutive modeling is equal or close enough to the number of polynomial chaos terms in

global level. Otherwise, it is recommended to use the stochastic transient algorithm for dynamic analysis

of stochastic finite element modeling.

For example:

1 simulate 300 steps using stochastic transient algorithm time_step = 0.01*s;

Performs transient stochastic finite element analysis for 300 steps with time step 0.01s.
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205.3.5.24 Simulation, Sobol Sensitivity Analysis

Sobol sensitivity analysis can be performed using:

1 Sobol sensitivity analysis of node # <.> dof DOFTYPE peak response from random ←↩
field # <.>

2 pc_coefficient_hdf5 = "pc_coefficient_hdf5_file_name"
3 output_hdf5 = "output_hdf5_file_name";

where:

• node # specify the node tag.

• DOFTYPE specify the dof to perform sensitivity analysis. It can be either ux, uy or uz.

• random field # specify the random field polynomial chaos bases of the stochastic nodal response.

• pc_coefficient_hdf5 specify the name of a hdf5 file that contains simulation results of polyno-

mial chaos coefficients.

• output_hdf5 specify the name of the output hdf5 file for sensitivity analysis.

The output hdf5 format for sensitivity analysis is given as below:

Figure 205.9: Overall data structure of output hdf5 file for sensitivity analysis.

Figure 205.9 shows the overall data structure organization of the output hdf5 file of sensitivity

analysis.

• Generalized Accelerations Sensitivity data group:

Contains Sobol sensitivity analysis results for stochastic nodal acceleration response. It contains

the following datasets and data groups as shown in Figure 205.10.
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Figure 205.10: Datasets and data groups in Generalized Accelerations Sensitivity data group.

– Component Sobol Indexes dataset:

Is a column vector containing the computed Sobol Indexes for each component of polynomial

chaos (PC) bases.

– Component Sobol Indexes Sort dataset:

Is a column vector containing the computed Sobol Indexes for each component of polynomial

chaos (PC) bases, in descending order.

– Component Variance PC Bases dataset:

Is a column vector containing the computed variance for each component of polynomial chaos

(PC) bases.

– PC Coefficients dataset:

Is a column vector containing the polynomial chaos coefficients corresponding to PC bases

specified in PC dataset.

– PC Sort dataset:

Is a 2D array that describes the sorted PC bases corresponding to Component Sobol Indexes Sort

dataset. PC Sortij denotes the order of polynomial chaos dimension ξj that contributes to

the ith sorted, PC basis.

– Total Variance dataset:

Is a scalar, variance of nodal stochastic response.

In addition to the above datasets, there will be sub data group(s) containing sensitivity analy-

sis results corresponding to each of the defined sensitivity dimension groups. For example, we
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have two sub data groups Sensitivity Group#1 and Sensitivity Group#2 for this specific hdf5

output for sensitivity analysis. Within these sub data groups, taking Sensitivity Group#1 as

an example, the output data is organized as shown in Figure 205.11.

Figure 205.11: Datasets in Sensitivity Group#1.

It includes the following datasets:

∗ Component Sobol Indexes Sort dataset:

Is a column vector containing the computed Sobol Indexes for part of polynomial chaos

(PC) bases specified through the sensitivity dimension group, in descending order.

∗ PC Sort dataset:

Is a 2D array that describes the sorted, part of PC bases specified through the sensitivity

dimension group, corresponding to Component Sobol Indexes Sort dataset. PC Sortij

denotes the order of polynomial chaos dimension ξj that contributes to the ith sorted,

PC basis.

∗ Total Sobol Index dataset:

Is a scalar, total Sobol sensitivity index for PC bases specified in the sensitivity dimension

group.

• Generalized Displacements Sensitivity data group:

Contains Sobol sensitivity analysis results for stochastic nodal displacement response. The con-

figuration of data structure for Generalized Displacements Sensitivity data group is the same as

Generalized Accelerations Sensitivity data group.

• Index to Global Dimension dataset:

Contains a column vector of integers, which specifies the global dimension IDs for the polynomial

chaos bases used to represent the nodal stochastic response.

• PC dataset:
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Is a 2D array that describes the multi-dimensional Hermite polynomial chaos (PC) bases for rep-

resenting the nodal stochastic response. PCij denotes the order of polynomial chaos dimension ξj

that contributes to the ith multidimensional Hermite PC basis.

• PC Variance dataset:

Is a column vector specifying the variances of Hermite PC basis.

• Sensitivity Dimension Groups data group:

Contains the information about the sensitivity dimension groups defined for sensitivity analysis.

Each sensitivity dimension group would be defined by a dataset within the data group as shown in

Figure 205.12. Each dataset contains a column vector of integers, specifying the dimension IDs in

specific sensitivity dimension group.

Figure 205.12: Datasets in Sensitivity Dimension Groups data group.
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205.3.5.25 Simulation: 3D 3C Wave Field Inversion

1 generate domain reduction method motion file from 3D_3C_wave_field_inversion
2 target_nodes_filename = <string>
3 target_motions_filename = <string>
4 time_step = <T>
5 hdf5_file = <string>;

Example:

1 generate domain reduction method motion file from 3D_3C_wave_field_inversion
2 target_nodes_filename = "Target_Nodes.txt"
3 target_motions_filename = "Target_Motions.txt"
4 time_step = 0.01*s
5 hdf5_file = "DRM_Input_from_Inverse_Motion.hdf5";

where:

• target_nodes_filename is the file name for a file that contains the list of nodes, represented by

their tags, where target motions are designated.

One example of target nodes file is given below.

1 5
2 15
3 25
4 35
5 46
6 48
7 50
8 52

• target_motions_filename is the file name for a file that contains the list of target motions at

the corresponding target nodes. Note that the length, or number of rows, and the ordering of the

target motions file must be the same as those of the target nodes file.

One example of target motions file is given below.

1 Displacement_1000steps_with_CT.txt
2 Displacement_1000steps_with_CT.txt
3 Displacement_1000steps_with_CT.txt
4 Displacement_1000steps_with_CT.txt
5 Zero_Displacement_1000steps_with_CT.txt
6 Zero_Displacement_1000steps_with_CT.txt
7 Zero_Displacement_1000steps_with_CT.txt
8 Zero_Displacement_1000steps_with_CT.txt

Time series of target motion is defined in each of the file listed in target_motions_filename.
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• time_step is the time step/interval corresponding to the target motions.

• hdf5_file specifies the HDF5 file which contains the geometric information about the DRM

elements and DRM nodes. This is also the file in which the DRM forces obtained from 3D wave

field inversion are stored. Then this file can be used in future simulations as the DRM input. See

previous DRM-related DSLs for the format of this file.
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205.3.6 Output Options

Real-ESSI Simulator outputs total displacements at all the nodes, as well total stress, total strain and

total plastic strain at all the Gauss points of the element in each time step of each stage of loading.

Real-ESSI also outputs any/all other element output in addition to the integration/Gauss point output.

Generally, 3-D elements have only integration/Gauss point outputs and structure elements have only

element output. The output options are reset to the default options in the beginning of each loading

stage. More information about output organization is given in section 206.2.
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205.3.6.1 Output Options: Enable/Disable Output

This option is used to enable or disable the outputting of results from all nodes and elements to HDF5

(.feioutput) output file.

Note:- By default output is always enabled for each loading stage.

Command to disable output is

1 disable all output;

Command to enable output is

1 enable all output;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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205.3.6.2 Output Options: Enable/Disable Element Output

This option is used to enable or disable the outputting of element results from all elements to HDF5

(.feioutput) output file, per stage of loading.

Note:- By default all results from elements are output for each loading stage, so this option can be used

to enable or disable output per loading stage.

Command to disable element output is

1 disable element output;

Command to enable element output is

1 enable element output;
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205.3.6.3 Output Options: Enable/Disable Displacement Output

This option is used to enable or disable the displacement output at nodes to HDF5 (.feioutput) file.

Note:- By default displacement output is enabled.

Command to disable displacement output is

1 disable displacement output;

Command to enable displacement output is

1 enable displacement output;
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205.3.6.4 Output Options: Enable/Disable Acceleration Output

This option is used to enable or disable the acceleration output at nodes to HDF5 (.feioutput) file.

Note:- By default acceleration output is disabled.

Command to disable acceleration output is

1 disable acceleration output;

Command to enable acceleration output is

1 enable acceleration output;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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205.3.6.5 Output Options: Enable/Disable Asynchronous Output

This option is used to enable or disable the asynchronous method of writing output to HDF5 (.feioutput)

file.

Note:- By default asynchronous output is disabled. Asynchronous output is an advanced output feature.

Asynchronous output is suitable for I/O-bound simulation.

Command to disable asynchronous output is

1 disable asynchronous output;

Command to enable asynchronous output is

1 enable asynchronous output;
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205.3.6.6 Output Options: Output Every n Steps

This option is used to output results at intervals of n time steps.

Note:- By default results are output for every time step.

Command to enable output only at nth time step interval

1 output every <.> steps;

For example: To output only at interval of two time steps for a simulation of 100 steps. One can write

1 output every 2 steps;

This will only output for steps 2,4,6,... until 100th step.
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205.3.6.7 Output Options: Output Support Reactions

This option is used to output reactions at constrained supports.

Note:- By default output reactions at constrained supports are disabled.

Command to enable reactions for support is

1 output support reactions;
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205.4 Checking the Model

Real-ESSI provides model check capability:

1 check model ;

This command will cycle over all the domain components, including Nodes, Elements, Loads, Con-

straints, etc. and execute the checkModel() function for each. Each domain component writes/reports

to the terminal and to the essi.log file, if an error is found. For example, bricks will report when the

computed Jacobian is negative and other similar errors. Nodes that are not connected will be reported

as well. If the diagnostic log is empty, it means that the mesh has passed all tests. Additionally, an

output HDF5 file is produced that can be used to display the mesh and do further visual inspections of

the model. This file will have initial conditions as outputs for element sand nodes.

Command check model; represents a dry run through the model that is used to check the model

before a full analysis. Model check is highly recommended before initial stages of a full analysis are

executed.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.5. CONSTITUTIVE TESTING page: 1151 of 3287

205.5 Constitutive Testing

Material models can be tested using constitutive drivers which exercise single material models. RealE-SSI

implements two such drivers.

1. Bardet Driver. Bardet-type constraints can be used to simulate conditions such as drained or

undrained triaxial testing with strain or stress control or direct shear testing with shear control.

2. Direct Strain Driver. This driver applies a given strain history (specified by the user) to a material

model.

Both these drivers produce identical output: the files Stress.feioutput and Strain.feioutput

which contain stress and strain tensor components at each step. Additionally, the drivers may print out

material internal information to the file Material Output.feioutput. For the stress and strain files,

each line of these files contain the stresses and strains organized in the following manner:

Stress.feioutput → σ11 σ22 σ33 σ12 σ13 σ23.

Strain.feioutput → ϵ11 ϵ22 ϵ33 ϵ12 ϵ13 ϵ23.

The Bardet driver has the following format.

1 simulate constitutive testing BARDETMETHOD use material # <.>
2 scale_factor = <.>
3 series_file = <string>
4 sigma0 = ( <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> )
5 verbose_output = <.>

Where,

• BARDETMETHOD can have any one of the following values:

– CONSTANT_P_TRIAXIAL_LOADING_STRAIN_CONTROL: Triaxial loading with p kept constant.

In this case the input file is interpreted as strain increments in the ϵ11 component.

– DRAINED_TRIAXIAL_LOADING_STRESS_CONTROL: Drained Triaxial loading. In this case the

input file is interpreted as stress increments in the σ11 component.

– DRAINED_TRIAXIAL_LOADING_STRAIN_CONTROL: Drained Triaxial loading. In this case the

input file is interpreted as strain increments in the ϵ11 component.

– UNDRAINED_TRIAXIAL_LOADING_STRAIN_CONTROL: Undrained Triaxial loading. In this case

the input file is interpreted as strain increments in the ϵ11 component.

– UNDRAINED_TRIAXIAL_LOADING_STRESS_CONTROL: Undrained Triaxial loading. In this case

the input file is interpreted as stress increments in the σ11 component.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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– UNDRAINED_SIMPLE_SHEAR_LOADING_STRAIN_CONTROL: Undrained simple-shear loading.

In this case the input file is interpreted as angular strain increments in the γ12 = 2ϵ12

component.

• scale_factor: Can be used to scale the series file arbitrarily.

• series_file: String specifying the path to the file containing the increments (might be inter-

preted as strain or stress depending on the method chosen). Each line of the file contains one

increment.

• sigma0: Components of the initial stress for the material, given in the order: (σ11, σ22, σ33, σ12, σ13, σ23).

• verbose_output(=N) Whether the driver should print extra information about the material model

every N steps. If Takes value 0 (no output) or N (do output every N increments). Each material

implements its own output, so the format of the Material Output.feioutput file is variable and

material dependent.

The direct strain driver has the following format.

1 simulate constitutive testing DIRECT_STRAIN use material # <.>
2 scale_factor = <.>
3 series_file = <string>
4 sigma0 = ( <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> )
5 verbose_output = <.>

Where al the arguments are the same as the Bardet driver. In this case each line of the file contains

all six components of the strain increment to be applied. For example:

series_file = "increments.txt" where each line in increments.txt contains dϵ11 dϵ22 dϵ33 dϵ12

dϵ13 dϵ23.
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205.6 List of Available Commands (tentative, not up to date)

1 add acceleration field # <.> ax = <accel> ay = <accel> az = <aaccel> ;

2 add constraint equal_dof with master node # <.> and slave node # <.> dof to ←↩
constrain <.>;

3 add constraint equal_dof with node # <.> dof <.> master and node # <.> dof <.> ←↩
slave;

4 add damping # <.> to element # <.>;

5 add damping # <.> to node # <.>;

6 add damping # <.> type Caughey3rd with a0 = <1/time> a1 = <time> a2 = <time^3> ←↩
stiffness_to_use = ←↩
<Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

7 add damping # <.> type Caughey4th with a0 = <1/time> a1 = <time> a2 = <time^3> ←↩
a3 = <time^5> stiffness_to_use = ←↩
<Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

8 add damping # <.> type Rayleigh with a0 = <1/time> a1 = <time> stiffness_to_use ←↩
= <Initial_Stiffness|Current_Stiffness|Last_Committed_Stiffness>;

9 add domain reduction method loading # <.> hdf5_file = <string> scale_factor = <.>;

10 add domain reduction method loading # <.> hdf5_file = <string>;

11 add element # <.> type 20NodeBrick using <.> Gauss points each direction with ←↩
nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.>;

12 add element # <.> type 20NodeBrick with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use ←↩
material # <.>;

13 add element # <.> type 20NodeBrick_up using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.> and porosity = ←↩
<.> alpha = <.> rho_s = <M/L^3> rho_f = <M/L^3> k_x = <L^3T/M> k_y = ←↩
<L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = <stress>;

14 add element # <.> type 20NodeBrick_up with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use ←↩
material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

15 add element # <.> type 20NodeBrick_upU using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.> and porosity = ←↩
<.> alpha = <.> rho_s = <M/L^3> rho_f = <M/L^3> k_x = <L^3T/M> k_y = ←↩
<L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = <stress>;

16 add element # <.> type 20NodeBrick_upU with nodes (<.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
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<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

17 add element # <.> type 27NodeBrick using <.> Gauss points each direction with ←↩
nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use ←↩
material # <.>;

18 add element # <.> type 27NodeBrick with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>) use material # <.>;

19 add element # <.> type 27NodeBrick_up using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

20 add element # <.> type 27NodeBrick_up with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use ←↩
material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

21 add element # <.> type 27NodeBrick_upU using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

22 add element # <.> type 27NodeBrick_upU with nodes (<.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

23 add element # <.> type 3NodeShell_ANDES with nodes (<.>, <.>, <.>) use material ←↩
# <.> thickness = <l> ;

24 add element # <.> type 4NodeShell_ANDES with nodes (<.>, <.>, <.>, <.>) use ←↩
material # <.> thickness = <l> ;

25 add element # <.> type 4NodeShell_MITC4 with nodes (<.>, <.>, <.>, <.>) use ←↩
material # <.> thickness = <L>;

26 add element # <.> type 4NodeShell_NewMITC4 with nodes (<.>, <.>, <.>, <.>) use ←↩
material # <.> thickness = <L>;

27 add element # <.> type 8_27_NodeBrick using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.>;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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28 add element # <.> type 8_27_NodeBrick with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>) use material # <.>;

29 add element # <.> type 8_27_NodeBrick_up using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

30 add element # <.> type 8_27_NodeBrick_up with nodes (<.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

31 add element # <.> type 8_27_NodeBrick_upU using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

32 add element # <.> type 8_27_NodeBrick_upU with nodes (<.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) ←↩
use material # <.> and porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = ←↩
<M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = ←↩
<stress>;

33 add element # <.> type 8NodeBrick using <.> Gauss points each direction with ←↩
nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.>;

34 add element # <.> type 8NodeBrick with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>) use material # <.>;

35 add element # <.> type 8NodeBrick_up using <.> Gauss points each direction with ←↩
nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.> porosity ←↩
= <.> alpha = <.> rho_s = <M/L^3> rho_f = <M/L^3> k_x = <L^3T/M> k_y = ←↩
<L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = <stress>;

36 add element # <.> type 8NodeBrick_up with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>) use material # <.> porosity = <.> alpha = <.> rho_s = <M/L^3> ←↩
rho_f = <M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> ←↩
K_f = <stress>;

37 add element # <.> type 8NodeBrick_upU using <.> Gauss points each direction ←↩
with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>) use material # <.> ←↩
porosity = <.> alpha = <.> rho_s = <M/L^3> rho_f = <M/L^3> k_x = <L^3T/M> ←↩
k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> K_f = <stress>;

38 add element # <.> type 8NodeBrick_upU with nodes (<.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>) use material # <.> porosity = <.> alpha = <.> rho_s = <M/L^3> ←↩
rho_f = <M/L^3> k_x = <L^3T/M> k_y = <L^3T/M> k_z = <L^3T/M> K_s = <stress> ←↩
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K_f = <stress>;

39 add element # <.> type beam_9dof_elastic with nodes (<.>, <.>) cross_section = ←↩
<area> elastic_modulus = <F/L^2> shear_modulus = <F/L^2> torsion_Jx = ←↩
<length^4> bending_Iy = <length^4> bending_Iz = <length^4> mass_density = ←↩
<M/L^3> xz_plane_vector = (<.>, <.>, <.> ) joint_1_offset = (<L>, <L>, <L> ←↩
) joint_2_offset = (<L>, <L>, <L> );

40 add element # <.> type beam_displacement_based with nodes (<.>, <.>) with # <.> ←↩
integration_points use section # <.> mass_density = <M/L^3> IntegrationRule ←↩
= "" xz_plane_vector = (<.>, <.>, <.> ) joint_1_offset = (<L>, <L>, <L> ) ←↩
joint_2_offset = (<L>, <L>, <L> );

41 add element # <.> type beam_elastic with nodes (<.>, <.>) cross_section = ←↩
<area> elastic_modulus = <F/L^2> shear_modulus = <F/L^2> torsion_Jx = ←↩
<length^4> bending_Iy = <length^4> bending_Iz = <length^4> mass_density = ←↩
<M/L^3> xz_plane_vector = (<.>, <.>, <.> ) joint_1_offset = (<L>, <L>, <L> ←↩
) joint_2_offset = (<L>, <L>, <L> );

42 add element # <.> type beam_elastic_lumped_mass with nodes (<.>, <.>) ←↩
cross_section = <area> elastic_modulus = <F/L^2> shear_modulus = <F/L^2> ←↩
torsion_Jx = <length^4> bending_Iy = <length^4> bending_Iz = <length^4> ←↩
mass_density = <M/L^3> xz_plane_vector = (<.>, <.>, <.> ) joint_1_offset = ←↩
(<L>, <L>, <L> ) joint_2_offset = (<L>, <L>, <L> );

43 add element # <.> type BeamColumnDispFiber3d with nodes (<.>, <.>) ←↩
number_of_integration_points = <.> section_number = <.> mass_density = ←↩
<M/L^3> xz_plane_vector = (<.>, <.>, <.> ) joint_1_offset = (<L>, <L>, <L> ←↩
) joint_2_offset = (<L>, <L>, <L> );

44 add element # <.> type HardContact with nodes (<.>, <.>) axial_stiffness = ←↩
<F/L> shear_stiffness = <F/L> normal_damping = <F/L> tangential_damping = ←↩
<F/L> friction_ratio = <.> contact_plane_vector = (<.>, <.>, <.> );

45 add element # <.> type HardWetContact with nodes (<.>, <.>) axial_stiffness = ←↩
<F/L> shear_stiffness = <F/L> normal_damping = <F/L> tangential_damping = ←↩
<F/L> friction_ratio = <.> contact_plane_vector = (<.>, <.>, <.> );

46 add element # <.> type ShearBeam with nodes (<.>, <.>) cross_section = <l^2> ←↩
use material # <.>;

47 add element # <.> type SoftContact with nodes (<.>, <.>) ←↩
initial_axial_stiffness = <F/L> stiffening_rate = <m^-1> shear_stiffness = ←↩
<F/L> normal_damping = <F/L> tangential_damping = <F/L> friction_ratio = ←↩
<.> contact_plane_vector = (<.>, <.>, <.> );

48 add element # <.> type SoftWetContact with nodes (<.>, <.>) ←↩
initial_axial_stiffness = <F/L> stiffening_rate = <m^-1> shear_stiffness = ←↩
<F/L> normal_damping = <F/L> tangential_damping = <F/L> friction_ratio = ←↩
<.> contact_plane_vector = (<.>, <.>, <.> );

49 add element # <.> type truss with nodes (<.>, <.>) use material # <.> ←↩
cross_section = <length^2> mass_density = <M/L^3> ;

50 add element # <.> type variable_node_brick_8_to_27 using <.> Gauss points each ←↩
direction with nodes (<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
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<.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, <.>, ←↩
<.>, <.>) use material # <.>;

51 add elements (<.>) to physical_element_group "string";

52 add fiber # <.> using material # <.> to section # <.> fiber_cross_section = ←↩
<area> fiber_location = (<L>,<L>);

53 add imposed motion # <.> to node # <.> dof DOFTYPE displacement_scale_unit = ←↩
<displacement> displacement_file = "disp_filename" velocity_scale_unit = ←↩
<velocity> velocity_file = "vel_filename" acceleration_scale_unit = ←↩
<acceleration> acceleration_file = "acc_filename";

54 add imposed motion # <.> to node # <.> dof DOFTYPE time_step = <t> ←↩
displacement_scale_unit = <length> displacement_file = "disp_filename" ←↩
velocity_scale_unit = <velocity> velocity_file = "vel_filename" ←↩
acceleration_scale_unit = <acceleration> acceleration_file = "acc_filename";

55 add load # <.> to all elements type self_weight use acceleration field # <.>;

56 add load # <.> to element # <.> type self_weight use acceleration field # <.>;

57 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>) ←↩
with magnitude <.>;

58 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>) ←↩
with magnitudes (<.> , <.> , <.> , <.>);

59 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>) with magnitude <.>;

60 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>) with magnitudes (<.> , <.> , <.> , <.>, <.>, <.>, <.>, ←↩
<.>);

61 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>, <.>) with magnitude <.>;

62 add load # <.> to element # <.> type surface at nodes (<.> , <.> , <.> , <.>, ←↩
<.>, <.>, <.>, <.>, <.>) with magnitudes (<.> , <.> , <.> , <.>, <.>, <.>, ←↩
<.>, <.>, <.>);

63 add load # <.> to node # <.> type from_reactions;

64 add load # <.> to node # <.> type linear FORCETYPE = <force or moment>; ←↩
//FORCETYPE = Fx Fy Fz Mx My Mz F_fluid_x F_fluid_y F_fluid_z

65 add load # <.> to node # <.> type path_series FORCETYPE = <force or moment> ←↩
time_step = <time> series_file = "filename";

66 add load # <.> to node # <.> type path_time_series FORCETYPE = <force or ←↩
moment> series_file = "filename";

67 add load # <.> to node # <.> type self_weight use acceleration field # <.>;

68 add mass to node # <.> mx = <mass> my = <mass> mz = <mass> Imx = ←↩
<mass*length^2> Imy = <mass*length^2> Imz = <mass*length^2>;

69 add mass to node # <.> mx = <mass> my = <mass> mz = <mass>;

70 add material # <.> type CamClay mass_density = <M/L^3> M = <.> lambda = <.> ←↩
kappa = <.> e0 = <.> p0 = <F/L^2> Poisson_ratio = <.> ←↩
initial_confining_stress = <F/L^2>
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71 add material # <.> type DruckerPrager mass_density = <M/L^3> elastic_modulus = ←↩
<F/L^2> poisson_ratio = <.> druckerprager_k = <> kinematic_hardening_rate = ←↩
<F/L^2> isotropic_hardening_rate = <F/L^2> initial_confining_stress = exp;

72 add material # <.> type DruckerPragerArmstrongFrederickLE mass_density = ←↩
<M/L^3> elastic_modulus = <F/L^2> poisson_ratio = <.> druckerprager_k = <> ←↩
armstrong_frederick_ha = <F/L^2> armstrong_frederick_cr = <F/L^2> ←↩
isotropic_hardening_rate = <F/L^2> initial_confining_stress = <F/L^2>;

73 add material # <.> type DruckerPragerArmstrongFrederickNE mass_density = ←↩
<M/L^3> DuncanChang_K = <.> DuncanChang_pa = <F/L^2> DuncanChang_n = <.> ←↩
DuncanChang_sigma3_max = <F/L^2> DuncanChang_nu = <.> druckerprager_k = <> ←↩
armstrong_frederick_ha = <F/L^2> armstrong_frederick_cr = <F/L^2> ←↩
isotropic_hardening_rate = <F/L^2> initial_confining_stress = <F/L^2>;

74 add material # <.> type DruckerPragerNonAssociateArmstrongFrederick ←↩
mass_density = <M/L^3> elastic_modulus = <F/L^2> poisson_ratio = <.> ←↩
druckerprager_k = <> armstrong_frederick_ha = <F/L^2> ←↩
armstrong_frederick_cr = <F/L^2> isotropic_hardening_rate = <F/L^2> ←↩
initial_confining_stress = <F/L^2> plastic_flow_xi = <> plastic_flow_kd = ←↩
<> ;

75 add material # <.> type DruckerPragerNonAssociateLinearHardening mass_density = ←↩
<M/L^3> elastic_modulus = <F/L^2> poisson_ratio = <.> druckerprager_k = <> ←↩
kinematic_hardening_rate = <F/L^2> isotropic_hardening_rate = <F/L^2> ←↩
initial_confining_stress = <F/L^2> plastic_flow_xi = <> plastic_flow_kd = ←↩
<> ;

76 add material # <.> type DruckerPragervonMises mass_density = <M/L^3> ←↩
elastic_modulus = <F/L^2> poisson_ratio = <.> druckerprager_k = <> ←↩
kinematic_hardening_rate = <F/L^2> isotropic_hardening_rate = <F/L^2> ←↩
initial_confining_stress = exp;

77 add material # <.> type linear_elastic_crossanisotropic mass_density = ←↩
<mass_density> elastic_modulus_horizontal = <F/L^2> ←↩
elastic_modulus_vertical = <F/L^2> poisson_ratio_h_v = <.> ←↩
poisson_ratio_h_h = <.> shear_modulus_h_v = <F/L^2>;

78 add material # <.> type linear_elastic_isotropic_3d mass_density = <M/L^3> ←↩
elastic_modulus = <F/L^2> poisson_ratio = <.>;

79 add material # <.> type linear_elastic_isotropic_3d_LT mass_density = <M/L^3> ←↩
elastic_modulus = <F/L^2> poisson_ratio = <.>;

80 add material # <.> type roundedMohrCoulomb mass_density = <M/L^3> ←↩
elastic_modulus = <F/L^2> poisson_ratio = <.> RMC_m = <.> RMC_qa = <F/L^2> ←↩
RMC_pc = <F/L^2> RMC_e = <.> RMC_eta0 = <.> RMC_Heta = <F/L^2> ←↩
initial_confining_stress = <F/L^2>

81 add material # <.> type sanisand2004 mass_density = <M/L^3> e0 = <.> ←↩
sanisand2004_G0 = <.> poisson_ratio = <.> sanisand2004_Pat = <stress> ←↩
sanisand2004_p_cut = <.> sanisand2004_Mc = <.> sanisand2004_c = <.> ←↩
sanisand2004_lambda_c = <.> sanisand2004_xi = <.> sanisand2004_ec_ref = <.> ←↩
sanisand2004_m = <.> sanisand2004_h0 = <.> sanisand2004_ch = <.> ←↩
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sanisand2004_nb = <.> sanisand2004_A0 = <.> sanisand2004_nd = <.> ←↩
sanisand2004_z_max = <.> sanisand2004_cz = <.> initial_confining_stress = ←↩
<stress> ;

82 add material # <.> type sanisand2004_legacy mass_density = <M/L^3> e0 = <.> ←↩
sanisand2004_G0 = <.> poisson_ratio = <.> sanisand2004_Pat = <stress> ←↩
sanisand2004_p_cut = <.> sanisand2004_Mc = <.> sanisand2004_c = <.> ←↩
sanisand2004_lambda_c = <.> sanisand2004_xi = <.> sanisand2004_ec_ref = <.> ←↩
sanisand2004_m = <.> sanisand2004_h0 = <.> sanisand2004_ch = <.> ←↩
sanisand2004_nb = <.> sanisand2004_A0 = <.> sanisand2004_nd = <.> ←↩
sanisand2004_z_max = <.> sanisand2004_cz = <.> initial_confining_stress = ←↩
<stress> algorithm = <explicit|implicit> number_of_subincrements = <.> ←↩
maximum_number_of_iterations = <.> tolerance_1 = <.> tolerance_2 = <.>;

83 add material # <.> type sanisand2008 mass_density = <M/L^3> e0 = <.> ←↩
sanisand2008_G0 = <.> sanisand2008_K0 = <.> sanisand2008_Pat = <stress> ←↩
sanisand2008_k_c = <.> sanisand2008_alpha_cc = <.> sanisand2008_c = <.> ←↩
sanisand2008_xi = <.> sanisand2008_lambda = <.> sanisand2008_ec_ref = <.> ←↩
sanisand2008_m = <.> sanisand2008_h0 = <.> sanisand2008_ch = <.> ←↩
sanisand2008_nb = <.> sanisand2008_A0 = <.> sanisand2008_nd = <.> ←↩
sanisand2008_p_r = <.> sanisand2008_rho_c = <.> sanisand2008_theta_c = <.> ←↩
sanisand2008_X = <.> sanisand2008_z_max = <.> sanisand2008_cz = <.> ←↩
sanisand2008_p0 = <stress> sanisand2008_p_in = <.> algorithm = ←↩
<explicit|implicit> number_of_subincrements = <.> ←↩
maximum_number_of_iterations = <.> tolerance_1 = <.> tolerance_2 = <.>;

84 add material # <.> type uniaxial_concrete02 compressive_strength = <F/L^2> ←↩
strain_at_compressive_strength = <.> crushing_strength = <F/L^2> ←↩
strain_at_crushing_strength = <.> lambda = <.> tensile_strength = <F/L^2> ←↩
tension_softening_stiffness = <F/L^2>;

85 add material # <.> type uniaxial_elastic elastic_modulus = <F/L^2> ←↩
viscoelastic_modulus = <mass / length / time> ;

86 add material # <.> type uniaxial_steel01 yield_strength = <F/L^2> ←↩
elastic_modulus = <F/L^2> strain_hardening_ratio = <.> a1 = <.> a2 = <.> a3 ←↩
= <> a4 = <.> ;

87 add material # <.> type uniaxial_steel02 yield_strength = <F/L^2> ←↩
elastic_modulus = <F/L^2> strain_hardening_ratio = <.> R0 = <.> cR1 = <.> ←↩
cR2 = <.> a1 = <.> a2 = <.> a3 = <> a4 = <.> ;

88 add material # <.> type vonMises mass_density = <M/L^3> elastic_modulus = ←↩
<F/L^2> poisson_ratio = <.> von_mises_radius = <F/L^2> ←↩
kinematic_hardening_rate = <F/L^2> isotropic_hardening_rate = <F/L^2> ;

89 add material # <.> type vonMisesArmstrongFrederick mass_density = <M/L^3> ←↩
elastic_modulus = <F/L^2> poisson_ratio = <.> von_mises_radius = <> ←↩
armstrong_frederick_ha = <F/L^2> armstrong_frederick_cr = <F/L^2> ←↩
isotropic_hardening_rate = <F/L^2> ;

90 add node # <.> at (<length>,<length>,<length>) with <.> dofs;

91 add nodes (<.>) to physical_node_group "string";
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92 add section # <.> type elastic3d elastic_modulus = <F/L^2> cross_section = ←↩
<L^2> bending_Iz = <L^4> bending_Iy=<L^4> torsion_Jx=<L^4> ;

93 add section # <.> type Elastic_Membrane_Plate elastic_modulus = <F/L^2> ←↩
poisson_ratio = <.> thickness = <length> mass_density = <M/L^3>;

94 add section # <.> type FiberSection TorsionConstant_GJ = <F*L^2>

95 add section # <.> type Membrane_Plate_Fiber thickness = <length> use material # ←↩
<.>;

96 add single point constraint to node # <.> dof to constrain <dof_type> ←↩
constraint value of <corresponding unit>;

97 add uniform acceleration # <.> to all nodes dof <.> time_step = <T> ←↩
scale_factor = <.> initial_velocity = <L/S> acceleration_file = <string>;

98 check mesh filename;

99 compute reaction forces;

100 define algorithm With_no_convergence_check / Newton / Modified_Newton;

101 define convergence test Norm_Displacement_Increment / Energy_Increment / ←↩
Norm_Unbalance / Relative_Norm_Displacement_Increment / ←↩
Relative_Energy_Increment / Relative_Norm_Unbalance tolerance = <.> ←↩
maximum_iterations = <.> verbose_level = <0>|<1>|<2>;

102 define dynamic integrator Hilber_Hughes_Taylor with alpha = <.>;

103 define dynamic integrator Newmark with gamma = <.> beta = <.>;

104 define load factor increment <.>;

105 define NDMaterial constitutive integration algorithm Forward_Euler;

106 define NDMaterial constitutive integration algorithm Forward_Euler_Subincrement ←↩
number_of_subincrements =<.>;

107 define NDMaterial constitutive integration algorithm ←↩
Forward_Euler|Forward_Euler_Subincrement|Backward_Euler|Backward_Euler_Subincrement| ←↩
yield_function_relative_tolerance = <.> stress_relative_tolerance = <.> ←↩
maximum_iterations = <.>;

108 define physical_element_group "string";

109 define physical_node_group "string";

110 define solver ProfileSPD / UMFPack;

111 define static integrator displacement_control using node # <.> dof DOFTYPE ←↩
increment <length>;

112 disable asynchronous output;

113 disable element output;

114 disable output;

115 enable asynchronous output;

116 enable element output;

117 enable output;

118 fix node # <.> dofs <.>;

119 fix node # <.> dofs all;

120 free node # <.> dofs <.>;

121 help;

122 if (.) { } else {};
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123 if (.) { };

124 model name "name_string";

125 new loading stage "name_string";

126 output every <.> steps;

127 output non_converged_iterations;

128 output support reactions;

129 print <.>;

130 print element # <.>;

131 print node # <.>;

132 print physical_element_group "string";

133 print physical_node_group "string";

134 remove constraint equal_dof node # <.>;

135 remove displacement from node # <.>;

136 remove element # <.>;

137 remove imposed motion # <.>;

138 remove load # <.>;

139 remove node # <.>;

140 remove physical_node_group "string";

141 remove strain from element # <.>;

142 remove physical_element_group "string";

143 runTest;

144 set output compression level to <.>;

145 simulate <.> steps using static algorithm;

146 simulate <.> steps using transient algorithm time_step = <time>;

147 simulate <.> steps using variable transient algorithm time_step = <time> ←↩
minimum_time_step = <time> maximum_time_step = <time> number_of_iterations ←↩
= <.>;

148 simulate constitutive testing BARDETMETHOD use material # <.> scale_factor = ←↩
<.> series_file = <string> sigma0 = ( <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> ←↩
, <F/L^2> , <F/L^2> ) verbose_output = <.>

149 simulate constitutive testing constant mean pressure triaxial strain control ←↩
use material # <.> strain_increment_size = <.> maximum_strain = <.> ←↩
number_of_times_reaching_maximum_strain = <.>;

150 simulate constitutive testing DIRECT_STRAIN use material # <.> scale_factor = ←↩
<.> series_file = <string> sigma0 = ( <F/L^2> , <F/L^2> , <F/L^2> , <F/L^2> ←↩
, <F/L^2> , <F/L^2> ) verbose_output = <.>

151 simulate constitutive testing drained triaxial strain control use material # ←↩
<.> strain_increment_size = <.> maximum_strain = <.> ←↩
number_of_times_reaching_maximum_strain = <.>;

152 simulate constitutive testing undrained simple shear use material # <.> ←↩
strain_increment_size = <.> maximum_strain = <.> ←↩
number_of_times_reaching_maximum_strain = <.>;

153 simulate constitutive testing undrained triaxial stress control use material # ←↩
<.> strain_increment_size = <.> maximum_strain = <.> ←↩
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 205.6. LIST OF AVAILABLE COMMANDS (TEN . . . page: 1162 of 3287

number_of_times_reaching_maximum_strain = <.>;

154 simulate constitutive testing undrained triaxial use material # <.> ←↩
strain_increment_size = <.> maximum_strain = <.> ←↩
number_of_times_reaching_maximum_strain = <.>;

155 simulate using eigen algorithm number_of_modes = <.>;

156 ux uy uz Ux Uy Uz rx ry rz;

157 while (.) { };

158 whos;
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205.7 List of reserved keywords

The following keywords are reserved and cannot be used as variables in a script or interactive session.

Doing so would result in a syntax error.

First Order (commands)

1 a0
2 a1
3 a2
4 a3
5 a4
6 acceleration
7 acceleration_depth
8 acceleration_file
9 acceleration_filename

10 acceleration_scale_unit
11 add
12 algorithm
13 algorithm
14 all
15 all
16 allowed_subincrement_strain
17 alpha
18 alpha1
19 alpha2
20 and
21 angle
22 armstrong_frederick_cr
23 armstrong_frederick_ha
24 asynchronous
25 at
26 ax
27 axial_penalty_stiffness
28 axial_stiffness
29 axial_viscous_damping
30 ay
31 az
32 bending_Iy
33 bending_Iz
34 beta
35 Beta
36 beta_min
37 case
38 cases
39 characteristic_strength
40 check
41 chi
42 cohesion
43 combine
44 compression
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45 compressive_strength
46 compressive_yield_strength
47 compute
48 confinement
49 confinement_strain
50 constitutive
51 constrain
52 constraint
53 contact_plane_vector
54 control
55 convergence
56 cR1
57 cR2
58 cross_section
59 crushing_strength
60 Current_Stiffness
61 cyclic
62 damage_parameter_An
63 damage_parameter_Ap
64 damage_parameter_Bn
65 damping
66 define
67 depth
68 dilatancy_angle
69 dilation_angle_eta
70 dilation_scale
71 direction
72 disable
73 displacement
74 displacement_file
75 displacement_scale_unit
76 dof
77 dofs
78 dofs
79 domain
80 druckerprager_k
81 DuncanChang_K
82 DuncanChang_n
83 DuncanChang_nu
84 DuncanChang_pa
85 DuncanChang_sigma3_max
86 DYNAMIC_DOMAIN_PARTITION
87 e0
88 each
89 elastic
90 elastic_modulus
91 elastic_modulus_horizontal
92 elastic_modulus_vertical
93 element
94 elements
95 else
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96 enable
97 every
98 factor
99 fiber

100 fiber_cross_section
101 fiber_location
102 field
103 file
104 fix
105 fluid
106 free
107 friction_angle
108 friction_ratio
109 from
110 gamma
111 Gamma
112 Gauss
113 generate
114 GoverGmax
115 h_in
116 hardening_parameters_of_yield_surfaces
117 hardening_parameters_scale_unit
118 hdf5_file
119 hdf5_filenames_list
120 help
121 if
122 imposed
123 Imx
124 Imy
125 Imz
126 in
127 inclined
128 increment
129 initial_axial_stiffness
130 initial_confining_stress
131 initial_elastic_modulus
132 initial_shear_modulus
133 initial_shear_stiffness
134 initial_velocity
135 integration
136 integration_points
137 IntegrationRule
138 integrator
139 interface
140 isotropic_hardening_rate
141 joint_1_offset
142 joint_2_offset
143 K_f
144 K_s
145 k_x
146 k_y
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147 k_z
148 kappa
149 kd_in
150 kinematic_hardening_rate
151 lambda
152 level
153 line_search_beta
154 line_search_eta
155 line_search_max_iter
156 liquefaction_Alpha
157 liquefaction_c_h0
158 liquefaction_Dir
159 liquefaction_dre1
160 liquefaction_Dre2
161 liquefaction_EXPN
162 liquefaction_gamar
163 liquefaction_mdc
164 liquefaction_mfc
165 liquefaction_pa
166 liquefaction_pmin
167 load
168 load_factors_list
169 loading
170 local_y_vector
171 local_z_vector
172 M
173 M_in
174 magnitude
175 magnitudes
176 mass
177 mass_density
178 master
179 material
180 max_axial_stiffness
181 maximum_iterations
182 maximum_number_of_iterations
183 maximum_strain
184 maximum_stress
185 maximum_time_step
186 method
187 minimal
188 minimum_time_step
189 model
190 model
191 moment_x_stiffness
192 moment_y_stiffness
193 monotonic
194 motion
195 mu
196 mx
197 my

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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198 mz
199 name
200 NDMaterial
201 new
202 newton_with_subincrement
203 node
204 nodes
205 number_of_cycles
206 number_of_files
207 number_of_increment
208 number_of_integration_points
209 number_of_iterations
210 number_of_layers
211 number_of_modes
212 number_of_subincrements
213 number_of_times_reaching_maximum_strain
214 of
215 output
216 output
217 output_filename
218 p0
219 parallel
220 peak_friction_coefficient_limit
221 peak_friction_coefficient_rate_of_decrease
222 penalty_stiffness
223 pi1
224 pi2
225 pi3
226 plastic_deformation_rate
227 plastic_flow_kd
228 plastic_flow_xi
229 plot
230 point
231 points
232 poisson_ratio
233 poisson_ratio_h_h
234 poisson_ratio_h_v
235 porosity
236 print
237 propagation
238 pure
239 R0
240 radiuses_of_yield_surface
241 radiuses_scale_unit
242 rate_of_softening
243 reduction
244 reference_pressure
245 remove
246 rempve
247 residual_friction_coefficient
248 restart
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249 restart_files
250 results
251 rho_a
252 rho_f
253 rho_s
254 rho_w
255 RMC_e
256 RMC_eta0
257 RMC_Heta
258 RMC_m
259 RMC_pc
260 RMC_qa
261 RMC_shape_k
262 rounded_distance
263 runTest
264 sanisand2004_A0
265 sanisand2004_c
266 sanisand2004_ch
267 sanisand2004_cz
268 sanisand2004_ec_ref
269 sanisand2004_G0
270 sanisand2004_h0
271 sanisand2004_lambda_c
272 sanisand2004_m
273 sanisand2004_Mc
274 sanisand2004_nb
275 sanisand2004_nd
276 sanisand2004_p_cut
277 sanisand2004_Pat
278 sanisand2004_xi
279 sanisand2004_z_max
280 sanisand2008_A0
281 sanisand2008_alpha_cc
282 sanisand2008_c
283 sanisand2008_ch
284 sanisand2008_cz
285 sanisand2008_ec_ref
286 sanisand2008_G0
287 sanisand2008_h0
288 sanisand2008_K0
289 sanisand2008_k_c
290 sanisand2008_lambda
291 sanisand2008_m
292 sanisand2008_nb
293 sanisand2008_nd
294 sanisand2008_p0
295 sanisand2008_p_in
296 sanisand2008_p_r
297 sanisand2008_Pat
298 sanisand2008_rho_c
299 sanisand2008_theta_c
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300 sanisand2008_X
301 sanisand2008_xi
302 sanisand2008_z_max
303 save
304 scale_factor
305 SCOTCHGRAPHPARTITIONER
306 section
307 section_number
308 sequential
309 series_file
310 set
311 shear
312 shear_length_ratio
313 shear_modulus
314 shear_modulus_h_v
315 shear_stiffness
316 shear_viscous_damping
317 shear_zone_thickness
318 ShearStrainGamma
319 sigma0
320 simulate
321 single
322 size_of_peak_plateau
323 sizes_of_yield_surfaces
324 slave
325 slave
326 soil
327 soil_profile_filename
328 soil_surface
329 solid
330 solver
331 stage
332 steps
333 steps
334 stiffening_rate
335 stiffness_to_use
336 strain
337 strain_at_compressive_strength
338 strain_at_crushing_strength
339 strain_hardening_ratio
340 strain_increment_size
341 stress
342 stress_increment_size
343 stress_relative_tolerance
344 sub-stepping
345 surface
346 surface_vector_relative_tolerance
347 tensile_strength
348 tensile_yield_strength
349 tension_softening_stiffness
350 test
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351 test
352 testing
353 thickness
354 time_step
355 to
356 tolerance_1
357 tolerance_2
358 torsion_Jx
359 torsional_stiffness
360 TorsionConstant_GJ
361 total_number_of_shear_modulus
362 total_number_of_yield_surface
363 triaxial
364 type
365 uniaxial
366 uniaxial_material
367 uniform
368 unit_of_acceleration
369 unit_of_damping
370 unit_of_rho
371 unit_of_vs
372 use
373 using
374 value
375 velocity_file
376 velocity_scale_unit
377 verbose_output
378 viscoelastic_modulus
379 von_mises_radius
380 wave
381 wave1c
382 wave3c
383 while
384 whos
385 with
386 xi_in
387 xz_plane_vector
388 yield_function_relative_tolerance
389 yield_strength
390 yield_surface_scale_unit
391 x
392 y
393 z

Second Order (inside commands)

1 20NodeBrick
2 20NodeBrick_up
3 20NodeBrick_upU
4 27NodeBrick
5 27NodeBrick_up
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6 27NodeBrick_upU
7 3NodeShell_ANDES
8 4NodeShell_ANDES
9 4NodeShell_MITC4

10 4NodeShell_NewMITC4
11 8_27_NodeBrick
12 8_27_NodeBrick_up
13 8_27_NodeBrick_upU
14 8NodeBrick
15 8NodeBrick_fluid_incompressible_up
16 8NodeBrick_up
17 8NodeBrick_upU
18 Absolute_Norm_Displacement_Increment
19 Absolute_Norm_Unbalanced_Force
20 arclength_control
21 Average_Norm_Displacement_Increment
22 Average_Norm_Unbalanced_Force
23 Backward_Euler
24 BARDETMETHOD
25 beam_9dof_elastic
26 beam_displacement_based
27 beam_elastic
28 beam_elastic_lumped_mass
29 BeamColumnDispFiber3d
30 BearingElastomericPlasticity3d
31 BFGS
32 BondedContact
33 CamClay
34 Caughey3rd
35 Caughey4th
36 constant mean pressure triaxial strain control
37 Cosserat8NodeBrick
38 Cosserat_linear_elastic_isotropic_3d
39 Cosserat_von_Mises
40 DIRECT_STRAIN
41 displacement_control
42 DOFTYPE
43 domain reduction method
44 drained triaxial strain control
45 DruckerPrager
46 DruckerPragerArmstrongFrederickLE
47 DruckerPragerArmstrongFrederickNE
48 DruckerPragerMultipleYieldSurface
49 DruckerPragerMultipleYieldSurfaceGoverGmax
50 DruckerPragerNonAssociateArmstrongFrederick
51 DruckerPragerNonAssociateLinearHardening
52 DruckerPragervonMises
53 dynamic
54 eigen
55 elastic3d
56 Elastic_Membrane_Plate
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57 ElasticFourNodeQuad
58 Energy_Increment
59 equal_dof
60 F_fluid_x
61 F_fluid_y
62 F_fluid_z
63 FiberSection
64 ForceBasedCoupledHardContact
65 ForceBasedCoupledSoftContact
66 ForceBasedElasticContact
67 ForceBasedHardContact
68 ForceBasedSoftContact
69 FORCETYPE
70 Forward_Euler
71 Forward_Euler_Subincrement
72 from_reactions
73 Fx
74 Fy
75 Fz
76 Hilber_Hughes_Taylor
77 HyperbolicDruckerPragerArmstrongFrederick
78 HyperbolicDruckerPragerLinearHardening
79 HyperbolicDruckerPragerNonAssociateArmstrongFrederick
80 HyperbolicDruckerPragerNonAssociateLinearHardening
81 linear
82 linear_elastic_crossanisotropic
83 linear_elastic_isotropic_3d
84 linear_elastic_isotropic_3d_LT
85 Membrane_Plate_Fiber
86 Modified_Newton
87 Mx
88 My
89 Mz
90 Newmark
91 Newton
92 non_converged_iterations
93 NonlinearFourNodeQuad
94 Norm_Displacement_Increment
95 Norm_Unbalance
96 Parallel
97 path_series
98 path_time_series
99 petsc

100 petsc_options_string
101 physical_element_group
102 physical_node_group
103 Pisano
104 PlaneStressLayeredMaterial
105 PlaneStressRebarMaterial
106 PlasticDamageConcretePlaneStress
107 pressure
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108 ProfileSPD
109 Rayleigh
110 reaction forces
111 reactions
112 Relative_Energy_Increment
113 Relative_Norm_Displacement_Increment
114 Relative_Norm_Unbalance
115 Relative_Norm_Unbalanced_Force
116 roundedMohrCoulomb
117 RoundedMohrCoulombMultipleYieldSurface
118 sanisand2004
119 sanisand2004_legacy
120 sanisand2008
121 self_weight
122 ShearBeam
123 solid fluid interaction transient
124 static
125 StressBasedCoupledHardContact_ElPPlShear
126 StressBasedCoupledHardContact_NonLinHardShear
127 StressBasedCoupledHardContact_NonLinHardSoftShear
128 StressBasedCoupledSoftContact
129 StressBasedCoupledSoftContact_ElPPlShear
130 StressBasedCoupledSoftContact_NonLinHardShear
131 StressBasedCoupledSoftContact_NonLinHardSoftShear
132 StressBasedHardContact_ElPPlShear
133 StressBasedHardContact_NonLinHardShear
134 StressBasedHardContact_NonLinHardSoftShear
135 StressBasedSoftContact_ElPPlShear
136 StressBasedSoftContact_NonLinHardShear
137 StressBasedSoftContact_NonLinHardSoftShear
138 SuperElementLinearElasticImport
139 support
140 surface
141 transient
142 truss
143 TsinghuaLiquefactionModelCirclePiPlane
144 TsinghuaLiquefactionModelNonCirclePiPlane
145 UMFPack
146 undrained simple shear
147 undrained triaxial
148 undrained triaxial stress control
149 uniaxial_concrete02
150 uniaxial_elastic
151 uniaxial_steel01
152 uniaxial_steel02
153 variable transient
154 variable_node_brick_8_to_27
155 vonMises
156 vonMisesArmstrongFrederick
157 vonMisesMultipleYieldSurface
158 vonMisesMultipleYieldSurfaceGoverGmax
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159 With_no_convergence_check
160

161 beta
162 gamma
163 delta
164

165 ux
166 uy
167 uz
168 rx
169 ry
170 rz
171 Ux
172 Uy
173 Uz
174 p
175 M
176 m
177 kg
178 s
179 cm
180 mm
181 km
182 Hz
183 Minute
184 Hour
185 Day
186 Week
187 ms
188 ns
189 N
190 kN
191 Pa
192 kPa
193 MPa
194 GPa
195 pound
196 lbm
197 lbf
198 inch
199 in
200 feet
201 ft
202 yard
203 mile
204 psi
205 ksi
206 kip
207 g
208 pi
209
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210 NUMBER_OF_NODES
211 NUMBER_OF_ELEMENTS
212 CURRENT_TIME
213 NUMBER_OF_SP_CONSTRAINTS
214 NUMBER_OF_MP_CONSTRAINTS
215 NUMBER_OF_LOADS
216 IS_PARALLEL
217 SIMULATE_EXIT_FLAG
218 then
219 while
220 do
221 let
222 vector
223

224 cos
225 sin
226 tan
227 cosh
228 sinh
229 tanh
230 acos
231 asin
232 atan
233 atan2
234 sqrt
235 exp
236 log10
237 ceil
238 fabs
239 floor
240 log

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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205.8 Integrated Development Environment (IDE) for DSL
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205.9 Mesh Generation using GiD

1. Download the latest version of GiD from http://www.gidhome.com/, and also get a temporary

license (or purchase it...).

2. Download essi.gid.tar.gz, unpack it (tar -xvzf essi.gid.tar.gz) in problemtypes directory

that is located in GiD’s root directory.

3. When you run GiD, you will see essi in ”Data > Problem types”, and can start using it...

4. A simple movie with instructions for mesh generation is available: (Link to a movie, 11MB).
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205.10 Model Development and Mesh Generation using gmesh
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205.11 Model Input File Editing using Sublime

http://www.sublimetext.com/
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206.1 Chapter Summary and Highlights

206.2 Introduction

All output from ESSI simulator is stored inside a database format, specifically designed for handling

scientific array-oriented data, called HDF5 (Group, 2020). HDF stands for ‘Hierarchical Data Format’

and is a self-describing data format suitable for portable sharing of scientific data. The format was

created and is maintained by the HDF group (http://www.hdfgroup.org/)

Data is stored within the file using a hierarchy similar to a unix filesystem, with groups to store

related data and the actual data stored in so-called ‘datasets’ within each group.

HDF5 was chosen because it meets our design goals of provides:

• A simplified output format. Output is a single HDF5 file per analysis stage.

• An efficient binary (possibly compressed) file format that optimizes random access to data.

• A data format that is amenable to store output from parallel computations.

• Has a reasonable API exposed in several languages so that users can easily and customizably access

simulation data.

One very convenient tool for the basic exploration of HDF5 files is the viewer ‘hdfview’ (http:

//www.hdfgroup.org/products/java/hdfview/index.html).

206.3 Output Filename and Format

On running any simulation on Real-ESSI simulator output files are produced for each analysis stage. The

number of outputs and the filename is slightly different for sequential and parallel runs. Each output

file, contains the information about the model mesh, nodal displacements, elements output, boundary

conditions, material tags.. etc. The output files are designed as completely independent files containing

all the data for the loading stage. In parallel each of the follower compute process outputs contains all

the data corresponding to only the follower compute process. This is done to make the visualization and

output process efficient.

206.3.1 Sequential

For sequential runs a single output file is produced per analysis stage. The files are named according

to model and stage names, not by the filename that runs the analysis. The extension is set to be

‘.h5.feioutput’, to distinguish from future possible alternative output formats.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 206.1: Partition info in output file produced by main compute node in parallel run

For example, if the model name is ‘site response’ and the stage name is ‘earthquake shaking’

the corresponding output filename will be ‘site response earthquake shaking.h5.feioutput’.

206.3.2 Parallel

In parallel, for each stage, output files produced are equal to the number of CPU’s used. For example, a

simulation run of 8 CPU’s will produce 8 output files per stage for each corresponding CPU’s (cores).The

filename remains the same as sequential output each CPU (process id) used, but the extension is set to

be as ‘.h5.pid.feioutput’, where pid refers to the process id of the CPU. However, the main compute

process having pid equal to 0 follows the extension ‘.h5.feioutput’.

For example, In parallel, if the model name is ‘site response’ and the stage name is ‘earthquake shaking’

and the analysis is run on n CPU’s, the corresponding output filename for the main compute process

(pid = 0) would be ‘site response earthquake shaking.h5.feioutput’. All the follower compute

process having pid > 0 would have output filename ‘site response earthquake shaking.h5.pid.feioutput’.

The main compute process usually does not contain any nodes and element once the partition is

achieved and nodes and elements are transfered to their respective CPU’s or cores. Thus, the output

produced by main compute process does not contain any mesh or output results. However, it contains

the partition data as shown in Figure 206.1 describing the process id on which any node or element is

assigned. This information is quite useful, during post processing when the result of a particular node or

element needs to be extracted. The main compute output can be read to find out the follower compute

process id on which the data is located and then the output of that process id can be read to get the
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data of interest.

206.4 Output Units

Real-ESSI .feioutput file stores all the results in standard units. The table below shows the units of

all the data stored in HDF5 file.

Quantity Unit

Force Fx, Fy, Fz N

Moments Mx, My, Mz N – m

Pressure p Pa

Displacement ux, uy, uz m

Rotation rx, ry, rz radian

Stress σ Pa

Strain ϵ unit less

Acceleration ax, ay, az m/s2

Time t s

206.5 Data organization

In HDF5 jargon a multidimensional array is called a dataset. Datasets are indexed arrays (up to 32

dimensions) that can contain different types of data. Supported data types are: integers (various sizes),

floating point numbers (float, float, long double, etc.), strings of text (fixed and variable size

char *), and arbitrary structures of data (similar to C language struct). A file can contain as many

independent datasets as needed. Datasets can be organized into ‘groups’, which are like folders in a file

system. HDF5 provides additionally convenience data-types such as ‘references’, which provide views

(slices) into diferent datasets or portions of them.

In the particular case of the ESSI HDF5 output, the files are designed with the contents and structure

explained hereafter and depicted in Figure 206.3.

206.5.1 The Root group

The root of the HDF5 file contains information about each stage of loading. In parallel simulations, the

information corresponds to the process Id (follower compute node) involved in that stage. The objects

under this group are shown in Figure 206.4 and described in List 206.5.1

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 206.2: Output from a typical analysis.

• time : (float) A floating point array named which contains the available time steps for this

analysis.

• Number of Time Steps: (int) A single scalar integer array with the number of times steps.

• Model Name: (string) A single string with the model name.

• Stage Name: (string) A single string with the stage name.

• Previous Stage: (string) A single string containing previous stage name.

• Process Number: (int) An integer representing the process id by which output was generated.

For sequential runs, process id would be zero. In parallel runs, process id corresponds to the mpi

rank or follower compute id of processor involved in computation.

• Number of Processes Used: (int) An integer representing total number of processors/CPU/n-

odes used in the simulation. For sequential runs, it is equal to one whereas for parallel runs, it is

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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HDF5 Root

“/”

Contains:

Domain level

Data and metadata

• Model_Name

• Stage_Name

• Previous_Stage

• Process_Number

• Number_of_Processes_Used

• Date_and_Time_Start

• Date_and_Time_End

• Number_of_Elements

• Number_of_Nodes

• Number_of_Gauss_Points

• Number_of_Time_Steps

• Number_of_Element_Outputs

• Time

• Analysis_Options

‘Nodes’

group

Contains:

Node’s level

Data and metadata

• Node_Tags

• Number_of_DOFs

• Constrained_DOFs

• Constrained_Nodes

• Partition

• Index_to_Coordinates

• Coordinates

• Index_to_Generalized_Displacements

• Generalized_Displacements

• Support Reactions

‘Elements’

group

Contains:

Element’s level

Data and metadata

• Element_Tags

• Class_Tags

• Element_Class_Desc

• Number_of_Nodes

• Number_of_Gauss_Points

• Material_Tags

• Partition

• Index_to_Gauss_Point_Coordinates

• Gauss_Point_Coordinates

• Index_to_Connectivity

• Connectivity

• Index_to_Gauss_Outputs

• Gauss_Outputs

• Index_to_Element_Outputs

• Element_Outputs

• Number_of_Element_Outputs

‘Physical_Groups’group

‘Model’ Group

‘Physical_Ele

ments_Group’

group

Contains:

Physical Elements’ Group

Data and metadata

• Physical_Group#1

• Physical_Group#2

‘Physical_Nod

es_Group’

group

Contains:

Physical Nodes’ Group

Data and metadata

• Physical_Group#1

• Physical_Group#2

‘Eigen_Mode_Analysis’

group

Contains:

Eigen Mode Analysis level

Data and metadata

• Number_of_modes

• Periods
• Frequencies

• Modes
• Values

Materials : description of material tags

Figure 206.3: Design of the ESSI .h5.feioutput data format.

equal to the number of CPU’s/Cores used.

• Number of Nodes: (int) A single scalar integer array with the number of nodes defined in that

domain.

• Number of Elements: (int) A single scalar integer array with the number of elements defined in

that domain.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 206.5. DATA ORGANIZATION page: 1186 of 3287

Figure 206.4: Data accessible in the Root directory of HDF5 file.

• Number of Gauss Points: (int) A single scalar integer array with the number of gauss points in

that domain.

• Number of Element Outputs: (int) A single scalar integer array with stores the total length of

Element Output array in that domain.

• Analysis Options: (string) An array of strings with the analysis options selected for the current

analysis.

• Date and Time Start: (string) A single string with the Date and Time of the start of the

analysis. (In Coordinated Universal Time, UTC)

• Date and Time End: (string) A single string with the Date and Time of the end of the analysis.

(In Coordinated Universal Time, UTC)

item Version Info:(string) A Long string containing the version information of Real-ESSI

simulator.

• Model: A group that contains the Nodes and Elements groups. It contains essential information

about the mesh and analysis results for nodes and elements. See Section 206.5.2
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• Eigen Mode Analysis: A group that contains the information about the the eigen mode analysis

results of the doamin. See Section 206.5.6

206.5.2 The Model group

The Model group contains information about the mesh and analysis outputs. It contains the following

groups as shown in Figure 206.5 and is also described below

• Nodes: A group that contains the information about the defined nodes and their output for this

analysis. See Section 206.5.3

• Elements: A group that contains the information about the defined Elements and their output

for this analysis. See Section 206.5.4

• Physical Groups: A group that contains the information physical group of elements and nodes

defined in that domain. See Section 206.5.5

• Material: (string) A string array which contains information about the material tag defined in

the analysis for that loading stage. Section 206.5.7

Figure 206.5: Model group directory of HDF5 file.

Subgroups Nodes and Elements store several integer and double precision arrays, that contain all

necessary information for post processing.

206.5.3 The Nodes group

The Nodes group contains information about the nodal coordinates of the model, their tags, the number

of DOFs defined at each node, and the corresponding solution variables (DOF results or generalized

displacements) for each time step.

The format used to store the data is designed to give the fastest possible access time to the data of

interest. Stored within the Nodes groups (and also in Elements) are two types of arrays: data arrays

and index arrays.
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• Data Arrays :: Data arrays might be floating-point arrays or integer arrays and have names not

starting with ‘Index to ’.

• Index Arrays :: All index arrays are integer arrays and have names starting with the word

‘Index to ’ followed by the name of the array which this array indexes.

The concept of index array is an important one regarding speed of access to data. These arrays map

the integer tag number of the nodes (or elements) to the data. This allows fast access to components

which minimizes searching within arrays to find the data of interest.

The Nodes group contains the following index arrays.

• Index to Coordinates: (int) Indexes the coordinates of nodes. See section 206.5.3.6

• Index to Generalized Displacements: (int) Indexes the outputs of nodes (generalized dis-

placements). See section 206.5.3.7

The following are the data arrays available in the Nodes group (shown in Figure ?? along with their

respective indexing array:

Figure 206.6: Nodes group directory of HDF5 file.

• Coordinates: (float) 1-D array containing nodal coordinates fixed in time. [Indexed by Index to Coordinates

array]. See section 206.5.3.6

• Generalized Displacements: (float) 2-D array containing the DOF values for the solution at

each time step. [Indexed by Index to Generalized Displacements array]. See section 206.5.3.7

• Number of DOFs: (int) 1-D array mapping the integer tag of each node to the number of DOFs

at that node. See section 206.5.3.1
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• Constrained Nodes: (int) 1-D array mapping the integer tag of each node to the number of

DOFs at that node. See section 206.5.3.3

• Constrained DOFs: (int) 1-D array mapping the integer tag of each node to the number of

DOFs at that node. See section 206.5.3.4

• Partition: (int) 1-D array mapping the integer tag of each node to the number of DOFs at

that node. See section 206.5.3.2

• Support Reactions: (float) 1-D array mapping the integer tag of each node to the number of

DOFs at that node. See section 206.5.3.5

For example, lets imagine that the user has defined 4 nodes and applied the following constrained as

shown below :

Listing 206.1: Node Example

1 // defining nodes
2 add node # 2 at (0*m, 0*m, 0*m) with 3 dofs;
3 add node # 4 at (1*m, 1*m, 1*m) with 6 dofs;
4 add node # 5 at (2*m, 2*m, 2*m) with 3 dofs;
5 add node # 6 at (1*m, 0*m, 5*m) with 3 dofs;
6

7 // applying constraints
8 fix node # 2 dofs ux uy;
9 fix node # 4 rx ry rz;

10 fix node # 6 Ux p;

The index and the data arrays for the given example would look like the following as shown in the

subsections ahead.

206.5.3.1 Number of DOFs

Number of DOFs array defines the number of degrees of freedom for each node defined in the model. It

is an integer array of length equal to the maximum node tag + 1 (including tag 0). If a node tag does

not exists, the corresponding dofs is output as -1. Figure 206.7 shows how to read Number of DOFs

array. In the given example Listing 206.1 , node tag 2 has 3 degrees of freedom. Similarly, node tag 4

has 6 degrees of freedom and so on.

206.5.3.2 Partition

Partition array contains the domain or process id on which nodes tags were defined in case of a

parallel simulation. For sequnetial runs, this dataset is not available. If a node tag does not exists, the
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corresponding partition process id is output as -1. Figure 206.7 shows how to read Partition array. In

the given example Listing 206.1, node tag 2 is assigned to process id 1. Similarly, node tag 4 is assigned

to process id 2 and so on.

 

Number_of_DOFs
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 3 -1 6 3 3 …

Partition

Index_no 0 1 2 3 4 5 6 …

-1 -1 1 -1 2 5 4 …

Node Tag 2 has 3 dofs

Node Tag 2 was assigned
to Process Id 1

Figure 206.7: Arrays describing node information in Nodes group directory of HDF5 file.

206.5.3.3 Constrained Nodes

Constrained Nodes array contains a list of node tags for each dof on which fixities were applied.

Figure 206.8 shows how to read Constrained Nodes. In the given example Listing 206.1, dof ux and

uy of node tag 2 is fixed. Similarly, for node tag 4 dofs rx ry and rz are fixed. Thats why in the

Constrained Nodes array contains node tags 2,2,4,4,4 and so on multiple times for each dof of the

corresponding node tag fixed.

206.5.3.4 Constrained DOFs

Constrained DOFs array contains a list of dofs of the corresponding node tag on which fixities were

applied. Figure 206.8 shows how to read Constrained DOFs. In the given example Listing 206.1, dof

ux (0) and uy (1) of node tag 2 is fixed. Similarly, for node tag 4 dofs rx (3) ry (4) and rz (5) are fixed.

Figure 206.8 also show the DOF if numbering for different dof types i.e. for 3dof, 4dof, 6dof and 7dof

nodes.

206.5.3.5 Support Reactions

Support Reactions contains a (float) array of reaction forces for the constrained degree of freedoms

(DOFs). Figure 206.8 shows how to read Constrained DOFs. In the given example Listing 206.1, dof

ux (0) and uy (1) of node tag 2 has support reactions 1N and -5N respectively. Similarly, for node tag

4 dofs rx (3) ry (4) and rz (5) have reactions 45, 3 and -5 N – m respectively. The reaction forces for

displacement dofs (ux, uy, uz) are forces in units of N , for rotational dofs (rx, ry, rz) are moments in units
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Constrained_Nodes
Index_no 0 1 2 3 4 5 6 …

2 2 4 4 4 6 6 …

Constrained_Dofs

Index_no 0 1 2 3 4 5 6 …

0 1 3 4 5 0 3 …

Constrained Node_Tag

DOF no 1 i.e. rx of 
Node_Tag 3 is constrained

Constrained DOF no

DOF_no

0 1 2 3 4 5 6

ux uy uz rx ry rzDescription (6dof) Beam

Description (7dof) uPU ux uy uz p Ux Uy Uz

Description (4dof) uP ux uy uz p

Description (3dof) u ux uy uz

N
u
m
_
D
o
f

Number_of_Dofs
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 3 -1 6 3 3 …

Number of degrees of freedom per 
node is given by

Number_of_Dofs(Node_Tag) 

Support_Reactions
Index_no 0 1 2 3 4 5 6 …

1 -5 45 3 -5 4 4 …

Suport Reaction value for DOF id 3 
i.e. rx of (6DOF type node)

Node_Tag 3 which  is constrained

Figure 206.8: Arrays describing constrained nodes and reaction information in Nodes group directoory

of HDF5 file.

of N – m and for pressure dof (p) is pascal (Pa). Section 206.6 describes the output definitions for nodes

with different dof-types.

206.5.3.6 Coordinates

The Coordinates array is a vertical stack of the nodal coordinate values. it is indexed by the

Index to Coordinates, which relates the integer tag of each nodes (defined at the moment of creation

of every node) with the position on this array of the 3 nodal coordinates. If the node with a given tag

is not defined (if a tag number or several are skipped) this array will contain a negative number (-1) for

that tag value. Figure 206.9 shows how to read Coordinates and index to Coordinates of nodes.

The size of Index to Coordinates is always the maximum tag defined plus one (zero can be a

tag too). The size of the Coordinates array is three times the number of nodes defined. In the given
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Index_to_Coordinates
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 3 6 9 …

Coordinates
Index_no 0 1 2 3 4 5 6 …

0 0 0 1 1 1 2 …

Node tag 2 is mapped to index 0
in coordinate array

-1 indicates Node tag 3
does not exist

Each node has 3 coordinate values (ux,uy and uz)

Figure 206.9: Coordinates and Index to Coordinates arrays in Nodes group directory of HDF5

file.

example Listing 206.1, the coordinates of node tag 2 is (0*m,0*m,0*m). The coordinate of node tag 4

is (1*m,1*m,1*m) and so on. The coordinates have unit of meter (m).

206.5.3.7 Generalized Displacements

The Generalized Displacements array is a 2-D array containing the computed solution at the nodal

degrees of freedom for all nodes and all times steps. It is indexed by the Index to Generalized Displacements

array (first index) and time (second index). Figure 206.10 shows how to read Generalized Displacements

and index to Generalized Displacements of nodes.

Output for displacement dofs (ux, uy, uz) are in units of m, for rotational dofs (rx, ry, rz) are in units

of radian and for pressure dof (p) is in pascal (Pa).

With every time step, another column is added to the Generalized Displacements array. This

means that the time index (starting at 0) is directly related to the time array at the root of the HDF5

file.

The rows of the Generalized Displacements array contain the results for each DOF of the

current node. For a 3-DOF node these will be displacement in X, Y , and Z (ux, uy, and uz ) respectively.

For higher number-of-dof nodes the first three components are the same but the remaining ones are

going to depend on the connecting elements. For example, 6-DOF nodes might carry information on

nodal rotations (beams and shells) or might be fluid displacements in case the elements connecting are

u–U coupled fluid-porous-solid elements as shown in Figure 206.8. Section 206.6 describes the output

definitions for nodes with different dof-types.
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Output for Time 
Step Number 0 also known as
‘initial conditions’

or
‘initial state’

Index_to_Generalized_Displacements
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 3 9 12 …

Generalized_Displacements

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Node tag 2 is mapped to index 0 in 
Generalized_Displacements

array

-1 indicates Node tag 3
does not exist

Each node has output for their corresponding 
number of degrees of freedom (DOFs) 

Number of rows or outputs per node is given by 
Number_of_Dofs(Node_Tag)

0

1

2

3

…
9

10

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

0 9 0 -1 0 1 …

… … … … … …

…

8 0 0 4 0 1 …

… … … … …

…

…

TimeStep

Output for Time 
Step Number 2

Number_of_Dofs
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 3 -1 6 3 3 …

N
od

e 
ta

g 
2

N
od

e 
ta

g 
4

Figure 206.10: The Index to Generalized Displacements and Generalized Displacements in

Nodes group directory of HDF5 file.

206.5.4 The Elements group

The Elements group contains information on the finite element mesh such as: connectivity array, ele-

ment types, location of Gauss-point integration coordinates (global), materials defined at each element,

and all available output from the elements. At this point it is important to note that the kind and

amount of output contained in the element output arrays are dependent on element implementation as

it is the elements who are in charge of controlling their output. For information on the specific output

of each element, consult the documentation for the respective element.

The idea and organization of the datasets contained herein is analogous to the of the Nodes group.

This group contains the following index arrays.

• Index to Connectivity: (int) Maps element tag to location within the Connectivity array.

• Index to Gauss Point Coordinates: Maps element tag to location of Gauss-point coordinates

in the Gauss Point Coordinates array.
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• Index to Gauss Outputs: (int) Maps element tag to location of gauss output of element in the

Gauss Outputs array.

• Index to Element Outputs: (int) Maps element tag to location of output in the Elements Outputs

array.

The following are the data arrays available in the Elements group (shown in Figure ?? along with

their respective indexing array:

Figure 206.11: Elements group directory of HDF5 file.

• Class Tags: (int) It is an array that contains the integer ids for each elements tag defined in

the model and present in thet domain. See section 206.5.4.4

• Number of Nodes: (int) Maps element tag number to number of nodes in the element (-1 if

element tag is not defined). See section 206.5.4.1.

• Number of Gauss Points: (int) Maps tag number to the number of Gauss-integration points in

that element (-1 if not element tag is not defined). It stores 0 in case of no gauss points (mostly

for structural elements). See section 206.5.4.3
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• Material Tags: (int) Maps tag number to the tag number of the material contained in that

element (-1 if element tag is not defined or material for that element is not defined). See sec-

tion 206.5.4.6

• Partition: (int) Maps tag number to the tag number of the processor id on which it is assigned

(-1 if element tag is not defined). See section 206.5.4.5

• Connectivity:(int) Contains the nodes tags which are connected by this element [indexed by

the Index to Connectivity array] (-1 if element tag is not defined). See section 206.5.4.7

• Gauss Point Coordinates: (float) Contains the coordinates of all the gauss pints of that

element tag [indexed by the Index to Gauss Point Coordinates array] (-1 if element tag is

not defined) . See section 206.5.4.8

• Gauss Outputs: (float) Contains the stress, strain and plastic strain outputs for each gauss

point present in the corresponding element tag[indexed by the Index to Gauss Outputs array].

See section 206.5.4.9

• Element Outputs: (float) Contains output other than gauss points by the [indexed by the

Index to Element Outputs array]. See section 206.5.4.2

For example, lets imagine that the user has defined 4 elements and some materials as shown below :

Listing 206.2: Element Example

1

2 // defining materials
3

4 add material #1 type uniaxial_elastic elastic_modulus = 1*Pa ←↩
viscoelastic_modulus = 0*Pa*s;

5 add material #2 type linear_elastic_isotropic_3d mass_density = 2000*kg/m^3 ←↩
elastic_modulus = 200*MPa poisson_ratio = 0.3;

6

7 // defining elements
8 add element #2 type truss with nodes (1,2) use material # 1 cross_section = ←↩

1*m^2 mass_density = 0*kg/m^3;
9 add element #4 type 8NodeBrick with nodes (1,8,6, 4, 3, 9, 2, 5) use material #2;

10 add element #5 type HardContact with nodes (3,2) normal_stiffness =1e10*N/m ←↩
tangential_stiffness = 1e4*Pa*m normal_damping = 0*kN/m*s ←↩
tangential_damping = 0*N/m*s friction_ratio = 1 contact_plane_vector = ←↩
(0,0,1);

11 add element #6 type 8NodeBrick with nodes (11,18,61,14, 3,19,22,15) use ←↩
material #2;

The index and the data arrays for the given example would look like the following as shown in the

subsections ahead.
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206.5.4.1 Number of Nodes

Number of Nodes array defines the number of nodes for each element defined in the model. It is an

integer array of length equal to the maximum element tag + 1 (including tag 0). If a element tag

does not exists, the corresponding number of nodes is output as -1. Figure 206.12 shows how to read

Number of Nodes array. In the given example Listing 206.2 , element tag 2 has 2 nodes. Similarly,

element tag 4 has 8 nodes and so on.

206.5.4.2 Number of Element Outputs

Number of Element Outputs array defines the number of outputs for each element defined in the

model. It is an integer array of length equal to the maximum element tag + 1 (including tag 0). If a

element tag does not exists, the corresponding number of outputs is stored as-1. Figure 206.12 shows

how to read Number of Element Outputs array. In the given example Listing 206.2 , element tag 2

has 2 outputs. Similarly, element tag 5 has 9 outputs but element tag 4 has 0 outputs and so on.

 

Number_of_Nodes
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 2 -1 8 2 8 …

Number_of_Gauss_Points
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 8 0 8 …

Material_Tags

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 1 -1 2 -1 2 …

Number of Nodes is 2 
for element tag 2

Number of gauss points is 0 
for element tag 2

Material tag is 1 
for element tag 2

Class_Tags

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 86 -1 2 88 2 …

Class tag is 86 
for element tag 2

Partition

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 2 -1 1 6 4 …

element tag 2 is 
assigned to Process id 2

Figure 206.12: Arrays describing element information in Elements group directory of HDF5 file.
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206.5.4.3 Number of Gauss Points

Number of Gauss Points array defines the number of gauss points for each element defined in the

model. It is an integer array of length equal to the maximum element tag + 1 (including tag 0). If a

element tag does not exists, the corresponding number of outputs is stored as-1. Figure 206.12 shows

how to read Number of Gauss Points array. In the given example Listing 206.2 , element tag 2 and 5

has 0 gauss points. Similarly, element tag 4 has 8 gauss points and so on.

206.5.4.4 Class Tags

Class Tags array defines an (unique) element type for each of the element defined in the model. It is

an integer array of length equal to the maximum element tag + 1 (including tag 0). If a element tag

does not exists, the corresponding number of outputs is stored as-1. Figure 206.12 shows how to read

Class Tags array. In the given example Listing 206.2 , element tag 2 has class tag of 88 (i.e. truss

element) . Similarly, element tag 5 has class tag 2 (i.e. 8 node brick element) and so on. Table 206.1

and Table 206.2 shows class tags for different element types.

206.5.4.5 Partition

Partition array contains the domain or process id on which element tags were defined in case of a

parallel simulation. For sequential runs, this dataset is not available. If a element tag does not exists,

the corresponding partition process id is output as -1. Figure 206.12 shows how to read Partition

array. In the given example Listing 206.2, element tag 2 is assigned to process id 2. Similarly, element

tag 4 is assigned to process id 1 and so on.

 

Number_of_DOFs
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 3 -1 6 3 3 …

Partition

Index_no 0 1 2 3 4 5 6 …

-1 -1 1 -1 2 5 4 …

Node Tag 2 has 3 dofs

Node Tag 2 was assigned
to Process Id 1

Figure 206.13: Arrays describing node information in Nodes group directory of HDF5 file.
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Element Type Class Tag Element Type Class Tag

EightNodeBrick 2 EightNodeBrick up 3

EightNodeBrick upU 4 TwentyNodeBrick 5

TwentyNodeBrick up 6 TwentyNodeBrick upU 7

TwentySevenNodeBrick 8 TwentySevenNodeBrick up 9

TwentySevenNodeBrick upU 10 VariableNodeBrick 11

VariableNodeBrick up 12 VariableNodeBrick upU 13

EightNodeBrickOrderOne 14 EightNodeBrickOrderOne up 15

EightNodeBrickOrderOne upU 16 TwentyNodeBrickOrderOne 17

TwentyNodeBrickOrderOne up 18 TwentyNodeBrickOrderOne upU 19

TwentySevenNodeBrickOrderOne 20 TwentySevenNodeBrickOrderOne up 21

TwentySevenNodeBrickOrderOne upU 22 VariableNodeBrickOrderOne 23

VariableNodeBrickOrderOne up 24 VariableNodeBrickOrderOne upU 25

EightNodeBrickOrderTwo 26 EightNodeBrickOrderTwo up 27

EightNodeBrickOrderTwo upU 28 TwentyNodeBrickOrderTwo 29

TwentyNodeBrickOrderTwo up 30 TwentyNodeBrickOrderTwo upU 31

TwentySevenNodeBrickOrderTwo 32 TwentySevenNodeBrickOrderTwo up 33

TwentySevenNodeBrickOrderTwo upU 34 VariableNodeBrickOrderTwo 35

VariableNodeBrickOrderTwo up 36 VariableNodeBrickOrderTwo upU 37

EightNodeBrickOrderThree 38 EightNodeBrickOrderThree up 39

EightNodeBrickOrderThree upU 40 TwentyNodeBrickOrderThree 41

TwentyNodeBrickOrderThree up 42 TwentyNodeBrickOrderThree upU 43

TwentySevenNodeBrickOrderThree 44 TwentySevenNodeBrickOrderThree up 45

TwentySevenNodeBrickOrderThree upU 46 VariableNodeBrickOrderThree 47

VariableNodeBrickOrderThree up 48 VariableNodeBrickOrderThree upU 49

Table 206.1: Class Tags for Real-ESSI Elements (Part -1)

206.5.4.6 Material Tags

Material Tags array defines the material tag number for each element defined in the model. It is

an integer array of length equal to the maximum element tag + 1 (including tag 0). If a element

tag does not exists, the corresponding number of outputs is stored as-1. Figure 206.12 shows how to

read Material Tags array. In the given example Listing 206.2 , element tag 2 has material tag of 1.

Similarly, element tag 4 has material tag 2. Whereas, element tag 5 have material tag of -1.
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Element Type Class Tag Element Type Class Tag

EightNodeBrickOrderFour 50 EightNodeBrickOrderFour up 51

EightNodeBrickOrderFour upU 52 TwentyNodeBrickOrderFour 53

TwentyNodeBrickOrderFour up 54 TwentyNodeBrickOrderFour upU 55

TwentySevenNodeBrickOrderFour 56 TwentySevenNodeBrickOrderFour up 57

TwentySevenNodeBrickOrderFour upU 58 VariableNodeBrickOrderFour 59

VariableNodeBrickOrderFour up 60 VariableNodeBrickOrderFour upU 61

EightNodeBrickOrderFive 62 EightNodeBrickOrderFive up 63

EightNodeBrickOrderFive upU 64 TwentyNodeBrickOrderFive 65

TwentyNodeBrickOrderFive up 66 TwentyNodeBrickOrderFive upU 67

TwentySevenNodeBrickOrderFive 68 TwentySevenNodeBrickOrderFive up 69

TwentySevenNodeBrickOrderFive upU 70 VariableNodeBrickOrderFive 71

VariableNodeBrickOrderFive up 72 VariableNodeBrickOrderFive upU 73

EightNodeBrickOrderSix 74 EightNodeBrickOrderSix up 75

EightNodeBrickOrderSix upU 76 TwentyNodeBrickOrderSix 77

TwentyNodeBrickOrderSix up 78 TwentyNodeBrickOrderSix upU 79

TwentySevenNodeBrickOrderSix 80 TwentySevenNodeBrickOrderSix up 81

TwentySevenNodeBrickOrderSix upU 82 VariableNodeBrickOrderSix 83

VariableNodeBrickOrderSix up 84 VariableNodeBrickOrderSix upU 85

HardContact 86 SoftContact 87

Truss 88 ElasticBeam 89

ThreeNodeAndesShell 90 FourNodeAndesShell 91

ShearBeam 92 rank one deficient elastic pinned fixed beam 93

DispBeamColumn3d 94 Cosserat 8node brick 95

Table 206.2: Class Tags for Real-ESSI Elements (Part -2)

206.5.4.7 Connectivity

Connectivity array stores the list of node tags in the same order as they were defined along with element

declaration in the model. It is an integer. It is indexed by the Index to Connectivity array and

the number of rows is defined by Number of Nodes. Figure 206.14 shows how to read Connectivity

array for a particular element. In the given example Listing 206.2 , element tag 2 includes node tag 1

and 2. Similarly, element tag 4 includes 8 node tas 1,8,6, 4, 3, 9, 2 and 5 respectively.
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Index_to_Connectivity
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 2 10 18 …

Connectivity
Index_no 0 1 2 3 4 … 9 …

1 2 1 6 6 … 5 …

Element tag 2 is mapped to index 0 
in connectivity array

-1 indicates Element tag 3
does not exist

Node tags in element connectivity order
Number of Columns is given by

Number_of_Nodes(Element_Tag) 

Node tag

Number_of_Nodes
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 2 -1 8 2 8 …

Number of Nodes is 2 
for element tag 2

Node tag

Element tag 2 Element tag 4

Figure 206.14: Arrays describing connectivity information in Elements group directory of HDF5 file.

206.5.4.8 Gauss Point Coordinates

Gauss Point Coordinates array stores the coordinates of the gauss points declared inside for each

element defined in the model. It is a float array indexed by the Index to Gauss Point Coordinates

array and the number of rows is defined by 3 (x, y, z) times Number of Gauss Points. Figure 206.15

shows how to read Gauss Point Coordinates array for a particular element. In the given example

Listing 206.2, element tag 2 and 5 has no gauss points. Since, element tag 4 has 8 gauss points, the

total length of gauss point coordinates output for that element is 8 × 3 = 24. The index from which

the coordinates information start is 0. Coordinate values for first 3 index (0, 1, 2) corresponds to gauss

point 1 and next 3 index (3, 4, 5) corresponds to gauss point 2 and so on.

206.5.4.9 Gauss Output

Gauss Outputs array stores the coordinates of the gauss points declared inside for each element defined

in the model. It is a 2D float array indexed by the Index to Gauss Outputs array and the number

of rows is defined by 18 (6 total strain, 6 plastic strain and 6 stress) times Number of Gauss Points.

The column index is represented by the time step of the simulation. Time index 0 represents initial state

conditions, i.e. the state before the start of new stage and end of previous stage.

Figure 206.16 shows how to read Gauss Outputs array for a particular element. In the given example

Listing 206.2, element tag 2 and 5 has no gauss points. Since, element tag 4 has 8 gauss points, the
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Index_to_Gauss_Point_Coordinates

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 -1 -1 0 -1 24 …

Gauss_Point_Coordinates
Index_no 0 1 2 3 4 5 6 …

-2 4 3 8 9 7 4 …

Element tag 4 is mapped to index 0 in 
Gauss_Point_Coordinates array

-1 indicates Element tag 3
does not exist

Number of Columns is given by 
Number_of_Gauss_points(Element_Tag) x 3

Number_of_Gauss_points
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 8 0 8 …

Number of Gauss Points is 3 
for element tag 2

Gauss Point 1 
Coordinates (x,y,z)

Gauss Point 2 
Coordinates (x,y,z)

Figure 206.15: Arrays describing gauss coordinates information in Elements group directory of HDF5

file.

 

Index_to_Gauss_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 -1 -1 0 -1 144 …

Element tag 2 is mapped to index 0 in 
Gauss_Outputs array

-1 indicates Element tag 3
does not exist

Number_of_Gauss_points
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 8 0 8 …

Number of Gauss Points is 8 
for element tag 4, which 
means total number of 

outputs would be 18x8=144

Output for Time 
Step Number 0 also known as
‘initial conditions’

or
‘initial state’

Gauss_Outputs

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Each gauss point has 18 output 
6 total strain, 6 plastic strain and 6 stress

Number of rows or outputs per node is given by 
Number_of_Gauss_points(Element_Tag) x 18

0

1

2

…

143

144

145

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

… … … … … …

…

-3 0 0 8 3 1 …

8 0 0 4 0 1 …

… … … … …

…

…

TimeStep

Output for Time 
Step Number 2

Figure 206.16: Arrays describing gauss output information in Elements group directory of HDF5 file.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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total length of gauss output for that element is 8 × 18 = 144. The index from which the coordinates

information start is 0. gauss values for first 18 index (0, 1..17) corresponds to gauss point 1 and next

18 index (18..35) corresponds to gauss point 2 and so on. For gauss point 1, first 6 index (0, 1..5)

corresponds to total strain, next 6 index (6..11) corresponds to plastic strain and next 6 index (12..17)

corresponds to stress. Section 206.7 describes how gauss output is stored and what are the units and

meaning of those outputs.

206.5.4.10 Element Outputs

Element Outputs array stores output for the elements except those stored at gauss points (i.e. stress,

total strain and plastic strain). It is a 2D float array indexed by the Index to Element Outputs

array and the number of rows is defined Number of Element Outputs. he column index is represented

by the time step of the simulation. Time index 0 represents initial state conditions, i.e. the state before

the start of new stage and end of previous stage.

 

Index_to_Element_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 -1 2 -1 …

Element tag 2 is mapped to index 0 in 
Element_Outputs array

-1 indicates Element tag 3
does not exist

Number_of_Element_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 2 -1 0 9 0 …

Number of Element Outputs is 
2 for element tag 2, 

Output for Time 
Step Number 0 also known as
‘initial conditions’

or
‘initial state’

Element_Outputs

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Number of rows or outputs per element is given by 
Number_of_Element_Outputs(Element_Tag)

0

1

2

…

10

11

12

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

… … … … … …

…

-3 0 0 8 3 1 …

8 0 0 4 0 1 …

… … … … …

…

…

TimeStep

Output for Time 
Step Number 2

El
em

en
t t

ag
 5

Figure 206.17: Arrays describing output information in Elements group directory of HDF5 file.

Figure 206.17 shows how to read Element Outputs array for a particular element and particular
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time step. In the given example Listing 206.2, element tag 2 has two outputs. Similarly, element tag 5

has 9 outputs. On the other hand element tag 4 has no output. For element 2, the output starts at row

index 0 and ends at 1. Similarly, for element tag 4, the output is stored in row index 2..10.

Since the Element Outputs array format depends on the elements present in the model, one must

refer to each element specifically (Section 206.8) to identify what each output component means.

206.5.5 The Physical Groups group

Physical Groups group contains the physical groups of nodes or elements defined in the analysis.

It contains two subgroups: Physical Node Groups and Physical Element Groups as shown in

Figure 206.18 and is described in the following sections.

Figure 206.18: Physical Groups group directory of HDF5 file.

For example, lets imagine that the user has defined one phyical group of nodes and elements respec-

tively as shown below :

Listing 206.3: PhyGrp Example

1 // defining physical groups
2 define physical_node_group ``Physical_Node_Group#1'';
3 define physical_element_group ``Physical_Element_Group#1'';
4

5 // adding items to allready defined physical groups
6 add nodes (1,4,5,7,2,30,42) to physical_node_group ``Physical_Node_Group#1''
7 add elements (1,4,5,7,2,30,42) to physical_node_group ``Physical_Element_Group#1''

The data arrays for the given example would look like the following as shown in the subsections

ahead.

206.5.5.1 The Physical Element Groups

This group contains information about physical groups of elements defined in the analysis. For each of

the physical group defined, a new integer data array is created inside Physical Element Groups which

stored the element tags belonging to that group. Figure 206.19 shows how to read Physical Element Groups

dataset array for a particular defined physical group.
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In the given example Listing 206.3, a physical group array with name ‘‘Physical Element Group#1’’

is created which contains the list of element tags that were part of that physical group. Figure 206.19

shows that ‘‘Physical Element Group#1’’ contains element tags 1,4,5,7, and so on;

Physical_Node_Group#1

Index_no 0 1 2 3 4 5 6 …

1 4 5 7 2 30 42 …

Node Tag, which is included in 
the physical node groupPhysical node group name in string. 

Here it would represent “Physical_Node_Group#1”

Physical_Element_Group#1

Index_no 0 1 2 3 4 5 6 …

1 4 5 7 2 30 42 …

Element Tag, which is included 
in the physical element groupPhysical node group name in string. 

Here it would represent “Physical_Element_Group#1”

Figure 206.19: Arrays describing physical groups information in Physical Groups group directory of

HDF5 file.

206.5.5.2 The Physical Node Groups

This group contains information about physical groups of nodes defined in the analysis. For each of

the physical group defined, a new integer data array is created inside Physical Node Groups which

stored the node tags belonging to that group. Figure 206.19 shows how to read Physical Node Groups

dataset array for a particular defined physical group.

In the given example Listing 206.3, a physical group array with name ‘‘Physical Node Group#1’’

is created which contains the list of node tags that were part of that physical group. Figure 206.19

shows that ‘‘Physical Node Group#1’’ contains node tags 1,4,5,7, and so on;

206.5.6 The Eigen Mode Analysis group

Eigen Mode Analysis group gets created in HDF5 .feioutput file after an eigen mode analysis. The

data arrays available inside this group are described below and is also shown in Figure 206.20.

206.5.6.1 Number of Eigen Modes

Number of Modes is an integer that stores information about the number of modes solved for the

eigen problem. Figure 206.21 shows how to read it.
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Figure 206.20: Eigen Mode Analysis group directory of HDF5 file.

206.5.6.2 Eigen Frequencies

Frequencies is an float array that stores the natural frequencies of the model corresponding to

different modes. The length of the array is number of modes + 1. Index ‘0’ does not correspond to any

eigen mode and thus stores -1. Figure 206.21 shows how to read it.

 

Eigen_Frequencies

Index (Eigen_Mode_No) 0 1 2 3 4 5 6 …

0 0.5 1 1 2 2 10 …

Eigen_Periods

Index (Eigen_Mode_No) 0 1 2 3 4 5 6 …

0 2 1 1 0.5 0.5 0.1 …

Eigen_Values

Index (Eigen_Mode_No) 0 1 2 3 4 5 6 …

0 4 5 7 2 30 42 …

Eigen value for mode 2

Period for mode 2

Frequency for mode 2

Figure 206.21: Eigen Mode Analysis group directory of HDF5 file.

206.5.6.3 Eigen Periods

Frequencies is an float array that stores the natural periods of the model corresponding to different

modes. The length of the array is number of modes + 1. Index ‘0’ does not correspond to any eigen

mode and thus stores -1. Figure 206.21 shows how to read it.

206.5.6.4 Eigen Values

Frequencies is an float array that stores the natural eigen values of the model corresponding to

different modes. The length of the array is number of modes + 1. Index ‘0’ does not correspond to any
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eigen mode and thus stores -1. Figure 206.21 shows how to read it.

206.5.6.5 Modes

Modes is a 2-D float array that stores the generalized displacements of the nodes defined in the model

corresponding to different modes. The column index no. n this 2-D array defines the mode no i.e.

column index 1 corresponds to mode number 1 and so on. Figure ?? shows how to read it.

 

Output for Index 0 does not 
belong to any eigen mode 

And thus have all zero
‘zeros’

Index_to_Generalized_Displacements
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 3 9 12 …

Modes

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Node tag 2 is mapped to index 0 in 
Generalized_Displacements

array

-1 indicates Node tag 3
does not exist

Each node has output for their corresponding 
number of degrees of freedom (DOFs) 

Number of rows or outputs per node is given by 
Number_of_Dofs(Node_Tag)

0

1

2

3

…

9

10

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

0 9 0 -1 0 1 …

… … … … … …

…

8 0 0 4 0 1 …

… … … … …

…

…

Eigen Mode  Number

Output for Eigen Mode No 2

Number_of_Dofs
Index_no (Node_Tag) 0 1 2 3 4 5 6 …

-1 -1 3 -1 6 3 3 …

N
od

e 
ta

g 
2

N
od

e 
ta

g 
4

Figure 206.22: Eigen Mode Analysis group directory of HDF5 file.

206.5.7 The Material data array

Material is a 1-D string array that stores information about all materials defined in the model. The

length of the array is the maximum material tag + 1 ( including tag 0). The index of this array corresponds

to the material tag. A value of ’-1’ means that the material tag was not defined. Figure 206.23 shows

the Material data array for the example Listing 206.2. Here, index no 1 and index no 2 stores the

information corresponding to material tag 1 and 2 respectively.
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Figure 206.23: Materials data array in Model directory of HDF5 file.

206.6 Node-specific output format

In Real-ESSI simulator, nodes can be defined with different number of degree of freedoms (DOFs). Nodes

with with different dofs can be thought of different types of nodes. As a result, their corresponding output

also changes. Here is described, all the different node types available and the output format and their

descriptions for each of them. The following subsections would describe the definition of outputs that

are expected in Generalized Displacements and Support Reactions data arrays in Nodes group

of HDF5 output file for node tags of different dof types.

206.6.1 3DOF

Nodes defined with 3DOF type has ux, uy, uz degrees of freedom. They correspond to the displacement

degrees of freedom in x, y and z direction respectively. The dof id, generalized displacement and support

reactions for 3dof type node are summarized in the Table 206.6.1.

DOF Id Description Generalized Displacements Support Reactions

0 disp. in x-dir ux[m] Fx[N]

1 disp. in y-dir uy[m] Fy[N]

2 disp. in z-dir uz[m] Fz[N]

Table 206.3: DOF id and output for 3DOF type node

206.6.2 4DOF

Nodes defined with 3DOF type has ux, uy, uz, p degrees of freedom. They correspond to the displacement

degrees of freedom in x, y and z direction and pressure respectively. The dof id, generalized displacement

and support reactions for 4dof type node are summarized in the Table 206.6.2. up elements have nodes
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with 4 dofs.

DOF Id Description Generalized Displacements Support Reactions

0 disp. in x-dir ux[m] Fx[N]

1 disp. in y-dir uy[m] Fy[N]

2 disp. in z-dir uz[m] Fz[N]

3 pressure p[Pa] p[Pa]

Table 206.4: DOF id and output for 4DOF type node

206.6.3 6DOF

Nodes defined with 6DOF type has ux, uy, uz, rx, ry, rz degrees of freedom. They correspond to the

displacement and rotational degrees of freedom in x, y and z direction respectively. The dof id, general-

ized displacement and support reactions for 6 dof type node are summarized in the Table 206.6.3. Beam

and Shell elements have nodes with 6 dofs.

DOF Id Description Generalized Displacements Support Reactions

0 disp. in x-dir ux[m] Fx[N]

1 disp. in y-dir uy[m] Fy[N]

2 disp. in z-dir uz[m] Fz[N]

3 rotation about x-axis rx[radian] Mx[N – m]

4 rotation about y-axis ry[radian] My[N – m]

5 rotation about z-axis rz[radian] Mz[N – m]

Table 206.5: DOF id and output for 6DOF type node

206.6.4 7DOF

Nodes defined with 6DOF type has ux, uy, uz, p, Ux, Uy, Uz degrees of freedom. They correspond to the

solid-displacement , pore-fluid pressure and and fluid-displacement in x, y and z direction respectively.

The dof id, generalized displacement and support reactions for 7dof type node are summarized in the

Table 206.6.3. upU elements have nodes with 7 dofs.
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DOF Id Description Generalized Displacements Support Reactions

0 solid disp. in x-dir ux[m] Fsx[N]

1 solid disp. in y-dir uy[m] Fsy[N]

2 solid disp. in z-dir uz[m] Fsz[N]

3 pore-pressure p[Pa] p[Pa]

4 fluid disp. in x-dir Ux[m] Ff x[N]

5 fluid disp. in y-dir Uy[m] Ff y[N]

6 fluid disp. in z-dir Uz[m] Ff z[N]

Table 206.6: DOF id and output for 7DOF type node

206.7 Element-gauss output format

Gauss Outputs array stores the coordinates of the gauss points declared inside for each element defined

in the model. It is a 2D float array indexed by the Index to Gauss Outputs array and the number

of rows is defined by 18 (6 total strain, 6 plastic strain and 6 stress) times Number of Gauss Points.

The column index is represented by the time step of the simulation. Time index 0 represents initial state

conditions, i.e. the state before the start of new stage and end of previous stage.

Figure 206.24 shows how to read Gauss Outputs array for a particular element. In the given example

Listing 206.2, element tag 2 and 5 has no gauss points. Since, element tag 4 has 8 gauss points, the

total length of gauss output for that element is 8 × 18 = 144. The index from which the coordinates

information start is 0. gauss values for first 18 index (0, 1..17) corresponds to gauss point 1 and next

18 index (18..35) corresponds to gauss point 2 and so on. For gauss point 1, first 6 index (0, 1..5)

corresponds to total strain, next 6 index (6..11) corresponds to plastic strain and next 6 index (12..17)

corresponds to stress. Table 206.7 shows how data is stored for each gauss points. The strains are unit

less and stress have unit of Pascal Pa.

In the Table 206.7 start corresponds to the starting position for the elements output as determined

with reference to the Index to Element Outputs for the element of interest. To this number we add

the corresponding offset as determined by each table below and interpret the row according to the

meaning established below.

For each gauss outputs there are 6 components of strain tensor, 6 components of plastic-strain tensor

and 6 components of stress tensor. This makes a total of 3×6×NumGauss rows of output per element.

The specific meaning of the rows is as follows. For Gauss-point 1 (with starting index given in the

Index to Gauss Outputs array), the outputs are stored as the following
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Index_to_Gauss_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 -1 -1 0 -1 144 …

Element tag 2 is mapped to index 0 in 
Gauss_Outputs array

-1 indicates Element tag 3
does not exist

Number_of_Gauss_points
Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 8 0 8 …

Number of Gauss Points is 8 
for element tag 4, which 
means total number of 

outputs would be 18x8=144

Output for Time 
Step Number 0 also known as
‘initial conditions’

or
‘initial state’

Gauss_Outputs

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Each gauss point has 18 output 
6 total strain, 6 plastic strain and 6 stress

Number of rows or outputs per node is given by 
Number_of_Gauss_points(Element_Tag) x 18

0

1

2

…

143

144

145

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

… … … … … …

…

-3 0 0 8 3 1 …

8 0 0 4 0 1 …

… … … … …

…

…

TimeStep

Output for Time 
Step Number 2

Figure 206.24: Arrays describing gauss output information in Elements group directory of HDF5 file.

Position Content

(start+offset) meaning

start+0 ϵxx[]

start+1 ϵyy[]

start+2 ϵzz[]

start+3 ϵxy[]

start+4 ϵxz[]

start+5 ϵyz[]

Position Content

(start+offset) meaning

start+6 ϵ
plastic
xx []

start+7 ϵ
plastic
yy []

start+8 ϵ
plastic
zz []

start+9 ϵ
plastic
xy []

start+10 ϵ
plastic
xz []

start+11 ϵ
plastic
yz []

Position Content

(start+offset) meaning

start+12 σxx[Pa]

start+13 σyy[Pa]

start+14 σzz[Pa]

start+15 σxy[Pa]

start+16 σxz[Pa]

start+17 σyz[Pa]

Table 206.7: Output Format for each gauss point defined inside element
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Gauss-point 2 will then start at position 18 through 36 with the same meaning for each row. And

so-on for the other Gauss-points.
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206.8 Element-specific output format

Element Outputs array stores output for the elements except those stored at gauss points (i.e. stress,

total strain and plastic strain). It is a 2D float array indexed by the Index to Element Outputs

array and the number of rows is defined Number of Element Outputs. he column index is represented

by the time step of the simulation. Time index 0 represents initial state conditions, i.e. the state before

the start of new stage and end of previous stage.

 

Index_to_Element_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 0 -1 -1 2 -1 …

Element tag 2 is mapped to index 0 in 
Element_Outputs array

-1 indicates Element tag 3
does not exist

Number_of_Element_Outputs

Index_no (Element_Tag) 0 1 2 3 4 5 6 …

-1 -1 2 -1 0 9 0 …

Number of Element Outputs is 
2 for element tag 2, 

Output for Time 
Step Number 0 also known as
‘initial conditions’

or
‘initial state’

Element_Outputs

O
ut

pu
t

0 1 2 3 4 5 …

0 1 0 -1 0 1 …

Number of rows or outputs per element is given by 
Number_of_Element_Outputs(Element_Tag)

0

1

2

…

10

11

12

5 8 0 -1 0 1 …

8 0 5 8 0 1 …

… … … … … …

…

-3 0 0 8 3 1 …

8 0 0 4 0 1 …

… … … … …

…

…

TimeStep

Output for Time 
Step Number 2

El
em

en
t t

ag
 5

Figure 206.25: Arrays describing output information in Elements group directory of HDF5 file.

Figure 206.25 shows how to read Element Outputs array for a particular element and particular

time step. In the given example Listing 206.2, element tag 2 has two outputs. Similarly, element tag 5

has 9 outputs. On the other hand element tag 4 has no output. For element 2, the output starts at row

index 0 and ends at 1. Similarly, for element tag 4, the output is stored in row index 2..10.

Since the Element Outputs array format depends on the elements present in the model, one must
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refer to each element specifically. Each element writes information into the Element Outputs array

in a different way. The user can determine the rows of the Element Outputs array that belong to

a given element by looking into the Index to Element Outputs array which relates element tag to

the starting position of that element’s output within the Element Outputs array. Additionally, the

Number of Element Outputs tells the user how many rows after the starting position correspond to

the given element output.

The actual meaning of each row is element dependent and is detailed in the following pages. Please

note that elements not in this list have no output defined at the moment.

In what follows start corresponds to the starting position for the elements output as determined

with reference to the Index to Element Outputs for the element of interest. To this number we add

the corresponding offset as determined by each table below and interpret the row according to the

meaning established below.

206.8.1 Truss

This element outputs 2 rows in total. First row is the uniaxial change in length while second component

is the axial force. Truss does not have any gauss points and thus do not have any gauss outputs. The

description of each of these rows are shown in Table 206.8:

Position Content

(start+offset) meaning

start+0 ∆L[m]

start+1 ForceF[N]

Table 206.8: Element Output description for Truss

206.8.2 Brick Elements

All the bricks (u, up, upU and variable) have 0 element outputs. But, they do output total strain, plastic

strain and stress for all their corresponding number of gauss points involved in elasto-plastic integration.

The format in which gauss outputs are stored for each gauss point is described in Section 206.8

206.8.3 ShearBeam

Like brick elements, Shear Beam element also does not have any element output. But it does output for

the one gauss point it has. Thus, in total it has 18 outputs for the only one gauss point. The format in
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which gauss outputs are stored for each gauss point is described in Section 206.8

206.8.4 ElasticBeam

This element outputs 6 components of local nodal displacements at each of its two nodes, and 6

components of end forces at each of its two nodes. Total number of outputs is thus 2× 6× 2 = 24 rows

per element. The description of each of these rows are shown in Table 206.9:

Position Content

(start+offset) meaning

start+0 ulocal,1
x [m]

start+1 ulocal,1
y [m]

start+2 ulocal,1
z [m]

start+3 θlocal,1
x [radian]

start+4 θlocal,1
y [radian]

start+5 θlocal,1
z [radian]

Position Content

(start+offset) meaning

start+6 ulocal,2
x [m]

start+7 ulocal,2
y [m]

start+8 ulocal,2
z [m]

start+9 θlocal,2
x [radian]

start+10 θlocal,2
y [radian]

start+11 θlocal,2
z [radian]

Position Content

(start+offset) meaning

start+12 Flocal,1
x [N]

start+13 Flocal,1
y [N]

start+14 Flocal,1
z [N]

start+15 Mlocal,1
x [N – m]

start+16 Mlocal,1
y [N – m]

start+17 Mlocal,1
z [N – m]

Position Content

(start+offset) meaning

start+18 Flocal,2
x [N]

start+19 Flocal,2
y [N]

start+20 Flocal,2
z [N]

start+21 Mlocal,2
x [N – m]

start+22 Mlocal,2
y [N – m]

start+23 Mlocal,2
z [N – m]

Table 206.9: Element Output description for Elastic Beam

206.8.5 4NodeShell ANDES

This element currently does not have any gauss or element outputs.

206.8.6 BeamColumnDispFiber3d

This element outputs 6 components of end forces at each of its two nodes. Each row is described in

Table 206.10:
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Position Content

(start+offset) meaning

start+0 Flocal,1
x [N]

start+1 Flocal,1
y [N]

start+2 Flocal,1
z [N]

start+3 Mlocal,1
x [N – m]

start+4 Mlocal,1
y [N – m]

start+5 Mlocal,1
z [N – m]

Position Content

(start+offset) meaning

start+6 Flocal,2
x [N]

start+7 Flocal,2
y [N]

start+8 Flocal,2
z [N]

start+9 Mlocal,2
x [N – m]

start+10 Mlocal,2
y [N – m]

start+11 Mlocal,2
z [N – m]

Table 206.10: Element Output description for displacement based fiber beams

206.8.7 Force Based Contact/Interface Elements

This element outputs 9 components: 3 components of gap displacement and 3 components of con-

tact/interface forces and 3 components of incremental slip in the local axis definition. The first two

components of gap are transverse components (gt1, gt2), while the third is the normal gap component gn.

Similarly, the first two components of force (Ft1, Ft2) are transverse (shear on contact/interface plane)

while the third is the normal contact/interface force Fn. The last three components are incremental slip

∆gincslip1,∆gincslip2 in the local transverse direction and total uplift ∆n in local normal vector direction.

If ∆n > 0, there is uplift i.e. loss of contact/interface else it is in contact. Each row is described in

Table 206.12:

Position Content

(start+offset) meaning

start+0 gt1[m]

start+1 gt2[m]

start+2 gn[m]

Position Content

(start+offset) meaning

start+3 Ft1[N]

start+4 Ft2[N]

start+5 Fn[N]

Position Content

(start+offset) meaning

start+6 ∆gincslip1[m]

start+7 ∆gincslip2[m]

start+8 Uplift∆gn[m]

Table 206.11: Element Output description for force based contact/interface elements

206.8.8 Stress Based Contact/Interface Elements

This element outputs 9 components: 3 components of gap displacement and 3 components of con-

tact/interface forces and 3 components of incremental slip in the local axis definition. The first two

components of gap are transverse components (gt1, gt2), while the third is the normal gap component gn.

Similarly, the first two components of stress (σt1,σt2) are transverse (shear on contact/interface plane)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 206.8. ELEMENT-SPECIFIC OUTPUT FORMAT page: 1216 of 3287

while the third is the normal contact/interface stress σn. The last three components are incremental slip

∆gincslip1,∆gincslip2 in the local transverse direction and total uplift ∆n in local normal vector direction.

If ∆n > 0, there is uplift i.e. loss of contact/interface else it is in contact. Each row is described in

Table 206.12:

Position Content

(start+offset) meaning

start+0 gt1[m]

start+1 gt2[m]

start+2 gn[m]

Position Content

(start+offset) meaning

start+3 σt1[N /m2]

start+4 σt2[N /m2]

start+5 σn[N /m2]

Position Content

(start+offset) meaning

start+6 ∆gincslip1[m]

start+7 ∆gincslip2[m]

start+8 Uplift∆gn[m]

Table 206.12: Element Output description for stress based contact/interface elements
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206.9 Energy Output Format

Energy folder in the output file stores simulation results for energy-related quantities. Energy density

quantities are calculated at element integration points. Averaged energy density quantities are calculated

for each element. Energy quantities are calculated for each element. Nodal input energy values are

calculated at each node. All energy terms are calculated and stored at each time step.

Under the Energy folder, there are currently seven datasets. Four of them contain energy calculation

results. The other three are index datasets, which can be used to find energy output for specific elements

or nodes.

In general, energy output datasets are 2D float arrays. The column index is represented by the time

step of the simulation. The row index represents various energy quantities that are calculated and stored.

The three index datasets are used to locate the row index for specific energy quantities.

206.9.1 Input Energy

All types of nodal load, including DRM, are applied at nodes. Elemental loads are automatically converted

to nodal loads, then also applied at nodes. Therefore, input energy or input work from all types of external

load can be calculated at each node.

Under the Energy folder, the Nodal Input Energy dataset stores input energy at each node. Note

that this is input energy accumulated from the start of simulation to the current time step. To find

the input energy time history at a specific node, find the index in the Index to Nodal Input Energy

dataset then find the corresponding entry in the Nodal Input Energy dataset.

For example, here are the steps to get the input energy time history at the node with node tag 73,

Go to Index to Nodal Input Energy, find the index for node 73 to be 105. Then the accumulated

input energy at your chosen node is stored at row 105 in Nodal Input Energy.

206.9.2 Energy Density Quantity at Gauss Point

Energy Density GP dataset stores energy density quantities at each Gauss point. To find the energy

density time history at a specific Gauss point, find the index in the Index to Energy Density GP

dataset then find the corresponding entry in the Energy Density GP dataset.

For each Gauss point, 12 data slots are occupied in the following order:

• Incremental kinetic energy density

• Accumulated kinetic energy density

• Incremental strain energy density
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• Accumulated strain energy density

• Incremental plastic free energy density

• Accumulated plastic free energy density

• Incremental plastic dissipation density

• Accumulated plastic dissipation density

• The last 4 slots are currently empty, reserved for potential future use

Note that ”incremental” means the change of energy density during the time step, ”accumulated” means

current cumulative energy density at the time step.

Here is an example showing how to obtain the energy density evolution at a specific Gauss point.

Say you are interested in looking at the accumulated plastic dissipation density at the third Gauss point

of an 8NodeBrick element with element tag 73. Go to Index to Energy Density GP, find the index

for element 73 to be 3904. Since each Gauss point occupies 12 slots in Energy Density GP, the energy

outputs for the third Gauss point starts at index 3904+(3-1)*12=3928. Finally, since accumulated

plastic dissipation density is the 8th entry among the 12 slots, the row index for the data of your interest

is 3928+(8-1) = 3935. This means that the accumulated plastic dissipation density at your chosen

location is stored at row 3935 of Energy Density GP.

206.9.3 Average Energy Density Quantity for Element

Energy Density Element Average dataset stores averaged energy density quantities of each element.

To find the energy density time history of a specific element, find the index in the Index to Energy Element

dataset then find the corresponding entry in the Energy Density Element Average dataset.

For each element, 12 data slots are occupied in the following order:

• Incremental kinetic energy density

• Accumulated kinetic energy density

• Incremental strain energy density

• Accumulated strain energy density

• Incremental plastic free energy density

• Accumulated plastic free energy density
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 206.9. ENERGY OUTPUT FORMAT page: 1219 of 3287

• Incremental plastic dissipation density

• Accumulated plastic dissipation density

• The last 4 slots are currently empty, reserved for potential future use

Note that ”incremental” means the change of energy density during the time step, ”accumulated” means

current cumulative energy density at the time step.

Here is an example showing how to obtain the energy density evolution of a specific element. Say

you are interested in looking at the accumulated plastic dissipation density of an 8NodeBrick element

with element tag 73. Go to Index to Energy Element, find the index for element 73 to be 612. Since

accumulated plastic dissipation density is the 8th entry among the 12 slots, the row index for the data of

your interest is 612+(8-1) = 619. This means that the accumulated plastic dissipation density of your

chosen element is stored at row 619 of Energy Density Element Average.

206.9.4 Energy Quantity for Element

Energy Element dataset stores averaged energy density quantities of each element. To find the energy

time history of a specific element, find the index in the Index to Energy Element dataset then find

the corresponding entry in the Energy Element dataset.

For each element, 12 data slots are occupied in the following order:

• Incremental kinetic energy

• Accumulated kinetic energy

• Incremental strain energy

• Accumulated strain energy

• Incremental plastic free energy

• Accumulated plastic free energy

• Incremental plastic dissipation

• Accumulated plastic dissipation

• Incremental viscous energy dissipation

• Accumulated viscous energy dissipation

• The last 2 slots are currently empty, reserved for potential future use
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Note that ”incremental” means the change of energy density during the time step, ”accumulated” means

current cumulative energy density at the time step.

Here is an example showing how to obtain the energy evolution of a specific element. Say you are

interested in looking at the accumulated plastic dissipation of an 8NodeBrick element with element tag

73. Go to Index to Energy Element, find the index for element 73 to be 612. Since accumulated

plastic dissipation is the 8th entry among the 12 slots, the row index for the data of your interest is

612+(8-1) = 619. This means that the accumulated plastic dissipation of your chosen element is stored

at row 619 of Energy Element.
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207.1 Introduction

207.2 Model Development Using gmsh

207.2.1 Introduction to gmESSI

The gmESSI, pronounced as [gm-ESSI], is a translator that converts mesh file from gmsh (a three-

dimensional finite element mesh generator with built-in pre- and post-processing facilities) to Real-ESSI

DSL format. The primary aim of this program is to provide an efficient pre-processing tool to develop

Finite Element (FE) models in gmsh and make them interface with various Real-ESSI functionalities.

The gmESSI translator package contains the translator, sublime plugin and the manual.

The gmESSI package is available at http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_

notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz.

The text editor sublime plugin [gmESSI-Tools] can be downloaded here: http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/

fei-syntax-n-snippets.tar.gz.

207.2.1.1 Getting Started

The translator utilizes the physical and entity group concept of Gmsh (http://geuz.org/gmsh/doc/

texinfo/gmsh.html) (Geuzaine and Remacle, 2009), which gets imprinted in the mesh ”.msh” file. The

translator then manipulates these groups to convert the whole mesh to ESSI commands. Thus, making

physical groups is the essential, key for conversion. The Translator basically provides some strict syntax

for naming these Physical Groups which provides gmESSI information about the elements or (nodes) on

which the translation operates. The translator is made so general that any other FEM program can use

it with little tweaks to have their own conversion tool. A quick look at some important features of the

program are:

• It has a lot of predefined commands which do the conversion at the blink of an eye. These

commands make it easier to define elements, boundary conditions, contacts/interfaces, fixities,

loads ....

• It provides a python module ”gmessi”. The users can import this modulue and can extend the

functional capability of gmESSI.

• The [gmESSI-Tools] sublime plugin makes it easy by providing syntax coloring and auto-text-

completion for gmESSI commands. [gmsh-Tools] sublime plugin can also be installed for gmsh

syntax coloring and auto-completion.
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• The translator uses a mapping.fei file to check for its command syntax and conversion. A user can

easily add a command in mapping.fei and it would get reflected automatically in the translation.

• It automatically optimizes the Real-ESSI tags (node, element, load) for space and time efficiency

while running simulation.

Installation Process: The Translator have its dependencies on Octave (3.2 or higher), Boost(1.58 or

higher), (Python 2.7 or higher). One should make sure to have them before compiling it. On Linux

Ubuntu distros the dependencies can be installed as

1 sudo apt-get install liboctave-dev
2 # Boost version should be higher than 1.48
3 sudo apt-get install libboost-all-dev
4 sudo apt-get install python-dev

Installation of the gmESSI translator is easy, just follow steps below.

1 ## go to folder where you want to store and build gmESSI application
2

3 ## download the package from main Real-ESSI repository
4 ## this line below should be all one line
5 ## HOWEVER it had to be broken in two lines to be readable
6 ## so please make a single command out of two lines below
7 ##
8 #
9 # using curly brackets to help in checking scripts, that rely on these

10 # brackets being available around URL
11 #
12 wget {http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/\
13 _Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz}
14 ##
15 # make directory, move files, expand archive
16 mkdir Real-ESSI-gmESSI
17 mv _all_files_gmESSI_.tgz Real-ESSI-gmESSI
18 cd Real-ESSI-gmESSI
19 tar -xvzf _all_files_gmESSI_.tgz
20

21 ## build the package
22 make # builds the application in curr_dir/build
23

24 ## install the package
25 # -- by default the pacakage is installed in /usr/local
26 make install # installs the package in /usr/local
27 # -- to change the install directory
28 make install INSTALL_DIR=install_dir_specified_by_user
29

30 ############## For installation of gmESSI plugin in sublime ##############
31 # open sublime-text
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32 # make sure you have installed package control
33 # if not then install it first from
34 # {https://packagecontrol.io/installation}
35 # go to Preferences->PackageControl->InstallPackage
36 # search for [gmESSI-Tools] and install it
37 # also install [gmsh-Tools] following the same steps
38 # restart sublime
39 #########################################################################

207.2.1.2 Running gmESSI

gmESSI can be invoked from the bash terminal by typing gmessy. It can take one or multiple xyz.gmessi

files as an argument and convert them to Real-ESSI files in their respective simulation directory defined

by the user. By default, the ‘gmessi’ python module is automatically imported and available as ‘gmESSI’

in ‘.gmeesi’ input file.

gmessy is a top level python script that parses the .gmessi file and categories commands in the

following order as

• gmESSI Command: gmESSI Commands are one line commands. They start and end with ‘[’ and

‘]’ respectively. Section 207.2.3 describes the syntax.

• gmESSI Comments: The lines that start with ‘//’ are considered as gmESSI comments. It gets

translated and copied to the main file (See Section 207.2.4.6).

• Singular Commands: The lines that start with ‘!’ are directly copied to the main file (See

Section 207.2.4.6 and Section 207.2.5.1). Real-ESSI domain specific language (DSL) are written

following the exclamation mark ‘!’ sign.

• Python Comments: The lines that start with ‘#’ are considered as python comments.

• Python Commands: Whatever lines left are considered as python commands. This option is

only for the advanced user and is not documented to make the manual simple. Only some useful

commands required are explained in the manual.

The categorized commands then generates an equivalent python (.py) script, which gets finally run

in python interpretor. The generated equivalent python script can be seen by adding ‘-l’ or ‘–logfile=

LOG FILE’ option during execution. It is important to note that nodes, coordinates, element no etc

generated from the translator have a precision associated with them. By default the precision is up-to

‘6’ significant digits. The user can change the precision anywhere in the .gmessi file as

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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1 gmESSI.setPrecision(10);

This will set the precision to ‘10’ significant digits. Lowering precision can be helpful in generating

same coordinates for contact/interface node pairs. See [Example 4.gmessi] for its usage.

The full description of gmessy can be invoked from the terminal as

1 $gmessy --help
2

3 usage: gmessy [-h] [-l] [-nm] [-em] [-ne] [--logfile= LOG_FILE]
4 [--nodemap= NM_FILE] [--elemap= ELM_FILE]
5 gmessi_filename
6

7 positional arguments:
8 gmessi_filename filename containing semantics of conversion
9

10 optional arguments:
11 -h, --help show this help message and exit
12 -l generate the log file at the current location
13 -nm generate the node map file at the current location
14 -em generate the element map file at the current location
15 -ne don't carry out the conversion
16 --logfile= LOG_FILE generate the log file at specified location
17 --nodemap= NM_FILE generate the node-map (gmsh-to-Real_ESSI) file at specified ←↩

location
18 --elemap= ELM_FILE generate the element-map (gmsh-to-Real_ESSI) file at ←↩

specified location

Since gmESSI optimizes the ‘node’ and ‘element’ tag for Real-ESSI, it provides an interface to retrieve

the node map and element map containing mapping from gmsh tag to Real ESSI Tag.

Running gmESSI requires, the .gmessi input file and the gmsh mesh (.msh) mesh file containing

physical groups. Let’s go and run an example to see how gmESSI works. [Example 1] can be obtained

here.

Alternatively in the gmESSI directory, navigate to the Examples directory and then to Example 1

directory.

1 $cd ./Examples/Example_1
2 $ls
3 Example_1.geo # geometry file [gmsh]
4 Example_1.msh # mesh file [gmsh]
5 Example_1.gmessi # gmessi input file [gmESSI]

Contents of Example 1.gmessi input file: As described above, the .gmessi input file contains gmESSI

commands, singular commands and python commands. Also, it can contain comments followed by // or #.
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 207.2. MODEL DEVELOPMENT USING GMSH page: 1226 of 3287

At the beginning of the input file, the simulation directory, main, node, element, load filenames must be

specified. Also, before adding any gmESSI command, mesh must be loaded using ‘gmESSI.loadGmshFile’

command.

1 $ cat Example_1.gmessi
2

3 ### loading the msh file
4 gmESSI.loadGmshFile("Example_1.msh")
5

6 ### Physical Groups defined in the msh file.
7 #2 2 "Base_Surface"
8 #2 3 "Top_Surface"
9 #3 1 "Soil"

10

11 ### Defining the Simulation Directory
12 gmESSI.setSimulationDir("./Example_1_ESSI_Simulation")
13 gmESSI.setMainFile(gmESSI.SimulationDir+ "main.fei")
14 gmESSI.setNodeFile(gmESSI.SimulationDir+ "node.fei")
15 gmESSI.setElementFile(gmESSI.SimulationDir+ "element.fei")
16 gmESSI.setLoadFile(gmESSI.SimulationDir+ "load.fei")
17

18

19 // My new model
20 ! model name "Soil_Block";
21

22 [Add_All_Node{ unit:= m, nof_dofs:= 3}]
23

24 // Adding Material layer wise and also assigning it to elements
25 [Vary_Linear_Elastic_Isotropic_3D{Physical_Group#Soil, ElementCommand:= ←↩

[Add_8NodeBrick{}], Density:= 1600+10*(10-z)\ 0 \kg/m^3, ElasticModulus:= ←↩
20e9+10e8*(10-z)\-8\Pa, PoissonRatio:= 0.3}]

26

27 ! include "node.fei";
28 ! include "element.fei";
29 ! new loading stage "Stage1_Surface_Loading";
30

31 # Applying Fixities
32 [Fix_Dofs{Physical_Group#Base_Surface, all}]
33

34 #### For applying Surface load on the Top Surface of the Soil Block
35 #[Add_8NodeBrick_SurfaceLoad{Physical_Group#1,Physical_Group#3,10*Pa}]
36

37 #### For applying Nodal loads to all the nodes of the top surface
38 [Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx, Mag:= 10*kN}]
39

40 #### For applying Self-Weight Load to the soil elements
41 ! add acceleration field # 1 ax = 0*g ay = 0*g az = -1*g ;
42 ! add load #18 to all elements type self_weight use acceleration field # 1;
43

44 # Updating the tag inside gmESSI as user entered by himself load tag
45 gmESSI.setESSITag("load",19)
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46

47 ! include "load.fei";
48 ! NumStep = 10;
49 !
50 ! define algorithm With_no_convergence_check;
51 ! define solver UMFPack;
52 ! define load factor increment 1/NumStep;
53 ! simulate NumStep steps using static algorithm;
54 ! bye;

Running Example 1 in Terminal:
1 $ gmessy Example_1.gmessi
2 Message:: newDirectory created as ./Example_1_ESSI_Simulation
3

4

5 Add_All_Node{ unit:= m, nof_dofs:= 3}
6 Found!!
7 Successfully Converted
8

9 Vary_Linear_Elastic_Isotropic_3D{Physical_Group#Soil, ElementCommand:= ←↩
[Add_8NodeBrick{}], Density:= 1600+10*(10-z)\ 0 \kg/m^3, ElasticModulus:= ←↩
20e9+10e8*(10-z)\-8\Pa, PoissonRatio:= 0.3}

10 Found!!
11 Successfully Converted
12

13 Fix_Dofs{Physical_Group#Base_Surface, all}
14 Found!!
15 Successfully Converted
16

17 Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx, Mag:= 10*kN}
18 Found!!
19 Successfully Converted
20

21 ************************ Updated New Tag Numbering **********************
22 damping = 1
23 displacement = 1
24 element = 28
25 field = 1
26 load = 17
27 material = 4
28 motion = 19
29 node = 65
30 nodes = 65
31 Gmsh_Elements = 46
32 Gmsh_Nodes = 65

It must be noted that the terminal only displays information about gmESSI commands. The sin-

gular commands are directly copied to the main file. The translator creates a user defined directory

Example 1 ESSI Simulation and places
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1. node.fei

2. element.fei

3. load.fei

4. main.fei

5. Example 1.msh

The terminal displays the WARNING, ERROR messages and log of command conversions as shown

above. At the end, it displays the Available ESSITag’s numbering, which can be refereed and used for

further conversion.

ESSITags are explained later in this manual in Section 207.2.4.8.

The Real-ESSI input files produced can be tweaked a little if required. Once all is set, the model can

be run through Real-ESSI Simulator

1 cd Example_1_ESSI_Simulation
2

3 ### To run ESSI in sequential
4 # -- assuming sequential executable name is 'essi'
5 essi -f main.fei
6

7 ### To run ESSI in parallel
8 # -- assuming parallel executable name is 'pessi'
9 mpirun -np 4 pessi -f main.fei
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207.2.2 Gmsh Physical Groups and Geometrical Entities

207.2.2.1 Geometrical Entities

Geometrical entities are the most elementary group in Gmsh. Each point, line, surface and volume is a

geometrical entity and possess a unique identification number. Elementary geometrical entities can then

be manipulated in various ways, for example using the Translate, Rotate, Scale or Symmetry commands.

They can be deleted with the Delete command, provided that no higher-dimension entity references

them. Example 2.geo shows description of a geometry (.geo) file in gmsh for creating a cantilever beam.

The files can be downloaded here. Alternatively, it can be located in the gmESSI directory by navigating

to the Examples/Example 2 directory.

1 $ cat Example_2.geo
2 // Creating a point
3 Point(1) = {0,0,0};
4

5 // Dividing the beam length in 5 parts
6 Extrude (4,0,0) {Point{1}; Layers{5};}
7

8 // Dividing the beam width in 2 parts
9 Extrude (0,1,0) {Line{1}; Layers{2};Recombine;}

10

11 // Dividing the beam depth in 2 parts
12 Extrude (0,0,1) {Surface{5}; Layers{2};Recombine;}

Figure 207.1 shows, the different unique identification number attached to each of the nodes, lines,

surface and volume of the geometry of cantilever beam. Physical groups can now be created of type

{nodes, lines, surface or volume} containing one or more geometrical entities of their respective type.

207.2.2.2 Physical Groups

Physical groups are groups of same type {nodes, lines, surface, volume} of elementary geometrical en-

tities. These Physical Groups cannot be modified by geometry commands. Their only purpose is to

assemble elementary entities into larger groups, possibly modifying their orientation, so that they can be

referred to by the mesh module as single entities. As is the case with elementary entities, each physical

point, physical line, physical surface or physical volume are also assigned a unique identification number.

NOTE:- A geometrical entity has only one elementary entity number but can be a part of many physical

groups by sharing their unique identification number.

Below is the continuation of Example 2.geo in Gmsh for creating physical Groups of cantilever beam.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(a) All Points (b) All Lines

(c) All Surface (d) All Volume

Figure 207.1: Showing Geometrical Entities. Every point, line, surface and volume has an unique

identification number assigned to it.

Just for the sake of example, 4 physical groups are created which consist of all points, lines, surface and

volume respectively of the cantilever beam model. Also physical groups of the surface where fixities and

load is applied is created.

1 $ cat Example_2.geo
2 .....
3 Physical Point ("All_Points") ={1,2,3,4,5,6,10,14};
4 Physical Surface("All_Surfaces") = {5,14,22,27,18,26};
5 Physical Line("All_Lines") ={1,2,3,4,12,13,21,17,7,8,9,10};
6 Physical Volume("All_Volumes") ={1};
7 Physical Surface("ApplySurfaceLoad") ={27};
8 Physical Surface("SurfaceToBeFixed") ={26};

In generated mesh (.msh) file, all the geometrical entities have a tag list which contains the ids of the

physical groups to which it belongs or is associated. In the above example shown in Figure 207.2, every

point, line, surface, volume belongs to only one physical group and thus are showing only one associative

number against themselves. Figure 207.3 shows geometrical entities which are part of many physical

groups. For example:- the volume shown in Figure 207.3 shows physical group of volumes having id 1

and 7.

The whole idea of creating a Physical Group of points, lines, surfaces and volumes and giving it a unique

string name is to allow quick identification and manipulation during gmESSI commands. In Gmsh the
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(a) Physical group of Points (b) Physical group of Lines

(c) Physical group of Surface (d) Physical group of Volume

Figure 207.2: Showing all 4 Physical Groups with entities numbered by their physical group id’s.

Figure 207.3: Showing geometrical entities associated with more than one physical group.

name of these Physical Group along with their corresponding elements and nodes gets transferred to the

mesh .msh file as shown below. Figure 207.4 shows how Gmsh interprets these Physical groups in .msh

file.

1 $cat Example_1.msh
2 .....
3 $PhysicalNames
4 6
5 0 1 "All_Points"
6 1 3 "All_Lines"
7 2 2 "All_Surfaces"
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8 2 5 "ApplySurfaceLoad"
9 2 6 "SurfaceToBeFixed"

10 3 4 "All_Volumes"
11 $EndPhysicalNames
12 ......

NOTE:- While creating a physical group in Gmsh, only the information (nodes and elements) of that

physical group gets written in the .msh file and rest are not written. So one must be careful to create

physical groups of all entities which is needed during post-processing or conversion. More information

about Gmsh syntax, physical groups, commands, .msh file, save options, is available at the main online

documentation web site: http://geuz.org/gmsh/doc/texinfo/gmsh.html

 

0  1  “All Points”

Physical Group Description

Physical Group Unique Identification Number 

Physical Group Unique Name

Figure 207.4: Description showing how gmsh interprets the Physical Groups.

• Physical Group Description :: Gmsh uses it to identify the type of physical group. 0, 1, 2 and 3

represents the physical group of geometric points, lines, surface and volume respectively.

• Physical Group Unique Identification Number :: It is an unique identification number automatically

assigned to each physical group by gmsh.

• Physical Group Unique Name :: It is also the same as Physical Group Unique Identification

Number but the difference is that it is not automatic but defined by the user and that too in the

form of string.

The gmESSI Translator utilizes the property of naming the physical group as ”string” to get gmESSI

commands from the user along with specific physical group on which it is operated. Below in shown

[Example 2.gmessi] input file for a Cantilever analysis. It shows how to write gmESSI commands with

physical group information on which it is operated. gmESSI utilizes the mesh (.msh) file to get the

respective physical group and translated it to ESSI input (.fei) files.

1 $ cat Example_2.gmessi
2

3 gmESSI.loadGmshFile("Example_2.msh")

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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4

5 ####### Physical Groups Available in Example_2.msh file
6 #0 1 "All_Points"
7 #1 3 "All_Lines"
8 #2 2 "All_Surfaces"
9 #2 5 "ApplySurfaceLoad"

10 #2 6 "SurfaceToBeFixed"
11 #3 4 "All_Volumes"
12

13 ############ Important!! to set the file names ###################
14 gmESSI.setSimulationDir("./Example_2_ESSI_Simulation")
15 gmESSI.setMainFile(gmESSI.SimulationDir+ "main.fei")
16 gmESSI.setNodeFile(gmESSI.SimulationDir+ "node.fei")
17 gmESSI.setElementFile(gmESSI.SimulationDir+ "element.fei")
18 gmESSI.setLoadFile(gmESSI.SimulationDir+ "load.fei")
19

20 // My new model
21 ! model name "Cantilever_Analysis";
22

23 [Add_All_Node{Unit:= m, NumDofs:= 3}]
24

25 // Adding Material
26 ! add material 1 type linear_elastic_isotropic_3d mass_density = 2000*kg/m^3 ←↩

elastic_modulus = 200*MPa poisson_ratio = 0.2;
27

28 [Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}]
29 [Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}]
30

31 ! include "node.fei";
32 ! include "element.fei";
33

34 ! new loading stage "Stage1_Uniform_Surface_Load";
35

36 # Adding Surface Load
37 #[Add_8NodeBrick_SurfaceLoad{Physical_Group#All_Volumes, ←↩

Physical_Group#ApplySurfaceLoad, -10*Pa}]
38 [Add_Node_Load_Linear{Physical_Group#ApplySurfaceLoad, ForceType:= Fz, Mag:= ←↩

-10*kN}]
39

40 ! include "load.fei";
41 ! define algorithm With_no_convergence_check;
42 ! define solver UMFPack;
43 ! define load factor increment 1;
44 ! simulate 10 steps using static algorithm;
45 ! bye;

NOTE:- The first command in [.gmessi] file should be to load the mesh (.msh) file. The syntax to load

the gmsh generated mesh file is

1 gmESSI.LoadGmshFile("meshfile.msh")
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The gmESSI translator reads the command [Add All Node{ Unit:= m, NumDofs:= 3}] and adds all the

nodes from mesh file to ESSI input files. Similarly it translates all the other commands as well.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 207.2. MODEL DEVELOPMENT USING GMSH page: 1235 of 3287

207.2.3 gmESSI Command Description

gmESSI Translator as said above utilizes the naming of the physical groups to get commands from the

user and then carry out the conversion by acting on the defined physical group.

207.2.3.1 gmESSI Syntax

gmESSI follows strict syntax. gmESSI parses the physical group name string in mesh (.msh) file. Let us

have a quick look at the syntax of physical group name.

Physical Group Names : Physical group names are created inside gmsh geometry file. gmESSI follows

special syntax as described below.

1. Physical group names used in gmsh should be unique for gmESSI to identify them during post

processing.

2. Physical group names should not contain any space

3. Physical group tags can be any alphanumeric sequence but should not contain any of these [ ]$

literals in their names. Example ”Physical Group 1”

gmESSI Command Syntax : gmESSI translator commands are always enclosed between opening/closing

square brackets [ and ] respectively. A typical gmESSI command syntax is shown in Figure 207.5

 

[Add_Node_Load_Linear{Physical_Group#ApplyLoad, ForceType:= Fx, Load:= 10*kN}]
Physical group nameCommand Name ArgumentArgument Tags

Figure 207.5: gmESSI command description.

• Command Name : Just as regular function gmESSI Commands have a name and take arguments.

The names are usually self explanatory of its function like Add 8NodeBrick{...}, Free Dofs{...} ..
etc

• Physical Group Argument : Usually the gmESSI commands have first argument as physical group .

For Example:- Add 8NodeBrick{PhysicalGroup#5,...}, Add 8NodeBrick{PhysicalGroup#All Volumes,...},
Free Dofs{PhysicalGroup#4,...},.. etc .

Physical Group Id can be the gmsh unique string or number representing that physical group ( as

shown in .msh file).
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• Arguments : Arguments as always are separated by comma ’,’.

– Argument Tag The arguments of gmESSI commands can also have tags associated with them

so that it becomes easy for the user to interpret the argument and make changes in future.

The tag and the argument is separated by :=. Tag itself has no meaning but it serves as an im-

portant information center for user. An example is shown below to show how tags are applied.

– gmESSI command having arguments without tags

1. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, Fz, -10*kN}]

– gmESSI command having arguments with tags

1. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, ForceType:= Fz, Mag:= -

10*kN}]
2. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, ForceType:= Fz, -10*kN}]
3. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, Force Direction:= Fz, Strength:=

-10*kN}]

It can be seen from above examples that the tags are optional and also the user can put their own

tag names. The sublime plugin [gmESSI-Tools] comes with elaborative tags for the parameters and a

lot more with syntax coloring and text-completion for gmESSI commands. It is encouraged to use the

plugin and take its advantage.

[Add_Node_Load_Linear{Physical_Group#ApplyLoad, ForceType:= Fx, Load:= 10*kN}]
Physical group nameCommand Name ArgumentArgument Tags

gmESSI Translator

Add load #{1} to node #{32} type linear {Fx} = {10*kN}   
Add load #{2} to node #{34} type linear {Fx} = {10*kN} 

Add load #{100} to node #{100} type linear {Fx} = {10*kN}

…
…

Figure 207.6: gmESSI conversion description.

Figure 207.6 shows the illustration how gmESSI works. Load gets added to all the nodes of the

physical group ‘ApplyLoad’. gmESSI translator automatically assigns the unique load tag sequentially. It
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retrieves the node tag from the physical group. Rest of the information like ‘ForceType’ and ‘Magnitude’

is obtained from the arguments.

Most of the time these arguments are dummy which means that they just get copied to their

equivalent ESSI command at their respective places. These arguments thus have a ”string” data-type.

For example: the command Add Node Load Linear{Physical Group#ApplySurfaceLoad, Fz, -10*kN} is

equivalent to the Real-ESSI command add load #{} to node #{} type linear {} = {}. Fz and -10*kN

goes to their respective position directly through the translator as shown in the Figure 207.6 load number

1 and node number 32 are computed by the translator and then inserted in the ESSI command.

NOTE:- The gmESSI Translator does not provide syntax checking for those dummy arguments. It

means that, whatever is written gets copied at the respective position in the equivalent ESSI command,

so the one must be careful with what they are writing in these arguments. For Example the command

Add Node Load Linear{Physical Group#Id, ForceDirection, Magnitude} based on the arguments can

get converted as

1. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, ForceType:= Fz, Mag:= -10*kN}]
–– > add load #1 to node #32 type linear Fz = -10*kN

–– > add load #2 to node #33 type linear Fz = -10*kN

.......

–– > add load #100 to node #100 type linear Fz = -10*kN

2. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, ForceType:= Fz, Mag:= -10}]
–– > add load #1 to node #32 type linear Fz = -10

–– > add load #2 to node #33 type linear Fz = -10

.......

–– > add load #100 to node #100 type linear Fz = -10

3. [Add Node Load Linear{Physical Group#ApplySurfaceLoad, ForceType:= Ft, Mag:= -10*kN}]
–– > add load #1 to node #32 type linear Ft = -10*kN

–– > add load #2 to node #33 type linear Ft = -10*kN

.......

–– > add load #100 to node #100 type linear Ft = -10*kN

All the above conversions are correct. But only conversion (1.) is correct as an input for Real-ESSI

Simulator because force direction is one of Fx,Fy,Fz and magnitude 10*kN has proper units. So one
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must be very careful while writing the arguments.

Note: Some of the arguments are not string but represents numerical quantities, which are manipulated

by the translator during conversion. Thus, the one must supply only numbers without any alphabets

else it would lead an unexpected termination of program. These arguments corresponds to Special

Commands such as Connect Command and Variational Commands. The manual talks about them later

in Section 207.2.5.7.

207.2.3.2 gmESSI Command’s Physical Group

As iterated earlier, gmESSI commands operates on physical groups. The gmESSI command usually have

their first argument as physical on which it operates. The gmESSI syntax allows the users to operates

it’s command on specific physical groups. The user specifies the group by including an argument

Physical Group#Tag in front of the gmESSI commands describing the command. The tag can be either

Physical Group Id, Physical Group Name. Let’s look at some of them

• [Add Node Load Linear{Physical Group#5,Fz,-10*kN}] operates on physical group 5

• [Add 8NodeBrick{Physical Group#All Volumes, 1}] operates on physical group which has string tag

as All Volumes

For example in reference to [Example 2.gmessi] Physical Group#All Volumes or Physical Group#4 refers

the same physical group.

A physical group is a group of point, line, surface or volume defined by the user which contains all

the geometrical entities that falls under that domain/group. Figure 207.2 shows physical groups.
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207.2.4 gmESSI Output

gmESSI Translator translates the gmESSI commands operated on mesh (.msh) file to different ESSI input

(node, element, load and main) (.fei) files and put them in user-defined directory. It also updates the mesh

(.msh) file and puts it in the same directory. The log of translation, errors and warnings are displayed

on the terminal. Below is the demonstration of log messages one by one using [Example 2.gmessi] with

mesh-file name Example 2.msh. The folders and Reall ESSI input (.fei) files that are created by the

translator for Example 2.gmessi input file are.

207.2.4.1 Directory Example 2 ESSI Simulation

gmESSI Translator creates simulation directory as specified by the user. The user is expected to create

the necessary node (Section 207.2.4.4), element (Section 207.2.4.3) , load (Section 207.2.4.5) and main

(Section 207.2.4.6) file to that directory. The user is expected to provide the directory and filenames

before executing any gmESSI command. In case the directory already exists a warning messages is shown

on the terminal and a new directory following the original name with ‘ n’ (n is number) is created. A

new Real-ESSI simulation directory is assigned by the following command

1 gmESSI.setSimulationDir("./Example_2_ESSI_Simulation", overwrite\_mode)

where, ‘overwrite mode=0’ means that in case of already existing folder, a new directory following the

original name with ‘ n’ (n is number) is created. ‘overwrite mode=1’ would not check for any conflicts

and use the same directory as specified by user. For example:- running [Example .gmessi] file would

produce the following message.

1 $ gmessy Example_2.gmessi
2 Files converted to Examples/Example_2_ESSI_Simulation

Again, running the same example would produce the following message as shown below. In [Exam-

ple 2.gmessi] overwrite is turned off and thats why it creates new-non conflicting directory by appending

1 to end.

1 $ gmessy Example_2.gmessi
2 Message:: newDirectory created as ./Example_2_ESSI_Simulation_1

The execution of gmessy XYZ.gmessi produces warnings/errors in the following situations.

• ERROR:: Please Enter the gmessi File :: It occurs if the user does not give a filename. The

possible situation for getting this error is

1 $ gmessy
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• ERROR:: The program failed to open the file XYZ.msh It occurs if the given file or one of the

files in the argument does not exist or fails to open because of some reason.

• WARNING::Directory Already Present.The contents of the Folder may get changed :: It occurs

when users translates the mesh file file XYZ.msh in overwrite mode and the corresponding folder

XYZ ESSI Simulation already exists at the execution location.

• Files converted to Examples/Example 2 ESSI Simulation :: The message refers to the location

of the folder where the translations have been saved.

207.2.4.2 Translation Log Terminal

gmESSI Translator displays the log of translation of gmESSI commands to corresponding Real-ESSI

commands on the terminal. Proper Errors Messages and Warnings are echoed to the user. The execution

of the commands are sequential which means the commands written first are executed first and similarly

their success and failure is also echoed first. Let us look at this aspect with Example 2.gmessi.

1 $cat Example_2.gmessi
2 ......
3 ! add material 1 type linear_elastic_isotropic_3d mass_density = 2000*kg/m^3 ←↩

elastic_modulus = 200*MPa poisson_ratio = 0.2;
4

5 [Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}]
6

7 [Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}]
8

9 ! include "node.fei";
10 ! include "element.fei";
11 ......

Here, the sequence of execution of commands is ‘! add material # 1 type linear elastic isotropic 3d

mass density = 2000 ∗ kg/m3 elastic modulus = 200 ∗ MPa poisson ratio = 0.2; ’, [Add 8NodeBrick{
Physical Group#All Volumes, material no:= 1}], [Fix Dofs{ Physical Group#SurfaceToBeFixed, all}]
and ‘! include “node.fei”;’. Notice that the same order gets reflected in the translation log on the

terminal as shown below. Also, it must be noted that the commands followed by ‘!’ or ‘//’ or ‘#’ or

python commands do not have any log messages corresponding to them.

It must be noted that the lines following ‘!’ are directly copied to the main (Section 207.2.4.6).

Usually Real-ESSI domain specific language that does not operate/require any physical group should be

written following exclamation ‘!’ sign.

1 $ gmessy ./Example_2.gmessi
2 ......
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3

4 Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}
5 Found!!
6 Successfully Converted
7

8 Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}
9 Found!!

10 Successfully Converted

Apart from displaying the log details on the terminal, similar log is added for each translation of

gmESSI commands in their respective files in which they are translated. In these files, each successful

translation is enclosed between corresponding RespectiveGmESSICommand Begins and RespectiveG-

mESSICommand Ends. The same is shown below through the contents of node.fei. Notice that all the

translations are enclosed between Begins and Ends Tag.

1 $ cat Examples/Example_2_ESSI_Simulation/node.fei
2

3 //****************************************************************
4 // Add_All_Node{Unit:= m, NumDofs:= 3}Starts
5 //****************************************************************
6

7 add node # 1 at (0.000000*m,0.000000*m,0.000000*m) with 3 dofs;
8 add node # 2 at (4.000000*m,0.000000*m,0.000000*m) with 3 dofs;
9 add node # 3 at (0.000000*m,1.000000*m,0.000000*m) with 3 dofs;

10 ...............................................................
11

12 //****************************************************************
13 // Add_All_Node{Unit:= m, NumDofs:= 3}Ends
14 //****************************************************************

1 $ cat Examples/Example_2_ESSI_Simulation/element.fei
2

3 //***********************************************************************
4 // Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}Starts
5 //***********************************************************************
6

7 add element #1 type 8NodeBrick with nodes (51,46,29,37,33,17,1,9) use material #1;
8 add element #2 type 8NodeBrick with nodes (47,28,5,19,51,46,29,37) use material ←↩

#1;
9 add element #3 type 8NodeBrick with nodes (42,32,46,51,13,3,17,33) use material ←↩

#1;
10 ..............................................................
11

12 //*********************************************************************
13 // Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}Ends
14 //*********************************************************************

NOTE:- The ordering/sequence of commands in ESSI analysis file is important and so the user must

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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make sure that the translations are made in the same order or if not the user should change it manually

by (cut/copy/paste) in node.fei, load.fei and main.fei files before execution.

Having given a short description of the other translation log/error messages. Let us look more closely

one by one and understand the messages,errors and warnings prompted on the terminal.

• Found!! : This message in front of the gmESSI command as shown above on translation log in the

terminal means that, the corresponding command was found in the gmESSI Command Library.

• Successfully Converted : As the message itself describes, it occurs if the command has been

successfully translated.

• Not Found!! : It occurs if the gmESSI Translator could not find the arbitrary command XYZ in

the gmESSI Command library. Example:- Loading{Fx,10*kN} NotFound!!

• WARNING:: Execution of the command escaped. The Gmessi command XYZ could not be found

: The gmESSI Translator does not terminate the translation if a command is not found, instead

gives this warning message following the Not Found!! Error.

• Error:: The command XYZ has a syntax error in Physical Group# tag : It occurs if there is a

syntax error in Physical Group# argument. The correct represent ion for Physical group Tags is

Physical Group#n, where n is the group id as 1,2,3.. etc. Examples of improper representation

are Phy#2, Physical#Node, ..

• Warning:: The command XYZ failed to convert as there is no such Physical Group :: It occurs if

one of the arguments in the command is Physical Group# and the specified physical group by the

user does not exists in the .msh file.

• Warning:: The command XYZ could not find any nodes/elements on which it operates : It occurs

if for a specified command, the required element types for translation could not be found in the

specified Physical group. For Examples:- [Add 8NodeBrick{Physical Group#1,1}] would give this

warning as the Physical Group#1 being a Physical line group does not contain any 8-Noded Brick

elements on which this command operates.

• ERROR:: Gmsh File has invalid symbols in Node Section. Unable to convert string to integer in

Gmsh File : It occurs if there is perhaps a string inside the Nodes section of .msh file.

• ERROR:: The command XYZ has a syntax errors :: It occurs if the specified command by the

user contain any syntax errors caught while parsing the command.
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• ERROR:: Gmsh File has invalid symbols in Element Section. Unable to convert string to integer

in Gmsh File : It occurs if there is perhaps a string inside the Element section of .msh file.

207.2.4.3 Element File (element.fei)

Element file element.fei is one of four parts of Real-ESSI input file that contains the translation of

commands related to only initialization of elements of the FEM mesh. Generally, all the conversions

from Elemental Command (Section 207.2.5.5) are written to element file.

A new analysis element file is assigned by the following python command

1 gmESSI.setElementFile(gmESSI.SimulationDir+ "element.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see

section 207.2.4.1).

207.2.4.4 Node File (node.fei)

Node file node.fei is one of four parts of Real-ESSI input file that contains the translation of commands

related to only initialization of nodes of the FEM mesh. All the conversions from Add Node Command

(Section 207.2.5.2) are written to node file.

A new analysis node file is assigned by the following python command

1 gmESSI.setNodeFile(gmESSI.SimulationDir+ "node.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see

section 207.2.4.1).

207.2.4.5 Load File (load.fei)

Load file load.fei contains the translation of commands related to the load and boundary conditions

on the structure, for example declaration of fixities, boundary conditions, tied/connected nodes, nodal

loads, surface loads etc....

A new load file is assigned by the following python command

1 gmESSI.setLoadFile(gmESSI.SimulationDir+ "load.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see

section 207.2.4.1).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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207.2.4.6 Analysis File (main.fei)

Analysis file main.fei is the main file which is run on Real-ESSI Simulator. The main file must include

load, node and element file through include ‘filename.fei’ command.

A new analysis main file is assigned by the following python command

1 gmESSI.setMainFile(gmESSI.SimulationDir+ "main.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see

section 207.2.4.1). A typical analysis file after conversion looks like the following.

1 $ cat Examples/Example_2_ESSI_Simulation/Example_2_analysis.fei
2

3 // My new model
4 model name "Cantilever_Analysis";
5

6 // Adding Material
7 add material 1 type linear_elastic_isotropic_3d mass_density = 2000*kg/m^3 ←↩

elastic_modulus = 200*MPa poisson_ratio = 0.2;
8

9 include "node.fei";
10 include "element.fei";
11

12 new loading stage "Stage1_Uniform_Surface_Load";
13

14 include "load.fei";
15 define algorithm With_no_convergence_check;
16 define solver UMFPack;
17 define load factor increment 1;
18 simulate 10 steps using static algorithm;
19 bye;

The user can now add solver, time steps and even rearrange the file structure accordingly to Real-ESSI

syntax.

NOTE: Real-ESSI Interpreter is sequential and follows certain ordering in commands like materials

should be declared before assigning to elements, main-follower nodes can be assigned only when both

nodes are declared .. etc.. One should be careful with the order in which conversions are made and

if necessary should change it manually by (cut/copy/paste) later in the files geometry.fei, load.fei and

analysis.fei or use the python module discussed later before running in ESSI.

Please refer to the Real-ESSI manual for more details on the ordering of the commands.
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207.2.4.7 Mesh File (XYZ.msh)

Mesh file XYZ.msh is the input required by the translator. The translator updates the mesh file with users

addition. For example:- if Connect-Command (Section 207.2.5.8) is used, the file contains additional

physical group, nodes and 2-noded elements. The Connect Command is discussed in the more detail

later in Section 207.2.5.8.

207.2.4.8 Updated ESSI Tags Terminal

Updated ESSI Tags refers to the new tag numbering reference associated with ESSI Tags. ESSI has tag

numberings associated for damping, displacement, element, field, load, material, and node/nodes. For

example in Real-ESSI Command add node # 1 at (x,y,z) with 3 dofs, node is a tag and requires a new

number like 1 to be associated with that node. The translator displays the new numberings available

for each ESSI Tag so that the user is made aware of new numberings for manually specifying an ESSI

command after the translation.

gmESSI also provides a python command to set the ESSI Tag. The command is

1 gmESSI.setESSITag(ESSI_Tag_Name,Tag)

where,

• ESSI Tag Name : It refers to a string representing to the Real-ESSI tag such as ‘node’, ‘element’,

‘field’...etc

• Tag : It refers to an integer representing the next available tag.

NOTE : If user is writing its own Real-ESSI domain specific language (DSL), it is expected that the

user will update the corresponding Real-ESSI tag used in that DSL. Otherwise, gmESSI would not be

able to know the updated available tags. See Example 1.gmessi for its usage.

1 $ gmessy Example_2.gmessi
2 .....................
3 ******* Updated New Tag Numbering ********
4 Damping = 1
5 displacement = 1
6 element = 21
7 field = 1
8 load = 19
9 material = 2

10 motion = 1
11 node = 55
12 nodes = 55
13 Gmsh_Elements = 127
14 Gmsh_Nodes = 55
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207.2.5 gmESSI Commands

Having the knowledge about the syntax, output files, errors and warnings, its time to move on to

different types of commands that gmESSI offers. it provide commands operated on physical group

to allow conversion for to equivalent Real-ESSI commands. There are also some special command

that gmESSI supports. For simplicity, the commands are categorized on the basis of their operation

on nodes/elements. As stated earlier, the commands are translated to one of the four files node.fei,

element.fei, load.fei and main.fei. Let us look at them closely one by one along with all its supported

commands.
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207.2.5.1 Singular Commands

Singular Commands does not require any physical group to operate. All the text following exclamation

mark ‘!’ are copied directly to the main.fei (Section 207.2.4.6). For Example:- ‘ ! include ‘load.fei’; ‘ is

translated as ‘include “load.fei” ’ in main.fei analysis file. See [Example 1.gmessi] for its usage.

Note:- Real-ESSI DSL/commands must be followed by the exclamation mark ‘!’.
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207.2.5.2 Add Node Commands

Add Node Commands have only two commands. [Add All Node{unit,nof dofs}] adds all the nodes

generated in mesh (.msh) file to ‘node.fei’ file. Whereas, [Add Node{Unit,NumDofs}] add all the nodes

of only specified physical group by the user. These commands operates on all the nodes of the physical

group and generate an equivalent Real-ESSI DSL for each of them.

NOTE:- Every Add Node commands get translated into the node.fei (Section 207.2.4.4).

• gmESSI : [Add Node{PhysicalGroup , Unit , NumDofs}]
translates to series of

Real-ESSI DSL : add node # < . > at (< L >,< L >,< L >) with < . > dofs;

operated over all the nodes defined in the gmsh ‘.msh’ file.

• gmESSI : [Add All Node{Unit , NumDofs}]
translates to series of

Real-ESSI DSL : add node # < . > at (< L >,< L >,< L >) with < . > dofs;

operated over all the nodes of the defined physical group
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207.2.5.3 Nodal Commands : Operates On All Nodes of the defined Physical Group

Nodal commands operates on all the nodes of the physical group defined by the user. For example:-

[Fix Dofs{Physical Group#Lateral Surface,ux}] would fix ux degree of freedom of all the nodes of phys-

ical group ‘Lateral Surface’. It will generate equivalent Real-ESSI DSL ‘fix node # < . > dof < . >’

and apply to all the nodes of that physical group. Figure 207.6 shows how gmESSI operated on physical

groups.

As earlier stated, that the arguments of gmESSI commands are dummy and gets copied directly to

the ESSI equivalent command, so one must be very much aware while writing the arguments to the

commands. The arguments should be filled with values of the corresponding ESSI command along with

required units if any. For more details about the values to the arguments, please refer to ESSI Manual.

NOTE:- Every Nodal command gets translated to the load.fei file (Section 207.2.4.5).

The different commands under this category and their corresponding Real-ESSI commands are listed

below

1. gmESSI : [Add Nodes To Physical Group{PhysicalGroup , Physical Node Group String}]
translates to series of

Real-ESSI DSL : add nodes (< . >) to [physical node group] ”string”;

operated over all the nodes of the defined physical group

2. gmESSI : [Add Self Weight To Node{PhysicalGroup , field#1}]
translates to series of

Real-ESSI DSL : add load # < . > to node # < . > type [self weight] use acceleration field #

< . >;

operated over all the nodes of the defined physical group

3. gmESSI : [Add Node Load Linear{PhysicalGroup , Force Type , Magnitude}]
translates to series of

Real-ESSI DSL : add load # < . > to node # < . > type [linear] [FORCETYPE] = <

forceormoment >; //[FORCETYPE] = [Fx] [Fy] [Fz] [Mx] [My] [Mz] [F fluid x] [F fluid y] [F fluid z]

operated over all the nodes of the defined physical group

4. gmESSI : [Add Node Load Path Time Series{PhysicalGroup , Force Type , Magnitude , Se-

ries File}]
translates to series of

Real-ESSI DSL : add load # < . > to node # < . > type [path time series] [FORCETYPE] =
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< forceormoment > series file = ”string”;

operated over all the nodes of the defined physical group

5. gmESSI : [Add Node Load Path Series{PhysicalGroup , Force Type , Magnitude , Time Step ,

Series File}]
translates to series of

Real-ESSI DSL : add load # < . > to node # < . > type [path series] [FORCETYPE] =

< forceormoment > time step = < T > series file = ”string”;

operated over all the nodes of the defined physical group

6. gmESSI : [Add Node Load From Reaction{PhysicalGroup}]
translates to series of

Real-ESSI DSL : add load # < . > to node # < . > type [from reactions];

operated over all the nodes of the defined physical group

7. gmESSI : [Add Node Load Imposed Motion Time Series{PhysicalGroup , Dof Type , Time Step

, Disp Scale , Disp File , Vel Scale , Vel File , Acc Scale , Acc File}]
translates to series of

Real-ESSI DSL : add imposed motion # < . > to node # < . > dof < DOFTYPE > time step

= < T > displacement scale unit = < L > displacement file = ”string” velocity scale unit =

< L/T > velocity file = ”string” acceleration scale unit = < L/T2 > acceleration file = ”string”;

operated over all the nodes of the defined physical group

8. gmESSI : [Add Node Load Imposed Motion Time Series{PhysicalGroup , Dof Type , Time Step

, Disp Scale , Disp File , Vel Scale , Vel File , Acc Scale , Acc File}]
translates to series of

Real-ESSI DSL : add load # < . > type imposed motion to node # < . > dof < DOFTYPE >

time step = < T > displacement scale unit = < L > displacement file = ”string” velocity scale unit

= < L/T > velocity file = ”string” acceleration scale unit = < L/T2 > acceleration file = ”string”;

operated over all the nodes of the defined physical group

9. gmESSI : [Add Node Load Imposed Motion Series{PhysicalGroup , Dof Type , Disp Scale , Disp File

, Vel Scale , Vel File , Acc Scale , Acc File}]
translates to series of

Real-ESSI DSL : add imposed motion # < . > to node # < . > dof < DOFTYPE > displace-

ment scale unit = < L > displacement file = ”string” velocity scale unit = < L/T > velocity file
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= ”string” acceleration scale unit = < L/T2 > acceleration file = ”string”;

operated over all the nodes of the defined physical group

10. gmESSI : [Add Node Load Imposed Motion Time Series{PhysicalGroup , Dof Type , Time Step

, Disp Scale , Disp File , Vel Scale , Vel File , Acc Scl , Acc File}]
translates to series of

Real-ESSI DSL : add load # < . > type imposed motion to node # < . > dof < DOFTYPE >

displacement scale unit = < L > displacement file = ”string” velocity scale unit = < L/T >

velocity file = ”string” acceleration scale unit = < L/T2 > acceleration file = ”string”;

operated over all the nodes of the defined physical group

11. gmESSI : [Add Damping To Node{PhysicalGroup , damping#1}]
translates to series of

Real-ESSI DSL : add damping # < . > to node # < . >;

operated over all the nodes of the defined physical group

12. gmESSI : [Add Mass To Node{PhysicalGroup , MassX , MassY , MassZ}]
translates to series of

Real-ESSI DSL : add mass to node # < . > mx = < M > my = < M > mz = < M >;

operated over all the nodes of the defined physical group

13. gmESSI : [Add Beam Mass To Node{PhysicalGroup , MassX , MassY , MassZ , ImassX , ImassY

, ImassZ}]
translates to series of

Real-ESSI DSL : add mass to node # < . > mx = < M > my = < M > mz = < M > Imx =

< ML2 > Imy = < ML2 > Imz = < ML2 >;

operated over all the nodes of the defined physical group

14. gmESSI : [Fix Dofs{PhysicalGroup , Dof Types}]
translates to series of

Real-ESSI DSL : fix node # < . > dofs < DofTypes >;

operated over all the nodes of the defined physical group

15. gmESSI : [Free Dofs{PhysicalGroup , Dof Types}]
translates to series of

Real-ESSI DSL : free node # < . > dofs < . >;

operated over all the nodes of the defined physical group
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16. gmESSI : [Remove Node{PhysicalGroup}]
translates to series of

Real-ESSI DSL : remove node # < . >;

operated over all the nodes of the defined physical group

17. gmESSI : [Remove Equal Dof Constrain{PhysicalGroup}]
translates to series of

Real-ESSI DSL : remove constraint [equal dof] node # < . >;

operated over all the nodes of the defined physical group

18. gmESSI : [Remove Displacement From Node{PhysicalGroup}]
translates to series of

Real-ESSI DSL : remove displacement from node # < . >;

operated over all the nodes of the defined physical group
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207.2.5.4 General Elemental Commands : Operates On All Elements of the defined Physical Group

General Elemental Commands operates on all the elements of a physical group. The translations are

written in load.fei file. For example:- [Add SelfWeight To Element{Physical Group#Soil,Field:= 1}]
would add self-weight to all the elements of the physical group ‘Soil’ along the field#1 direction using

series of equivalent Real-ESSI DSL ‘add load # < . > to element # < . > type [self weight] use

acceleration field # < . >;’

The different commands under this category and their corresponding ESSI commands are listed below

1. gmESSI : [Add Elements To Physical Group{PhysicalGroup , Physical Element Group String}]
translates to series of

Real-ESSI DSL : add elements (< . >) to [physical element group] ”string”;

operated over all the nodes of the defined physical group

2. gmESSI : [Add Self Weight To Element{PhysicalGroup , field#1}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [self weight] use acceleration field

# < . >;

operated over all the nodes of the defined physical group

3. gmESSI : [Add Damping To Element{PhysicalGroup , damping#1}]
translates to series of

Real-ESSI DSL : add damping # < . > to element # < . >;

operated over all the nodes of the defined physical group

4. gmESSI : [Remove Element{PhysicalGroup}]
translates to series of

Real-ESSI DSL : remove element # < . >;

operated over all the nodes of the defined physical group

5. gmESSI : [Remove Strain From Element{PhysicalGroup}]
translates to series of

Real-ESSI DSL : remove strain from element # < . >;

operated over all the nodes of the defined physical group
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207.2.5.5 Elemental Commands : Operates On All Elements of the defined Physical Group

Elemental Commands operates only to specific elements of a physical group. The translations are

written in element.fei file. For example:- [Add 8NodeBrick{Physical Group#Soil,1}] would initialize all

the hexahedron elements of physical group ‘Soil’ to equivalent Real-ESSI commands for defining 8-noded

bricks elements ‘add element # < . > type [8NodeBrick] with nodes (< . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . >;’. Figure 207.6 shows how gmESSI operated on

physical groups. The different commands under this category and their corresponding ESSI commands

are listed below

1. gmESSI : [Add 20NodeBrick{PhysicalGroup , Num Gauss Points , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . >;

operated over all the elements of the defined physical group

2. gmESSI : [Add 20NodeBrick Variable GaussPoints{PhysicalGroup , Num Gauss Points , mate-

rial#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick] using < . > Gauss points each direc-

tion with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material # < . >;

operated over all the elements of the defined physical group

3. gmESSI : [Add 20NodeBrick upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density

, Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick upU] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . > and porosity = < . > alpha = < . > rho s =

< M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

4. gmESSI : [Add 20NodeBrick upU Variable GaussPoints{PhysicalGroup , Num Gauss Points , ma-

terial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick upU] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material # < . > and

porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x = < L3T /M > k y =

< L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group

5. gmESSI : [Add 20NodeBrick up{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density ,

Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick up] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . > and porosity = < . > alpha = < . > rho s =

< M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

6. gmESSI : [Add 20NodeBrick up Variable GaussPoints{PhysicalGroup , Num Gauss Points , mate-

rial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus

, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [20NodeBrick up] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material # < . > and

porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x = < L3T /M > k y =

< L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group

7. gmESSI : [Add 27NodeBrick{PhysicalGroup , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material #

< . >;
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operated over all the elements of the defined physical group

8. gmESSI : [Add 27NodeBrick upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density

, Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick upU] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material

# < . > and porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x =

< L3T /M > k y = < L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group

9. gmESSI : [Add 27NodeBrick upU Variable GaussPoints{PhysicalGroup , NumGaussPoints , mate-

rial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus

, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick upU] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . > and porosity = < . > alpha = < . > rho s =

< M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

10. gmESSI : [Add 27NodeBrick up{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density ,

Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick up] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material

# < . > and porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x =

< L3T /M > k y = < L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group

11. gmESSI : [Add 27NodeBrick up Variable GaussPoints{PhysicalGroup , Num Gauss Points , mate-

rial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus
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, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick up] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >,

< . >, < . >, < . >, < . >) use material # < . > and porosity = < . > alpha = < . > rho s =

< M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

12. gmESSI : [Add Equal Dof{PhysicalGroup , Dof Type}]
translates to series of

Real-ESSI DSL : add constraint [equal dof] with master node # < . > and slave node # < . >

dof to constrain < . >;

operated over all the elements of the defined physical group

13. gmESSI : [Add Equal Dof{PhysicalGroup , Master Dof , ]

translates to series of

Real-ESSI DSL : add constraint [equal dof] with node # < . > dof < . > master and node #

< . > dof < . > slave;

operated over all the elements of the defined physical group

14. gmESSI : [Add ShearBeam{PhysicalGroup , CrossSection , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [ShearBeam] with nodes (< . >, < . >) cross section

= < l2 > use material # < . >;

operated over all the elements of the defined physical group

15. gmESSI : [Add DispBeamColumn3D{PhysicalGroup , Num Integr Points , Section Number , Den-

sity , XZ Plane Vect x , XZ Plane Vect y , XZ Plane Vect z , Joint1 Offset x , Joint1 Offset y ,

J1 z , Joint2 Offset x , J2 y , J2 Offset z}]
translates to series of

Real-ESSI DSL : add element # < . > type [BeamColumnDispFiber3d] with nodes (< . >,

< . >) number of integration points = < . > section number = < . > mass density = < M/L3 >

xz plane vector = (< . >, < . >, < . > ) joint 1 offset = (< L >, < L >, < L > ) joint 2 offset

= (< L >, < L >, < L > );
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operated over all the elements of the defined physical group

16. gmESSI : [Add Beam Elastic{PhysicalGroup , Cross Section , Elastic Modulus , Shear Modulus

, Jx , Iy , Iz , Density , XZ PlaneVect x , XZ PlaneVect y , XZ Plane Vect z , Joint1 Offset x ,

Joint1 y , Joint1 Offset z , Joint2 Offset x , Joint2 Offset y , J2 Offset z}]
translates to series of

Real-ESSI DSL : add element # < . > type [beam elastic] with nodes (< . >, < . >) cross section

= < area > elastic modulus = < F/L2 > shear modulus = < F/L2 > torsion Jx = < length4 >

bending Iy = < length4 > bending Iz = < length4 > mass density = < M/L3 > xz plane vector

= (< . >, < . >, < . > ) joint 1 offset = (< L >, < L >, < L > ) joint 2 offset = (< L >,

< L >, < L > );

operated over all the elements of the defined physical group

17. gmESSI : [Add Beam Elastic LumpedMass{PhysicalGroup , Cross Section , Elastic Modulus ,

Shear Modulus , Jx , Iy , Iz , Density , XZ Plane Vect x , XZ Plane Vect y , XZ Plane Vect z ,

Joint1 Offset x , Joint1 Offset y , Joint1 Offset z , Joint2 Offset x , Joint2 Offset y , Joint2 Offset z}]
translates to series of

Real-ESSI DSL : add element # < . > type [beam elastic lumped mass] with nodes (< . >,

< . >) cross section = < area > elastic modulus = < F/L2 > shear modulus = < F/L2 >

torsion Jx = < length4 > bending Iy = < length4 > bending Iz = < length4 > mass density =

< M/L3 > xz plane vector = (< . >, < . >, < . > ) joint 1 offset = (< L >, < L >, < L > )

joint 2 offset = (< L >, < L >, < L > );

operated over all the elements of the defined physical group

18. gmESSI : [Add Beam DisplacementBased{PhysicalGroup , Num Integration Points , Section Number

, Density}]
translates to series of

Real-ESSI DSL : add element # < . > type [beam displacement based] with nodes (< . >, < . >)

with # < . > integration points use section # < . > mass density = < M/L3 > IntegrationRule

= ”” xz plane vector = (< . >, < . >, < . > ) joint 1 offset = (< L >, < L >, < L > )

joint 2 offset = (< L >, < L >, < L > );

operated over all the elements of the defined physical group

19. gmESSI : [Add HardContact{PhysicalGroup , Normal Stiffness , Tangential Stiffness , Normal Damping

, Tangential Damping , Friction Ratio , Norm Vect x , Norm Vect y , Norm Vect z}]
translates to series of
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Real-ESSI DSL : add element # < . > type [HardContact] with nodes (< . >, < . >) nor-

mal stiffness = < F/L > tangential stiffness = < F/L > normal damping = < F/L > tangen-

tial damping = < F/L > friction ratio = < . > contact plane vector = (< . >, < . >, < . > );

operated over all the elements of the defined physical group

20. gmESSI : [Add CoupledHardContact{PhysicalGroup , Normal Stiffness , Tangential Stiffness ,

Normal Damping , Tangential Damping , Friction Ratio , Norm Vect x , Norm Vect y , Norm Vect z}]
translates to series of

Real-ESSI DSL : add element # < . > type [CoupledHardContact] with nodes (< . >, < . >)

normal stiffness = < F/L > normal penalty stiffness = < F/L > tangential stiffness = < F/L >

normal damping = < F/L > tangential damping = < F/L > friction ratio = < . > con-

tact plane vector = (< . >, < . >, < . > );

operated over all the elements of the defined physical group

21. gmESSI : [Add SoftContact{PhysicalGroup , Initial Normal Stiffness , Stiffning Rate , Max-

imum Normal Stiffness , Tangential Stiffness , Normal Damping , Tangential Damping , Fric-

tion Ratio , Norm Vect x , Norm Vect y , Norm Vect z}]
translates to series of

Real-ESSI DSL : add element # < . > type [SoftContact] with nodes (< . >, < . >) ini-

tial normal stiffness = < F/L > stiffening rate = < 1/L > max normal stiffness = < F/L >

tangential stiffness = < F/L > normal damping = < F/L > tangential damping = < F/L >

friction ratio = < . > contact plane vector = (< . >, < . >, < . > );

operated over all the elements of the defined physical group

22. gmESSI : [Add CoupledSoftContact{PhysicalGroup , Initial Normal Stiffness , Stiffning rate ,

Maximum Normal Stiffness , Tangential Stiffness , Normal Damping , Tangential Damping , Fric-

tion Ratio , Norm Vect x , Norm Vect y , Norm Vect z}]
translates to series of

Real-ESSI DSL : add element # < . > type [CoupledSoftContact] with nodes (< . >, < . >)

initial normal stiffness = < F/L > stiffening rate = < 1/L > max normal stiffness = < F/L >

tangential stiffness = < F/L > normal damping = < F/L > tangential damping = < F/L >

friction ratio = < . > contact plane vector = (< . >, < . >, < . > );

operated over all the elements of the defined physical group

23. gmESSI : [Add Truss{PhysicalGroup , material#1 , Cross Sectin , Density}]
translates to series of
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Real-ESSI DSL : add element # < . > type [truss] with nodes (< . >, < . >) use material #

< . > cross section = < length2 > mass density = < M/L3 > ;

operated over all the elements of the defined physical group

24. gmESSI : [Add 8NodeBrick{PhysicalGroup , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >) use material # < . >;

operated over all the elements of the defined physical group

25. gmESSI : [Add Cosserat8NodeBrick{PhysicalGroup , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [Cosserat8NodeBrick] with nodes (< . >, < . >,

< . >, < . >, < . >, < . >, < . >, < . >) use material # < . >;

operated over all the elements of the defined physical group

26. gmESSI : [Add 8NodeBrick Variable GaussPoints{PhysicalGroup , NumGaussPoints , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick] using < . > Gauss points each direction

with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material # < . >;

operated over all the elements of the defined physical group

27. gmESSI : [Add 8NodeBrick upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density ,

Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick upU] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >) use material # < . > porosity = < . > alpha = < . > rho s

= < M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

28. gmESSI : [Add 8NodeBrick upU Variable GaussPoints{PhysicalGroup , Num Gauss Points , ma-

terial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus

, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick upU] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material #
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< . > porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x = < L3T /M >

k y = < L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group

29. gmESSI : [Add 8NodeBrick up{PhysicalGroup , material#1 , Porosity , Alpha , Solid Density ,

Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus , Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick up] with nodes (< . >, < . >, < . >,

< . >, < . >, < . >, < . >, < . >) use material # < . > porosity = < . > alpha = < . > rho s

= < M/L3 > rho f = < M/L3 > k x = < L3T /M > k y = < L3T /M > k z = < L3T /M > K s =

< stress > K f = < stress >;

operated over all the elements of the defined physical group

30. gmESSI : [Add 8NodeBrick up Variable GaussPoints{PhysicalGroup , Num Gauss Points , mate-

rial#1 , Porosity , Alpha , Solid Density , Fluid Density , Perm X , Perm Y , Perm Z , Solid Bulk Modulus

, Fluid Bulk Modulus}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick up] using < . > Gauss points each

direction with nodes (< . >, < . >, < . >, < . >, < . >, < . >, < . >, < . >) use material #

< . > porosity = < . > alpha = < . > rho s = < M/L3 > rho f = < M/L3 > k x = < L3T /M >

k y = < L3T /M > k z = < L3T /M > K s = < stress > K f = < stress >;

operated over all the elements of the defined physical group
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207.2.5.6 Elemental Compound Commands : Operates On All Surface Elements of the defined Physical

Group [Surface Loads]

Elemental Compound Commands operates on two physical groups, one for surface and another for the ele-

ment on which surface is present. It is used mainly for adding surface loads, which require surface number

as well as element no in Real-ESSI DSL. For example:- [Add 8NodeBrick SurfaceLoad{Physical Group#Volume,

Physical Group#Surface, 10*Pa}] would initialize surface load of 10Pa on surfaces defined by physi-

cal group ‘Surface’ on elements defined by physical group ‘Volume’.

The different commands under this category and their corresponding ESSI commands are listed below

NOTE:- Every Elemental commands get translated into the load.fei (Section 207.2.4.5).

1. gmESSI : [Add 20NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface ,

Pressure}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . > ,

< . > , < . >, < . >, < . >, < . >, < . >) with magnitude < Pa >;

operated over all the elements of the defined physical group

2. gmESSI : [Add 20NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface ,

Press1 , Press2 , Press3 , Press4 , Press5 , Press6 , Press7 , Press8}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . >

, < . > , < . >, < . >, < . >, < . >, < . >) with magnitudes (< Pa > , < Pa > , < Pa > ,

< Pa >, < Pa >, < Pa >, < Pa >, < Pa >);

operated over all the elements of the defined physical group

3. gmESSI : [Add 27NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface ,

Pressure}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . > ,

< . > , < . >, < . >, < . >, < . >, < . >, < . >) with magnitude < Pa >;

operated over all the elements of the defined physical group

4. gmESSI : [Add 27NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface ,

Press1 , Press2 , Press3 , Press4 , Press5 , Press6 , Press7 , Press8 , Press9}]
translates to series of
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Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . > ,

< . > , < . >, < . >, < . >, < . >, < . >, < . >) with magnitudes (< Pa > , < Pa > , < Pa > ,

< Pa >, < Pa >, < Pa >, < Pa >, < Pa >, < Pa >);

operated over all the elements of the defined physical group

5. gmESSI : [Add 8NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pres-

sure}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . > ,

< . > , < . >) with magnitude < Pa >;

operated over all the elements of the defined physical group

6. gmESSI : [Add 8NodeBrick SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Press1

, Press2 , Press3 , Press4}]
translates to series of

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . > , < . > ,

< . > , < . >) with magnitudes (< Pa > , < Pa > , < Pa > , < Pa >);

operated over all the elements of the defined physical group
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207.2.5.7 Special Commands

The translator supports some special commands to perform some special functions that are regularly

required in simulations. It supports the Connect Command (Section 207.2.5.8) allows to join or create

nodes between two physical groups.
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207.2.5.8 Connect Command

Connect Commands creates/find layers of 2-noded elements between any two parallel geometrical physical

entities like two lines, two surface or two volumes and creates a physical group of those elements and

updates this information in the XYZ.msh file. Since gmsh does not include the feature of defining

or creating 2-noded elements after the mesh creation, this command can be very useful in that case.

For example;- defining contacts/interfaces, embedded piles, boundary conditions, connections etc. The

command syntax for connect command is

gmESSI :: [Connect{Physical Group#tag From , Physical Group#tag To, Physical Group#tag Between,

dir vect, mag, no times, algo (find|create), tolerance,New Physical Group Name}]

• Physical Group#tag From :: It defines the starting nodes

• Physical Group#tag To :: It defines the set of end nodes

• Physical Group#tag Between:: It defines the set of nodes where the intermediary nodes can be

found, while searching. While creating nodes, it does not play any role.

• dir vect :: It defines the direction in which the user wants to create or find the nodes. The direction

vector argument is given as {x comp \y comp \z comp}. Example:- {0 \0 \-1} , {1 \1 \0} .. etc.

• mag :: It defines the length of each 2-noded line elements

• no times :: It defines number of layers of 2-noded elements, the user want to create/find

• algo (find/create) :: It defines the algo which is either 0 or 1 meaning whether to find or create

the intermediary node

• tolerance :: It defines the tolerance is required to finding the nodes. It should be less than the

minimum of the distance of neighboring nodes.

• New Physical Group Name :: This argument enables the user to give a name to the 2-noded

new-physical group formed

Figure 207.7 graphically describes arguments of connect command.

This command updates and creates additional nodes and 2-noded elements and also assigns a physical

group name ”$New Physical Group Name$”. gmESSI automatically adds the next id available to the

new physical group. The user can then manipulate this newly created physical group with any other

gmESSI commands.
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Tolerance

Figure 207.7: Pictorial representation of working of connect command.

The working of this command would be more clear through examples. [Example 3] can be down-

loaded here. [Example 4] can be downloaded here. These examples describes two situation one where

new nodes are to be created and the other where already present nodes needs to be found respectively.

In both the cases 2-noded line elements are always created. The examples can also be alternatively

located in Examples folder of gmESSI directory

[Example 3] is a simple example where a tower of certain height above ground surface and also its

base embedded in soil is modeled. It starts with a mesh file that creates a node for tower at a certain

height and then using algorithm -’create’ new nodes are created at certain intervals to generate the beam

elements. On the other hand, the embedded beam is created by ”-find” algorithm. Let us look at the

[Example 3.geo] file.

1 $ cat Example_3.geo
2

3 // Size of the soil block in meter
4 Size = 10;
5

6 // Height of the Tower in meter
7 Height = 6;
8

9 // Mesh Size of the soil block
10 Mesh_Size = 1;
11

12 // Adding Points and extruding
13 Point(1)={-Size/2,-Size/2,-Size/2};
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14 Extrude{Size,0,0}{Point{1};Layers{Size/Mesh_Size};Recombine;}
15 Extrude{0,Size,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
16 Extrude{0,0,Size}{Surface{5};Layers{Size/Mesh_Size};Recombine;}
17

18 // Make the tower located at height 6 m from the ground surface
19 Tower = newp;
20 Point (Tower) = {0,0,Size/2+Height};
21

22 //// Create Physical Groups
23 Physical Volume ("Soil") = {1};
24 Physical Surface ("Soil_Base_Surface") ={5};
25 Physical Surface ("Soil_Top_Surface") ={27};
26 Physical Point ("Tower") = {Tower};

Running [Example 3.gmessi] with the .msh output of geometry file would produces additional nodes and

elements as shown in Figure 207.8. An excerpt showing use of connect command with create algo in

[Example 3.gmessi] is shown below. The effect of the command is shown in Figure 207.8.

1 $ cat Example_3.gmessi
2 ..........
3 [Connect{Physical_Group#Tower, Physical_Group#Soil_Top_Surface, ←↩

Physical_Group#Soil_Top_Surface, dv1:= 0 \ 0 \ -1, mag:= 2, Tolerance:= 0, ←↩
algo:= create, noT:= 3, PhysicalGroupName:= Tower_Beam_Above_Ground}]

4 ..............

The terminal displays the information about number of elements and nodes created and also displays

the information about the new physical group information i.e id and name. The new physical group

creation can be seen in the [Example 3.gmsh] in Example 3 ESSI Simulation folder. The terminal mes-

sage and mesh file is shown below. It also displays error message if more than one node is found in the

tolerance provided.

1 $ gmessy Example_3.gmessi
2 New Physical Group "Tower_Beam_Above_Ground" having id 5 consisting of 4 Nodes ←↩

and 3 2-noded elements created

1 $ cat Example_3_ESSI_Simulation\Example_3.msh
2 ............
3 $PhysicalNames
4 7
5 0 4 "Tower"
6 2 2 "Soil_Base_Surface"
7 2 3 "Soil_Top_Surface"
8 3 1 "Soil"
9 1 5 "Tower_Beam_Above_Ground"

10 3 6 "TowerBaseNode"
11 1 7 "Tower_Embedded_Beam"
12 $EndPhysicalNames
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(a) Initial mesh file Example 3.msh generated by

gmsh. The dir vector is in Z axis 0,0,-1

(b) Final mesh after gmESSI

Figure 207.8: Example 3 Contact Problem. (b) shows the nodes and elements generated by gmESSI

Translator.

13 ...........

[Example 4] describes a foundation on soil problem with contact/interface between them. The con-

tact element is created with the help of comment command using algo ”-find”. Let us look at the

[Example 4.geo] file.

1 $ cat Example_4.geo
2

3 // Size of the soil block
4 Size = 1;
5

6 // Thickness of Foundation
7 Thick = 0.1;
8 Foundation_Layers = 2;
9

10 //// Mesh Size of the block
11 Mesh_Size = 0.2;
12

13 // Adding Points an1 extruding
14 Point(1)={-Size/2,-Size/2,-Size/2};
15 Extrude{Size,0,0}{Point{1};Layers{Size/Mesh_Size};Recombine;}
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16 Extrude{0,Size,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
17 Extrude{0,0,Size}{Surface{5};Layers{Size/Mesh_Size};Recombine;}
18

19 // Make sure in Tools -> Geometry -> General
20 // Geometry tolerance is set smaller than Epsilon
21 // such as Geometry tolerance = 1e-14
22

23 Epsilon = 1e-8;
24 Translate {0, 0, Epsilon} {Duplicata{Surface{27};}}
25 Transfinite Line {29,30,31,32} = Size/Mesh_Size +1;
26 Transfinite Surface {28};
27 Recombine Surface {28};
28

29 //// Extruding the surface to foundation thickness
30 Extrude{0,0,Thick}{Surface{28};Layers{Foundation_Layers};Recombine;}
31

32 //// Create Physical Groups
33 Physical Volume ("Soil") = {1};
34 Physical Surface ("Soil_Base_Surface") ={5};
35 Physical Surface ("Soil_Top_Surface") ={27};
36 Physical Surface ("Foundation_Base_Surface")={28};
37 Physical Surface ("Foundation_Top_Surface") ={54};
38 Physical Volume ("Foundation") = {2};
39

40

41 Physical Surface("Fix_X") = {26, 53, 45, 18};
42 Physical Surface("Fix_Y") = {22, 49, 14, 41};
43 Physical Volume("3_Dofs") = {1,2};

The above geometry file is then meshed with gmsh to get the .msh file. In this file, the connect

command is applied between physical group Foundation Base Surface and Soil Top Surface to create

contact/interface elements. The corresponding connect command would be as

1 $ gmessy Example_4.gmessi
2 ..........
3 [Connect{Physical_Group#Soil_Top_Surface, ←↩

Physical_Group#Foundation_Base_Surface, ←↩
Physical_Group#Foundation_Base_Surface, dv1:= 0\0\1, mag:= 0, Tolerance:= ←↩
0.001, algo:= find, noT:= 1, PhysicalGroupName:= Contact_Elements}]

4 ..............

Similarly the updated [Example 4.msh] contains the new physical group and terminal shows the new

physical group of 2-noded elements created. Figure 207.9 shows the new nodes found and creation of

2-noded elements.

1 $ gmessy Example_3.gmessi
2 New Physical Group "Contact_Elements" having id 10 consisting of 72 Nodes and ←↩

36 2-noded elements created
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(a) Initial mesh file Example4.msh generated by

gmsh. The dir vector is in Z axis {0,0,1}

(b) New physical group Contact Element

Figure 207.9: Example 4 finding nodes problem.(b) shows the nodes and elements generated by gmESSI

Translator.

1 $ cat Example_4_ESSI_Simulation\Example_4.msh
2 10
3 2 2 "Soil_Base_Surface"
4 2 3 "Soil_Top_Surface"
5 2 4 "Foundation_Base_Surface"
6 2 5 "Foundation_Top_Surface"
7 2 7 "Fix_X"
8 2 8 "Fix_Y"
9 3 1 "Soil"

10 3 6 "Foundation"
11 3 9 "3_Dofs"
12 1 10 "Contact_Elements"
13 ............

NOTE : Since the algo is to only find the nodes, so no new nodes are created, but only elements are

created. The same message can be seen on the terminal.

207.2.5.9 Write Command

Write command takes filename as an argument and writes the content of a physical group in two separate

files one containing all the nodes info and other containing all the elements info and places in the same

XYZ ESSI Simulation folder. The command syntax is
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gmESSI:: [Write Data{PhyEntyTag,filename}]

• Creates files XYZ filename Nodes.txt and XYZ filename Elements.txt

• XYZ filename Nodes.txt :: Contains data for all nodes in a physical group. Each node data is

represented in one line as

Node no x coord y cord z cord

with meanings as usual.

• XYZ filename Elements.txt :: Contains data for all elements in a physical group.Each element

data is represented in one line as

Element no Element type node1 node2 node3 ..

with meanings as usual. Element type refers to the same as in Gmsh Manual.

[Example 4.gmessi] shows the usage of write command.

207.2.5.10 Write DRM HDF5 Command

Domain reduction method (DRM) is a very useful method to input 3D seismic excitations into earthquake

soil structure interacting system. With a defined physical group as DRM layer, a HDF5 file containing

geometric information of the DRM layer, can be generated with the following commands for 1D, 2D and

3D mesh, respectively:

• gmESSI::[Generate DRM HDF5 1D{Physical Group#<PhyEnty Name or Tag>, Surface Normal:=

<X | Y | Z>, Node Coordinate Tol:=<tolerance>, FileName:=<HDF5 file name>}]

• gmESSI::[Generate DRM HDF5 2D{Physical Group#<PhyEnty Name or Tag>, Surface Plane:=<XY|XZ|YZ>,

Surface Normal:= <X | Y | Z>, Node Coordinate Tol:=<tolerance>, FileName:=<HDF5 file

name>}]

• gmESSI::[Generate DRM HDF5 3D{Physical Group#<PhyEnty Name or Tag>, Surface Normal:=

<X | Y | Z>, Node Coordinate Tol:=<tolerance>, FileName:=<HDF5 file name>}]

Where:

• Physical Group# defines the physical group name or tag for the DRM layer.

• Surface Normal:= defines the surface normal direction of the DRM layer. It can be X or Y or Z.

• Surface Plane:= defines the surface plane of the 2D DRM layer. It can be XY or YZ or XZ.
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• Node Coordinate Tol:= defines the tolerance to distinguish two different DRM nodes. The toler-

ance should be much smaller than the FEM mesh size!

• FileName:= defines the file name of the HDF5 file to be generated.
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207.2.6 Steps For Using gmESSI tool

Using gmESSI it is very easy to convert a .msh file to ESSI (.fei) file. This section guides the user

through a simple [Example 1.geo], to show the steps necessary for generating Real-ESSI files directly

from .msh file through gmESSI. Lets define a problem as shown in Figure 207.10. The [Example 1.geo]

can be located in the gmESSI ‘’Examples’ directory. Alternatively, it can be downloaded here.

 

Figure 207.10: Example 1 description of a block of soil with surface load.

It is a block of dimension 10m× 10m× 10m of soil mass whose all 4 lateral faces are fixed in ux, uy

dofs. The bottom face is fixed in ux, uy, uz dofs. A uniform pressure surface load of 10Pa is applied.

The density and elastic modulus of the soil increases from 2000 ∗ kg/m3 and Young’s modulus is taken

as 200MPa as shown in Figure 207.10.

207.2.6.1 Building geometry (.geo) file in Gmsh

The first step is to make the geometry file in Gmsh. While creating the geometry the user should also

define all the physical groups on which they intend to either apply boundary condition, define elements,

loads etc. In [Example 1.geo], 3 physical groups are needed : one for applying surface load, one for

fixities, and one for defining the soil volume and assigning material. The content of [Example 1.geo] file

is shown below

1 $cat Example_1.geo
2

3 // Size of the block
4 Size = 10;
5

6 //// Mesh Size of the block
7 Mesh_Size = 2;
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8

9 // Adding Points and extruding
10 Point(1)={-Size/2,-Size/2,-Size/2};
11 Extrude{Size,0,0}{Point{1};Layers{Size/Mesh_Size};Recombine;}
12 Extrude{0,Size,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
13 Extrude{0,0,Size}{Surface{5};Layers{Size/Mesh_Size};Recombine;}
14

15 //// Create Physical Groups
16 Physical Volume ("Soil") = {1};
17 Physical Surface ("Base_Surface") = {5};
18 Physical Surface ("Lateral_Surface") = {18,22,14,26};
19 Physical Surface ("Top_Surface") ={27};

207.2.6.2 Generate mesh (.msh) file in Gmsh

Once .geo file is ready with all the physical groups, next step is to mesh the model. The mesh operation

will generate the mesh file (.msh) that contains all the mesh information.

The model can be meshed from the terminal directly by running:

1 gmsh Example_1.geo -3

Here -3 means we are meshing a 3D object, which will automatically mesh all the 3D volumes, 2D

surfaces and 1D lines object defined in the geometry model. If there are only 2D surfaces and/or 1D

lines object defined in the geometry (.geo) file, use -2 instead. If there are only 1D lines object defined

in the geometry (.geo) file, use -1 instead.

A quick look at the generated [Example 1.msh] file containing physical groups is shown below:

1 $cat Example_5.geo
2 ..............
3 $PhysicalNames
4 4
5 2 2 "Base_Surface"
6 2 3 "Lateral_Surface"
7 2 4 "Top_Surface"
8 3 1 "Soil"
9 $EndPhysicalNames

10 ................

Figure 207.11 shows the geometry and mesh visualization in Gmsh. It is noted that Gmsh performs

meshing for linear interpolation elements by default. In other words, the above cubic block geometry

object is meshed into eight-node bricks, that have linear isoparametric interpolation, 8NodeBrick. For

higher order interpolation meshing options, that is for meshing twenty-seven node brick elements mesh,

27NodeBrick for example, additional -order int should be used. int here is the integer specifying the
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(a) Geometry File (b) Mesh File

Figure 207.11: Gmsh geometry and mesh file for Example 1

order of meshing. For example, the following terminal command with -order 2, i.e., 2nd order meshing,

generates twenty-seven node brick meshes (27NodeBrick):

1 gmsh Example_1.geo -3 -order 2

207.2.6.3 Writing all gmESSI Commands for the model

Using gmESSI for mesh conversion is very easy. To achieve this, a [Example 1.gmessi] file is created

containing all the required gmESSI commands to be executed sequentially. Let us look at each of them

Since physical group names and ids are required for referring the gmESSI commands, its always best

to copy all the physical group data from the .msh file (in this case [Example 1.msh] file) in the header

of .gmessi file, so that its easier for th user to refer to the physical groups while writing commands in

.gmessi file. The contents of the .gmessi file are shown below.

1 $cat Example_1.gmessi
2

3 ### Physical Groups defined in the msh file.
4 #2 2 "Base_Surface"
5 #2 3 "Lateral_Surface"
6 #2 4 "Top_Surface"
7 #3 1 "Soil"
8

9 ### loading the gmsh file

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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10 gmESSI.loadGmshFile("Example_1.msh")
11

12 ### Defining the Simulation Directory and node, element, load and main file
13 ### Its important to define the directory and these files at the beginning of ←↩

any gmESSI command conversion
14 ### 1 refers as overwrite mode ( will overwrite the directory if present) --- 0 ←↩

would not overwrite
15 gmESSI.setSimulationDir("./Example_1_ESSI_Simulation",1)
16 gmESSI.setMainFile(gmESSI.SimulationDir+ "main.fei")
17 gmESSI.setNodeFile(gmESSI.SimulationDir+ "node.fei")
18 gmESSI.setElementFile(gmESSI.SimulationDir+ "element.fei")
19 gmESSI.setLoadFile(gmESSI.SimulationDir+ "load.fei")
20

21 #### // is used to provide commands and gets translated in the main.fei file
22 #### Also, the commands followed by exclamation '!' get directly copied to the ←↩

main.fei file
23 #### Usually, the user would write Real-ESSI DSL against the exclamation mark.
24

25 // My new model
26 ! model name "Soil_Block";
27

28 [Add_All_Node{ unit:= m, nof_dofs:= 3}]
29

30 // Adding Material also assigning it to elements
31 ! add material #1 type linear_elastic_isotropic_3d_LT mass_density = ←↩

2000*kg/m^3 elastic_modulus = 200*MPa poisson_ratio = 0.3;
32 [Add_8NodeBrick{Physical_Group#Soil, MaterialNo:= 1}]
33

34 ! include "node.fei";
35 ! include "element.fei";
36 ! new loading stage "Stage1_Self_Weight";
37

38 # Applying Fixities
39 [Fix_Dofs{Physical_Group#Base_Surface, all}]
40 [Fix_Dofs{Physical_Group#Lateral_Surface, ux uy}]
41

42 #### For applying Self-Weight Load to the soil elements
43 ! add acceleration field # 1 ax = 0*g ay = 0*g az = -1*g ;
44 ! add load #1 to all elements type self_weight use acceleration field # 1;
45

46 #Updating the tag inside gmESSI as user entered by himself load tag
47 gmESSI.setESSITag("load",2)
48

49

50 ! include "load.fei";
51 ! NumStep = 10;
52 !
53 ! define algorithm With_no_convergence_check;
54 ! define solver UMFPack;
55 ! define load factor increment 1/NumStep;
56 ! simulate NumStep steps using static algorithm;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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57

58

59 #### updating the new load file before new loading stage
60 gmESSI.setLoadFile(gmESSI.SimulationDir+ "Surface_Load.fei")
61 ! new loading stage "Stage2_Surface_Loading";
62

63 ### For applying Surface load on the Top Surface of the Soil Block
64 [Add_8NodeBrick_SurfaceLoad{Physical_Group#Soil,Physical_Group#Top_Surface,10*Pa}]
65

66 ##### For applying Nodal loads to all the nodes of the top surface
67 #[Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx, Mag:= 10*kN}]
68

69

70 ! include "Surface_Load.fei";
71 ! NumStep = 10;
72 !
73 ! define algorithm With_no_convergence_check;
74 ! define solver UMFPack;
75 ! define load factor increment 1/NumStep;
76 ! simulate NumStep steps using static algorithm;
77

78 ! bye;

NOTE: The gmESSI commands are executed and written to the file sequentially, so the user should

be careful with the order of translation.

207.2.6.4 Executing gmESSI on Example 1.gmessi input file

Once .gmessi input file is ready, the next task is to run it using the ‘gmessy’ command in terminal.

Running would carryout the translation to all and produce the log of translation, displayed on the

terminal

1 $ gmessy Example_1.gmessi
2

3 Message:: newDirectory created as ./Example_1_ESSI_Simulation
4

5 Add_All_Node{ unit:= m, nof_dofs:= 3}
6 Found!!
7 Successfully Converted
8

9 Add_8NodeBrick{Physical_Group#Soil, MaterialNo:= 1}
10 Found!!
11 Successfully Converted
12

13 Fix_Dofs{Physical_Group#Base_Surface, all}
14 Found!!
15 Successfully Converted

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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16

17 Fix_Dofs{Physical_Group#Lateral_Surface, ux uy}
18 Found!!
19 Successfully Converted
20

21 Add_8NodeBrick_SurfaceLoad{Physical_Group#Soil,Physical_Group#Top_Surface,10*Pa}
22 Found!!
23 Successfully Converted
24

25

26 ************************ Updated New Tag Numbering **********************
27 damping = 1
28 displacement = 1
29 element = 126
30 field = 1
31 load = 27
32 material = 1
33 motion = 126
34 node = 217
35 nodes = 217
36 Gmsh_Elements = 276
37 Gmsh_Nodes = 217

It would create a folder [Example 1 ESSI Simulation] and places load.fei, node.fei, element.fei and

main.fei files. The user at this point do not need to write anything in the Example 5 analysis.fei file

as every command was sequentially written down in .gmessi file and is converted. The content of the

main.fei is shown below.

1 $cat Example_5_analysis.fei
2 // My new model
3 model name "Soil_Block";
4

5 // Adding Material also assigning it to elements
6 add material #1 type linear_elastic_isotropic_3d_LT mass_density = 2000*kg/m^3 ←↩

elastic_modulus = 200*MPa poisson_ratio = 0.3;
7

8 include "node.fei";
9 include "element.fei";

10 new loading stage "Stage1_Self_Weight";
11

12

13 add acceleration field # 1 ax = 0*g ay = 0*g az = -1*g ;
14 add load #1 to all elements type self_weight use acceleration field # 1;
15 include "load.fei";
16 NumStep = 10;
17

18 define algorithm With_no_convergence_check;
19 define solver UMFPack;
20 define load factor increment 1/NumStep;
21 simulate NumStep steps using static algorithm;
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22 new loading stage "Stage2_Surface_Loading";
23

24 include "Surface_Load.fei";
25 NumStep = 10;
26

27 define algorithm With_no_convergence_check;
28 define solver UMFPack;
29 define load factor increment 1/NumStep;
30 simulate NumStep steps using static algorithm;
31 bye;

207.2.6.5 Running Real-ESSI and visualization in paraview

With all files ready in their place, the next step is to run the main.fei file directly in ESSI.

1 $essi -f main.fei

Running ESSI creates .feioutput file which can be visualized in paraview using PVESSIReader plugin.

Figure 207.12 shows the visualization of hdf5 output produced in paraview.

Figure 207.12: Visualizing output in Paraview.
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207.2.7 Illustrative Examples

The Examples directory of gmESSI folder contains five examples as Example 1,Example 2.... and Ex-

ample 5. They are summarized as

1. [Example 1] : Modeling of Surface load on block of Soil. The geometry (.geo), mesh (.msh) and

.gmessi input files can be downloaded HERE.

2. [Example 2] : Modeling of Cantilever Beam. The geometry (.geo), mesh (.msh) and .gmessi input

files can be downloaded HERE.

3. [Example 3] : Modeling of Tower (beam) located above the ground and embedded in soil using

contact/interface elements. The geometry (.geo), mesh (.msh) and .gmessi input files can be

downloaded HERE.

4. [Example 4] : Modeling of a concrete foundation on Soil connected by contact elements. The

geometry (.geo), mesh (.msh) and .gmessi input files can be downloaded HERE.

5. [Example 5] : Modeling of a embedded shells and beam in Solids. The geometry (.geo), mesh

(.msh) and .gmessi input files can be downloaded HERE.

[Example 1] was discussed in the previous section. Examples 1 to 4 are discussed and refereed in

the manual at several instances. The user is encouraged to over these examples and learn to create

geometry ‘.geo’ and .gmessi input files. Here, two examples Example 2 about cantilever beam analysis

and Example 5 about beams and shell is discussed.
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207.2.7.1 Modeling of Cantilever Beam With Surface Load [Example 2]

 

Length (L) x Width (W) x Thickness (T)

P

Figure 207.13: Illustration of the cantilever problem.

The problem consist of a cantilever beam with its left end fixed. A uniform surface load of P

is applied. The geometry (.geo) and the gmessi input file for this problem can be downloaded here.

Figure 207.14 shows visualization of output after running the model in Real-ESSI.

Figure 207.14: Illustration of the cantilever problem.
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207.2.7.2 Modeling of a embedded shells and beam in Solids [Example 5]

 

Beam

F1 F2

Figure 207.15: Illustration of the cantilever problem.

The problem consist of solid of 3 dofs in which beams and shells of 6dofs are embedded. The

embedded beams and shell elements are connected by contact/interface elements. A nodal load to the

top of the beam and shell is applied. The geometry (.geo) and the gmessi input file for this problem can

be downloaded here. Figure 207.16 shows visualization of output after running the model in Real-ESSI.
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Figure 207.16: Visualizing displacement field in Paraview.
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207.2.8 Realistic Models Developed Using gmESSI

Figure 207.17: Nuclear Power Plant model 1, half model shown, with vertical plane cut.

207.3 Introduction to SASSI-ESSI Translator

This section will cover a simple mesh translator that translates mesh from SASSI format into ESSI

format.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 207.18: Nuclear Power Plant model 2, half model shown, with vertical plane cut.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 207.19: Shear Box.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.1 Introduction

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.2 Model Results Post-Processing

This chapter describes methodology for post processing simulation results from the Real-ESSI Simulator.

Two main approaches are used:

• Plotting time histories of scalar results (described in section 208.3 on page 1290), using Python

and/or Matlab for:

– components of displacements, velocities, accelerations, pore fluid pressures, for finite element

nodes,

– components of stress and/or strain at integration (Gauss) points within each finite element,

– components of section forces for structural finite elements

– energy input and dissipation for parts or whole of the volume/model, in incremental and/or

cumulative form

• Visualization of a part or a complete model for displacements, velocities, accelerations, stress and

strain components, sectional forces, energy dissipation through visualization system ParaView, as

described in section 208.4 on page 1291.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.3 Time Histories Plotting

Time histories of various scalar results (as listed above) can be extracted from output files, saved in

HDF5 (Group, 2020), in a format described in chapter 206, on page 1180 in Jeremić et al. (1989-2025).

An excellent set of Python postprocessing tools was developed by Dr, Konstantinos Kanellopoulos,

from ETH Zürich! You can find these tools at his github:

https://github.com/ConstantinosKanellopoulos/Real-ESSI_postprocessing_tools.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4 Post Processing and Visualization using ParaView

ParaView package http://www.paraview.org/ (Ayachit, 2015) is a very powerful multi-platform data

analysis and visualization program available as an Open Source. Paraview can be run on supercomputers

to analyze datasets of peta-scale size as well as on laptops for smaller data, and has become an integral

tool in many national laboratories, universities and industry, and has won several awards related to high

performance computation.

PVESSIReader is a plugin for paraview that integrates Real-ESSI Simulator output to Paraview for

visualization. PVESSIReader reads Real-ESSI output file, in HDF5 format, files with extension .feioutput.

The plugin works for sequential, parallel as well as remote visualization mode. It has a number of

visualization features to visualize stresses, eigen modes, relative displacement, physical groups, energy

dissipation, etc.

The installation of both Paraview and PVESSIReader is described in some detail in section 209.8.2

on page 1345 of the main document (Jeremić et al., 1989-2025).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1 Visualization in ParaView : Features

PVESSIReader has been consistently developed and added with lot of visualization options which are

built on ParaView Visualization Toolkit (VTK) framework. This section shows all the visualization

options that PVESSIReader offers other than what is available in ParaView. The features are illustrated

in subsections below with help of examples in Examples folder of PVESSIReader source directory.

Before, looking at the features, it’s important to know how PVESSIReader works. PVESSIReader takes

Real-ESSI HDF5 output (.feioutput) file format as input and creates a PVESSIReader folder inside the

HDF5 file. PVESSIReader does this to ensure the visualization to be optimized. The contents inside

this folder are not important for any regular user. The contents of ”PVESSIReader” folder is shown in

Figure 208.1, although it is not important to regular users. User must know that, the plug-ins first creates

this folder and then uses the content of this folder for visualization in ParaView. So creation/reading of

this folder is the essence to visualization in ParaView.

Figure 208.1: Contents of PVESSIReader folder.

208.4.1.1 PVESSIReader Visualization Options

By default PVESSIReader builds a node mesh. Figure 208.2 shows the various visualization options that

is available for PVESSIReader. The Gauss to node interpolation is turned off and other options shown in

Figure 208.2 is turned off. As stated in previous Section 208.4.1, the plugin creates the PVESSIReader

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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folder inside the output HDF5 file only once and uses it for rest of visualization (even after you close

and reopen it). The ‘Build PVESSIReader folder’ button shown in Figure 208.2 on clicking rebuilds the

‘PVESSIReader folder’. If in case the loading of ‘.feioutput’ file fails in ParaView, the user should clicks

the ‘Build PVESSIReader Folder’ before hitting ‘Apply’ button.

Figure 208.2: PVESSIReader build options.

Description of various PVESSIReader visualization options in the order shown in Figure 208.2 is

listed below.

• Build PVESSIReader Folder - Rebuild the content of PVESSIReader folder inside output file

• Refresh - It reloads the current visualization view.

• Enable Gauss to Node Interpolation - Enables the interpolation from Gauss points to node using

shape functions. It works only for 8 node and 27 node brick with 8 and 27 Gauss points respectively.

See Section 208.4.1.9.

• Enable uPU Visualization - Enables the visualization of fluid displacements (U) and pore-pressure

(P) at nodes. See Section 208.4.1.10.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• Enable Relative Displacement - When this is enabled, the displacement of any time step can be

visualized with respect to any other reference time step. See Section 208.4.1.6.

• Reference Time Step No -This option is used to set the reference time step number about which

the relative displacements would be visualized. See Section 208.4.1.6.

• Show Gauss Mesh - This option can be enabled to visualize the Gauss points (mesh) of the entire

model. See Section 208.4.1.8.

• Enable Displacement Probing - This option only works if Gauss mesh option is enabled. With this

option, displacements are calculated at Gauss points using ParaView interpolation functions for

each elements containing those Gauss points. See Section 208.4.1.8.

• Physical Groups - This option is enabled to visualize pre-defined physical groups in Real-ESSI input

or manually defined selected nodes or elements. See Section 208.4.1.12.

• Enable Actual Time Step Values - By default instead of actual simulation time (in seconds),

time step number of analysis is provided to ParaView VCR. Figure 208.3 shows the result of

enable/disable of this option.

 

Time Step Number Actual Analysis Time in Seconds

(a) Actual Time Step Values Disabled (b) Actual Time Step Values Enabled

Figure 208.3: Illustration of difference between enable and disable of actual time step values.

In the Figure 208.3, the enabled option gives the exact simulation time of 3.895s. Whereas,

disabling the option shows time step number of 200.

The visualization gets automatically updated on enable/disable of options. When one hit’s apply, the

corresponding changed result gets updated i.e. the mesh would get real time updated with enable/disable

of these options.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.2 Sequential Visualization

Sequential visualization means visualizing the Real-ESSI output on a single core of laptop/desktop. This

is used for single output files that Real-ESSI produces for sequential runs. Figure 208.4 shows the

visualization of output file produced by sequential Real-ESSI simulation.

1 cd pvESSI/Examples
2 ParaView ShearBox_Sequential.h5.feioutput

The parallel output files of ESSI can also be visualized sequentially. Each individual (core) file can

be sequentially visualized showing only a part of the model results. Also all the parallel files at once

can be opened as well in ParaView as shown in Figure 208.5. All PVESSIReader examples can be

obtained at http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/

Real-ESSI_pvESSI/Examples.

1. To open one core output in sequential

1 cd pvESSI/Examples
2 ParaView ShearBox_Parallel.h5.1.feioutput

2. To open all cores output in parallel

1 cd pvESSI/Examples
2 ParaView ShearBox_Parallel.h5.feioutput

Figure 208.4: Sequential Visualization of output produced by sequential Real-ESSI simulation.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples


Je
re
m
ić
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(a) Visualizing only one slave output file (b) Visualizing all slave output files at once

Figure 208.5: Sequential Visualization of output produced by parallel Real-ESSI simulation.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.3 Remote Visualization

Remote visualization is an important feature that ParaView offers. This is an important feature in need,

when simulations are run on super computers with thousands of cores. The steps for remote visualization

are shown below with an example on local desktop.

1. Run pvserver on server

1 $pvserver
2 Waiting for client...
3 %Connection URL: cs://sumeet:11111
4 %Accepting connection(s): sumeet:11111
5 Connection URL: cs://jeremic:11111
6 Accepting connection(s): jeremic:11111

2. Open ParaView on client side and click on connect button located on top left window.

Figure 208.6: Connect Server.

3. Select and connect to the server and then load the plugins on both client and server side as shown

in Figure 208.7

(a) Connect to Server (b) All Core Outputs

Figure 208.7: Connect to the server and load plugins.

4. Navigate to pvESSI/Examples/ShearBox Parallel.h5.1.feioutput and hit apply

208.4.1.4 Parallel Visualization

Parallel visualization is similar to remote visualization. The only difference is to start the pvserver in

parallel on multiple cores. It is recommended to have the same number of cores that was used in

Real-ESSI parallel simulation. Below shows steps on how to do parallel visualization in ParaView.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(a) Locating file on server side (b) Client Side Pipeline

Figure 208.8: ParaView Remote Visualization.

1 $ mpirun -np $(nop) pvserver
2 # $(nop) is replaced by number of cores on which parallel visualization is to ←↩

be run.

The next following steps are same to that of Remote visualization as shown in Section 208.4.1.3.

Thus, parallel visualization can be performed remotely as well as locally.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.5 General Field Visualization

Below is the list of general visualization variables available for any model in ParaView using PVESSIReader

plugin. The following subsections describes each option through an example. The examples can be

found in pvESSI/Examples directory. The example file ‘ShearBox Sequential.h5.feioutput’ can be

downloaded here.

1 cd pvESSI/Examples
2 ParaView ShearBox_Sequential.h5.feioutput

Displacement Field : The displacement field represents the total displacement from the start of the

Real-ESSI simulation. There are two modes of displacement field visualization available in ParaView.

NOTE: Please remember to change step number from 0 to any other step number, as all output, including

displacements, is 0.0 at step 0.

1. Scalar field visualization : The options available are each individual displacement vector com-

ponents ux, uy and uz in x,y,z directions respectively. It also shows the displacement magnitude

|u| =
√

u2
x + u2

y + u2
z . The units of displacements field in [m].

(a) Select Displacement Field (b) Select scalar field

Figure 208.9: Displacement Scalar Field Visualization.

2. Vector Field visualization : This is achieved using ‘Wrap by Vector’ plugin available in ParaView.

Figure 208.10 and Figure 208.11 shows steps to visualize deformed mesh.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(a) Select Displacement Field (b) Select plugin (c) Plugin properties

Figure 208.10: Deformation Visualization.

(a) Displacement Field Visualization in Uz (b) Deformation Visualization

Figure 208.11: Displacement field visualization in ParaView.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Boundary Conditions: Again this a vector field which contains information about boundary conditions

i.e fixities applied in ux, uy and uz directions. A value of 1 means the node is fixed while 0 means it is

free. Figure 208.12 shows steps to visualize boundary conditions.

(a) Select Boundary Condi-

tions

(b) Select Fixities Type

(c) Boundary Conditions in Uz

Figure 208.12: Boundary Conditions Visualization.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Material Tag Visualization : This is a scalar field visualization that shows the material tag no associated

with the elements in Real-ESSI simulation. Figure 208.13 shows steps to visualize element’s material

tag.

(a) Select Material Tag (b) Material Tag Field

Figure 208.13: Material Tag Visualization.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Node Tag Visualization : This is a scalar field visualization that shows the node no associated with

the nodes in Real-ESSI simulation. Figure 208.14 shows steps to visualize node’s tag.

(a) Select Node Tag (b) Node Tag Field

Figure 208.14: Node Tag Visualization.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Element Tag Visualization : This is a scalar field visualization that shows the element no associated

with the elements in Real-ESSI simulation. Figure 208.15 shows steps to visualize element’s tag.

(a) Select Element Tag (b) Element Tag Field

Figure 208.15: Element Tag Visualization.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Element Class Tag Visualization : This is a scalar field visualization that shows the Element’s Class

Tag number associated with the each element type in Real-ESSI simulation. Figure 208.15 shows steps

to visualize element’s tag. Section 206.5.4.4 shows the class tag for various element types available in

Real-ESSI.

(a) Select Class Tag (b) Class Tag Field

Figure 208.16: Class Tag Visualization.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.6 Relative Displacement Visualization

When the ‘Enable Relative Displacement’ is checked, the relative displacement visualization option

becomes active. BY default, the relative displacement time step number is set to ‘0’ as shown in

Figure 208.17. Time step number ‘0’ corresponds to initial conditions of the loading stage output file.

Figure 208.17: Enable Relative Displacement.

Reference Time Step Number - It defines the relative time step index number for relative displacement

visualization. By default it is set to 0 i.e. to the initial conditions. Its very useful, when one wants

to visualize deformation coming from the stage itself. For example:- Separating self-weight from Static

Pushover Analysis in the Shear Box simulation. The steps to do the same is shown below. The example

file ShearBox PushOver.h5.feioutput can be downloaded here.

1. Open an example in ParaView

1 cd pvESSI/Examples
2 ParaView ShearBox_PushOver.h5.feioutput

2. Check on Enable Relative Displacement under visualization options

3. Apply warp by vector plugin and follow the steps as shown in Figure 208.10

Figure 208.18 shows the visualization with and without relative displacement.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(a) Without Relative Displacement (b) With Relative Displacement

Figure 208.18: Pushover analysis of Shear Box after self-weight load application.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.7 Visualizing Element’s Partition

If the ESSI simulation was run in parallel mode, it becomes important to visualize the elements distribu-

tion between different cores. In ParaView, one can see the element distribution by selecting ”Partition

Info”. Following is shown in Figure 208.19 an example to visualize mesh partitioning. All the example

files can be obtained here.

1 cd pvESSI/Examples
2 ParaView ShearBox_Parallel.h5.feioutput

and then select Partition Info as shown below in Figure 208.19

(a) Select Partition Info (b) Mesh Partitioning

Figure 208.19: Visualizing mesh partitioning.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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208.4.1.8 Gauss Mesh Visualization Options

Often, it is required to visualize stress and strain fields. Since stress or strains are evaluated at Gauss

points in 3-D elements, Gauss mesh is needed to visualize them. PVESSIReader offers option to visualize

Gauss mesh and it’s fields.

• Show Gauss Mesh - Shows only Gauss mesh with Gauss attributes.

• Enable Displacement Probing - When this option is enabled, displacements are probed to the

Gauss location. Its useful in the situation, when one wants to visualize the change in stress with

deformation. With this as active, one can apply ‘warp by vector’ filter.

It must be noted that the Enable Displacement Probing options only works when Show Gauss

Mesh mode is enabled. Figure 208.20 shows the steps to visualize Gauss mesh.

(a) Gauss Mesh Options (b) Gauss Mesh Fields

Figure 208.20: Visualizing Gauss mesh and it’s fields.

The various fields that can be visualized in Gauss mesh mode as shown in Figure 208.20 are shown

below.

• Total Strain ϵ : It defines the total strain from the start of the simulation. It has six independent

component ϵxx, ϵxy, ϵxz, ϵyy, ϵyz and ϵzz. The magnitude of the total stress in ParaView is defined

as
√
ϵij : ϵij .

• Total Plastic Strain ϵpl : It defines the total plastic strain from the start of the simulation. It has

six independent component ϵ
pl
xx, ϵpl

xy, ϵpl
xz, ϵ

pl
yy, ϵpl

yz and ϵ
pl
zz. The magnitude of the total plastic strain

in ParaView is defined as
√
ϵ
pl
ij : ϵpl

ij .

• Total Effective Stress σ′ : It defines the total effective stress from the start of the simulation. It

has six independent component σ′xx,σ′xy,σ′xz,σ′yy,σ′yz and σ′zz. The magnitude of the total effective

stress in ParaView is defined as
√
σ′ij : σ′ij . The unit of visualization is in [Pa].

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• Total Mean Effective Stress p : It defines the total mean of the effective stress σ′ from the start

of the simulation. It is defined as p = –σ′ii/3 as described in Equation ??. The unit of Visualization

is in [Pa].

• Total Deviatoric Effective Stress q : It defines the deviatoric invariant of the total effective stress

σ′ from the start of the simulation. It is defined as q =
√

3J2 as described in Equation ??. Where,

J2 is the second invariant of the deviatoric stress tensor sij = σ′ij –σ′kk/3δij . The unit of visualization

is in [Pa].

• Total Mean Plastic Strain ϵ
pl
p : It defines the mean total plastic strain ϵpl invariant from the start

of the simulation. It is defined as ϵ
pl
p = –ϵpl

ii /3. This visualization parameter is unit-less.

• Total Deviatoric Plastic Strain ϵ
pl
p : It defines the deviatoric invariant of the total plastic strain

ϵpl from the start of the simulation. It is defined as ϵ
pl
p =

√
3J ′2. Where, J ′2 is the second invariant

of the deviatoric plastic strain tensor epl
ij = ϵpl

ij – ϵpl
kk/3δij . This visualization parameter is unit-less.

1. Open an example in ParaView. All the example files can be obtained at http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples.

1 cd pvESSI/Examples
2 ParaView ShearBox_PushOver.h5.feioutput

2. Check on Enable Relative Displacement under PVESSIReader build options

3. Enable Gauss mesh as shown in Figure 208.20(a). Select Mean Effective Stress p [Pa]. The

resulting visualization is shown in Figure 208.21(a).

4. Enable displacement probing as shown in Figure 208.20(a). Apply a warp by vector filter

and select the vector displacement as shown in Figure 208.10. Now select again the Mean

Effective Stress p [Pa] field option to visualize. The resulting visualization is shown in

Figure 208.21(b).
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(a) Gauss Mesh (b) Gauss Mesh with displacement probing

Figure 208.21: Visualization of mean effective stress p invariant in Gauss mesh.
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208.4.1.9 Gauss To Node Interpolation Mode Visualization

This visualization mode can be enabled by checking the ‘Gauss To Node Interpolation’ option as

shown in Figure 208.22(a). In this mode, the total effective stress σ′ij , total strain ϵij , total plastic strain

ϵ
pl
ij , total mean effective stress p, total deviatoric effective stress q, total mean plastic strain ϵ

pl
p and total

deviatoric plastic strain ϵ
pl
q are interpolated from the Gauss points to the nodes of individual element.

Individual shape functions of the element (with full Gauss integration) are used to obtain the stress or

strain field at nodes. To smooth out the jumps in stress or strain field at the node by adjacent elements,

unweighted averaging is performed. For the elements (usually structural) with no Gauss points, the stress

or strain contribution at nodes are considered as zero. While taking the averaging, their contributions

are not taken, as Real-ESSI does not output stress/strain for them.

In this mode, visualization of all the parameters listed and described in Section 208.4.1.8 is available.

Figure 208.22 show the steps to enable and use Gauss to Node Interpolation option.

1. Open an example in ParaView. All the example files can be obtained at http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples.

1 cd pvESSI/Examples
2 ParaView ShearBox_Sequential.feioutput

2. Follow the steps as shown in Figure 208.22

Note : The option Gauss to node interpolation is provides only an approximate estimate for

stress and strains at nodes. The values obtained at nodes is not accurate and thus Gauss Mesh

Visualization option described in Section 208.4.1.8 must be performed to get the accurate stress

and strains at Gauss points. Also, it must be noted that this option works only for 8 node brick with

8 Gauss points and 27 node brick with 27 node points. For elements which have less number of nodes

that Gauss points, the total number of equations (unknowns) is not equal to constraints (knowns). In

this case, only the shape function defined at the nodes are used to get the stress or strain back to the

node.
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(a) Enable Gauss To Node Visualization Option (b) Select the visualization variable

(c) Visualization of Deviatoric Stress interpolated to nodes

Figure 208.22: Steps to visualize stress and strain interpolated from Gauss points to nodes.
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208.4.1.10 upU Visualization

This mode is to visualize the upU elements used in Real-ESSI simulation. Enabling this mode, produces

additional outputs of ‘Pore Pressure p[Pa]’ and ‘Fluid Displacement Ux[m], Uy[m] and Uz[m]’

at nodes. These additional outputs are described below.

• Pore Pressure p[Pa] : It defines the pore-fluid pressure in the upU element at the nodes. The

magnitude of the pore pressure is [Pa].

• Fluid Displacement U[m] : It defines the displacement by the fluid particles of upU at nodes. The

units is in meters [m]. The solid displacement is termed as u and refers to the ‘Displacement u’

variable in visualization as described in Section 208.4.1.5.

Since general dry elements does not have any fluid, enabling this option would produce ‘zero’ pore

fluid pressure and fluid displacements at nodes. Below is shown an example that shows how to use the

upU visualization feature. Figure 208.23 shows the steps.

1. Open an example in ParaView. All the example files can be obtained at http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples.

1 cd pvESSI/Examples
2 ParaView upU_Visualization_Example.feioutput

2. Follow the steps as shown in Figure 208.23
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(a) Enable upU Mode Visualization Option (b) Select the visualization variable either pore pressure or

fluid displacement

(c) Visualization of Pore Pressure p at nodes

Figure 208.23: Steps to visualize pore pressure p or fluid displacements U in upU visualization mode.
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208.4.1.11 Eigen Mode Visualization

Visualization of eigen modes is that same as visualizing ”displacements” and applying ”warp by vector”

filter on Eigen Value Analysis output of Real-ESSI simulation.

1. Open an eigen value analysis output. All the example files can be obtained at http://sokocalo.

engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples.

1 cd pvESSI/Examples
2 ParaView ShearBoxWall_Eigen_Analysis.h5.feioutput

2. Select displacement field and then apply warp by vector plugin and selected its properties

(a) Select Displacement Field (b) Select plugin (c) Plugin properties

Figure 208.24: Eigen Modes visualization.

3. Now nth time steps here, corresponds to the nth eigen mode.

(a) Eigen Mode 5 (b) Eigen Mode 9

Figure 208.25: Few eigen modes.
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208.4.1.12 Visualizing Physical Node and Element groups

In Real-ESSI it is possible to define different physical groups, for nodes and for elements. If one has

defined physical groups in Real-ESSI, you can visualize the same in ParaView. There are two sections here

that shows all the physical groups (nodes and elements ) defined in the model as shown in Figure 208.26.

Section 205.3.4.36 and Section 205.3.4.43 shows how to define and add physical group of nodes and

elements respectively in Real-ESSI. All the example files can be obtained at http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_pvESSI/Examples.

1 cd pvESSI/Examples
2 ParaView Model_With_Physical_Groups.h5.feioutput

Figure 208.26: Physical Group Visualization Options.

This feature is very useful, when one is interested only in some specific regions of the model than the

whole model. Also, This feature becomes very useful, for complicated ”interested region/parts of the

mesh”, which cannot be selected by usual clip/box/..etc filters

1. Enable Physical Element Group Selection - Enables the selection of Physical Element Group. By

default, it is disabled and one would see the whole mesh. By enabling it, one would only see the

selected ‘Physical Element Groups’.

2. Physical Element Groups - It shows all the physical element groups defined in Input file of Real-

ESSI. The user can select (one or more) of physical groups and hit apply to visualize them. It would

show any effect only if the above options Enable Physical Element Group Selection is checked.

Figure 208.27 shows steps to visualize the physical element groups defined in input files using
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Real-ESSI DSL.

(a) Select ‘Physical Element Group

Selection’ Option

(b) ElementGroup : Auxiliary Building Interior

Walls

Figure 208.27: Visualization of physical groups predefined in input file using Real-ESSI DSL.

3. Element Tags - This options provides user and interface to manually write element tags to be

visualized. The user should enter the element tags against this option as a integer list separated

by space. For example:- ‘2 10 12 13 16’, where each of the number corresponds to the element

tag defined in the model. Again, this option would only work if Enable Physical Element Group

Selection option is checked. Figure 208.28 shows steps to visualize elements defined manually.

(a) Select ‘Physical Element Group

Selection’ Option

(b) ElementGroup : Manually Defined Element

Tags

Figure 208.28: Visualization of physical element group manually defined using PVESSIReader option.
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4. Enable Physical Node Group Selection - Enables the selection of Physical Node Group. By default,

it is disabled and you would see the whole mesh. By enabling it you would only see the selected

Physical Node Groups.

5. Physical Node Groups - It shows all the physical node groups defined in Input file of Real-ESSI. The

user can select (one or more) of physical groups and hit apply to visualize them.It would show any

effect only if the above options Enable Physical Node Group Selection is checked. Figure 208.29

shows steps to visualize the physical element groups defined in input files using Real-ESSI DSL.

(a) Select ‘Physical Node Group Selection’

Option

(b) NodeGroup : Auxiliary Building Interior Walls

Figure 208.29: Visualization of physical groups predefined in input file using Real-ESSI DSL.

6. Node Tags - This options provides user and interface to manually write node tags to be visualized.

The user should enter the node tags against this option as a integer list separated by space. For

example:- ‘2 10 12 13 16’, where each of the number corresponds to the node tag defined in

the model. Again, this option would only work if Enable Physical Node Group Selection option is

checked. Figure 208.30 shows steps to visualize nodes defined manually.

NOTE: The user can also select both at once, i.e physical element group and physical node group, from

the above menu. Figure 208.31 shows mixed selection.
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(a) Select ‘Physical Node Group Selection’

Option

(b) NodeGroup : Manually Defined Node Tags

Figure 208.30: Visualization of physical node group manually defined using PVESSIReader option.

(a) ElementGroup : Auxiliary

Building Interior Walls

(b) Node Group : Contain-

ment Cylinder

(c) Mixed Group : Contain-

ment Cylinder with Dome

Figure 208.31: Visualization of physical groups.
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208.4.1.13 Using Threshold to Visualize Certain Elements

ParaView allows user to choose specific element types and only visualize selected elements. This function

is achieved using Threshold. As shown in Figure 208.32, first click on the Threshold button in toolbar.

Then, choose Element Class Tag in the drop-down list of Scalars, which can be found in Properties. A

certain range of Element Class Tag can be chosen by setting the minimum and maximum values. If the

minimum and maximum values are the same, only one element type will be selected and visualized.

(a) Click on Threshold

(b) Choose Element Class Tag

Figure 208.32: Using Threshold to Visualize Certain Elements.
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A list of available element class tags in Real-ESSI is provided in Table 208.1.

Table 208.1: Available element class tags in Real-ESSI.
Finite Element Name Element Class Tag

Truss Element 88

Shear Beam Element 93

Elastic Beam–Column Element 89

Timoshenko Elastic Beam–Column Element 129

Elastic Beam-Column Element with Lumped Mass 90

3D Displacement Based Fiber Beam-Column Element 95

4 Node ANDES Shell with Drilling DOFs 92

3 Node ANDES Shell with Drilling DOFs 91

Super Element Linear Elastic Import 9904

8 Node Brick Element (Order One, Two, Three, Four, Five, Six) 2 (14, 26, 38, 50, 62, 74)

8 Node Brick u-p Element (Order One, Two, Three, Four, Five, Six) 3 (15, 27, 39, 51, 63, 75)

8 Node Brick u-p-U Element (Order One, Two, Three, Four, Five, Six) 4 (16, 28, 40, 52, 64, 76)

20 Node Brick Element (Order One, Two, Three, Four, Five, Six) 5 (17, 29, 41, 53, 65, 77)

20 Node Brick u-p Element (Order One, Two, Three, Four, Five, Six) 6 (18, 30, 42, 54, 66, 78)

20 Node Brick u-p-U Element (Order One, Two, Three, Four, Five, Six) 7 (19, 31, 43, 55, 67, 79)

27 Node Brick Element (Order One, Two, Three, Four, Five, Six) 8 (20, 32, 44, 56, 68, 80)

27 Node Brick u-p Element (Order One, Two, Three, Four, Five, Six) 9 (21, 33, 45, 57, 69, 81)

27 Node Brick u-p-U Element (Order One, Two, Three, Four, Five, Six) 10 (22, 34, 46, 58, 70, 82)

Variable Node Brick Element (Order One, Two, Three, Four, Five, Six) 11 (23, 35, 47, 59, 71, 83)

Variable Node Brick u-p Element (Order One, Two, Three, Four, Five, Six) 12 (24, 36, 48, 60, 72, 84)

Variable Node Brick u-p-U Element (Order One, Two, Three, Four, Five, Six) 13 (25, 37, 49, 61, 73, 85)

8 Node Cosserat Brick Element 96

Bonded Contact/Interface/Joint Element 102

Force Based Dry Hard Contact/Interface/Joint Element 86

Force Based Dry Soft Contact/Interface/Joint Element 87

Force Based Coupled Hard Contact/Interface/Joint Element 97

Force Based Coupled Soft Contact/Interface/Joint Element 98

Stress Based Dry Hard Contact/Interface/Joint Element with Elastic Perfectly Plastic Shear Behavior 99

Stress Based Dry Hard Contact/Interface/Joint Element with Nonlinear Hardening Shear Behavior 100

Stress Based Dry Hard Contact/Interface/Joint Element with Nonlinear Hardening and Softening Shear Behavior 101

Stress Based Dry Soft Contact/Interface/Joint Element with Elastic Perfectly Plastic Shear Behavior 107

Stress Based Dry Soft Contact/Interface/Joint Element with Nonlinear Hardening Shear Behavior 108

Stress Based Dry Soft Contact/Interface/Joint Element with Nonlinear Hardening and Softening Shear Behavior 109

Stress Based Coupled Hard Contact/Interface/Joint Element with Elastic Perfectly Plastic Shear Behavior 104

Stress Based Coupled Hard Contact/Interface/Joint Element with Nonlinear Hardening Shear Behavior 105

Stress Based Coupled Hard Contact/Interface/Joint Element with Nonlinear Hardening and Softening Shear Behavior 106

Stress Based Coupled Soft Contact/Interface/Joint Element with Elastic Perfectly Plastic Shear Behavior 110

Stress Based Coupled Soft Contact/Interface/Joint Element with Nonlinear Hardening Shear Behavior 111

Stress Based Coupled Soft Contact/Interface/Joint Element with Nonlinear Hardening and Softening Shear Behavior 112

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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(a) Full Model

(b) Only Fiber Beam-Column Elements

Figure 208.33: An example of using threshold to visualize fiber beam-column elements in a soil-structure

model.
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209.1 Chapter Summary and Highlights

This Chapter gives a brief description of build and installation procedures for the Real-ESSI Simulator.

It is noted that current installation procedures rely on Real-ESSI Simulator program Debian package

distribution, with pre and post processing modules that are installed separately. Both sequential and

parallel version of the Real-ESSI Simulator program Debian packages are distributed, for Linux/Ubuntu

operating system.

209.2 Introduction to the Real-ESSI Simulator Program

The Real-ESSI Simulator systems consists of the Real-ESSI Program, Real-ESSI Computer and Real-

ESSI Notes. Alternative name for the Real-ESSI Simulator system is Real-ESSI Simulator system. The

name Real-ESSI, is explained in section 201.2.6 on page 710.

209.3 Real-ESSI Simulator System Install

In adition to the Real-ESSI Program, Real-ESSI Simulator system consists of a pre-processing modules

and post-processing modules. Installation of pre-processing modules is described in Chapter 207, on page

1221 of the main document, lecture notes (Jeremić et al., 1989-2025). Installation of post-processing

modules is described in Chapter 208, on page 1287 of the main document, lecture notes (Jeremić et al.,

1989-2025).

Both pre and post processing manuals are also available through the main Real-ESSI Simulator web

site: http://real-essi.info/.

209.4 Build Procedures for the Real-ESSI Program and Modules

Note: This section describes build procedure for the Global Release 25.04 version of Real-ESSI. The very

same procedures will apply to future version...

These build procedures are meant for users that have access to Real-ESSI Program source code.

Required operating system is Ubuntu 24.04 LTS, unless otherwise specified. Building Real-ESSI on older

versions of Ubuntu is no longer supported. Users that do not have source code can install Real-ESSI

form Debian package, that is also available.

209.4.1 System Libraries Update/Upgrade

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 209.4. BUILD PROCEDURES FOR THE REAL- . . . page: 1326 of 3287

sudo apt update
sudo apt upgrade
sudo apt dist-upgrade
sudo apt autoremove

209.4.2 Install Build Dependencies

sudo apt install -y bison
sudo apt install -y build-essential
sudo apt install -y cmake
sudo apt install -y flex
sudo apt install -y git
sudo apt install -y mpich
sudo apt install -y ssh
sudo apt install -y valgrind
sudo apt install -y wget
sudo apt install -y zlib1g-dev
sudo apt install -y libboost-all-dev
sudo apt install -y libgmp3-dev
sudo apt install -y libhdf5-serial-dev
sudo apt install -y liblapack-dev
sudo apt install -y libmpfr-dev
sudo apt install -y libopenblas-dev
sudo apt install -y libopenmpi-dev
sudo apt install -y libpthread-workqueue-dev
sudo apt install -y libssl-dev
sudo apt install -y libtbb-dev

You may need to manually link the HDF5 libs to their proper names so that the compiler can find

them. The HDF5 maybe in different versions. NOTE: what is needed is a latest version of libhdf5 for

serial execution, the one ”cpp” and the one without ”cpp”, so search for it by doing:

cd /usr/lib/x86_64-linux-gnu
dir `find . -name "*hdf5*serial*cpp*"`

and

dir `find . -name "*hdf5*serial*"` | grep -v cpp

Then the linking has to be for both versions, for example:

cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.103.3.0 libhdf5.so
sudo ln -s libhdf5_serial_cpp.so.103.3.0 libhdf5_cpp.so

If the libs libhdf5.so and libhdf5 cpp.so are already there, just move on.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 209.4. BUILD PROCEDURES FOR THE REAL- . . . page: 1327 of 3287

209.4.3 Download Real-ESSI Source

It is important to note that Real-ESSI sources are not available for public download. This is so that

we can control and guarantee Real-ESSI quality. Only developer collaborators are contributing sources,

and those sources are quality checked and quality assured. In addition, there are a number of unique

solutions, unique formulations, unique implementation details within Real-ESSI sources that are not

available in any other research of commercial program. If you happen to obtain Real-ESSI sources from

Prof. Jeremić, you can proceed with the installation procedure below.

Please make sure that you are in the main directory where your Real-ESSI global release is placed

((GLOBAL RELEASE). Make a directory where all the sources will reside and go there:

cd
mkdir Real-ESSI
cd Real-ESSI

Obtain Real-ESSI sources from the github:

git clone git@github.com:BorisJeremic/Real-ESSI.git

Go to the Real-ESSI source directory:

cd Real-ESSI

Remember to ‘git checkout’ to the proper branch.

209.4.4 Download and Compile Real-ESSI Dependencies

Make directories for the dependencies:

mkdir -p ../RealESSI_Dependencies
mkdir -p ../RealESSI_Dependencies/include
mkdir -p ../RealESSI_Dependencies/lib
mkdir -p ../RealESSI_Dependencies/bin
mkdir -p ../RealESSI_Dependencies/SRC

Go to the directory, download and extract the sources of the dependencies:

cd ../RealESSI_Dependencies
wget http://sokocalo.engr.ucdavis.edu/~jeremic/RealESSI/Dependencies_SRC.tar.gz
tar -xzvf ./Dependencies_SRC.tar.gz -C ./SRC --strip-components 1

Go to the Real-ESSI directory and compile the dependencies:

cd ../Real-ESSI
./build_libraries suitesparse
./build_libraries arpack

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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./build_libraries lapack

./build_libraries parmetis

./build_libraries petsc_itself

209.4.5 Configure, Build, and Install the Real-ESSI Program

Configure and build the sequential version of Real-ESSI:

mkdir build
cd build
cmake ..
make -j 8
cd ..

Configure and build the parallel version of Real-ESSI:

mkdir pbuild
cd pbuild
cmake -DCMAKE_CXX_COMPILER=/usr/bin/mpic++ -DPROGRAMMING_MODE=PARALLEL ..
make -j 16
cd ..

Copy the Real-ESSI executables to system directory:

sudo cp build/essi /usr/local/bin/essi-sequential
sudo cp pbuild/essi /usr/local/bin/essi-parallel

209.4.6 Install Sublime Text and Real-ESSI Packages

Sublime Text (https://www.sublimetext.com/) is the recommended editor for Real-ESSI input files

and pre-processing files. Install Sublime Text following the official installation steps, or using the following

command:

wget -qO - https://download.sublimetext.com/sublimehq-pub.gpg | gpg --dearmor | ←↩
sudo tee /etc/apt/trusted.gpg.d/sublimehq-archive.gpg

echo "deb https://download.sublimetext.com/ apt/stable/" | sudo tee ←↩
/etc/apt/sources.list.d/sublime-text.list

sudo apt-get update
sudo apt-get install sublime-text

Open Sublime Text. Open the ‘Tools’ menu and select ‘Install Package Control...’. Open the ‘Prefer-

ences’ menu, select ‘Package Control’, then select ‘Package Control: Install Package’.

In the opened search bar, type the package name and click on the package to install it. Three

packages should be installed:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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FEI Syntax-n-Snippets, Real-ESSI syntax and auto completion plugin for [].fei files (input files for

Real-ESSI program).

gmsh-Tools, syntax and autotext completion for Gmsh model development tools for Real-ESSI.

gmESSI-Tools, syntax and autotext completion for gmESSI model development tools for Real-ESSI.

209.4.7 Install HDFView

HDFView can be used to open Real-ESSI output files, which are in HDF5 format. Download the latest ver-

sion of HDFView from https://support.hdfgroup.org/ftp/HDF5/releases/HDF-JAVA/. Click on

the latest version, which is hdfview-3.2.0 as of June 2022. Go to bin/, click HDFView-3.2.0-ubuntu2004 64.tar.gz,

and save the file in your ./Downloads/ directory. Then extract and install HDFView:

cd
tar -xvf ./Downloads/HDFView-3.2.0-ubuntu2004_64.tar.gz -C ./Downloads
sudo apt install -y ./Downloads/hdfview_3.2.0-1_amd64.deb
sudo ln -s /opt/hdfview/bin/HDFView /usr/local/bin/hdfview

Now you can use HDFView from a terminal. To be able to use HDFView when you click on a Real-ESSI

output file, do the following additional steps. First open the file using the following command:

sudo gedit /usr/share/applications/hdfview-HDFView.desktop

Find the line:

Exec=/opt/hdfview/bin/HDFView

Replace it with:

Exec=/opt/hdfview/bin/HDFView %F

Save the file and close it.

Go to a Real-ESSI output file, which should have the suffix ‘h5.feioutput’. Right click on the file and

select ‘Open with Other Application’. Click ‘View All Applications’ and choose HDFView from the list.

Note that you only need to do this once. Next time when you click on a Real-ESSI output file, it will be

opened automatically using HDFView.

209.4.8 Compile ParaView and PVESSIReader for Post-Processing

Install the build dependencies for ParaView:

sudo apt install -y libgl1-mesa-dev
sudo apt install -y libxt-dev

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

https://support.hdfgroup.org/ftp/HDF5/releases/HDF-JAVA/


Je
re
m
ić
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sudo apt install -y libqt5x11extras5-dev
sudo apt install -y libqt5help5
sudo apt install -y qttools5-dev
sudo apt install -y qtxmlpatterns5-dev-tools
sudo apt install -y libqt5svg5-dev
sudo apt install -y libtbb-dev
sudo apt install -y python3-dev
sudo apt install -y python3-numpy
sudo apt install -y ninja-build

Go to the directory where you want to install ParaView. Suggested location is the parent directory of

the Real-ESSI source. If you are continuing from the previous subsection, do the following:

cd ..

Download the ParaView source from GitHub:

git clone --recursive https://gitlab.kitware.com/paraview/paraview.git

Make the build directory:

cd paraview
mkdir paraview_build

Modify the cmake file to include PVESSIReader plugin in the building process. Open the file CMakeLists.txt

in the ParaView source directory. Find ”set(paraview default plugins” and add ”PVESSIReader” to the

end of the list of plugins. Download the PVESSIReader source from GitHub:

cd Plugins
git clone git@github.com:BorisJeremic/Real-ESSI-pvESSI.git
mv Real-ESSI-pvESSI PVESSIReader

Go to the build directory and compile ParaView:

cmake -GNinja -DPARAVIEW_USE_PYTHON=ON -DPARAVIEW_USE_MPI=ON ←↩
-DVTK_SMP_IMPLEMENTATION_TYPE=TBB -DCMAKE_BUILD_TYPE=Release ..

ninja

Copy the ParaView executable to system directory:

sudo cp bin/paraview /usr/local/bin/paraview

Start ParaView and click ‘Tools’→ ‘Manage Plugins...’. Click ‘Load New...’ and find the plugin named

‘PVESSIReader.so’ under directory paraview/lib/paraview-5.10/plugins/PVESSIReader/. Also

check the box ‘Auto Load’ then close ParaView.

The procedures described in this subsection are based on the official build instruction of ParaView
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(https://gitlab.kitware.com/paraview/paraview/blob/master/Documentation/dev/build.md).

209.5 Build Real-ESSI Debian Package

Note: This section describes Debian package build procedure for the Global Release 22.07 and later

versions of Real-ESSI. As noted before, the very same procedures will apply to future Ubuntu versions

...

Starting from the Global Release 22.07 version, the Real-ESSI Simulator system is distributed as a

Debian package for Linux users. This section documents the build procedure of a Real-ESSI Debian

package. Note that the steps described here are for building a ”basic” or ”quick” stand-alone Debian

package containing the already-compiled Real-ESSI program, pre-processor gmsh/gmESSI and results

viewer Paraview/pvESSI modules. This is different from building a Debian package containing the

program sources. For more information see:

• https://wiki.debian.org/Packaging

• https://www.internalpointers.com/post/build-binary-deb-package-practical-guide

• https://ubuntuforums.org/showthread.php?t=910717

209.5.1 Build the Real-ESSI Program and Modules

Before starting to build the Debian package, you should have finalized building the Real-ESSI program

and modules from source. To build Real-ESSI from source, please follow the build procedure described

in section 209.4.

209.5.2 Build the Debian Package

209.5.2.1 Package Name

Standard Debian notation is all lowercase in the following format:

<project>_<major version>.<minor version>-<package revision>

The current Real-ESSI Debian package has the name:

real-essi_25.04_amd64

Note that the version names will change and be consistent with the version of Real-ESSI program, as

decribed at http://real-essi.info/, so that users will have to change the above name to reflect the

actual Real-ESSI version and the Debian package.
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209.5.2.2 Create Directory

Create a directory to make your package in. The name should be the same as the package name.

mkdir real-essi_25.04_amd64

209.5.2.3 Create Internal Structure

Good idea is to put packaging directory in the root of Real-ESSI system. So go to where all of this

happening, for example:

cd /home/jeremic/oofep/Rad_na_Sokocalu/GLOBAL_RELEASE/Real-ESSI

Make space for files of your program where they would be installed on a linux system.

mkdir real-essi_25.04_amd64/usr
mkdir real-essi_25.04_amd64/usr/local
mkdir real-essi_25.04_amd64/usr/local/bin
mkdir real-essi_25.04_amd64/usr/lib
mkdir real-essi_25.04_amd64/usr/lib/x86_64-linux-gnu
mkdir real-essi_25.04_amd64/opt
mkdir real-essi_25.04_amd64/opt/gmESSI
mkdir real-essi_25.04_amd64/opt/paraview

209.5.2.4 Copy Files

Copy the files to the packaging directory. Note that you should use your own directory paths....

For example:

cp bin/essi.sequential real-essi_25.04_amd64/usr/local/bin/essi.sequential
cp bin/essi.parallel real-essi_25.04_amd64/usr/local/bin/essi.parallel

209.5.2.5 Create the control File

Create a special metadata file that is used by the package manager to install program. The control file

lives inside the DEBIAN directory. Mind the uppercase: a similar directory named debian (lowecase) is

used to store source code for the so-called source packages. This tutorial is about binary packages,so

we don’t need source code. Create the empty control file:

mkdir real-essi_25.04_amd64/DEBIAN
touch real-essi_25.04_amd64/DEBIAN/control
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Open the file previously created with text editor of your choice. The control file is just a list of data

fields, as seen in listing below:

Package: real-essi
Version: 25.04
Architecture: amd64
Authors: Han Yang <hhhyang@ucdavis.edu>, Boris Jeremic <jeremic@ucdavis.edu>
Maintainer: Han Yang <hhhyang@ucdavis.edu>, Boris Jeremic <jeremic@ucdavis.edu>
Depends: libboost-all-dev, libhdf5-dev, libtbb-dev, libssl-dev, libopenmpi-dev, ←↩

mpich, libgl1-mesa-dev, libxt-dev, libqt5x11extras5-dev, libqt5help5, ←↩
qttools5-dev, qtxmlpatterns5-dev-tools, libqt5svg5-dev, libtbb-dev, ←↩
python3-dev, python3-scipy, python3-numpy, python3-matplotlib, python3-pip, ←↩
python3-pygments, liboctave-dev, python2.7-dev

Section: misc
Priority: optional
Provides: real-essi
Description: The Real-ESSI Simulator.
The Real-ESSI Simulator (Realistic Modeling and Simulation
of Earthquakes, and/or Soils, and/or Structures and their
Interaction) is a software, hardware and documentation
system for high performance, sequential or parallel, time
domain, linear or nonlinear, elastic and inelastic,
deterministic or probabilistic, finite element modeling and
simulation of
- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of and dynamics of soil-structure systems,
- dynamics of earthquakes, and
- dynamic earthquake-soil-structure interaction.

Homepage: http://real-essi.info

209.5.2.6 Create the Post-Installation and Post-Remove Files

touch real-essi_25.04_amd64/DEBIAN/postinst
touch real-essi_25.04_amd64/DEBIAN/postrm

Both of these files have to have the following permissions::

chmod u+rwx real-essi_25.04_amd64/DEBIAN/postinst
chmod u+rwx real-essi_25.04_amd64/DEBIAN/postrm

chmod og=rx real-essi_25.04_amd64/DEBIAN/postinst
chmod og=rx real-essi_25.04_amd64/DEBIAN/postrm

The postinst file/script is executed after a successful installation of the Debian package. This

script looks like this:
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#!/bin/sh
# postinst script for real-essi

set -e

case "$1" in
configure)

# not used
# ln -s /opt/gmESSI/build/bin/gmessy /usr/local/bin/
# ln -s /opt/paraview/bin/paraview /usr/local/bin/

update-alternatives --install /usr/bin/python python /usr/bin/python2.7 1
pip install h5py

;;

abort-upgrade|abort-remove|abort-deconfigure)
;;

*)
echo "postinst called with unknown argument \`$1'" >&2
exit 1

;;
esac

exit 0

The postrm file/script is executed after a successful removal of the Debian package. This script

looks like this:

#!/bin/sh
# postrm script for real-essi

set -e

case "$1" in
purge|remove|upgrade|failed-upgrade|abort-install|abort-upgrade|disappear)

# not used
# rm /usr/local/bin/gmessy
# rm /usr/local/bin/paraview

;;

*)
echo "postrm called with unknown argument \`$1'" >&2
exit 1

;;
esac

exit 0
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 209.6. REAL-ESSI AND OPENFOAM, CONNEC . . . page: 1335 of 3287

209.5.2.7 Build the Package

Build the package:

dpkg-deb --build --root-owner-group real-essi_25.04_amd64

The --root-owner-group flag makes all deb package content owned by the root user, which is the

standard way to go. Without such flag, all files and folders would be owned by your user, which might

not exist in the system the deb package would be installed to.

The command above will generate a nice .deb file alongside the working directory or print an error if

something is wrong or missing inside the package. If the operation is successful you have created debian

package ready for distribution.

209.6 Real-ESSI and OpenFOAM, Connecting

Note: This section describes build procedure for old versions of Real-ESSI and/or its modules.

OpenFOAM is a free, open source computational fluid dynamics (CFD) software developed primarily

by OpenCFD Ltd since 2004 (https://www.openfoam.com/). Real-ESSI supports numerical interface

with OpenFOAM and can perform solid/structure fluid interaction analysis through Real-ESSI – Open-

FOAM connection.

209.6.1 Installation of Customized OpenFOAM

We have made in-house modifications and developments to the InterFOAM application (Deshpande

et al., 2012) of OpenFOAM-v1612+ for solid fluid interaction. This section presents the installation of

the Customized OpenFOAM:

Install the dependencies:

1 sudo apt-get update
2 sudo apt-get install build-essential
3 sudo apt-get install flex
4 sudo apt-get install bison
5 sudo apt-get install cmake
6 sudo apt-get install zlib1g-dev
7 sudo apt-get install libboost-system-dev
8 sudo apt-get install libboost-thread-dev
9 sudo apt-get install libopenmpi-dev

10 sudo apt-get install openmpi-bin
11 sudo apt-get install gnuplot
12 sudo apt-get install libreadline-dev
13 sudo apt-get install libncurses-dev
14 sudo apt-get install libxt-dev
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15 sudo apt-get install qt4-dev-tools
16 sudo apt-get install libqt4-dev
17 sudo apt-get install libqt4-opengl-dev
18 sudo apt-get install freeglut3-dev
19 sudo apt-get install libqtwebkit-dev
20 sudo apt-get install libscotch-dev
21 sudo apt-get install libcgal-dev

Also, make sure gcc and cmake meet the following minimum version requirements:

• gcc: version 4.8.5 or above

• cmake: version 3.3 or above

Check the version of gcc and cmake by running the following commands on terminal. If you are

installing on Ubuntu 16.04 and above, the system version of gcc and cmake should already meet the

requirements.

1 gcc --version
2 cmake --version

Downloaded the source code of Customized OpenFOAM:

1 wget http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/
2 _Chapter_SoftwareHardware_Build_Process/OpenFOAM/sources/OpenFOAM.tar.gz

Choose a directory and extract the downloaded compressed file to the target directory.

1 tar -xzvf OpenFOAM.tar.gz -C /target/directory

For example, hereafter we choose $HOME as target directory. Replace $HOME with your chosen

directory accordingly.

1 tar -xzvf OpenFOAM.tar.gz -C $HOME

Go to the extracted folder and source OpenFOAM environment configurations:

1 cd $HOME/OpenFOAM
2 source $HOME/OpenFOAM/OpenFOAM-v1612+/etc/bashrc

Setup CGAL and Boost version for compilation:

1 cgal_version=CGAL-4.9.1
2 boost_version=boost-system

Check the system readiness

1 foamSystemCheck
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Change to the main OpenFOAM directory:

1 foam

Note: if running foam cannot change to the main OpenFOAM directory, in this case the directory

is $HOME/OpenFOAM, source the environment configuration again by running the following terminal

command.

1 source $HOME/OpenFOAM/OpenFOAM-v1612+/etc/bashrc

Compile OpenFOAM:

1 ./Allwmake

Since OpenFOAM is shipped with ParaView for post-processing OpenFOAM field results using de-

veloped plug-in paraFoam (https://cfd.direct/openfoam/user-guide/v6-paraview/). We also need to

compile customized ParaView with paraFoam plug-in:

1 cd $WM_THIRD_PARTY_DIR
2 ./makeParaView

209.6.2 Check the Customized OpenFOAM Installation

Open a new terminal and source the OpenFOAM environment:

1 source $HOME/OpenFOAM/OpenFOAM-v1612+/etc/bashrc

Validate the build by running:

1 foamInstallationTest

Create a user run directory:

1 mkdir -p $FOAM_RUN

go to the user run directory:

1 run

Copy a simulation case from OpenFOAM tutorial to the user run directory:

1 cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily ./

go to the copies case directory:

1 cd pitzDaily
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Generate the mesh:

1 blockMesh

Perform the analysis with the application simpleFoam:

1 simpleFoam

Visualize the simulation results:

1 paraFoam

209.6.3 Compile Real-ESSI with Link to OpenFOAM

Go to Real-ESSI source directory under directory RealESSI ROOT and clean any previous old compilation

of Real-ESSI:

1 cd RealESSI_ROOT/Real-ESSI
2 rm -rf bin
3 rm -rf lib
4 rm -rf build_sequential
5 mkdir bin
6 mkdir lib
7 mkdir build_sequential
8 cd build_sequential

Build and install the executable, using 16 CPUs in this case. Of course, if you have more CPUs

available, you can use most of them. Please make sure to specify your OpenFOAM installation directory

with CMake argument -DOPENFOAM DIR. For example, in this case, we specify the installation directory

as $HOME/OpenFOAM.

1 time cmake -DUSE_OPENFOAM=TRUE -DOPENFOAM_DIR=$HOME/OpenFOAM ..
2 time make -j 16
3 make install

Rename essi to essi.sequential just so to distinguish it from the parallel executable:

1 cd ../bin
2 cp essi essi.sequential

Finally, install essi.sequential in system binary directory so that others can use it:

1 sudo rm /usr/bin/essi /usr/bin/essi.sequential
2 sudo cp essi.sequential /usr/bin/essi.sequential
3 sudo chmod a+x /usr/bin/essi.sequential
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209.7 Code Verification After the Build Process

After build process, test cases to verify that installation is successful should be run. There are four groups

of verification cases. The first two groups are designed for users. The last two groups are designed for

developers.

1. The first group of test cases compares the sequential essi results to the analytic solutions.

2. The second group of test cases compares the parallel essi results to the analytic solutions.

3. The third group of test cases tests the version stability between two essi executables.

4. The fourth group of test cases tests the memory management of Real-ESSI with valgrind.

209.7.1 Run all verification test cases

In order to run all test cases to verify the installation, users can run

1 cd $RealESSI_PATH/
2 bash run_all_verification.sh

Please make sure that sequential essi is available as ’essi’ in the PATH, and parallel essi is available as

’essi parallel’ in the PATH before running all the verification test cases.

In addition, if users want to clean the test results, users can run

1 cd $RealESSI_PATH/
2 bash clean_all_verification.sh

Finally, users can also run a single group of test cases as follows.

209.7.2 Test Sequential Real-ESSI

In order to test whether the installation of sequential essi is successful, open the sequential example

folder and run the bash script.

1 cd $RealESSI_PATH/CompGeoMechUCD_Miscellaneous/examples/analytic_solution
2 bash make_comparison.sh

This bash script will run all the examples automatically and compare the results to the analytic solutions.

The comparison results are not only printed in the Terminal but also saved as a .log file in the same

folder. Before you run the examples, make sure essi is in your PATH.
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209.7.3 Test Parallel Real-ESSI

In order to test whether the installation of parallel essi is successful, open the parallel example folder and

run the bash script.

1 cd $RealESSI_PATH/CompGeoMechUCD_Miscellaneous/examples/parallel
2 bash make_comparison.sh

This bash script will run all the examples automatically and compare the results to the analytic solutions.

The comparison results are not only printed in the Terminal but also saved as a .log file in the same

folder. Before you run the examples, make sure essi parallel is in your PATH.

209.7.4 Version Stability Test

Since new features are continuously updated and improved in Real-ESSI, the version stability test helps

the developers to guarantee their modification will not affect the correct operation of other code.

In order to test version stability,

1 cd $RealESSI_PATH/CompGeoMechUCD_Miscellaneous/examples/version_stability
2 bash generate_original.sh

This bash script will run all the examples automatically and save the results for reference later. This

bash script above should run with the previous stable essi.

Then, to test the new essi and compare the results

1 cd $RealESSI_PATH/CompGeoMechUCD_Miscellaneous/examples/version_stability
2 bash make_comparison.sh

This bash script will run all the examples again and compare the results to the previous saved results.

This bash script should run with the new essi. The comparison results are not only printed in the Terminal

but also saved as a .log file in the same folder.

209.7.5 Memory Management Test

Memory management is important in C/C++ programming. This group of test cases helps the developers

to track the memory leak in Real-ESSI. For the details about the code stability verification, please refer

to the Section 303.2 on Page 1459.

Before you run the test cases, make sure Valgrind is installed. You can install Valgrind by this

command.

1 sudo apt-get install valgrind
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You can also download the source of Valgrind and compile it from scratch.

It is important to test memory leak in parallel simulations.

1 mpirun -np 3 valgrind --log-file='log_%p.valgrind' --leak-check=yes ←↩
essi-parallel-debug -f main.fei

A few important things to mention here:

• To test memory leak in parallel simulation, you obviously need a parallel version of Real-ESSI.

• Real-ESSI needs to be compiled in debug mode. This is important for Valgrind to capture and

location the source of memory leaks.

• Running Real-ESSI in debug mode and in Valgrind means the simulation will be very slow. So it’s

not practical to run memory leak test using a large model. You should have a model with only a

few elements/nodes (but more than 1 element so that it runs in parallel) that includes the specific

functions you want to test.

• Valgrind log files will be saved in the location where you run the model. There will be multiple

log files named as log processID.valgrind. Each process will have its own Valgrind log file.

There might be a few empty Valgrind log files generated, you can just ignore those. The number

of Valgrind log files that actually contain memory leak information should be the same as the

number of cores you use in your simulation.

• Valgrind is a powerful tool with many options. The command shown above is rather basic but

serves as a good starting point. Memory leaks can be very tricky to track and fix. You should

learn and experiment with Valgrind options for different issues you want to fix.

Valgrind log file can be very long and hard to read. At the bottom, there is a leak summary that looks

like this: You should primarily focus on the ’definitely lost’ result. ’Indirectly lost’ and ’possibly lost’

Figure 209.1: Valgrind log file: Memory leak summary.

can also be problematic but should go away once you fix the source of ’definitely lost’. ’Still reachable’

is usually not considered as actual memory leak but is something that can be optimized. Refer to the

Valgrind User Manual for more information.
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Valgrind log file contains detailed information on each memory leak. A typical leak detail looks like

this. Following the trail, you should be able to locate the source of a specific leak and then fix it properly.

Figure 209.2: Valgrind log file: Memory leak detail.

A serious memory leak issue caused by external solvers used by PETSc was found. As shown in

Figure 209.3, when the mumps option was used in parallel solver, a significant amount of memory leak

was detected by Valgrind. More importantly, such memory leak was observed to increase with the number

of time steps. This means large-scale, long-duration simulation could be interrupted due to not enough

memory in the operating system. Note that this issue was also reported in other occasions where the

mumps package is used within PETSc, as recent as June 2020.
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Figure 209.3: Comparison of memory leak between different PETSc solver options.

After extensive tests, it has been found out that other options/packages in PETSc don’t have the

memory leak issue mentioned above. Therefore it is recommended to use options other than mumps

for large-scale, long-duration simulations. For example, the following command calls the default direct

solver of PETSc:
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1 define solver parallel petsc "-ksp_type preonly -pc_type lu" ;

209.8 Compiling Real-ESSI Utilities

Note: This section describes build procedure for old versions of Real-ESSI and/or its modules.

Real-ESSI comes with a lot of utilities to help the users speed up the simulation process. It provides

mesh building, auto-input generation and visualization features which makes it quite nice.

Real-ESSI source code contains build utilities script which can be used to build all the avialble utilities.

We will go through the following subsection to introduce each utility and how to compile them.

The first step is to download all the sources of utilities that needs to be build. To do this, one has

to run

1 cd Real-ESSI
2 ./build_utilities download

This would download all the utilities sources in tar.gz format and would place them in ”/SRC” of

RealESSI Utilities directory. The script is very powerfull and accepts targets that can be used to build

a particular utility or all utilities at once. The available options to the scripts can be found by running

the target help as shown below. A snippet is shown below

1 ./build_utilities help
2

3 #usage: make [target]
4 #
5 #Utilities:
6 # gmessi Builds gmessi
7 # paraview Builds paraview
8 # pvessi Builds pvessi
9 # gmsh Builds gmsh

10 # visit Builds visit
11 # visitessi Builds visitessi
12 #
13 #Sequential:
14 # clean_utilities Cleans all utilities
15 #
16 #Default:
17 # all Builds all the necessary utilities for REAL-ESSI
18 # all_utils Builds all the necessary utilities for REAL-ESSI
19 # clean_all Cleans everything
20 # clean Cleans everything
21 #
22 #Check:
23 # check_utilities Checks if all utilities libraries are build
24 #

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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25 #Miscellaneous:
26 # list_utilities Lists all the available utilities version from SRC folder
27 # list_build_utilities Lists all the utilities library allready build in lib ←↩

folder
28 # help Show this help.
29 # download Downloads the Utilities Sources
30 #
31 #Update:
32 # update_gmessi update gmessi utility
33 # update_pvessi update pvessi utility
34 # update_visitessi update visitessi utility
35 #
36 #Clean:
37 # clean_gmessi Clean gmessi utility
38 # clean_paraview Clean paraview utility
39 # clean_pvessi Clean pvessi utility
40 # clean_gmsh Cleans gmsh utility
41 # clean_visit Cleans visit
42 # clean_visitessi Cleans visitessi utility

The user can compile individual utilities by running just running

1 ./build_utilities <utilitu_name>

Note: All the binaries of the utilities after build gets linked/copied to the RealESSI Utilities/bin

directory inside RealESSI ROOT.

209.8.1 Installation of gmsh and gmESSI

gmsh is a 3-D finite element mesh generator for academic problems with parametric input and ad-

vanced visualization capabilities. It can be downloaded and installed from http://geuz.org/gmsh/.

Additionally, the user can also install gmsh from terminal:

1 sudo apt-get install gmsh

gmESSI is effective pre-processor for generating Real-ESSI input files directly for the mesh file

provided by gmsh. More information about gmESSI and how it works is given in Chapter 207 of

the main document, lecture notes (Jeremić et al., 1989-2025). The gmESSI package is available

from the main repository site: http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_

online_material/_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz. Be-

fore installing gmESSI, please install required libraries, as explained in Section ?? on Page ??. To install

gmESSI, go to the Real-ESSI directory and then run

1 ./build_utilities gmessi
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To update the utility at the user just needs to run

1 ./build_utilities update_gmessi

Refer to section 209.9 on page 1351 for instructions on what and how to install autocompletion and

syntax coloring for gmESSI and Real-ESSI syntax on sublime text editor.

209.8.2 Installation of ParaView and PVESSIReader

ParaView package http://www.paraview.org/ is a powerfull multi-platform data analysis and visu-

alization application avialable in Open Source. It can be run on supercomputers to analyze datasets

of petascale size as well as on laptops for small datasets. ParaView can be used to visualize results of

Real-ESSI simulations. A plug-in was developed for ParaView so that all the simulations results from

Real-ESSI finite elements, material models and analysis types can be directly visualized, animated, etc.

209.8.2.1 Building ParaView and PVESSIReader Plugin from Source on Linux System

Note that ParaView, as well as its building procedure, has recently (during 2020) gone through some

major changes. The building procedures shown in this section are mostly based on the information

available at: https://gitlab.kitware.com/paraview/paraview/blob/master/Documentation/

dev/build.md.

1. Install Dependencies

1 sudo apt-get install libgl1-mesa-dev libxt-dev qt5-default ←↩
libqt5x11extras5-dev libqt5help5 qttools5-dev qtxmlpatterns5-dev-tools ←↩
libqt5svg5-dev python3-dev python3-numpy ninja-build

2. Obtain the source of ParaView

1 git clone --recursive https://gitlab.kitware.com/paraview/paraview.git
2 cd paraview
3 git checkout v5.8.1
4 git submodule update --init --recursive
5 mkdir paraview_build

3. Obtain the source of PVESSIReader plugin

• The source of PVESSIReader plugin can be downloaded from http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_

Post_Processing/_Real_ESSI_PVESSIReader_.zip
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• Extract the files and move the PVESSIReader folder to ./Plugins/

4. Modify the cmake file to include PVESSIReader plugin in the building process. Open the file

paraview/CMakeLists.txt using your choice of text editor. Find ”set(paraview_default_plugins”

and add ”PVESSIReader” to the end of the list of plugins.

5. Build

1 cd paraview_build
2 cmake -GNinja -DPARAVIEW_USE_PYTHON=ON -DPARAVIEW_USE_MPI=ON ←↩

-DVTK_SMP_IMPLEMENTATION_TYPE=TBB -DCMAKE_BUILD_TYPE=Release ..
3 ninja

6. Load PVESSIReader plugin into ParaView

• Run the ParaView executable and click on Tools → Manage Plugins → Load New ...

• Find PVESSIReader.so at paraview/paraview_build/lib/paraview-5.9/plugins/PVESSIReader

and click OK to load it.

• Now you should see PVESSIReader loaded in the list of plugins. Double click on it to expand

advanced options and check Auto Load.

• Close the ParaView application and reopen it. Now the PVESSIReader plugin should be

automatically loaded and ready to use.

209.8.2.2 Building ParaView and PVESSIReader Plugin from Source on Windows System

Note that ParaView, as well as its building procedure, has recently (during 2020) gone through some

major changes. The building procedures shown in this section are mostly based on the information

available at: https://gitlab.kitware.com/paraview/paraview/blob/master/Documentation/

dev/build.md. It is noted that user should be prepared to spend some time (perhaps hours) on

installing procedure...

1. Install Dependencies

• Download and install git bash for windows. Use the latest release version.

• Download and install cmake. Use the lastest release version.

• Download and install Visual Studio 2017 Community Edition. Please make sure that you

tick the packages related to ”Desktop Development with C++” and ”Universal Windows

Platform development”.
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• Download ninja-build and drop ninja.exe in C:\Windows\. Use the latest release version.

• Download and install both msmpisetup.exe and msmpisdk.msi from Microsoft MPI. Use

the latest release version from Microsoft.

• Download and install Python for Windows. Latest release version should work fine. To avoid

potential compatibility issues, install the same Python version that is used for the latest

release of ParaView. (Currently, 01May2023, use Python 3.8.10 for Windows, as this version

is the same as version used by Paraview 5.9.1.)

• Download and install Qt 5.12.3 for Windows, make sure to check the MSVC 2015 64-bit com-

ponent during installation, make sure to add C:\Qt\Qt5.12.3\5.12.3\msvc2017_64\bin

to your PATH environnement variable. Note that Qt for Windows is x86 but it works for x64

machine as well.

2. Obtain the source of ParaView, (Currently, 01May2023, version is Paraview 5.9.1.)

• Open your preferred Windows command prompt. Windows PowerShell is a nice tool for

people usually work with Linux system. Git Bash application also works nice.

• To build ParaView developement version 5.9.1 (usually refered as ”master”), run the following

commands:

1 cd C:
2 mkdir pv
3 cd pv
4 git clone --recursive https://gitlab.kitware.com/paraview/paraview.git
5 mv paraview pv
6 mkdir pvb
7 cd pv
8 git checkout v5.9.1
9 git submodule update --init --recursive

• To build a specific ParaView version, please refer to https://gitlab.kitware.com/paraview/

paraview/blob/master/Documentation/dev/build.md.

3. Obtain the source of PVESSIReader plugin

• The source of PVESSIReader plugin can be downloaded from http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_

Post_Processing/_Real_ESSI_PVESSIReader_.zip

• Extract the files and move the PVESSIReader folder to C:\pv\Plugins\
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4. Modify the cmake file to include PVESSIReader plugin in the building process. Open the file

C:\pv\CMakeLists.txt using your choice of text editor. Find ”set(paraview_default_plugins”

and add ”PVESSIReader” to the end of the list of plugins.

5. Build

• Open VS2017 x64 Native Tools Command Prompt and run the following commands

1 cd C:\pv\pvb
2 cmake -GNinja -DPARAVIEW_USE_PYTHON=ON -DPARAVIEW_USE_MPI=ON ←↩

-DCMAKE_BUILD_TYPE=Release ..\pv
3 ninja

• This step could be take a few hours. If no configuration or compilation error is encountered,

you should have the ParaView executable at C:\pv\pvb\bin\.

• Download and install Python 3.9.11 for Windows, as needed to run ParaView executable.

6. Load PVESSIReader plugin into ParaView

• Run the ParaView executable and click on Tools → Manage Plugins → Load New ...

• Find PVESSIReader.dll at C:\pv\pvb\bin\paraview-5.9\plugins\PVESSIReader\ and

click OK to load it.

• Now you should see PVESSIReader loaded in the list of plugins. Double click on it to expand

advanced options and check Auto Load.

• Close the ParaView application and reopen it. Now the PVESSIReader plugin should be

automatically loaded and ready to use.

209.8.2.3 Building ParaView and PVESSIReader Plugin from Source on AWS

Currently, the AWS image has Ubuntu 18.04. This may change in the future. Because AWS is a remote

server, properly running ParaView needs more steps in compilation. Note that most information here

are based on this discussion.

1. Install Dependencies

1 sudo apt-get install libgl1-mesa-dev libxt-dev qt5-default ←↩
libqt5x11extras5-dev libqt5help5 qttools5-dev qtxmlpatterns5-dev-tools ←↩
libqt5svg5-dev python3-dev python3-numpy ninja-build gettext python-mako

2. Download, Build and Install LLVM
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1 wget http://releases.llvm.org/7.0.1/llvm-7.0.1.src.tar.xz
2 mkdir llvm
3 cd llvm
4 tar -xvf /path/to/llvm-7.0.1.src.tar.xz
5 mkdir llvm_build
6 mkdir llvm_install
7 cd llvm_build
8 cmake \
9 -DCMAKE_BUILD_TYPE=Release \

10 -DBUILD_SHARED_LIBS=ON \
11 -DCMAKE_INSTALL_PREFIX=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/llvm/llvm_install ←↩

\
12 -DLLVM_ENABLE_RTTI=ON \
13 -DLLVM_INSTALL_UTILS=ON \
14 -DLLVM_TARGETS_TO_BUILD:STRING=X86 \
15 ../llvm-7.0.1.src
16 make -j8 install

3. Download, Build and Install Mesa

1 wget ←↩
https://gitlab.freedesktop.org/mesa/mesa/-/archive/mesa-18.3.3/mesa-mesa-18.3.3.tar.bz2

2 mkdir mesa
3 cd mesa
4 tar -xvf /path/to/mesa-mesa-18.3.3.tar.bz2
5 cd mesa-mesa-18.3.3
6 autoreconf --force --verbose --install
7 cd ../
8 mkdir mesa_build
9 mkdir mesa_install

10 cd mesa_build
11 ../mesa-mesa-18.3.3/configure ←↩

--prefix=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/mesa/mesa_install ←↩
\

12 --enable-opengl --disable-osmesa --disable-gallium-osmesa \
13 --enable-glx --with-platforms=x11 --disable-gles1 --disable-gles2 \
14 --disable-va --disable-gbm --disable-xvmc --disable-vdpau \
15 --disable-shared-glapi --disable-dri --with-dri-drivers= \
16 --enable-llvm ←↩

--with-llvm-prefix=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/llvm/llvm_install ←↩
\

17 --with-gallium-drivers=swrast,swr --with-swr-archs=avx,avx2 --disable-egl
18 make -j8 install

4. Obtain the source of ParaView

1 git clone --recursive https://gitlab.kitware.com/paraview/paraview.git
2 cd paraview
3 git checkout v5.8.1
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4 git submodule update --init --recursive

5. Obtain the source of PVESSIReader plugin

• The source of PVESSIReader plugin can be downloaded from http://sokocalo.engr.

ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_

Post_Processing/_Real_ESSI_PVESSIReader_.zip

• Extract the files and move the PVESSIReader folder to ./Plugins/

6. Modify the cmake file to include PVESSIReader plugin in the building process. Open the file

paraview/CMakeLists.txt using your choice of text editor. Find ”set(paraview_default_plugins”

and add ”PVESSIReader” to the end of the list of plugins.

7. Build ParaView with Mesa

1 mkdir paraview_build
2 cd paraview_build
3 cmake -GNinja ←↩

-DOPENGL_gl_LIBRARY=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/mesa/mesa_install/lib/libGL.so ←↩
\

4 -DOPENGL_INCLUDE_DIR=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/mesa/mesa_install/include/GL ←↩
\

5 -DOPENGL_EGL_INCLUDE_DIR= -DOPENGL_GLES2_INCLUDE_DIR= \
6 -DOPENGL_GLES3_INCLUDE_DIR= -DOPENGL_GLX_INCLUDE_DIR= \
7 -DOPENGL_egl_LIBRARY= -DOPENGL_gles2_LIBRARY= \
8 -DOPENGL_gles3_LIBRARY= -DOPENGL_glu_LIBRARY= \
9 -DOPENGL_glx_LIBRARY= -DOPENGL_opengl_LIBRARY= ../paraview \

10 -DPARAVIEW_USE_PYTHON=ON -DPARAVIEW_USE_MPI=ON \
11 -DVTK_SMP_IMPLEMENTATION_TYPE=TBB -DCMAKE_BUILD_TYPE=Release ../paraview
12 LD_LIBRARY_PATH=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/llvm/llvm_install/lib ←↩

ninja

Note: There are many warnings showed up when I was doing this step, but it doesn’t seem to

terminate the build process.

8. Run ParaView with Mesa

1 LD_LIBRARY_PATH=/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/llvm/llvm_install/lib:/home/ubuntu/RealESSI_ROOT/RealESSI_Utilities/mesa/mesa_install/lib ←↩
paraview

9. Load PVESSIReader plugin into ParaView

• Run the ParaView executable and click on Tools → Manage Plugins → Load New ...
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• Find PVESSIReader.so at paraview/paraview_build/lib/paraview-5.9/plugins/PVESSIReader

and click OK to load it.

• Now you should see PVESSIReader loaded in the list of plugins. Double click on it to expand

advanced options and check Auto Load.

• Close the ParaView application and reopen it. Now the PVESSIReader plugin should be

automatically loaded and ready to use.

209.9 Sublime Text Editor

Note: This section describes build procedure for old versions of Real-ESSI and/or its modules.

Install sublime text editor from http://www.sublimetext.com/. Then install package control to

sublime in order to install plugins. (go to preferences, package control, install package.) Then install

two packages:

FEI Syntax-n-Snippets, Real-ESSI syntax and auto completion plugin for [].fei files (input files for

Real-ESSI program).

gmsh-Tools, syntax and autotext completion for gmsh model development tools for Real-ESSI.

gmESSI-Tools, syntax and autotext completion for gmESSI model development tools for Real-ESSI.

209.10 Model Conversion/Translation using FeConv

FeConv allows conversion/translation of input files (models) between Real-ESSI and SASSI, Sofistik,

Ansys, OpenSees and Strudyn. FeConv was developed and is maintained by Mr. Viktor Vlaski.

209.11 Build Procedures on Amazon Web Service

This section shows the steps to install a new Real-ESSI image on Amazon Web Service (AWS). This

document is only intended for Real-ESSI developers, not for general users. For using Real-ESSI on AWS,

please refer to Chapter 211, on page 1373 in Jeremić et al. (1989-2025).

Noted that when creating a new image, the instance type should be consistent with future usage. For

example, if the user intend to launch a Real-ESSI instance using the instance type ”General Purpose”,

such as the T2 series, the image should also be created with the same instance type. If the image is

created with a different instance type, Real-ESSI will not be able to run, and the following error message

will be observed:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://www.sublimetext.com/


Je
re
m
ić
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1 Illegal instruction (core dumped)

209.11.1 Sign In to AWS

Here is the link to the AWS sign in page. Click ”Sign In to the Console” button on the upper right

corner of the page. No need to register a new account. You should already have the account ID, IAM

user name, and password for AWS sign in. If not, please contact an administrator to add you to the

developers’ group.

After sign in, go to the ”EC2” tab under ”Service”. Here you can view all your instances and AMIs.

This is where you can start new simulations or install new images.

Note that you probably also need to choose the correct region. On the upper right corner of the

page, you can see your current region and switch to another one if necessary.

209.11.2 Copy an Existing Image

Since we already have a few images for Real-ESSI, the most efficient way to create a new image is to

simply copy an existing one. To do this, go to the ”AMIs” tab under ”IMAGES” on the left part of the

page. Now you should be able to view all existing images.

Select the image that you want to copy. Click the ”Actions” button and choose ”Copy AMI”. On

the pop-up window, enter the informations of this new image that you want to create. Then just click

the ”Copy AMI” button.

Now you should have a new image that has been installed with all the Real-ESSI components. To

make any change inside this image, you need to launch it as a new instance and access it using X2GO.

Procedures to install and use X2GO can be found in Chapter 211. For cloud server, on AWS or similar,

the build procedures are the same as those for local installation, which can be found in previous sections

of this chapter.

209.11.3 Create a New Image

If you need to create a new Real-ESSI image from scratch, this section shows the steps to do so. First sign

in to AWS and go to ”EC2”. Choose the correct region. Click the ”Instance” tab under ”INSTANCES”

on the left part of the page. Choose ”Launch Instance” to start a new instance that later will be saved

as your new image.

Then, follow these steps:

1. Choose AMI: Ubuntu Server 16.04 LTS (HVM), SSD Volume Type.
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2. Choose Instance Type: Family = Compute optimized, Type = c5.4xlarge, vCPUs = 16, Memory

(GiB) = 32.

3. Keep other options as default, and click ”Review and Launch”.

4. Review the information of the new instance, and click ”Launch”.

Next, you are asked to choose a key pair for your instance. It’s recommended to create a new key

pair for the first time, then use it in the future. First, choose ”Create a new key pair”, and enter a name.

Click the ”Download Key Pair” button. Save the key in a secure directory in your local computer for

future use, for example in .ssh directory.

Now, you can select ”Choose an existing key pair”, and select your key pair that should be visible.

Check the box for acknowledging the use of a private key. Finally, your new instance is launched. Note

that this new instance is a brand new Ubuntu server, which means that you need to install everything.

At this point, the new Ubuntu server on AWS does not have X2GO for remote access or a GUI

desktop to operate. We will now install these necessary softwares. First, run the following command to

access the remote Ubuntu server on AWS using ssh. Note that you need to change the name of your

ssh key to the one you just created. The public IP address can be found on the AWS webpage where

you launched your new instance. Go the description of your instance to find the ”IPv4 Public IP”.

1 chmod 400 your_ssh_key.pem
2 ssh -i your_ssh_key.pem ubuntu@your_AWS_public_IP_address

Run the following command to install X2GO server on Ubuntu Linux.

1 sudo apt-get install software-properties-common
2 sudo add-apt-repository ppa:x2go/stable
3 sudo apt-get update
4 sudo apt-get install x2goserver x2goserver-xsession

Xfce is a lightweight desktop and ideal for usage on a remote server. Run the following command

to install xfce on Ubuntu.

1 sudo apt-get install xfce4 xfce4-goodies

Now you can access your new instance (the remote Ubuntu server) using X2GO. Steps to do this

can be found in Chapter 211. After you established remote control of the Ubuntu server on AWS, the

build procedures are the same as those for local installation, which can be found in previous sections of

this chapter.

The last step is to create a new image from this instance so that you can launch it in the future.

Go the ”Instances”, and choose the correct instance. Click ”Actions”, and select ”Create Image” under
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”Image”. You can change the size of the instance volume, but it’s not necessary at this moment. Give

your image a name and a description, and click ”Create Image”. Now you have sucessfully created a new

image for Real-ESSI. If you go to ”AMIs”, you should be able to see this new image you just created.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



J
e
r
e
m
i
ć
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209.11.4 Build AWS ESSI Image from Scratch

This section is a developer guide, which presents the procedures to build AWS ESSI Image from scratch.

ESSI AWS users do not need to know the technical details in this section.

1. Launch EC2 instance from an AWS blank image: Ubuntu 16.04 Server.

EC2 Dashboard → Instances → Instance → Launch Instance.

Choose

Ubuntu Server 16.04 (HVM), SSD Volume Type.

Since there is no Desktop version available, so we have to launch the server version and install

desktop by ourself.

You will need to download a .pem key to launch the instance.

2. Login to the Remote Instance using Terminal.

Copy the external IP address of the remote instance from the Browser.

Use the downloaded .pem key to login to the remote instance.

chmod 400 your_key.pem
ssh -i your_key.pem ubuntu@your_remote_instance_IP

3. Install Desktop and git on AWS Remote Instance

sudo apt update
sudo apt install -y ubuntu-desktop git

4. Install remote-desktop-server (x2goserver) on AWS Remote Instance

sudo add-apt-repository ppa:x2go/stable
sudo apt update
sudo apt install -y x2goserver x2goserver-xsession xfce4

5. Set up the automatic launch of remote desktop server

sudo systemctl enable x2goserver.service
sudo systemctl start x2goserver.service

6. Install ESSI
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# Install prerequisite
sudo apt install -y cmake
sudo apt install -y build-essential
sudo apt install -y zlib1g-dev
sudo apt install -y libtbb-dev
sudo apt install -y bison flex
sudo apt install -y libboost-dev
sudo apt install -y python
sudo apt install -y gfortran
sudo apt install -y libopenblas-dev
sudo apt install -y liblapack-dev
sudo apt install -y python-scipy
sudo apt install -y libhdf5-dev libhdf5-cpp-11
sudo apt install -y python-h5py
sudo apt install -y python-matplotlib
sudo apt install -y libssl-dev

# Download ESSI
#
# using curly brackets to help in checking scripts, that rely on these
# brackets being available around URL
#
git clone {https://github.com/BorisJeremic/Real-ESSI.git} # Need ←↩

permission from Boris Jeremic for Real-ESSI on github
cd Real-ESSI

# Build ESSI Dependencies
./build_libraries download
./build_libraries sequential
./build_libraries hdf5_sequential
./build_libraries suitesparse
./build_libraries arpack
./build_libraries parmetis
./build_libraries petsc

# Build Sequential ESSI
mkdir build
cd build
cmake ..
make -j $(nproc)
cd ..

# Build Parallel ESSI
mkdir build_parallel
cd build_parallel
cmake -DCMAKE_CXX_COMPILER=/usr/bin/mpic++ -DPETSC_HAS_MUMPS=TRUE ←↩

-DPROGRAMMING_MODE=PARALLEL ..
make -j $(nproc)
cd ..
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7. Install gmsh

sudo apt install -y gmsh

8. Install gmESSI

# Install the prerequisite
sudo apt install -y libboost-all-dev
sudo apt install -y build-essential
sudo apt install -y python-dev
sudo apt install -y liboctave-dev

# Install gmESSI
## download the package from the main Real-ESSI repository
#
# using curly brackets to help in checking scripts, that rely on these
# brackets being available around URL
#
wget ←↩

{http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/gmESSI/_all_files_gmESSI_.tgz}
mkdir Real-ESSI-gmESSI
mv _all_files_gmESSI_.tgz Real-ESSI-gmESSI
cd Real-ESSI-gmESSI

make -j $(nproc)

# Add binary PATH to ~/.bashrc
cd ./build/bin/
part1="export PATH=\""
part2=$PWD
part3=":\$PATH\""
newline=$part1$part2$part3
echo $newline >> ~/.bashrc

9. Install ParaView with PVESSIReader plugin

# Install the prerequisite
sudo apt install -y libavformat-dev
sudo apt install -y libswscale-dev
sudo apt install -y ffmpeg
sudo apt install -y libphonon-dev libphonon4 qt4-dev-tools
sudo apt install -y libqt4-core libqt4-gui qt4-qmake libxt-dev
sudo apt install -y g++ gcc cmake-curses-gui libqt4-opengl-dev
sudo apt install -y mesa-common-dev python-dev
sudo apt install -y libvtk6.2
sudo apt install -y mpich libopenmpi-dev
sudo apt install -y libxmu-dev libxi-dev

# Download the ParaView
#
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# using curly brackets to help in checking scripts, that rely on these
# brackets being available around URL
#
git clone {https://github.com/Kitware/ParaView.git}
cd ParaView
git checkout v5.1.2
git submodule update --init

# Download the Plugin
cd Plugins
#
# using curly brackets to help in checking scripts, that rely on these
# brackets being available around URL
#
wget ←↩

{http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/pvESSI/_pvESSI_all_files_.tgz}
tar -xvzf _pvESSI_all_files_.tgz
cd ..

# Compile ParaView along with PVESSIReader
mkdir build && cd build
cmake -DPARAVIEW_USE_MPI=true -DPARAVIEW_ENABLE_PYTHON=true ←↩

-DPARAVIEW_ENABLE_FFMPEG=true ..
make -j $(nproc) # require Internet during ParaView compilation.

# Add binary PATH to ~/.bashrc
cd bin
part1="export PATH=\""
part2=$PWD
part3=":\$PATH\""
newline=$part1$part2$part3
echo $newline >> ~/.bashrc

10. Install Sublime Text 3 and ESSI plugin. Following this link.

#
# using curly brackets to help in checking scripts, that rely on these
# brackets being available around URL
#
wget -qO - {https://download.sublimetext.com/sublimehq-pub.gpg} | sudo ←↩

apt-key add -
sudo apt-get install apt-transport-https
echo "deb {https://download.sublimetext.com/ apt/stable/}" | sudo tee ←↩

/etc/apt/sources.list.d/sublime-text.list
sudo apt-get update
sudo apt-get install sublime-text

11. Install Sublime Text Plugin:

# Inside Sublime Text Window
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# Ctrl+Shift+P, then Type
install package control

# Ctrl+Shift+P, then Type
install package # press ENTER, then type
fei syntax-n-snippets

# Ctrl+Shift+P, then Type
install package # press ENTER, then type
gmESSI-Tools

# Ctrl+Shift+P, then Type
install package # press ENTER, then type
gmsh-Tools

12. Create Image inside Browser.

Select the launched Image with the above software installed.

Choose Actions → Image → Create Image.

Type your Image Name and descriptions.

You will then see your image in EC2 Dashboard → Images → AMIs

209.11.5 Update an Existing Image

For updating an existing image, for example for a new version or release follow instruction below.

First sign in to AWS and go to ”EC2”. Choose the correct region. Click the ”Instance” tab under

”INSTANCES” on the left part of the page. Choose ”Launch Instance” to start a new instance that

later will be saved as your new image.

Then, follow these steps:

1. Choose an existing AMI, for example GlobalRelease...

2. Choose Instance Type, for example: Family = Compute optimized, Type = c5.4xlarge, vCPUs =

16, Memory (GiB) = 32.

3. Keep other options as default, and click ”Review and Launch”.

4. Review the information of the new instance, and click ”Launch”.

Next, you are asked to choose a key pair for your instance. It’s recommended to create a new key

pair for the first time, then use it in the future. That is the keypair that is saved, for example in .ssh.
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Now, you can select ”Choose an existing key pair”, and select your key pair that should be visible.

Check the box for acknowledging the use of a private key. Finally, your new instance is launched. Note

that this new instance is an already existing Ubuntu server/image. This image is the one we will update.

Now you can access your new instance (the remote Ubuntu server) using X2GO. Steps to do this

can be found in Chapter 211. After you established remote control of the Ubuntu server on AWS, the

build procedures are the same as those for local installation, which can be found in previous sections of

this chapter.

The last step is to create a new image from this instance so that you can launch it in the future.

Go the ”Instances”, and choose the correct instance. Click ”Actions”, and select ”Create Image” under

”Image”. You can change the size of the instance volume, but it’s not necessary at this moment. Give

your image a (new) name and a description, and click ”Create Image”. Now you have sucessfully created

a new image for Real-ESSI. If you go to ”AMIs”, you should be able to see this new image you just

created.

Now you can go to Software directory and follow install procedures from section ?? on page ??.

After compiling and linking both sequential and parallel Real-ESSI, and install them on /usr/bin

(follow procedures for build), and delete source code (!), one can make this instance into a new image.

Create new image inside AWS EC2 Management Console Browser window. Select the launched Image

with the above software installed. Choose Actions → Image → Create Image. Type your Image Name

and descriptions. Click Create Image. This might take some time. You will then see your image in EC2

Dashboard → Images → AMIs (on the left side bar).

Make sure that you terminate all the running instances so that you do not get charged. Find: Action,

Instance State, Terminate.

209.11.6 Upload an Existing Real-ESSI Simulator Image to AWS MarketPlace

• Copy to private image for region North Virginia

• Go to the AWS market place https://aws.amazon.com/marketplace,

• Choose sell in AWS marketplace,

• Choose AMIs selection the new private in Region North Virginia to publish.

• Proceed until finalizing the AWS Marketplace Image.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 210.1. CHAPTER SUMMARY AND HIGHLIGHTS page: 1362 of 3287

210.1 Chapter Summary and Highlights

210.2 Introduction

The Real-ESSI Simulator program (Jeremić et al., 1988-2025) can be installed on user’s computers in a

number of different ways:

• The most efficient executables are created when Real-ESSI sources are compiled on user computer.

Compilation is performed using batch scripts that execute all the necessary operations. This process

takes approximately 40 minutes, for both sequential and parallel versions of the Real-ESSI. It is

assumed that all the necessary libraries are installed prior to this. More details about this mode of

installation are given in section 209, on page 1324 of the main document (Jeremić et al., 1989-

2025). For this mode of installation, sources for the Real-ESSI need to be made available. Sources

for the Real-ESSI program are usually not distributed, except to collaborators and in some other

special circumstances.

• The Real-ESSI program can also be downloaded and installed as a Debian package, starting from

version 22.07, built for Ubuntu 22.04 LTS. The Debian package contains the sequential and parallel

Real-ESSI executables, The gmESSI tool for pre-processing using Gmsh, and pvESSI tool for post-

processing using ParaView and other useful external programs, like Gmsh and ParaView, will NOT

be automatically installed when installing the Real-ESSI Debian package. This change was made

since those other packages should be installed using their own installation procedures, that have

gone though some recent changes. Therefor installation of those packages is best done directly

using downloaded version from their own web site, and then connecting them to the Real-ESSI

Simulator systems using Gmsh and pvESSI tools. Installation of Gmsh and pvESSI tools is described

in:

- Installation of pre-processing modules is described in Chapter 207, on page 1221 in Jeremić

et al. (1989-2025).

- Installation of post-processing modules is described in Chapter 208, on page 1287 in Jeremić

et al. (1989-2025).

It is noted that old installations of Real-ESSI main program and gmsh and ParaView should be

removed before the Real-ESSI Simulator systems is installed from Debian package.

• The Real-ESSI program can also be installed through direct download of program executables,

as noted in section 210.4. These executable were build without use of any special optimization
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options, so they are not very efficient, and do not use special, high performance features of most

modern CPUs. On the other hand these generic executables will run, execute on most computers.

• Docker support is discontinued since Windows users can now use Windows Subsystem for Linux

(WSL), and install Real-ESSI Simulator Debian package. The Real-ESSI program can also be

installed through a docker container, as described in section 210.5. Similar to the previous case,

these executable were developed without special optimization options, so they are not very efficient.

However, Real-ESSI program will these generic executables will run, within docker container, on

all computers.

210.3 Real-ESSI Program Debian Package Download and Install

210.3.1 System Libraries Update/Upgrade

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade
sudo apt-get autoremove

sudo apt-get update

sudo apt-get upgrade

sudo apt-get dist-upgrade

sudo apt-get autoremove

210.3.2 Real-ESSI Debian Package Download

The Real-ESSI program Debian package can be downloaded from Real-ESSI Simulator website: http:

//real-essi.info/. Alternatively, contact Prof. Jeremić to arrange for customized Real-ESSI Debian

package.

210.3.3 Real-ESSI Debian Package Install

Start the Real-ESSI Simulator Debian package install by removing the old installations of Real-ESSI

program, pre-processor gmsh/gmESSI and post-processor ParaView/pvESSI. Then, go to the directory

where you have downloaded the Real-ESSI Debian package. Install the Debian package, for example use

the following command:

sudo apt install ./real-essi_22.07-1_amd64.deb
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Note that some warning messages might appear but they don’t affect the installation.

After a successful installation, the sequential and parallel Real-ESSI executables. are installed and

ready to use.

210.3.4 Load pvESSI Plugin in ParaView

Install ParaView system using installation procedure described on their web site. Then install pvESSI

plugin. Start ParaView and click ‘Tools’→ ‘Manage Plugins...’. Click ‘Load New...’ and find the plugin

named ‘PVESSIReader.so’ under directory /opt/paraview/lib/paraview-5.10/plugins/PVESSIReader/.

Also check the box ‘Auto Load’ then close ParaView. Next time when ParaView is started, Real-ESSI

output files can be visualized and post-processed.

210.3.5 Install Other Useful Programs

210.3.5.1 HDFView

HDFView can be used to open Real-ESSI output files, which are in HDF5 format. Download the latest ver-

sion of HDFView from https://support.hdfgroup.org/ftp/HDF5/releases/HDF-JAVA/. Click on

the latest version, which is hdfview-3.2.0 as of June 2022. Go to bin/, click HDFView-3.2.0-ubuntu2004 64.tar.gz,

and save the file in your ./Downloads/ directory. Then extract and install HDFView:

cd
tar -xvf ./Downloads/HDFView-3.2.0-ubuntu2004_64.tar.gz -C ./Downloads
sudo apt install -y ./Downloads/hdfview_3.2.0-1_amd64.deb
sudo ln -s /opt/hdfview/bin/HDFView /usr/local/bin/hdfview

Now you can use HDFView from a terminal. To be able to use HDFView when you click on a Real-ESSI

output file, do the following additional steps. First open the file using the following command:

sudo gedit /usr/share/applications/hdfview-HDFView.desktop

Find the line:

Exec=/opt/hdfview/bin/HDFView

Replace it with:

Exec=/opt/hdfview/bin/HDFView %F

Save the file and close it.

Go to a Real-ESSI output file, which should have the suffix ‘h5.feioutput’. Right click on the file and

select ‘Open with Other Application’. Click ‘View All Applications’ and choose HDFView from the list.
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Note that you only need to do this once. Next time when you click on a Real-ESSI output file, it will be

opened automatically using HDFView.

210.3.5.2 Sublime Text

Sublime Text (https://www.sublimetext.com/) is the recommended editor for Real-ESSI input files

and pre-processing files. Install Sublime Text using the following command:

wget -qO - https://download.sublimetext.com/sublimehq-pub.gpg | gpg --dearmor | ←↩
sudo tee /etc/apt/trusted.gpg.d/sublimehq-archive.gpg

echo "deb https://download.sublimetext.com/ apt/stable/" | sudo tee ←↩
/etc/apt/sources.list.d/sublime-text.list

sudo apt-get update
sudo apt-get install sublime-text

Open Sublime Text. Open the ‘Tools’ menu and select ‘Install Package Control...’. Open the ‘Prefer-

ences’ menu, select ‘Package Control’, then select ‘Package Control: Install Package’.

In the opened search bar, type the package name and click on the package to install it. Three

packages should be installed: FEI Syntax-n-Snippets, gmsh-Tools, and gmESSI-Tools.

210.4 Real-ESSI Program Executables Download and Install

Executables for the Real-ESSI Simulator program (Jeremić et al., 1988-2025) are available online. Pre-

built executables are available for Linux, Ubuntu 18.04, and can be downloaded and installed by analyst.

In order for prebuild executables to be able to run on a user/analyst computer, system libraries have

to be brought up to date and additional libraries installed. System libraries update/upgrade:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade
sudo apt-get autoremove

For sequential and/or parallel version of Real-ESSI, additional libraries are needed, as described below.

210.4.1 Sequential Version of Real-ESSI Program.

Libraries required to be installed for using sequential version of the Real ESSI program:

sudo apt-get install libboost-all-dev
sudo apt-get install libhdf5-dev
sudo apt-get install libtbb-dev
sudo apt-get install libssl1.0.0
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210.4.2 Parallel Version of Real-ESSI Program.

Libraries required to be installed for executing parallel version of the Real ESSI program:

sudo apt-get install libboost-all-dev
sudo apt-get install libhdf5-dev
sudo apt-get install libtbb-dev
sudo apt-get install mpich
sudo apt-get install libopenmpi-dev
sudo apt-get install libssl1.0.0

210.4.3 Real-ESSI Executable Downloads.

The Real-ESSI program executables can be downloaded from Real-ESSI Simulator website: http:

//real-essi.info/. Alternatively, contact Prof. Jeremić to arrange for customized Real-ESSI ex-

ecutables.

210.5 DISCONTINUED, use WSL! Real-ESSI Simulator Install as Container

through Docker

Docker support is discontinued since Windows users can now use Windows Subsystem for Linux (WSL),

and install Real-ESSI Simulator Debian package.

Recent developments in virtualization of operating systems (OS) has created an opportunity to deploy

programs and software systems as container images. Container images are used by the host OS (Linux,

Windows, MacOS) to create a container. A container is a running instance of a container image, and

is represented by a Linux/Windows/MacOS process that can be used to run programs that are installed

within container. Programs that are installed within a container have all the necessary libraries available

within container and are fully self sufficient, irrespective of what container host OS is used, be it Linux

or Windows or MacOS.

More information used virtualization, containers, docker, etc. can be found at:

• https://en.wikipedia.org/wiki/OS-level_virtualization

• https://en.wikipedia.org/wiki/Docker_(software)

• https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/

Starting from Real-ESSI version 20.07, Real-ESSI Simulator is now available as a Docker Container

Image, and can be installed and used on Linux, Windows and MacOS.
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210.5.1 DISCONTINUED, use WSL! Real-ESSI Docker Image Development

This section is intended for Real-ESSI developers, users can skip this section. The development of

Real-ESSI Docker image follows typical steps to ’dockerize’ any application. Here are some very helpful

sources:

• Official documentation: https://docs.docker.com/

• A Docker Tutorial for Beginners:

https://docker-curriculum.com/#our-first-image

• How to dockerize any application:

https://hackernoon.com/how-to-dockerize-any-application-b60ad00e76da

• Slimming Down Your Docker Images:

https://towardsdatascience.com/slimming-down-your-docker-images-275f0ca9337e

It should be mentioned that there are many different ways and styles that can be employed to create

Docker image. Here, multistage build is used to save build/debug time and, more importantly, reduce

size of the final image.

Provided below are steps used to create the Real-ESSI Docker image.

• Obtain the source code of Real-ESSI.

• The following ’Dockerfile’ is created to build the Real-ESSI Docker image.

FROM ubuntu:18.04 AS basesystem

MAINTAINER Han Yang <hhhyang@ucdavis.edu>

WORKDIR /usr/src

COPY . .

RUN useradd -m ubuntu && \
apt-get update && apt-get install -y \
bison \
build-essential \
cmake \
flex \
libboost-all-dev \
libhdf5-serial-dev \
liblapack-dev \
libopenblas-dev \
libopenmpi-dev \
libpthread-workqueue-dev \
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libssl-dev \
libtbb-dev \
mpich \
ssh \
valgrind \
wget \
zlib1g-dev

FROM basesystem AS dependencies

RUN cd Real-ESSI && \
mkdir -p ../RealESSI_Dependencies && \
mkdir -p ../RealESSI_Dependencies/include && \
mkdir -p ../RealESSI_Dependencies/lib && \
mkdir -p ../RealESSI_Dependencies/bin && \
mkdir -p ../RealESSI_Dependencies/SRC && \
cd ../RealESSI_Dependencies && \
wget ←↩

http://sokocalo.engr.ucdavis.edu/~jeremic/RealESSI/Dependencies_SRC.tar.gz ←↩
&& \

tar -xzvf ./Dependencies_SRC.tar.gz -C ./SRC --strip-components 1 ←↩
&& \

cd ../Real-ESSI && \
./build_libraries suitesparse && \
./build_libraries arpack && \
./build_libraries hdf5_sequential && \
./build_libraries tbb && \
./build_libraries lapack && \
./build_libraries parmetis && \
./build_libraries petsc_itself

FROM dependencies AS builder

RUN cd Real-ESSI && \
mkdir build && \
cd build && \
cmake .. && \
make -j 16 && \
cp essi essi_sequential && \
cd .. && \
mkdir pbuild && \
cd pbuild && \
cmake -DCMAKE_CXX_COMPILER=/usr/bin/mpic++ ←↩

-DPROGRAMMING_MODE=PARALLEL .. && \
make -j 16 && \
cp essi essi_parallel

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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FROM ubuntu:18.04

MAINTAINER Han Yang <hhhyang@ucdavis.edu>

RUN useradd -m ubuntu && \
apt-get update && apt-get install -y \
libboost-all-dev \
libhdf5-dev \
libopenmpi-dev \
libtbb-dev \
mpich \
ssh

COPY --from=builder /usr/src/Real-ESSI/build/essi_sequential ←↩
/usr/src/Real-ESSI/pbuild/essi_parallel /usr/bin/

USER ubuntu

WORKDIR /workspace

VOLUME ["/workspace"]

• Put the ’Dockerfile’ in the same directory with the source code of Real-ESSI.

• Build the Real-ESSI Docker image. This step usually takes a long time, especially for the first

time.

docker build -t realessilocal:test .

• Correctly tag your image. This is not only necessary for later push but also just a good practice

to organize your Docker images.

docker tag realessilocal:test realessi/real-essi-repo:<tag>

Replace <tag> with the tag you want to use. It’s usually a version name.

• Push your build to Docker Hub. Make sure you have the proper permission to do so.

docker push realessi/real-essi-repo:<tag>

210.5.2 DISCONTINUED, use WSL! Running Real-ESSI Container through Docker

Provided below are steps needed to install and run Real-ESSI within a Docker Container. The following

steps work for both Linux and Windows systems. In a Linux system, run the following commands in a

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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terminal. In a Windows system, run these commands in PowerShell. It should also work for Mac OS but

hasn’t been tested yet.

• Install Docker on the local computer, desktop, laptop. Documentation on how to install Docker

on user OS can be found here:

– Linux: https://docs.docker.com/engine/install/#server

– Windows: https://docs.docker.com/docker-for-windows/install/

– MacOS: https://docs.docker.com/docker-for-mac/install/

• Manage Docker as a non-root user on Linux hosts

If you are using a Linux host, by default you need to run Docker using sudo. If you don’t want to

preface the docker command with sudo, create a group called docker and add users to it.

To create the docker group and add your user:

1. Create the docker group.

sudo groupadd docker

Sometimes the docker group might already exist after the installation of Docker. This is

okay, just move on to the next step.

2. Add your user to the docker group.

sudo usermod -aG docker $USER

Replace $USER with your user name.

3. Log out and log back in so that your group membership is re-evaluated. On Linux, you can

also run the following command to activate the changes to groups:

newgrp docker

4. Verify that you can run docker commands without sudo.

docker run hello-world

This command downloads a test image and runs it in a container. When the container runs,

it prints an informational message and exits.

More information on managing Docker as a non-root user can be found here: https://docs.

docker.com/engine/install/linux-postinstall/

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• Pull the Real-ESSI image

docker pull realessi/real-essi-repo:tag

Replace tag with the latest version of Real-ESSI. For example, if the latest version is 23.01, then

the pull command is docker pull realessi/real-essi-repo:23.01.

Current Real-ESSI Simulator version is kept up to date at the Real-ESSI web site HERE. In adition,

you can find tags of Real-ESSI at

https://hub.docker.com/repository/docker/realessi/real-essi-repo/tags.

• Run the Real-ESSI image:

docker run -it --rm -v your_working_directory:/workspace ←↩
realessi/real-essi-repo:tag

Again, replace tag with the version of Real-ESSI you pulled. Once you start running the Real-ESSI

Docker image, you are working inside the container. The container is Ubuntu 18.04 with Real-ESSI

installed. Note that you should replace your working directory with the absolute path of your

working directory.

• Run Real-ESSI:

essi_sequential -f main.fei

Note that the current directory on your local machine is shared with the container, so it can work

with any files there. The files need to have the correct permissions to be run by a non-administrator

user. You can move files after the container started and they will be recognized by the container.

After the simulation is finished, simply exit the container. You will see the output files and log file

in your current directory. They will not be erased when you exit the container.

210.5.3 DISCONTINUED, use WSL! Performance of Real-ESSI Container

To test the performance of Real-ESSI container, a series of sequential and parallel simulations are

conducted. The results and comparison are summarized in Figure 210.1.

210.6 Real-ESSI Simulator System Install

In adition to the Real-ESSI Program, Real-ESSI Simulator system consists of a pre-processing modules

and post-processing modules. Installation of pre-processing modules is described in Chapter 207, on
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Figure 210.1: Comparison of Real-ESSI performance on local Linux machine and Linux/Windows con-

tainers.

page 1221 in Jeremić et al. (1989-2025). Installation of post-processing modules is described in Chapter

208, on page 1287 in Jeremić et al. (1989-2025).

Both pre and post processing manuals are also available through the main Real-ESSI Simulator web

site: http://real-essi.info/.

210.6.1 Student Manual for Real-ESSI Simulator System Install

Students at ETH, Mr. Max Sieber and Mr. Antonio Felipe Salazar created a manual for installation of

the Real-ESSI Simulator system on virtual machine computers. The manual is available HERE.
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211.1 Chapter Summary and Highlights

Described in this chapter are details of accessing and using Real-ESSI Simulator using remote computers,

the so called ”cloud” computational resources. Current focus is on using Amazon Web Services (AWS)

computers.

211.2 Real-ESSI Cloud Computing Overview

Cloud computing refers to the accessing and computing over the Internet rather than on local computers.

Cloud computing is a model for enabling on-demand access to a shared pool of configurable computing

resources, which can be setup and released rapidly.1

Using Real-ESSI Cloud Service, users can get computing instances on demand without requiring a

lot of maintenance and financial resources a common, local parallel computer, cluster would require.

In addition, users do not need to go through the installation of the dependent libraries, source-code

compilation and the installation of other related software, for example preprocessing and post-processing

environment. The complete Real-ESSI Simulator system is pre-configured and built within the image

such that Real-ESSI Simulator system is portable over the cloud. A stable, release version of Real-ESSI

is built and can be used anywhere and anytime.

There are two ways to obtain a Real-ESSI image on Amazon Web Services (AWS):

• Obtain a Real-ESSI private image from Prof. Boris Jeremić, see Section 211.3.1 on page 1376.

• Use a public image of Real-ESSI on AWS marketplace, as described in Section 211.3.2 on page

1388.

After a Real-ESSI image is launched, a Real-ESSI EC2 instance is generated on AWS. The instance

can be accessed through a X2GO client. The procedures are written in Section 211.4 on page 1388.

When the simulation on the Real-ESSi instance is finished and all the output result files are fetched,

remember to terminate the running instance so that AWS would not keep charging you. Section 211.5

on page 1391 describes how to terminate a running Real-ESSI instance. See Section 211.8 on page 1394

for more information about the cost of AWS cloud computing services.

211.2.1 Real-ESSI Cloud Service Content

One image is built for a single-machine setup, which contains

1This is an excerpt from Jeremić et al. (1989-2025)
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• Ubuntu 16.04 LTS Desktop and X2GO Server

• Real-ESSI sequential program

• Real-ESSI parallel program

• Real-ESSI 3C seismic motion developments (SW4)

• Real-ESSI pre-processing (gmESSI)

• Real-ESSI post-processing (PVESSIReader)

• Real-ESSI Editor, Sublime plug-ins

• Real-ESSI Documentation

• Real-ESSI Examples

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.3 Launch Real-ESSI Instance on AWS

A Real-ESSI instance can be launched either from the private image with authorization of Prof. Boris

Jeremić or from the public image on AWS market place.

211.3.1 Launch Real-ESSI Instance from AWS Private Images

Follow the steps below to launch instances from Real-ESSI Private Image.

1. Create an AWS account.

AWS is the most widely used cloud service provider. If you do not have one, creating an AWS

account is easy. You can create an AWS account through their website https://aws.amazon.com/.

After you login, you can see the services on AWS Console Home as follows.

Figure 211.1: AWS Console Home.
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2. Request the Real-ESSI image.

Real-ESSI image is currently a private Amazon Machine Images (AMI). After you get the 12-digit

AWS account ID, email the AWS account ID to Prof. Boris Jeremić to obtain the Real-ESSI image.

From AWS Console Home, go to Services → EC2

Figure 211.2: AWS Services.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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From EC2 Dashboard, go to AMIs to check the Real-ESSI image.

Figure 211.3: AWS EC2 Dashboard AMIs.

If users cannot find the Real-ESSI image, please make sure you are in the same AWS region with

Prof. Boris Jeremić, the region is shown in the top-right corner on EC2 dashboard. The current

Real-ESSI AMIs region are in both North California and Oregon.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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3. Launch the Real-ESSI image.

Figure 211.4: AWS EC2 Private AMIs.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Follow the steps below to launch instances from the Real-ESSI image.

(a) Choose AMI.

Figure 211.5: EC2 Launch Steps: Choose AMI.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(b) Choose Instance Type

From AMIs, users can launch any number and type of instances and choose the desired EC2

configurations. In order to have the best experiences, the compute-optimized instances (C4,

C5 as the latest one, as of early 2019) are recommended.

Figure 211.6: EC2 Launch Steps: Choose Instance Type.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(c) Configure Instance

Figure 211.7: EC2 Launch Steps: Configure Instance.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 211.3. LAUNCH REAL-ESSI INSTANCE ON AWS page: 1383 of 3287

(d) Add Storage

Figure 211.8: EC2 Launch Steps: Add Storage.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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(e) Add Tags

Figure 211.9: EC2 Launch Steps: Add Tags.
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(f) Configure Security Group.

Please keep the default Security Group setting.

(g) Review

You may be asked to create a key-pair for later access of the instance you created. The

key-pair can be reused later if you created other instances. Besides, the key-pair is portable

across other machines. Last but not least, the key-pair cannot be recreated after you launch

the instance, so please make sure you save the key-pair in a safe place.

Figure 211.10: EC2 Launch Steps: Review.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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4. Check the launched instances

After the launch, you can view the running instance through EC2 Dashboard → Instances

Figure 211.11: EC2 Running Instances.

You can login to your instances either by ssh or by using X2GO client 211.4. Please note that

every time when you restart the instances, the public IP address will change.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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5. Fix Public IP Address (Optional)

The public IP address of Real-ESSI instances change for each reboot. If users want to have a fixed

public IP address for every login, users can allocate one elastic IP address and associate the IP

address to a Real-ESSI instance such that users can have a fixed public IP address for each login.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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6. Attach more Storage (Optional)

The Real-ESSI Image holds 30GB Hard disk and already uses 15GB. In the case of a real large

simulations, this size hard drive might not be enough for the full output. Users can attach more

storage through elastic block store.

211.3.2 Launch Real-ESSI Instance from AWS Market Place

This section gives a quick start guide for using Real-ESSI on AWS market place.

Real-ESSI Simulator system (pre processing, main Real-ESSI program, post processing) is available

on Amazon Web Services MarketPlace. Point your web browser to the Amazon Web Services Market

Place, and search for ”Real ESSI”, ”Real-ESSI” or ”MS ESSI”.

In summary, a quick guide to launching an instance from AWS Market Place is:

• Go to the ESSI Cloud Product Page.

• Click Continue to go to Launch ESSI from the Cloud.

• Click Manual Launch (use 1-Click Launch, if comfortable with settings).

• Click Launch from the EC2 Console for your preferred region.

• Select your preferred instance from the table, e.g. t2.micro.

• Click Review and Launch.

211.4 Connect to Real-ESSI Instance on AWS

211.4.1 Install X2GO Client

Before connecting to the Real-ESSI cloud, users should install the client-side of X2GO. X2Go is a remote

desktop software that can visualize the launched Real-ESSI instance. Installation of X2GO for different

operating systems is fairly straightforward, and users can find installation instructions on their own or

follow installation instructions below.

211.4.1.1 Installing X2GO client on Ubuntu Linux

User can directly install X2GO client by using debian install utility, to install x2goclient.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.4.1.2 Installing X2GO client on Apple Mac

Users can download the package through this link: http://code.x2go.org/releases/X2GoClient_

latest_macosx_10_9.dmg.

211.4.1.3 Installing X2GO client on Windows

Users can download the package through this link: http://code.x2go.org/releases/X2GoClient_

latest_mswin32-setup.exe.

211.4.1.4 Installing X2GO client on other operating systems

If you are using a different operating system, please refer to X2GO website for the installation. The

X2GO website for client installation is https://wiki.x2go.org/doku.php/download:start

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.4.2 Configure the Client-Side of X2GO

For all operating systems, users will see the same session when they open the x2goclient new-session, as

shown in Fig. 211.12.

1. Session Name

2. AWS IP Address
3. AWS User Name

4. AWS ssh-key
5. Check auto-login

6. Change to XFCE

7. Click OK

Figure 211.12: Configuration of X2GO client.

1. Users can name their own session.

2. AWS IP address is to be copied from EC2 management console, from the description TAB of

launched instance, at the bottom of the page. This is IPv4 Public IP... it goes into Host: ...

3. AWS User Name is ”ubuntu”.

4. AWS ssh-key is the one saved from before, in .ssh directory

5. Please check the auto-login.

6. Please change the session type to XFCE.

7. Click OK to finish the configuration.

In addition to the Desktop login, users can also use ssh to login the Real-ESSI Terminal.

1 chmod 400 your_ssh_key.pem
2 ssh -i your_ssh_key.pem ubuntu@your_AWS_public_IP_address

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.4.3 Connect to the Launched Instance

Click the configured session to connect to the ESSI instance. You should see a virtual desktop pop up

on your local machine, as shown in Fig. 211.13. Now you have successfully connected to the Real-ESSI

Simulator instance on AWS. You can now use Real-ESSI Simulator within the virtual desktop.

Figure 211.13: Connected to the already launched Real-ESSI instance.

211.5 Terminate Real-ESSI Instance on AWS

Once the Real-ESSI simulation on AWS is finished, the user can transfer output files to the local local

computer, or leave them on AWS, preferably on cheap S3 storage Section 211.8 on page 1394 provides

detailed description of storage and transfer options and costs. NOTE: Users need to terminate the

running Real -ESSI instance on AWS to avoid additional charges. The terminate operation is done on

AWS console that is the same place where you launch the Real-ESSI instance. As shown Fig. 211.14,

following steps are required:

1. Click ‘Instances’ from the sidebar to see all your running instances on AWS.

2. Choose the instance you want to terminate.

3. Click ‘Actions’.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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4. Click ‘Instance State’

5. Click ‘Terminate’

Figure 211.14: Terminate a Real-ESSI Simulator instance.

211.6 Adding Permission for Private Real-ESSI Image to User AWS Accounts

login to AWS

sign in to console

go to image in a region, say N, California

then go to EC2

go to AMIs on left side

select image to be shared

go to Actions

go to Modify Image Permissons and put user account number then click Add Permission and then

Save...

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.7 Real-ESSI Instructional Videos Cloud Computing

This section presents few short instructional videos about how to use Real ESSI on Amazon Web Services

(AWS) computers.

211.7.1 Installing X2GO for Windows

Youtube instructional video.

211.7.2 Installing X2GO for Macintosh

Youtube instructional video.

211.7.3 Installing X2GO for Linux

Youtube instructional video.

211.7.4 Launch AWS Marketplace

Youtube instructional video.

211.7.5 Access Running Instance on AWS

Youtube instructional video.

211.7.6 Start Real-ESSI Program on AWS

Youtube instructional video.

211.7.7 Run Real-ESSI Example Model on AWS

Youtube instructional video.

211.7.8 Visualize Real-ESSI Example Model on AWS

Youtube instructional video.

211.7.9 Post-Process, Visualize Real-ESSI Results on AWS

Youtube instructional video.
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211.8 Cost of AWS EC2

The cost breakdown for using Real-ESSI on AWS (EC2) is:

• AWS computer cost

There are 3 ways to pay for AWS computer cost (EC2 instances)

– On-Demand instance, offers a real, instant pay-per-use model. On-Demand instance is sold

at a fixed price, and AWS computer availability is guaranteed (within the limits of the service-

level agreement). Running Real-ESSI On-Demand Instance: User prepares simulation runs,

and then can simulate problems at hand immediately.

– Spot instance, uses spare AWS computers that users can bid for. Prices for those spot

instances fluctuate based on the supply and demand of available AWS computers. When

a user makes a bid for a Spot instance, a spot instance is launched when the bid exceeds

the current Spot market price, and continues until terminated by the user. The user is

charged the Spot market price, not the bid price while the instance runs. Spot instances can

offer substantial savings over On-Demand instances, as shown in the AWS Spot Bid Advisor.

Running Real-ESSI using Spot instance: User can prepare simulation runs, and then bid on

computer hardware and run simulations at later time, when cost is acceptable.

– Reserved instance, uses spare AWS computers during scheduled, later time as determined

by AWS and reserved by the user. Running Real-ESSI using Reserved Instance: User pre-

pares simulation runs, and then reserves AWS computer to simulate problem at hand at

predetermined/reserved time.

• AWS data storage cost

Input data/files and output data/files are stored using:

– Amazon Elastic Block Store (EBS), attached to a AWS computer (EC2 instance) during

simulation run. Storage cost is charged by the size of storage in GB per month, pro-rated to

the hour, until the storage is released. The cost of EBS is typically $0.10 per GB per month.

When running Real-ESSI program on AWS computer, the storage is used during simulation,

while the data (input and output) is transferred out of the AWS computer, to other type

of storage that is less expensive (the so called S3 storage, see below), or to user’s desktop

computer, before AWS computer/instance is terminated and storage released.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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– Amazon Simple Storage Service (S3), offers better value for longer term data storage. S3

pricing varies by region and frequency of access. Cost of S3 storage is typically between

$0.0125 are $0.03 per GB per month.

– Amazon Glacier, provides storage at an even lower cost of $0.007 per GB per month for data

archiving.

• AWS data transfer cost

Data transfer charges are listed as part of the On-Demand EC2 pricing. Transfer is typically

charged at $0.09 per GB beyond the first 1GB of data and up to the first 1TB of a given month.

After the first TB, price drops down.

• Real-ESSI program cost

Use of Real-ESSI for educational purposes is free. For commercial use of Real-ESSI, please contact

Prof. Jeremić or one of the commercial companies that offer access to Real-ESSI on AWS.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.8.1 Cost of Running Real-ESSI on AWS

211.8.1.1 Small Size Real-ESSI Example

Imposed Motion Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 5,000

• Number of Time Step: 210

• Running Time: 30 Second

• Disk Space: 25 MB.

• Recommended Machine: Free Instance Amazon EC2 t2.micro

The Real-ESSI input files for this example are available HERE. The compressed package of input

files is HERE.

The Modeling parameters are listed below

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

The thickness of the shell structure is 2 meters. The simulation model is shown below.

The simulation results:

The time series of simulation results is shown in Fig. 410.22.

The response spectrum of motion is shown in Fig. 410.23.
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Figure 211.15: Simulation Model.

Figure 211.16: Simulation Results.
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Figure 211.17: Simulation Results: Acceleration Time Series with 1C imposed motion.
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Figure 211.18: Simulation Results: Response Spectrum of Structure Top with 1C imposed motion.
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Eigen Analysis Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 5,000

• Number of Eigenmodes: 10

• Running Time: 3 Second

• Disk Space: 25 MB.

• Recommended Machine: Free Instance Amazon EC2 t2.micro

The Real-ESSI input files for this example are available HERE. The compressed package of input

files is HERE.

The thickness of the shell structure is 2 meters. The simulation model is shown below.
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Figure 211.19: Simulation Model.

The eigen results:
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Figure 211.20: Eigen Results (Eigen Mode 1 to 3 from left to right).

Figure 211.21: Eigen Results (Eigen Mode 4 to 6 from left to right).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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211.8.1.2 Medium Size Real-ESSI Example

Elastic Material The compressed package of input files is available HERE.

Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 132,000

• Number of Time Steps: 210

• Running Time: 10 minutes

• Disk Space: 3GB

• Recommended Machine: Amazon EC2 c4.2xlarge instance 8 cores.

• Estimated Bill in AWS Region Oregon/Ohio/Northern Virginia:

– For simulation time: $0.398 ∗ 10/60 = $0.07

– For General Purpose (SSD) Storage: $0.1 ∗ 3 = $0.3 (monthly)

– For S3 Storage: $0.023 ∗ 3 = $0.069 (monthly)

The Modeling parameters are listed below

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

The illustration results of the simulation is shown in Fig. 410.12. It is noted that outside the DRM

layer, there are no outgoing waves.

von-Mises Armstrong-Frederick Material The compressed package of input files is available HERE.

Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 132,000

• Number of Time Steps: 210

• Running Time: 46 minutes

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 211.22: Simulation Model.

Figure 211.23: Simulation Model.
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• Disk Space: 3GB

• Recommended Machine: Amazon EC2 c4.2xlarge instance 8 cores.

• Estimated Bill in AWS Region Oregon/Ohio/Northern Virginia:

– For simulation time: $0.398 ∗ 46/60 = $0.31

– For General Purpose (SSD) Storage: $0.1 ∗ 3 = $0.3 (monthly)

– For S3 Storage: $0.023 ∗ 3 = $0.069 (monthly)

The Modeling parameters are listed below

• von-Mises nonlinear hardening material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– von Mises radius, k, 60 kPa

– Nonlinear kinematic hardening, Ha, 30 MPa

– Nonlinear kinematic hardening, Cr , 60

– Shear strength (≈
√

2/3 Ha/Cr), Su, 408 kPa

– Isotropic hardening rate, Kiso, 0 Pa

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 46 minutes.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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211.8.1.3 Large Example

Elastic Simulation The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files for this example is available HERE.

Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 210,000

• Number of Time Steps: 2065

• Running Time: 17 hours

• Disk Space: 45GB

• Recommended Machine: Amazon EC2 c4.8xlarge instance 36 cores.

• Estimated Bill in AWS Region Oregon/Ohio/Northern Virginia:

– For simulation time: $1.591 ∗ 17 = $27.05

– For General Purpose (SSD) Storage: $0.1 ∗ 45 = $4.5 (monthly)

– For S3 Storage: $0.023 ∗ 45 = $1.035 (monthly)

– For Network Bandwidth if transfer: $0.09 ∗ 45 = $4.05

SIMULATION TIME: With 32 cores on AWS EC2 c4.8xlarge instance, the running time for this

example is 17 hours.

The Modeling parameters are listed below

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25

– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 211.24: Simulation Model.

– Unit weight, γ, 24 kPa

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21

The input motion is a 3C wave from SW4.
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Inelastic Simulation The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files for this example is available HERE.

Real-ESSI modeling and simulation on AWS summary:

• DOFs in the Model: 210,000

• Number of Time Steps: 2065

• Running Time: 30 hours

• Disk Space: 45GB

• Recommended Machine: Amazon EC2 c4.8xlarge instance 36 cores.

• Estimated Bill in AWS Region Oregon/Ohio/Northern Virginia:

– For simulation time: $1.591 ∗ 30 = $47.73

– For General Purpose (SSD) Storage: $0.1 ∗ 45 = $4.5 (monthly)

– For S3 Storage: $0.023 ∗ 45 = $1.035 (monthly)

– For Network Bandwidth if transfer: $0.09 ∗ 45 = $4.05

SIMULATION TIME: With 32 cores on AWS EC2 c4.8xlarge instance, the running time for this

example is 30 hours.

The Modeling parameters are listed below

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25

– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure
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– Unit weight, γ, 24 kPa

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21

• Contact

– Initial axial stiffness, kinit
n , 1e9 N/m

– Stiffening rate, Sr , 1000 /m

– Maximum axial stiffness, kmax
n , 1e12 N/m

– Shear stiffness, kt , 1e7 N/m

– Axial viscous damping, Cn, 100 N · s/m

– Shear viscous damping, Ct , 100 N · s/m

– Friction ratio, µ, 0.25

Figure 211.25: Simulation Model.
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211.8.2 Real-ESSI AWS Manual, April 2023

Real-ESSI AWS manual developed for the Real-ESSI Short Course, in March, April 2023, is provided

below.
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1. Summary and Highlights

This chapter describes details of accessing and using Real-ESSI Simulator using remote
computers, the so-called "cloud" computational resources. The current focus is on using
Amazon Web Services (AWS) computers.

Note: If you have a local Ubuntu desktop, you may download and install the Debian package for
Real-ESSI. The procedures are documented in Real-ESSI Simulator System Procurement
Procedures.

2. Real-ESSI Cloud Computing Overview

Cloud computing refers to the accessing and computing over the Internet rather than on local
computers. Cloud computing is a model for enabling on-demand access to a shared pool of
configurable computing resources, which can be setup and released rapidly.1

Using Real-ESSI Cloud Service, users can get computing instances on demand without
requiring a lot of maintenance and financial resources a common, local parallel computer cluster
would require. In addition, users do not need to go through the installation of the dependent
libraries, source-code compilation and the installation of other related software, for example
preprocessing and post-processing environments. The complete Real-ESSI Simulator system is
pre-configured and built within the image such that the Real-ESSI Simulator system is portable
over the cloud. A stable, release version of Real-ESSI is built and can be used anywhere and
anytime.

The suggested workflow for Real-ESSI cloud computing using AWS is shown above. The
recommended workflow is a client-server style workflow, the most efficient and economical way
to perform cloud computing. First, a local Ubuntu desktop (AWS Workspaces is a good

1 This is an excerpt from Jeremic et al. (1989-2023)

ESSI Notes 211.8. COST OF AWS EC2 page: 1410 of 3287
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substitute if you don't have a local Ubuntu desktop) is used to prepare input files, receive output
files, and post-processing simulation results. Then, an AWS EC2 instance is used to conduct
high-performance parallel computation from the Real-ESSI simulation. We will introduce
detailed procedures in the following chapters.

3. Create AWS Account

3.1 AWS account types

There are two types of accounts on AWS, the Root user and the IAM user, each with unique
credentials.

● The root user in Amazon Web Services (AWS) is the initial administrative user created when
creating an AWS account. The root user has full access to all AWS services, financials, and
resources in the account and can perform any action on them. It is highly recommended
to avoid using the root user account for regular day-to-day operations in AWS due to
security reasons.

● On the other hand, an IAM (Identity and Access Management) user is a user account that is
created within your AWS account, separate from the root account. IAM users have a set of
permissions that are defined by an AWS administrator (or yourself) to limit what actions they
can perform in AWS. This allows you to grant specific permissions to users or groups of
users without giving them full access to the AWS account.

IAM users can be created with unique usernames and credentials, and their permissions can be
managed separately from the root user. This provides better security and allows you to grant
different levels of access to different users or groups, based on their roles and responsibilities.

If you're a first-time user of AWS, your first step is to sign up for a Root user AWS account.
When you sign up, AWS creates an AWS account with the details you provide and assigns the
account to you. We also suggest activating multi-factor authentication (MFA) for the root user
and assigning administrative access to a user. You can find complete documentation on AWS
Account Management here.

3.2 Create a root user account

● To create your AWS account, open the AWS home page in your browser and choose Create
an AWS account.

● Supply your email, then the code sent to your email address.

ESSI Notes 211.8. COST OF AWS EC2 page: 1411 of 3287
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● Create a root user password.

● Provide contact information.

● Provide billing information.

● Confirm your identity.

● Select a support plan. The Basic support - Free option is enough for using Real-ESSI.

● Select Complete sign up

3.3 Initial setups for your new AWS account

● Sign into your root account.

● Switch your region to US West (Oregon). Your region is located near the top right corner of
your webpage.

ESSI Notes 211.8. COST OF AWS EC2 page: 1412 of 3287
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● Search and select services for quick access later. In this manual, we will use several
different AWS services. We can find them and add them to favorites. Go to the search bar
near the top left of your webpage and search for the services we need. Click on the star
symbol next to the service name to add it to your favorites. The service should appear near
the top of your webpage for future quick access.

The services we need areWorkspaces and EC2.

4. Amazon Workspaces

If you already have and want to use your own local Ubuntu desktop, skip this chapter.

Summary: This chapter presents setting up, launching, and connecting to your Amazon
Workspace. Note that Amazon Workspace is used as a substitute for local Ubuntu desktops.

Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows, Amazon
Linux, or Ubuntu Linux desktops, known as WorkSpaces. WorkSpaces eliminates the need to
purchase and set up your own Ubuntu desktop. Instead, users can access their virtual desktops
from multiple devices or web browsers. Complete documentation regarding Amazon
Workspaces can be found here.

4.1 WorkSpaces quick setup

This tutorial uses the Quick Setup option to launch your WorkSpace. This option is available
only if you have never launched a WorkSpace. Alternatively, for the full documentation see here.

ESSI Notes 211.8. COST OF AWS EC2 page: 1413 of 3287
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Step 1: Launch the WorkSpace

● Open the WorkSpaces console at https://console.aws.amazon.com/workspaces/.

● Choose Quick setup. If you don't see this button, either you have already launched a
WorkSpace in this Region, or you aren't using one of the Regions that support Quick Setup.
In this case, see Launch a virtual desktop using WorkSpaces.

● For Create Users, enter the Username, First Name, Last Name, and Email. Then choose
Next. Note that you can enter multiple users here, but this doesn’t mean they can use the
same Workspace. Instead, multiple Workspaces will be created, one for each user.

ESSI Notes 211.8. COST OF AWS EC2 page: 1414 of 3287
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● For Bundles, select a bundle (hardware and software) for the user with the appropriate
protocol (PCoIP or WSP). For Real-ESSI cloud computing, choose PowerPro with Ubuntu
22.04 with the WSP protocol. You can find this bundle by its ID wsb-8w32qplfk.

● Review your information. Then choose Create WorkSpace.

● It takes approximately 20 minutes, up to 40 minutes, for your WorkSpace to be created.
When the launch is complete, the status is AVAILABLE and an invitation is sent to the email
address that you specified for each user. If the users don't receive their invitation emails, see
Send an invitation email.

Step 2: Connect to the WorkSpace

After you receive the invitation email, you can connect to the WorkSpace using the client of your
choice. After you sign in, the client displays the WorkSpace desktop.

● If you haven't set up credentials for the user already, open the link in the invitation email and
follow the directions. Remember the password that you specify as you will need it to connect
to your WorkSpace.

● When prompted, download one of the client applications or launch Web Access. If you
aren't prompted and you haven't installed a client application already, open
https://clients.amazonworkspaces.com/ and download one of the client applications or
launchWeb Access.

● Start the client, enter the registration code from the invitation email, and choose Register.

● When prompted to sign in, enter the sign-in credentials, and then choose Sign In.

● (Optional) When prompted to save your credentials, choose Yes.

Step 3: Clean up (Optional)

If you are finished with the WorkSpace that you created for this tutorial, you can delete it. For
more information, see Delete a WorkSpace.

ESSI Notes 211.8. COST OF AWS EC2 page: 1415 of 3287
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4.2 Install Real-ESSI Debian package on your Workspace

Once you successfully connect to your Workspace, it will be the same as if you are working with
a local Ubuntu desktop.

The next step is to install Real-ESSI on your Workspace. Full documentation can be found in
Section 1.3 of the Real-ESSI Simulator Procurement Manual. Quick setup steps are
summarized below.

Step 1: System libraries update/upgrade

Open a terminal and use the following commands.

sudo apt update

sudo apt upgrade

sudo apt autoremove

You will be asked to provide a password. The password is the same one you used to connect to
your Workspace.

Step 2: Real-ESSI Debian package download

The Real-ESSI program Debian package can be downloaded here. Alternatively, contact Prof.
Jeremic to arrange for a customized Real-ESSI Debian package.
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Step 3: Real-ESSI Debian package install

Start the Real-ESSI Simulator Debian package install by removing the old installations of
Real-ESSI. Then, go to the directory where you have downloaded the Real-ESSI Debian
package. Install the Debian package, for example use the following command.

sudo apt install ./real-essi_23.01-1_amd64.deb

Note that some warning messages might appear but they don’t affect the installation. After a
successful installation, the sequential and parallel Real-ESSI executables, gmsh/gmESSI
preprocessor, paraview/pvESSI post-processor/visualizer, Gmsh, and ParaView are all installed
and ready to use.

Step 4: Load pvESSI plugin in ParaView

Start ParaView. Click Tools, then Manage Plugins. Click Load New and find the plugin
PVESSIReader.so under directory /opt/paraview/lib/paraview-5.10/plugins/PVESSIReader/.
Also, check the box Auto Load then close ParaView. Next time when ParaView is started,
Real-ESSI output files can be visualized and post-processed.

Step 5: Install other useful programs

● HDFView can be used to open Real-ESSI output files, which are in HDF5 format.

● Sublime Text is the recommended editor for Real-ESSI input files and pre-processing files.

Documentation on how to install these programs can be found in Section 1.3.5 of the Real-ESSI
Simulator Procurement Manual.

4.3 Build your model and prepare the input files

Once you have installed Real-ESSI on your Workspace, you are ready to start building your
Real-ESSI model. You should finish preparing all the input files on your Workspace before
moving on to the next Chapter. Full documentation on Real-ESSI pre-processing and input file
formats is available.

Note that if the model is sufficiently small, you can simply run the simulation on your Workspace,
without using the AWS Real-ESSI instance which is designed to be used in cases with large
models.

5. Launch Real-ESSI Instance on AWS

A Real-ESSI instance can be launched either from the private image with authorization of Prof.
Boris Jeremic or from the public image on AWS Marketplace (coming soon). Full documentation
regarding launching an instance on AWS can be found here.
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ić
et

al
.,
R
ea
l-
E
S
S
I

5.1 Launch Real-ESSI instance from AWS private images

Follow the steps below to launch instances from Real-ESSI Private Image.

Step 1: Request the Real-ESSI image

Real-ESSI image is currently a private Amazon Machine Images (AMI). After you get the
12-digit AWS account ID, email the AWS account ID to Prof. Boris Jeremic to obtain the
Real-ESSI image.

To check if you have access to the Real-ESSI image, open the Amazon EC2 console at
https://console.aws.amazon.com/ec2/. Go to AMIs and choose Private images to see the
Real-ESSI image. Currently, the Real-ESSI AMIs are available in the Oregon region. The region
is shown in the top-right corner on the EC2 dashboard.

Step 2: Launch the Real-ESSI instance

You can launch the Real-ESSI instance using the AWS Management Console as described in
the following procedure. This tutorial is intended to help you quickly launch your first instance,
so it doesn't cover all possible options. For information about advanced options, see Launch an
instance using the new launch instance wizard. For information about other ways to launch your
instance, see Launch your instance.

● Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
● From the EC2 console dashboard, Go to AMIs and choose Private images to see the

Real-ESSI image. Choose the image and choose Launch instance from AMI.
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● Under Name and tags, for Name, enter a descriptive name for your instance.

● Under Instance type, you can select the hardware configuration for your instance. For
Real-ESSI instances, the compute-optimized c6i series is recommended. Click the
drop-down list under instance type and type c6i in the search bar. Depending on the size of
your model, you can choose an instance type with appropriate computing power.

● Under Key pair (login), select the key pair for your instance.
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If you have not created a key pair before, choose Create new key pair.

Enter a descriptive name for your key pair. Leave everything else the same. Then click
Create key pair. You will be prompted to save the key pair. Note that the key pair cannot be
recreated after you launch the instance, so please make sure you save it in a safe place.
The key pair can be reused later when you launch other instances.

● Under Configure storage, change the Root volume depending on the size of your model
and simulation options.
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● Click Launch instance. You should see the message below if the launch is successful.

● You can view your running instances by clicking Instances on the left side list of your
screen.

5.2 Launch Real-ESSI instance from AWS Marketplace

Coming soon…

6. Connect to Real-ESSI Instance

This chapter provides information about how to connect to a Real-ESSI instance after you have
launched it, and how to transfer files between your local computer and your instance. For more
information, please refer to the AWS documentation here. To troubleshoot connecting to your
instance, see Troubleshoot connecting to your instance.
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After you launch your instance, you can connect to it and use it the way that you'd use a
computer sitting in front of you. The following instructions explain how to connect to your
instance using an SSH client. For more connection options, see Connect to your Linux instance.

6.1 Prerequisites

Before you connect to your Linux instance, complete the following prerequisites.

Check your instance status

After you launch an instance, it can take a few minutes for the instance to be ready so that you
can connect to it. Check that your instance has passed its status checks. You can view this
information in the Status check column on the Instances page.

Get the public IP address to connect to your instance

Click on your instance to show more information about it. You can find the public IPv4 address
from either the summary or details. For example, the public IPv4 address is 35.92.170.125 for
the instance shown below.

Locate the private key and set the permissions

You must know the location of your private key file to connect to your instance. For SSH
connections, you must set the permissions so that only you can read the file.

Get the fully-qualified path to the location on your computer of the .pem file for the key pair that
you specified when you launched the instance.

Use the following command to set the permissions of your private key file so that only you can
read it. Replace key-pair-name with the actual name of your key pair.

chmod 400 key-pair-name.pem
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If you do not set these permissions, then you cannot connect to your instance using this key
pair. For more information, see Error: Unprotected private key file.

6.2 Connect to your Real-ESSI instance using an SSH client

Use the following procedure to connect to your Linux instance using an SSH client. If you
receive an error while attempting to connect to your instance, see Troubleshoot connecting to
your instance.

● In a terminal window, use the ssh command to connect to the instance. You specify the path
and file name of the private key (.pem) and the IPv4 address for your instance. To connect
to your instance, use the following command.

ssh -i /path/key-name.pem ubuntu@IPv4-address

Replace /path/ with the full absolute path to your key pair. Replace key-name with the actual
name of your key pair. Replace IPv4-address with the public IPv4 address of your instance.

You will see a response like the following:

The authenticity of host 'ec2-198-51-100-1.compute-1.amazonaws.com

(198-51-100-1)' can't be established.

ECDSA key fingerprint is l4UB/neBad9tvkgJf1QZWxheQmR59WgrgzEimCG6kZY.

Are you sure you want to continue connecting (yes/no)?

● (Optional) Verify that the fingerprint in the security alert matches the fingerprint that you
previously obtained in (Optional) Get the instance fingerprint. If these fingerprints don't
match, someone might be attempting a man-in-the-middle attack. If they match, continue to
the next step.

● Enter yes.

You will see a response like the following:

Warning: Permanently added 'ec2-198-51-100-1.compute-1.amazonaws.com'

(ECDSA) to the list of known hosts.

● (Optional) Create a directory to organize your Real-ESSI simulation files. Replace
test_folder with your folder name.

mkdir test_folder

6.3 Transfer Input Files to Real-ESSI Instance

This section describes how to transfer files with the secure copy protocol (SCP). The procedure
is similar to the procedure for connecting to an instance with SSH.
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● Open a terminal on your local Ubuntu desktop (or Amazon Workspace).

● Determine the file location on your local Ubuntu desktop (or Amazon Workspace) and the
destination path on the instance. In the following example, the name of the private key file is
key-name.pem, the file to transfer is main.fei, and the IPv4 address of the instance is
IPv4-address. Enter the following command in your terminal.

scp -i /path1/key-name.pem /path2/main.fei ubuntu@IPv4-address:/path3/

There are three paths in this command.
➢ Replace /path1/ with the full absolute path to your key pair on your local desktop.
➢ Replace /path2/ with the full absolute path to the file to transfer on your local desktop.
➢ Replace /path3/ with the full absolute path to the destination on the Real-ESSI instance.

For example, your scp command may be:
scp -i /home/han/Documents/han-key.pem /home/han/My_Model/main.fei

ubuntu@52.26.2.245:/home/ubuntu/Test/

● If you haven't already connected to the instance using SSH, you will see a response like the
following:

The authenticity of host 'ec2-198-51-100-1.compute-1.amazonaws.com

(10.254.142.33)' can't be established.

RSA key fingerprint is

1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f.

Are you sure you want to continue connecting (yes/no)?

(Optional) You can optionally verify that the fingerprint in the security alert matches the
instance fingerprint. For more information, see (Optional) Get the instance fingerprint.

Enter yes.

● If the transfer is successful, the response is similar to the following:

Warning: Permanently added 'ec2-198-51-100-1.compute-1.amazonaws.com' (RSA)

to the list of known hosts.

main.fei 100% 164KB 1.3MB/s 00:00

● It’s also possible to transfer entire folders using the scp command. In the following example,
the name of the private key file is key-name.pem, the folder to transfer is folder, and the
IPv4 address of the instance is IPv4-address. Enter the following command in your terminal.

scp -i /path1/key-name.pem -r /path2/folder ubuntu@IPv4-address:/path3/

There are three paths in this command.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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➢ Replace /path1/ with the full absolute path to your key pair on your local desktop.
➢ Replace /path2/ with the full absolute path to the folder to transfer on your local desktop.
➢ Replace /path3/ with the full absolute path to the destination on the Real-ESSI instance.

For example, your scp command may be:

scp -i /home/han/Documents/han-key.pem -r /home/han/My_Model_Folder

ubuntu@52.26.2.245:/home/ubuntu/Test/

8. Run Simulations on Real-ESSI Instance

This chapter provides information about running your simulations on a launched Real-ESSI
instance. Note that you should only attempt to do this after you have done the following:

● Create an AWS account

● Have access to a local Ubuntu desktop (or Amazon Workspace)

● Launch a Real-ESSI instance on AWS

● Connect to the Real-ESSI instance you have launched

Once you have successfully transferred your input files, open a new terminal and connect to
the Real-ESSI instance. Your terminal should look like the following:
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● Go to the directory where you transferred your input files. Use the following command:

cd /path/

Replace /path/ with the full absolute path to your input files on the Real-ESSI instance.

● Change the permission of your file so that it can be read and executed. Use the following
command:

chmod a+rx main.fei

● Enter the following command to start your simulation:

mpirun -np num_pro essi-parallel -f main.fei

Replace num_pro with the number of processes you want to use to run the simulation. Note
that this number must be smaller than the number of available processes on your Real-ESSI
instance. Consider using a different instance type with more available processes if your
current set up is not enough for your model.

● Once the simulation has successfully started, you should see something like the following:
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Now you just need to wait for the simulation to finish.

● Once the simulation is finished, you can use the following command to list all the files in your
current directory:

ls -l

You should see something like the following:
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Notice that all the output files and a log file are now present in your working directory. Note
that all Real-ESSI output files have the suffix .feioutput. For more information, refer to the
Real-ESSI Simulator Output Format Manual.

9. Transfer Output Files to Local Desktop (or Amazon Workspace)

This chapter provides information about how to transfer the output files of your Real-ESSI
simulation back to your local desktop (or Amazon Workspace). Note that you should only
attempt to do this after your simulation has finished.

The scp command is used to transfer the output files from the launched Real-ESSI instance to
your local Ubuntu desktop (or Amazon Workspace).

● Open a terminal on your local Ubuntu desktop (or Amazon Workspace).

● In the following example, the name of the private key file is key-name.pem and the IPv4
address of the instance is IPv4-address. Enter the following command in your terminal.

scp -i /path1/key-name.pem ubuntu@IPv4-address:/path2/*.feioutput /path3/

There are three paths in this command.
➢ Replace /path1/ with the full absolute path to your key pair on your local desktop.
➢ Replace /path2/ with the full absolute path to the location on the Real-ESSI instance.
➢ Replace /path3/ with the full absolute path to the location on your local desktop.

Note that the format *.feioutput means that the scp command will be executed for all the files
with the suffix .feioutput. This is useful since you will have multiple output files that need to
be transferred.

For example, your scp command may be:
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scp -i /home/han/Documents/han-key.pem

ubuntu@52.26.2.245:/home/ubuntu/Test/*.feioutput /home/han/output/

● If the transfer is successful, you should see something like the following:

● Now that you have all the output files on your local Ubuntu desktop (or Amazon Workspace),
you can proceed to work with them as you wish, e.g. post-processing. For more information
on what you can do with your output files, refer to the Real-ESSI Simulator Post-Processing
Manual.
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211.8.3 AWS for Education

Amazon Web Services provides grants for educators and students from member institution2 through AWS

Educate program. AWS Educate offers cloud content, training, collaboration tools and AWS technology

at no cost. Some of the AWS Educate program benefits:

• For Educators

– $200 in AWS credits per educator - at member institutions.

– $75 in AWS credits per educator - at non-member institutions.

– Free AWS Technical Essentials eLearning course.

– Free access to AWS content for classes.

• For Students

– $100 in AWS credits per student - at member institutions.

– $40 in AWS credits per student - at non-member institutions.

– Access to AWS Technical Essentials Training Course (a $600 value).

If you have an email address from an educational institutions, you can use Real-ESSI on AWS for

free through AWS Educate.

2List of member institution is available at this LINK.
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211.8.4 AWS for Government

211.8.4.1 AWS GovCloud

211.8.4.2 AWS Secret Region
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212.1 Chapter Summary and Highlights

212.2 Introduction

Parallel computer used for simulations is based on a Beowulf concept (Sterling et al., 1995; Reschke

et al., 1996; Sterling et al., 1998, 1999; Warren et al., 1998; Ridge et al., 1997). Hardware for a

specific application to parallel computing for elastic-plastic finite elements has gone through a number

of iterations (Jeremić et al., 1998, 1999) and is still evolving as the hardware components change in time

and as our algorithms change/improve.

The choice of hardware platform is for a cost effective, off the shelf PC components, with about 2GB

of memory per CPU/core and plenty of disk space (about 4TB for large dynamic runs). Linux is chosen

as an operating system as it offers the best performance, is available in open source, which ensures that

significant number of developers can contribute their expertise and can be customized to suite the needs

of a parallel hardware and software. Microsoft Windows or Apple IOS operating systems are not best

suited for parallel computing as their main development goal is user friendliness and not efficiency.

212.3 The NRC ESSI Computer

212.3.1 Version: December 2010

Operating System: Linux Fedora Core 14.

Kernel: 2.6.35.10-74.fc14.x86_64

Compute Nodes (two):

• CPU: 2 × Intel Xeon E5620 Westmere 2.4 GHz Quad Core (8 threads) 32nm CPU with 256 KB

Cache/core and 12MB Shared L3, DDR3-1066, 5.86GT/sec QPI, 80W

• RAM: 6 × 4GB DDR3 1333 MHz ECC/Registered Memory (24GB Total Memory 1066MHz)

• Disk: 8 × 500 GB Seagate Constellation ES 3.5” SATA/300 ST3500514NS 32MB Cache, 3Gb/s,

NCQ, 7200RPM, 1.2 million hours MTBF Maximum Sustained Transfer Rate: 140 MB/sec (Linux

Software RAID10)

Network: single GigaBit

212.3.2 Version: April 2012

In addition to the previous version.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 212.3. THE NRC ESSI COMPUTER page: 1434 of 3287

Operating System:

Kernel:

Controller Node 1 (one):

• CPU: 2 x Opteron 6234 (2.4GHz, 12-Core, G34, 16MB L3 Cache) 115W TDP, 32nm

• RAM: 32GB (8 x 4GB) Operating at 1333MHz Max (DDR3-1333 ECC Registered DIMMs)

• NICs: Integrated Intel 82576 Dual-Port Gigabit Ethernet Controller

• Disk: 8 × 2TB Toshiba MK2002TSKB (3Gb/s, 7.2K RPM, 64MB Cache) 3.5” SATA

Compute Nodes, 8 (eight):

• CPU: 2 × Opteron 6234 (2.4GHz, 12-Core, G34, 16MB L3 Cache) 115W TDP, 32nm

• RAM: 32GB (8 x 4GB) Operating at 1333MHz Max (DDR3-1333 ECC Registered DIMMs)

• NICs:

– Intel 82576 Dual-Port Gigabit Ethernet Controller

– InfiniBand: ConnectX-2 QDR IB 40Gb/s Controller with QSFP Connector

• Disk: 1TB Toshiba MK1002TSKB (3Gb/s, 7.2K RPM, 64MB Cache) 3.5” SATA

Network (dual):

• HP ProCurve Switch 1810-48G 48 Port 10/100/1000 ports Web Managed Switch

• IB Switch: Mellanox MIS5030Q-1SFCA 36-port QDR switch; Cables: 9 x 3mtr QSFP-QSFP -

Rating: QDR
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301.1 Chapter Summary and Highlights

301.2 Important Literature

Suggested reading:

Roache (1998);

Oberkampf et al. (2002); Oberkampf (2003); Oberkampf et al. (2007); Oberkampf and Trucano

(2008); Oberkampf and Roy (2010); Oberkampf and Pilch (2017);

Roy and Oberkampf (2011);

Babuška and Oden (2004); Babuska et al. (2004); Oden et al. (2005); Oden et al. (2010a); Oden

et al. (2010b); Szabó and Actis (2011) Szabó and Actis (2012)

ASME-VV-10 (2019) ASME-VV-20 (2009) ASME-VV-40 (2018)

ISO-90003 (2018)

NASA (2008) NASA (2016)

301.3 Verification and Validation

301.3.1 Definitions

Some definitions, as seen in ASME-VV-10 (2019).

Code is a computer implementation of the algorithm developed to facilitate formulation and approx-

imations, approximate solutions a physical problem.

Model is a representation of a system, in our case a soil and/or structure with all the loads. physical

conditions. Representation includes conceptual mathematical and computational models can also include

physical

Verification and validation terms revision have been used interchangeably. However, it’s important

to follow precise definitions:

verification has to do with mathematics

validation has to do with physics

Objectives The objective of the verification and validation are

• demonstrate credibility of simulation results

• assess reliability of computer software and numerical methods used in simulation, and to

• assess the accuracy of simulations, with respect to available experimental observations.
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• How do we use experimental simulations to develop and improve models

• How much can (should) we trust model implementations (verification)

• How much can (should) we trust numerical simulations (validation)

301.3.2 Trusting Simulation Tools

• Verification: The process of determining that a model implementation accurately represents the

developer’s conceptual description and specification. Mathematics issue. Verification provides

evidence that the model is solved correctly.

• Validation: The process of determining the degree to which a model is accurate representation of

the real world from the perspective of the intended uses of the model. Physics issue. Validation

provides evidence that the correct model is solved.

301.3.3 Importance of V & V

• V & V procedures are the primary means of assessing accuracy in modeling and computational

simulations

• V & V procedures are the tools with which we build confidence and credibility in modeling and

computational simulations

301.3.4 Maturity of Computational Simulations

NRC committee (1986) identified stages of maturity in CFD

• Stage 1: Developing enabling technologies (scientific papers published)

• Stage 2: Demonstration of and Confidence in technologies and tools (capabilities and limitations

of technology understood)

• Stage 3: Compilation of technologies and tools (capabilities and limitations of technology under-

stood)

• Stage 4: Spreading of the effective use (changes the engineering process, value exceeds expecta-

tions)

• Stage 5: Mature capabilities (fully dependable, cost effective design applications)
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301.3.5 Role of Verification and Validation

Mathematical
Model

Computer
Implementation
Discrete Mathematics

Continuum Mathematics

Programming

Analysis

Code 
Verification

Simulation
Computer

Validation
Model 

Reality Model 
Discovery

and Building

Figure 301.1: Role of Verification and Validation per Oberkampf et al. (2002).

Figure 301.2: Role of Verification and Validation per Oden et al. (2010a).
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301.3.5.1 Alternative V & V Definitions

IEEE V & V definitions (1984):

• Verification: The process of determining whether the products of a given phase of the software

development cycle fulfill the requirements established during the previous phase

• Validation: The process of evaluating software at the end of the software development process to

ensure compliance with software requirements.

• Other organization have similar definitions:

– Software quality assurance community

– American Nuclear Society (safety analysis of commercial nuclear reactors)

– International Organization for Standardization (ISO)

301.3.5.2 Certification and Accreditation

• Certification: A written guarantee that a system or component complies with its specified require-

ments and is acceptable for operational use (IEEE (1990)).

– Written guarantee can be issued by anyone (code developer, code user, independent code

evaluator)

– Code certification is more formal than verification and validation documentation

• Accreditation: The official certification that a model or simulation is acceptable for use for a

specific purpose (DOD/DMSO (1994))

– Only officially designated entities can accredit

– Normally appointed by the customers/users of the code or legal authority

– Appropriate for major liability or public safety applications

301.3.5.3 Independence of Computational Confidence Assessment

1. V&V conducted by the computational tool developer; No Independence

2. V&V conducted by a user from same organization

3. V&V conducted by a computational tool evaluator contracted by developer’s organization

4. V&V conducted by a computational tool evaluator contracted by the customer
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5. V&V conducted by a computational tool evaluator contracted by the a legal authority; High

Independence

301.3.6 Simulation-Informed Decision Making

Based on Oberkampf and Pilch (2017)...

301.3.6.1 Purpose of Modeling and Simulation

Decision process:

• Low risk decisions: Simulation-based

• High risk decisions: computer simulations together with testing, Simulation-informed decisions

process when simulation is integrated

Computer simulation is an Information Product:

• Supports a decision-making process

• Provides an improved understanding of the uncertainties and risk sustained by the use of the

simulation results, a Simulation Customer.

Computer simulations are used to explore the

• design space

• use-misuse space

of a systems where physical testing is impractical and unaffordable...

What if studies over operating environment.

Operating environment:

• Normal

• Accident

• Misuse
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301.3.7 Decision Making by Industry and by Regulatory Authorities

Based on NAFEMS short course on Credibility and Decision Making, June 2021, online...

Oberkampf...

Industry decision process to achieve decision result:

• return of investment, profit margin

• organizational goals

• competition

• personal goals

• organizational/personal value system

• experience with available options

• risk tolerance vs potential reward

• familiarity with information sources

• reliability of information sources

Regulatory Authority decision making:

• Risk to public

• Risk to environmental safety

• loss of political support for your regulatory function

• very risk averse value system

Information sources for decision support

• Previous experience with

– Similar system of process, for example operating and reliability history

– Modeling and simulation information, for example good and bad experiences

• Experimental data from testing prototype systems and subsystems

– testing over portion of the operating envelope (application domain)
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– limited testing in adverse/abnormal environments, hazard loads...

– limited testing of failure modes

• Credibility of modeling and simulation information depends on THREE elements:

1. Suitable Training and Experienced personnel (example Sandia NL Fracture challenge (Boyce

et al., 2014)), is a necessary element but not sufficient

2. Quality Control of Modeling and Simulation Process, to achieve SIMUALTION CREDIBILITY

– Physics modeling fidelity (geometric fidelity, spatial scales, temporal scales, initial con-

ditions, boundary conditions, matgerial characteristics)

– Verification activities (software quality assurance, static testing, dynamic testing, tradi-

tional analytic solutions, manufactured solutions, order of accuracy assessment)

– Validation activities (validation experiments, hierarchical experiments, validation simu-

lations, validation metrics, spatial discretization error, temporal discretization)

– Uncertainty quantification (parametric uncertainty, model-form (modeling/epistemic)

uncertainty, normal environments, abnormal environments, hostile environments, sen-

sitivity analysis, extrapolation uncertainty)

3. Assessment of Maturity of Modeling and Simulation (M&S) Results

– Improved clarity of credibility in M&S results

∗ Explicit statement of assumptions

∗ Explicit statement of approximations

∗ Explicit statement of limitations of simulation

∗ Explicit statement of restrictions of simulation

∗ Use of blind prediction of experimental tests

∗ Use of uncertainty quantification of results

– Use of M&S maturity assessment techniques

∗ Predictive Capability Maturity Model (PCMM)

∗ NASA standard for M&S (NASA, 2008, 2016)

∗ ASME VVUQ techniques (ASME-VV-10, 2019; ASME-VV-40, 2018)

Responsibility for VVUQ

• Software Developer
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– Software quality assurance, bug fixes

– Testing on different hardware and OS platforms

– Code verification (determination of observed order of convergence)

– Solution verification tools to estimate numerical solution errors

– Model validation

– Documentation of all components, models, algorithms, API, V&V, examples

– Reproducibility of the simulation

• Simulation Producer, Analyst

– Solution verification

– Model parameter calibration using experimental data

– Model validation, together with experimentalistis

– Probabilistic simulation and uncertainty quantification

– Software quality assurance

– Code verification, in particular coverafe of features used

– Documentation of simulation

– Reproducibility of the simulation

• Simulation, Analysis Manager

– Specifying how will simulation be used

– Specifying what is the purpose of simulation to be used

– Developing quality requirements for simulation

– Developing review requirements for simulation

– Assure, allocate adequate resources for the simulation

– Assure, allocate adequate time for the simulation

– Define documentation requirements for simulations

– Define documentation requirements for experiments

– Document in detail assumption, approximations and limitations of the simulation

– Ensure training for analysis, modeling and simulation, personnel

– Ensure expertise level of analysis, modeling and simulation, personnel
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• Simulation Customer

– Specifying what is the purpose of simulation to be used

– Developing quality requirements for simulation

– Developing review requirements for simulation

– Allocate adequate resources for analyzing simulation results

– Define documentation requirements for simulations

– Ensure understanding of assumption, approximations and limitations of the simulation

– Ensure expertise level of analysis users

Simulation Credibility Versus Risk, a Trade

Low

Medium

High

High

Medium

Low

Credibility

Credibility

Credibility

Risk

Risk

Risk

Time and Resourced for Devoted to VVUQ

Figure 301.3: Simulation credibility versus risk, a trade that must be observed (Oberkampf...)
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What one can find Under the Simulation Hood can be Surprising.

Figure 301.4: Under the Simulation Hood...

Simulation is not a magic bullet!

Simulation is Fragile!

301.3.8 Simulation Governance

Based on Szabó and Actis (2011, 2012)

Simulation Governance (SG) is needed to address prediction challenges in engineering practice. SG

is a process to rank analysis models and to improve them over time with new experimental data. Control

of numerical and modeling error is essential! Performance, relative and absolute, of analysis models is

objectively evaluated.

301.3.8.1 Modeling, Experimental, Analytic and Numerical

Based on Szabó and Actis (2011, 2012)

• Model is a transformation of data D that describes physical reality, into the data of interest F,

results

• Data D includes all geometrical information, material information, calibration data and loading

information...

• Data D features many uncertainties

• These uncertainties are transferred into corresponding uncertainties in F
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• Transformation, D→ F consists of operations that include modeling and simulation of mathemat-

ical problems, mechanics problems, statistical problems,

• Epistemic, parametric and aleatory, modeling uncertainties are mixed

• Simulation governance is set to minimize, control epistemic, modeling uncertainties,

Choice of mathematical model.

• Choice of mathematical model involves simplifying assumptions that restrict the scope of applica-

bility of the model

• Are these simplifying assumptions justified for a particular application?

• This question can be addressed by performing virtual experiments

• Virtual experiments, sensitivity studies to determine if simplifying, restrictive modeling assumptions

affect the date of interest to a significant degree

• Using virtual experiments Analyst, engineer can make informed decisions regarding the choice of

modeling level of sophistication

• Software for virtual experiments should be able to analyze mathematical problem independent of

choice of discretization

• For fixed discretization, one should be able to choose alternative mathematical model and inves-

tigate modeling change on the data of interest, results

• Similarly, for fixed mathematical problems, one should be able to develop a sequence of models

that data of interest, results converge to their exact values...
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301.3.9 Detailed Look at Verification and Validation

Real World

Benchmark PDE solution
Benchmark ODE solution
Analytical solution

Complete System

Subsystem Cases

Benchmark Cases

Unit ProblemsHighly accurate solution

Experimental Data

Conceptual Model

Computational Model

Computational Solution

ValidationVerification

301.3.9.1 On Verification

Verification: The process of determining that a model implementation accurately represents the devel-

oper’s conceptual description and specification.

• Identify and remove errors in computer coding

– Numerical algorithm verification

– Software quality assurance practice

• Quantification of the numerical errors in computed solution

Benchmark PDE solution
Benchmark ODE solution
Analytical solution

Highly accurate solution

Conceptual Model

Computational Model

Computational Solution

Verification
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301.3.9.2 On Validation

Validation: The process of determining the degree to which a model is accurate representation of the

real world from the perspective of the intended uses of the model.

• Tactical goal: Identification and minimization of uncertainties and errors in the computational

model

• Strategic goal: Increase confidence in the quantitative predictive capability of the computational

model

Real World

Complete System

Subsystem Cases

Benchmark Cases

Unit Problems

Experimental Data

Conceptual Model

Computational Model

Computational Solution

Validation

Goals of Validation Quantification of uncertainties and errors in the computational model and the

experimental measurements

• Goals on validation

– Tactical goal: Identification and minimization of uncertainties and errors in the computational

model

– Strategic goal: Increase confidence in the quantitative predictive capability of the computa-

tional model

• Strategy is to reduce as much as possible the following:

– Computational model uncertainties and errors

– Random (precision) errors and bias (systematic) errors in the experiments

– Incomplete physical characterization of the experiment

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Validation Procedure Uncertainty

• Aleatory uncertainty → inherent variation associated with the physical system of the environment

(variation in external excitation, material properties...). Also know known as irreducible uncertainty,

variability and stochastic uncertainty.

• Epistemic uncertainty → potential deficiency in any phase of the modeling process that is due

to lack of knowledge (poor understanding of mechanics...). Also known as reducible uncertainty,

model form uncertainty and subjective uncertainty

Types of Physical Experiments

• Traditional Experiments

– Improve the fundamental understanding of physics involved

– Improve the mathematical models for physical phenomena

– Assess component performance

• Validation Experiments

– Model validation experiments

– Designed and executed to quantitatively estimate mathematical model’s ability to simulate

well defined physical behavior

– The simulation tool (SimTool) (conceptual model, computational model, computational so-

lution) is the customer

Validation Experiments

• A validation experiment should be jointly designed and executed by experimentalist and computa-

tionalist

– Need for close working relationship from inception to documentation

– Elimination of typical competition between each

– Complete honesty concerning strengths and weaknesses of both experimental and computa-

tional simulations

• A validation Experiment should be designed to capture the relevant physics

– Measure all important modeling data in the experiment
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– Characteristics and imperfections of the experimental facility should be included in the model

• A validation experiment should use any possible synergism between experiment and computational

approaches

– Offset strength and weaknesses of computations and experiments

– Use high confidence simulations for simple physics to calibrate of improve the characterization

of the experimental facility

– Conduct experiments with a hierarchy of physics complexity to determine where the compu-

tational simulation breaks (remember, SimTool is the customer!)

• Maintain independence between computational and experimental results

– Blind comparison, the computational simulations should be predictions

– Neither side is allowed to use fudge factors, parameters

• Validate experiments on unit level problems, hierarchy of experimental measurements should be

made which present an increasing range of computational difficulty

– Use of qualitative data (e.g. visualization) and quantitative data

– Computational data should be processed to match the experimental measurement techniques

• Experimental uncertainty analysis should be developed and employed

– Distinguish and quantify random and correlated bias errors

– Use symmetry arguments and statistical methods to identify correlated bias errors

– Make uncertainty estimates on input quantities needed by the SimTool
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301.4 Prediction

• Prediction: use of computational model to foretell the state of a physical system under consider-

ation under conditions for which the computational model has not been validated

• Validation does not directly make a claim about the accuracy of a prediction

– Computational models are easily misused (unintentionally or intentionally)

– How closely related are the conditions of the prediction and specific cases in validation

database

– How well is physics of the problem understood

301.4.1 Relation Between Validation and Prediction

Quantification of confidence in a prediction:

• How do I quantify validation and its inference value in a predictions?

• How do I quantify verification and its inference value in a prediction?

• How far are individual experiments in my validation database from my physical system of interest?
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301.5 Application Domain
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Inference

• Rarely applicable to engineering systems (certainly not for infrastructure objects like bridges, build-

ings, port facilities, dams...)

• Even if the engineering system is small, environmental influences (generalized loads, conditions,

wear and tare) are hard to predict

• Human factors (take Mars rover example with a memory overflow, operator forgot to flush the

memory...)

• Inference ⇒ Based on physics or statistics

• Validation domain is actually an aggregation of tests and thus might not be convex (bifurcation

of behavior)

• Experimental facilities provide validation domain that is (for the most part) exclusively non–

overlapping with the application domain.

301.5.1 Importance of Models and Numerical Simulations

• Verified and Validated models can be used for assessing behavior of

– components or

– complete systems,

• with the understanding that the environmental influences cannot all be taken into the account

prior to operation

• but with a good model, their influence on system behavior can be assessed as need be (before or

after the event)
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301.5.2 Prediction under Uncertainty

• Ever present uncertainty needs to be estimated for predictions

• Identify all relevant sources of uncertainty

• Create mathematical representation of individual sources

• Propagate representation of sources through modeling and simulation process (Probabilistic Elastic

Plastic Theory)
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301.6 Intended use of Model

(ASME-VV-10, 2019), from Executive Summary, section 1

Verification assess the numerical accuracy of a computational model regardless of the physics being

modeled.

• Code verification, addressing errors in the software and numerical algorithms

• Calculation verification, estimating numerical error due to under-resolved discrete representation

of the mathematical model

Validation assess the degree to which the computational model is an accurate representation of the

physics being modeled.

301.6.1 System Being Modeled

Relevant Physics

Modeling and experimental activities are guided by response quantities of interest.

301.6.2 Simulation Governance

Szabó and Actis (2011)

Szabó and Actis (2012)
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302.1 Chapter Summary and Highlights

Hatton (1997); Roache (1998); Oberkampf et al. (2002); Oberkampf (2003); Oden et al. (2005); Babuška

and Oden (2004); Oden et al. (2010a); Oden et al. (2010b);

302.1.1 Numerical Algorithm Verification

302.1.2 Software Quality Assurance
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303.1 Chapter Summary and Highlights

303.2 Introduction to Code Stability

This activity addresses source code stability. Source code verification is addressed elsewhere.

303.3 Motivation

In the software development process, Real-ESSI program is a framework and new features are con-

tinuously added. From time to time, some revisions for one feature may affect the normal operation of

other existing components, like a specific element or material. To guarantee the stability and correctness

of Real-ESSI program for each update. A group of test cases are collected in an automatic test suite.

Then, after each revision, the developers are required to successfully pass all the test cases before the

revisions are finally accepted to the trunk branch.

The features of the automatic Real-ESSI test is listed below:

• Automatic comparison of the maximum displacement output between the original and the new

ESSI results.

• Automatic comparison of all the displacement and stress/strain output between the original and

the new ESSI results.

• Automatic comparison of the terminal output/log between the original and the new ESSI results.

• Relative difference between the original and the new ESSI results.

• Colorful diagnostic information in the terminal.

• Support for the report in HTML format.

• Version information of both the original and the new ESSI.

• Number of passed cases and the statistics.

303.4 The framework of the automatic test

In practice, all the test cases are collected in one main folder and each test case has an independent

subdirectory. In addition, Bash and Python are employed go over each leaf directory of the test cases
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folder to execute essi and compare the results. A verification report is generated automatically after all

the test cases are executed.

Regarding the test cases for the version stability, it is not necessary to choose the great model with

lots of elements. The goal of version stability is to guarantee that the revision for one feature should not

affect the normal operation of other commands. So the selection rule of test cases is to cover as much

Real-ESSI DSL (domain specific language) commands as possible.

303.5 Installation and Tutorial

303.5.1 Installation

Makefile, Bash and Python are used to run all the test cases. So the automatic test is portable over

various Linux platform as long as Makefile, Bash and Python are available. Besides, git is also required

to download the test suite. In addition, if the user wants an additional report in HTML format, another

package called aha is required. Install aha package on Ubuntu by using this command.

The automatic test suite is distributed within Real-ESSI source code.

1 ${Real-ESSI}/CompGeoMechUCD_Miscellaneous/examples/

Notes: the automatic test will call the executable essi in the system/user PATH. So please make

sure you have compiled or installed Real-ESSI first and then run this automatic test suite.

303.5.2 Tutorial

303.5.2.1 Run all verification test cases

In order to run all test cases to verify the installation, users can run

1 cd $RealESSI_PATH/
2 bash run_all_verification_sequential.sh $EXECUTABLE_PATH
3 bash run_all_verification_parallel.sh $EXECUTABLE_PATH

In addition to the conventional ”-DDEBUG MODE=DEBUG or OPTIMIZED”, Users are required to

do the test for executables compiled using the compiler options ”-DDEBUG MODE=O1 or O2” to fully

verify the code. The verification will list all the results and errors. The errors may be big when the mesh

is too coarse, or when Poisson’s ratio is too high.

Furthermore, if developers want to verify against a previous version, developers can run

1 cd $RealESSI_PATH/

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/ESSI_Simulator/Jeremic_et_al_Real-ESSI-DSL.pdf


Je
re
m
ić
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2 bash run_code_stability.sh $GitTAG

to test the verification results against one previous git version. The script will automatically checkout

to the previous git-tag in detached mode and compile the old essi. After running test cases, developers

can checkout to the original testing branch by running

1 cd $RealESSI_PATH/
2 git checkout $TestingBranch

In addition, if users want to clean the test results, users can run

1 cd $RealESSI_PATH/
2 bash clean_all_verification.sh

303.5.2.2 Run a single type of verification test cases

The usage of automatic test is written after the build process of source-code in Section 209.7.

For a single type of verification, for instance, in the folder

1 cd $RealESSI_PATH/CompGeoMechUCD_Miscellaneous/examples/analytic_solution

there are two clean options available in the main folder.

• The first one is make clean. This will only clean the new essi output results, including HDF5 files,

terminal logs, and comparison logs.

• The second one is make cleanall. This will clean both the new and old essi output results for

version stability test.

303.6 The underlying implementation of the automatic test

In most cases, the developers are not required to read and modify the underlying implementation of

the automatic test. However, a basic introduction to the underlying implementation will help the future

developers to customize the automatic test suite when necessary.

303.6.1 Generate the original results

When the command below is called,

1 bash generate_original.sh
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Three things will be done. First, make cleanall will be called. This means that all the new and

original output will be removed. Second, essi will be called to run each test cases and to generate the

original HDF5 and original terminal output logs. Third, a bash command is employed to rename the

HDF5 file and terminal log by adding original at the end of the filename.

303.6.2 Run essi and make comparison

When the command below is called,

1 bash make_comparison.sh

Four things will be done.

• First, essi will be called again to re-run each test cases. Please note that this essi should be the

newly compiled essi in the development and debug stages.

• Second, a python-based comparison function will be called to compare the maximum displacement

in the HDF5 output for each test case.

• Third, another python-based comparison function will be called to compare all the displacement

and stress/strain results in the HDF5 output for each test case.

• Fourth, the terminal output log will be compared.

303.6.2.1 The terminal output/log comparison

The motivation to compare the terminal output is to avoid the unnecessary debug-purpose messages in

the terminal output. During the debug stages, developers usually print out the variable values in the

terminal. However, in the production stages, the debug-purpose messages should be disabled.

During the terminal output/log comparison, some lines are always different for each essi execution.

These lines should be removed from comparison to avoid the false mismatch.

• The first type of different lines are the version information. The essi version information includes

the essi compile time and execution time. They are always different for each execution. Therefore,

these lines are extracted and the version information is printed out at the end of the comparison

report.

• The second type of different lines are the ETA information. ETA stands for estimated time

of arrival, which is a prediction for the essi execution time. However, the ETA information is

inaccurate and they are different for each execution. Therefore, the ETA information is not

compared either.
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303.6.2.2 Reduce the comparison items and comparison time

During the debug stages, the developers might only want to compare the HDF5 output and the developers

want to keep the verbose terminal messages so developers do not want to compare the terminal output

log. Besides, during the debug stages, the developers may not want the time-consuming HDF5 output

comparison. Therefore, to reduce the comparison items and comparision time, the developers can

comment out the last two lines in make comparison.sh.

303.7 Report Sample

For the sake of convenience, automatic test provides colorful diagnostic information. The green color

is for the passed (matched) test case, while the red color is for the failed (mismatched) test case.

The illustrative results are shown below. In addition, the automatic test also reports the relative path

(location) of the test case. So if one of the test cases failed, developers can locate the subdirectory

easily and check the mismatched model.

303.7.1 Passed test case

Figure 303.1: The report sample for a passed test case

303.7.2 Failed test case

In Figure 303.2, the location means the value location in the displacement results matrix of a HDF5 file.

In the displacement results matrix, the column number is the step number and the row number is the

dof (degree of freedom) number.
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Figure 303.2: The report sample for a failed test case

Figure 303.3: The report sample for the version information

Figure 303.4: The report sample for statistics information

303.7.3 Version information

303.7.4 Statistics

303.8 Future contribution

The automatic test is a test framework. It is easy to contribute your new test cases to the framework.

The newly added test case must meet the following two requirements.

• The test case should be added as an independent leaf subdirectory within the test cases folder.

• The test case should have a main.fei as the main model file.
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304.1 Chapter Summary and Highlights

304.2 Design of Experiments

Design of Experiments (DoE)
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305.1 Chapter Summary and Highlights

305.2 Verification of Constitutive Integration

In this section, the accuracy analysis of the implicit algorithm is assessed. Examples of simple mod-

els (von Mises and Drucker-Prager) for accuracy analysis are demonstrated to verify general implicit

algorithm. Convergence performance analysis is conducted. More details on accuracy analysis and

consistent tangent stiffness are explained. Numerical simulation examples are demonstrated using the

implemented framework. Special concerns are on the comparison of experimental data and numerical

results of Dafalias-Manzari model.

305.2.1 Error Assessment

There are various error measures for the integration algorithms. Simo and Hughes (1998), Manzari and

Prachathananukit (2001) used the relative stress norm by Equation 305.1,

δr =

√
(σij – σ∗ij)(σij – σ∗ij)√

σ∗pqσ
∗
pq

(305.1)

where σ∗ij is the ‘exact’ stress solution, and σij the calculated stress solution. Alternatively, Jeremić and

Sture (1997) used the normalized energy norm by Equation 305.2,

δn =

∥∥∥σij – σ∗ij
∥∥∥∥∥punit
∥∥ (305.2)

where
∥∥σij

∥∥2 = σijDijklσkl, and Dijkl is the elastic compliance fourth-order tensor, punit is the ‘unit’

energy norm for normalization.

The relative stress norm by Equation 305.1 is more reasonable since two points having the same∥∥∥σij – σ∗ij
∥∥∥ but different σ∗pqσ

∗
pq should have different error measures. However, this norm becomes

singular and possible meaningless when σ∗pqσ
∗
pq close to zero. The normalized energy norm by Equation

305.2 have no such singularity problem but it may give the same error index for two points having the

same
∥∥∥σij – σ∗ij

∥∥∥ but different σ∗pqσ
∗
pq. In this work, we use these two error measure methods, but for

simplicity, Equation 305.2 is modified into

δr =

√
(σij – σ∗ij)(σij – σ∗ij)√

σ0
pqσ

0
pq

(305.3)

where σ0
pqσ

0
pq is evaluated at some non-zero initial isotropic stress state. That is, the normalized error

is evaluated by Equation 305.3, and the relative error is evaluated by Equation 305.1.
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In our examples, the initial stress state point is set p0 = 100 kPa, q0 = 0 kPa, θ0 = 0, which is the

σ0
pq in Equation 305.3. The one-step predicted stress state point for the implicit algorithm is within the

range of 0.1 ≤ p ≤ 100 kPa, 0 ≤ q ≤ 100 kPa, 0 ≤ θ ≤ π/3. The ‘exact’ solution is actually unknown

for most elastoplastic problems. Here the ‘exact’ solution is simply replaced by 50 substep solution of

the explicit algorithm in the same one-step prediction incremental. All these error evaluations are within

the material constitutive level.

The first test examples are von Mises models with the uniaxial yield strength k = 50 kPa, with linear

elasticity parameters are Young’s modulus E = 1×105 kPa, and Poisson’s ratio ν = 0.25.

Figures 305.1 and 305.2 show the iso-error maps for the von Mises model with linear isotropic

hardening. The linear hardening modulus H = 2×104 kPa. The blue lines represents the yield surface

boundary. It can be seen that the error magnitudes are as small as 10–10 to 10–9, which implies that

the solutions by implicit algorithm for this linear isotropic hardening von Mises model are numerically

accurate.
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Figure 305.1: Normalized iso-error maps of von Mises model with linear isotropic hardening.

Figures 305.3 and 305.4 show the iso-error maps for the von Mises model with Armstrong-Frederick

translational kinematic hardening. The hardening parameters are ha = 5×104 kPa and Cr = 2.5×103. It

can be seen that errors are very small which proves the good performance of the implicit algorithm. The

iso-error map gives a good trend, i.e., the further away from the yield surface, the errors become more

pronounced; the normalized errors are pressure-independent, which fits well the feature of von Mises

model; the iso-error lines in the q – θ figure are parallel to the yield surface and are independent of the

Lode’s angle θ, which again fits well with von Mises model which is only q-related.

The second test examples are Drucker-Prager model with yield surface constant q/p = 0.8. Linear
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Figure 305.2: Relative iso-error maps of von Mises model with linear isotropic hardening.
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Figure 305.3: Normalized iso-error maps of von Mises model with Armstrong-Frederick kinematic

hardening.

elasticity parameters are Young’s modulus E = 1×105 kPa, and Poisson’s ratio ν = 0.25.

The iso-error maps for perfectly plastic Drucker-Prager model are shown in Figures 305.5 and 305.6.

The blue lines represents the yield surface boundary. It can be seen that the error magnitudes are as

small as 10–11 to 10–9. Again, these errors are so small that we can consider that the implicit algorithm

give accurate solutions numerically.

Another Drucker-Prager model is with Armstrong-Frederick rotational kinematic hardening, and the

parameters are ha = 20, Cr = 2. The iso-error maps are shown in Figures 305.7 and 305.8. Unlike
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 305.2. VERIFICATION OF CONSTITUTIVE INT . . . page: 1471 of 3287

0 50 100 150 200
0

20

40

60

80

100

p (kPa)

q 
(k

P
a)

0.01

0.01

0.
020.

030.
04

(a) At θ = 0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

θ (rad)

q 
(k

P
a)

0.002

0.004
0.006

0.008 0.008
0.01 0.01
0.012 0.012
0.014 0.014

(b) At p = 100 kPa

Figure 305.4: Relative iso-error maps of von Mises model with Armstrong-Frederick kinematic hardening.
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Figure 305.5: Normalized iso-error maps of Drucker-Prager perfectly plastic model.

von Mises model, the normalized errors are pressure-dependent, which fits well the feature of Drucker-

Prager model; the iso-error lines in the q – θ figure are parallel to the yield surface and are independent

of the Lode’s angle θ, which still fits well with Drucker-Prager model which does not consider the third

stress invariant, Lode’s angle θ. From the relative iso-error maps in Figure 305.8, very dense iso-error

lines are investigated in the region of small pressure, which is evidently due to the cone apex singularity

of Drucker-Prager yield surface.

From the error analysis by the above von Mises and Drucker-Prager models, One finds that the

implemented implicit algorithm can offer accurate solutions for simple models with simple hardening laws,
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 305.2. VERIFICATION OF CONSTITUTIVE INT . . . page: 1472 of 3287

0 50 100 150 200
0

20

40

60

80

100

p (kPa)

q 
(k

P
a)

1e
−

00
9

1e
−

00
9

1e
−0

09

2e−009

2e
−

00
9

2e
−

00
93e

−
00

9
3e

−
00

9
4e

−
00

9
4e

−
00

9

5e−
0096e−

009 (a) At θ = 0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

θ (rad)

q 
(k

P
a)

2e−0114e−0116e−0118e−011
1e−010

1.2e−010
1.4e−010

(b) At p = 100 kPa

Figure 305.6: Relative iso-error maps of Drucker-Prager perfectly plastic model.

e.g. von Mises model with linear hardening and Drucker-Prager model with perfectly plastic hardening

(no hardening). Complicated hardening laws increases the error even for simple plastic models, although

the errors are still small. These observations match the well known conclusion that the error of the implicit

algorithm is pretty dependent on the smoothness of the solution. The implemented implicit algorithm

proves very robust for von Mises and Drucker-Prager model with simple or complicated hardening laws.
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Figure 305.7: Normalized iso-error maps of Drucker-Prager model with Armstrong-Frederick kinematic

hardening.

Figures 305.9 and 305.10 present the iso-error maps of Dafalias-Manzari model. The initial void

ratio is 0.8, and the other parameters are from Dafalias and Manzari (2004a). The blue lines represents
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 305.2. VERIFICATION OF CONSTITUTIVE INT . . . page: 1473 of 3287

0 50 100 150 200
0

20

40

60

80

100

p (kPa)

q 
(k

P
a)

0.
1

0.
1

0.
1

0.
2

0.
2

0.
2

0.
3

0.
3

0.
3

0.
4

0.
4

0.
4

0.
5

0.
5

0.
5

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

(a) At θ = 0

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

θ (rad)

q 
(k

P
a)

0.001
0.0020.0030.0040.0050.0060.0070.008

(b) At p = 100 kPa

Figure 305.8: Relative iso-error maps of Drucker-Prager model with Armstrong-Frederick kinematic

hardening.

the yield surface boundary (slope ratio m = 0.01). Unlike von Mises and Drucker-Prager models, the

iso-error lines in the q – θ figure of Dafalias-Manzari model are not parallel to the yield surface and are

dependent of the Lode’s angle θ, which was one of the highlighting improvements upon the previous

version (Manzari and Dafalias, 1997). From Figure 305.10, when the predicted stress q close to 100

kPa, or or about 100 times the yield strain increment, the relative errors can reach up to 100%, which

implies that even for implicit algorithm, Dafalias-Manzari model still requires small strain increments.

However, when q < 30 kPa, or about 30 times of the yield strain increment, the relative errors are less

than 5%, excepts at the region close to the yield surface apex.

It should be pointed out that errors for the complex Dafalias-Manzari model are much bigger than

those of simple models (e.g. von Mises and Drucker-Prager), due to its high non-linearity. However, if

the predicted stress (or in other words, the strain increment) is small enough, the algorithm errors are

within a small tolerant range.

Figures 305.9 and 305.10 are based on an approach of averaged elastic moduli. Instead, Figures

305.11 and 305.12 present iso-error maps based on constant elastic moduli approach.

305.2.2 Constitutive Level Convergence

In the implemented implicit algorithm, the iteration continues until the absolute value of yield function

and the residue norm of considering variables are less than some small tolerances, or if by equations,

|f | ≤ Tol1; rnorm = ∥r∥ ≤ Tol2 (305.4)
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Figure 305.9: Normalized iso-error maps of Dafalias-Manzari model with average elastic moduli.
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Figure 305.10: Relative iso-error maps of Dafalias-Manzari model with average elastic moduli.

Three examples including simple von Mises model with linear isotropic hardening, relative compli-

cated Drucker-Prager model with Armstrong-Frederick kinematic hardening, and even more complicated

Dafalias-Manzari model considering fabric dilation effect are presented here to show the constitutive

level convergence performances for the implemented implicit algorithm. In all these examples, both

|f | and rnorm v.s. iteration numbers are plotted. Iteration number 0 represents the ‘virtual’ iteration

number before return mapping implicit iteration cycle. |f | at iteration number 0 thus means |f | at

the first predicted stress for each load increment; there is no value of rnorm at iteration number 0. A

tolerance of Tol1 = Tol2 = 1×10–7 is for both |f | and rnorm. The iteration stops when |f | ≤ Tol1
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Figure 305.11: Normalized iso-error maps of Dafalias-Manzari model with constant elastic moduli.
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Figure 305.12: Relative iso-error maps of Dafalias-Manzari model with constant elastic moduli.

and rnorm =≤ Tol2 are satisfied, even if there is only one iteration number. The initial stress is an

isotropic stress state of p0 = 100 kPa. The undrained-like load increment is adopted by strain control

as ϵ11 = –2ϵ22 = –2ϵ33 = n×∆ϵ, where n is the load increment number and ∆ϵ is the strain increment

interval, ϵij are strain components.

Figure 305.13 shows the typical constitutive level convergence performance for von Mises model with

linear isotropic hardening. The input parameters are Young’s Modulus E = 1×105 kPa, Poisson’s ratio

ν = 0.25, the material strength k = 50 kPa, and the linear isotropic hardening modulus H = 2×104

kPa. The strain increment interval ∆ϵ is set 2×10–4. It can be seen that for this simple example, only
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two iteration steps are needed and |f | and rnorm are far smaller than the tolerances and in fact close to

the machine floating error value, or in other words, the stresses are exactly at the yield surface and the

residue norm is zero.
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r
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Figure 305.13: Typical convergence for von Mises model with linear isotropic hardening (tolerance value

1×10–7).

Figure 305.14 shows the typical constitutive level convergence performance for Drucker-Prager model

with Armstrong-Frederick kinematic hardening. The input parameters are Young’s Modulus E = 1×104

kPa, Poisson’s ratio ν = 0.25, the material q/p ratio is 0.8, and the Armstrong-Frederick parameters are

ha = 20, Cr = 2. The strain increment interval ∆ϵ is set –2×10–4. For this example, both |f | and rnorm

are stably decreasing with the increasing iteration number; However, |f | and rnorm show different rates;

|f | needs 5 iteration steps while rnorm needs 7 iteration steps; The convergence rate of rnorm lags behind

that of |f |.
Figure 305.15 shows the typical constitutive level convergence performance for the complicated

Dafalias-Manzari model considering fabric dilation effect. The input parameters are as in Table 305.1,

and the initial void ration is set as 0.8. Different from the above examples, The strain increment

interval ∆ϵ is set a much smaller value of –1×10–5. In this example, again, both |f | and rnorm are

stably decreasing with the increasing iteration number; However, |f | and rnorm show different rates;

|f | needs less iteration steps than rnorm; The convergence rate of rnorm lags behind that of |f |. It

should be mentioned here for this complicated Dafalias-Manzari model considering fabric dilation effect,
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Figure 305.14: Typical convergence for Drucker-Prager model with Armstrong-Frederick kinematic

hardening (tolerance value 1×10–7).

the typical constitutive level convergence performance is similar to that of Drucker-Prager model with

Armstrong-Frederick kinematic hardening, but with much smaller strain increment interval.

From the above examples, it is clear that the simpler the model is , the better constitutive level

convergence performances are observed. This is consistent to the error assessment in section 305.2.1.

Generally, the implemented implicit algorithm shows stable constitutive level convergence performances

provided an appropriate small strain increment interval for the material model.

305.3 Validation of Constitutive Model Predictions

305.3.1 Dafalias Manzari Material Model

Validation is performed by comparing experimental (physical) results and numerical (constitutive) simu-

lations for the Toyoura sand. It should be noted that we have not done validation against 2D or 3D tests

(say centrifuge tests) as characterization of sand used in centrifuge experiments is usually less than com-

plete for use with advanced constitutive models. Moreover, as our approach seeks to make predictions

of prototype behavior, scaling down models (and using them for comparison with numerical predictions)

brings forward issues of physics of scaling which we would rather stay out of. The material parameters

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 305.15: Typical convergence for Dafalias-Manzari model (tolerance value 1×10–7).

used are from Dafalias and Manzari (2004a) and are listed in Table (305.1). Several simulated results

are compared with the experimental data published by Verdugo and Ishihara (1996).

Figure (305.16) presents both loading and unloading triaxial drained test simulation results for a

relatively low triaxial isotropic pressure of 100 kPa but with different void ratios of e0 = 0.831, 0.917, 0.996

at the end of isotropic compression. During the loading stage, one can observes the hardening and then

softening together with the contraction and then dilation for the denser sand, while only hardening

together with contraction for the looser sand. The significance of the state parameter to the soil

modeling is clear from the very different responses with different void ratios at the same triaxial isotropic

pressure.

Figure (305.16) also shows both loading and unloading triaxial drained test simulation results for a

relatively high triaxial isotropic pressure of 500 kPa but with different void ratio of e0=0.810, 0.886,

0.960 at the end of isotropic compression. Similar phenomenon are observed as with tests (physical and

numerical) for relatively low triaxial isotropic pressure. However, due to the higher confinement pressure,

the stress-strain responses are higher at the same strain, which proves the significant pressure dependent

feature for the sands.

Figure (305.17) presents both loading and unloading triaxial undrained test simulation results for

a dense sand with the void ratio of e0=0.735 at the end of isotropic compression but with different

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 305.16: Left: Experimental data; Right: Simulated results.
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Table 305.1: Material parameters of Dafalias-Manzari model.

material parameter value material parameter value

Elasticity G0 125 kPa Plastic modulus h0 7.05

v 0.05 ch 0.968

Critical sate M 1.25 nb 1.1

c 0.712 Dilatancy A0 0.704

λc 0.019 nd 3.5

ξ 0.7 Fabric-dilatancy zmax 4.0

er 0.934 cz 600.0

Yield surface m 0.01

isotropic compression pressures of p0 = 100, 1000, 2000, 3000 kPa. During the loading stage, one

observes that each of responses are close to the critical state line for the very various range of isotropic

compression pressures. For the higher isotropic compression pressure, the contraction response with

softening is clearly observed, while for the smaller isotropic compression pressure, it is a dilation response

without softening.

Close matching of physical testing data with constitutive predictions represents a satisfactory valida-

tion of our material model. This validation with previous verification gives us confidence that predictions

(presented in next section) represent well the real, prototype behavior.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 305.17: Left: Experimental data; Right: Simulated results.
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306.1 Chapter Summary and Highlights

306.2 Verification for Static Solution Advancement

306.3 Verification for Dynamic Solution Advancement

Spectral Radii, Argyris and Mlejnek (1991)...

• Test consists of a 2-DOF system periods T1 = 4.0 s and T2 = 1.0 s.

• Different integration steps.

• Different values of method parameters (α, β, γ).

• Results are compared with theoretical predictions for algorithmic damping and period shifts.

306.3.1 Verification for Dynamic Solution Advancement, Newmark Method

(Newmark, 1959)

Iff

γ ≥ 1
2

, β ≥ 1
4

(γ +
1
2

)2 (306.1)

the procedure is unconditionally stable and second-order accurate.

Different values for γ and β can be used to create various integration methods:

• For γ = 0.5 (and corresponding β = 0.25) there is no numerical damping.

• Any γ value greater than 0.5 will introduce numerical damping.

• Trapezoidal rule or average acceleration method for β = 1/4 and γ = 1/2,

• Linear acceleration method for β = 1/6 and γ = 1/2,

• Explicit, central difference method for β = 0 and γ = 1/2.

• Strongest numerical damping values is obtained for values β = 1 and γ = 2/3, as spectral ratio

ρ∞ = 0 (Hughes (1987), page 502)

For more details see chapter 108 on page 537.

Following Argyris and Mlejnek (1991); Hughes (1987), to calculate the analytic ξ and analytic ω̄ a

matrix A is constructed. The explicit definition of amplification matrix A for the Hilber Hughes Taylor

(HHT) family of algorithms (where Newmark is obtained by setting γ = 0) is

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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A =
1
D


1 + αβΩ2 1 1

2 – β

–γΩ2 1 – (1 + α)(γ – β)Ω2 1 – γ – (1 + α)(1
2γ – β)Ω2

–Ω2 –(1 + α)Ω2 –(1 + α)(1
2 – β)Ω2

 (306.2)

where

D =1 + (1 + α)βΩ2

Ω =ω△t

ω =(K /M)
1
2

(306.3)

The eigenvalue of amplification matrix A will be two complex conjugate roots λ1,2 and a so-called

spurious root λ3 which satisfy |λ3| < |λ1,2| ≤ 1. The roots λ1,2 will be

λ1,2 = A± Bi (306.4)

Then, the analytic damping ratio ξ and analytic period ω̄ becomes

ξ̄ = – ln(A2 + B2)

ω̄ =Ω̄/△t

Ω̄ =arctan(B/A)

(306.5)

0 5 10 15 20 25 30 35 40
t [s]

80

60

40

20

0

20

40

60

80

u
 [

cm
]

Top Node, γ=0.500

0 1 2 3 4 5 6 7
T [s]

10-4

10-3

10-2

10-1

100

101

102

103

104

U
(j
ω
)

0.8%

0.2%

0.8%

0.2%

0.9%

0.2%

1.2%

0.2%

1.0%

0.2%

0.4%

0.1%

0.8% 1.4%

dt=

0.01

0.01

0.05

0.10

0.20

0.30

0.40

0.50

0.80

1.00

1.25

1.50

2.00

Figure 306.1: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-05top)...
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Figure 306.2: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-05errors)...
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Figure 306.3: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-06top)...
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Figure 306.4: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-05errors)...
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Figure 306.5: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-08top)...
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Figure 306.6: Verification: Dynamic solution advancement, Newmark method (p2a-newmark-08errors)...

1 dt gamma damping[\%] Th. damp.[\%] T shift [\%] Th. T. shift[\%]
2 ===============================================================================
3 0.0100 1.5000 3.398552 3.139529 0.00000000 -0.13145647
4 0.0050 0.5000 0.295322 -0.000000 0.00000000 -0.00822413
5 0.0500 0.5000 0.368976 0.000000 -1.01010101 -0.81712426
6 0.1250 0.5000 0.027518 0.000000 -4.95382032 -4.94456582
7 0.0050 0.5100 0.298179 0.015705 0.00000000 -0.00822660
8 0.0500 0.5100 0.395657 0.154550 -1.01010101 -0.81736312
9 0.1250 0.5100 0.358214 0.357055 -4.95382032 -4.94584070

10 0.0050 0.6000 0.346769 0.157054 0.00000000 -0.00847079
11 0.0500 0.6000 1.600134 1.545504 -1.01010101 -0.84101009
12 0.1250 0.6000 3.571434 3.570958 -5.04201681 -5.07208349
13 0.0050 0.7000 0.418286 0.314108 0.00000000 -0.00921077
14 0.0500 0.7000 3.113067 3.091044 -1.01010101 -0.91266978
15 0.1250 0.7000 7.130075 7.144404 -5.13036165 -5.45499548
16 0.0050 0.9000 0.625858 0.628215 0.00000000 -0.01217067
17 0.0500 0.9000 6.177709 6.182372 -1.01010101 -1.19934156
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306.3.2 Verification Example Description.

A one degree of freedom (DOF) example was made to verify the Newmark and HHT algorithm for

Real-ESSI simulator. The example was plot below in Fig.(306.7). The beam stiffness and the mass

were designed to make the natural period to be 1 second. In the first loading stage, the beam was

given a horizontal force to generate an initial displacement. By the way, at the top node, all DOFs were

fixed except the DOF along initial displacement. Then, in the second loading stage, the beam start free

vibration.

Figure 306.7: Verification example description.

The results were listed and plotted below.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 306.1: Verification results for the Newmark solution advancement algorithm.

dt γ Measured ξ Analytic ξ Measured T shift Analytic T shift

0.005 0.5 0.0030 0.0000 0.0000 0.0001

0.01 0.5 0.0030 0.0000 0.0000 0.0003

0.05 0.5 0.0037 0.0000 0.0101 0.0082

0.1 0.5 0.0034 0.0000 0.0309 0.0321

0.005 0.6 0.0035 0.0016 0.0000 0.0001

0.01 0.6 0.0042 0.0031 0.0000 0.0003

0.05 0.6 0.0160 0.0155 0.0101 0.0084

0.1 0.6 0.0296 0.0295 0.0309 0.0329

0.005 0.7 0.0042 0.0031 0.0000 0.0001

0.01 0.7 0.0063 0.0063 0.0000 0.0004

0.05 0.7 0.0311 0.0309 0.0101 0.0091

0.1 0.7 0.0590 0.0590 0.0309 0.0356

0.005 0.8 0.0051 0.0047 0.0000 0.0001

0.01 0.8 0.0093 0.0094 0.0000 0.0004

0.05 0.8 0.0465 0.0464 0.0101 0.0103

0.1 0.8 0.0882 0.0886 0.0309 0.0399

0.005 0.9 0.0063 0.0063 0.0000 0.0001

0.01 0.9 0.0130 0.0126 0.0000 0.0005

0.05 0.9 0.0618 0.0618 0.0101 0.0120

0.1 0.9 0.1180 0.1181 0.0417 0.0460

Verification Results for Newmark Solution Advancement Algorithm. The Real-ESSI model fei/DSL files

for the results above can be downloaded HERE.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 306.8: Comparison for Newmark algorithm with γ = 0.5. Damping ratio comparison, Period shift

comparison.

Figure 306.9: Comparison for Newmark algorithm with γ = 0.6. Damping ratio comparison, Period shift

comparison.

Figure 306.10: Comparison for Newmark algorithm with γ = 0.7. Damping ratio comparison, Period

shift comparison.
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Figure 306.11: Comparison for Newmark algorithm with γ = 0.8. Damping ratio comparison, Period

shift comparison.

Figure 306.12: Comparison for Newmark algorithm with γ = 0.9. Damping ratio comparison, Period

shift comparison.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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306.3.3 Verification for Dynamic Solution Advancement, Hilber-Hughes-Taylor Method

(Hilber et al., 1977), (Hughes and Liu, 1978a) and (Hughes and Liu, 1978b)

If the parameters α, β and γ satisfy

–1/3 ≤ α ≤ 0, γ =
1
2

(1 – 2α), β =
1
4

(1 – α)2 (306.6)

it is unconditionally stable and second-order accurate (Argyris and Mlejnek, 1991; Hughes, 1987).
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Figure 306.13: Verification: Dynamic solution advancement, Hilber-Hughes-Taylor method (p2a-hht-

01top)...

Summary

1 dt alpha damping[%] Th. damp.[%] T shift [%] Th. T. shift[%]
2 ===========================================================================================
3 0.0050 -0.0000 0.295322 -0.000000 0.00000000 -0.00822413
4 0.0100 -0.0000 0.302864 0.000000 0.00000000 -0.03289003
5 0.0500 -0.0000 0.368976 0.000000 -1.01010101 -0.81712426
6 0.1000 -0.0000 0.339004 0.000000 -3.09278351 -3.20749106
7 0.2500 -0.0000 0.458456 -0.000000 -17.64705882 -17.96772753
8 0.0050 -0.0100 0.295394 0.000004 0.00000000 -0.00846709
9 0.0100 -0.0100 0.303170 0.000030 0.00000000 -0.03386091

10 0.0500 -0.0100 0.357316 0.003645 -1.01010101 -0.84065236
11 0.1000 -0.0100 0.376804 0.025924 -3.09278351 -3.29331088
12 0.2500 -0.0100 1.026595 0.213468 -17.64705882 -18.29362011
13 0.0050 -0.1000 0.295948 0.000031 0.00000000 -0.01032073
14 0.0100 -0.1000 0.305522 0.000251 0.00000000 -0.04126821
15 0.0500 -0.1000 0.305401 0.029968 -1.01010101 -1.02022480
16 0.1000 -0.1000 0.432090 0.210613 -4.16666667 -3.95057551
17 0.2500 -0.1000 1.807861 1.706433 -20.48192771 -20.93638414
18 0.0050 -0.2000 0.296354 0.000050 0.00000000 -0.01167737
19 0.0100 -0.2000 0.307270 0.000396 0.00000000 -0.04668953

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 306.14: Verification: Dynamic solution advancement, Hilber-Hughes-Taylor method (p2a-hht-

01errors)...

20 0.0500 -0.2000 0.347865 0.047176 -1.01010101 -1.15178012
21 0.1000 -0.2000 0.519421 0.328633 -4.16666667 -4.43495111

306.3.3.1 Verification Results for Hilber Hughes Taylor (HHT) Solution Advancement Algorithm.

The Real-ESSI model fei/DSL files for the results above can be downloaded HERE.
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Table 306.2: Verification results for Hilber Hughes Taylor (HHT) solution advancement algorithm.

dt α Measured ξ Analytic ξ Measured T shift Analytic T shift

0.005 -0.0 0.002953 0.000000 0.000000 0.000082

0.01 -0.0 0.003029 0.000000 0.000000 0.000329

0.05 -0.0 0.003690 0.000000 0.010101 0.008171

0.1 -0.0 0.003390 0.000000 0.030928 0.032075

0.005 -0.01 0.002954 0.000000 0.000000 0.000085

0.01 -0.01 0.003032 0.000000 0.000000 0.000339

0.05 -0.01 0.003573 0.000036 0.010101 0.008407

0.1 -0.01 0.003768 0.000259 0.030928 0.032933

0.005 -0.05 0.002957 0.000000 0.000000 0.000094

0.01 -0.05 0.003043 0.000001 0.000000 0.000374

0.05 -0.05 0.003227 0.000167 0.010101 0.009276

0.1 -0.05 0.009382 0.001184 0.030928 0.036111

0.005 -0.1 0.002959 0.000000 0.000000 0.000103

0.01 -0.1 0.003055 0.000003 0.000000 0.000413

0.05 -0.1 0.003054 0.000300 0.010101 0.010202

0.1 -0.1 0.004321 0.002106 0.041667 0.039506

0.005 -0.2 0.002964 0.000000 0.000000 0.000117

0.01 -0.2 0.003073 0.000004 0.000000 0.000467

0.05 -0.2 0.003479 0.000472 0.010101 0.011518

0.1 -0.2 0.005194 0.003286 0.041667 0.044350

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 306.15: Verification: Dynamic solution advancement, Hilber-Hughes-Taylor method (p2a-hht-

02top)...

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 306.16: Verification: Dynamic solution advancement, Hilber-Hughes-Taylor method (p2a-hht-

01errors)...

Figure 306.17: Comparison for HHT algorithm with α = –0.0. Damping ratio comparison, Period shift

comparison.
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Figure 306.18: Comparison for HHT algorithm with α = –0.01. Damping ratio comparison, Period shift

comparison.

Figure 306.19: Comparison for HHT algorithm with α = –0.05. Damping ratio comparison, Period shift

comparison.

Figure 306.20: Comparison for HHT algorithm with α = –0.10. Damping ratio comparison, Period shift

comparison.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 306.3. VERIFICATION FOR DYNAMIC SOLUTI . . . page: 1498 of 3287

Figure 306.21: Comparison for HHT algorithm with α = –0.20. Damping ratio comparison, Period shift

comparison.
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307.1 Chapter Summary and Highlights

307.2 Verification of Static, Single Phase Solid Modeling and Simulation

307.2.1 Beam theory

This section provides basic beam theory that is used for verification solutions.

Problem description: Length=6m, Width=1m, Height=1m, F=100N, E=1E8Pa, ν = 0.0. The force

direction was shown in Figure (307.1).

Figure 307.1: Problem description for cantilever beams.

The basic idea to calculate the shear deformation of a beam is

δ =
FL
GAv

(307.1)

where Av is the not the gross cross sectional area of the beam. Av should be the shear area. Thus,

κ =
A
Av

(307.2)

where κ is the form factor, shear correction factor or shear deformation coefficient, A is the gross

sectional area and Av is the shear area of the section.

REWRITE, use bibtex! The history of κ value is long.

1. Timoshenko (1940)1 define the form factor for rectangular section is 1.5.

2. Cowper (1970)2 gave the formula for the form factor:

κ =
12 + 11ν
10(1 + ν)

(307.3)

1Strength of materials, Timoshenko, Krieger Pub Co, 1940
2Cowper, G. R. ”The shear coefficient in Timoshenko’s beam theory.” Journal of applied mechanics 33.2 (1966): 335-340.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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3. Renton (1991) 3 provided a closed form solution for shear area of rectangular sections. For a

rectangular section of depth 2a and breadth 2b.

κ =
6
5

+ (
ν

1 + ν
)2

∞∑
m=0

∞∑
n=1

144(b/a)4

π6(2m + 1)2n2[(2m + 1)2(b/2a)2 + n2]
(307.4)

For square cross section, b = a, therefore,

κ =
6
5

+ (
ν

1 + ν
)2

∞∑
m=0

∞∑
n=1

144
π6(2m + 1)2n2[(2m + 1)2(1/2)2 + n2]

(307.5)

To simplify the equation above, according to the Renton (1991), the intermediate values are given

by

κ =
6
5

+ C1(
ν

1 + ν
)2(

b
a

)4 (307.6)

where C1 is the parameter determined by the ratio of a and b. When b = a, the equation becomes

κ =
6
5

+ 0.1392(
ν

1 + ν
)2 (307.7)

307.2.2 Verification of 8 node brick cantilever beam (static)

Problem description: Lenght=10m, Force=4N, E=100000Pa, I = 1
12

Theoretical displacement:

d =
PL3

3EI
=

4× 1000
3× 100000× 1

12
= 0.16m (307.8)

Numerical simulation results:

1m element size (10 elements):

error =
0.16 – 0.1072

0.16
= 33% (307.9)

5m element size (2 elements):

3Renton, J. D. ”Generalized beam theory applied to shear stiffness.” International Journal of Solids and Structures 27.15

(1991): 1955-1967.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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error =
0.16 – 0.011911

0.16
= 92.5% (307.10)

10m element size (1 element):

error =
0.16 – 0.00315

0.16
= 98% (307.11)

1m element size with 10% nodal offset (10 elements):

error =
0.16 – 0.1057

0.16
= 34% (307.12)

1m element size with 20% nodal offset (10 elements):

error =
0.16 – 0.1016

0.16
= 36% (307.13)

307.2.3 Verification of 27 node brick cantilever beam (static)

Problem description: Lenght=10m, Force=9N, E=100000Pa, I = 1
12

Theoretical displacement:

d =
PL3

3EI
=

9× 1000
3× 100000× 1

12
= 0.36m (307.14)

Numerical simulation results:

1m element size (10 elements):

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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error =
0.361721 – 0.36

0.36
= 0.47% (307.15)

5m element size (2 elements):

error =
0.36 – 0.345719

0.36
= 3.96% (307.16)

10m element size (1 element):

error =
0.36 – 0.279989

0.36
= 22% (307.17)

1m element size with 10% nodal offset (10 elements):

error =
0.361225 – 0.36

0.36
= 0.35% (307.18)

1m element size with 20% nodal offset (10 elements):

error =
0.36 – 0.359741

0.36
= 0.07% (307.19)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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1m element size with 30% nodal offset (10 elements):

error =
0.36 – 0.357004

0.36
= 0.83% (307.20)

1m element size with 40% nodal offset (10 elements):

error =
0.36 – 0.352604

0.36
= 2% (307.21)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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307.2.4 Verification of 8NodeBrick cantilever beams

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use the

shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.2).

Figure 307.2: Problem description for cantilever beams.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6

= 8.64× 10–4m + 0.144× 10–4m

= 8.784× 10–4 m

(307.22)

Numerical model:

The 8NodeBrick elements are shown in Figure (307.6).

An example Real-ESSI script is shown below.

All the Real-ESSI results are listed in Table (307.1). The theoretical solution is 8.784E-04 m.

Table 307.1: Results for 8NodeBrick cantilever beams of different element numbers.

Element number 1 2 6

8NodeBrick 4.61E-05 m 1.59E-04 m 5.84E-04 m

Error 94.75% 81.87% 33.52%

The errors are plotted in Figure (307.7).

The Real-ESSI model fei/DSL files for the table above are HERE.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.3: One 8NodeBrick element.

Figure 307.4: Two 8NodeBrick elements.

Figure 307.5: Six 8NodeBrick elements.

Figure 307.6: 8NodeBrick elements for cantilever beams.

Figure 307.7: 8NodeBrick cantilever beam for different element number Displacement error versus Num-

ber of elements

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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307.2.5 Verification of 8NodeBrick cantilever beam for different Poisson’s ratio

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0 – 0.49.

The force direction was shown in Figure (307.8).

Figure 307.8: Problem description for cantilever beams of different Poisson’s ratios.

The theoretical solution for ν = 0.0 was calculated below, while the solution for other Poisson’s ratio

are calculated by the similar process.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6

= 8.64× 10–4m + 0.144× 10–4m

= 8.784× 10–4 m

(307.23)

The rotation angle at the end:

θ =
FL2

2EI
=

100N × 62m2

2× 108N /m2 × 1
12m4 = 2.16× 10–4 rad = 0.0124◦ (307.24)

The 8NodeBrick elements for cantilever beams of different Poisson’s ratios are shown in Figure

(307.9):

All the displacement results are listed in Table (307.2) - (307.4).

Using the same geometry, the element was meshed usingm much smaller element (0.5m).

Finally, in the same geometry, the element side length was cut into 0.25m.

The errors are plotted in Figure (307.10).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.9: 8NodeBrick elements for cantilever beams of different Poisson’s ratios.

Table 307.2: Displacement results for 8NodeBrick cantilever beams with element side length 1 m.

Poisson’s

ratio

8NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 5.840E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 33.52%

0.05 5.924E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 32.62%

0.10 5.969E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 32.16%

0.15 5.971E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 32.20%

0.20 5.922E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 32.81%

0.25 5.814E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 34.09%

0.30 5.634E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 36.19%

0.35 5.364E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 39.29%

0.40 4.970E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 43.80%

0.45 4.353E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 50.82%

0.49 3.142E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 64.52%

Figure 307.10: 8NodeBrick cantilever beam for different Poisson’s ratio˙ Displacement error versus

Poisson’s ratio. Left: Error scale 0% - 80%, Right: Error scale 0% - 100%.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 307.3: Displacement results for 8NodeBrick cantilever beams with element side length 0.5 m.

Poisson’s

ratio

8NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 7.787E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 11.35%

0.05 7.824E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 11.00%

0.10 7.839E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 10.91%

0.15 7.829E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 11.09%

0.20 7.790E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 11.61%

0.25 7.717E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 12.51%

0.30 7.597E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 13.95%

0.35 7.406E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 16.18%

0.40 7.089E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 19.84%

0.45 6.466E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 26.95%

0.49 4.990E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 43.66%

Table 307.4: Displacement results for 8NodeBrick cantilever beams with element side length 0.25 m.

Poisson’s

ratio

8NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.511E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 3.11%

0.05 8.525E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 3.03%

0.10 8.527E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 3.09%

0.15 8.518E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 3.27%

0.20 8.494E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 3.62%

0.25 8.455E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 4.15%

0.30 8.393E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 4.93%

0.35 8.299E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 6.08%

0.40 8.141E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 7.94%

0.45 7.801E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 11.86%

0.49 6.603E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 25.45%

The angle results are listed in Table (307.5).

Then, in the same geometry, element side length was cut into 0.5m. The angle results are listed in

Table (307.6).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 307.5: Rotation angle results for 8NodeBrick cantilever beams with element side length 1 m.

Poisson’s

ratio

8NodeBrick

angle(unit:◦)

Theory angle

(unit:◦)
Error

0.00 8.25E-03 1.24E-02 33.46%

0.05 8.36E-03 1.24E-02 32.55%

0.10 8.42E-03 1.24E-02 32.08%

0.15 8.42E-03 1.24E-02 32.10%

0.20 8.35E-03 1.24E-02 32.67%

0.25 8.20E-03 1.24E-02 33.90%

0.30 7.95E-03 1.24E-02 35.89%

0.35 7.59E-03 1.24E-02 38.83%

0.40 7.07E-03 1.24E-02 43.00%

0.45 6.30E-03 1.24E-02 49.21%

0.49 4.93E-03 1.24E-02 60.20%

Table 307.6: Rotation angle results for 8NodeBrick cantilever beams with with element side length 0.5

m.

Poisson’s

ratio

8NodeBrick

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.10E-02 1.24E-02 11.28%

0.05 1.10E-02 1.24E-02 10.91%

0.10 1.11E-02 1.24E-02 10.78%

0.15 1.10E-02 1.24E-02 10.90%

0.20 1.10E-02 1.24E-02 11.32%

0.25 1.09E-02 1.24E-02 12.09%

0.30 1.07E-02 1.24E-02 13.33%

0.35 1.05E-02 1.24E-02 15.29%

0.40 1.01E-02 1.24E-02 18.53%

0.45 9.32E-03 1.24E-02 24.87%

0.49 7.52E-03 1.24E-02 39.35%

Finally, in the same geometry, element side length was cut into 0.25m. The angle results are listed

in Table (307.7).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 307.7: Rotation angle results for 8NodeBrick cantilever beams with with element side length 0.25

m.

Poisson’s

ratio

8NodeBrick

angle (unit:◦
Theory angle

(unit:◦
Error

0.00 1.20E-02 1.24E-02 3.06%

0.05 1.20E-02 1.24E-02 2.97%

0.10 1.20E-02 1.24E-02 2.99%

0.15 1.20E-02 1.24E-02 3.12%

0.20 1.20E-02 1.24E-02 3.38%

0.25 1.19E-02 1.24E-02 3.79%

0.30 1.19E-02 1.24E-02 4.40%

0.35 1.17E-02 1.24E-02 5.33%

0.40 1.15E-02 1.24E-02 6.87%

0.45 1.11E-02 1.24E-02 10.22%

0.49 9.64E-03 1.24E-02 22.23%

The errors are plotted in Figure (307.11).

Figure 307.11: 8NodeBrick cantilever beam for different Poisson’s ratio Rotation angle error versus

Poisson’s ratio, Left: Error scale 30% - 70%, Right: Error scale 0% - 100%.

The Real-ESSI model fei/DSL files for the table above are HERE.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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307.2.6 Test of irregular shaped 8NodeBrick cantilever beams

Cantilever model was used as an example. Three different shapes are tested.

In the first test, the upper two nodes of each element are moved one half element size along the

y – axis, while the lower two nodes are kept at the same location. The element shape was shown in

Figure (307.12).

Figure 307.12: 8NodeBrick cantilever beams for irregular Shape 1.

In the second test, the upper two nodes of each element are moved 90% element size along the

y – axis, while the lower two nodes are moved 90% element size in the other direction along the y – axis.

The element shape was shown in Figure (307.13).

Figure 307.13: 8NodeBrick cantilever beams for irregular Shape 2.

In the third test, the upper two nodes of each element are moved one half element size with different

directions along the y – axis, while the lower two nodes are kept at the same location. The element

shape was shown in Figure (307.14).

The boundary conditions are shown in Figures (307.17), (307.20) and (307.23).

The Real-ESSI results are listed in Table (307.8).

The errors are listed in Table (307.9) and (307.10).

The Real-ESSI model fei/DSL files for the table above are HERE.

Then, the irregular beam was divided into small elements.

Problem description: Length=12m, Width=2m, Height=2m, q=400N/m, E=1E8Pa, ν = 0.0. Use

the shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.24).
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Figure 307.14: 8NodeBrick cantilever beams for irregular Shape 3.

Figure 307.15: Veritical force.

Figure 307.16: Horizontal force.

Figure 307.17: 8NodeBrick cantilever beam boundary conditions for irregular Shape 1.

Table 307.8: Results for 8NodeBrick cantilever beams of irregular shapes.

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

8NodeBrick Vertical (z) 5.840E-04 m 5.751E-04 m 2.959E-04 m 3.883E-04 m

8NodeBrick Transverse (y) 5.840E-04 m 4.529E-04 m 1.390E-04 m 4.744E-04 m

Theoretical - 8.784E-04 m 8.784E-04 m 8.784E-04 m 8.784E-04 m

Table 307.9: Errors for irregular shaped 8NodeBrick compared to theoretical solution.

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

8NodeBrick Vertical (z) 33.52% 34.53% 66.31% 55.79%

8NodeBrick Transverse (y) 33.52% 48.44% 84.18% 45.99%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.18: Veritical force.

Figure 307.19: Horizontal force.

Figure 307.20: 8NodeBrick cantilever beam boundary conditions for irregular Shape 2.

Figure 307.21: Veritical force.

Figure 307.22: Horizontal force.

Figure 307.23: 8NodeBrick cantilever beam boundary conditions for irregular Shape 3.

Theoretical displacement (bending and shear deformation):

d = qL4

8EI + q L2
2

GAv
(307.25)

= qL4

8E bh3
12

+ q L2
2

E
2(1+ν)

bh
κ

(307.26)

= 400N /m×124m4

8×108N /m2× 24
12 m4

+ 400N /m× 122
2 m2

108
2 N /m2×2m×2m× 5

6
(307.27)

= 7.776× 10–3m + 1.728× 10–4m (307.28)

= 7.9488× 10–3m (307.29)
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Table 307.10: Errors for irregular shaped 8NodeBrick compared to normal shape.

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

8NodeBrick Vertical (z) 0.00% 1.52% 49.33% 33.51%

8NodeBrick Transverse (y) 0.00% 22.45% 76.20% 18.77%

Figure 307.24: Problem description for cantilever beams under uniform load .

The Real-ESSI displacement results are listed in Table (307.11).

Table 307.11: Results for 8NodeBrick cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

8NodeBrick shape1 Vertical (z) 5.37E-03 m 7.08E-03 m 7.71E-03 m

8NodeBrick shape1 Transverse (y) 4.60E-03 m 6.66E-03 m 7.58E-03 m

8NodeBrick shape2 Vertical (z) 2.74E-03 m 4.75E-03 m 6.43E-03 m

8NodeBrick shape2 Transverse (y) 1.46E-03 m 2.72E-03 m 4.63E-03 m

8NodeBrick shape3 Vertical (z) 9.21E-04 m 6.60E-03 m 7.56E-03 m

8NodeBrick shape3 Transverse (y) 1.09E-03 m 6.09E-03 m 7.37E-03 m

Theoretical solution 7.95E-03 m 7.95E-03 m 7.95E-03 m

The error are listed in Table (307.12).

The errors are shown in Figures (307.25), (307.26) and (307.27).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Table 307.12: Errors for 8NodeBrick cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

8NodeBrick shape1 Vertical (z) 32.42% 10.95% 3.01%

8NodeBrick shape1 Transverse (y) 42.16% 16.17% 4.69%

8NodeBrick shape2 Vertical (z) 65.59% 40.22% 19.05%

8NodeBrick shape2 Transverse (y) 81.57% 65.76% 41.81%

8NodeBrick shape3 Vertical (z) 88.42% 16.97% 4.89%

8NodeBrick shape3 Transverse (y) 86.24% 23.36% 7.28%

Figure 307.25: 8NodeBrick cantilever beam for irregular Shape 1˙ Displacement error versus Number of

division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.26: 8NodeBrick cantilever beam for irregular Shape 2 ˙ Displacement error versus Number

of division

Figure 307.27: 8NodeBrick cantilever beam for irregular Shape 3˙ Displacement error versus Number of

division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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In this section, the beam was cut into smaller elements with element side length 0.5m and 0.25m

respectively. And the element side length of the original models is 1.0m. The numerical models are

shown in Figures (307.28), (307.29) and (307.30).

Number of division 1:

Figure 307.28: 8NodeBrick clamped beams with element side length 1.0m.

Number of division 2:

Figure 307.29: 8NodeBrick clamped beams with element side length 0.5m.

Number of division 4:

Figure 307.30: 8NodeBrick clamped beams with element side length 0.25m.

The Real-ESSI results are listed in Table (307.13). The theoretical solution is 1.60E-5 m.

The errors are plotted in Figure (307.33).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Table 307.13: Results for 8NodeBrick clamped beams with more elements.

Element Type
Element side length

1 m 0.5 m 0.25 m

8NodeBrick 1.10E-05 m 1.47E-05 m 1.64E-05 m

Error 33.33% 11.09% 0.73%

Figure 307.31: Error scale 0% - 40%.

Figure 307.32: Error scale 0% - 100%.

Figure 307.33: 8NodeBrick clamped beam for different element number˙ Displacement error versus

Number of division
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307.2.7 Verification of 8NodeBrick stress in cantilever beams

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use the

shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.34).

Figure 307.34: Problem description for cantilever beams of stress verification.

The theoretical solution for the stress was calculated below.

The 8NodeBrick elements are shown in Figure (307.35).

Figure 307.35: 8NodeBrick for cantilever beams of stress verification.

The bending moment at the Gassian Point is

M = F(L – Py) = 100N × (6 – 0.2113)m = 578.87N · m (307.30)

The bending modulus is

I =
bh3

12
=

1
12

m4 (307.31)

Therefore, the theoretical stress is

σ =
M · z

I
=

578.87N · m× (0.5 – 0.2113)m
1
12m4 = 2005Pa (307.32)

To get a better result, the same geometry beam was also cut into small elements. When more

elements are used, the theoretical stress was calculated again with the new coordinates. The calculation

process is similar to the process above.
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The numerical models are shown in Figures(307.36), (307.37) and (307.38).

Number of division 1:

Figure 307.36: 8NodeBrick stress with element side length 1.0m.

Number of division 2:

Figure 307.37: 8NodeBrick stress with element side length 0.5m.

Number of division 4:

Figure 307.38: 8NodeBrick stress with element side length 0.25m.

All the stress results are listed in Table (307.14).

Table 307.14: Results for 8NodeBrick stress with more elements.

Element Type
Element side length

1 m 0.5 m 0.25 m

8NodeBrick 1270.17 Pa 2418.60 Pa 3085.48 Pa

Theoretical 2005.26 Pa 2789.23 Pa 3191.27 Pa

Error 36.66% 13.29% 3.31%

The errors are plotted in Figure (307.41).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.39: Error scale 0% - 40%.

Figure 307.40: Error scale 0% - 100%.

Figure 307.41: 8NodeBrick cantilever beams for stress verification˙ Stress error versus Number of division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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307.2.8 Verification of 8NodeBrick square plate with four edges clamped

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.33)

The theoretical solution is

d = αc
qa4

D
= 0.00406× 100N /m2 × 204m4

9.1575× 106 N · m = 2.2015× 10–3m (307.34)

where αc is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient4 αc is 0.00406.

The 8NodeBrick are shown in Figures (307.42) - (307.47).

Figure 307.42: 8NodeBrick edge clamped square plate with element side length 10m.

The results are listed in Table (307.15).

The errors are listed in Table (307.2.8).
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Figure 307.43: 8NodeBrick edge clamped square plate with element side length 5m.

Table 307.15: Results for 8NodeBrick square plate with four edges clamped.

Element type 8NodeBrick 8NodeBrick 8NodeBrick
Theoretical

displacement
Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 9.75E-05 m 9.75E-05 m 9.75E-05 m 2.20E-03 m

5m 3.28E-04 m 3.32E-04 m 3.32E-04 m 2.20E-03 m

2m 1.04E-03 m 1.10E-03 m 1.12E-03 m 2.20E-03 m

1m 1.56E-03 m 1.74E-03 m 1.79E-03 m 2.20E-03 m

0.5m 1.80E-03 m 2.30E-03 m 2.12E-03 m 2.20E-03 m

0.25m 1.87E-03 m 2.14E-03 m 2.23E-03 m 2.20E-03 m

The errors are plotted in Figure (307.48).

The Real-ESSI model fei/DSL files for the table above are HERE.

4Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page120, 1959.
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Figure 307.44: 8NodeBrick edge clamped square plate with element side length 2m.

Element type 8NodeBrick 8NodeBrick 8NodeBrick

Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 95.57% 95.57% 95.57%

5m 85.09% 84.94% 84.91%

2m 52.98% 50.09% 49.25%

1m 28.93% 21.17% 18.72%

0.5m 18.26% 4.58% 3.56%

0.25m 15.05% 2.70% 1.37%

Table 307.16: Errors for 8NodeBrick square plate with four edges clamped.
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Figure 307.45: 8NodeBrick edge clamped square plate with element side length 1m.

Figure 307.46: 8NodeBrick edge clamped square plate with element side length 0.5m.
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Figure 307.47: 8NodeBrick edge clamped square plate with element side length 0.25m.

Figure 307.48: 8NodeBrick square plate with edge clamped˙ Displacement error versus Number of side

division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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307.2.9 Verification of 8NodeBrick square plate with four edges simply supported

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.35)

The theoretical solution is

d = αs
qa4

D
= 0.00126× 100N /m2 × 204m4

9.1575× 106 N · m = 7.0936× 10–3m (307.36)

where αs is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient5 αs is 0.00126.

The 8NodeBrick are shown in Figures (307.49) - (307.54).

Figure 307.49: 8NodeBrick edge simply supported square plate with element side length 10m.

The results are listed in Table (307.17).

The errors are listed in Table (307.18).
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Figure 307.50: 8NodeBrick edge simply supported square plate with element side length 5m.

Table 307.17: Results for 8NodeBrick square plate with four edges simply supported.

Element type 8NodeBrick 8NodeBrick
Theoretical

displacement
Number of layers 2layers 4layers

Element side length Height:0.50m Height:0.25m

10m 3.75E-004 m 3.76E-004 m 7.09E-03 m

5m 1.34E-003 m 1.35E-003 m 7.09E-03 m

2m 4.16E-003 m 4.27E-003 m 7.09E-03 m

1m 5.98E-003 m 6.22E-003 m 7.09E-03 m

0.5m 6.75E-003 m 7.04E-003 m 7.09E-03 m

0.25m 8.07E-003 m 7.30E-003 m 7.09E-03 m

The errors are plotted in Figure (307.55).

The Real-ESSI model fei/DSL files for the table above are HERE.

5Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page202, 1959.
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Figure 307.51: 8NodeBrick edge simply supported square plate with element side length 2m.

Table 307.18: Errors for 8NodeBrick square plate with four edges simply supported.

Element type 8NodeBrick 8NodeBrick

Number of layers 2layers 4layers

Element side length Height:0.50m Height:0.25m

10m 94.72% 94.71%

5m 81.05% 80.91%

2m 41.31% 39.79%

1m 15.64% 12.38%

0.5m 4.88% 0.70%

0.25m 13.74% 2.86%
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Figure 307.52: 8NodeBrick edge simply supported square plate with element side length 1m.

Figure 307.53: 8NodeBrick edge simply supported square plate with element side length 0.5m.
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Figure 307.54: 8NodeBrick edge simply supported square plate with element side length 0.25m.

Figure 307.55: 8NodeBrick square plate with four edges simply supported˙ Displacement error versus

Number of side division
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307.2.10 Verification of 8NodeBrick circular plate with all edges clamped

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.37)

The theoretical solution6 is

d =
qa4

64D
=

100N /m2 × 104m4

64× 9.1575× 106 N · m = 1.7106× 10–3m (307.38)

The 8NodeBrick are shown in Figures (307.56) - (307.61).

Figure 307.56: 8NodeBrick edge clamped circular plate with element side length 10m.

The results are listed in Table (307.19).

The errors are listed in Table (307.20).

The errors are shown in Figure (307.62).

The Real-ESSI model fei/DSL files for the table above are HERE.

6Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 307.57: 8NodeBrick edge clamped circular plate with element side length 5m.

Figure 307.58: 8NodeBrick edge clamped circular plate with element side length 2m.
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Figure 307.59: 8NodeBrick edge clamped circular plate with element side length 1m.

Figure 307.60: 8NodeBrick edge clamped circular plate with element side length 0.5m.
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Figure 307.61: 8NodeBrick edge clamped circular plate with element side length 0.25m.

Table 307.19: Results for 8NodeBrick circular plate with four edges clamped.

Element type 8NodeBrick 8NodeBrick 8NodeBrick
Theoretical

displacement
Number of layers 1layer 2layers 4layers

Number of diameter divisions Height:1.00m Height:0.50m Height:0.25m

4 1.97E-04 m 1.99E-04 m 2.00E-04 m 1.71E-03 m

12 7.95E-04 m 8.47E-04 m 8.62E-04 m 1.71E-03 m

20 1.13E-03 m 1.25E-03 m 1.28E-03 m 1.71E-03 m

40 1.36E-03 m 1.54E-03 m 1.60E-03 m 1.71E-03 m

60 1.41E-03 m 1.62E-03 m 1.68E-03 m 1.71E-03 m

80 1.43E-03 m 1.64E-03 m 1.71E-03 m 1.71E-03 m

Figure 307.62: 8NodeBrick circular plate with edge clamped˙ Displacement error versus Number of side

division.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 307.2. VERIFICATION OF STATIC, SINGLE PH . . . page: 1537 of 3287

Table 307.20: Errors for 8NodeBrick circular plate with four edges clamped.

Element type 8NodeBrick 8NodeBrick 8NodeBrick

Number of layers 1layer 2layers 4layers

Number of diameter divisions Height:1.00m Height:0.50m Height:0.25m

4 88.43% 88.32% 88.30%

12 53.43% 50.35% 49.47%

20 33.79% 27.00% 24.93%

40 20.14% 9.47% 6.03%

60 17.11% 5.34% 1.51%

80 16.01% 3.80% 0.19%
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307.2.11 Verification of 8NodeBrick circular plate with all edges simply supported

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.39)

The theoretical solution7 is

d =
(5 + ν)qa4

64(1 + ν)D
=

(5 + 0.3)× 100N /m2 × 104m4

64× (1 + 0.3)× 9.1575× 106 N · m = 6.956× 10–3m (307.40)

The 8NodeBrick are shown in Figures (307.63) - (307.68).

Figure 307.63: 8NodeBrick edge simply supported circular plate with element side length 10m.

The results are listed in Table (307.21).

The errors are listed in Table (307.22).

The errors are plotted in Figure (307.69).

The Real-ESSI model fei/DSL files for the table above are HERE.
7Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 307.64: 8NodeBrick edge simply supported circular plate with element side length 5m.

Figure 307.65: 8NodeBrick edge simply supported circular plate with element side length 2m.
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Figure 307.66: 8NodeBrick edge simply supported circular plate with element side length 1m.

Figure 307.67: 8NodeBrick edge simply supported circular plate with element side length 0.5m.
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Figure 307.68: 8NodeBrick edge simply supported circular plate with element side length 0.25m.

Table 307.21: Results for 8NodeBrick cicular plate with four edges simply supported.

Element type 8NodeBrick 8NodeBrick
Theoretical

displacement
Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 6.35E-04 m 6.39E-04 m 6.96E-03 m

12 3.46E-03 m 3.57E-03 m 6.96E-03 m

20 4.96E-03 m 5.18E-03 m 6.96E-03 m

40 6.05E-03 m 6.37E-03 m 6.96E-03 m

60 6.30E-03 m 6.65E-03 m 6.96E-03 m

80 6.39E-03 m 6.76E-03 m 6.96E-03 m
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Table 307.22: Errors for 8NodeBrick cicular plate with four edges simply supported.

Element type 8NodeBrick 8NodeBrick

Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 90.87% 90.82%

12 50.19% 48.65%

20 28.64% 25.47%

40 13.09% 8.40%

60 9.45% 4.36%

80 8.10% 2.85%

Figure 307.69: 8NodeBrick circular plate with edge simply supported˙ Displacement error versus Number

of side division
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307.2.12 Verification of 8NodeBrick Finite Element for Boussinesq Problem

307.2.12.1 Introduction

The Boussinesq problem is finding the displacement distribution in the isotropic linearly elastic half-space,

subject to a concentrated load applied on the surface and perpendicular to it. The Boussinesq problem

diagram is shown in Fig.(307.166).

Boussinesq problem is widely used in geotechnical engineering, especially when designing a foundation

which transfers the superstructure load to the soil. To estimate the foundation settlements, it is important

to have a reliable numerical solution for the Boussinesq problem.

Figure 307.70: Boussinesq problem description. (Figure Reference: Verruijt, Arnold, and Stefan Van

Baars. Soil mechanics. Delft, 2007.)

In 1885, the French scientist Joseph Boussinesq solved the analytic solutions of displacements in the

homogeneous isotropic linear elastic half space. In general, the vertical displacement of the surface is

z = 0 : uz =
P(1 – ν2)
πER

(307.41)

where P is the vertical load, ν is the Poisson’s ratio, E is the elastic modulus, and R is the distance

from the measured point to the loading point.

In this section, the Real-ESSI numerical solution is verified by the analytic solution for the Boussinesq

problem.

307.2.12.2 Description of the Verification Model

Since the problem is cylindrical symmetry, a quarter of the entire cube was employed to represent the

whole cube. The reduced model was shown in Fig.(307.167).
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The side length is 20 meters and the load P is 1N. The elastic modulus E = 1 × 103Pa and the

Poisson’s ratio ν = 0.0.

Figure 307.71: Reduced model (One quarter model) for the point load on the half space

The boundary conditions are shown in Fig.(307.72) and (307.73).

Figure 307.72: X-Z view for the reduced model

307.2.12.3 Results

Analytic solution for this model

According to the previous introduction, the analytic solution on the surface for this problem is

z = 0 : uz =
P(1 – ν2)
πER

=
1

103π

1
R

(307.42)

On the face x = 0, the distance R on the surface is actually the value of y, therefore, the analytic
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Figure 307.73: Y-Z view for the reduced model

solution is

uz =
1

103πR
=

1
103π

1
y

(307.43)

As long as the y values are substituted, the displacement uz is obtained immediately.

Real-ESSI solution with 8NodeBrickLT

In Real-ESSI, 8NodeBrickLT elements were used to simulate this model. Each element is 2m×2m×
2m. Since the model is 20m × 20m × 20m, the element number is 10 × 10 × 10 = 1000. The vertical

displacement at the surface was recorded.

Since the model is symmetric, when the results were plotted, the other half results were obtained by

symmetry.

Comparison between the analytic and 8NodeBrickLT solution

The Real-ESSI and analytic results were plotted in Fig.(307.74). Note that the analytic solution for

location y = 0 is infinity, which was not plotted in the figure below.

307.2.12.4 Error Analysis

1. Mismatch at the loading point.

First of all, when x = 0 at the loading point, the analytic solution is infinite. From the perspective

of practical engineering, this analytic solution is flawed because the displacement cannot be infinite.

The infinite solution is due to the elastic assumption. In consideration of the plasticity, the analytic

solution will not be infinite.

In Real-ESSI, the displacement at the loading point is not infinite because the infinite value is

averaged by the integration during the finite element calculation. Also, at the loading point,
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Figure 307.74: Comparison between analytic solution and Real-ESSI 8NodeBrickLT solution

27NodeBrickLT has a much larger displacement than that of 8NodeBrickLT. This is because

27NodeBrickLT has a relatively denser mesh than 8NodeBrickLT. So the maximum value at the

loading point is higher than that of 8NodeBrickLT.

2. Mismatch at other locations.

Except at the loading point, the analytic solution is not exactly equal to the numerical solution

at other locations. This is because the verification example employs a simplified bounded cube

to represent unbounded half space. The original analytic solution is for the half space, which is

not true for the verification model. Not only the horizontal space but also the bottom space are

removed from the model. This means the analytic solution is not perfect for this bounded cube.

However, since the cube is very great, the analytic solution is similar to the Real-ESSI numerical

solution. In addition, the brick elements are also verified by other models, like beam, plate and

shells.
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307.2.13 Verification of 8NodeBrick Finite Element for Collapsed Brick Shapes

307.2.13.1 Test procedure

With reference to the “patch test” put forward by Taylor et al. (1986), the test procedures are:

• A standard solution is given by testing two different loading modes on a single normal 8 node

brick element: (1) Pure confinement loading, where same pressure are applied on three different

directions. (2) Simple shearing, where shearing force is applied on four nodes of top layer, while

four nodes on bottom layer are totally fixed. Linear elastic material is adopted here with Young’s

modulus E = 125MPa and Poisson’s ratio µ = 0.25. The setup of standard test is shown in

Figure 307.75.

Element # 1 with nodes (1, 2, 3, 4, 5, 6, 7, 8)

F

F

F

F

Figure 307.75: Setup of standard 8-node element.

• Build the same geometric model with collapsed 8 node brick elements and conduct numerical

simulation under the same loading and boundary conditions as first step.

Specifically, the geometric configure for 7-node collapsed element is shown in Figure 307.76, where

the cubic consists of two 7-node collapsed elements. A dummy node 11 is generated at the same

location as node 2.

The geometric configuration for 6-node collapsed element is shown in Figure 307.77. Again the

cubic is composed of two 6-node collapsed elements. Two dummy Real-ESSI nodes 9 and 10 are
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910

(11)

Element # 1 (1, 11, 2, 4, 5, 9, 10, 8)
Element # 2 (11, 2, 3, 4, 9, 6, 7, 10) 

Figure 307.76: Geometric configuration of numerical test for 7-node collapsed element.

generated at the same location with original node 1 and 2.

And Figure 307.78 gives the geometric configuration of 5-node collapsed element, where the cubic

is divided into 3 5-node elements.

• Compare the response of models in step 1 and step 2. If the difference is small enough, the strategy

described in section ?? is feasible and valid.

307.2.13.2 Test result

The comparison of displacement response for confinement loading is shown in Figure 307.79. Fig-

ure 307.80 demonstrates the test results of simple shearing loading. It can be seen that the simulation

results of these types of collapsed element are close to result of standard 8 node brick element. The line

of 6 node collapsed element is almost overlap with the line of standard test. Collapsed 7-node element

and 5-node element experience certain decrease of accuracy. The main error reflects on the decrease of

stiffness. Both bulk modulus and shear modulus of 7-node element and 5-node element are around 7%

lower than the standard 8-node element.
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(9)

(10)

Element # 1 (1, 9, 3, 4, 5, 10, 7, 8)
Element # 2 (9, 2, 3, 1, 10, 6, 7, 5) 

Figure 307.77: Geometric configuration of numerical test for 6-node collapsed element.

(9)(10)(11)

Element # 1 (8, 9, 10, 11, 4, 3, 2, 1)
Element # 2 (8, 9, 10, 11, 2, 3, 7, 6)
Element # 3 (8, 9, 10, 11, 1, 2, 6, 5)  

Figure 307.78: Geometric configuration of numerical test for 5-node collapsed element.
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Figure 307.79: Comparison of displacement response under confinement loading.
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Figure 307.80: Comparison of displacement response under simple shearing.
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307.2.14 Verification of 27 node brick cantilever beam (static)

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use the

shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.81).

Figure 307.81: Problem description for cantilever beams.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6
= 8.64×10–4m+0.144×10–4m = 8.784×10–4 m

(307.44)

Numerical model:

The 27NodeBrick elements are shown in Figure (307.85).

All the Real-ESSI results are listed in Table (307.23).

Table 307.23: Results for 27NodeBrick cantilever beams of different element numbers.

Element number 1 2 6

27NodeBrick 7.07E-04 m 8.50E-04 m 8.75E-04 m

Error 19.52% 3.19% 0.34%

The errors are plotted in Figure (307.88).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.82: One 27NodeBrick element.

Figure 307.83: Two 27NodeBrick elements.

Figure 307.84: Six 27NodeBrick elements.

Figure 307.85: 27NodeBrick elements for cantilever beams.
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Figure 307.86: Error scale 0% - 20%.

Figure 307.87: Error scale 0% - 100%.

Figure 307.88: 27NodeBrick cantilever beam for different element number˙ Displacement error versus

Number of elements
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307.2.15 Verification of 27NodeBrick cantilever beam for different Poisson’s ratio

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0 – 0.49.

The force direction was shown in Figure (307.89).

Figure 307.89: Problem description for cantilever beams of different Poisson’s ratios.

The theoretical solution for ν = 0.0 was calculated below, while the solution for other Poisson’s ratio

is calculated by the similar process.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6

= 8.64× 10–4m + 0.144× 10–4m

= 8.784× 10–4 m

(307.45)

The rotation angle at the end:

θ =
FL2

2EI
=

100N × 62m2

2× 108N /m2 × 1
12m4 = 2.16× 10–4 rad = 0.0124◦ (307.46)

The 27NodeBrick elements for cantilever beams of different Poisson’s ratios are shown in Fig-

ure (307.90).

All the displacement results are listed in Table (307.24).

The errors are plotted in Figure (307.93).

The angle results are listed in Table (307.27).

The errors are plotted in Figure (307.96).
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Figure 307.90: 27NodeBrick elements for cantilever beams of different Poisson’s ratios.

Table 307.24: Displacement results for 27NodeBrick cantilever beams with element side length 1 m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.755E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.34%

0.05 8.757E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.39%

0.10 8.751E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.54%

0.15 8.735E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.80%

0.20 8.708E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 1.19%

0.25 8.667E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 1.74%

0.30 8.608E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 2.50%

0.35 8.520E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 3.57%

0.40 8.385E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 5.18%

0.45 8.147E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 7.96%

0.49 7.711E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 12.94%

The Real-ESSI model fei/DSL files for the table above are HERE.

Then, different values of elastic modulus were also tried. The errors are plotted below.

According to Fig.(307.97)), the different values of elastic modulus will not influence the error.

However, the different Poisson’s ratio will influence the error. The error will increase with the

Poisson’s ratio increase.
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Table 307.25: Displacement results for 27NodeBrick cantilever beams with element side length 0.5 m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.804E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.23%

0.05 8.808E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.19%

0.10 8.805E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.08%

0.15 8.796E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.12%

0.20 8.778E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.40%

0.25 8.752E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.78%

0.30 8.715E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 1.28%

0.35 8.663E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 1.95%

0.40 8.588E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 2.89%

0.45 8.465E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 4.36%

0.49 8.248E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 6.88%

Table 307.26: Displacement results for 27NodeBrick cantilever beams with element side length 0.25 m.

Poisson’s

ratio

27NodeBrick

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.797E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.15%

0.05 8.801E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.11%

0.10 8.799E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.01%

0.15 8.792E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.16%

0.20 8.778E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.40%

0.25 8.758E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.71%

0.30 8.730E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 1.12%

0.35 8.692E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 1.63%

0.40 8.641E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 2.29%

0.45 8.567E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 3.21%

0.49 8.452E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 4.58%
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Figure 307.91: Error scale 0% - 15%.

Figure 307.92: Error scale 0% - 100%.

Figure 307.93: 27NodeBrick cantilever beam for different Poisson’s ratio˙ Displacement error versus

Poisson’s ratio
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 307.2. VERIFICATION OF STATIC, SINGLE PH . . . page: 1558 of 3287

Table 307.27: Rotation angle results for 27NodeBrick cantilever beams with element side length 1 m.

Poisson’s

ratio

27NodeBrick

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.238E-02 1.24E-02 0.19%

0.05 1.237E-02 1.24E-02 0.24%

0.10 1.236E-02 1.24E-02 0.34%

0.15 1.233E-02 1.24E-02 0.53%

0.20 1.230E-02 1.24E-02 0.80%

0.25 1.225E-02 1.24E-02 1.18%

0.30 1.219E-02 1.24E-02 1.70%

0.35 1.210E-02 1.24E-02 2.45%

0.40 1.196E-02 1.24E-02 3.55%

0.45 1.172E-02 1.24E-02 5.47%

0.49 1.130E-02 1.24E-02 8.89%

Table 307.28: Rotation angle results for 27NodeBrick cantilever beams with element side length 0.5 m.

Poisson’s

ratio

27NodeBrick

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.242E-02 1.24E-02 0.12%

0.05 1.241E-02 1.24E-02 0.11%

0.10 1.241E-02 1.24E-02 0.06%

0.15 1.239E-02 1.24E-02 0.05%

0.20 1.237E-02 1.24E-02 0.21%

0.25 1.235E-02 1.24E-02 0.44%

0.30 1.231E-02 1.24E-02 0.74%

0.35 1.226E-02 1.24E-02 1.16%

0.40 1.218E-02 1.24E-02 1.76%

0.45 1.206E-02 1.24E-02 2.76%

0.49 1.183E-02 1.24E-02 4.63%
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Table 307.29: Rotation angle results for 27NodeBrick cantilever beams with element side length 0.25 m.

Poisson’s

ratio

27NodeBrick

angle(unit:circ)

Theory angle

(unit:◦)
Error

0.00 1.242E-02 1.24E-02 0.17%

0.05 1.242E-02 1.24E-02 0.15%

0.10 1.241E-02 1.24E-02 0.09%

0.15 1.240E-02 1.24E-02 0.02%

0.20 1.238E-02 1.24E-02 0.17%

0.25 1.235E-02 1.24E-02 0.38%

0.30 1.232E-02 1.24E-02 0.64%

0.35 1.228E-02 1.24E-02 0.98%

0.40 1.222E-02 1.24E-02 1.42%

0.45 1.214E-02 1.24E-02 2.06%

0.49 1.202E-02 1.24E-02 3.08%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.94: Error scale 0% - 10%.

Figure 307.95: Error scale 0% - 100%.

Figure 307.96: 27NodeBrick cantilever beam for different Poisson’s ratio˙ Rotation angle error versus

Poisson’s ratio

Figure 307.97: The influence of Poisson’s ratio and elastic modulus on the errors

.
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307.2.16 Test of irregular shaped 27NodeBrick cantilever beams

Cantilever model was used as an example. Three different shapes are tested.

In the first test, the upper two nodes of each element were moved one half element size along the

y – axis, while the lower two nodes were kept at the same location. The element shape was shown in

Figure (307.98).

Figure 307.98: 27NodeBrick cantilever beams for irregular Shape 1.

In the second test, the upper two nodes of each element were moved 90% element size along the

y– axis, while the lower two nodes were moved 90% element size in the other direction along the y– axis.

The element shape was shown in Figure (307.99).

Figure 307.99: 27NodeBrick cantilever beams for irregular Shape 2.

In the third test, the upper two nodes of each element are moved one half element size with different

directions along the y – axis, while the lower two nodes were kept at the same location. The element

shape was shown in Figure (307.100).

Figure 307.100: 27NodeBrick cantilever beams for irregular Shape 3.

The boundary conditions are shown in Figure (307.103), (307.106) and (307.109) .

The Real-ESSI results are listed in Table (307.30).

The errors are listed in Table (307.31) and (307.32).
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Figure 307.101: Veritical force.

Figure 307.102: Horizontal force.

Figure 307.103: 27NodeBrick cantilever beam boundary conditions for irregular Shape 1.

Figure 307.104: Veritical force.

Figure 307.105: Horizontal force.

Figure 307.106: 27NodeBrick cantilever beam boundary conditions for irregular Shape 2.

Table 307.30: Results for 27NodeBrick cantilever beams of irregular shapes.

Displacements for irregular shaped element

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

27NodeBrick Vertical (z) 8.755E-04 m 8.819E-04 m 8.709E-04 m 8.837E-04 m

27NodeBrick Transverse (y) 8.755E-04 m 8.831E-04 m 8.462E-04 m 8.824E-04 m

Theoretical - 8.784E-04 m 8.784E-04 m 8.784E-04 m 8.784E-04 m

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.107: Veritical force.

Figure 307.108: Horizontal force.

Figure 307.109: 27NodeBrick cantilever beam boundary conditions for irregular Shape 3.

Table 307.31: Errors for irregular shaped 27NodeBrick compared to theoretical solution.

Errors for irregular shaped element, compared to theoretical solutions

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

27NodeBrick Vertical (z) 0.34% 0.40% 0.85% 0.60%

27NodeBrick Transverse (y) 0.34% 0.54% 3.67% 0.46%

Table 307.32: Errors for irregular shaped 27NodeBrick compared to normal shape.

Errors for irregular shaped element, compared to normal shape

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

27NodeBrick Vertical (z) 0.00% 0.74% 0.52% 0.94%

27NodeBrick Transverse (y) 0.00% 0.87% 3.34% 0.79%

The Real-ESSI model fei/DSL files for the table above are HERE.

Then, the beam was divided into small elements.

Problem description: Length=12m, Width=2m, Height=2m, Force=400N/m, E=1E8Pa, ν = 0.0.

Use the shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.110).
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Figure 307.110: Problem description for cantilever beams under uniform pressure .

Theoretical displacement (bending and shear deformation):

d =
qL4

8EI
+

qL2

2
GAv

=
qL4

8E bh3
12

+
qL2

2
E

2(1+ν)
bh
κ

=
400N /m× 124m4

8× 108N /m2 × 24
12m4

+
400N /m× 122

2 m2

108
2 N /m2 × 2m× 2m× 5

6

= 7.776× 10–3m + 1.728× 10–4m

= 7.9488× 10–3m

(307.47)

The Real-ESSI displacement results are listed in Table (307.33).

Table 307.33: Results for 27NodeBrick cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

27NodeBrick shape1 Vertical (z) 7.913E-03 m 7.946E-03 m 7.948E-03 m

27NodeBrick shape1 Transverse (y) 7.903E-03 m 7.946E-03 m 7.948E-03 m

27NodeBrick shape2 Vertical (z) 7.741E-03 m 7.930E-03 m 7.947E-03 m

27NodeBrick shape2 Transverse (y) 7.371E-03 m 7.894E-03 m 7.944E-03 m

27NodeBrick shape3 Vertical (z) 1.982E-03 m 7.946E-03 m 7.948E-03 m

27NodeBrick shape3 Transverse (y) 1.979E-03 m 7.947E-03 m 7.948E-03 m

Theoretical solution 7.9488E-03 m 7.9488E-03 m 7.9488E-03 m

The error are listed in Table (307.34).

The errors are shown in Figures (307.113), (307.116) and (307.119).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Table 307.34: Errors for 27NodeBrick cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

27NodeBrick shape1 Vertical (z) 0.45% 0.04% 0.01%

27NodeBrick shape1 Transverse (y) 0.32% 0.03% 0.01%

27NodeBrick shape2 Vertical (z) 2.61% 0.23% 0.03%

27NodeBrick shape2 Transverse (y) 7.27% 0.69% 0.06%

27NodeBrick shape3 Vertical (z) 75.06% 0.04% 0.01%

27NodeBrick shape3 Transverse (y) 75.11% 0.03% 0.01%

Figure 307.111: Error scale 0% - 0.4%.

Figure 307.112: Error scale 0% - 100%.

Figure 307.113: 27NodeBrick cantilever beam for irregular Shape 1˙ Displacement error versus Number

of division

ν = 0.0. Use the shear deformation coefficient κ = 1.2. The force direction was shown in Figure (??).

In this section, the beam was cut into smaller elements with element side length 0.5m and 0.25m

respectively. And the element side length of the original models is 1.0m. The numerical models are

shown in Figure (307.120), (307.121) and (307.122).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.114: Error scale 0% - 8%.

Figure 307.115: Error scale 0% - 100%.

Figure 307.116: 27NodeBrick cantilever beam for irregular Shape 2˙ Displacement error versus Number

of division

Number of division 1:

Number of division 2:

Number of division 4:

The Real-ESSI results are listed in Table (307.35). The theoretical solution is 1.60E-5 m.

Table 307.35: Results for 27NodeBrick clamped beams with more elements.

Element Type
Element side length

1 m 0.5 m 0.25 m

27NodeBrick 1.64E-05 m 1.70E-05 m 1.71E-05 m

Error 0.83% 3.25% 3.70%

The errors are plotted in Figure (307.125).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.117: Error scale 0% - 80%.

Figure 307.118: Error scale 0% - 100%.

Figure 307.119: 27NodeBrick cantilever beam for irregular Shape 3˙ Displacement error versus Number

of division

Figure 307.120: 27NodeBrick clamped beams with element side length 1.0m.

Figure 307.121: 27NodeBrick clamped beams with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.122: 27NodeBrick clamped beams with element side length 0.25m.

Figure 307.123: Error scale 0% - 4%.

Figure 307.124: Error scale 0% - 100%.

Figure 307.125: 27NodeBrick clamped beam for different element number˙ Displacement error versus

Number of division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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307.2.17 Verification of 27NodeBrick stress in cantilever beams

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use the

shear deformation coefficient κ = 1.2. The force direction was shown in Figure (307.126).

Figure 307.126: Problem description for cantilever beams of stress verification.

The theoretical solution for the stress was calculated below.

The 27NodeBrick elements are shown in Figure (307.127).

Figure 307.127: 27NodeBrick for cantilever beams of stress verification.

The bending moment at the Gassian Point is

M = F(L – Py) = 100N × (6 – 0.1127)m = 588.73N · m (307.48)

The bending modulus is

I =
bh3

12
=

1
12

m4 (307.49)

Therefore, the theoretical stress is

σ =
M · z

I
=

588.73N · m× (0.5 – 0.1127)m
1
12m4 = 2736Pa (307.50)

To get a better result, the same geometry beam was also cut into small elements. When more

elements are used, the theoretical stress was calculated again with the new coordinates. The calculation

process is similar to the process above.
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The numerical models are shown in Figure (307.128), (307.129) and (307.130).

Number of division 1:

Figure 307.128: 27NodeBrick stress with element side length 1.0m.

Number of division 2:

Figure 307.129: 27NodeBrick stress with element side length 0.5m.

Number of division 4:

Figure 307.130: 27NodeBrick stress with element side length 0.25m.

All the stress results are listed in Table (307.36).

Table 307.36: Results for 27NodeBrick stress with more elements.

Element Type
Element side length

1 m 0.5 m 0.25 m

27NodeBrick 2719.81 Pa 3198.19 Pa 3464.76 Pa

Theoretical 2736.17 Pa 3164.27 Pa 3381.18 Pa

Error 0.60% 1.07% 2.47%

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.131: Error scale 0% - 2.5%.

Figure 307.132: Error scale 0% - 100%.

Figure 307.133: 27NodeBrick cantilever beams for stress verification˙ Stress error versus Number of

division
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307.2.18 Verification of 27NodeBrick square plate with four edges clamped

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.51)

The theoretical solution is

d = αc
qa4

D
= 0.00406× 100N /m2 × 204m4

9.1575× 106 N · m = 2.2015× 10–3m (307.52)

where αc is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient8 αc is 0.00406.

The 27NodeBrick are shown in Figure (307.134) - (307.139).

Figure 307.134: 27NodeBrick edge clamped square plate with element side length 10m.

The results were listed in Table (307.37).

8Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page120, 1959.
9This model run out of memory on machine cml01 (memory: 23.5GB). This model has 233,289 nodes with 3 dofs,

which may require 40GB memory.
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Figure 307.135: 27NodeBrick edge clamped square plate with element side length 5m.

Table 307.37: Results for 27NodeBrick square plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 4.82E-004 m 4.82E-004 m 4.82E-004 m 2.20E-03 m

5m 1.97E-003 m 1.98E-003 m 1.98E-003 m 2.20E-03 m

2m 2.25E-003 m 2.26E-003 m 2.26E-003 m 2.20E-03 m

1m 2.28E-003 m 2.29E-003 m 2.29E-003 m 2.20E-03 m

0.5m 2.29E-003 m 2.30E-003 m 2.30E-003 m 2.20E-03 m

0.25m 2.29E-003 m 2.30E-003 m -9 2.20E-03 m

The errors were listed in Table (307.38).

The errors were plotted in Figure (307.140).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.136: 27NodeBrick edge clamped square plate with element side length 2m.

Table 307.38: Errors for 27NodeBrick square plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick

Number of layers 1layer 2layers 4layers

Element side length Height:1.00m Height:0.50m Height:0.25m

10m 78.11% 78.10% 78.10%

5m 10.67% 10.19% 10.16%

2m 2.23% 2.79% 2.83%

1m 3.56% 4.16% 4.22%

0.5m 3.96% 4.58% 4.65%

0.25m 4.08% 4.70% -
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Figure 307.137: 27NodeBrick edge clamped square plate with element side length 1m.

Figure 307.138: 27NodeBrick edge clamped square plate with element side length 0.5m.
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Figure 307.139: 27NodeBrick edge clamped square plate with element side length 0.25m.

Figure 307.140: 27NodeBrick square plate with edge clamped˙ Displacement error versus Number of

side division
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307.2.19 Verification of 27NodeBrick square plate with four edges simply supported

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.53)

The theoretical solution is

d = αs
qa4

D
= 0.00126× 100N /m2 × 204m4

9.1575× 106 N · m = 7.0936× 10–3m (307.54)

where αs is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient10 αs is 0.00126.

The 27NodeBrick were shown in Figure (307.141) - (307.146).

Figure 307.141: 27NodeBrick edge simply supported square plate with element side length 10m.

The results were listed in Table (307.39).

10Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page202, 1959.
11This model run out of memory on machine cml01 (memory: 23.5GB). This model has 233,289 nodes with 3 dofs,

which may require 40GB memory.
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Figure 307.142: 27NodeBrick edge simply supported square plate with element side length 5m.

Table 307.39: Results for 27NodeBrick square plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 2layers 4layers

Element side length Height:0.50m Height:0.25m

10m 6.54E-003 m 6.54E-003 m 7.09E-03 m

5m 7.24E-003 m 7.24E-003 m 7.09E-03 m

2m 7.44E-003 m 7.44E-003 m 7.09E-03 m

1m 7.49E-003 m 7.49E-003 m 7.09E-03 m

0.5m 7.50E-003 m 7.50E-003 m 7.09E-03 m

0.25m 7.51E-003 m -11 7.09E-03 m

The errors were listed in Table (307.40).

The errors were plotted in Figure (307.149).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Figure 307.143: 27NodeBrick edge simply supported square plate with element side length 2m.

Table 307.40: Errors for 27NodeBrick square plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick

Number of layers 2layers 4layers

Element side length Height:0.50m Height:0.25m

10m 7.87% 7.85%

5m 2.07% 2.10%

2m 4.85% 4.89%

1m 5.54% 5.58%

0.5m 5.74% 5.79%

0.25m 5.80% -
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Figure 307.144: 27NodeBrick edge simply supported square plate with element side length 1m.

Figure 307.145: 27NodeBrick edge simply supported square plate with element side length 0.5m.
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Figure 307.146: 27NodeBrick edge simply supported square plate with element side length 0.25m.
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Figure 307.147: Error scale 0% - 8%.

Figure 307.148: Error scale 0% - 100%.

Figure 307.149: 27NodeBrick square plate with edge simply supported˙ Displacement error versus Num-

ber of side division
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307.2.20 Verification of 27NodeBrick circular plate with all edges clamped

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.55)

The theoretical solution12 is

d =
qa4

64D
=

100N /m2 × 104m4

64× 9.1575× 106 N · m = 1.7106× 10–3m (307.56)

The 27NodeBrick were shown in Figure (307.150) - (307.155).

Figure 307.150: 27NodeBrick edge clamped circular plate with element side length 10m.

The results were listed in Table (307.41).

The errors were listed in Table (307.42).

The errors were shown in Figure (307.156).

The Real-ESSI model fei/DSL files for the table above are HERE.

12Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 307.151: 27NodeBrick edge clamped circular plate with element side length 5m.

Figure 307.152: 27NodeBrick edge clamped circular plate with element side length 2m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.153: 27NodeBrick edge clamped circular plate with element side length 1m.

Figure 307.154: 27NodeBrick edge clamped circular plate with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.155: 27NodeBrick edge clamped circular plate with element side length 0.25m.

Table 307.41: Results for 27NodeBrick circular plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 1layer 2layers 4layers

Number of diameter divisions Height:1.00m Height:0.50m Height:0.25m

4 2.777E-03 m 2.788E-03 m 2.789E-03 m 1.706E-03 m

12 2.772E-03 m 2.786E-03 m 2.787E-03 m 1.706E-03 m

20 2.545E-03 m 2.556E-03 m 2.558E-03 m 1.706E-03 m

40 1.758E-03 m 1.768E-03 m 1.769E-03 m 1.706E-03 m

60 1.762E-03 m 1.772E-03 m 1.773E-03 m 1.706E-03 m

80 1.763E-03 m 1.773E-03 m 1.774E-03 m 1.706E-03 m
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Table 307.42: Errors for 27NodeBrick circular plate with four edges clamped.

Element type 27NodeBrick 27NodeBrick 27NodeBrick

Number of layers 1layer 2layers 4layers

Number of diameter divisions Height:1.00m Height:0.50m Height:0.25m

4 62.75% 63.42% 63.47%

12 62.46% 63.27% 63.34%

20 49.14% 49.82% 49.91%

40 3.03% 3.62% 3.68%

60 3.25% 3.83% 3.91%

80 3.32% 3.91% 3.99%

Figure 307.156: 27NodeBrick circular plate with edge clamped˙ Displacement error versus Number of

side division
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307.2.21 Verification of 27NodeBrick circular plate with all edges simply supported

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (307.57)

The theoretical solution13 is

d =
(5 + ν)qa4

64(1 + ν)D
=

(5 + 0.3)× 100N /m2 × 104m4

64× (1 + 0.3)× 9.1575× 106 N · m = 6.956× 10–3m (307.58)

The 27NodeBrick were shown in Figure (307.157) - (307.162).

Figure 307.157: 27NodeBrick edge simply supported circular plate with element side length 10m.

The results were listed in Table (307.43).

The errors were listed in Table (307.44).

The errors were plotted in Figure (307.165).

The Real-ESSI model fei/DSL files for the table above are HERE.
13Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 307.158: 27NodeBrick edge simply supported circular plate with element side length 5m.

Figure 307.159: 27NodeBrick edge simply supported circular plate with element side length 2m.
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Figure 307.160: 27NodeBrick edge simply supported circular plate with element side length 1m.

Figure 307.161: 27NodeBrick edge simply supported circular plate with element side length 0.5m.
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Figure 307.162: 27NodeBrick edge simply supported circular plate with element side length 0.25m.

Table 307.43: Results for 27NodeBrick cicular plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick
Theoretical

displacement
Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 7.259E-03 m 7.261E-03 m 6.956E-03 m

12 7.083E-03 m 7.084E-03 m 6.956E-03 m

20 7.064E-03 m 7.065E-03 m 6.956E-03 m

40 7.018E-03 m 7.019E-03 m 6.956E-03 m

60 7.029E-03 m 7.030E-03 m 6.956E-03 m

80 7.032E-03 m 7.034E-03 m 6.956E-03 m

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 307.44: Errors for 27NodeBrick cicular plate with four edges simply supported.

Element type 27NodeBrick 27NodeBrick

Number of layers 2layers 4layers

Number of diameter divisions Height:0.50m Height:0.25m

4 4.36% 4.38%

12 1.82% 1.83%

20 1.56% 1.57%

40 0.88% 0.90%

60 1.04% 1.06%

80 1.09% 1.11%

Figure 307.163: Error scale 0% - 5%.

Figure 307.164: Error scale 0% - 100%.

Figure 307.165: 27NodeBrick circular plate with edge simply supported Displacement error versus Num-

ber of side division.
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307.2.22 Verification of 27NodeBrick Finite Element for Boussinesq Problem

307.2.22.1 Introduction

The Boussinesq problem is finding the displacement distribution in the isotropic linearly elastic half-space,

subject to a concentrated load applied on the surface and perpendicular to it. The Boussinesq problem

diagram is shown in Fig.(307.166).

Boussinesq problem is widely used in geotechnical engineering, especially when designing a foundation

which transfers the superstructure load to the soil. To estimate the foundation settlements, it is important

to have a reliable numerical solution for the Boussinesq problem.

Figure 307.166: Boussinesq problem description (Figure Reference: Verruijt, Arnold, and Stefan Van

Baars. Soil mechanics. Delft, 2007.)

In 1885, the French scientist Joseph Boussinesq solved the analytic solutions of displacements in the

homogeneous isotropic linear elastic half space. In general, the vertical displacement of the surface is

z = 0 : uz =
P(1 – ν2)
πER

(307.59)

where P is the vertical load, ν is the Poisson’s ratio, E is the elastic modulus, and R is the distance

from the measured point to the loading point.

In this section, the Real-ESSI numerical solution is verified by the analytic solution for the Boussinesq

problem.

307.2.22.2 Description of the Verification Model

Since the problem is cylindrical symmetry, a quarter of the entire cube was employed to represent the

whole cube. The reduced model was shown in Fig.(307.167).
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The side length is 20 meters and the load P is 1N. The elastic modulus E = 1 × 103Pa and the

Poisson’s ratio ν = 0.0.

Figure 307.167: Reduced model (One quarter model) for the point load on the half space

The boundary conditions are shown in Fig.(307.168) and (307.169).

Figure 307.168: X-Z view for the reduced model

307.2.22.3 Results

Analytic solution for this model

According to the previous introduction, the analytic solution on the surface for this problem is

z = 0 : uz =
P(1 – ν2)
πER

=
1

103π

1
R

(307.60)

On the face x = 0, the distance R on the surface is actually the value of y, therefore, the analytic

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 307.2. VERIFICATION OF STATIC, SINGLE PH . . . page: 1595 of 3287

Figure 307.169: Y-Z view for the reduced model

solution is

uz =
1

103πR
=

1
103π

1
y

(307.61)

As long as the y values are substituted, the displacement uz is obtained immediately.

Real-ESSI solution with 27NodeBrickLT

In Real-ESSI, 27NodeBrickLT elements were used to simulate this model. Each element is 2m ×
2m × 2m. Since the model is 20m × 20m × 20m, the element number is 10 × 10 × 10 = 1000. The

vertical displacement at the surface was recorded.

Since the model is symmetric, when the results were plotted, the other half results were achieved by

symmetry.

Comparison between the analytic and 27NodeBrickLT solution

The Real-ESSI and analytic results were plotted in Fig.(307.170). Note that the analytic solution for

location y = 0 is infinity, which was not plotted in the figure below.

307.2.22.4 Error Analysis

1. Mismatch at the loading point.

First of all, when x = 0 at the loading point, the analytic solution is infinite. From the perspective

of practical engineering, this analytic solution is flawed because the displacement cannot be infinite.

The infinite solution is due to the elastic assumption. In consideration of the plasticity, the analytic

solution will not be infinite.

In Real-ESSI, the displacement at the loading point is not infinite because the infinite value is

averaged by the integration during the finite element calculation. Also, at the loading point,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 307.170: Comparison between analytic solution and Real-ESSI 27NodeBrickLT solution

27NodeBrickLT has a much larger displacement than that of 8NodeBrickLT. This is because

27NodeBrickLT has a relatively denser mesh than 8NodeBrickLT. So the maximum value at the

loading point is higher than that of 8NodeBrickLT.

2. Mismatch at other locations.

Except at the loading point, the analytic solution is not exactly equal to the numerical solution

at other locations. This is because the verification example employs a simplified bounded cube

to represent unbounded half space. The original analytic solution is for the half space, which is

not true for the verification model. Not only the horizontal space but also the bottom space are

removed from the model. This means the analytic solution is not perfect for this bounded cube.

However, since the cube is very great, the analytic solution is similar to the Real-ESSI numerical

solution. In addition, the brick elements are also verified by other models, like beam, plate and

shells.

307.3 Verification of Dynamic, Single Phase Solid Modeling and Simulation

. . .
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308.1 Chapter Summary and Highlights

308.2 Verification of Static, Beam-Column Finite Element Modeling and Simu-

lation

308.3 Bernoulli Beam Elements with 12DOFs and 9DOFs

Figures 308.1 and 308.2

308.3.1 FEM Model

x

y

P

z

Figure 308.1: Finite element model for static analysis

x

y

z

Figure 308.2: Finite element model for dynamic analysis

308.3.2 Static Analysis

Figures 308.3

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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E = 5Pa

I = 16m4

L = 2m

P = 1N

∆ = PL3

3EI = 0.033m
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Figure 308.3: Comparison of static displacements (pseudo time) of the top nodes, Force time history

applied to the top node

308.3.3 Dynamic Analysis

Figures 308.4 and 308.5
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 308.3. BERNOULLI BEAM ELEMENTS WITH . . . page: 1600 of 3287

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30

D
is

pl
ac

em
en

t (
m

)

Time (s)

12dof
9dof

Figure 308.4: Comparison of displacement time histories of the top nodes, Displacement time history

applied to the node with 6DOF, mass comes from beam density
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Figure 308.5: Comparison of free vibration displacement time histories of the top nodes, mass comes

from beam density
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308.3.4 Bernoulli Beam, Comparison of Eigen Frequencies

Table 308.1

Table 308.1: Comparison of eigen frequencies between models of using 9DOF beam and 12DOF beam

Mode 9DOF 12DOF

1 0.264559 0.264236

2 0.268474 0.268064

3 0.308202 0.308202

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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308.4 Timoshenko Beam

Models used:

- Model with 27-node-brick model is used as the benchmark. The model is 10m× 10m× 60m, each

element is 2m × 2m × 2m, so there are 5× 5× 30 = 750 elements in total.

- Model with 5 Timoshenko beams are used to test the performance of the Timoshenko element.

Material properties and cross-section properties are kept the same as those of the brick model.

Various values of the shear correction factor are tested.

- Model with 5 Bernoulli beam elements is also tested.

- For both beam models, consistent mass is used.

Input files for all the models shown are available HERE.

Figures of models are shown below:

Figure 308.6: Cantilever model made of 27-node-brick elements.
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Figure 308.7: Cantilever model made of multiple Timoshenko or Bernoulli elements.
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Eigenanalysis results are shown in the following table and figures.

Table 308.2: Comparison of eigenfrequencies for 27-node-brick, Timoshenko beam with different shear

correction factors, and Bernoulli beam models.

Eigenmode

Eigenfrequency (Hz)

27-Node-Brick
Timoshenko Timoshenko Timoshenko

Bernoulli
(shear factor=1) (shear factor=2) (shear factor=100)

Bending (1st)
1 1.63364 1.63375 1.64358 1.65336 1.65356

2 1.63364 1.63375 1.64358 1.65336 1.65356

Bending (2nd)
3 9.23543 9.36137 9.6899 10.0443 10.0519

4 9.23543 9.36137 9.6899 10.0443 10.0519

Torsion (1st) 5 9.30771 10.1473 10.1473 10.1473 10.1473

Axial (1st) 6 15.4575 15.5002 15.5002 15.5002 15.5002

Bending (3rd)
7 22.8703 23.7943 25.246 26.9177 26.9542

8 22.8703 23.7943 25.246 26.9177 26.9542

Torsion (2nd) 9 27.9199 31.4476 31.4476 31.4476 31.4476

Figure 308.8: First 9 eigenmodes of the cantilever model made of 27-node-brick elements.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 308.9: First 9 eigenmodes of the cantilever model made of Timoshenko beam elements.
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308.5 Verification of Shell (Felippa-ANDES) Finite Element Modeling and Sim-

ulation

The verification and validation of the behavior of the ANDES (Assumed Natural Deviatoric Strain) shell

finite element implemented in essi is described in this section. The verification is split up into several

cases intended to test different aspects of the implementation. The tests are based on well-known closed

form solutions to elasticity problems which can be modelled using shells. Further, the verification is

divided into static and dynamic tests.

308.5.1 Static Tests

The purpose of the static tests is to verify that the stiffness matrices generated by the 4 Node ANDES

Shell are useful to approximate well known cases of solutions to beam theory.

Tests are done to verify the bending component and the membrane component independently, be-

cause the behaviour of both is assumed de-coupled in this linear implementation.

308.5.1.1 Bending Component Verification

These tests compare the bending performance of a simple mesh of ANDES shells for the case of simple

(Bernoulli) beam examples.

1

2

3

4

5

...

Mesh

Test 1 Test 2 Test 3 Test 4

Test 1: Concentrated transversal tip load

The test file for this case can be found in

(ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 1 bending transverse.fei

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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For a prismatic beam made of a homogeneous elastic isotropic material of modulus of elasticity E,

cross section I and length L we have that, under Bernoulli-Euler theory, the displacement at the tip due

to a concentrated load P is

δtip =
PL3

3EI

and for this test case’s geometry

δtip =
qBL3

3EBh3/12
=

4qL3

Eh3

With the purpose of measuring the errors as percent agreement with the theoretical results, the

load q is computed such that the tip displacement is 100 units. Thus, in terms of the geometry of the

problem.

q = 100× Eh3

4L3

This force is translated into nodal equivalent forces by applying half the total load qB to each tip

node in the vertical direction and fixing the x direction rotational degrees of freedom for the tip nodes.

The parameters chosen for this case are

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 1*m; // Beam length
5 B = 0.2*m; // Beam width
6 rho = 0*kg/m^3; // Mass density

For different number of subdivisions, here are the results of the tip displacement.

Nsubd uz

2 96.2118

7 100.096

13 100.068

19 100.039

25 100.024

31 100.016

37 100.012

Nsubd uz

42 100.009

48 100.007

54 100.006

60 100.005

66 100.004

72 100.003

77 100.003

Nsubd uz

83 100.002

89 100.002

95 100.002

101 100.002

107 100.001

112 100.001

The element displays sensitivity to the aspect ratio of its sides. Indeed, chosing a different set of

parameters

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 1*m; // Beam length
5 B = 0.2*m; // Beam width
6 rho = 0*kg/m^3; // Mass density

yields slightly different results

Nsubd uz

2 93.7897

7 99.5267

13 99.8587

19 99.9409

25 99.9713

31 99.985

37 99.992

Nsubd uz

42 99.9958

48 99.998

54 99.9993

60 100.

66 100.001

72 100.001

77 100.001

Nsubd uz

83 100.001

89 100.001

95 100.001

101 100.001

107 100.001

112 100.001

Test 2: Concentrated tip moment

The test file for this case can be found in

(ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 2 bending transverse.fei

Analogous to the previous test, for a cantilever beam with a tip moment the tip rotation is

θtip =
ML
EI

and for this test case’s geometry

θtip =
mBL

EBh3/12
=

12mL
Eh3

In this case, the parameters are selected such that this tip rotation is of 100 units. Execution of the

test case shows that with Nsubd = 2 the theoretical value is met with 100% accuracy. This is because

the moment field is constant inside the beam and the elements are capable of reproducing this field with

accuracy.

Test 3: Concentrated mid-span transversal load
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This case is similar to test case 1. The accuracy for 2 elements is 96.2% agreement with the

theoretical solution. For Nsubd = 4 (4 elements total) the accuracy climbs to 99.7%. The test file for

this case can be found in

(ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 3 bending transverse.fei

Test 4: Transversal distributed load

The distributed load is generated by accelerating the beam transversally with an acceleration which

produces a 100 (unit) displacement. This provides an indirect test to the mass matrix which will be further

tested in dynamic tests. The uniformly distributed load q which produces the δtip unit displacement and

the corresponding tip rotation are

q = 8
EI
L4 δtip and θytip =

4
3L
δtip

from this value, the required acceleration is computed as

a =
q

ρBH

where ρ is the unit-weight of the material used to compute the mass matrix.

For two subdivisions (6 nodes) the results of the two nodes located at the tip of the beam are

1 Node : 5
2 ux = 0.000000, rx = 30.550500
3 uy = 0.000000, ry = -133.333000
4 uz = 102.541000, rz = 0.000000
5 Node : 6
6 ux = 0.000000, rx = -30.550500
7 uy = 0.000000, ry = -133.333000
8 uz = 102.541000, rz = 0.000000

First, a 2.5% accuracy is reached in the tip displacement. Second, it is noteworthy to mention that

the current formulation of the mass matrix will produce rotations around the x axis for the nodes. One

reason for this is that the chosen mass matrix is not consistent with the stiffness matrix instead, it is

borrowed from a similar element 1 2 3. The reason behind this decision is the fact that the very accurate

ANDES stiffness formulation lacks a displacement interpolation scheme which is necessary to produce

1The First ANDES Elements: 9-DOF Plate Bending Trianges Carmello Militello & Carlos A. Felippa

December 1989 Report No. CU-CSSC-89-22
2Chapter 32 of Felippa’s Lecture Notes Finite element templates for bending
3C. A. Felippa and P. G. Bergan, A triangular plate bending element based on an energy-orthogonal

free formulation, Comp. Meth. Appl. Mech. Engrg., 61, 129{160, 1987.
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a consistent mass matrix. Furthermore, restraining these x roation degrees of freedom does not lead to

an improved solution.

For 4 subdivisions, the results at the tip are:

1 Node : 9
2 ux = 0.000000, rx = 31.671000
3 uy = 0.000000, ry = -133.333000
4 uz = 100.891000, rz = 0.000000
5 Node : 10
6 ux = 0.000000, rx = -31.671000
7 uy = 0.000000, ry = -133.333000
8 uz = 100.891000, rz = 0.000000

and for 20.

1 Node : 41
2 ux = 0.000000, rx = 32.095800
3 uy = 0.000000, ry = -133.333000
4 uz = 100.039000, rz = 0.000000
5 Node : 42
6 ux = 0.000000, rx = -32.095800
7 uy = 0.000000, ry = -133.333000
8 uz = 100.039000, rz = 0.000000

and back to 2 subdivisions but this time with an aspect ratio L/B = 2, by changing B so that the expected

tip displacement remains the same, we get

1 Node : 5
2 ux = 0.000000, rx = 3.890200
3 uy = 0.000000, ry = -133.333000
4 uz = 99.810100, rz = 0.000000
5 Node : 6
6 ux = 0.000000, rx = -3.890200
7 uy = 0.000000, ry = -133.333000
8 uz = 99.810100, rz = 0.000000

which shows that the effect of the inconsistent mass matrix is ameliorated for elements with a better

aspect ratio. The elements in this case are square in shape since L/B = 2 and Nsubd = 2.

In conclusion increasing accuracy for bending problems not only involves making the elements smaller

but also improving their aspect ratio. This is especially critical in dynamic problems (or self weight

problems). The test file for this case can be found in

(ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 4 bending transverse.fei
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308.5.1.2 Membrane Component Verification

These tests compare the performance of the membrane component of the ANDES Shell by modelling

simple beams and comparing the approximation with Bernoulli-beam theoretical results.

1

2

3

4

5

6

7

8

Mesh

Test 5 Test 6 Test 7 Test 8

Test 5: Longitudinal tip load

The parameters used to test this case are,

1 h = 0.2*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 30*m; // Beam length
5 B = 3*m; // Beam width
6 rho = 0.0*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 2; // Number of side subdivisions

the tip load was computed to give δtip = 100 from

Ftip =
AE
L
δtip

Additionally, the tip rotation degrees of freedom about z axis (rz) were fixed to enforce the uniform

loading condition. The results for 2 subdivisions observed at the two tip nodes is

1 Node : 5
2 ux = 100.000000, rx = 0.000000
3 uy = -0.000000, ry = 0.000000
4 uz = 0.000000, rz = 0.000000
5 Node : 6
6 ux = 100.000000, rx = 0.000000
7 uy = -0.000000, ry = 0.000000
8 uz = 0.000000, rz = 0.000000
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The test file for this case can be found in (ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 5 membrane axial.fei

Test 6: Longitudinal self-weight load

As in test 4, the distributed load for this test was generated by using an acceleration field with a

magnitude such that it generates 100 units of displacement in DOF ux. The required body force q (per

unit length) is derived from linear elasticity to be

q =
2EA
L2 δtip

from which the acceleration is found to be given by a =
q

ρBH
. The tip nodes were fixed to move only in

the x direction. The model parameters used for this test are,

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 1*m; // Beam length
5 B = 1*m; // Beam width
6 rho = 100*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 2; // Number of side subdivisions

and the tip displacements

1 Node : 5
2 ux = 100.000000, rx = 0.000000
3 uy = 0.000000, ry = 0.000000
4 uz = 0.000000, rz = 0.000000
5 Node : 6
6 ux = 100.000000, rx = 0.000000
7 uy = 0.000000, ry = 0.000000
8 uz = 0.000000, rz = 0.000000

Which means that in the quadratic displacement field coming from a uniform external load can be

captured exactly by this element.

The test file for this case can be found in (ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 6 membrane axial.fei

Test 7: Transversal tip load This test is identical to test 1, except the beam mesh is placed sideways so

that the membrane component is used instead of the bending one. Since the membrane part can capture

deformation due to shear, the ratio L/B is set to 10 so that this does not affect the results.
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 308.5. VERIFICATION OF SHELL (FELIPPA- . . . page: 1613 of 3287

1 h = 0.2*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 10*m; // Beam length
5 B = 1.0*m; // Beam height
6 rho = 0*kg/m^3; // Mass density
7 d_tip = 100*m; // Target tip displacement
8

9 Nsubd = 10; // Number of side subdivisions

Results at the tip show less than 1% error with theoretical results when shear component is made small.

1 Node : 21
2 ux = -7.513920, rx = 0.000000
3 uy = -100.650000, ry = 0.000000
4 uz = 0.000000, rz = -15.072400
5 Node : 22
6 ux = 7.513920, rx = 0.000000
7 uy = -100.650000, ry = 0.000000
8 uz = 0.000000, rz = -15.072400

It would be interestign to test this component vs. a beam theory which incorporates deformation due to

shear such as Timoshenko beams.

The test file for this case can be found in (ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 7 membrane transverse.fei

Test 8: Transversal self-weight load This test is analogous to test 4, except the membrane component

is being tested instead of the bending. Again, the L/B ratio is kept at 10 to avoid shear deformation

creeping into the results perceptively.

1 h = 1*m; // Shell thickness
2 Eshell = 1*N/m^2; // Elastic modulus
3 nu = 0.0; // Poisson's ratio
4 L = 10*m; // Beam length
5 B = 0.5*m; // Beam width
6 rho = 100*kg/m^3; // Mass density
7 delta_tip = 100*m; // Target tip displacement
8

9 Nsubd = 10; // Number of side subdivisions

Displacement results at the tip nodes show less than 1% error when compared to Bernoulli beam theory.

1 Node : 21
2 ux = 3.325110, rx = 0.000000
3 uy = 99.780900, ry = 0.000000
4 uz = 0.000000, rz = 13.301200
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5 Node : 22
6 ux = -3.325110, rx = 0.000000
7 uy = 99.780900, ry = 0.000000
8 uz = 0.000000, rz = 13.301200

The test file for this case can be found in (ESSI SOURCE FOLDER)/Verification Examples/...

.../Static and Dynamic Behavior of Structural Elements/...

.../Shell ANDES/static/Test shell andes 8 membrane transverse.fei
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308.5.2 Dynamic Tests

The purpose of the dynamic tests is to verify that the mass matrix adopted for these elements (which is

not consistent with the stiffness) is adequate for Dynamic analysis. Also tested herein are the geometric

transformations.

Again, the tests are divided into bending and membrane components which are tested independently.

Also, an eigenvalue analysis is performed to verify accordance with theoretical results for continuous

Bernoulli beams. Finally, geometric transformations are tested by performing an eigenvalue analysis for

the same (unrestrained) beam in different orientations (pitch, yaw and roll) which should have invariant

eigenvalues.

308.5.2.1 Bending Component
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308.5.2.2 Membrane Component
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308.5.2.3 Geometric Transformations
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308.6 Verification of 4NodeANDES elements

308.6.1 Verification of 4NodeANDES cantilever beams

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use the

shear deformation coefficient κ = 1.2. The force direction was shown in Figure (308.10).

Figure 308.10: Problem description for cantilever beams.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6

= 8.64× 10–4m + 0.144× 10–4m

= 8.784× 10–4 m

(308.1)

4NodeANDES element model:

• Force direction: perpendicular to plane (bending)

When the force direction is perpendicular to the plane, only the bending deformation is calculated in

4NodeANDES elements.

The 4NodeANDES elements were shown in Figure (308.14).

• Force direction: inplane force

When the force direction is inplane, both the bending and shear deformation are calculated in 4Node-

ANDES elements.
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7cm

Figure 308.11: One 4NodeANDES element.

7cm

Figure 308.12: Two 4NodeANDES elements.

7cm

Figure 308.13: Six 4NodeANDES elements.

Figure 308.14: 4NodeANDES elements for cantilever beams under force perpendicular to plane.

The 4NodeANDES elements under inplane force were shown in Figure (308.18).

The Real-ESSI results for the force perpendicular to plane (bending) were listed in Table (308.3).

The theoretical solution is 8.784E-04 m. The Real-ESSI results for the inplane force were listed in Table

Table 308.3: Results for 4NodeANDES cantilever beams under the force perpendicular to plane (bend-

ing).

Element number 1 2 6

4NodeANDES 6.56E-04 m 8.27E-04 m 8.86E-04 m

Error 25.34% 5.87% 0.83%

(308.4).

The theoretical solution is 8.784E-04 m.

The errors were plotted in Figure (308.21).

The Real-ESSI model fei/DSL files for the table above are HERE.
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7cm

Figure 308.15: One 4NodeANDES element.

7cm

Figure 308.16: Two 4NodeANDES elements.

7cm

Figure 308.17: Six 4NodeANDES elements.

Figure 308.18: 4NodeANDES elements for cantilever beams under inplane force.

Table 308.4: Results for 4NodeANDES cantilever beams under the inplane force.

Element number 1 2 6

4NodeANDES 6.70E-04 m 8.27E-04 m 8.64E-04 m

Error 23.77% 5.89% 1.65%
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7cm

Figure 308.19: Error scale 0% - 30%.

7cm

Figure 308.20: Error scale 0% - 100%.

Figure 308.21: 4NodeANDES cantilever beam for different element number˙ Displacement error versus

Number of elements
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308.6.2 Verification of 4NodeANDES cantilever beam for different Poisson’s ratio

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0 – 0.49.

The force direction was shown in Figure (308.22).

Figure 308.22: Problem description for cantilever beams of different Poisson’s ratios.

The theoretical solution for ν = 0.0 was calculated below, while the solution for other Poisson’s ratio

were calculated by the similar process.

Theoretical displacement (bending and shear deformation):

d =
FL3

3EI
+

FL
GAv

=
FL3

3E bh3
12

+
FL
E

2(1+ν)
bh
κ

=
100N × 63m3

3× 108N /m2 × 1
12m4 +

100N × 6m
10
2 × 107N /m2 × 1m2 × 5

6

= 8.64× 10–4m + 0.144× 10–4m

= 8.784× 10–4 m

(308.2)

The rotation angle at the end:

θ =
FL2

2EI
=

100N × 62m2

2× 108N /m2 × 1
12m4 = 2.16× 10–4 rad = 0.0124◦ (308.3)

The 4NodeANDES elements for cantilever beams of different Poisson’s ratios were shown in Figure

(308.23) and (308.24):

The Real-ESSI results for the force perpendicular to plane (bending) were listed in Table (308.5) -

(308.7).

The errors were plotted in Figure (308.27).

The Real-ESSI results for the inplane force were listed in Table (308.8) - (308.10).
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Figure 308.23: 4NodeANDES elements for different Poisson’s ratios under the force perpendicular to

plane (bending).

Figure 308.24: 4NodeANDES elements for different Poisson’s ratios under the inplane force.

Table 308.5: Displacement error results for 4NodeANDES with element side length 1 m under the force

perpendicular to plane (bending).

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.639E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 1.38%

0.05 8.635E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 1.49%

0.10 8.622E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 1.71%

0.15 8.599E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 2.04%

0.20 8.566E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 2.48%

0.25 8.522E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 3.05%

0.30 8.466E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 3.75%

0.35 8.398E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 4.59%

0.40 8.315E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 5.60%

0.45 8.216E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 6.78%

0.49 8.124E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 7.88%

The errors were plotted in Figure (308.27).

plane(bending)˙

The angle results for the force perpendicular to plane (bending) were listed in Table (308.11).

The errors were plotted in Figure (308.33).
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Table 308.6: Displacement error results for 4NodeANDES with element side length 0.5 m under the

force perpendicular to plane (bending).

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.724E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.68%

0.05 8.724E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.76%

0.10 8.717E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.93%

0.15 8.703E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 1.17%

0.20 8.682E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 1.49%

0.25 8.652E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 1.91%

0.30 8.615E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 2.42%

0.35 8.569E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 3.02%

0.40 8.514E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 3.73%

0.45 8.449E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 4.54%

0.49 8.388E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 5.30%

Table 308.7: Displacement error results for 4NodeANDES with element side length 0.25 m under the

force perpendicular to plane (bending).

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.640E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 1.64%

0.05 8.637E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 1.75%

0.10 8.627E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 1.95%

0.15 8.611E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 2.21%

0.20 8.588E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 2.56%

0.25 8.559E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 2.97%

0.30 8.523E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 3.46%

0.35 8.480E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 4.03%

0.40 8.429E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 4.69%

0.45 8.370E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 5.44%

0.49 8.316E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 6.11%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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7cm

Figure 308.25: Error scale 0% - 15%.

7cm

Figure 308.26: Error scale 0% - 100%.

Figure 308.27: 4NodeANDES cantilever beam for force perpendicular to the plane(bending)˙

Displacement error versus Poisson’s ratio

The Real-ESSI results for the inplane force were listed in Table (308.14 - (308.16).

The errors were plotted in Figure (308.33).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Table 308.8: Displacement error results for 4NodeANDES with element side length 1 m under the

inplane force.

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.790E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.07%

0.05 8.799E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.09%

0.10 8.809E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.12%

0.15 8.821E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.17%

0.20 8.835E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.25%

0.25 8.853E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.37%

0.30 8.878E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 0.56%

0.35 8.913E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 0.87%

0.40 8.971E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 1.44%

0.45 9.107E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 2.89%

0.49 9.901E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 11.79%

Table 308.9: Displacement error results for 4NodeANDES with element side length 0.5 m under the

inplane force.

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.784E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.00%

0.05 8.788E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.04%

0.10 8.787E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.13%

0.15 8.782E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.27%

0.20 8.772E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.47%

0.25 8.759E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.70%

0.30 8.742E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 0.98%

0.35 8.722E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 1.29%

0.40 8.699E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 1.63%

0.45 8.679E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 1.94%

0.49 8.709E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 1.67%
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Table 308.10: Displacement error results for 4NodeANDES with element side length 0.25 m under the

inplane force.

Poisson’s

ratio

4NodeANDES

displacement

Theory displacement

(bending)

Theory displacement

(shear)

Theory

displacement(all)
Error

0.00 8.782E-04 m 8.640E-04 m 1.440E-05 m 8.784E-04 m 0.02%

0.05 8.786E-04 m 8.640E-04 m 1.512E-05 m 8.791E-04 m 0.06%

0.10 8.788E-04 m 8.640E-04 m 1.586E-05 m 8.799E-04 m 0.12%

0.15 8.786E-04 m 8.640E-04 m 1.659E-05 m 8.806E-04 m 0.23%

0.20 8.781E-04 m 8.640E-04 m 1.734E-05 m 8.813E-04 m 0.37%

0.25 8.774E-04 m 8.640E-04 m 1.808E-05 m 8.821E-04 m 0.53%

0.30 8.763E-04 m 8.640E-04 m 1.884E-05 m 8.828E-04 m 0.74%

0.35 8.750E-04 m 8.640E-04 m 1.959E-05 m 8.836E-04 m 0.97%

0.40 8.734E-04 m 8.640E-04 m 2.035E-05 m 8.844E-04 m 1.24%

0.45 8.717E-04 m 8.640E-04 m 2.111E-05 m 8.851E-04 m 1.52%

0.49 8.706E-04 m 8.640E-04 m 2.173E-05 m 8.857E-04 m 1.71%

Table 308.11: Rotation angle results for element side length 1 m under the force perpendicular to plane

(bending).

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.238E-02 1.240E-02 0.19%

0.05 1.237E-02 1.240E-02 0.23%

0.10 1.236E-02 1.240E-02 0.34%

0.15 1.234E-02 1.240E-02 0.52%

0.20 1.230E-02 1.240E-02 0.78%

0.25 1.226E-02 1.240E-02 1.12%

0.30 1.221E-02 1.240E-02 1.54%

0.35 1.214E-02 1.240E-02 2.07%

0.40 1.206E-02 1.240E-02 2.70%

0.45 1.197E-02 1.240E-02 3.46%

0.49 1.188E-02 1.240E-02 4.16%
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7cm

Figure 308.28: Error scale 0% - 10%.

7cm

Figure 308.29: Error scale 0% - 100%.

Figure 308.30: 4NodeANDES cantilever beam for inplane force˙ Displacement error versus Poisson’s

ratio
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Table 308.12: Rotation angle results for element side length 0.5 m the force perpendicular to plane

(bending).

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.239E-02 1.240E-02 0.10%

0.05 1.238E-02 1.240E-02 0.13%

0.10 1.237E-02 1.240E-02 0.22%

0.15 1.236E-02 1.240E-02 0.36%

0.20 1.233E-02 1.240E-02 0.55%

0.25 1.230E-02 1.240E-02 0.81%

0.30 1.226E-02 1.240E-02 1.13%

0.35 1.221E-02 1.240E-02 1.52%

0.40 1.216E-02 1.240E-02 1.97%

0.45 1.209E-02 1.240E-02 2.51%

0.49 1.203E-02 1.240E-02 3.00%

Table 308.13: Rotation angle results for element side length 0.25 m under the force perpendicular to

plane (bending).

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.238E-02 1.240E-02 0.19%

0.05 1.237E-02 1.240E-02 0.21%

0.10 1.237E-02 1.240E-02 0.28%

0.15 1.235E-02 1.240E-02 0.39%

0.20 1.233E-02 1.240E-02 0.56%

0.25 1.230E-02 1.240E-02 0.78%

0.30 1.227E-02 1.240E-02 1.05%

0.35 1.223E-02 1.240E-02 1.38%

0.40 1.218E-02 1.240E-02 1.77%

0.45 1.212E-02 1.240E-02 2.23%

0.49 1.207E-02 1.240E-02 2.64%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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7cm

Figure 308.31: Error scale 0% - 5%.

7cm

Figure 308.32: Error scale 0% - 100%.

Figure 308.33: 4NodeANDES cantilever beam for force perpendicular to the plane(bending)˙

Rotation angle error versus Poisson’s ratio
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Table 308.14: Rotation angle results for element side length 1 m under the inplane force.

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.254E-02 1.240E-02 1.14%

0.05 1.255E-02 1.240E-02 1.19%

0.10 1.256E-02 1.240E-02 1.26%

0.15 1.257E-02 1.240E-02 1.35%

0.20 1.258E-02 1.240E-02 1.47%

0.25 1.260E-02 1.240E-02 1.64%

0.30 1.263E-02 1.240E-02 1.89%

0.35 1.269E-02 1.240E-02 2.30%

0.40 1.278E-02 1.240E-02 3.08%

0.45 1.305E-02 1.240E-02 5.28%

0.49 1.506E-02 1.240E-02 21.43%

Table 308.15: Rotation angle results for element side length 0.5 m under the inplane force.

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.271E-02 1.240E-02 2.51%

0.05 1.272E-02 1.240E-02 2.56%

0.10 1.272E-02 1.240E-02 2.58%

0.15 1.272E-02 1.240E-02 2.60%

0.20 1.273E-02 1.240E-02 2.63%

0.25 1.273E-02 1.240E-02 2.67%

0.30 1.274E-02 1.240E-02 2.77%

0.35 1.277E-02 1.240E-02 2.98%

0.40 1.283E-02 1.240E-02 3.47%

0.45 1.299E-02 1.240E-02 4.79%

0.49 1.361E-02 1.240E-02 9.78%
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Table 308.16: Rotation angle results for element side length 0.25 m under the inplane force.

Poisson’s

ratio

4NodeANDES

angle (unit:◦)

Theory angle

(unit:◦)
Error

0.00 1.268E-02 1.240E-02 2.24%

0.05 1.268E-02 1.240E-02 2.27%

0.10 1.268E-02 1.240E-02 2.30%

0.15 1.269E-02 1.240E-02 2.31%

0.20 1.269E-02 1.240E-02 2.33%

0.25 1.269E-02 1.240E-02 2.35%

0.30 1.270E-02 1.240E-02 2.41%

0.35 1.271E-02 1.240E-02 2.53%

0.40 1.275E-02 1.240E-02 2.83%

0.45 1.284E-02 1.240E-02 3.58%

0.49 1.312E-02 1.240E-02 5.77%
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7cm

Figure 308.34: Error scale 0% - 25%.

7cm

Figure 308.35: Error scale 0% - 100%.

Figure 308.36: 4NodeANDES cantilever beam for inplane force˙ Rotation angle error versus Poisson’s

ratio

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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308.6.3 Test of irregular shaped 4NodeANDES cantilever beams

Cantilever model was used as an example. Three different shapes were tested.

In the first test, the upper two nodes of each element were moved one half element size along the

y – axis, while the lower two nodes were kept at the same location. The element shape was shown in

Figure (308.39).

7cm

Figure 308.37: Horizontal plane.

7cm

Figure 308.38: Veritical plane.

Figure 308.39: 4NodeANDES cantilever beam for irregular Shape 1.

In the second test, the upper nodes of each element were moved 50% element size along the y – axis,

while the lower nodes were moved 50% element size in the other direction along the y–axis. The element

shape was shown in Figure (308.42).

In the third test, the upper two nodes of each element were moved 90% element size with different

directions along the y – axis, while the lower nodes were moved 90% element size in the other direction

along the y – axis. The element shape was shown in Figure (308.45).

The boundary conditions were shown in Figures (308.48), (308.51) and (308.54).

The Real-ESSI results were listed in Table (308.17).

The errors were listed in Tables (308.18) and (308.19).

The Real-ESSI model fei/DSL files for the table above are HERE.

Then, the beam was divided into small elements.

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. Use

the shear deformation coefficient κ = 1.2. The force direction was shown in Figure (308.55).
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7cm

Figure 308.40: Horizontal plane.

7cm

Figure 308.41: Veritical plane.

Figure 308.42: 4NodeANDES cantilever beam for irregular Shape 2.

7cm

Figure 308.43: Horizontal plane.

7cm

Figure 308.44: Veritical plane.

Figure 308.45: 4NodeANDES cantilever beam for irregular Shape 3.

Theoretical displacement (bending and shear deformation):

d =
qL4

8EI
+

qL2

2
GAv

=
qL4

8E bh3
12

+
qL2

2
E

2(1+ν)
bh
κ

=
400N /m× 124m4

8× 108N /m2 × 24
12m4

+
400N /m× 122

2 m2

108
2 N /m2 × 2m× 2m× 5

6

= 7.776× 10–3m + 1.728× 10–4m

= 7.9488× 10–3m

(308.4)
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7cm

Figure 308.46: Horizontal plane.

7cm

Figure 308.47: Veritical plane.

Figure 308.48: 4NodeANDES cantilever beam boundary conditions for irregular Shape 1.

7cm

Figure 308.49: Horizontal plane.

7cm

Figure 308.50: Veritical plane.

Figure 308.51: 4NodeANDES cantilever beam boundary conditions for irregular Shape 2.

The Real-ESSI displacement results were listed in Table (308.20).

The error were listed in Table (308.21).

The errors were shown in Figures (308.58), (308.61) and (308.64).

The Real-ESSI model fei/DSL files for the table above are HERE.

In this section, the beam was cut into smaller elements with element side length 0.5m and 0.25m

respectively. And the element side length of the original models is 1.0m. The numerical models were

shown in Figure (308.67), (308.70) and (308.73).

Number of division 1:
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7cm

Figure 308.52: Horizontal plane.

7cm

Figure 308.53: Veritical plane.

Figure 308.54: 4NodeANDES cantilever beam boundary conditions for irregular Shape 3.

Table 308.17: Results for 4NodeANDES cantilever beams of irregular shapes.

Displacements for irregular shaped element

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

4NodeANDES
perpendicular to

plane (bending)
8.639E-04 m 8.602E-04 m 8.534E-04 m 7.851E-04 m

4NodeANDES inplane force 8.857E-04 m 7.036E-04 m 4.263E-04 m 1.909E-04 m

Theoretical - 8.784E-04 m 8.784E-04 m 8.784E-04 m 8.784E-04 m

Table 308.18: Errors for irregular shaped 4NodeANDES compared to theoretical solution.

Errors for irregular shaped element, compared to theoretical solutions

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

4NodeANDES
perpendicular to

plane (bending)
1.65% 2.07% 2.85% 10.63%

4NodeANDES inplane force 0.83% 19.90% 51.47% 78.27%

Number of division 2:

Number of division 4:

The Real-ESSI results for the force perpendicular to plane (bending) were listed in Table (308.22).

The theoretical solution is 1.60E-5 m.

The Real-ESSI results for the inplane force were listed in Table (308.23). The theoretical solution is

1.60E-5 m.
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Table 308.19: Errors for irregular shaped 4NodeANDES compared to normal shape.

Errors for irregular shaped element, compared to normal shape

Element Type Force direction Normal shape Shape 1 Shape 2 Shape 3

4NodeANDES
perpendicular to

plane (bending)
0.00% 0.42% 1.22% 9.12%

4NodeANDES inplane force 0.00% 20.56% 51.87% 78.45%

Figure 308.55: Problem description for cantilever beams under uniform pressure .

Table 308.20: Results for 4NodeANDES cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

4NodeANDES shape1
perpendicular to

plane (bending)
7.750E-03 m 7.768E-03 m 7.774E-03 m

4NodeANDES shape1
inplane

force
6.822E-03 m 7.569E-03 m 7.832E-03 m

4NodeANDES shape2
perpendicular to

plane (bending)
7.656E-03 m 7.734E-03 m 7.765E-03 m

4NodeANDES shape2
inplane

force
3.875E-03 m 5.855E-03 m 7.074E-03 m

4NodeANDES shape3
perpendicular to

plane (bending)
6.637E-03 m 7.139E-03 m 7.521E-03 m

4NodeANDES shape3
inplane

force
1.555E-03 m 2.424E-03 m 3.896E-03 m

Theoretical solution 7.9488E-03 m 7.9488E-03 m 7.9488E-03 m

The errors were plotted in Figure (308.76).

The Real-ESSI model fei/DSL files for the table above are HERE.
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Table 308.21: Errors for 4NodeANDES cantilever beams of irregular shapes with more elements.

Element Type Shape Force direction
Number of division

1 2 4

4NodeANDES shape1
perpendicular to

plane (bending)
2.51% 2.28% 2.20%

4NodeANDES shape1
inplane

force
14.18% 4.78% 1.48%

4NodeANDES shape2
perpendicular to

plane (bending)
3.68% 2.71% 2.31%

4NodeANDES shape2
inplane

force
51.25% 26.34% 11.00%

4NodeANDES shape3
perpendicular to

plane (bending)
16.51% 10.19% 5.38%

4NodeANDES shape3
inplane

force
80.44% 69.51% 50.98%

Table 308.22: Results for 4NodeANDES clamped beams under the force perpendicular to plane (bend-

ing).

Element Type
Element side length

1 m 0.5 m 0.25 m

4NodeANDES 1.347E-05 m 1.35E-05 m 1.35E-05 m

Error 18.36% 18.24% 18.18%

Table 308.23: Results for 4NodeANDES clamped beams under the inplane force.

Element Type
Element side length

1 m 0.5 m 0.25 m

4NodeANDES 1.62E-05 m 1.65E-05 m 1.69E-05 m

Error 1.70% 0.12% 2.12%
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7cm

Figure 308.56: Error scale 0% - 15%.

7cm

Figure 308.57: Error scale 0% - 100%.

Figure 308.58: 4NodeANDES cantilever beam for irregular Shape 1˙ Displacement error versus Number

of division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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7cm

Figure 308.59: Error scale 0% - 60%.

7cm

Figure 308.60: Error scale 0% - 100%.

Figure 308.61: 4NodeANDES cantilever beam for irregular Shape 2˙ Displacement error versus Number

of division
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7cm

Figure 308.62: Error scale 0% - 80%.

7cm

Figure 308.63: Error scale 0% - 100%.

Figure 308.64: 4NodeANDES cantilever beam for irregular Shape 3˙ Displacement error versus Number

of division

7cm

Figure 308.65: Horizontal plane.

7cm

Figure 308.66: Veritical plane.

Figure 308.67: 4NodeANDES clamped beam with element side length 1.0m.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 308.6. VERIFICATION OF 4NODEANDES ELEM . . . page: 1643 of 3287

7cm

Figure 308.68: Horizontal plane.

7cm

Figure 308.69: Veritical plane.

Figure 308.70: 4NodeANDES clamped beam with element side length 0.5m.

7cm

Figure 308.71: Horizontal plane.

7cm

Figure 308.72: Veritical plane.

Figure 308.73: 4NodeANDES clamped beam with element side length 0.25m.
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7cm

Figure 308.74: Error scale 0% - 20%.

7cm

Figure 308.75: Error scale 0% - 100%.

Figure 308.76: 4NodeANDES clamped beam for different element number˙ Displacement error versus

Number of division
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308.6.4 Verification of 4NodeANDES square plate with four edges clamped

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (308.5)

The theoretical solution is

d = αc
qa4

D
= 0.00406× 100N /m2 × 204m4

9.1575× 106 N · m = 2.2015× 10–3m (308.6)

where αc is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient4 αc is 0.00406.

The 4NodeANDES were shown in Figures (308.77) - (308.82).

Figure 308.77: 4NodeANDES edge clamped square plate with element side length 10m.

The results were listed in Table (308.24).

The errors were listed in Table (308.25).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.78: 4NodeANDES edge clamped square plate with element side length 5m.

Table 308.24: Results for 4NodeANDES square plate with four edges clamped.

Element type 4NodeANDES Theoretical

displacementElement side length Height:1.00m

10m 2.33E-003 m 2.20E-03 m

5m 2.75E-003 m 2.20E-03 m

2m 2.58E-003 m 2.20E-03 m

1m 2.54E-003 m 2.20E-03 m

0.5m 2.53E-003 m 2.20E-03 m

0.25m 2.53E-003 m 2.20E-03 m

The errors were plotted in Figure (308.85).

The Real-ESSI model fei/DSL files for the table above are HERE.

4Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page120, 1959.
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Figure 308.79: 4NodeANDES edge clamped square plate with element side length 2m.

Table 308.25: Errors for 4NodeANDES square plate with four edges clamped.

Element type 4NodeANDES

Element side length Height:1.00m

10m 5.65%

5m 24.98%

2m 16.97%

1m 15.28%

0.5m 14.84%

0.25m 14.73%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.80: 4NodeANDES edge clamped square plate with element side length 1m.

Figure 308.81: 4NodeANDES edge clamped square plate with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.82: 4NodeANDES edge clamped square plate with element side length 0.25m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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7cm

Figure 308.83: Error scale 0% - 25%.

7cm

Figure 308.84: Error scale 0% - 100%.

Figure 308.85: 4NodeANDES square plate with edge clamped˙ Displacement error versus Number of

side division

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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308.6.5 Verification of 4NodeANDES square plate with four edges simply supported

Problem description: Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (308.7)

The theoretical solution is

d = αs
qa4

D
= 0.00126× 100N /m2 × 204m4

9.1575× 106 N · m = 7.0936× 10–3m (308.8)

where αs is a coefficient, which depends on the ratio of plate length to width. In this problem, the

coefficient5 αs is 0.00126.

The 4NodeANDES were shown in Figure (308.86) - (308.91).

Figure 308.86: 4NodeANDES edge simply supported square plate with element side length 10m.

The results were listed in Table (308.26).

The errors were listed in Table (308.27).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 308.87: 4NodeANDES edge simply supported square plate with element side length 5m.

Table 308.26: Results for 4NodeANDES square plate with four edges simply supported.

Element type 4NodeANDES Theoretical

displacementElement side length Height:1.00m

10m 1.14E-002 m 7.09E-03 m

5m 1.03E-002 m 7.09E-03 m

2m 9.78E-003 m 7.09E-03 m

1m 9.70E-003 m 7.09E-03 m

0.5m 9.68E-003 m 7.09E-03 m

0.25m 9.67E-003 m 7.09E-03 m

The errors were plotted in Figure (308.94).

The Real-ESSI model fei/DSL files for the table above are HERE.

5Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page202, 1959.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.88: 4NodeANDES edge simply supported square plate with element side length 2m.

Table 308.27: Errors for 4NodeANDES square plate with four edges simply supported.

Element type 4NodeANDES

Element side length Height:1.00m

10m 60.34%

5m 45.14%

2m 37.83%

1m 36.69%

0.5m 36.40%

0.25m 36.32%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.89: 4NodeANDES edge simply supported square plate with element side length 1m.

Figure 308.90: 4NodeANDES edge simply supported square plate with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.91: 4NodeANDES edge simply supported square plate with element side length 0.25m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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7cm

Figure 308.92: Error scale 0% - 70%.

7cm

Figure 308.93: Error scale 0% - 100%.

Figure 308.94: 4NodeANDES square plate with edge simply supported˙ Displacement error versus Num-

ber of side division
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308.6.6 Verification of 4NodeANDES circular plate with all edges clamped

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (308.9)

The theoretical solution6 is

d =
qa4

64D
=

100N /m2 × 104m4

64× 9.1575× 106 N · m = 1.7106× 10–3m (308.10)

The 4NodeANDES were shown in Figures (308.95) - (308.100).

Figure 308.95: 4NodeANDES edge clamped circular plate with element side length 10m.

The results were listed in Table (308.28).

The errors were listed in Table (308.29).

The errors were shown in Figure (308.103).

The Real-ESSI model fei/DSL files for the table above are HERE.

6Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 308.96: 4NodeANDES edge clamped circular plate with element side length 5m.

Figure 308.97: 4NodeANDES edge clamped circular plate with element side length 2m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.98: 4NodeANDES edge clamped circular plate with element side length 1m.

Figure 308.99: 4NodeANDES edge clamped circular plate with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.100: 4NodeANDES edge clamped circular plate with element side length 0.25m.

Table 308.28: Results for 4NodeANDES circular plate with four edges clamped.

Element type 4NodeANDES Theoretical

displacementElement side length Height:1.00m

10m 1.69E-003 m 1.706E-03 m

5m 1.97E-003 m 1.706E-03 m

2m 1.97E-003 m 1.706E-03 m

1m 1.96E-003 m 1.706E-03 m

0.5m 1.96E-003 m 1.706E-03 m

0.25m 1.96E-003 m 1.706E-03 m

Table 308.29: Errors for 4NodeANDES circular plate with four edges clamped.

Element type 4NodeANDES

Element side length Height:1.00m

10m 0.71%

5m 15.43%

2m 15.31%

1m 15.16%

0.5m 15.13%

0.25m 15.12%

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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7cm

Figure 308.101: Error scale 0% - 20%.

7cm

Figure 308.102: Error scale 0% - 100%.

Figure 308.103: 4NodeANDES circular plate with edge clamped˙ Displacement error versus Number of

side division
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308.6.7 Verification of 4NodeANDES circular plate with all edges simply supported

Problem description: Diameter=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are simply supported.

The load is the uniform normal pressure on the whole plate.

The plate flexural rigidity is

D =
Eh3

12(1 – ν2)
=

108N /m2 × 13m3

12× (1 – 0.32)
= 9.1575× 106 N · m (308.11)

The theoretical solution7 is

d =
(5 + ν)qa4

64(1 + ν)D
=

(5 + 0.3)× 100N /m2 × 104m4

64× (1 + 0.3)× 9.1575× 106 N · m = 6.956× 10–3m (308.12)

The 4NodeANDES were shown in Figure (308.104) - (308.109).

Figure 308.104: 4NodeANDES edge simply supported circular plate with element side length 10m.

The results were listed in Table (308.30).

The errors were listed in Table (308.31).

The errors were plotted in Figure (308.112).

The Real-ESSI model fei/DSL files for the table above are HERE.
7Stephen Timoshenko, Theory of plates and shells (2nd edition). MrGRAW-Hill Inc, page55, 1959.
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Figure 308.105: 4NodeANDES edge simply supported circular plate with element side length 5m.

Figure 308.106: 4NodeANDES edge simply supported circular plate with element side length 2m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.107: 4NodeANDES edge simply supported circular plate with element side length 1m.

Figure 308.108: 4NodeANDES edge simply supported circular plate with element side length 0.5m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 308.109: 4NodeANDES edge simply supported circular plate with element side length 0.25m.

Table 308.30: Results for 4NodeANDES cicular plate with four edges simply supported.

Element type 4NodeANDES Theoretical

displacementElement side length Height:1.00m

10m 7.50E-003 m 6.956E-03 m

5m 7.29E-003 m 6.956E-03 m

2m 7.25E-003 m 6.956E-03 m

1m 7.23E-003 m 6.956E-03 m

0.5m 7.22E-003 m 6.956E-03 m

0.25m 7.22E-003 m 6.956E-03 m

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 308.31: Errors for 4NodeANDES cicular plate with four edges simply supported.

Element type 4NodeANDES

Element side length Height:1.00m

10m 7.75%

5m 4.73%

2m 4.15%

1m 3.89%

0.5m 3.84%

0.25m 3.82%

7cm

Figure 308.110: Error scale 0% - 8%.

7cm

Figure 308.111: Error scale 0% - 100%.

Figure 308.112: 4NodeANDES circular plate with edge simply supported˙ Displacement error versus

Number of side division
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309.1 Chapter Summary and Highlights

309.2 Verification of Static Penalty Contact/Interface/Joint Element Modeling

and Simulation

References for interface elements: Hird and Russell (1990), AG (2020).

This section presents the verification of Penalty Stiffness based Frictional Contact/Interface/Joint

Element using analytical simple solutions to verify the numerical solutions obtained by the application of

the developed model. The examples show the response of element for different cases. Solution sensitivity

on penalty stiffness is also discussed in details for those examples.

Theoretically, the penalty stiffness should be infinite, but for numerical stability of the solution, it

can go upto 1016. This is because for a double precision computer, machine epsilon ϵ ≈ 10–16 and

thus the corresponding displacement for the penalty springs can go low only till 10–16. For all the cases

considred below in this cases, the convergence criteria was as ||δU|| <= 10–12.

309.2.1 Static Normal Contact/Interface/Joint Verification

A Two-bar truss example is considered here to verify the normal contact/interface/joint for different

normal loading conditions and different penalty stiffness Kn. This is an example of normal loading on a

1-D contact/interface/joint between two bars separated by an initial gap of δin = 0.1m. An illustrative

diagram of the problem statement is shown below.

Figure 309.1: Illustration of two bar normal Contact/Interface/Joint problem under monotonic loading

with inital gap.

A snapshot of the code for the contact/interface/joint element is shown below. The Real-ESSI model

fei/DSL files for this example can be downloaded HERE.

1 add element #3 type FrictionalPenaltyContact with nodes (2,3)
2 normal_stiffness =1e10*N/m
3 tangential_stiffness = 1e10*Pa*m
4 normal_damping = 0*kN/m*s
5 tangential_damping = 0*kN/m*s
6 friction_ratio = 0.3
7 contact_plane_vector = (1,0,0);

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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309.2.1.1 Case 1: Monotonic Loading with initial gap δin = 0.1m

In this case a force of 0.3N is applied to Node 2. From Figure 309.2, the solution converges to the

analytical result for Kn = 100N /m i.e 100 times the stiffness of bar element. Please note that, the for

penalty stiffness > 10e15, the convergence fails (when the bars contact/interface/joint mode chnges),

as the global stiffness matrix becomes ill conditions. Thus, the penalty stiffness cannot be too large.

309.2.1.2 Case 2: Monotonic Loading with no initial gap δin = 0m

In this case a force of 0.3N is applied to Node 2. From Figure 309.3, the solution again converges to

the analytical result for Kn = 100N /m i.e 100 times the stiffness of bar element.

309.2.1.3 Case 3: Cyclic Loading with initial gap δin = 0.1m

For cyclic loading cases considered below, the loading force Fn applied is shown in Figure 309.4. From

Figure 309.5, the solution again converges to the analytical result for Kn = 100N /m i.e 100 times the

stiffness of bar element.

309.2.1.4 Case 4: Cyclic Loading with no initial gap δin = 0m

The same cyclic load shown in Figure 309.4 is again applied fpor this case. From Figure ??, the solution

again converges to the analytical result for Kn = 100N /m i.e 100 times the stiffness of bar element.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.2: Displacements of Node 2 and Node 3 with change in normal penalty stiffness for δin = 0.1m
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Figure 309.3: Displacements of Node 2 and Node 3 with change in normal penalty stiffness for δin = 0m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 309.2. VERIFICATION OF STATIC PENALTY C . . . page: 1672 of 3287

Time Step
0 5 10 15 20 25 30

F
or

ce
 F

n
 [N

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 309.4: Cyclic normal load applied on two bar contact/interface/joint problem.
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Figure 309.5: Displacements of Node 2 and Node 3 with change in normal penalty stiffness for δin = 0m
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Figure 309.6: Displacements of Node 2 and Node 3 with change in normal penalty stiffness for δin = 0m
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309.2.2 Static Frictional Tangential Contact/Interface/Joint Verification

A simple 3-D truss example with Normal confinement in z-direction of FN = 0.5N , friction coefficient

µ = 0.2 and shear loading of magnitude Fs = 0.5N is considered to verify the tangential behaviour of

contact/interface/joint element. Different cases as dicussed below are considered.

Figure 309.7: Illustration of 3-D three bar contact/interface/joint problem.

A snapshot of the properties of contact/interface/joint element os shown below. The Real-ESSI

model fei/DSL files for this example can be downloaded HERE.

1 add element #4 type FrictionalPenaltyContact with nodes (1,2)
2 normal_stiffness =1e10*N/m
3 tangential_stiffness = 1e10*Pa*m
4 normal_damping = 0*kN/m*s
5 tangential_damping = 0*kN/m*s
6 friction_ratio = 0.2
7 contact_plane_vector = (0,0,1);

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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309.2.2.1 Case 1: Verfication of the yield surface for different loading angles with fixed normal confine-

ment.

A Shear force of magnitude of Fs = 0.5N was applied in 20 steps in different loading directions. The

response of the contact/interface/joint element and the displacement of node 2 is shown in Figure

309.8 and Figure 309.9 respectively . It can be bserved that the contact/interface/joint element slips

at magnitude of force ||F||– > (Fn = 0.5) ∗ (µ = 0.2)– > 0.1N for all loading angles.

In Figure 309.9, it can be observed that for the first 4 steps, there is no (zero) displacement for

node 2 because of the stick case. When the load exceeds 0.1N , slip occurs and node 2 starts to undergo

deformation.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.8: Response of contact/interface/joint element for different loading angles for confinement

of 0.5N and coefficient of friction as 0.2

.
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Figure 309.9: Displacement of Node No. 2 in x and y direction for different loading angles for

confinement of 0.5N and coefficient of friction as 0.2

.
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309.3 Verification of Static and Dynamic Contact/interface/Joint Element Mod-

eling and Simulation

Solution verification of the contact/interface/joint element formulation and its implementation is pre-

sented in what follows. Analytical simple solutions for the frictional contact/interface/joint element

are used to verify numerical solutions obtained by application of the developed model. The examples

provided show the response of the contact element in several situations. Initially, the element is tested by

connecting two nodes that each have 3dof, subsequently, the element is even implemented to simulate a

contact/interface/joint between two nodes that each have 7dof and two nodes with different dofs: 3dof

for the first one and 7dof for the second one.

The parameters used for the contact/interface/joint element are listed in Table 309.1.

Parameter Value

CN [kN/m] 10420

vmax [m] 0.001

KT [kN/m] 1e7

µ [-] 0.6

Table 309.1: Contact/interface/joint element parameters.

Figure 309.10: Input signal: time history of displacement, acceleration and velocity.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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309.3.1 Truss Examples

The first example (Figure 309.11) represents five nodes: 1,2,3,4,5. Nodes 2,3,4,5 are connected

by three truss elements and a contact/interface/joint element links node 1 and 2. All degrees of

freedom of nodes 1,3,4,5 are fixed, whereas a sine wave displacement time-history (Figure 309.10)

is applied to node 2 along x direction and the normal force acting within the contact/interface/joint

element is recorded. The results, represented in Figure 309.12, show the normal response of this new

contact/interface/joint element. As the timestep decreases, the force-displacement curves tends to be

similar to the one represented by (??).

Figure 309.11: System composed of one contact/interface/joint element and three truss elements. A

sine wave displacement time-history is applied to node (2).

Figure 309.12: Normal force vs normal-relative displacement in contact/interface/joint element.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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The second example (Figure 309.13) shows the tangential response of this new contact/inter-

face/joint element. The geometry of the problem is the same as Figure 309.11, but an axial force

(p = 1140 kN), constant in time, and a sine wave time-history displacement are applied to node 2. The

results, represented in Figure 309.14, show that the response is not dependent on the timestep used for

the analysis. Due to the elastic-perfectly-plastic behavior, associated with Mohr-Coulomb yield criteria,

the maximum shear force (tmax) that the contact/interface/joint element can sustain is 684 kN , equal

to tmax = µ · p = 0.6 · 1140kN .

Figure 309.13: Same system used in Figure 309.11. A normal force constant in time (F = 1140 kN)

and a sine wave displacement time history are applied to node (2).

Figure 309.14: p = 1140 kN. Transversal force in the contact/interface/joint element vs transversal-

relative displacement

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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309.3.2 Single Brick Element Examples

The contact/interface/joint element is now used to connect each node (5,6,7,8) of the bottom face of

an eight node hexahedral element (hex8) to the corresponding node attached to the ground (1,2,3,4).

A linear elastic constitutive model is used for the eight node brick and the parameters are listed in

Table 309.2.

Parameter Value

E [kPa] 1.5e10

ν [-] 0.0

Table 309.2: Brick Element Parameters

In the first example (Figure 309.15) the time-history displacement, shown in Figure 309.10, is applied

in the vertical direction to each node of the top surface of the brick element (9,10,11,12) and the

time-history normal force induced in each contact element is represented in Figure 309.16. It is worth

noting that the normal force is positive if the displacement of the top surface is downward, whereas it is

zero if the detachement occurs caused by the upward movement.

Through the second example, shown in Figure 309.17, the transversal response of the contact/in-

terface/joint elements is highlighted. The vertical normal force (Fv = 50kN), constant in time, and

a horizontal time-history displacment are applied to each node of the top surface and the transversal

response is shown in Figure 309.18. As stated in section 309.3.1, the maximum shear force that the

contact element can sustain is is 30 kN , equal to tmax = µ · p = 0.6 · 50kN .

The third example is focused on the transversal response of the contact/interface/joint element under

variable normal forces. In fact, a sine wave time-history horizontal displacement and a vertical force are

applied to each node of the top surface of the brick. The normal force is variable in time according to

the factor (Fact(t)) shown in Figure 309.20 and the vertical force is computed as Fv(t) = Fact(t) ·Fv,max,

and Fv,max equal to 50 kN. The response of the contact element, shown in Figure 309.21, is independent

of the timestep used for the analysis enphasizing the correct numerical implementation.

309.3.3 Double Brick Element Examples

Few other examples are produced taking in consideration two brick elements. The constitutive model used

for these two brick elements is linear elastic with the same parameters listed in Table 309.2. Vertical and

horizontal time-history displacement are applied to the top surface, shown in Figure 309.22 and Figure

309.23, and variable vertical forces are considered in the example represented in Figure 309.24. The

results are the same shown in Figure 309.16, Figure 309.18 and Figure 309.19.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.15: Eight-node brick element over four contact/interface/joint elements. A sine wave time-

history vertical displacement applied to each node of the top surface.

Figure 309.16: Normal force vs time in each contact element.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.17: Eight-node brick element over four contact/interface/joint elements. Fv= 50 kN and a

sine wave time-history horizontal displacement applied to each node of the top surface.

Figure 309.18: Transversal force vs transversal relative-displacement in the contact element with normal

force F equal to 50 kN.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 309.19: Eight-node brick element over four contact/interface/joint elements. Variable vertical

force (Fv(t)) and a sine wave time-history horizontal displacement applied to each node of the top surface.

Figure 309.20: Time-history of the normal force factor Fact(t).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.21: Variable normal force. Transversal force vs transversal relative-displacement in each

contact element.

Figure 309.22: Two eight-node brick elements connected by four contact/interface/joint elements. Ver-

tical time-history displacement applied to the nodes of the top surface.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.23: Two eight-node brick elements connected by four contact/interface/joint elements. Ver-

tical force, equal to 50 kN and constant in time, and horizontal time-history displacement applied to the

nodes of the top surface.

Figure 309.24: Two eight-node brick elements connected by four contact/interface/joint elements. Ver-

tical force, variable in time, and horizontal time-history displacement applied to the nodes of the top

surface.
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309.4 Verification of Static and Dynamic Coupled (Saturated) Contact/Inter-

face/Joint Element Modeling and Simulation

309.4.1 Dry u-p-U Contact/Interface/Joint

A single brick u-p-U finite element is used to model an oedometric compression shown in Figure 309.25.

Horizontal displacements and pore pressure are fixed in each node in order to guarantee the one-

dimensional and dry conditions. Since the ground is modeled as an undeformable and impermeable

layer (1,2,3,4), vertical soil and fluid displacements are fixed. The time-history displacement, shown

in Figure 309.10, is applied in vertical direction to each node of the top surface (9,10,11,12).

The time-history normal force induced in each contact/interface/joint element is represented in Figure

309.16 and compared with the one obtained with the dry brick element with u formulation, shown in

Figure 309.15. It is worth noting that the normal force patterns are perfectly overlapped: this is due to

the fact that excess pore pressure is fixed to zero and the oedometric stiffness are the same in the two

cases.

Parameter Symbol Value

Young’s Modulus E [kPa] 1.5 · 1010

Poisson ratio ν [-] 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106

Solid density ρs [Mg/m3] 2.7

Fluid density ρf [Mg/m3] 1.0

Porosity n [-] 1.0 · 10–8

Darcy permeability K [m/s] 1.0 · 103

Table 309.3: Soil parameters.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 309.25: Single eight-node brick element. The nodes of the bottom surface are connected to the

ground floor through contact/interface/joint elements. Vertical time-history displacement applied to the

nodes of the top surface.

Figure 309.26: Normal force vs time in each contact/interface/joint element. u-formulation represents

the results shown in Figure 309.16 whereas upU-formulation represents the results obtained through the

model shown in Figure 309.25.
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309.4.2 u-p-U Contact/Interface/Joint

A column of four brick u-p-U finite elements is used to model the horizontal layer. The height of the soil

column is 1 m and the height of each element has dimensions 1m · 1m · 1m, illustrated in Figure 309.27.

The following boundary conditions are applied to the model. As the bottom of the column is modeled

as an undeformable and impermeable layer, both the solid and fluid displacements are fixed. The pore

pressure is kept constant as zero at the top surface of the soil column because of the perfectly drained

condition. In order to simulate the 1D compression problem, all the lateral movement of the solid and

fluid phase are constrained so that the vertical displacement is the only non-zero displacement. A vertical

time-history displacement, shown in Figure 309.10, is applied to the solid dof of the top surface nodes.

In order to simulate the one dimensional compression, all the degrees of freedom at the same level are

connected in a masterslave fashion.

The nodes of the bottom surface (5,6,7,8) are connected to the ground (1,2,3,4) through con-

tact/interface/joint elements. Under the hypothesis of laminar flow, no cavitation and one-dimensional

type of problem, the water has to fill up all the voids generated into the media while the displacement

filed is acting on the top surface. This means that if the soil and the ground are separated because of the

detachment of the contact/interface/joint element, the water has to fill the gap. Even the pore pressure

at both sides of the gap has to assume the same value. Such boundary conditions can be introduced

by adding masterslave between each node of the bottom surface (5,6,7,8) and the corresponding one

belonging to the ground (1,2,3,4).

In this paragraph a parametric study is performed in order to examine the performance of this u-p-U

contact/interface/joint element. The analyses consider several configuration of permeability and soil

stiffness. In fact, three values of elastic modulus (E) are taken into consideration referring to a Stiff,

Medium and Soft soil (called respectively StS, MS and SoS) and three values of the darcy permeability

are similarly defined. All soil and contact/interface/joint parameters are listed respectively in Table 309.4

and Table 309.1.

This kind of excitation (a sine wave) applied at the top of the model is clearly composed of waves

of all kinds of frequency, expetially at the initial strong change in acceleration and velocity for t = 0s.

Due to this fact, a fairly dense mesh of 100 u-p-U brick finite elements of dimensions 1m · 1m · 1cm was

chosen. Therefore, the time step ∆t needs to be limited to ∆t = ∆h/v , where v is the highest wave

velocity. In our case, the temporal integration involves 4000 steps of , which allows a maximum wave

velocity of . The propagation velocity can be calculated by the following equation given by de Boer et

al. (1993) and is equal to
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v =

√
n2(1 – ν)E

(1 + ν)(1 – 2ν)[n2(1 – n)ρs + (1 – n)2nρf ]
(309.1)

The artificial oscillation are diminished by introducing some numerical damping into the analysis

through α = 0.6 and β = 0.3025 for the Newmark integrator.

Figure 309.27: Four eight-node brick elements. The nodes of the bottom surface are connected to the

ground floor through contact/interface/joint elements. Vertical time-history displacement applied to the

nodes of the top surface.

The specific permeability, k and the time needed for completion of the 1D consolidation process, t,

can be estimated using the darcy permeability K through (309.2) and (309.3) respectively, where ρw is

the mass density of the fluid (water), g is the acceleration of gravity equal to 9.81m/s2, H is the thickness

of the soil layer and Eoed is the one dimensional soil stiffness:

k =
K

ρw · g
(309.2)

t =
H2

cv
=

H2 · ρw · g
K · Eoed

(309.3)

The time t is computed and listed in Table 309.4.2 for each soil type condition. As can be seen,

for the stiff soil (StS), the consolidation time is much lower than the loading acting on the top surface,

therefore no excess pore pressure is developped into the soil and drained response is occurred.
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STIFF SOIL - (StS)

Parameter Symbol Value

Young’s Modulus E [kPa] 1.0 · 1010 1.0 · 1010 1.0 · 1010

Poisson ratio ν [-] 0.0 0.0 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107 3.6 · 107 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106 2.17 · 106 2.17 · 106

Solid density ρs [Mg/m3] 2.7 2.7 2.7

Fluid density ρf [Mg/m3] 1.0 1.0 1.0

Porosity n [-] 0.46 0.46 0.46

Darcy permeability K [m/s] 1.0 · 10–3 1.0 · 10–5 1.0 · 10–7

MEDIUM SOIL - (MS)

Young’s Modulus E [kPa] 1.0 · 107 1.0 · 107 1.0 · 107

Poisson ratio ν [-] 0.0 0.0 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107 3.6 · 107 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106 2.17 · 106 2.17 · 106

Solid density ρs [Mg/m3] 2.7 2.7 2.7

Fluid density ρf [Mg/m3] 1.0 1.0 1.0

Porosity n [-] 0.46 0.46 0.46

Darcy permeability K [m/s] 1.0 · 10–3 1.0 · 10–5 1.0 · 10–7

SOFT SOIL - (SoS)

Young’s Modulus E [kPa] 1.0 · 104 1.0 · 104 1.0 · 104

Poisson ratio ν [-] 0.0 0.0 0.0

Solid particle bulk modulus Ks [kPa] 3.6 · 107 3.6 · 107 3.6 · 107

Fluid bulk modulus Kf [kPa] 2.17 · 106 2.17 · 106 2.17 · 106

Solid density ρs [Mg/m3] 2.7 2.7 2.7

Fluid density ρf [Mg/m3] 1.0 1.0 1.0

Porosity n [-] 0.46 0.46 0.46

Darcy permeability K [m/s] 1.0 · 10–3 1.0 · 10–5 1.0 · 10–7

Table 309.4: Stiff, Medium and Soft soil parameters (StS, MS and SoS).
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Soil type Symbol Value

K [m/s] 1.0 · 10–3 1.0 · 10–5 1.0 · 10–7

Stiff soil (StS) t [s] 1.0 · 10–6 1.0 · 10–4 1.0 · 10–2

Medium-Stiff soil (MS) t [s] 1.0 · 10–3 1.0 · 10–1 1.0 · 101

Soft soil (SoS) t [s] 1.0 · 100 1.0 · 102 1.0 · 104

Table 309.5: The time needed for completion of the 1D consolidation process, t, estimated thrugh the

darcy permeability K for each soil type condition.
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309.5 Verification of Static, Isolator Element Modeling and Simulation
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ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 310

Verification and Validation for Coupled, Porous
Solid – Pore Fluid Problems

(2000-2003-2007-2009-2010-2016-2017-2020-2021-)

(In collaboration with Prof. Zhao Cheng, Dr. Panagiota Tasiopoulou, Ms. Fatemah Behbehani, Prof. Han Yang

and Mr. Yusheng Yang)

1695



Je
re
m
ić
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310.1 Chapter Summary and Highlights

310.2 Introduction

presented here are verification examples for u-p-U formulation. Examples include:

1. Drilling of a borehole

2. The case of a spherical cavity

3. Consolidation of a soil layer

4. Line injection of a fluid in a reservoir

5. Shock wave propagation

6. Vertical Consolidation of a soil layer by Coussy (2004)

7. One dimensional shock wave propagation with a step displacement boundary condition by Gajo

and Mongiovi (1995)

8. One dimensional shock wave propagation with step loading at the surface by de Boer et al. (1993)

9. One dimensional shock wave propagation with a step velocity boundary condition by Hiremath

et al. (1988)

310.3 Drilling of a well

310.3.1 The Problem

Let us consider an infinite half space domain composed of an isotropic, homogeneous and saturated

thermoporoelastic material. At its reference state, it is assumed that the temperature, fluid pressure

and stress fields are uniform and equal respectively, to T0, p0 and σ0 = σ01(with σ0 < 0). At time =

0, an infinite cylinder of radius r0 is instantaneously drilled parallel to the vertical axis Oz. It is filled

with a fluid of the same nature as that saturating the porous medium but at a different pressure and

temperature at the values of p1 and T1 respectively. The interface r = r0 between the well and the

porous medium is assumed to be in thermodynamic equilibrium.
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In cylindrical coordinates (r, θ, z), the boundary conditions can be summarized as follows (see

Fig.310.1):

t ≤ 0→ σ0 = σ01 p(r) = p0 T (r) = T0 (310.1)

t > 0→ σrr(r0) = –p1 σrθ(r0) = σrz(r0) = 0

σrr(r →∞)→ σ0 σrθ(r →∞) = σrz(r →∞)→ 0

p(r0, t) = p1 p(r →∞)→ p0

T (r0) = T1 T (r →∞)→ T0 (310.2)

Figure 310.1: Boundary Conditions for Drilling of a Borehole

310.3.2 Analytical Solution

Since the well is assumed to be infinite long in its vertical axis Oz, the analysis is performed under plane

strain hypothesis(ϵzz = 0). Therefore,

ξ = ξr(r)er p = p(r) T = T (r) (310.3)

in which ξr is the radial displacement. In cylindrical coordinates, Eqn. 310.48 yields

ϵrr =
∂ξr

∂r
ϵθθ =

ξr

r
other ϵij = 0 (310.4)

Based on the constitutive equations from Coussy (1995), it follows that

σrr = σ0 + λ0(
∂ξr

∂r
+
ξr

r
) + 2µ

∂ξr

∂r
– b(p – p0) – 3αK0(T – T0) (310.5)
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σθθ = σ0 + λ0(
∂ξr

∂r
+
ξr

r
) + 2µ

ξr

∂r
– b(p – p0) – 3αK0(T – T0) (310.6)

σzz = σ0 + λ0(
∂ξr

∂r
+
ξr

r
) – b(p – p0) – 3αK0(T – T0) (310.7)

other σij = 0 (310.8)

Finally combined with the Eqns. 310.5-310.8, it yields the near field or long-term solution (Coussy,

1995)

ξr =
σ0 + p1

2µ
r0

2

r
+

r0[b(p1 – p0) + 3α0K0(T1 – T0)]
2(λ0 + 2µ)

(
r
r0

–
r0
r

) (310.9)

σrr = –p1
r0

2

r2 – {σ0 –
µ[b(p1 – p0) + 3αK0(T1 – T0)]

λ0 + 2µ
}(1 –

r0
2

r2 ) (310.10)

σθθ = (2σ0 + p1)
r0

2

r2 –
µ[b(p1 – p0) + 3αK0(T1 – T0)]

λ0 + 2µ
(1 +

r0
2

r2 ) (310.11)

σzz = σ0 –
2µ

λ0 + 2µ
[b(p1 – p0) + 3αK0(T1 – T0)] (310.12)

And the diffusion process can be achieved if that the time are large enough with respect to the charac-

teristics diffusion time relative to point r. When the boundary conditions for r = r0 in fluid pressure and

temperature which are p = p1 and T = T1 apply for the whole model, the following equations correspond

to the undrained solution of the instantaneous drilling of a borehole in an infinite elastic medium.

ξr =
σ0 + p1

2µ
r0

2

r
σrr = σ0 – (σ0 + p1)

r0
2

r2

σθθ = σ0 + (σ0 + p1)
r0

2

r2 σzz = σ0 (310.13)

310.3.3 Discussion of the Results

As the problem is Axisymmetric, we construct the model as a quarter of a donut. The inside diameter of

the donut is 10 cm and the outside diameter is 1 m. To accommodate both the plain strain hypothesis

and the geometry of the element for finite element, the thickness of the model is chosen to be 5 cm.

The final mesh is generated as Fig.310.2. And the boundary conditions is as follows: As a consequence

of plain strain problem, all the movements for solid and fluid in vertical direction Oz are suppressed; the

solid and fluid displacement for the nodes along the X axis and Y axis are fixed in Y and X direction

respectively for the reason of axisymmetry; the nodes along the outside perimeter are fixed in the solid and

fluid displacement with the assumption of infinite medium. the pressure is translated into nodal forces
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Parameter Symbol Value Units

Poisson Ratio ν 0.2 -

Young’s Modulus E 1.2E+6 kN /m2

Solid Bulk Modulus Ks 3.6E+7 kN /m2

Fluid Bulk Modulus Kf 1.0E+17 kN /m2

Solid Density ρs 2.7 ton/m3

Fluid Density ρf 1.0 ton/m3

Porosity n 0.4 -

Table 310.1: Material Properties used to study borehole problem

and applied on the nodes along the inside perimeter. For simplicity, the hydrostatic stress σ0 is equal

to zero and with the assumption of thermodynamic equilibrium through the process, the temperature

factor can be neglected. Also the initial fluid pressure p0 is set to be 0 kPa. The analytical solution is

studied below using the following set of parameters shown in Table 310.1.

Figure 310.2: The mesh generation for the study of borehole problem

In the analysis, ten loading cases for final fluid pressure from 10 kPa to 100 kPa are studied. And

by manipulating the permeability, it is possible to investigate both the drained behavior and undrained

behavior. For the drained behavior, we choose the permeability as k = 3.6× 10–4m/s, which is a typical

value for sand, the comparison between the close solution and experimental result is shown in Fig.310.3.

From the results, we can see that along the inside perimeter, the close solution and experimental result
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provide very good agreement to each other. But as the increase of the radius, we can see the analytical

solution is getting more and more distant from the experimental results. In another word, the analytical

solution can be interpreted as that with the increase from the loading surface, the radial displacement is

larger. This is unreasonable in the point of view in soil mechanics. While the experimental result show

the effect that with the increase of the radial distance, the radial displacement is decreasing.
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r=0.1m, close solution
r=0.1m, experimental
r=0.5m, close solution
r=0.5m, experimental
r=0.9m, close solution
r=0.9m, experimental

Figure 310.3: The comparison of radial solid displacement between analytical solution and experimental

result for drained behavior

For the undrained behavior, the permeability of k = 3.6×10–8m/s is selected as a representative value

for typical clayey soil. The comparison between the close solution and experimental result is provided as

well. From the Fig.310.4 we can see that, the analytical solution is linearly away from the experimental

result by a ratio of approximately 1.6. It should also be noticed that the close solution of the drained and

undrained behavior for the nodes along the inside perimeter are exactly the same, which is contradictory

to the definition of drained and undrained behavior. For the drained behavior, as the water easily dissipate

from the soil body, the problem can be treated with the knowledge of continuum mechanics using the

parameters of the solid skeleton. While for the undrained behavior, with the involvement of the pore

water, the elastic parameters for the mixture should be different, so the response will not be the same

as well. As a result of this, the experimental results give a more reasonable conclusion.

As for the drained behavior, the fluid totally flows out of the soil body and all excessive pore pressure
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Figure 310.4: The comparison of radial solid displacement between analytical solution and experimental

result for undrained behavior

dissipates, there is small coupling between the solid and fluid phase. We can use the continuum mechanics

to treat this problem. Here introduces a problem of an infinite cylindrical tube, with the inner radius R1

and outer radius R0, subjected to an internal pressure P1 and an external pressure P2. The displacement

field as follows (S.Timoshenko and D.H.Young, 1940):

ξr =
R1

2P1
2(R0

2 – R1
2)

(
r

λ + µ
+

R0
2

µr
) (310.14)

With P0 = 0 and take the limit of R0 →∞, we can obtain the following equation:

ξr =
P1
2µ

R1
2

r
(310.15)

which is identical to Eq.310.10. Also to minimize the effect of infinite boundary, we introduce the result

from another model which is exactly the same as the previous one besides the expansion of the outer

radius to 30m. At the final fluid pressure of 50 kPa, the results are shown in Fig.310.5. From the plot we

can make a conclusion that the undrained analytical solution from Coussy (1995) is actually the drained

solution and the undrained solution still needs to be investigated.
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Figure 310.5: The comparison of radial solid displacement between two analytical solutions and ex-

panded boundary

310.4 The Case of a Spherical Cavity

310.4.1 The Problem

Considering a medium composed of an isotropic, homogeneous, saturated thermoporoelastic material.

In its initial state, it is assumed that the temperature, fluid pressure and stress fields are uniform and

equal respectively, to T0, p0 and σ0 = σ01(with σ0 < 0). At time t= 0, a spherical cavity of radius r0 is

immediately drilled and filled with the same saturating fluid in the medium. For t > 0, the temperature

and the pressure of the fluid are kept constant with the value of T1 and p1 respectively. The interface

r = r0 between the well and the porous medium is assumed to be in the thermodynamic equilibrium.

In spherical coordinates (r, θ, φ), the boundary conditions can be summarized as follows:
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 310.4. THE CASE OF A SPHERICAL CAVITY page: 1703 of 3287

t ≤ 0→ σ0 = σ01 p(r) = p0 T (r) = T0 (310.16)

t > 0→ σrr(r0) = –p1 σrθ(r0) = σrφ(r0) = 0

σrr(r →∞)→ σ0 σrθ(r →∞) = σrφ(r →∞)→ 0

p(r0, t) = p1 p(r →∞)→ p0

T (r0) = T1 T (r →∞)→ T0 (310.17)

Strictly speaking, the expressions for r →∞ are not boundary conditions. They are complementary

conditions to be satisfied by the solution. It is used to model that at the point far from the disturbed

area, the state of the medium are held as its initial state.

310.4.2 Analytical Solution

This is a problem of spherical symmetry. The radial displacement is the only non-zero displacement and

all the fields are r and t dependent. Therefore,

ξ = ξr(r)er p = p(r) T = T (r) (310.18)

in which ξr is the radial displacement. In spherical coordinates, Eqn.310.18 yields

ϵrr =
∂ξr

∂r
ϵθθ =

ξr

r
other ϵij = 0 (310.19)

Based on the constitutive equations from Coussy (1995), it follows that

σrr = σ0 + λ0(
∂ξr

∂r
+
ξr

r
) + 2µ

∂ξr

∂r
– b(p – p0) – 3αK0(T – T0) (310.20)

σθθ == σφφ = σ0 + λ0(
∂ξr

∂r
+
ξr

r
) + 2µ

ξr

∂r
– b(p – p0) – 3αK0(T – T0) (310.21)

other σij = 0 (310.22)

Finally combined with the Eqns. 310.19-310.22, it yields the near field or long-term solution (Coussy,

1995)

ξr =
σ0 + p1

4µ
r0

3

r2 +
r0[b(p1 – p0) + 3αK0(T1 – T0)]

2(λ0 + 2µ)
(1 –

r0
2

r2 ) (310.23)

σrr = –p1
r0

3

r3 + σ0(1 –
r0

3

r3 ) –
2µ[b(p1 – p0) + 3αK0(T1 – T0)]

λ0 + 2µ
(
r0
r

–
r0

3

r3 ) (310.24)
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σθθ = σφφ = p1
r0

3

2r3 – σ0(1 +
r0

3

2r3 ) –
µ[b(p1 – p0) + 3αK0(T1 – T0)]

λ0 + 2µ
[
r0
r

(1 +
r0

2

r2 )]

(310.25)

And the diffusion process can be achieved if that the time are large enough with respect to the charac-

teristics diffusion time relative to point r. When the boundary conditions for r = r0 in fluid pressure and

temperature which are p = p1 and T = T1 apply for the whole model, the following equations correspond

to the undrained solution of the instantaneous drilling of a borehole in an infinite elastic medium.

ξr =
σ0 + p1

4µ
r0

3

r2 σrr = –p1
r0

3

r3 + σ0(1 +
r0

3

r3 )

σθθ = σφφ = p1
r0

3

2r3 + σ0(1 +
r0

3

2r3 ) (310.26)

310.4.3 Discussion of the Results

The model is constructed as a quarter of a half ball. The cavity radius is 10cm. As the outside boundary

is fixed, to minimize the possibility of the sudden increase of the fluid bulk modulus, the outside radius

of the sphere is set to be 2 m. The final mesh is generated as Fig.310.6. And the following boundary

conditions apply: The nodes on XZ and YZ plane are fixed for solid and fluid displacement in Y and

X direction respectively; the vertical solid and fluid displacement for the nodes on the XY plane are

suppressed; for the nodes along the outside surface, to satisfy the complementary conditions, all the

solid and fluid displacements are set to be zero as well. The pressure is translated in to nodal forces

and applied in the radial direction. For simplicity, the hydrostatic stress σ0 is equal to zero and with the

assumption of thermodynamic equilibrium through the process, the temperature factor can be neglected.

Also the initial fluid pressure p0 is set to be 0 kPa. The analytical solution is studied below using the

following set of parameters shown in Table 310.2.

As the same procedure in the previous drilling of borehole problem, we compared both the drained

and undrained behavior. The drained and undrained behavior are tested by the permeability of k =

3.6 × 10–4m/s and k = 3.6 × 10–8m/s respectively. In drained behavior, we can see along the cavity

surface, the experimental result of the radial displacement match the analytical solution very well. While

with the increase of the radius, the decrease of the radial displacement for close solution is much smaller

that of the experimental results. For the undrained behavior, we can see the radial displacement of the

experimental results are always smaller than the close solution. Again it should be noted that the close

solutions for the drained and undrained behavior along the cavity surface are exactly the same. This can

be explained in the same way as the previous drilling of the borehole problem. When the experimental

results from drained behavior are compared with the analytical undrained solution, it is observed they

provide good agreement to each other as well.
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Figure 310.6: The mesh generation for the study of spherical cavity

Parameter Symbol Value Units

Poisson Ratio ν 0.2 -

Young’s Modulus E 1.2E+6 kN /m2

Solid Bulk Modulus Ks 3.6E+7 kN /m2

Fluid Bulk Modulus Kf 1.0E+17 kN /m2

Solid Density ρs 2.7 ton/m3

Fluid Density ρf 1.0 ton/m3

Porosity n 0.4 -

Table 310.2: Material Properties used to study spherical cavity problem

310.5 Line Injection of a fluid in a Reservoir

310.5.1 The Problem

Liquid water is usually injected into a reservoir from a primary well in order to recover the oil from a

secondary well in petroleum engineering. This induces a problem of injecting a fluid into a cylindrical

well of negligible dimensions.

Consider a reservoir of infinite extent composed of an isotropic, homogeneous and saturated poroe-

lastic material. Through a cylindrical well of negligible dimensions, the injection of the same fluid is

performed in all directions orthogonal to the well axis forming the Oz axis of coordinates. As a result of

the axisymmetry and cylindrically infinite, all quantities spatially depends on r only. The injection starts

at time t = Γ and stops at time t = Γ. The flow rate of fluid mass injection is constant and equal to
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Figure 310.7: The comparison of radial solid displacement between analytical solution and experimental

result for drained behavior

q.As a finite amount of Ω of fluid mass is injected instantaneously(i.e. Γq→ ΩasΓ→ 0).

310.5.2 Analytical Solution

This is a problem of cylindrically symmetry. Consequently the cylindrical coordinates(r,θ,z)is adopted.

The vector of relative flow of fluid mass w reads

w = w(r, t)er (310.27)

where er is the unit vector along the radius. Using the fluid mass balance relationship, it yields

∫ r

0

∂m
∂t

(r, t)2πrdr = q – 2πrw(r, t) ∀r, t (310.28)

In addition, we require the fluid flow to reduce to zero infinitely far from the well
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Figure 310.8: The comparison of radial solid displacement between analytical solution and experimental

result for undrained behavior

rw→ 0 r →∞ t <∞∫ ∞

0

∂m
∂t

(r, t)rdr =
q
2r

∀0 < t <∞ (310.29)

Based on above Eqs.310.28-310.29, the radial displacement is derived in the form

p =
Ω

4πρfl
0kt

exp(–
r2

4cmt
)

ξr =
bMΩ

2πρfl
0(λ + 2µ)r

[1 – exp(–
r2

4cmt
)] (310.30)

Using the constitutive equation, the stress field can be derived as follows:

σrr = –2µ
ξr
r

σθθ = 2µ
ξr

r
–

2µb
λ0 + 2µ

p
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Figure 310.9: The comparison of radial solid displacement between analytical solution for undrained

behavior and experimental result for drained behavior

σzz = –
2µb

λ0 + 2mu
p (310.31)

310.5.3 Discussion of the Results

As a result of axisymmetry, the model can be constructed as a quarter of a pie. The radius of the pie

is 1 m and the thickness of the pie is 5 cm. A cylindrical well is drilled at the center of the pie, and

its radius is 1 cm, which can be neglected in dimension when compared with the whole pie. The final

mesh is shown as Fig.310.10. And the boundary conditions is as follows: As a consequence of plain

strain problem, all the movements for solid and fluid in vertical direction Oz are suppressed; the solid and

fluid displacement for the nodes along the X axis and Y axis are fixed in Y and X direction respectively

for the reason of axisymmetry; the nodes along the outside perimeter are fixed in the solid and fluid

displacement with the assumption of infinite medium. To the difference with the previous problems,

the traction boundary conditions are applied on the fluid displacement. It should be noted that the Ω

mention in the above equations is the volume of the fluid injected per unit of vertical well length and

has a unit of m3/m. In order to generate the volume of 1 cm3/m, the corresponding fluid displacement

of the nodes along the well has been calculated and applied as a step function at the time of 0 sec. For
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simplicity, the initial fluid pressure p0 is set to be 0 kPa. The analytical solution is studied below using

the following set of parameters shown in Table 310.3.

Figure 310.10: The mesh generation for the study of line injection problem

In the analysis, the pore pressure and the radial displacement are studied. The results are recorded

from three points at the radius of 10 cm, 50 cm and 85 cm. The close solution and experimental results

are shown in Fig.?? and Fig.??. As the time step is set to be 1 sec, the first data point starts at the time

of 1 sec. From the pore pressure plot we can see that the build-up of the pore pressure reach the peak

value of 34 kPa at the radius of 85 cm. With the decrease of the radius, the pore pressure decreases

as well. This can be explained by the fact that the closer the point to the injection location, the earlier

and the larger load is applied, so the pore pressure dissipates faster. And as time passes by, we can see

the pore pressure progressively dissipates and finally almost reaches the same value within the model.

The same phenomena can be been observed from the radial solid displacement. The maximum solid

displacement occurs at the radius of 85 cm, which means more coupling between the solid and fluid

phase, as consequence, the pore pressure should have the largest value. This corresponds to the previous

result. With the increase of the time, the radial solid displacement get closer to zero, which means the

fluid moves out the solid skeleton.
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Parameter Symbol Value Units

Poisson Ratio ν 0.2 -

Young’s Modulus E 1.2E+6 kN /m2

Solid Bulk Modulus Ks 3.6E+7 kN /m2

Fluid Bulk Modulus Kf 1.0E+17 kN /m2

Undrained Bulk Modulus Ku 6.0E+7 kN /m2

Bulk Modulus K 6.7E+5 kN /m2

Solid Density ρs 2.7 ton/m3

Fluid Density ρf 1.0 ton/m3

Fluid Diffusivity coefficient cf 0.4973 m2/s

Porosity n 0.4 -

Permeability k 3.6E-6 m/s

Table 310.3: Material Properties used to study the line injection problem
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Figure 310.11: The comparison between analytical solution and experimental result for pore pressure
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Figure 310.12: The comparison between analytical solution and experimental result for radial displace-

ment
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Figure 310.13: The comparison between analytical solution and experimental result for radial displace-

ment
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Table 310.4: Simulation parameters used for the shock wave propagation verification problem.

Parameter Symbol Value

Poisson ratio ν 0.3

Young’s modulus E 1.2× 106 kN /m2

Solid particle bulk modulus Ks 3.6× 107 kN /m2

Fluid bulk modulus Kf 2.17× 106 kN /m2

Solid density ρs 2700 kg/m3

Fluid density ρf 1000 kg/m3

Porosity n 0.4

Newmark parameter γ 0.6

310.6 Shock Wave Propagation in Saturated Porous Medium

In order to verify the dynamic behavior of the system, an analytic solution developed by Gajo (1995) and

Gajo and Mongiovi (1995) for 1C shock wave propagation in elastic porous medium was used. A model

was developed consisting of 1000 eight node brick elements, with boundary conditions that mimic 1D

behavior. In particular, no displacement of solid (ux = 0, uy = 0) and fluid (Ux = 0, Uy = 0) in x and y

directions is allowed along the height of the model. Bottom nodes have full fixity for solid (ui = 0) and

fluid (Ui = 0) displacements while all the nodes above base are free to move in z direction for both solid

and fluid. Pore fluid pressures are free to develop along the model. Loads to the model consist of a unit

step function (Heaviside) applied as (compressive) displacements to both solid and fluid phases of the

model, with an amplitude of 0.001 cm. The u–p–U model dynamic system of equations was integrated

using Newmark algorithm (see section 108.3). Table 310.4 gives relevant parameters for this verification.

Two set of permeability of material were used in our verification. The first model had permeability

set k = 10–6 cm/s which creates very high coupling between porous solid and pore fluid. The second

model had permeability set to k = 10–2 cm/s which, on the other hand creates a low coupling between

porous solid and pore fluid. Comparison of simulations and the analytical solution are presented in

Figure 310.14.

Before proceeding to the analysis, the following assumptions are made: For high-frequency compo-

nents, the permeability remains constant; thus, the dependency of the permeability on the frequency is

neglected. Unless specified, all the models in this report are elastic isotropic.
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Figure 310.14: Compressional wave in both solid and fluid, comparison with closed form solution.

310.7 Vertical Consolidation of a soil layer by Coussy (2004)

310.7.1 Brief review of Analytical Solution for Consolidation by Coussy (2004)

The consolidation process can be defined as follows: When an elastic soil layer is subjected to an external

change in mean normal stress, immediately the water will alone sustain this increment of mean normal

stress and cause the build-up the excessive pore water pressure. In the progress of the flow of the water

to the surface, the load is gradually transferred to the soil skeleton and the excessive pore water pressure

will dissipate. At the same time, the settlement of the soil layer occurs. As settlement is usually a major

concern in geotechnical engineering, this is a key problem in soil mechanics.

Consider a soil layer composed of an isotropic, homogeneous and saturated thermoporoelastic mate-

rial. The layer has a thickness of h in the Oy direction and of infinite extent in the two other directions

Ox and Oy. The layer is underlain by a rigid and impervious base at y = 0. And the top surface at y = h

is so perfectly drained that the pore pressure is held constant as zero.

At the initial state of the soil layer, the thermal effects are neglected so that the boundary conditions

follow that:

t ≤ 0→ y = h p = 0 (310.32)

y = 0
∂p
∂z

= 0 (310.33)

At time t = 0, tan instantaneous vertical load –ϖey is suddenly applied on the top surface y = h, the
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induced boundary conditions require that

t > 0→ y = h σey = –ϖey (310.34)

The undeformability of the substratum reads

y = 0 ξ = 0 (310.35)

The impermeability implies

y = 0 – w · ey = –wy = 0 (310.36)

The problem is then to determine the new fields of fluid pressure, stress and displacement induced

by the external loading.

Since this is a one-dimensional problem, the only non-zero displacement is the vertical displacement

ξy. But in particular the fluid pressure depends only on y and t.

ξ = ξy(y, t)ey p = p(y, t) (310.37)

Based on the constitutive equations from Coussy (2004), it follows that

σyy = (λ0 + 2µ)
∂ξy

∂y
+ bp (310.38)

σxx = σzz =
λ0

(λ + 2µ)
σyy –

2µb
λ0 + 2µ

p (310.39)

And because the fluid pressure p must be an ordinary function of time t, although the derivative of

p is infinite at time t = 0 according to the consolidation equation (Coussy, 2004), the discontinuity of

the fluid pressure p at time t = 0 must satisfy
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p(y, t = 0+) = ηϖ ϖ =
ν – ν0

(1 – ν)(1 – 2ν0)b
(310.40)

where ν and ν0 are the drained and undrained Poisson ratio, respectively. For time t > 0, the vertical

stress σyy = –ϖ is constant in time and space, therefore the diffusion equation reads

t > 0 cm
∂2

∂y2 p =
∂

∂t
p (310.41)

Collecting the above results, finally the fluid pressure reads

p(y, t) = ηϖ
∞∑
n=0

4(–1)n

π(2n + 1)
cos[

(2n + 1)π
2

y
h

]exp[–
(2n + 1)2π2

4
t
τ

] (310.42)

Each term of the series decreases exponentially with respect to the ratio t
τ , in which τ is a charac-

teristics consolidation time

τ =
h2

cm
cm = kM

λ0 + 2µ
λ + 2µ

(310.43)

where λ and λ0 are the drained and undrained Lame coefficient, respectively. Given by the Eqn.310.39,

the only non-zero displacement ξy satisfies

∂ξy

∂y
=

1
λ0 + 2µ

(σyy + bp) (310.44)

By substituting the value of –ϖ of the vertical stress and expression of (310.44), the series converges

and it can integrated term by term yielding

ξy(y, t) =
ϖ

λ0 + 2µ
(
y
h

+
8ηb
π2 )

∞∑
n=0

(–1)n

(2n + 1)2
sin[

(2n + 1)π
2

y
h

]exp(–
(2n + 1)2π2

4
t
τ

] (310.45)

(310.46)

Using Eqn.310.46 and substitute y = h, the settlement can be expressed as

s(t) = s∞ + (s0+ – s∞)
∞∑
n=0

8
π2(2n + 1)2

exp{– (2n + 1)2π2

4
t
τ
} (310.47)

s0+ =
hϖ

λ + 2µ
s∞ =

hϖ
λ0 + 2µ

(310.48)
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310.7.2 Numerical Analysis

A soil column of ten brick u–p–U finite elements is used to model the horizontal layer. The height of the

soil column is 10 m and the height of each element has dimensions 1m×1m×1m, illustrated in Fig. 310.15.

The material properties, shown in Table 310.5, are chosen as representative values for the natural soil

deposit. Developed u– p– U finite element model, can simulate realistic compressibility of the pore fluid.

However, it is important to note that the analytical solution for the vertical consolidation is based on

the assumption that both the soil particles and the pore fluid (water) are completely incompressible. A

uniform vertical pressure of 400 kPa is applied on the top surface of the soil column. The numerical

analysis was performed in two stages:

(I) Self-Weight application (see Figures 310.15 to 310.19).

(II) Consolidation with drainage at top due to uniform vertical pressure of 400 kPa at the surface

(see Figures 310.20 to 310.26).

Table 310.5: Material Properties used to study consolidation of a soil layer.

Parameter Symbol Value

gravity acceleration g 9.81 m/s2

soil matrix Young’s Modulus E 10× 103 kN /m2

soil matrix Poisson’s ratio v 0.25

solid particle density ρs 2.65× 103 kg/m3

water density ρf 1.0× 103 kg/m3

solid particle bulk modulus Ks 37.0× 106 kN /m2

fluid bulk modulus Kf 2.2× 106 kN /m2

porosity n 0.46

Biot coefficient α 1.0

The following boundary conditions are applied to the model (Fig 310.27): As the bottom of the soil

column is modeled as an undeformable and impermeable layer, both the solid and fluid displacements

are fixed. The pore pressure is kept constant as zero at the top surface of the soil column because

of the perfectly drained condition. In order to simulate the 1D consolidation problem, all the lateral

movement of the solid and fluid phase are suppressed so that the vertical displacement is the only non-

zero displacement for the intermediate nodes. To capture both the long term (t >0.1 sec) and short

term (t <0.1 sec) response of the soil column, two different time steps are adopted: 0.1 sec and 0.005

sec, respectively. In order to observe the dissipation of the excessive pore water pressure in a reasonable
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NNUMERICAL   UMERICAL   MMODELODEL

u u –– p p –– U  ElementsU  Elements

u:  soil skeleton displacements

p:  pore water pressure
U: pore water displacements

x

y

z

7 DOFs at  each  node
(3u, p, 3U)

u = U

p = f (U, Kw)

1 m

10 m 

Figure 310.15: Numerical Simulation of self weigh application and consolidation of a soil layer using

u-p-U brick elements.

and convenient period, we select k = 1.0×10–4m/s as the value for the permeability. To cure the artificial

oscillation, some numerical damping is introduced into the analysis by using γ = 0.6 and β = 0.3025

for the Newmark integrator. Fig. 310.20 illustrates the physical geometry of the problem whereas Fig.

310.21 shows the numerical modeling.

Based on the above parameters, the other relative parameters can be calculated as follows:

The bulk modulus of the mixture:

K =
E

3(1 – 2ν)
= 6.67× 103kPa (310.49)

λ =
Eν

(1 + ν)(1 – 2ν)
= 6.67× 103kPa µ =

E
2(1 + ν)

= 4× 103kPa (310.50)

The Biot coefficient:

b = 1 –
K
Ks

= 0.9998 (310.51)

The undrained bulk modulus of the mixture:

N =
Ks

b – n
= 6.85× 107kPa M =

Kf N
Kf + Nn

= 4.47× 106kPa (310.52)
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Figure 310.16: The distribution of the vertical effective stresses with depth due to self-weight. The

stresses are calculated at the Gauss points within each brick element. The stresses obtained from the

numerical analysis are equal for all the Gauss points within the element, due to the compatibility of

deformations at the element interfaces.

Ku = K + b2M = 4.4× 106kPa (310.53)

The diffusion coefficient and characteristic time of consolidation:

cf =
kM
γw

K + 4µ
3

Ku + 4µ
3

= 1.2m2/s t =
h2

cf
= 83.33s (310.54)

310.7.3 Discussion of Numerical Results - Conclusions

The stage of self weight application shows in Fig. 310.19 that the expected estimated settlement is

quite close to the one obtained from the analysis. The difference in the two values is due to the stress

distribution coming out of the analysis which is slightly different than the one considered in theory (see

Fig. 310.16) and possibly due to the compressibility of soil particles in the numerical analysis.

In Fig.310.24, the normalized fluid pressure is plotted against the location for various normalized

times. For normalized time Tv = 0.1, only the nodes close to the top free flow surface display the

dissipation of the pore pressure. The experimental result provide good agreement with the analytical
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 310.7. VERTICAL CONSOLIDATION OF A SOI . . . page: 1720 of 3287

10 m

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200

Stresses (kPa)

de
pt
h 
(m

)
Effective Stresses

Hydrostatic Pressures

Total Stresses

γ = 18.55 kN/m3

Figure 310.17: The distribution of the hydrostatic pore pressures, the effective and total stresses with

depth, obtained from the numerical analysis after self-weight application.

solution. With the increase of the normalized time, we can clearly see the tendency of the dissipation

of the water. At normalized time Tv = 1.0 (natural time t = 83 sec), the maximum normalized pore

pressure is only about 0.11. It can be concluded that the numerical analysis can effectively demonstrate

the process of the dissipation of the pore pressure.

In Fig. 310.26, the change of the porosity is predicted due to the consolidation of the soil layer. Both

the change of volume of the soil (0.1782m3) and the fluid (0.1794m3) have been calculated. Theoretically,

these two values should be the same, according to the fact that the settlement of the soil layer is due the

fluid which is squeezed out, assuming that the soil grains are incompressible. However, this difference

in the values is due to the compressibility of the soil grains, which was not considered infinite in the

numerical analysis.
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Porosity,  n = 0.46
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Figure 310.18: Estimation of the total self load, as it is obtained from the numerical analysis, given the

porosity and the densities of the fluid (ρf ) and the grains (ρs or Gs).

310.8 One dimensional wave propagation in elastic porous media subjected to

step displacement boundary condition

310.8.1 Brief review of Analytical Solution by Gajo and Mongiovi (1995)

An one-dimensional exact analytical solution of the Biot’s equations is provided by Gajo and Mongiovi

(1995) for the completely general solution of the transient problem in saturated, linear, elastic, porous

media. The analytical solution was obtained was obtained by Fourier series. This solution is considered

to be completely general because it is not based on any assumptions with respect to the inertial, viscous

or mechanical coupling. Furthermore, it can be applied to any type of boundary-initial value problem.

The advantage of this analytical solution consists of showing the mechanics of dispersive wave

propagation in saturated elastic solids. This is achieved by allowing the detailed analysis of wave fronts

of the first and second kind of longitudinal waves and by analyzing accurately the effects of each term

of coupling on the transient behavior of saturated porous media. In particular, since each term of the

Fourier series represents a frequency component of the excitation signal, the analytical solution can
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Figure 310.19: Prediction of the total settlement due to self-weight and comparison with the numerical

result.

describe the behavior of each frequency component. Thus, it can illustrate the mechanics of dispersive

wave propagation in which higher frequencies propagate with two waves and lower frequencies with only

one wave, as a function of permeability and travel length.

Considering the above mentioned arguments, the analytical solution can provide a useful comparative

term towards the verification and the validation of the existing numerical solutions based on the finite

element method. Such a study was conducted by Gajo et al. (1994), by comparing analytical results

with numerical ones obtained by a u – p – U numerical formulation.

In the paper by Gajo and Mongiovi (1995), the transient response of porous media is shown for

typical material properties of a natural granular deposit and for different degrees of viscous coupling.

Specifically, analytical results are given from the solution of the following one-dimensional boundary value

problem: at the top and bottom surfaces of a soil layer of finite thickness L, the excitation consisting of a

step displacement boundary condition (Heaviside function) is applied to both solid and fluid phases. This

problem can demonstrate better the mechanics of dispersive wave propagation, since the step excitation

contains waves of all kind of frequencies. The analytical solution is relative only to the first arrival of

the waves of the first and second kind.
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Figure 310.20: The physical geometry of the problem.
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Figure 310.21: Numerical simulation of 1D consolidation of a soil layer.
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Figure 310.22: Time history of the normalized excess pore pressure for three different normalized depths

indicating faster dissipation close to the surface. The dissipation has practically been completed at

t = 83.33sec, as predicted.
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Figure 310.23: Normalized excess pore pressures versus normalized time for three different normalized

depths. Comparison of numerical results with the analytical ones.
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Figure 310.24: Distribution of normalized excess pore pressures with normalized depth for four different

time factors. Comparison of numerical results with the analytical ones.
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Figure 310.25: Time history of the settlements for four different depths.
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Figure 310.26: Prediction of the change in porosity of the soil layer due to consolidation.
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Figure 310.27: Boundary Conditions applied to the numerical model throughout the self-weight applica-

tion and the process of consolidation due to extra load applied to the surface of the soil column.
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310.8.2 Numerical Analysis

Numerical examples for three different values of viscous coupling (k = 10–8cm3s/g, k = 10–6cm3s/g,

k = 10–5cm3s/g) were solved in order to verify the previously mentioned u – p – U formulation in a wide

range of drag. The numerical model used for the simulation of the 1C shock wave propagation consists

of 400 u-p-U brick finite elements of dimensions 0.01cm× 0.01cm× 0.01cm creating a soil column 4cm

thick. Figure 310.28 illustrates the transition from the physical configuration of the problem to its

numerical simulation. Table 310.6 shows the soil properties of the numerical model.

0.01 cm

Figure 310.28: The numerical model used for the verification of the finite element implementation

through comparison with the analytical results provided by Gajo and Mongiovi (1995).

At the top surface of the soil column, a step displacement of 1.0 × 10–3cm is applied both to the

solid and the fluid phase. Only the vertical displacement is free. There is no lateral flow or displacement.

The degree of freedom related to the pore pressures is constrained at the top surface to be equal to the

atmospheric pressure and is free at the rest of the nodes. The base of the model is rigid and impervious.

This kind of excitation (Heaviside function) applied at the top of the model, results clearly in waves

of all kinds of frequency, first due to its nature and secondarily due to the way of its application. This

fact together with the great stiffness of the solid skeleton (see Table 310.6 require a very dense spatial
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Table 310.6: Soil Properties for 1C shock wave propagation for the problem by Gajo and Mongiovi

(1995).

Parameter Symbol Value

gravity acceleration g 9.81 m/s2

soil matrix Young’s Modulus E 1.2× 106 kN /m2

soil matrix Poisson’s ratio v 0.3

solid particle density ρs 2.7× 103 kg/m3

water density ρf 1.0× 103 kg/m3

solid particle bulk modulus Ks 36.0× 106 kN /m2

fluid bulk modulus Kf 2.177× 106 kN /m2

porosity n 0.4

Biot coefficient α 1.0

discretization. Here, 400 u-p-U brick finite elements of dimensions 0.01cm× 0.01cm× 0.01cm, following

similar discretization with Gajo et al. (1994). The time step, δt required needs to be limited to

δt <
δh
v

(310.55)

(310.56)

where v is the highest wave velocity. In our case, the temporal integration involves 800 steps of

2.0× 10–8sec, which allows a maximum wave velocity of 5.0× 105m/s.

Two different time integration methods where used: i) The Newmark integrator and ii) The Hilber-

Hughes-Taylor (HHT) Integrator. Sets of parameters, assuring unconditionally numerical stability, were

chosen for both integrators. For the case of Newmark integrator (see Figures 310.29 - 310.44), the

following sets of parameters were used:

a) γ = 0.5 and β = 0.25,

b) γ = 0.6 and β = 0.3025,

c) γ = 0.7 and β = 0.4.
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Figure 310.29: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–8cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 310.8. ONE DIMENSIONAL WAVE PROPAGATI . . . page: 1734 of 3287

5 5.5 6 6.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

‐3 k = 10‐8 cm3s/g

t [10‐6 sec]

so
lid

 d
is
pl
ac
em

en
t (
cm

)

FEM (Newmark, gamma=0.5; beta=0.25)
FEM (Newmark, gamma=0.6; beta=0.3025)
Analytical Solution

Figure 310.30: A magnified view of Figure 310.29 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.31: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–8cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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Figure 310.32: A magnified view of Figure 310.31 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.33: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–6cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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Figure 310.34: A magnified view of Figure 310.33 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.35: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–6cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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Figure 310.36: A magnified view of Figure 310.35 illustrating the details of wave front of the longitudinal

wave of first kind.

For the HHT integrator (see Figures 310.45 - 310.56), the following sets of parameters were used:

a) α = –0.1, γ = 0.6 and β = 0.3025,

b) α = –0.3, γ = 0.8 and β = 0.4225.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 310.8. ONE DIMENSIONAL WAVE PROPAGATI . . . page: 1741 of 3287

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

x 10
‐3 k = 10‐5 cm3s/g

t [10‐6 sec]

so
lid

 d
is
pl
ac
em

en
t (
cm

)

FEM (Newmark, gamma=0.6; beta=0.3025)
FEM (Newmark, gamma=0.7; beta=0.4)
Analytical Solution

Figure 310.37: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–5cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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Figure 310.38: A magnified view of Figure 310.37 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.39: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling (k = 10–5cm3s/g). Two different sets of Newmark parameters were used for

the numerical analysis.
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Figure 310.40: A magnified view of Figure 310.39 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.41: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

three different values of viscous coupling. The Newmark set of parameters used for the numerical solution

was: γ = 0.6 and β = 0.3025.
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Figure 310.42: A magnified view of Figure 310.41 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.43: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

three different values of viscous coupling. The Newmark set of parameters used for the numerical solution

was: γ = 0.6 and β = 0.3025.
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Figure 310.44: A magnified view of Figure 310.43 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.45: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for

the case of viscous coupling(k = 10–8cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.46: A magnified view of Figure 310.45 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.47: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for the

case of viscous coupling(k = 10–8cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.48: A magnified view of Figure 310.47 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.49: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for the

case of viscous coupling(k = 10–6cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.50: A magnified view of Figure 310.49 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.51: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for the

case of viscous coupling(k = 10–6cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.52: A magnified view of Figure 310.51 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.53: Time history of solid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for the

case of viscous coupling(k = 10–5cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.54: A magnified view of Figure 310.53 illustrating the details of wave front of the longitudinal

wave of first kind.
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Figure 310.55: Time history of fluid displacements of longitudinal waves at 1 cm below the surface.

Comparison of numerical results (FEM) with the analytical solution by Gajo and Mongiovi (1995) for the

case of viscous coupling(k = 10–5cm3s/g). Two different sets of unconditional stable HHT parameters

were used for the numerical analysis.
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Figure 310.56: A magnified view of Figure 310.55 illustrating the details of wave front of the longitudinal

wave of first kind.
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310.8.3 Discussion of Numerical Results - Conclusions

Biot has shown than when dissipation is present, each frequency component propagated with its own

velocity. Thus, especially in the case of numerical solutions using a finite element procedure, the response

is very sensitive to the numerical damping introduced to the system. Generally, a drawback of all types

types of numerical solutions is the distortion and the smearing of the wave fronts, which are linked to the

highest frequency that is allowed by the computational grid and the numerical damping due to the time

integration method. The numerical results presented here, show a larger rise time than the analytical

solution, that it could potentially be improved by using a finer spatial and temporal discretization.

In particular, the dissipation of high frequency oscillations is achieved more efficiently by the Newmark

integrator that the HHT one. Due to the fact that the filtering of high frequencies is less in case of HHT

integrator, the smearing of the wave front of the first kind of longitudinal waves is not so extensive as in

the Newmark case. Obviously, for both cases, as the numerical damping increases by changing the sets

of parameters, the rise time of the water fronts increases too. It is also worth mentioning that the rise

time of the wave front of the second kind low-frequency longitudinal wave is even longer than that of

the first kind.

Figures 310.41 and 310.44 illustrate the comparative results for all the three different values of viscous

coupling using the Newmark integration method. In general, it is worth noting that the numerical results

are in good agreement with the main characteristics of the mechanics of dispersive wave propagation in

fully saturated, porous media, as indicated by the analytical results. For example, numerical results well

demonstrate that during the propagation of the first wave, the solid and fluid displacement are in phase

with each other, whereas during the propagation of second wave, the displacements of the two phases

are in opposition. Overall, the finite element solutions reproduce correctly the forms of wave propagation

for a wide range of permeability.

310.9 One dimensional wave propagation in elastic porous media subjected to

step loading at the surface

310.9.1 Brief review of Analytical Solution by de Boer et al. (1993)

An analytical solution for the one-dimensional transient wave propagation fluid-saturated elastic porous

media is provided by de Boer et al. 1993. The fluid-saturated porous material is modeled as a two phase

system composed of an incompressible solid phase and an incompressible fluid phase. An exact analytical

solution is obtained via Laplace transform technique considering initial and boundary conditions, which

exhibits only one independent compressive wave in both the solid and fluid phases, as a result of the
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incompressibility constraint.

The problem configuration, which the analytical solution is addressed to, consists of an one-dimensional

infinitely long column, separated from the half-space of a fluid-saturated porous elastic skeleton material.

The motion of both the solid and the fluid materials is constrained to occur in the vertical direction.

Loading as a function of time, σ(z = 0, t) = f (t), is applied to the half space surface boundary by a

permeable punch with ideal permeability. Homogeneous pore distribution and free pore fluid surface are

assumed. The wave motion in the porous medium is expressed by the solid and fluid displacements or

the solid extra stresses, respectively, but it cannot be expressed by the pore pressure which is just the

Lagrangian multiplier corresponding to the incompressibility constraint of the medium.

In particular, in the paper by de Boer et al. (1993), the solid and the fluid displacements, the solid

skeleton extra stresses and the pore pressure are given with respect to time and with respect to different

depths in the soil column within the framework of three loading forms: i) sinusoidal, ii) step loading and

iii) impulsive loading. These results can be taken for a quantitative comparison to various numerical

solutions.

310.9.2 Numerical Analysis

Numerical example for the step loading case was solved in order to verify the previously mentioned

u – p – U formulation. The numerical model used for the simulation of the 1C shock wave propagation

consists of 1000 u-p-U brick finite elements of dimensions 1cm × 1cm × 1cm creating a soil column

10m thick. Obviously, the numerical simulation of a semi infinite soil column is not possible; thus,

a soil column of thickness of 10 cm was considered adequate for the current problem configuration.

Figure 310.57 illustrates the transition from the physical configuration of the problem to its numerical

simulation. Table 310.7 shows the soil properties of the numerical model, which are the same with

those used for the analytical results presented in the paper by de Boer et al. (1993).

The only difference is noted on the elastic modulus, which was selected to be 20MN /m2 for the

numerical solution (FEM) instead of 30MN /m2, as it is mentioned in the previously mentioned paper.

This is due to the fact that the numerical results indicated that the results given in the paper correspond

to a soil column with elastic modulus equal to 20MN /m2 instead of 30MN /m2. Moreover, it should be

mentioned that the solid and fluid compressibility were given realistic values (see Table 310.7), which

practically means that the two constituents are incompressible.

At the top surface of the soil column, a step loading of σ(z = 0, t) = 3kN /m2 is applied to the solid

part, as a nodal load equally distributed to the four top nodes. The nodal load is expressed as:
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FN = 7.5 x 10‐5 kN
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FN
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Excitation at top:
Heaviside function

Figure 310.57: The numerical model used for the verification of the finite element implementation

through comparison with the analytical solution provided by de Boer et al. (1993).

FN (z = 0, t) =
σ(z = 0, t)× A

4
=

3kN /m2 × 0.01m× 0.01m
4

= 7.5× 10–5kN (310.57)

Only the vertical displacement is free. There is no lateral flow or displacement. The degree of

freedom related to the pore pressure is constrained at the top surface to be equal to the atmospheric

pressure, while it is free at the rest of the nodes. The base of the model is rigid and impervious.

This kind of excitation (Heaviside function) applied at the top of the model, results clearly in waves

of all kinds of frequency, first due to its nature and secondarily due to the way of its application. Due to

this fact, a fairly dense mesh of 1000 u-p-U brick finite elements of dimensions 1cm × 1cm × 1cm was

chosen. The time step, δt required needs to be limited to

δt <
δh
v

(310.58)

(310.59)
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Table 310.7: Soil Properties for 1C shock wave propagation for the problem by de Boer et al. (1993)

Parameter Symbol Value

gravity acceleration g 9.81 m/s2

soil matrix Young’s Modulus E 20× 103 kN /m2

soil matrix Poisson’s ratio v 0.2

soil matrix Lame’s constant λ 5.55× 103 kN /m2

soil matrix shear modulus µ 8.33× 103 kN /m2

solid particle density ρs 2.0× 103 kg/m3

water density ρf 1.0× 103 kg/m3

solid particle bulk modulus Ks 36.0× 106 kN /m2

fluid bulk modulus Kf 2.177× 106 kN /m2

porosity n 0.33

Darcy’s permeability kD 0.01 m/s

where v is the highest wave velocity. In our case, the temporal integration involves 4000 steps of

1.0 × 10–4sec, which allows a maximum wave velocity of 100m/s. The propagation velocity can be

calculated by the following equation given by de Boer et al. (1993) and is equal to 90.7m/s.

v =

√
n2(λ + 2µ)

n2(1 – n)ρs + (1 – n)2(nρf )
= 90.7m/s (310.60)

The Newmark time integration method was used, which dissipates more efficiently the high fre-

quencies introduced in the system due to numerics than HHT integrator, as shown in section 4.3. The

following set of parameters was chosen, assuring unconditionally numerical stability: γ = 0.7 and β = 0.4.

310.9.3 Discussion of Numerical Results - Conclusions

Figures 310.58 to 310.67 illustrate the comparative results between analytical and numerical solution.

In general, it is worth noting that the numerical results are in good agreement, with respect to time and

with respect to depth, with those obtained by the analytical solution. The responses of the medium due

to step loading are indicative of the consolidation process in case of a free pore water surface. The solid

moves downwards, indicating that settlement occurs and the fluid is squeezed out from the pore volume

creating an upward flow. During the consolidation process, the extra solid skeleton stresses increase with

time at a certain depth. However, they decrease with the distance from the loading surface at a certain
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time. In opposition to the extra solid skeleton stresses, the pore pressure decreases with time tending to

zero, while it increases with depth.
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Figure 310.58: Time history of solid displacements at different depths due to step loading. Comparison

of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

Overall, it is worth mentioning that the results obtained from the finite element procedure practically

coincide with the ones given by the analytical solution. The only difference is located to the pore pressure

(see Figures 310.64 to 310.67), where numerical response is oscillatory in contrast to the analytical

solution. This may be due to the high frequencies introduced to the system by the temporal and spatial

discretization and/or the compressibility of the solid and fluid phases. It should be mentioned again,

that in the analytical solution, the two constituents are assumed incompressible whereas in the numerical

model, the solid and fluid bulk moduli have realistic values (see Table 310.7. That is why in Figure

310.68, numerical examples with different values of fluid compressibility were solved. It is obvious that

the oscillations decrease as the the fluid becomes more and more compressible because the stiffness of

the system decreases and the high frequencies are dissipated faster. Moreover, Figure 310.68 indicated

that better quantitative agreement between the numerical and analytical solution is achieved when the

bulk modulus of the fluid is 2.2 × 106 kPa - realisic value - instead of 2.2 × 109 kPa, which would be

expected since the pore fluid is assumed to be incompressible in the framework of the analytical solution.

Comparing the pore pressures obtained from these two cases, it can be observed that the pore pressure

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 310.59: Response of solid displacements versus depth at different time moments due to step

loading. Comparison of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

generation in the more compressible fluid is slightly higher than that of the almost incompressible fluid

because of the existence of the oscillatory waves, as mentioned by (Zienkiewicz and Shiomi, 1984).

310.10 One dimensional wave propagation in elastic porous media subjected to

step velocity boundary condition

310.10.1 Brief review of Analytical Solution by Hiremath et al. (1988)

Hiremath et al. (1988) present a solution of Biot’s dynamic equation of motion for one-dimensional

wave propagation in a fluid-saturated linear elastic isotropic soil using Laplace transformation followed

by numerical inversion. This study is considered to be an extension of the exact transient solution

presented by Garg et al. (1974) for two limiting cases of infinitely small and infinitely large viscous

coupling. In both cases, a soil column of finite dimension subjected to velocity boundary conditions was

analyzed, allowing for reflection of waves at the boundaries.

In particular, Hiremath et al. (1988) examines two cases allowing for weak and strong viscous coupling,

or else, as it is referred in the related paper, low and high drag, respectively. Moreover, two different
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Figure 310.60: Time history of fluid displacements at different depths due to step loading. Comparison

of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

types of excitations were applied at the boundary surface in terms of solid and fluid velocity. In the

first case, a unit step boundary condition boundary condition was applied at the top surface for both

solid and fluid phases. In the second case, the fluid velocity specified at the boundary is different from

the specified solid velocity increasing gradually to unity over the time scale. The results obtained from

the numerical inversion allowed for six reflections of the fast compressional wave of first kind and two

reflections of the secondary slow longitudinal wave.

One of the most important observations which both Garg et al. (1974) and Hiremath et al. (1988)

concluded to, is that in case of strong viscous coupling (high drag), the material behaves as a single

continuum with internal dissipation and the two wave fronts tend to become a single one.

Hiremath et al. (1988) presented a comparison of finite element solution of Biot’s equations of motion

with one based on numerical inversion of the Laplace transform solution. It is explained in the paper that

a proper choice of element type and time domain integration is essential for capturing the results coming

from the semi-analytical solution. Moreover, the spatial discretization needs to be combined with an

appropriate temporal one, so that the wave does not traverse more than one element length during a

single time step. In detail, Hiremath et al. (1988) suggests 100 linear elements of 0.005 m length and

986 time steps of size 10–6 sec.
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Figure 310.61: Response of fluid displacements versus depth at different time moments due to step

loading. Comparison of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

310.10.2 Numerical Analysis

Numerical examples for two extreme values of viscous coupling: a) high drag (k = 0.148× 10–8cm3s/g)

and b)low drag (k = 0.148 × 10–2cm3s/g), were solved in order to verify the previously mentioned

u – p – U formulation by comparing the results with the semi-analytical solution provided by Hiremath

et al. (1988). The numerical model used for the simulation of the 1C shock wave propagation consists

of 100 u-p-U brick finite elements of dimensions 0.005m×0.005m×0.005m creating a soil column 50cm

thick. Figure 310.69 illustrates the transition from the physical configuration of the problem to its

numerical simulation. Table 310.8 shows the soil properties of the numerical model.

At the top surface of the soil column, a step velocity of 1.0 × 10–2m/sec is applied both to the

solid and the fluid phase. Only the vertical translational degrees of freedom are free. The horizontal

translational degrees of freedom are constrained so that there is no lateral flow or displacement. The

base of the model is rigid and impervious.

This kind of excitation (Heaviside function) applied at the top of the model, results clearly in waves

of all kinds of frequency, first due to its nature and secondarily due to the way of its application. This

fact together with the great stiffness of the solid skeleton (see Table 310.8 require a very dense spatial
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Figure 310.62: Time history of solid skeleton stresses at different depths due to step loading. Comparison

of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

Table 310.8: Soil Properties for 1C shock wave propagation for example by Hiremath et al. (1988).

Parameter Symbol Value

gravity acceleration g 9.81 m/s2

soil matrix Young’s Modulus E 23.21× 106 kN /m2

soil matrix Poisson’s ratio v 0.171

solid particle density ρs 2.66× 103 kg/m3

water density ρf 1.0× 103 kg/m3

solid particle bulk modulus Ks 36.0× 106 kN /m2

fluid bulk modulus Kf 2.2× 106 kN /m2

porosity n 0.18

Biot coefficient α 0.6772
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Figure 310.63: Response of solid skeleton stresses versus depth at different time moments due to step

loading. Comparison of numerical results (FEM) with the analytical solution by de Boer et al. (1993).

discretization. Here, 100 u-p-U brick finite elements of dimensions 0.005m × 0.005m × 0.005m were

chosen, following similar discretization with Hiremath et al. (1988). The time step, δt required needs to

be limited to

δt <
δh
v

(310.61)

(310.62)

where v is the highest wave velocity. In our case, the temporal integration involves 1972 steps of

5.0× 10–7sec, in comparison with 986 time steps of size 10–6sec, used by Hiremath et al. (1988). The

time integration method used was the Newmark integrator with parameters: γ = 0.6 and β = 0.3025.

310.10.3 Discussion of Numerical Results - Conclusions

Biot has shown than when dissipation is present, each frequency component propagates with its own

velocity. Thus, especially in the case of numerical solutions using a finite element procedure, the response

is very sensitive to the numerical damping introduced to the system. Generally, a drawback of all types
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Figure 310.64: Time history of pore pressure at different depths due to step loading. Comparison of

numerical results (FEM) with the analytical solution by de Boer et al. (1993).

types of numerical solutions is the distortion and the smearing of the wave fronts, which are linked to the

highest frequency that is allowed by the computational grid and the numerical damping due to the time

integration method. The numerical results presented here, show some oscillations at the rough changes

in velocity due to reflection of wave fronts that could be possibly diminished by using a finer spatial and

temporal discretization.

Figures 310.70 to 310.77 illustrate the comparative results for both extreme cases of viscous cou-

pling. In general, it is worth noting that the numerical results are in good agreement with the main

characteristics of the mechanics of dispersive wave propagation in fully saturated, porous media, as in-

dicated by the semi-analytical results. For example, numerical results well demonstrate that for the case

of strong viscous coupling (high drag), the solid and fluid are in phase with each other, implying that

the two-phase material behaves as a single continuum. Overall, the finite element solutions reproduce

correctly the trends of wave propagation in both limiting cases of viscous coupling.
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Figure 310.65: Response of pore pressure versus depth at t = 0.01sec due to step loading. Comparison

of numerical results (FEM) with the analytical solution by de Boer et al. (1993).
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Figure 310.66: Response of pore pressure versus depth at t = 0.05sec due to step loading. Comparison

of numerical results (FEM) with the analytical solution by de Boer et al. (1993).
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Figure 310.67: Response of pore pressure versus depth at t = 0.1sec due to step loading. Comparison of

numerical results (FEM) with the analytical solution by de Boer et al. (1993).
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Figure 310.68: Time history of pore pressure at 1 m below the ground surface due to step loading for

different fluid compressibility. Comparison of numerical results (FEM) with the analytical solution by

de Boer et al. (1993).
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Figure 310.69: The numerical model used for the verification of the finite element implementation

through comparison with the semi-analytical results provided by Hiremath et al. (1988).
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Figure 310.70: Time history of solid velocity at 10 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–8cm3s/g).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 310.71: Time history of solid velocity at 30 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–8cm3s/g).
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Figure 310.72: Time history of fluid velocity at 10 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–8cm3s/g).
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Figure 310.73: Time history of fluid velocity at 30 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–8cm3s/g).
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Figure 310.74: Time history of solid velocity at 10 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–2cm3s/g).
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Figure 310.75: Time history of solid velocity at 30 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–2cm3s/g).
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Figure 310.76: Time history of fluid velocity at 10 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–2cm3s/g).
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Figure 310.77: Time history of fluid velocity at 30 cm below the surface. Comparison of numerical

results (FEM) with the semi-analytical solution by Hiremath et al. (1988) for the case of high drag

(k = 0.148× 10–2cm3s/g).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 311.1. CHAPTER SUMMARY AND HIGHLIGHTS page: 1786 of 3287

311.1 Chapter Summary and Highlights

311.2 Wavelet Seismic Signals

A wavelet is a wave with specific definitions and parameters. The amplitude of a wavelet usually starts

at zero, increases by time and ended up at zero again. Typically a wavelet can be plotted as a brief

oscillation such as a the small oscillation recorded by seismogram. There are different types of wavelets

each with their own properties used for specific purpose in signal processing. For specific purposes

different wavelets might be summed up to come up with new type of wave. A recently developed

wavelet analysis has become a powerful tool to analyze the soil-structure systems for transient loads

providing information both in time and frequency domains. In wavelet representation the basis functions

are localized and contained in finite time domains (Sarica and Rahman (2003)).

311.2.1 Ricker Wavelet

One type of wavelet motions is the Ricker wave (Ryan (1994), Mavroeidis and Papageorgiou (2003)).

The formulation of Ricker wavelet is shown in Equations (311.1):

R(t) = A (1 – 2π2f 2 t2) exp(–π2f 2t2) (311.1)

where R(t) is the amplitude of the function in time, A if the maximum amplitude, and f is the peak

frequency on the wavelet’s frequency spectrum. Figure (311.1) shows the actual time history and fast

Fourier transform of Ricker wavelet, where A is taken as 1 and f is taken as 5Hz. As it is shown, the

frequency range of the motion is narrower compared to the real earthquake motion.
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Figure 311.1: Frequency content and a time domain representation of Ricker wavelet
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311.2.2 Ormsby Wavelet

Another example of interesting wavelet is called Ormsby wavelet (Ryan (1994)) which features a con-

trollable flat frequency content with formulation shown in Equation (311.2).

f (t) = A((
πf42

f4 – f3
sinc(πf4(t – ts))2 –

πf32

f4 – f3
sinc(πf3(t – ts))2)

– (
πf22

f2 – f1
sinc(πf2(t – ts))2 –

πf12

f2 – f1
sinc(πf1(t – ts))2)) (311.2)

where f1 and f2 define the lower range frequency band, f3 and f4 define the higher range frequency

band, A is the amplitude of the function, and ts is the time that maximum amplitude is happening, and

sinc(x) = sin(x)/x.

Figure (311.2) shows an example of Ormsby wavelet in time domain and frequency domain. In this

case, wave has a flat frequency range of 5Hz to 20Hz. Shown in Figure (311.3) is half of the Ormsby

wavelet in frequency domain which the frequency range starts from 0 and remains constant up to 20Hz.

This type of motion could be useful when low frequency range of motions are required for dynamic

analysis of the systems.

Such broad band signals could be used to assess different aspects of soil-structure systems and with

different incoming wave inclinations. While wavelet time domain motions are not the same as actual

earthquakes, the idea is to use them for dynamic analysis of soil-structure systems for possible problems

coming out of dynamic behavior, at different frequencies and for different energy input levels.

When used with the DRM, motions developed from different directions, different incident angles

and different energies, will create a full envelope of these motions, which then can be used to evaluate

performance based response of the soil-structure systems.
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Figure 311.2: Frequency content and a time domain representation of an Ormsby wavelet, with constant

frequency content between 5Hz and 20Hz
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Figure 311.3: Frequency content and a time domain representation of half of Ormsby wavelet formulation,

with minimum frequency of zero and maximum of 20Hz
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311.3 Finite Element Mesh Size Effects on Seismic Wave Propagation Modeling

and Simulation

311.3.1 Analysis Cases

Summary of the cases is shown in Table below. the input motion used is Ormsby wavelet which the

corner cutoff frequency is shown in the table.

Case Number
Model Height

(m)

Shear Wave

Velocity

(m/s)

Element Size

(m)

Frequncy

Cutoff (Hz)

Maximum Propagation

Frequency (Hz)

1 1000 1000 10 3 10

2 1000 1000 20 3 5

3 1000 1000 10 8 10

4 1000 1000 20 8 5

5 1000 1000 50 3 2

6 1000 1000 50 8 2

7 100 100 1 3 10

8 100 100 2 3 5

9 100 100 1 8 10

10 100 100 2 8 5

11 100 100 10 8 1

12 1000 100 10 8 1

13 1000 100 20 8 0.5

14 1000 100 50 8 0.2

311.3.2 Comparison of Case 1 and 2
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Figure 311.4: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.5: Comparison of displacement time histories of case 1 and 2 at top of the model
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Figure 311.6: Comparison of FFT of case 1 and 2 at top of the model and input motion at the bottom

of model

311.3.3 Comparison of Case 3 and 4

311.3.4 Comparison of Cases 3, 4, and 6

311.3.5 Comparison of Case 7 and 8
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Figure 311.7: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.8: Comparison of displacement time histories of case 3 and 4 at top of the model
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Figure 311.9: Comparison of FFT of case 3 and 4 at top of the model and input motion at the bottom

of model

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
is

pl
ac

em
en

t (
m

)

Time [s]

Figure 311.10: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.11: Comparison of displacement time histories of case 3, 4, and 6 at top of the model
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Figure 311.12: Comparison of FFT of case 3, 4, and 6 at top of the model and input motion at the

bottom of model
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Figure 311.13: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.14: Comparison of displacement time histories of case 7 and 8 at top of the model

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 311.15: Comparison of FFT of case 7 and 8 at top of the model and input motion at the bottom

of model

311.3.6 Comparison of Case 9, 10, and 11

311.3.7 Comparison of Case 12, 13, and 14

311.4 Damping of the Outgoing Waves

311.4.1 Comparison of Rayleigh Damping and Caughey 4th Order Damping

As mentioned before, Caughey damping in general will damp out the motions at specified modes (fre-

quencies) to be specified which could also be the natural frequencies of the system. Depending on the

type of damping to be used, the response of those modes would be affected. In order to observe the

damping effect on certain modes, a soil profile is made with thickness of 50m and shear wave velocity

of 100m/s. For input motion, an Ormsby wavelet with frequency range of 0 to 7 Hz is considered at

the base of model. The wave is propagated through the soil layer using the elastic transfer functions

and comparison is made between the case which Rayleigh damping is used versus the case which the

frequency independent damping is used in the model. The same procedure is done by using Caughey

damping.

Figures (311.22) and (311.23) show the base motion (Ormsby wavelet), motion at the surface
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Figure 311.16: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.17: Comparison of displacement time histories of case 9, 10, and 11 at top of the model
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Figure 311.18: Comparison of FFT of case 9, 10, and 11 at top of the model and input motion at the

bottom of model
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Figure 311.19: Displacement time history of input motion (Ormsby Wavelet)
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Figure 311.20: Comparison of displacement time histories of case 12, 13, and 14 at top of the model
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Figure 311.21: Comparison of FFT of case 12, 13, and 14 at top of the model and input motion at the

bottom of model
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considering the frequency independent damping, motion at the surface using Rayleigh wave (frequency

dependent), motion at the surface using Caughey damping of 4th order (frequency dependent) as well as

how Rayleigh and Caughey damping ratio change with frequency. It can be observed how the response

is affected at different modes using Rayleigh damping versus using Caughey damping.
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Figure 311.22: Comparison of obtained motion at the surface using frequency independent damping and

frequency dependent Rayleigh damping.

311.4.2 Parametric Study on Effect of Rayleigh Damping on Reflected Waves

As mentioned in previous chapter, one of the issues of the modeling in dynamic analysis is reflecting

of the motions from the boundaries since there are limitations regarding the size of the problems we

can model. In order to reduce the computational cost of the problems, the size of the mesh has to be

reduced. By reducing the size of the model the chance of reflecting the motions from the boundaries

gets higher since there is less volume for the waves to get dissipated.

There are different ways to reduce reflection of the waves from the numerical boundaries such as PML,

viscous dampers, infinite elements, or considering Rayleigh damping for specific elements. Presented here

show the results of wave propagation models considering Rayleigh damping. There are different damping

patterns used here such as constant damping ratio for all the elements in the damping zone or linear

pattern of increasing the damping ratio.

In order to find the Rayleigh damping coefficients, two frequencies have to be considered. In these

examples both cases of using the natural frequencies of the soil column and also using the dominant
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Figure 311.23: Comparison of obtained motion at the surface using frequency independent and frequency

dependent Caughey 4th order damping.

periods of the motions are used and comparison is made. Different shear wave velocities and input motion

frequencies are used which is mentioned for each case. The input motion considered for simulation is

Ricker wavelet considering different dominant frequencies. Vs is the soil profile shear wave velocity and

fr is the frequency of the Ricker wavelet, and xi is the Rayleigh damping ratio at considered frequencies.

The height of the finite element model is 60m and boundary conditions are introduced in order to

model 1C wave propagation. The motion is imposed at one side of the model and Rayleigh damping is

applied to couple of the elements on the other side of the model in order to damp out the waves. Results

are recorded at the boundary of damped and undamped zones.

Figure (311.24) shows the comparison of time histories for the soil column with shear wave velocity of

100m/s and input motion frequency of 8Hz. Frequencies used to calculate Rayleigh damping coefficients

in this case are natural frequencies of the soil column. The same damping ratio is used for all the

damping zone elements. It can be observed that the one with constant damping ratio of 0.5 has done

better job in terms of damping out the reflected motions.

Same analysis is done by using frequencies of 6Hz and 12Hz for the Rayleigh damping. As shown in

Figure (311.25), in this case the reflected waves are damped out more comparing to previous case where

natural frequencies of the soil were used for Rayleigh damping. This fact shows that the frequencies to

be used for calculating the Rayleigh damping coefficients, do not have to be the natural frequencies of

the soil which sometimes used in practice and depends on the frequency range of the input motion as
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well. Since the Ricker wavelet used here has a peak frequency of 8Hz, the higher values of frequencies

should be used for Rayleigh damping coefficients. Figure (311.26) shows the results of the same case

except that linear increasing pattern is used for damping ratio of the 5 elements in damping zone. It

seems that using the linear pattern starting from 0.3 to 1.1 results in less reflected motions.

The reason could be because of the nature of Rayleigh damping which is frequency dependent. So

different damping ratios are observed at different frequencies. In deed by changing the damping ratio at

each element, five different patterns of Rayleigh damping are being used which has more capability of

absorbing motions with different frequencies and amplitudes.
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Figure 311.24: Displacement time history considering Rayleigh damping using natural frequencies of the

soil, Vs=100m/s , fr=8Hz

Figures (311.27) and (311.28) show the displacement time histories for same patterns of constant

damping ratio for all elements in the damping zone and linearly increasing damping ratios respectively

but for shear wave velocity of Vs = 300m/s and input motion frequency of 5Hz. Same conclusion can

be made here as previous case regarding the pattern of damping ratios and frequencies to be used for

Rayleigh damping.

Figures (311.29) and (311.30) are comparisons of recorded displacement time histories between

patterns of same damping ratio for damping zone elements, damping ratio changes along the length of

damping zone, and case of with out damping. Figure (311.29) is the case which shear wave velocity of

the soil column is 100m/s and frequency of input Ricker motion is 1Hz while soil profile used in Figure

(311.30) has shear wave velocity of 300m/s with input motion frequency of 8Hz.

It can be observed that in case of having no physical damping, waves are getting trapped in the model

and are reflecting back from the boundaries. Displacement time histories obtained from mentioned
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Figure 311.25: Displacement time history considering Rayleigh damping using f1,f2 = 6,12 Hz ,

Vs=100m/s , fr=8Hz
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Figure 311.26: Displacement time history considering Rayleigh damping using f1,f2 = 6,12 Hz ,

Vs=100m/s , fr=8Hz

patterns of damping ratios have minor differences which does not mean always will be this close but

still the pattern of using linearly increasing of damping ratio seems to do a better job for damping the

reflecting waves.

In order to have a better understanding of these patterns of damping, wave propagation through the

depth of model is recorded for case of shear wave velocity of 100m/s and input motion frequency of 8Hz.

Displacement time histories in Figures (311.31) to (311.33) show wave propagation through the model

for cases of using uniform damping ratios, linearly increasing damping ratios, and with out damping
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Figure 311.27: Displacement time history considering Rayleigh damping using f1,f2 = 5,8 Hz ,

Vs=300m/s , fr=5Hz
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Figure 311.28: Displacement time history considering Rayleigh damping using f1,f2 = 5,8 Hz ,

Vs=300m/s , fr=5Hz

respectively. By looking at the wave propagation through the whole soil profile it can be concluded that

for this soil profile using the linearly increasing of damping ratios does a better job for damping the

reflected motions at different depths.

Figure (311.34) shows the comparison of cumulative total energy time histories for the soil profile

with shear wave velocity of 100m/s and input motion frequency of 8Hz for different Rayleigh damping

patterns of uniform, increasing linearly, and case of no damping. What is expected to be observed is that

total energy keeps increasing until the input motion gets to zero in time which energy should remain
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Figure 311.29: Displacement time history considering Rayleigh damping using f1,f2 = 0.5,2 Hz ,

Vs=100m/s , fr=1Hz
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Figure 311.30: Displacement time history considering Rayleigh damping using f1,f2 = 6,12 Hz ,

Vs=300m/s , fr=8Hz

constant unless there are waves reflecting back from boundaries. As it is shown, total energy slightly

increase by time due to the reflected motions. This difference is much higher for case of no physical

damping used since higher portion of the motions will get trapped in the model.

In order to be able to see the effect of size of damping zone on reflected motions, analysis is done on

the soil profile with shear wave velocity of 100m/s and frequency of 8Hz for input motion. Comparison

of displacement time histories for different size of the damping zones is shown in Figure (311.35). As

expected, by reducing the size of damping zone, more waves are reflecting back from model boundaries.

The effect of number of elements to be used in damping zone is also studied here. Comparison is
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Figure 311.31: Displacement time history in depth considering homogeneous damping (15m), xi=0.5,

Vs=100m/s, fr=8Hz

made for cases which the size of the damping zone is the same but the size of the elements (and therefore

number of the elements) in that zone is changed. The size of the damping zone assumed to be 15m

while the number of the elements used in that zone is considered to be 3, 5, and 15. The comparison

for this change of number of the elements is shown in Figure (311.36). Rayleigh damping ratio with

pattern of increasing linearly from 0.3 to 1.1 is used. As it is observed, by reducing number of elements

in the damping zone, the amount of reflected waves are getting higher.
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Figure 311.32: Displacement time history in depth considering linear increasing of xi in Rayleigh damping

(every 3m), xi=0.3, 0.5, 0.7, 0.9, 1.1, Vs=100m/s, fr=8Hz
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Figure 311.33: Displacement time history in depth with out considering damping, Vs=100m/s, fr=8Hz
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Figure 311.34: Comparison of energy time history by considering different Rayleigh damping patterns

(in the non-damping zone at the middle of model), Vs=100m/s, fr=8Hz
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Figure 311.35: Comparison of displacement time histories for different size of damping zones
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Figure 311.36: Displacement time history at a point in the non-damping zone close to the boundary of

imposing motion
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311.5 Mesh Size Effects for Linear (8 Node Brick) and Quadratic (27 Node

Brick) Finite Elements on Wave Propagation

Generally, the results of numerical analysis using finite element method technique for the dynamic problem

are affected by size of mesh (grid spacing). According to Argyris and Mlejnek (1991), about 10 nodes

per wavelengths are required to simulate accurately for the given frequency and fewer than 10 nodes

may induce an artificial damping due to the numerical reason.

Figure 311.37: One dimensional column test model to inspect the mesh size effect

In this section, mesh size effect is inspected to decide an appropriate size of the mesh to build finite

element model for verification. One dimensional column model is built as shown in figure 311.37. Total

height of the model is 1000 m. Two models are built with element height of 20 m and 50 m, and each

model have two different shear wave velocities (100 m/s and 1000 m/s). Density is set as 2000 kg/m3,

and Poisson’s ratio is set as 0.3, for all test models. Various cases are set and tested as shown in table

311.1. Both 8 node and 27 node brick elements are used for all models. Thus, total 24 parametric study

cases are inspected. Linear elastic elements are used for all analyses. All analyses are performed in time

domain with Newmark dynamic integrator without any numerical damping (γ = 0.5, and β = 0.25, no

numerical damping, unconditionally stable).

Ormsby wavelet (Ryan, 1994) is used as an input motion and imposed at the bottom of the model.
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Table 311.1: Analysis cases to determine a mesh size

Case Vs Cutoff Element Max. propagation

number (m/s) freq. (Hz) height (m) freq. (Hz)

1 1000 3 10 10

2 1000 8 10 10

3 1000 15 10 10

4 100 3 10 1

5 100 8 10 1

6 100 15 10 1

7 1000 3 20 5

8 1000 8 20 5

9 1000 15 20 5

10 100 3 20 0.5

11 100 8 20 0.5

12 100 15 20 0.5

Figure 311.38: Ormsby wavelet in time and frequency domain with flat frequency content from 5 Hz to

20 Hz

Ormsby wavele features a controllable flat frequency content with formulation shown in equation 311.3.

f (t) = A((
πf42

f4 – f3
sinc(πf4(t – ts))2 –

πf32

f4 – f3
sinc(πf3(t – ts))2)

– (
πf22

f2 – f1
sinc(πf2(t – ts))2 –

πf12

f2 – f1
sinc(πf1(t – ts))2) (311.3)

where f1 and f2 define the lower range frequency band, f3 and f4 define the higher range frequency

band, A is the amplitude of the function, and ts is the time that maximum amplitude is happening, and
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sinc(x) = sin(x)/x. Figure 311.38 shows an example of Ormsby wavelet with flat frequency content from

5 Hz to 20 Hz.

Figure 311.39: Number of nodes per wavelength along frequencies, and element sizes (a) Vs = 1000

m/s (b) Vs = 100 m/s

For this example, cutoff frequencies of Ormsby wavelets are set as 3, 8, and 15 Hz (table 311.1).

Figure 311.39 shows number of nodes per wavelength along frequencies and figure 311.40 – 311.46

show comparison of analysis results. As shown in figure 311.40, case 1 and 7 (analysis using Ormsby

wavelet with 3 Hz cutoff frequency) predict exactly identical results to the analytic solution in both time

and frequency domain. Since, number of nodes per wavelength for both cases are over 10 (see figure

311.39(a) and table 311.1, all cases under 3 Hz shows more than 10 nodes per wavelength), those exact

results are expected.

Increasing cutoff frequency from 3 Hz to 8 Hz induces numerical errors as shown in figure 311.41.

In frequency domain, both 10 m and 20 m element height model with 27 node brick element predict

exactly same results with the analytic one. However, in time domain, asymmetric shape of time history
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Figure 311.40: Comparison between (a) case 1 (top, Vs = 1000 m/s, 3 Hz, element size = 10m) and

(b) case 7 (bottom, Vs = 1000 m/s, 3 Hz, element size = 20m)
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Figure 311.41: Comparison between (a) case 2 (top, Vs = 1000 m/s, 8 Hz, element size = 10m) and

(b) case 8 (bottom, Vs = 1000 m/s, 8 Hz, element size = 20m)
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Figure 311.42: Comparison between (a) case 3 (top, Vs = 1000 m/s, 15 Hz, element size = 10m) and

(b) case 9 (bottom, Vs = 1000 m/s, 15 Hz, element size = 20m)
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Figure 311.43: Schematic cartoon to show that nodes can behave like frequency contents filter

displacements are observed. Observations from top of 8 node brick element models show more numerical

error in both time and frequency domain due to the decreasing number of nodes per wavelength (figure

311.39). Figure 311.42 shows analysis results with 15 Hz cutoff frequency. Results from 27 node brick

elements are almost same in frequency domain but asymmetric shapes are also observed in time domain.

Decreasing amplitudes in frequency domain along increasing frequencies are observed from 8 node brick

element cases.

Figure 311.44 – 311.46 show results predicted from Vs = 100 m/s cases. Similar as Vs = 1000

m/s cases, decreasing amplitude along increasing frequencies are observed in all cases. One interesting

observation is bumps in frequency domain which can be seen at natural frequencies (natural modes) of

the elements (n th mode of elements, f = (2n – 1)Vs/4H, 2.5 Hz, 5.0 Hz, and so on). This observation

may mean that if certain condition is satisfied between modes and size of the element, it will behave like

frequency contents filter. Figure 311.43 shows possible explanation of this observation. As in the case

of figure 311.43, nodes (circle in the figure) cannot capture harmonic oscillation of the frequency since

amplitude of the oscillation is always zero. As a result, the frequency contents at the frequency cannot

be predicted by the analysis.

The results shown here are used as a reference to determine mesh size and frequency range of input

motions for the verification.
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Figure 311.44: Comparison between (a) case 4 (top, Vs = 100 m/s, 3 Hz, element size = 10m) and (b)

case 10 (bottom, Vs = 100 m/s, 3 Hz, element size = 20m)
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Figure 311.45: Comparison between (a) case 5 (top, Vs = 100 m/s, 8 Hz, element size = 10m) and (b)

case 11 (bottom, Vs = 100 m/s, 8 Hz, element size = 20m)
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Figure 311.46: Comparison between (a) case 6 (top, Vs = 100 m/s, 15 Hz, element size = 10m) and

(b) case 12 (bottom, Vs = 100 m/s, 15 Hz, element size = 20m)
Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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311.6 Verification of the Seismic Input (Domain Reduction Method) for 3C,

Inclined Seismic Wave Fields

311.6.1 Inclined, 3C Seismic Waves in a Free Field

In this section verification of the 3C wave propagation problem using Domain Reduction Method will

be studied. In order to do so, a finite element model with dimensions of 10000m × 50m × 5000m is

considered. Two cases are studied here with the source of motion (fault) to be located at (x = 3000m, y =

0, z = 3000m) and (x = 3000m, y = 0, z = 3000m). Figures (311.47) and (311.48) show these two models

respectively.

0m 5000m 10000m

5000m

0m

2000m

20
00

m

Fault

Figure 311.47: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of 45◦

with respect to the top middle point of the model
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Figure 311.48: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of 34◦

with respect to the top middle point of the model
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The size of the elements is chosen to be 50m in all directions for both cases in order to reduce the

computational time. The soil parameters are: shear wave velocity of 700m/s, density of 1800kg/m3, and

Poisson’s ration of 0.1. Analyses for the fault slip model are done by applying the motion at the nodes

of one element. This is done in order to represent the the wave propagation starting from the fault

using Multiple Support Excitation. This is representing the first stage of analysis of DRM in which a big

model including the fault is considered for free field case in order to obtain the required motions for DRM

layer. For simulating the second stage of DRM, a smaller model with dimensions of 240m × 5m × 70m

is considered as shown in Figure (311.49). The size of the plastic bowl is 200m× 5m× 50m. Size of the

elements for this model is chosen to be 5m.

0m

0m

70m

240m

DRM Layer

Figure 311.49: Domain to be analyzed for the 2nd analysis stage of DRM with smaller size comparing

to the original model

Displacement and acceleration time histories of corresponding nodes of DRM layer are obtained by

interpolating between the the results obtained from the first model. These displacement and accelerations

are used to calculate the effective forces as an input for DRM analysis. Input motions to be used here are

Ricker wave, Morgan Hill, and Kocaeli earthquakes. The maximum allowable frequency to be propagated

through this model can be calculated based on Equation (311.4):

∆h ≤ λ/10 = Vs/(10 fmax) (311.4)

Based on the shear wave velocity of 700m/s and element size of 50m, maximum allowable frequency

to be propagated through this model would be 1.4Hz for the original model and based on element size

of 5m would be 14Hz for the DRM model.
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311.6.1.1 Ricker Wavelets

Figure (311.50) show the displacement time history and FFT of Ricker wave of 2nd order with dominant

frequency of 1Hz and maximum amplitude occurring at 1 second.
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Figure 311.50: Displacement time history and FFT of Ricker wave with dominant frequency of 1Hz

The first case to be studied here is the one with the fault source located at (x = 3000m, y = 0, z =

3000m) which has the angle of 45◦ with respect to the top middle point of the model. Results to be

discussed here are comparison of displacement and acceleration time histories at the top middle point

of the model (x = 5000m, y = 0, z = 5000m) between the fault slip and DRM models. Comparison of

displacement time histories in X and Z directions are shown in Figure (311.51). As it can be observed,

the results of DRM model matches perfectly with the ones obtained from the fault slip model.

Figure (311.53) is the displacement and acceleration time history of a point located outside of DRM

layer in X direction (x = 10m, y = 0, z = 40m). As mentioned before in definition of DRM, no motion

should come out of the DRM layer in case of free field. As shown in these figures, displacement and

acceleration time histories at this point are zero which verifies this fact.

The same motion is applied to the model with fault source located at (x = 2000m, y = 0, z = 3000m)

which has the angle of 34◦ with respect to the top middle point of the model. Displacement time

histories of the top middle point show the perfect match between results obtained from fault slip model

with the ones obtained from DRM mode.

As shown in Figure (311.55), the second motion to be used for analysis is Ricker wave with frequency

of 0.5Hz and maximum amplitude occurring at 3 seconds. Figure (311.56) shows the displacement time

histories of X and Z directions for the same point as before (x = 5000m, y = 0, z = 5000m). As it is shown,

results of the fault slip and DRM model are the same which verifies the solution from DRM formulation

for this motion as well.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 311.6. VERIFICATION OF THE SEISMIC INPUT . . . page: 1823 of 3287

(X) (Z)

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0  2  4  6  8  10  12

D
is

pl
ac

em
en

t (
m

)

Time (s)

DRM
Fault Slip Model

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0  2  4  6  8  10  12

D
is

pl
ac

em
en

t (
m

)

Time (s)

DRM
Fault Slip Model

Figure 311.51: Comparison of displacements for top middle point using Ricker wave (f = 1Hz) as an

input motion
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Figure 311.52: Comparison of accelerations for top middle point using Ricker wave (f = 1Hz) as an input

motion

The third motion to be used is Ricker wave with frequency of 2Hz and maximum amplitude happening

at 1 second as shown in Figure (311.57). Comparison of displacement time histories between the fault

slip and DRM model has been done and shown in Figure (311.58) along X and Z directions respectively.

In this case, results do not match for the top middle point of the model. The main reason is due to

the frequency of the motion. The maximum allowable frequency to be propagated in the fault slip model

is 1.4Hz while it is 14Hz in DRM model. Dominant frequency of the Ricker wave as input motion is 2Hz.

Frequencies above the 1.4Hz can not be propagated in the fault slip model while they will propagate in
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Displacement Acceleration
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Figure 311.53: Displacement and acceleration time history for a point outside of DRM layer in (x)

direction
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Figure 311.54: Comparison of displacements for top middle point using Ricker wave (f = 1Hz) as an

input motion

the DRM model. this can change the characteristics of the motion propagating through the model and

is the main reason of differences between the obtained results.
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Figure 311.55: Displacement time history and FFT of Ricker wave with dominant frequency of 0.5Hz
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Figure 311.56: Comparison of displacements for top middle point using Ricker wave (f = 0.5Hz) as an

input motion
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Figure 311.57: Displacement time history and FFT of Ricker wave with dominant frequency of 2Hz
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Figure 311.58: Comparison of displacements for top middle point using Ricker wave (f = 2Hz) as an

input motion
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311.6.2 Vertical (1C) Seismic Waves in a Free Field

311.6.2.1 Morgan Hill and Kocaeli Earthquakes

In order to investigate more, Morgan Hill and Kocaeli earthquakes are used as an input motions for the

same models as before. These earthquakes were recorded during the ground shaking and obtained from

PEER motion database. Figure (311.59) shows the acceleration time history and FFT of Morgan Hill

earthquake with major frequency range of up to 4Hz. Acceleration time history and FFT of Kocaeli

earthquake are shown in Figure (311.60). Major part of the frequency range for Kocaeli earthquake is

up to frequency of 4Hz.
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Figure 311.59: Acceleration time history and FFT of Morgan Hill earthquake
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Figure 311.60: Acceleration time history and FFT of Kocaeli earthquake

Figure (311.61) shows the displacement time histories of the top middle point of the model for
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Morgan Hill earthquake while the ones from Kocaeli earthquake are shown in Figure (311.62). As it is

observed, results of fault slip model and DRM model do not match since the majority of the energy in

the earthquake is in the range of up to 4Hz which is higher than the maximum allowable frequency to

be propagated in the original model (1.4Hz).
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Figure 311.61: Comparison of displacements for top middle point using Morgan Hill earthquake as an

input motion
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Figure 311.62: Comparison of displacements for top middle point using Kocaeli earthquake as an input

motion

In order to investigate more regarding the frequency content issue, Kocaeli acceleration time history

is considered and frequencies above 1.4Hz are filtered out of the record. Acceleration time history and
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FFT of the filtered record are shown in Figure (311.63). The majority of the energy is in the frequency

range of below 1.4Hz while still there are frequencies up to 2Hz in the motion as can be observed in

FFT of the filtered motion.
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Figure 311.63: Acceleration time history and FFT of filtered Kocaeli earthquake

Figure (311.64) shows the displacement time histories for the same point as the one studied for the

actual record. As it is observed, the obtained time histories match perfectly between the case of fault slip

and DRM models. Figure (311.65) shows the acceleration time histories. Comparing the time histories

shows an acceptable match between the results. There are tiny differences in acceleration time histories

(specially at the peaks) which can be due to the fact that there are still frequencies above 1.4Hz in the

input motion but with much less impact in terms of amplitude.
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Figure 311.64: Comparison of displacements for top middle point using filtered Kocaeli earthquake as

an input motion
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Figure 311.65: Comparison of accelerations for top middle point using filtered Kocaeli earthquake as an

input motion
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311.6.3 Earthquake-Soil-Structure Interaction Verification for Simulated Northridge Seismic Mo-

tions

Figure 311.66: Finite element model to be used on analyses with input motions computed by integration

equation (x-z plane view)

More realistic example is shown here. Seismic wave fields of Northridge earthquake simulated by

program fk are applied as an input motion for this example. Figure 311.66 shows x-z plane view of three

dimensional model. Similar as analytic case, using fk program, acceleration and displacement fields are

generated at all nodes in DRM layer.

Figure 311.67 shows analysis results observed at the top-midpoint of the finite element model. As

shown in figure 311.67, both results show perfect match.

311.6.4 Curious Case of 1C versus 3C modeling

To inspect more, artificial downhole array is prepared as shown in fingure 311.68. Total 2 observation

points are set on 0 m, and 50 m depth from the ground surface. one dimensional site response analyses

are performed along artificial downhole array usind DEEPSOIL v5.0 (Hashash and Park, 2002). 1D soil

column model is built to run DEEPSOIL with identical soil properties to finite element model. Linear

time domain site response analyses are performed. Displacements recorded at 200 m depth are used as

an input motion. Site response analyses results on the observation points are compared with fk, and
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Figure 311.67: Comparison between results computed from program fk and finite element analysis,

observed at the top middle point of the finite element model
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finite element analyses results.

Figure 311.68: Comparison between analytic solution and FEM analysis result observed at top, middle

point of the model (SV (imposed on x direction) Ricker wave input with 0◦, x component)

Figure 311.69 – 311.74 are analyses results. Figure 311.69, 311.70, and 311.71 show comparison of

results observed at the ground surface, EW, NS, and UD components, respectively. For the case of EW

and NS components, 1C site response analyses results predict similar response as fk and FEM results

compared to UD case. For all cases, 1C analyses results shows larger amplitude especially on UD case,

1Hz frequency contents show unrealistic response amplification. The same trend can be observed at 50

m depth cases (figure 311.72 – 311.74).

Possible explanation are as follows. fk results includes all components of waves (body and surface)

and interaction between them. However, 1C wave propagation analyses cannot incorporate such effect.

Also, 1C analyses is very sensitive to material properties (stiffness, damping ratio, and so on) and

frequency contents of input waves.
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Figure 311.69: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the top middle point, EW component
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Figure 311.70: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the top middle point, NS component
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Figure 311.71: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the top middle point, UD component
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Figure 311.72: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the depth = 50m, EW component
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Figure 311.73: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the depth = 50m, NS component
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Figure 311.74: Comparison between results computed from program fk, finite element analysis, and 1C

analysis, observed at the depth = 50m, UD component
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311.6.5 Earthquake-Soil-Structure Interaction for Surface and Embedded Structures

Luco (1974) Gazetas and Roesset (1979) Wong and Luco (1978) Iguchi and Luco (1981) Kausel and

Roesset (1975) Wong and Luco (1985) Day (1977) Zhang and Chopra (1991) Papageorgiou and Pei

(1998) Luco et al. (1990) Pais and Kausel (1989) Apsel and Luco (1987) Gazetas and Roesset (1979)

Kausel and Roesset (1975)

311.6.5.1 Uniform half-space

311.6.5.2 Layered half-space

311.6.5.3 Layered Layered over rigid lower boundary
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 311.7. CASE HISTORY: SIMPLE STRUCTURE . . . page: 1841 of 3287

311.7 Case History: Simple Structure on Nonlinear Soil

311.7.1 Simplified Models for Verification

Due to the complexity of full scale finite element models it is helpful to perform preliminary tests on

simplified models in order to verify the adequacy of the time and mesh discretization with respect to

the input motion. It also provides good insight in the performance of the nonlinear material model. To

achieve this a series of tests on a one-dimensional soil column have been proposed:

• Static pushover test on nonlinear soil column

Through the static pushover test the behavior of the nonlinear material model can be verified.

• Dynamic test of elastic soil column

By applying an earthquake motion to the elastic soil column it can be tested whether the selected

grid spacing is capable of representing the motion correctly without filtering out any relevant

frequencies. This test also allows to choose appropriate damping parameters. It should be noted

that this is additional (small) damping that is used for stability of the numerical scheme and should

not be relied upon to provide major energy dissipation. Major energy dissipation should be coming

from inelastic deformations of the SFS system.

• Dynamic test of nonlinear soil column

Finally the stability and the accuracy of the numerical method can be examined by applying the

earthquake motion to the nonlinear column of soil. A second analysis with a time step reduced by

50% should not give a significantly different result.

Furthermore it will be examined how propagation through an elastic-plastic material will change

the frequency content of the motion.

311.7.1.1 Model Description

The one-dimensional soil column used for verification has the same depth and element sizes as the 2d

and 3d models that will be addressed later. Its total depth is 10.5 meters and it consists of a single stack

of 8-node brick elements of 1.5 meters side length. In order to achieve one-dimensional wave propagation

in vertical direction the movement of four nodes at each level of depth is constrained to be equal. The

input motion is applied to the four nodes at the base of the model. As input motions four time histories

from the Northridge Earthquake are selected (Figure 311.75).

The material properties of the soil are given in Table 311.7.1.1.
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Figure 311.75: Acceleration time histories and Fourier amplitude spectra’s of the selected ground motions

Friction angle ϕ′ 37◦

Undrained shear strength cu 10 kPa

Mass density ρ 1800 kg/m3

Shear wave velocity vs 200 m/s

The discretization parameters, the time step ∆t and the maximum grid spacing ∆h, are determined

following the guidelines outlined in Section 502.3.3. This yields a maximum grid spacing of

∆h ≤ vs
10 fmax

=
200

10 10
= 2 m (311.5)

For the following analysis ∆h = 1.5 m is selected. The maximum time step is

∆t ≤ ∆h
vs

=
1.5
200

= 0.0075 s (311.6)

Taking into account a further reduction of the time step by about 60% due to the use of nonlinear

material models ∆t = 0.002 s is chosen.
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311.7.1.2 Static Pushover Test on Elastic-Plastic Soil Column

For the static pushover test, an elastic perfectly plastic Drucker-Prager material model as specified in

Table 311.7.1.1 is used.

After applying self weight a horizontal load of 100 kN is applied to a surface node in increments of

0.1 kN. The system of equations is solved using a full Newton-Raphson algorithm. The predicted shear

strength of the first element that is expected to fail, the one at the surface, is:

τf = cu + z ρ g tan ϕ′

= 10 + 0.75 x 1.8 x 9.81 tan 37◦

= 19.98 kPa (311.7)

where z is the depth of the center of the first element.

Self weight produces the following stresses in the element at the surface:

σx = σy = 8.83 kPa

σz = 13.24 kPa

The maximum shear stress is

τmax =
√(σz – σx

2

)2
+ τ2

xz (311.8)

The theoretical failure load can be obtained as follows:

Pf = τxzA

=
√
τ2
f –

(σz – σx
2

)2
A

= 44.7 kN (311.9)

The static failure load is underestimated by about 6%. This accuracy is acceptable for the given

model because the boundary conditions cannot assure constant stresses at a given depth (no shear stress

is applied to the lateral surfaces).

311.7.1.3 Dynamic Test on Elastic Soil Column

In order to test the spatial discretization of the model an earthquake motion is propagated through

an elastic soil column. The grid spacing of the finite element mesh can be considered sufficiently fine

if frequencies up to fmax = 10 Hz are represented accurately in the numerical analysis. A good way

to verify this is to calculate transfer functions between the base and the surface of the soil column.
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Because transfer functions don’t depend on the input motion they can easily be compared with closed

form solutions.

The transfer function of a soil deposit describes the amplification between the frequencies of the

motion at the base and at the soil surface:

TF(ω) =
u(z = 0,ω)
u(z = H,ω)

(311.10)

where z is the depth measured from the surface and H is the thickness of the soil deposit above the

bedrock. ω = 2π f is the circular frequency.

For elastic soil with viscous damping the wave equation can be written as (Kramer, 1996a)

ρ
∂2u
∂t2

= G
∂2u
∂z2 + η

∂3u
∂z2∂t

(311.11)

η is the damping coefficient, defined as

η =
2 G
ω

ξ (311.12)

where ξ is the frequency independent hysteretic material damping.

After solving the wave equation the transfer function can be written as

TF(ω) =
1

cosωH/v∗s
(311.13)

where v∗s is the complex shear wave velocity

v∗s =

√
G∗

ρ
=

√
G(1 + i 2 ξ)

ρ
(311.14)

In a finite element model with mass- and stiffness proportional Rayleigh damping the damping

coefficient η is constant. Therefore the hysteretic material damping ratio ξ needs to be frequency

dependent in order to satisfy Equation 311.12. Solving Equation 311.12 for ξ and substituting it into

Equation 311.14 and then into Equation 311.13 yields a new transfer function:

TF(ω) =
1

cos
(
ωH

√
ρ

G + iωη

) (311.15)

Figure 311.76 shows a comparison between the closed form solution and the numerical transfer

functions obtained from the finite element analysis. Rayleigh damping is used to obtain the damping

matrix C:

C = αM + βK (311.16)

The analysis are performed using stiffness proportional Rayleigh damping of β = 0.001 and β = 0.01. No

mass proportional damping is applied (α = 0). The damping coefficients of the closed form solution are

chosen to be η = β G .
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Figure 311.76: Transfer Function between Surface and Base of Soil Layer

It can be seen that the numerical transfer functions are very close to the closed form solutions for

η = β G. The peak corresponding to the second natural frequency of the soil layer is slightly shifted to

the right in the result of the FE analysis. For the FE analysis the Rayleigh damping cannot be reduced

any further as the solution would become unstable. This result proves that a FE analysis involving

Rayleigh damping with α = 0 and β = η / G is equivalent to the closed form solution of the wave

equation with frequency-dependent hysteretic material damping.

Based on the above observations a stiffness proportional Rayleigh damping of β = 0.01 is selected

for the finite element analysis. This choice damps frequencies above 10 Hz appropriately.

311.7.1.4 Dynamic Test on Elastic-Plastic Soil Column

As the next step an elastic-plastic material model of Drucker-Prager type with kinematic strain hardening

has been selected. Previous analysis involving material with isotropic hardening have proved to be

unsuitable because energy can only be dissipated as the yield surface expands. For dynamic problems

this can lead to an unreasonably large extension of the yield surface, especially if resonance frequencies

are present. Therefore only kinematic hardening has been selected in this analysis.

The analysis were performed with four different ground motions using time steps of ∆t = 0.002s and
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Figure 311.77: Displacement Time-Histories at surface of 1d Soil Column, elastic and elastic-plastic

material

∆t = 0.001s. A linear integrator without iterations within a time step was used. All ground motions were

scaled to a maximum acceleration of 1g. For comparison the analysis were also performed on elastic

material. Figure 311.77 shows the displacement time histories at the surface for all four ground motions.

While the overall shapes of the displacements are the same as for the elastic case there is some residual

plastic displacement resulting in the time histories of the Century City motions.

The Fourier amplitude spectra’s of the acceleration recorded at the surface (Figure 311.78) have the

same general shape for the case of elastic and elastic-plastic material. The amplification at the first

resonance frequency (f = 4.75Hz) is bigger in the elastic analysis. Higher frequencies resulting from

plastic slip are damped out effectively in the nonlinear analysis.

Figure 311.79 shows the acceleration time history at the upper node of the lowest element, that is

the first free node above the base. The record shows large peaks of the order of about 6 g. These

peaks are caused by plastic slip and counter balancing of the resulting plastic deformation. The periods

of the peaks are of the order of a few time steps, they add a very high frequency component to the
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Figure 311.78: Fourier Amplitudes at surface of 1d Soil Column

acceleration. Because these frequencies are due to a purely numerical phenomenon, they should not

be allowed to propagate through the model. This can be achieved easily by specifying an appropriate

numerical procedure (Newmark with appropriate combination of γ and β) or with Rayleigh Damping.

As for the elastic model transfer functions were also computed for the nonlinear model. In Figure

311.80 the transfer functions between the acceleration at the soil surface and the base are compared.

The functions for the nonlinear model are not smooth anymore but the general shape is the same as for

the linear elastic model, i.e. the first natural frequency of the layer is clearly visible. The peaks that are

present in the range of 25 Hz are purely numerical as they appear due to the division by a very small

value.

A second set of analysis performed with half the time step of the previous analysis gives an idea of

the accuracy of the numerical method. In Figure 311.81 the difference between the displacement (or

acceleration) of the analysis with ∆t = 0.002s and ∆t = 0.001s, divided by the corresponding maximum
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Figure 311.79: Acceleration time history at lowest free node

value is given for the entire time history:

∆d =
d0.002(t) – d0.001(t)

max d0.001
and ∆a =

a0.002(t) – a0.001(t)
max a0.001

(311.17)

In Figure 311.82 an integral measure for the difference in displacements and accelerations between the

two analysis is given for all depths. The integral measures are defined as

diffd =
1

max |d|
1
T

T∑
0
|d0.002(t) – d0.001(t)| dt (311.18)

diffa =
1

max |a|
1
T

T∑
0
|a0.002(t) – a0.001(t)| dt (311.19)

(311.20)

The integral differences in accelerations are quite large in the elements that are close to the base,

that is where the motion is applied. Toward the surface the difference becomes smaller than 1%. This

is a result of the fact that most of the plastic deformation occurs near the base which represents an

undesired boundary effect. Again this result underlines the importance of an appropriate choice of the

size of the computational domain.

With a point wise difference not exceeding 5% for accelerations and 2% for displacements the time

step ∆t = 0.002s is sufficiently small to ensure stable and accurate results.
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Figure 311.80: Transfer functions between acceleration at the soil surface and the base

311.7.1.5 2d Model

A 2d-model is proposed as a simplification of the full 3d-model. Representing a cross section of the

full model it is expected to provide insight into its dynamic behavior while requiring considerably less

computational resources. The 2d-model consists of one slice of eight-node brick elements as shown in

Figure 311.83. The nodes of the two lateral faces are constrained to move together in x- and z-direction,

the out-of-plane displacement in y-direction is fixed. The model approximates a plane strain situation.

The earthquake motion is applied to the model by the DRM method.

311.7.1.6 Input Motions

As input for the 2d model the motion from the Northridge earthquake recorded at LA University Hotel

(Figure 311.75) is used. The acceleration time history is scaled to a peak ground acceleration of 1 g.

Motion is applied in x-direction only, that is, this is a 1–D wave propagation.

Acceleration time histories at all the nodes of the boundary layer are obtained by vertically propagating
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Figure 311.81: Difference between results of analysis with different time steps, in percent of the maximum

value

a plane wave using the program SHAKE91 (Idriss and Sun, 1992). Because the free-field model has to

match the properties of the free field as represented by the finite element model for the reduced domain,

only linear elastic material without strain dependent reduction of shear modulus and a constant amount

of hysteretic material damping is used in the SHAKE91-analysis. The earthquake motion obtained in

this way corresponds to a shear wave propagating upward through a homogeneous linearly elastic half

space.

The acceleration time histories from the SHAKE91-analysis are then integrated twice to obtain

displacements. Before integration the acceleration and velocity time histories are transformed into Fourier

space, multiplied with a high pass filter and transformed back into time domain. Then a simple parabolic

baseline correction is performed in order to obtain zero initial, final and mean values.
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Figure 311.82: Averaged differences between results of analysis with different time steps

14 elements

y x

10.5 m

21 m

0

1.5 m

z

outside layer

boundary layer

plastic bowl

7 elements

Figure 311.83: Two-dimensional quasi-plane-strain model
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311.7.1.7 Boundary Conditions

Different boundary conditions are tested on the free-field model. First all outside boundary nodes are

fully fixed as shown in Figure 311.84 a). Then they are released and attached to dash pots that are
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Figure 311.84: The boundary conditions of the 2d model

both perpendicular and tangential to the boundary (schematically shown in Figure 311.84 b)). The dash

pots perpendicular to the boundary are specified to absorb p-waves, those tangential to the boundary

to absorb s-waves. Because in this configuration no displacement constraint is imposed to the model on

the faces at x = ± 10.5 meter the horizontal at-rest soil pressure has to be applied to the corresponding

nodes manually. This is done by recording the reaction forces in the model with fixed boundaries and

applying them with opposite sign to the model with absorbing boundaries. The horizontal displacements

after applying self weight should be very small.

This configuration of boundary conditions has no fixed point in x-direction. Because the dash pots

only provide resistance to high velocity motions the model is very sensitive to low frequency components

of the motion. The slightest imbalance in acceleration causes the entire model to move as a rigid body

in x-direction. To avoid this to happen the node at the center of the base (x = 0.0 m, z = -10.5 m) is

fully fixed in the following analysis.

Figure 311.85 shows results from a free-field analysis on a homogeneous elastic model. Displacements

on an exterior boundary node as well as transfer functions between a point at the surface and a point on

the exterior boundary of the plastic bowl are presented for the two configurations of boundary conditions

shown in Figure 311.84. It can be seen that the displacements outside the plastic bowl in the model

using absorbing boundary conditions are much larger compared to the model with fixed boundaries. This

result is as expected considering the immediate proximity of the boundary. It also gives an idea about

the constraints the fixed boundary imposes on the motions. The transfer function in Figure 311.85 b) is

defined as the ratio between the Fourier amplitude spectra of a point at the surface and a point on the

exterior boundary:

TF(ω) =
A1(ω)
A2(ω)

(311.21)
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Figure 311.85: Elastic homogeneous free-field model: a) Displacements of an exterior boundary node

(x,z) = (9.0,0.0) m, b) Acceleration transfer function between surface and depth A(ω)1
A(ω)2

where A1(ω) is the Fourier amplitude spectrum of the acceleration time history at the point (x,z) =

(0,0)m and A2(ω) the corresponding spectrum at the point (x,z) = (9.0,-7.5)m. The figure shows that

the large peak representing the first natural frequency of the system, corresponding to a standing shear

wave in a soil layer of 10.5 meter depth, gets reduced considerably by the absorbing boundary. An energy

build-up in the model due to reflection of waves on the model boundaries can be reduced effectively with

the configuration of boundary conditions shown in Figure 311.84 b). By releasing the fixed node at (x,z)

= (0,-10.5)m the resonance peak could be reduced by another 10% approximately, however at the cost

of remaining permanent displacements at the end of the analysis.

Alternatively to imposing a rigid constraint to a single node at the base the model can be prevented

to move horizontally as a rigid body through uniaxial springs. This gives the possibility to adjust

the frequency of the eigenmode that corresponds to a vertically propagating plane shear wave. By

appropriately choosing the spring constants the model can therefore be adjusted in such a way that it

represents the natural frequency of a soil deposit on bedrock.

311.7.1.8 Structure

Four very simple structures are chosen to illustrate the effects of dynamic SFSI. A beam-column element

of length L and moment of inertia Iy is fixed to a footing. A lumped mass of M = 100, 000 kg is added to
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 311.7. CASE HISTORY: SIMPLE STRUCTURE . . . page: 1854 of 3287

mass

Figure 311.86: The 2d SFSI-model

b)a)

Figure 311.87: a) First eigenmode, b) second eigenmode of SFSI-system

the translational degrees of freedom of the top of the structure. The footing is 0.5 m deep, spans over

four soil elements and is rigidly connected to the adjacent soil nodes. Its Young’s modulus is chosen large

enough so that the footing can be considered rigid. The mass density of the footing is ρ = 2400 kg/m3,

the column is considered massless. The moment connection between the nodes of the footing, having 3

(translational) degrees of freedom, and the 6 degrees of freedom of the nodes of the column is assured

by a very stiff beam element that is connected to a node at the bottom and a node at the top of the

footing. The column is then simply connected to the upper node of this auxiliary beam element.

The parameters of the four columns are chosen such that the second natural frequency, that is the

natural frequency attributed to bending of the column (Figure 311.87 b)), is evenly distributed over

the frequency range of the input motion (Figure 311.88). Structure 4 is designed such that it’s second

natural frequency matches the largest spike in the input motion. Table 311.2 lists the properties of

the structures used in the analysis. For the nonlinear columns a strain hardening material is chosen
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Structure Length Stiffness E Iy Mass Yield Moment

[m] [MN m2] [kg] [kNm]

1 5.5 1680 100,000 800

2 3.5 5670 100,000 1,800

3 2.5 13440 100,000 320

4 5.0 5670 100,000 1,800

Table 311.2: Properties of the analyzed structures
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Figure 311.88: Fourier amplitude spectrum of input motion with second natural frequencies of the 4

SFSI-systems

that consists of an initial elastic branch with tangent modulus E and a post-yield branch with tangent

modulus 0.2 E. The Young’s modulus for all four structures is E = 210 GPa. The yield stress fy for

structures 1, 2 and 4 is 20 MPa and for structure 3 it is 2 MPa.

311.7.1.9 Structure with Fixed Base

To begin with a parametric study of a series of structures with varying stiffnesses is analyzed. The

stiffness is varied by changing the width of the column section. The different structures are expected

to respond specifically to the frequency range of the input motion that is in the neighborhood of the

natural frequency of the column. The input motion that is applied at the base of the structure has been

recorded in a previous free-field analysis of the 2d-model.

The results of this parametric study are shown in Figures 311.89 and 311.90 for linear and nonlinear

structures, respectively. The Fourier amplitudes spectra’s of the acceleration at the top of the structure

are plotted for 15 structures with variable natural frequency fn. A line of equal frequency is also provided.

The input motion is plotted in the background of the figure. It can be seen that the maxima of the
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Figure 311.89: Parametric study of 15 linear structures with varying natural frequency.
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Figure 311.90: Parametric study of 15 nonlinear structures with varying natural frequency
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frequency spectra’s are almost perfectly aligned along the line of equal frequency. This is even more

obvious in the case of a linear structure. In that case the responses of the structures are very narrow

banded. As the structure remains elastic the top of the structure oscillates mainly in its initial natural

frequency. Lower and higher frequencies are eliminated to a great extent.

In the case of the inelastic structure there is clearly more damping and reduction of the responses

at some (most) frequencies. The nonlinearity in structure is producing a longer effective period for the

structure, and that effective period changes during shaking. This in turn widens the frequency range of

structural response. That is, the response is lower, but the frequency characteristic is (much) wider.

A series of fixed-base analysis is also performed on the four structures mentioned in Section 311.7.1.8.

The first natural frequencies of the four structures with its base fixed, corresponding to the second mode

of vibration of the SFSI-model, are given in Table 311.3. It can be seen that the influence of the soil on

the natural frequency of the SFSI-system increases as the overall stiffness of the structure increases.

Structure 1st natural frequency 2nd natural frequency

of fixed-base system [Hz] of SFSI-system [Hz]

1 2.71 2.07

2 9.82 3.89

3 25.1 5.53

4 5.75 3.52

Table 311.3: Eigenfrequencies of the analyzed models

311.7.1.10 Results

The results of the SFSI- as well as the fixed-base analysis are presented in the following. The displace-

ments at the top of the nonlinear structures are recorded and plotted in Figure 311.91. It can be seen

that the results from the SFSI- and the fixed-base-model differ considerably in terms of maximum as well

as permanent displacement. In contrast to this the displacements at the base of the column are almost

identical for the two models (results not plotted). Figure 311.92 displays the displacements at the top

of structures 1 and 2 for all the combinations of linear and nonlinear soil and structures that have been

analyzed. Due to the low yield moment the permanent displacement for structure 1 is relatively large

in the analysis involving nonlinear columns. The results involving nonlinear columns on linear and on

nonlinear soil are very similar in their overall shape, however permanent deformations are very different.

It seems that the forces that trigger plastic deformations in the column strongly depend on the behavior

of the soil beneath the foundation.
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Figure 311.91: Displacements in x-direction at the top of the nonlinear structures

In order to investigate the forces causing plastic deformations in the structures we look at the base

moments between foundation and column. In Figure 311.93 the moments at the base of the linear

structures are plotted.

For structures 1 and 4 the moments for the fixed-base model are higher than for the SFSI-model.

This means that in this case neglecting the effects of SFSI leads to a conservative design. Structures 2

and 3 however have to resist higher moments when SFSI is taken into account. Because the SFSI-system

is more flexible than the fixed-base structure its modes of vibration are excited by a different range of

frequencies contained in the input motion. For a particular motion this can lead to resonance of the

SFSI-system. This result is in contradiction with current engineering practice suggesting that neglecting

SFSI in general leads to a more conservative design.

Figure 311.94 shows the moments at the base of structures 1 to 4, this time for the analysis involving

nonlinear column elements. The evolution of the second natural frequency of the SFSI-system is also

provided as a qualitative indication for when plastic deformations occur. The base moments for structures

1 and 3 in the fixed-base- and the SFSI-analysis are very similar. Due to the low yield moment of the
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Figure 311.92: Displacements in x-direction at the top of structures 1 and 2

structure no resonance with the input motion occurs as a lot of energy is dissipated through plastic

deformation.

Figure 311.95 shows an interesting aspect of nonlinear SFSI. In the analysis involving elastic-plastic

soil the Fourier amplitudes of the moment at the base of the structure are reduced in the neighborhood

of the natural frequency of the system. This is most likely due to dissipation of energy caused by elastic-

plastic deformations in the soil that, in their turn, are a result of large loads provoked by resonance

between the SFSI-system and the input motion.

As a measure of the plastic strain occurring beneath the footing the equivalent plastic strains averaged

over all the Gauss points are calculated. The results are given at t = 12 s and at t = 14 s, that is shortly

before and after the largest plastic deformation occurs (Figures 311.96 and 311.97).

Plastic strains are larger in the analysis involving an elastic structure. This reflects the fact that

elastic structures don’t dissipate any energy by themselves. For structure 2 no significant difference can

be observed because of its high yield moment. Structure 4 is characterized by the same yield moment,

its slightly smaller natural frequency however causes resonance with the input motion which leads to

larger plastic strains beneath the footing. The largest plastic strains develop in the layer of elements

adjacent to the boundary layer. This can be due to an input motion that isn’t fully compatible with the

elastic properties of the DRM-model. It should be possible to reduce these undesired plastic strains by

either increasing the size of the soil model or by selecting a method to obtain the free-field motions that
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Figure 311.93: Moments at the base of the linear column

represents the soil properties of the DRM-model more closely.

311.7.2 Full nonlinear 3d Model

The 2d SFSI-model presented in the previous section is extended to a 3d model in the following. The

goal is to show that the considerations for accuracy and stability of the numerical method obtained from

the 1d-model remain valid for the 3d-model. Even if the simplicity of the analyzed problem doesn’t

necessarily justify the additional computational effort it is important to show that it is possible to obtain

reliable results for a problem that involves the following elements:

• 3d model with about 700 elements, 960 nodes and 2700 equations

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 311.94: Moments at the base of the nonlinear column
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Figure 311.95: Fourier amplitude spectra of moments at the base of nonlinear column, SFSI-analysis
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Figure 311.96: Average equivalent plastic strain at time t = 12 s
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Figure 311.97: Average equivalent plastic strain at time t = 14 s

• Elastic-plastic soil (Drucker-Prager with kinematic hardening)

• Nonlinear structure (bilinear material model)

• Ground motion applied through the Domain Reduction Method (DRM)

• Absorbing boundary of Lysmer type

311.7.2.1 Description of Model

The 3d model is based on the 2d model shown in Figure 311.86. In y-direction 6 more slices of 7 x 14

elements are added (Figure 311.98). The x-z plane at y = 0 represents a plane of symmetry. Lysmer

boundaries are attached to all outside boundaries with the exception of the plane of symmetry and the

soil surface. The main difference to the 2d model is that 3d wave propagation is possible which leads to

higher radiation damping.

The structure was chosen to have the same geometric and material properties as Structure 4 in the

previous section.
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Figure 311.98: The full 3d-model

311.7.2.2 Results

Some results of the 3d-analysis together with the corresponding data of the 2d analysis are presented in

Figure 311.99. Due to limited memory only the first 20 seconds of the time history were processed. A

more efficient implementation of the application of effective forces for the DRM-method inside the finite

element code should solve this problem. The analysis took 66 hours to finish.

The displacements obtained at the top of the structure as well as the moments at its base are very

close to the results of the 2d-analysis. This shows that the analysis provides reliable results for a full

3d nonlinear SFSI problem. The amplitude of the base moment is at several instances larger for the

3d-model than for the 2d-model. This can be explained with the fact that more energy is present in the

3d-model whereas the energy the structure can absorb is the same as in the 2d-model. Also it is obvious

that the natural frequencies of the 3d-model are not exactly the same as for the 2d-model and therefore

changes the dynamic behavior in a way that is almost impossible to predict beforehand.

Because of the simple geometry of the problem the 2d-model is absolutely sufficient for analyzing

the forces acting on the structure. If one is interested in the stress history in the soil surrounding the

footing then the 3d-model can provide valuable additional information.

. . .
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Figure 311.99: Top: Displacements at the top of Structure 4, Bottom: Moments at the base of Structure

4
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311.8 Lotung Large Scale Seismic Test (LLSST) Earthquake 07

311.8.1 Introduction

Figure 311.100 shows the G/Gmax and Damping data used for Pisano model.
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Figure 311.100: G/Gmax and Damping Curves

311.8.2 Input motion and input method

We use the data from Lotung Large Scale Seismic Test (LLSST) which is operated by TaiPower and IES

during the period from 1985 to 1990. We choose event 07 to verify our modeling. Seismic motion data

is available for download HERE .

311.8.3 Results
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Figure 311.101: Time history comparison at different depths
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Figure 311.102: Fourier spectrum comparison at different depths
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Figure 311.103: Response spectrum comparison at different depths (damping ratio 5%)
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312.1 Chapter Summary and Highlights
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312.2 Solid-Beam Model-Comparison of Real-ESSI eigen frequencies with AN-

SYS and Sofistik

Figure 312.1 and Table 312.1

Figure 312.1: Finite element model

Table 312.1: Comparison of eigen frequencies obtained from Real-ESSI, ANSYS, and Sofistik

Mode Real-ESSI (Hz) ANSYS (Hz) Sofistik (Hz)

1 5.4887 5.3868 5.439

2 7.1729 7.0711 7.311

3 12.6907 12.4670 12.751

4 13.197 13.1137 15.688
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312.3 Solid-Beam Model-Comparison of model responses using elastic beams

with 12dofs and 9dofs

312.3.1 FEM Model

Figure 312.2

Figure 312.2: Finite element model

312.3.2 Static Analysis

Figure 312.3

312.3.3 Dynamic Analysis-Applying Force

Figures 312.4 and 312.5

312.3.4 Dynamic Analysis-Applying Displacement

Figures 312.6 and 312.7 and 312.8
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Figure 312.3: Comparison of static displacements (pseudo time) of the top nodes, Force time history

applied to the top node
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Figure 312.4: Comparison of displacement time histories of top node, Force time history applied to the

top node, mass comes from the lumped mass added to the top node as well as the beams density
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Figure 312.5: Comparison of displacement time histories of top node, Force time history applied to the

top node, mass comes only from the beams density
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Figure 312.6: Comparison of displacement time histories of top node, Displacement time history applied

at the bottom, mass comes only from the lumped mass added to the top
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Figure 312.7: Comparison of displacement time histories of top node, Displacement time history applied

at the bottom, mass comes from the lumped mass added to the top node as well as the beams density
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Figure 312.8: Comparison of displacement time histories of top node, Displacement time history applied

at the bottom, mass comes only from the beams density
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312.3.5 Comparison of eigen frequencies between models of using 9dof beam and 12dof beam

Table 312.2

Table 312.2: Comparison of eigen frequencies

Mode 9dof 12 dof

1 5.253 5.412

2 6.867 7.112

3 9.399 12.570

4 11.60 13.183

5 11.76 13.479

6 12.95 14.605

7 15.97 15.998

8 18.85 19.101

9 25.27 21.378

312.3.6 Eigen modes of model using 12dof beam

Figures 312.9 and 312.10 and 312.11 and 312.12 and 312.13

312.3.7 Eigen Modes of model using 9dof beam

Figures 312.14 and 312.15 and 312.16 and 312.17 and 312.18

312.4 Validation Using UNR Soil Box Test Setup
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Figure 312.9: Mode 1

Figure 312.10: Mode 2

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 312.11: Mode 3

Figure 312.12: Mode 4
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Figure 312.13: Mode 5

Figure 312.14: Mode 1
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Figure 312.15: Mode 2

Figure 312.16: Mode 3
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Figure 312.17: Mode 4

Figure 312.18: Mode 5
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313.1 Chapter Summary and Highlights

313.2 V&V Examples

313.2.1 Box sloshing

A numerical example of earthquake-driven box sloshing is provided here. The initial configuration is

shown in figure 313.1. The length of the box is 30 meters and the height is 10 meters. The thickness

is 3 meters filled with 8-meter-deep water. The box is shaken by a uniform 1D horizontal excitation

plotted in figure 313.2. The box is modeled with elastic material with E = 12GPa,µ = 0.2.

30 m3 m 3 m

3
 m

2
m

8
mwater

air

box

Figure 313.1: Model configuration of 2D sloshing box

The simulation result can be seen in figure 313.3. Clearly, elevations of free water surface can be

observed under the excitation.

Another sloshing box example is driven by falling water flow. Figure 313.4(a) shows the result where

solid domain and fluid domain has totally compatible mesh size (mesh size ratio 1:1). As mentioned

before, VOF method has high requirement for the mesh size. In order to get accurate enough result with

limited computation resources, refined mesh in the fluid domain is usually required for soil-structure-fluid

interaction analysis. Analysis of model with discontinuous mesh is supported here through generalized

interpolation scheme. Figure 313.4(b) shows the result of refined finite volume mesh in fluid domain

(mesh size ratio 1:3).
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Figure 313.2: Time history of 1D excitation

Figure 313.3: Simulation result of 2D sloshing box

Figure 313.4: Box sloshing under falling water
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313.2.2 Dam Break

313.3 Verification & Validation

Verification and validation is crucially important to guarantee the accuracy of simulation result. Veri-

fication and validation (V & V) procedure of SFI problem involve three aspects: V & V for response

of solid domain (i.e. V & V for RealESSI as a solver for solid mechanics), V & V for response of fluid

domain (i.e. V & V for OpenFOAM as a solver for free surface flow) and V & V for SFI (i.e. V & V for

interaction between solid domain and fluid domain).

Since RealESSI developed by Jeremić et al. (1988-2025) has rigorous V & V procedure, the focus

here is on V & V of OpenFOAM and SFI.

313.3.1 Free Surface Flow validation

The functionality of OpenFOAM as a solver for free surface flow is validated in this section. A numerical

validation test is conducted based on the experiments reported by Martin and Moyce (1952).

A rectangular column of water, in hydrostatic equilibrium, is confined between two vertical walls,

as shown in figure 313.5. The water column is 1 unit wide and 2 unit high. At the beginning of the

calculation, the right wall (dam) is removed and water is allowed to flow out along a dry horizontal floor.

Figure 313.5: Experiment set up by ]Martin and Moyce (1952)

The real-time position of the leading edge of the water is recorded during the experiment. This is

a good test problem because it has simple boundary conditions and a simple initial configuration. 2D

numerical models with two different types of mesh size (∆x = 0.1m and ∆x = 0.05m) are built (figure

313.6).

The comparison result between numerical solution, experiment result and benchmark solution by Hirt

and Nichols (1981) is presented in figure 313.7.
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Figure 313.6: Numerical model for validation of free surface flow
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Figure 313.7: Validation result of free surface flow
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It can be seen that numerical simulation matches well with both experiment result and benchmark

solution. OpenFOAM, as a finite volume solver for free surface flow based on VOF method, is reliable.

313.3.2 Mass conservation verification

As mentioned in section 111.4.6, for a closed fluid system, mass conservation should be strictly satisfied.

The total volume of fluid in the system can be calculated with equation 313.1.

Vtotal =
n∑

i=1
αiVi (313.1)

The time history record of total volume in the numerical example (section 313.2.1) is given in figure

313.8. It can be seen that the total volume remains almost constant during the simulation of SFI. In

this example, after 400 time steps, the relative mass change is only 0.25%, which demonstrates that our

coupling program has excellent performance regardng mass conservation.
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Figure 313.8: Time history record of total fluid volume

313.3.3 SFI Verification & Validation

A box sloshing numerical experiment (rectangular tank under sway oscillations X(t) = Asin(wt)) is taken

as the verification and validation test for solid fluid interaction. The box is 1.0 m long (L) and 0.8 m

height (H). The depth (D) of submerged water is 0.5 m. The natural frequency of the tank can be

calculated according to Lamb (1932):
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ωi =
√

g
πi
L

tanh(
πi
L

D) i = 1, 2, 3, ... (313.2)

where ωi is the natural frequency, and g is gravitational acceleration. The lowest linear mode ωi is of

primary importance for the tank sloshing phenomenon.

Based on the original analytical solution of Linton and McIver (2001), Jin et al. (2014) gives the

equation for non-dimensional free surface elevation ηmax/A as shown in equation 313.3, where b =

L/2,µm = (m + 0.5)π/b, Km = µmtanhλmD, K = ω2/g.

ηmax
A

=
ω

gA
|Aωb +

∞∑
m=0
| 2K
µ2

mb(Km – K)
| (313.3)

Jin et al. (2014) also conducted a 2D sloshing experiment and report detailed response of free

surface elevation under different excitation magnitude A and frequency ω. Here A is fixed as 2.5 mm

and different frequency values (ω/ω1 = 0.5 ∼ 2) are adopted to implement verification and validation

numerical test. The initial setup of numerical experiment can be seen in figure 313.9(a). Figure 313.9(b)

and figure 313.9(c) are the sloshing response under excitation of first-mode (ω/ω1 = 1) and third-mode

(ω/ω3 = 1.793) resonance frequency.

(a) (b) (c)

Figure 313.9: Numerical experiment of solid fluid interaction: (a) Initial setup (b) Sloshing response

under first-mode resonance excitation (c) Sloshing response under third-mode resonance excitation

Compared with experiment record (figure 313.10) by Jin et al. (2014), it can be seen that the mode

shape from our numerical simulation is same as the experimental observations.

The numerical results of ηmax/A are also plotted into the same figure as theoretical predication and

experiment record, as shown in figure 313.11. Very good agreement can be observed, especially between

numerical simulation and experiment result. This manifests that suitable mathematical equations about

SFI has been numerically solved in a correct way. The SFI coupling implementation in RealESSI is

reliable.
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Figure 313.10: Resonant wave shape: (a) First-order mode (b) Third-order mode reproduced from Jin

et al. (2014)
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Figure 313.11: Comparison among theoretical prediction, experiment observation and numerical simula-

tion
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314.1 Chapter Summary and Highlights

314.2 Reasoning Behind this Activity

Quality assurance for a numerical modeling system is of highest importance. A good, sound Quality

Management System is therefor very important. This section provides details of quality management

system used for the development and quality assurance (QA) for the Real-ESSI Simulator system (Jeremić

et al., 1988-2025).
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314.3 Real-ESSI Simulator System Quality Management System, based on ISO/IEC/IEEE

90003 Standard

This section is based on ISO/IEC/IEEE 90003 Developers et al. (2018). ISO/IEC/IEEE 9003 is a stan-

dard developed by the International Organization for Standardization (ISO), International Electrotech-

nical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE), as a guidance

for the application of ISO 9001:2015 standard to the acquisition, supply, development, operation and

maintenance of computer software and related support services.

314.3.1 Real-ESSI Simulator Developer Organization

314.3.1.1 Internal Issues

Internal issues that are relevant to the Real-ESSI Simulator quality management system:

• legal

• Technological

• Competitive

• Market

• Cultural

• Social

• Economic environment, local, national, international

314.3.1.2 Internal Issues

External issues that are relevant to the Real-ESSI Simulator quality management system:

• Values

• Culture

• Knowledge

• Performance

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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314.3.1.3 External and Internal Issues for the Real-ESSI Simulator

External and Internal issues for the Real-ESSI Simulator can include:

• Use of ”cloud” services, that is beneficial for ease of access and business continuity, however

needs research to ensure lowering all beneficial effects. The Real-ESSI Simulator is fully deployed

on Amazon Web Services (AWS), and is tightly managed by development group as well as ESSI

Consultants. AWS was chosen after in depth examining other cloud services, namely Google cloud,

that actually provided no dedicated tightly parallel computers as of 2018, Microsoft Azure, that

was fast but very expensive, and local parallel cloud, Real-ESSI Parallel Computer, that works well

for developers, but requires much management for outside users.

• Use of personal computers, laptops, can create a problem in managing safety and security of Real-

ESSI Simulator sources. Developers are aware of this issue and have agree do tight safety and

security and have signed a licensing agreement that commits them to managing such safety and

security.

• Risk of external attack on developers computers and network and on Real-ESSI Simulator deployed

computers is controlled by regular, up to date Linux and AWS security.

• Delivery of the Real-ESSI Simulator is mostly handled through AWS, while there are a number

of example of remote deployment, whereby remote users commit fully utilizing and following the

Real-ESSI Simulator quality management system.

• Legal and operational issues for Real-ESSI Simulator use in contgext of safety, security and mission

assurance.

314.3.1.4 Needs and expectations of Interested Parties

Interested parties that are relevant to Quality Management System and their requirements

• Customers, professional practice companies, require working system, that is efficient, easy to use

and that can provide more optimal, more economic and more safe designs than what is currently

available.

• Partners, collaborators, require in depth knowledge of the system, possibility to influence changes

and additions to the Real-ESSI Simulator

• Staff, require stable and nourishing research and development environment

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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• DOE, not sure anymore?

• NRC, not sure anymore?

• UN-IAEA, ...

• Professional Practice: development of the system that improves design and assessment process,

while maintaining practicality, achieving highly efficient, minimally disrupting training for use Real-

ESSI

• Research Community: Contributions to modeling and simulations, and use of Real-ESSI to inves-

tigate new behavior of ESSI systems.

• Developers form the Real-ESSI Simulator group:

• Competitors:

– SimCenter ?

– French project?

– Linear Elastic community, SASSI,

– nonlinear FEM programs, LS-Dyna...

314.3.2 Scope of the Real-ESSI Simulator Quality Management System

Plan-do-Check-Act (PDCA) cycle

Risk-based thinking

Quality Management Principles

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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314.4 Real-ESSI Simulator System Quality Management System, based on ASME

NQA-1 Standard

ASME Nuclear Quality Assurance (NQA-1) is a standard developed by the American Society of Me-

chanical Engineers (ASME) that provides quality assurance guidance and certification for organizations

supplying items and services which provide a safety function for nuclear installations.

314.4.1 ASME NQA-1 for the Real-ESSI Simulator System

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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315.1 Chapter Summary and Highlights

315.1.1 Reasoning Behind this Activity

I personally do not like or approve code to code comparison. If results between two codes are the same,

this does not prove that any tested code is right. If results between two codes are different, which code

is right?

However, a number of professionals and industry in general feel very comfortable with some usually

used codes/programs. In this sense, we provide code comparison with select widely used codes, to satisfy

professionals. If results turn out to be the same (impossible to have exactly same results, but say very

close) that is good for all codes involved, as we have a full verification suit and guaranty our accuracy

to within limits of verification tests we used. If results are different, we still claim accuracy, as we have

full verification suit and guaranty our accuracy to within limits of verification tests we used.
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401.1 Delivery

Instructor: Boris Jeremić, email: Jeremic@ucdavis.edu

Class meeting: two hour lecture/meetings, twice a week, flipped classroom method

Office hours: two hours, twice a week

Course delivery: live and recorded lectures, and live discussions

Course WWW: http://sokocalo.engr.ucdavis.edu/~jeremic/Classes/ECI280A/

401.2 Objectives

This course will provide students with state of the art finite element methods, numerical analysis tools

and models for solving elastic–plastic problems in geotechnical and structural engineering. Focus is on

analysis of Soils, Structures and their Interaction (SSI). Presented will be computational formulation,

numerical techniques and models for static, nonlinear, elastic-plastic finite element methods that are

used in professional practice and research. Both sequential and parallel computational approaches will

be presented and used.

During this course students will:

• Learn about linear and nonlinear finite element modeling and simulation

• Select and calibrate nonlinear, elastic-plastic models for soil, rock, concrete, steel and interfaces

• Perform linear elastic and nonlinear, elastic-plastic analysis of solids and structures made of soil,

rock, concrete, steel and their interfaces

• Perform elastic and nonlinear, inelastic analysis of soils-structure systems

• Become proficient in performing nonlinear analysis for soils, structures, interfaces, using different

levels of sophistication, from simplified models to high fidelity elastic-plastic models of soil structure

systems on sequential and parallel computers.

Who Should Attend?

Students and practicing engineers who want to learn about and expand their knowledge of modeling and

simulation for nonlinear/inelastic material behavior, for soils, rock, and structures,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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401.3 Additional Information

Lecture Notes: http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/.

Recorded Lectures: http://sokocalo.engr.ucdavis.edu/~jeremic/Online-Education/.

Computers: Most of the problems in this course will require numerical simulations. A finite element

modeling system called Real-ESSI Simulator (http://real-essi.us) is available for computers running

Windows (through WSL), MacOS, Linux. Please refer to http://real-essi.us to find out how to

use Real-ESSI on local computers or on AWS computers. Other programs can be used as well, as long as

they provide modeling and simulation capabilities that are required for assignments, example problems

and term project. Both sequential and parallel computers will be used.

Problems: Assigned weekly, students are expected to attempt to develop solutions. You are encouraged

to discuss the approach to problem solutions with other students in the course as well as with the

instructor.

Examples: Model development, finite element models, finite element mesh, boundary conditions, material

models, loads, model verification process, linear and nonlinear elastic FEM with solids and structural

elements,

There are a large number of examples available at the Real-ESSI Simulator web site:

http://real-essi.info/, or http://real-essi.us/, in these documents:

• Real-ESSI Simulator Examples Collection

• Real-ESSI Simulator Short Course Examples Collection

Term Project: Term project will involve work related to developing or using numerical models for nu-

merically simulating elastic–plastic problem of your choice, related to your interests. Term projects will

be presented at the end of quarter.

Grading: TBD

Examination: TBD

Literature:

• The Finite Element Method, Olgierd Cecil Zienkiewicz and Robert L. Taylor, McGraw-Hill Book

Company, Volumes 1 and 2, ISBN 0-07-084175-6

• Non - Linear Finite Element Analysis of Solids and Structures Volume 1: Essentials, Crisfield, M.

A., John Wiley and Sons, Inc. New York, 1991 , ISBN 0 471 92956 5 v.1

• Finite Element Procedures in Engineering Analysis, Klaus-Juergen Bathe, Prentice Hall, ISBN

0-13-301458-4
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• Constitutive Laws for Engineering Materials With Emphasis on Geologic Materials Chandakant

S. Desai and Hema J. Siriwardane, Prentice–Hall, Inc. Englewood Cliffs, NJ 07632, ISBN 0-13-

167940-6

• Plasticity for Structural Engineers W. F. Chen and D. J. Han , Springer Verlag, 1988 ISBN 0-387-

96711-7

• Boris Jeremić, Zhaohui Yang, Zhao Cheng, Guanzhou Jie, Nima Tafazzoli, Matthias Preisig, Pana-

giota Tasiopoulou, Federico Pisano, Jose Abell, Kohei Watanabe, Yuan Feng, Sumeet Kumar

Sinha, Fatemah Behbehani, Han Yang, and Hexiang Wang. Nonlinear Finite Elements: Modeling

and Simulation of Earthquakes, Soils, Structures and their Interaction. University of California,

Davis, CA, USA, 1989-2022. ISBN: 978-0-692-19875-9
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401.4 Teaching Plan, Topics
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401.4.1 Section I, Introduction

Introduction: Course objectives, methodology, computer modeling and simulation

Modeling and Simulation System Setup: Introduction to the Real-ESSI Simulator system. Computa-

tional Mechanics field of study, kinematics of deformation, strain, stress, linear and nonlinear elasticity,

equilibrium relations, finite element method review, nonlinear analysis cycles; Introduction to sequential

and parallel computers.

Lectures, recordings and slides:

• Introduction to Modeling and Simulation: PDF slides , MP4 recording

• Introduction to Modeling Simplifications, Epistemic Uncertainty: PDF slides , MP4 recording

• Introduction to Parametric, Aleatory Uncertainty: PDF slides , MP4 recording

Reading: Lecture Notes: 101, 201, 205; Papers/Reports: CM988, CM2714, CM2715, CM3170

Examples: Model development, finite element models, finite element mesh, boundary conditions, material

models, loads, model verification process, linear and nonlinear elastic FEM with solids and structural

elements. see examples collection at http://real-essi.info/ or http://real-essi.us/,

Problems:

1. Model a 0.1m× 0.1m× 1.0m linear elastic cantilever beam, with transversal end forcing, using:

• Single and ten Bernoulli beam elements

• Single and ten Timoshenko beam elements

• 1 (1× 1× 1); 10 (1× 1× 10); 24 node solid brick elements

2. Model a 0.1m× 0.1m× 1.0m simple shear linear elastic test using

• 1 (1× 1× 1) and 32 (4× 4× 4) 8 node solid brick elements

• 1 (1× 1× 1) and 32 (4× 4× 4) 24 node solid brick elements

3. Model a 0.1m× 0.1m× 1.0m pure shear (no rotations) linear elastic test using

• 1 (1× 1× 1) and 32 (4× 4× 4) 8 node solid brick elements

• 1 (1× 1× 1) and 32 (4× 4× 4) 24 node solid brick elements
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401.4.2 Section II, Inelastic Finite Elements

Theory: Expanding the matrix deformation method, linear elastic truss element, Beams (Bernoulli,

Timoshenko), solids, plates, walls (plane stress), shells, stiffness, forces, displacements, interpolating

functions for displacements. Local and global equilibrium. Internal and external forces,

Lectures, recordings and slides:

• Introduction to the Finite Element Method (FEM): PDF slides , MP4 recording

• Derivation of FEM equations of motions for single phase, dry material: PDF slides , MP4 recording

• Derivation of FEM equations of motions for coupled, two phase, fully and partially saturated

material, u-p-U formulation: PDF slides , MP4 recording

Reading: Lecture Notes: 101, 102; Papers/Reports: CM81, CM125, CM1835, CM2714, CM3155,

CM3155

Examples: Truss, beam, solid bricks. external forces. internal forces (sectional forces, stresses). General-

ized nodal displacements and internal deformation (curvature, axial, shear, volumetric, general strains),

Problems:

1. Develop a set of simple, single element examples using truss, beam and brick finite elements with

simple static loads, and extract sectional forces, stress, strain and strain energy from results.
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401.4.3 Section III, Micromechanics of Elasto-Plasticity

Theory: Micro-mechanical origins of elasto-plasticity, particles in contact, friction, Hertz, Mindlin-

Deresiewicz contact/interface

Lectures, recordings and slides:

• Micromechanical origins of elasto-plasticity:

• Lectures by Prof. Stein Sture (University of Colorado, Boulder) on micromechanical origins of

elasto-plasticity are available HERE ,

Reading: Lecture Notes: 103; Papers/Reports: CM1000, CM1830, CM1831,

Examples: Particle contact problems.

Problems:

1. Develop a simple, 2D, plane-strain model of two particles in contact and apply normal and then

shear forces,

2. For the above model, vary normal and shear forces. Comment on results.
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401.4.4 Section IV, Incremental Elastic-Plastic Theory

Theory: Incremental, continuum elasto-plasticity, Material Models, perfectly plastic, hardening and

softening. Explicit, forward Euler and Implicit, backward Euler, constitutive integrations,

Lectures, recordings and slides:

• Introduction to the incremental theory of elasto-plasticity: PDF slides , MP4 recording , YouTube video

• Explicit solution to the constitutive elastic-plastic problem: PDF slides , MP4 recording , YouTube video

• Implicit solution to the constitutive elastic-plastic problem: PDF slides , MP4 recording , YouTube video

Reading: Lecture Notes: 104; Papers/Reports: CM3199

Examples: Constitutive integrations, explicit and implicit computations: single element response using

select elastic-plastic material models: von Mises, Drucker-Prager, Cam Clay. Perfectly plastic, isotropic

hardening, kinematic hardening models and cyclic response. Inelastic, fiber (1D) and 3D structural

models for concrete and steel.

Problems:

1. Develop a constitutive only linear elastic example. with monotonic loading and vary elastic modulus

and Poisson’s ratio. Comment on results

2. Develop a constitutive only elastic-perfectly plastic von-Mises example, for monotonic loading, and

vary elastic properties, yield strength. Comment on results.

3. For the above developed example, develop results using explicit and implicit constitutive integra-

tions. Vary step size, integration algorithm, tolerances. Comment on results.

4. For the above developed examples, use two cycles of cyclic loading. Comment on Results.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 401.4. TEACHING PLAN, TOPICS page: 1909 of 3287

401.4.5 Section V, Inelastic, Elasto-Plastic Solids Modeling

Theory: Continuation: Incremental elasto-plasticity. Material modeling for practical applications. Ad-

vanced topics in constitutive elasto–plasticity, stability and accuracy, errors in constitutive integrations,

problematic incremental steps, energy dissipation, sub-incrementation, line search, model calibrations.

Lectures, recordings and slides:

• Choice of elastic-plastic material models for soils and interfaces/contacts/joints: PDF slides ,

MP4 recording YouTube video

• Calibration of elastic-plastic material models for sand: PDF slides , MP4 recording YouTube video

• Calibration of elastic-plastic material models for clay: PDF slides , MP4 recording YouTube video

Reading: Lecture Notes: 104, 402, 403, 512; Papers/Reports:

Examples: Errors in constitutive modeling, sub-increments. Material model calibration, Constitutive

modeling of soil, rock, concrete, steel: von Mises, Drucker-Prager, Cam Clay, SaniSand, rounded Mohr-

Coulomb, Pisano. Modeling G/Gmax and damping response. Nonlinear, elastic-plastic structural models

for concrete and steel (1D, 3D).

Problems:

1. Develop a single element, 8 and 24 node brick, linear elastic example. with monotonic loading and

vary elastic modulus and Poisson’s ratio. Comment on results

2. Develop a single element elastic-perfectly plastic von-Mises example, for monotonic loading, and

vary elastic properties, yield strength. Vary number of integration, Gauss points. Comment on

results.

3. For the above developed example, develop results using explicit and implicit constitutive integra-

tions. Vary step size, integration algorithm, tolerances. Comment on results.

4. For the above developed examples, use two cycles of cyclic loading. Comment on Results. Use

both axial loading and shear loading.
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401.4.6 Section VI, Inelastic, Elastic-Plastic Interfaces, Joints, Contacts Modeling

Theory: Interface/Joint/Contact modeling: Hard contact, Soft contact. Axial contact stiffness, shear

contact stiffness. Interface gap opening and closing. Saturated contacts, effective stress and buoyant

forces on foundations.

Lectures, recordings and slides:

• Choice of elastic-plastic material models for soils and interfaces/contacts/joints: PDF slides ,

MP4 recording YouTube video

• Calibration of elastic-plastic material models for interfaces/contacts/joints: PDF slides , MP4 recording

YouTube video

Reading: Lecture Notes: 104, 403, 512; Papers/Reports:

Examples: Interface: concrete to soil and rock, steel to soil and rock. Gap opening, closing. Shear

interface, slip, no slip.

Problems:

1. Develop a two solid element example that are connected using force based interface elements.

2. Develop a two solid element example that are connected using stress based interface elements.

3. For the above developed example, use normal loading and vary load step size. Comment on results.

4. For the above developed example, use normal and then shear loading and vary load step size.

Comment on results.

5. For the above developed example, vary interface properties, use interface/contact/joint properties

for soil on concrete, soil on steel, concrete on concrete, &c. Comment on results.
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401.4.7 Section VII, Inelastic, Elastic-Plastic Structural Modeling

Theory: Inelastic structural models, beams, plates, walls and shells.

Lectures, recordings and slides:

• Choice of elastic-plastic material models for structural elements, beams and walls/plates/shells:

PDF slides , MP4 recording , YouTube video

• Calibration of elastic-plastic material models for concrete, in reinforced beams and walls/plates/shells:

PDF slides , MP4 recording YouTube video

• Calibration of elastic-plastic material models for steel, in reinforced beams and walls/beams/shells:

PDF slides , MP4 recording YouTube video

Reading: Lecture Notes: 102, 403, 512; Papers/Reports:

Examples: Nonlinear analysis of structures. Steel Frames. Reinforces concrete frames, walls, plates,

shells.

Problems:

1. Develop a nonlinear truss model, and load it using monotonic and cyclic loading up to yielding

and past yielding. Comment on results.

2. Develop a nonlinear beam model, and load it in bending using monotonic and cyclic loading up to

yielding and past yielding. Comment on results.

3. Develop a two solid element example that are connected using stress based interface elements.

Comment on results.
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401.4.8 Section VIII, Nonlinear Analysis Progress

Theory: Analysis Progress. Stages, increments, iterations, elastic–plastic stiffness matrix, pure incremen-

tal methods, force residuals, Newton iterative algorithm for finite element level iterations, constraints

to the global (force residual) system of equations, equilibrium iterations, convergence, load control,

displacement control, arc-length, hyper-spherical constraint, convergence criteria, automatic step size

control, line search, stability and accuracy. Sequential and parallel computations for inelastic, nonlinear

solids and structures.

Lectures, recordings and slides:

•

Reading: Lecture Notes: 102, 107, 403; Papers/Reports:

Examples: Nonlinear analysis of structures and solids, elastic plastic solids, structures and contacts.

Staged analysis steps, incremental only analysis with no equilibrium enforcement, incremental-iterative

analysis, with equilibrium enforcement, convergence criteria (force, displacement), convergence toler-

ances, step size control.

Problems:

1. Develop a nonlinear analysis, using all of previous examples, that will feature explicit, no equilibrium

check simulation. Comment on results.

2. Develop a nonlinear analysis, using all of previous examples, that will feature implicit, equilibrium

check simulation. Comment on results.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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401.4.9 Section IX, Verification and Validation

Theory: Verification, Validation and Prediction, basic theory, solution verification, manufactured solu-

tions, validation experiments, prediction under uncertainty,

Lectures, recordings and slides:

•

Reading: Lecture Notes: 301, 302, 303..., 313, 314...; Papers/Reports:

Examples: Solution verification examples for elements, material models, constitutive integration algo-

rithms, solution advancement algorithms.

Problems:

1. Choose a model of your interest, and develop a list of verification examples for all components of

your model.

2. For the above model, develop a list of validation examples.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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401.4.10 Section X, Practical Considerations for Nonlinear Analysis

Theory: Elastic–plastic FEM modeling (practical recommendations for development and analysis of

nonlinear (elastic-plastic) finite element models, phased development of general FEM (and ESSI in

particular) models. Core Functionality for inelastic/nonlinear modeling, Energy dissipation. Notes on

sequential and parallel computing.

Lectures, recordings and slides:

•

Reading: Lecture Notes: 510, 512; Papers/Reports:

Examples: Illustrations of algorithms and models described above, benefits and detriments of different

algorithms and models.

Problems:

1. Develop a realistic nonlinear analysis model of your choice, perhaps the one developed in previous

section and experiment with all/most above models and algorithms. Comment on results.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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402.1 Delivery

Instructor: Boris Jeremić, email: Jeremic@ucdavis.edu

Class meeting: two hour lecture/meetings, twice a week, flipped classroom approach

Office hours: two hours, twice a week

Course delivery: live and recorded lectures, and live discussions

Course WWW: http://sokocalo.engr.ucdavis.edu/~jeremic/Classes/ECI280B/

402.2 Objectives

This course will provide students with state of the art finite element methods, numerical analysis tools and

models for solving dynamic problems in geotechnical and structural engineering, Focus is on analysis of

Earthquakes, Soils, Structures and their Interaction (ESSI). Presented will be computational formulation,

numerical techniques and models for dynamic, nonlinear, elastic-plastic finite element methods that are

used in professional practice and research. In addition, sequential and parallel computing approaches will

be explained, and used.

During this course, students will:

• Learn about dynamic finite element modeling and simulation

• Develop dynamic modeling and simulations for linear and nonlinear soils and structures

• Perform dynamic, linear and nonlinear analysis of solids and structures made of soil, rock, concrete,

steel and their interfaces, joints and contacts

• Develop and use of one compoinent (1C), 3×1C and 3C seismic motions from given earthquake

records and from analytic wave solutions

• Perform dynamic, nonlinear/inelastic earthquake soil structure interaction (ESSI) analysis

• Become proficient in performing nonlinear ESSI analysis using different levels of sophistication, from

simplified models to high fidelity elastic-plastic ESSI models on sequential and parallel computers

Who Should Attend?

Students and practicing engineers who want to learn about and expand their knowledge of modeling and

simulation for dynamic, nonlinear/inelastic material behavior, for soils, rock, and structures,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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402.3 Additional Information

Lecture Notes: http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/.

Recorded Lectures: http://sokocalo.engr.ucdavis.edu/~jeremic/Online-Education/.

Computers: Most of the problems in this course will require numerical simulations. A finite element

modeling system called Real-ESSI Simulator (http://real-essi.us) is available for computers running

Windows (through WSL), MacOS, Linux. Please refer to http://real-essi.us to find out how to

use Real-ESSI on local computers or on AWS computers. Other programs can be used as well, as long as

they provide modeling and simulation capabilities that are required for assignments, example problems

and term project.

Problems: Assigned for each section, students are expected to attempt to develop solutions. You are

encouraged to discuss the approach to problem solutions with other students in the course as well as

with the instructor.

Term Project: Term project will involve work related to developing or using numerical models for nu-

merically simulating elastic–plastic problem of your choice, related to your interests. Term projects will

be presented at the end of quarter.

Grading: TBD

Examination: TBD

Literature:

• The Finite Element Method, Olgierd Cecil Zienkiewicz and Robert L. Taylor, McGraw-Hill Book

Company, Volumes 1 and 2, ISBN 0-07-084175-6

• Non - Linear Finite Element Analysis of Solids and Structures Volume 1: Essentials, Crisfield, M.

A., John Wiley and Sons, Inc. New York, 1991 , ISBN 0 471 92956 5 v.1

• Finite Element Procedures in Engineering Analysis, Klaus-Juergen Bathe, Prentice Hall, ISBN

0-13-301458-4

• Constitutive Laws for Engineering Materials With Emphasis on Geologic Materials Chandakant

S. Desai and Hema J. Siriwardane, Prentice–Hall, Inc. Englewood Cliffs, NJ 07632, ISBN 0-13-

167940-6

• Plasticity for Structural Engineers W. F. Chen and D. J. Han , Springer Verlag, 1988 ISBN 0-387-

96711-7

• Boris Jeremić, Zhaohui Yang, Zhao Cheng, Guanzhou Jie, Nima Tafazzoli, Matthias Preisig, Pana-

giota Tasiopoulou, Federico Pisano, Jose Abell, Kohei Watanabe, Yuan Feng, Sumeet Kumar
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Sinha, Fatemah Behbehani, Han Yang, and Hexiang Wang. Nonlinear Finite Elements: Modeling

and Simulation of Earthquakes, Soils, Structures and their Interaction. University of California,

Davis, CA, USA, 1989-2022. ISBN: 978-0-692-19875-9
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402.4 Teaching Plan, Topics

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 402.4. TEACHING PLAN, TOPICS page: 1920 of 3287

402.4.1 Section I, Introduction

Introduction: Course objectives, methodology, computer modeling and simulation; Dynamics of nonlinear

structures and soils during earthquakes, examples Preliminary theory, terminology, issues to be addressed:

Deformation, kinematics of moving systems, elasticity, dynamic equilibrium relations, d’Alembert’s prin-

ciple, forces in dynamic equilibrium, mass, damping, stiffness, external force, single degree of freedom

systems,

Modeling and Simulation System Setup: Introduction to the Real-ESSI Simulator system. Computa-

tional Mechanics field of study, kinematics of deformation, strain, stress, linear and nonlinear elasticity,

equilibrium relations, finite element method review, nonlinear analysis cycles;

Lectures: Recorded lectures covering topics for this section can be found in Section 404.1.1 on Page 1937

in Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 101, 102; Papers/Reports:

Examples: Model Development, simple models vs sophisticated models, pre-processing, post-processing,

results visualization.

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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402.4.2 Section II, Dynamic FEM

Dynamic FEM Theory: Dynamic finite element method (FEM) equations, virtual work method in dy-

namics, nonlinear dynamic equations of motion, consistent and lumped mass, velocity and displacement

proportional damping/energy dissipation, Rayleigh and Caughey viscous damping, linear and nonlinear

material behavior.

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.3 on Page 1939

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 102; Papers/Reports:

Examples: Structural and solid elements and models, dynamic excitations, resonance, linear and nonlinear

(elastic and inelastic/elastic-plastic) material models, viscous damping, consistent and lumped mass

matrix.

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/


Je
re
m
ić
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402.4.3 Section III, Nonlinear FEM

Nonlinear FEM: Elasto-plasticity, material models for dynamics of soils and structures, material parameter

calibration, uncertainty in material parameters, explicit and implicit constitutive integrations. Sequential

and parallel computations

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.3 on Page 1939

and Section 404.1.4 on Page 1940 in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 103, 104; Papers/Reports:

Examples: Elastic plastic solids, beams and shells, material energy dissipation, material damping

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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402.4.4 Section IV, Time Domain Nonlinear Dynamic FEM

Time Domain Nonlinear Dynamic FEM: Direct, time marching solution for dynamics of nonlinear, inelas-

tic systems, general Newmark family of methods, stability and accuracy, nonlinear resonance, numerical

damping, explicit and implicit algorithms, unconditionally and conditionally stable Newmark and Hilber–

Hughes–Taylor α–method, stability and accuracy, examples)

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.3 on Page 1939

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 108; Papers/Reports:

Examples: Nonlinear solid and structural models direct time integration, step size, damping (material,

viscous, numerical), stable and unstable computations.

Problems:

1.

2.

3.
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402.4.5 Section V, Earthquake Soil Structure Interaction (ESSI)

Earthquake Soil Structure Interaction (ESSI): Background, problem definition, seismic motions, seismic

body and surface wave field, seismic energy propagation, free field motions, beneficial and detrimental

effects, balancing input and dissipated energy.

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.8 on Page 1946

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 502; Papers/Reports:

Examples: Analytic development of ground motions, 3D vs 1D motions, seismic energy calculations.

Problems:

1.

2.

3.
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402.4.6 Section VI, Seismic Motions

Seismic Motions: Free field vs ESSI motions, incoherent motions, Domain Reduction Method, boundary

conditions, radiation damping, 3D inclined wave fields vs 1D vertical motions, nonlinear wave propagation

simulations, time step size, element size, earthquake modeling.

Free field motions development, 1D motions, 3D/6D motions, regional scale models, Geophysical

models,

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.7 on Page 1945

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 502, 511, 705, 706; Papers/Reports:

Examples: Real ESSI and analytic wave field models for free field and local (DRM) motions, element

and time step size and propagation of (required) frequencies. Vertical and inclined waves development,

and input into SSI models

Problems:

1.

2.

3.
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402.4.7 Section VII, Coupling with Internal and External Fluids

Dynamics of Coupling with Pore Fluids and External Fluids: Fully coupled, porous solid – pore fluid

systems formulation, discretization, basic system of DOFs, coupling damping forces, specialization to

slow (consolidation) and fast phenomena (ESSI, liquefaction), boundary conditions, initial conditions,

stability and accuracy of various algorithms. Coupling with external fluids, pools, reservoirs.

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.3 on Page 1939

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 102, 505; Papers/Reports:

Examples: 1D and 3D coupled examples, consolidation, liquefaction and de-liquefaction waves, piles in

liquefied soil... Coupling with external fluids, using OpenFOAM...

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 402.4. TEACHING PLAN, TOPICS page: 1927 of 3287

402.4.8 Section VIII, Dynamic Stochastic Elastic-Plastic FEM (SEPFEM)

Stochastic Elastic-Plastic Dynamic FEM:

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.6 on Page 1943

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: Papers/Reports:

Examples:

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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402.4.9 Section IX, Verification and Validation

Verification and Validation: Definition, procedures, code verification, solution verification, validation

experiments, model verification

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.9 on Page 1947

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 301-314; Papers/Reports:

Examples: modeling verification examples, verification for algorithms, elements. Availability of validation

data.

Problems:

1.

2.

3.
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402.4.10 Section X, ESSI Modeling and Simulation Synthesis

ESSI Modeling and Simulation Synthesis: Example building structure (boundary conditions, initial condi-

tions, nonlinear interface/contact (gap/slip), nonlinear soil/rock, 1D vs 3D seismic motions development,

buoyant forces at foundation level, etc.). Use of sequential and parallel computers for analysis.

Lectures: Recorded lectures covering topics for this week can be found in Section 404.1.11 on Page 1949

in Lecture Notes by Jeremić et al. (1989-2025) (Lecture Notes URL).

Reading: Lecture notes: 503, 504, 509 510, 512; Papers/Reports:

Examples: Real ESSI illustrative examples

Problems:

1.

2.

3.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 403

Nonlinear ESSI for Professional Practice, A
Short Course

(2017-2022-)

1930



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 403.1. SHORT COURSE DELIVERY page: 1931 of 3287

403.1 Short Course Delivery

Instructor: Boris Jeremić, email: Jeremic00@gmail.com; Jeremic@ucdavis.edu

Short Course Meeting: Two hour lectures, twice a week, online, using zoom; live and recorded lectures

and discussions.

403.2 Objectives

The nonlinear analysis of Earthquakes, Soils, Structures, and their Interaction (ESSI) is crucial in ensuring

the safety and efficiency of various structures, such as bridges, dams, buildings, tunnels, nuclear facilities,

and other parts of the built environment. This analysis involves a deep understanding of statics and

dynamics in soil mechanics, structural mechanics, and numerical modeling in order to accurately analyze

ESSI systems’ nonlinear behavior under static and dynamic loads.

This online course provides training on nonlinear, inelastic analysis for soil-structure systems, specif-

ically focusing on earthquake soil-structure interaction (ESSI). The course is designed for practicing

engineers, consultants, managers, and regulators and covers practical aspects of nonlinear analysis for

ESSI systems. The main advantages and disadvantages of using nonlinear analysis for ESSI systems will

also be discussed.

Who Should Attend: This short online course is designed for practicing engineers, consultants, man-

agers, and regulators who want to reinforce and expand their knowledge of nonlinear, inelastic analysis

for soil-structure systems. If you are looking to improve your understanding of the nonlinear behavior of

ESSI systems and become proficient in performing nonlinear ESSI analysis, this course is will help you

to achieve your goals.

What will you learn? Upon completion of this course, the participants will be able to:

1. Plan, develop, and verify different levels of sophistication ESSI models,

2. Select and calibrate elastic and elastic-plastic material models for soil, interfaces/contacts, and

structural components such as beams and plates/shells,

3. Develop one component (1C), 3×1C, and 3C seismic motions from chosen earthquake records

and/or stress test motions,

4. Choose numerical simulation parameters, convergence tolerances, and efficient solvers for high-

performance sequential and parallel computing,

5. Identify and explain the limitations of nonlinear, inelastic finite element analysis,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 403.2. OBJECTIVES page: 1932 of 3287

6. Perform nonlinear ESSI analysis with proficiency, ranging from simplified models to high- fidelity

elastic-plastic models of soil-structure systems.

Course Delivery: Online course and online office hours will use zoom platform.

Lecture Notes: http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/.

Computers: Course will rely on use of analysis system called the Real-ESSI Simulator (http://real-essi.

us). The Real-ESSI Simulator program is available for computers running Windows (through WSL),

MacOS and Linux, Please refer to http://real-essi.us to find out how to use Real-ESSI on local

computers through Docker. The system is also available in the cloud, on Amazon Web Services (AWS)

computers.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Short Course Program:

• Part I: Introduction to Nonlinear Finite Element Analysis

– Brief overview of static and dynamic finite elements method (FEM)

– Brief overview of linear and material nonlinear FEM

– Nonlinear FEM analysis: stages, increments and iterations

– Quality assurance: verification and validation (V&V) procedures

– Introduction to the Real ESSI Simulator system, documentation, examples

• Part II: Nonlinear Material Models. Participants will learn about and use nonlinear, inelastic,

elastic-plastic models:

– Nonlinear material models for soil and rock

– Nonlinear material models for concrete

– Nonlinear material models for steel

– Fiber section Nonlinear material models for concrete and steel, for beams and walls,

– 3D soil-foundation interface/contact nonlinear material models,

• Part III: Nonlinear Finite Element Analysis. Participants will learn about and perform nonlinear

finite element analysis:

– Develop stages-increments-iterations cycles

– Develop and perform purely incremental nonlinear analysis

– Develop and perform iterative incremental nonlinear analysis

– Liquefaction analysis, fully coupled, saturated, porous solid – pore fluid,

– Energy dissipation during elasto-plastic deformation.

• Part IV: Hands on elasto-plastic example exercise. Participants will develop and use elastic-plastic

models for nonlinear material analysis:

– Calibration of nonlinear/inelastic elastic-plastic models for

soil,

rock,

concrete,

steel,

interface/contact,

base isolators and dissipators

– Use of best practices for nonlinear, inelastic model development and calibration.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• Part V: Introduction to Seismic Ground Motions. Participants will learn about and develop seismic

ground motions from:

– Ground motions from given surface motions, in 1C, 3×1C, and 3C

– Analytic, stress test ground motions, in 1C, 3×1C, and 3C

– Ground motions from small and regional scale models

• Part VI: Ground Motions for ESSI Modeling. Participants will learn about, apply and propagate

ground motions through the free field and soil-structure systems:

– Input ground motion into FEM model

– Application of free field and ESSI ground motions

– Ground motions using Domain Reduction Method (DRM)

– Control ground motion frequency content

• Part VII: Hands on ESSI Ground Motion Exercise. Participants will analyze soil-structure systems

using developed ground motions:

– Develop hierarchy of input ground motions: 1C, 3×1C and 3C.

– Free field analysis with 1C, 3×1C and 3C motions.

– ESSI analysis with 1C, 3×1C and 3C motions.

– Use of best practice for ground motion ESSI modeling

• Part VIII: Hands on nonlinear ESSI examples exercise. Participants will analyze nonlinear ESSI

FEM models:

– Hierarchy of sound engineering judgement ESSI model development steps

– Nonlinear Finite Element, elastic-plastic examples for: soils, structures, interfaces,

– Energy dissipation in dynamic ESSI analysis: viscous, plastic, algorithmic...

– Nonlinear finite element models for ESSI using solids, structural elements, interfaces,

– Use of best practices for nonlinear/inelastic ESSI modeling

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1 Real-ESSI Simulator Online Education and Training

This chapter was created to present online material for the theory for modeling and simulation of earth-

quakes, soils, structures and their interaction, as well practical examples using the Real-ESSI Simulator,

http://real-essi.us/.

It is worth noting that some early recorded material for use of the Real-ESSI Simulator on Amazon

Web Services was created in 2019, however, majority of presented, recorded material was created dur-

ing Corona-Virus (COVID-19) pandemic and quarantine from March through June of 2020, in Zürich

Switzerland, where Boris Jeremić was locked-up, and in Davis, California, where Han Yang and Hexiang

Wang were locked-up... Internet worked very good across the Atlantic ocean, zoom.us worked really

well as well. Development of online educational material continued with all three contributors now in

Davis, California during Summer and Fall 2020, Winter and Spring 2021, still during partial/full lock-

down, shelter in place, still using zoom.us , and still keeping physical distance, wearing face masks,

etc.

In addition to organizing slides and vide lectures through this document, a youtube video channel

for the Real-ESSI is available here: Real-ESSI youtube channel .

It is hoped that this material will be helpful to students and engineers that work in the area of

modeling and simulation of earthquakes, soils, structures and their interaction.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1.1 Modeling and Simulations for ESSI

The following recorded lectures modeling and simulation approaches for Earthquakes, Soils, Structures

and their Interaction are available:

404.1.1.1 Introduction to Modeling and Simulation

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.1.2 Introduction to Modeling Simplifications, Epistemic Uncertainty

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.1.3 Introduction to Parametric, Aleatory Uncertainty

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1.2 Real-ESSI Simulator Modeling and Simulation System

The following recorded lectures about the Real-ESSI Simulator modeling and simulation system are

available:

1. The Real-ESSI Simulator, Introduction:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. The Real-ESSI Simulator, Modeling Features:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. The Real-ESSI Simulator, Domain Specific Language:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. The Real-ESSI Simulator, Model Development:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

5. The Real-ESSI Simulator, Results Post Processing:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

6. The Real-ESSI Simulator, Quick Analysis Startup Guide, how to run simple example models:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1.3 Finite Element Method

The following recorded lectures on the finite element method are available:

404.1.3.1 Backgound

1. Introduction to the Finite Element Method (FEM):

PDF slides , MP4 recording

2. Derivation of FEM equations of motions for single phase, dry material:

PDF slides , MP4 recording

3. Derivation of FEM equations of motions for coupled, two phase, fully and partially saturated

material, u-p-U formulation:

PDF slides , MP4 recording

404.1.3.2 Nonlinear, Inelastic FEM

4. Nonlinear, Inelastic FEM, residual equations:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

5. Solution of nonlinear, inelastic FEM equations:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.3.3 Dynamic FEM

6. Dynamic FEM equations:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

7. Time marching algorithms for dynamic FEM equations:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 404.1. REAL-ESSI SIMULATOR ONLINE EDUC . . . page: 1940 of 3287

404.1.4 Deterministic Elasto-Plasticity

404.1.4.1 Introduction to Modeling and Simulation

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

The following recorded lectures on deterministic elasto-plasticity are available:

404.1.4.2 Theory Backgound

1. Micromechanical origins of elasto-plasticity:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. Introduction to the incremental theory of elasto-plasticity:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. Explicit solution to the constitutive elastic-plastic problem:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. Implicit solution to the constitutive elastic-plastic problem:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.4.3 Elastic-Plastic Material Model Choices

5. Choice of elastic-plastic material models for soils and interfaces/contacts/joints:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

6. Choice of elastic-plastic material models for structural elements, beams and walls/plates/shells:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.4.4 Calibrating Elastic-Plastic Material Models

7. Calibration of elastic-plastic material models for sand:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

8. Calibration of elastic-plastic material models for clay:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

9. Calibration of elastic-plastic material models for interfaces/contacts/joints:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video
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10. Calibration of elastic-plastic material models for concrete, in reinforced beams and walls/plates/shells:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

11. Calibration of elastic-plastic material models for steel, in reinforced beams and walls/beams/shells:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video
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http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Calibration_of_Material_Models/Yang_and_Jeremic_ESSI_lectures_Calibration_of_Inelastic_material_model_for_1D_fiber_steel.mp4
https://youtu.be/g5sH2JAHtL4
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404.1.5 Seismic Energy Dissipation

The following recorded lectures on energy dissipation are available:

404.1.5.1 Theory Background

1. Energy dissipation introduction:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. Energy dissipation in solids:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. Energy dissipation in fiber beams:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. Energy dissipation in interfaces/joints/contacts:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

5. Energy dissipation due to viscous effects:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

6. Energy dissipation due to time integration, algorithmic, numerical effects:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.5.2 Illustrative Examples

7. Energy dissipation examples:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_intro/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_intro.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_intro/Yang_and_Jeremic_Energy_Dissipation_intro.mp4
https://youtu.be/OarO8ZwnPcA
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Solids/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_in_Solids.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Solids/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Solids.mp4
https://youtu.be/-pUwG9x4DH8
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Beams/Yang_and_Jeremic__online_ESSI_lectures_EnergyDissipation_in_Beams.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Beams/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_in_Beams.mp4
https://youtu.be/MWJzrNJ5-po
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Interfaces/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Interfaces.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_in_Interfaces/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Interfaces.mp4
https://youtu.be/Ht5PnXb2RQo
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_Viscous/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Viscous.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_Viscous/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Viscous.mp4
https://youtu.be/kvvfTC9T4fw
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_Algorityhmic/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Algorithmic.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Elasto_Plasticity/Energy_Dissipation_Algorityhmic/Yang_and_Jeremic_online_ESSI_lectures_Energy_Dissipation_Algorithmic.mp4
https://youtu.be/gBs_bYG22eo
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404.1.6 Probabilistic Elasto-Plasticity and Stochastic Elastic-Plastic Finite Element Method

404.1.6.1 Theory Background

1. Introduction to the Polynomial Chaos (PC) expansion:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. Introduction to the Karhunen-Loève (KL) expansion:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. Introduction to the Stochastic Elastic-Plastic Finite Element Method (SEPFEM)

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. Introduction to Sensitivity Analysis

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.6.2 Choice and Calibration of Probabilistic Material Models and Probabilistic Seismic Loads

5. Choice, analysis and calibration of probabilistic elastic material parameters:

PDF slides , and a direct MP4 recording and/or alternatively; YouTube video

6. Choice, analysis and calibration of probabilistic elastic-plastic, nonlinear, inelastic material param-

eters:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

7. Choice, analysis and calibration of probabilistic seismic motions:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.6.3 Simple Probabilistic Examples

8. SEPFEM, Two Examples:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

9. SEPFEM, Seismic Risk Analysis Example:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.6.4 Probabilistic Wave Propagation Examples

10. Analysis of one component (1C) seismic wave propagation with uncertain motions and uncertain

elastic material parameters:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_PC_and_KL_expansions/Wang_and_Jeremic_Presentation_01_PC_expansion.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_PC_and_KL_expansions/Wang_and_Jeremic_ESSI_lectures_SEPFEM_PC_expansion.mp4
https://youtu.be/zQf46Izrx4A
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_PC_and_KL_expansions/Wang_and_Jeremic_Presentation_02_KL_expansion.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_PC_and_KL_expansions/Wang_and_Jeremic_ESSI_lectures_SEPFEM_KL_expansion.mp4
https://youtu.be/VlO6vwTYbrU
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_theory/Wang_and_Jeremic_Presentation_03_SEPFEM_intro.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_theory/Wang_and_Jeremic_ESSI_lectures_SEPFEM_intro.mp4
https://youtu.be/dJttVA-J7DQ
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Sobol_sensitivities/Wang_and_Jeremic_Presentation_01_SEPFEM_Sobol_sensitivities.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Sobol_sensitivities/Wang_and_Jeremic_ESSI_lectures_01_SEPFEM_Sobol_sensitivities.mp4
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic_Material_Calibration_and_Modeling/Wang_and_Jeremic_Presentation_06_SEPFEM_Elastic_Material_Calibration_and_Modeling.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic_Material_Calibration_and_Modeling/Wang_and_Jeremic_ESSI_lectures_SEPFEM_Elastic_Material_Calibration_and_Modeling.mp4
https://youtu.be/0ZgcJWrv1So
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic-Plastic_Material_Calibration_and_Modeling/Wang_and_Jeremic_Presentation_07_SEPFEM_Elastic-Plastic_Material_Calibration_and_Modeling.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic-Plastic_Material_Calibration_and_Modeling/Wang_and_Jeremic_ESSI_lectures_SEPFEM_Elastic-Plastic_Material_Calibration_and_Modeling.mp4
https://youtu.be/1Lajwymd74U
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Seismic_Motions_Characterization/Wang_and_Jeremic_Presentation_08_SEPFEM_Seismic_Motions_Characterization.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Seismic_Motions_Characterization/Wang_and_Jeremic_ESSI_lectures_SEPFEM_Seismic_Motions_Characterization.mp4
https://youtu.be/c2blW1hkxJg
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_2_examples/Wang_and_Jeremic_Presentation_04_SEPFEM_2_examples.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_2_examples/Wang_and_Jeremic_ESSI_lectures_SEPFEM_2_examples.mp4
https://youtu.be/8EpQy4tTd1M
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Seismic_Risk_example/Wang_and_Jeremic_Presentation_05_SEPFEM_Seismic_risk_examples.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Seismic_Risk_example/Wang_and_Jeremic_ESSI_lectures_SEPFEM_seismic_risk_example.mp4
https://youtu.be/9klaVWgQBrg


Je
re
m
ić
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PDF slides , and a direct MP4 recording and/or alternatively YouTube video

11. Analysis of one component (1C) seismic wave propagation with uncertain motions and uncertain

elastic-plastic, nonlinear, inelastic material parameters:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

12. Sensitivity analysis for uncertain motions and uncertain elastic material parameters:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

13. Sensitivity analysis for uncertain motions and uncertain elastic-plastic, nonlinear, inelastic material

parameters:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic_Seismic_Wave_Propagation_in_1D/Wang_and_Jeremic_Presentation_09_Stochastic_Elastic_Wave_Propagation.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic_Seismic_Wave_Propagation_in_1D/Wang_and_Jeremic_ESSI_lectures_SEPFEM_Stochastic_Elastic_Wave_Propagation.mp4
https://youtu.be/xN1FS2HucfQ
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic-Plastic_Seismic_Wave_Propagation_in_1D/Wang_and_Jeremic_Presentation_10_Stochastic_Elastic-Plastic_Wave_Propagation.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/SEPFEM/SEPFEM_Elastic-Plastic_Seismic_Wave_Propagation_in_1D/Wang_and_Jeremic_ESSI_lectures_SEPFEM_Stochastic_Elastic-Plastic_Wave_Propagation.mp4
https://youtu.be/ENPMrUwH7fc
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404.1.7 Seismic Motions

The following recorded lectures on seismic motions are available:

1. On earthquakes:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. On six component (6C) seismic motions:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. On the Domain Reduction Method (DRM):

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. Development of DRM motions from surface records, 1C, 2×1C, and 3×1C:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

5. Development of DRM motions from inclined, 3C seismic waves:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_earthquakes/Jeremic_Seismic_Ground_Motions_Intro.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_earthquakes/Jeremic_et_al_on_Earthquakes.mp4
https://youtu.be/Mgysp_Vr2Oo
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_6C_seismic_motions/Jeremic_Seismic_Ground_Motions_Intro.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_6C_seismic_motions/Jeremic_et_al_on_6C_seismic_motions.mp4
https://youtu.be/Qk1LuSrv2Fk
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_DRM/Jeremic_Seismic_Ground_Motions_DRM.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/on_DRM/Jeremic_et_al_on_DRM.mp4
https://youtu.be/XUzSRrM8omM
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/Seismic_motions_development/Wang_and_Jeremic_ESSI_lectures_1C-2x1C_and_3x1C_motions_development_for_DRM.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/Seismic_motions_development/Wang_and_Jeremic_ESSI_lectures_1C-2x1C_and_3x1C_motions_development_for_DRM.mp4
https://youtu.be/WDjccPr6CwI
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/Seismic_motions_development/Wang_and_Jeremic_ESSI_lectures_FULL_3C_motions_development_for_DRM.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Seismic_Motions/Seismic_motions_development/Wang_and_Jeremic_ESSI_lectures_FULL_3C_motions_development_for_DRM.mp4
https://youtu.be/bdg6XA5ebNk
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404.1.8 Earthquake Soil Structure Interaction

The following recorded lectures on Earthquake Soil Structure Interaction (ESSI) are available:

1. On ESSI:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1.9 Verification and Validation

Basic theory of Verification and Validation (V&V), as well as V&V examples for the Real ESSI Simulator

are shown in recorded lectures below:

1. Verification and Validation introduction:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. Real ESSI Simulator Verification and Validation system:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. Real ESSI Simulator Verification examples:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

4. Real ESSI Simulator Validation examples:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Verification_and_Validation/Jeremic_et_al_Real-ESSI_online_lectures_VandV_01_intro.pdf
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Verification_and_Validation/Jeremic_et_al_ESSI_lectures_01_V_and_V_intro.mp4
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404.1.10 High Performance Computing

High Performance Computing (HPC) is helping with analysis of sophisticated models efficiently on

sequential and parallel computers.

404.1.10.1 HPC Introduction

1. HPC, an Introduction:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

2. Fine grainded HPC:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

3. Coarse grainded HPC, a Distributed Memory Parallel (DMP) Introduction:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.10.2 HPC and Real-ESSI

1. Real-ESSI Simulator HPC Approach:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

404.1.10.3 Real-ESSI Parallel Computing Examples

1. Real-ESSI Simulator Parallel Examples:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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404.1.11 Real-ESSI Simulator Examples

Select Real-ESSI examples are shown in recorded lectures below:

1. How to run already installed Real-ESSI program on a simple example:

MP4 recording and/or alternatively YouTube video

2. Running Real-ESSI program for a frame model:

MP4 recording and/or alternatively YouTube video

3. Running Real-ESSI program for a elastic-plastic solids model:

MP4 recording and/or alternatively YouTube video

4. Running Real-ESSI program for a solids, beams and shells model:

MP4 recording and/or alternatively YouTube video

5. Post-processing Real-ESSI results using Paraview for frame model:

MP4 recording and/or alternatively YouTube video

6. Post-processing Real-ESSI results using Paraview for a solids, beams and shells model:

MP4 recording and/or alternatively YouTube video

7. Developing a DRM SSI model, solids and beams:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

8. Running a DRM SSI model, solids and beams:

PDF slides , and a direct MP4 recording and/or alternatively YouTube video

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Real_ESSI_Simulator_Examples/Starting_Real_ESSI/Wang_Yang_and_Jeremic_Real-ESSI-Simulator-how-to-run-a-simple-example.mp4
https://youtu.be/p_gc9fC2t5I
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Real_ESSI_Simulator_Examples/Frame_example/Jeremic_and_Wang_Frame_Example_Analysis.mp4
https://youtu.be/L5Csg2fwBrg
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Real_ESSI_Simulator_Examples/Solids_Beams_Shells_example/Jeremic_and_Yang_Solids_Beams_and_Shell_Analysis.mp4
https://youtu.be/ew88tO4Y5hM
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Real_ESSI_Simulator_Examples/Post-Processing/Jeremic_and_Wang_Frame_post_processing.mp4
https://youtu.be/pwr1s0miAG8
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Online_Lectures/Real_ESSI_Simulator_Examples/Post-Processing/Jeremic_and_Yang_Solids-Beams-Shells-Post-Processing.mp4
https://youtu.be/0l6R_cxVLYc
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405.1 Chapter Summary and Highlights

In this Chapter constitutive behavior of elastic-plastic material is illustrated through a number of exam-

ples.

All the examples described here, and many more, organized in sub-directories, for constitutive be-

havior, static and dynamic behavior can be directly downloaded from a repository at: http://sokocalo.

engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_

examples. These examples can then be tried, analyzed using Real-ESSI Simulator that is available on

Amazon Web Services (AWS) computers around the word. Login to AWS market place and search for

Real-ESSI...

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_examples
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_examples
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_examples
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405.2 Elastic Solid Constitutive Examples

405.2.1 Linear Elastic Constitutive Examples

405.2.1.1 Pure Shear, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type linear_elastic_isotropic_3d
3 mass_density = 2E3 * kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio= 0.0 ;
6 simulate constitutive testing strain control pure shear monotonic loading use ←↩

material # 1
7 confinement_strain = 0.001
8 strain_increment_size = 0.0001
9 number_of_increment = 100;

10 bye;

Material Response:

0.000 0.002 0.004 0.006 0.008 0.010
Strain / (unitless)

0

20000

40000

60000

80000

100000

120000

140000

160000
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Material Behavior: Stress-Strain

Figure 405.1: Linear Elastic Pure Shear Monotonic Loading

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Material_Behaviour_Examples/linear_elastic/1pure_shear_mono_loading/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Material_Behaviour_Examples/linear_elastic/1pure_shear_mono_loading/1pure_shear_mono_loading.tgz
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405.2.1.2 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type linear_elastic_isotropic_3d
3 mass_density = 2E3 * kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio= 0.25 ;
6 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
7 confinement_strain = 0.001
8 strain_increment_size = 0.0001
9 maximum_strain = 0.01

10 number_of_cycles = 1;
11 bye;

Material Response:

0.010 0.005 0.000 0.005 0.010 0.015
Strain / (unitless)

200000

150000

100000

50000

0

50000

100000

150000

200000

St
re

ss
 / 

(P
a)

Material Behavior: Stress-Strain

Figure 405.2: Linear Elastic Pure Shear Cyclic Loading.
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405.2.1.3 Uniaxial Strain, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type linear_elastic_isotropic_3d
3 mass_density = 2E3 * kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio= 0.0 ;
6 simulate constitutive testing strain control uniaxial monotonic loading use ←↩

material # 1
7 confinement_strain = 0.001
8 strain_increment_size = 0.0001
9 number_of_increment = 100;

10 bye;

Material Response:
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Figure 405.3: Linear Elastic Uniaxial Monotonic Loading
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405.2.1.4 Uniaxial Strain, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type linear_elastic_isotropic_3d
3 mass_density = 2E3 * kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio= 0.25 ;
6 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
7 confinement_strain = 0.001
8 strain_increment_size = 0.0001
9 maximum_strain = 0.01

10 number_of_cycles = 1;
11 bye;

Material Response:
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Figure 405.4: Linear Elastic Uniaxial Cyclic Loading
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405.2.2 Nonlinear Elastic Constitutive Examples

405.2.2.1 Triaxial Uniform Pressure, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The Duncan-Chang nonlinear elastic materials:

E = Kpa(
σ3
pa

)n (405.1)

where K and n are material constants. And pressure pa is atmospheric pressure. And stress σ3 is the

minor principal stress.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type Duncan_Chang_nonlinear_elastic_isotropic_3d_LT
3 mass_density = 2E3 * kg/m^3
4 initial_elastic_modulus = 3E5 * Pa
5 poisson_ratio= 0.15
6 DuncanChang_K = 1E3
7 DuncanChang_pa = 1E5 * Pa
8 DuncanChang_n = 0.5 ;
9 simulate constitutive testing strain control triaxial confinement loading use ←↩

material # 1
10 strain_increment_size = 0.00001
11 maximum_strain = 0.01
12 number_of_increment = 2000;
13 bye;

Material Response:
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Figure 405.5: Results of Duncan-Chang Nonlinear Elastic Monotonic Loading
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405.3 Elastic Plastic Solid Constitutive Examples

405.3.1 Elastic Perfectly Plastic Constitutive Examples

405.3.1.1 Pure Shear

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 0.0 *Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.6: Perfectly Plastic Pure Shear Cyclic Loading.
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405.3.1.2 Uniaxial Strain

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 0.0 *Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control uniaxial cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.7: Perfectly Plastic Uniaxial Cyclic Loading
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405.3.2 Elastic Plastic, Isotropic Hardening, Constitutive Examples

405.3.2.1 Pure Shear, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 0.0*Pa
8 isotropic_hardening_rate = 2E6 *Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control pure shear monotonic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 number_of_increment = 99;
17 bye;

Material Response:
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Figure 405.8: Isotropic Hardening Pure Shear Monotonic Loading
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405.3.2.2 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 0.0*Pa
8 isotropic_hardening_rate = 2E6 *Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.9: Isotropic Hardening Pure Shear Cyclic Loading.
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405.3.2.3 Uniaxial Strain, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 5E4*Pa
7 kinematic_hardening_rate = 0.0*Pa
8 isotropic_hardening_rate = 2E6 *Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control uniaxial monotonic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 number_of_increment = 99;
17 bye;

Material Response:
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Figure 405.10: Isotropic Hardening Uniaxial Monotonic Loading
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405.3.2.4 Uniaxial Strain, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 5E4*Pa
7 kinematic_hardening_rate = 0.0*Pa
8 isotropic_hardening_rate = 2E6 *Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control uniaxial cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.11: Isotropic Hardening Uniaxial Cyclic Loading
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405.3.3 Elastic Plastic, Kinematic Hardening, Constitutive Examples

405.3.3.1 Pure Shear, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 2E6*Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control pure shear monotonic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 number_of_increment = 99;
17 bye;

Material Response:
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Figure 405.12: Kinematic Hardening Monotonic Cyclic Loading

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Material_Behaviour_Examples/elastoplastic_kinematic_hardening/1pure_shear_mono_loading/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Material_Behaviour_Examples/elastoplastic_kinematic_hardening/1pure_shear_mono_loading/1pure_shear_mono_loading.tgz


Je
re
m
ić
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405.3.3.2 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 1E5*Pa
7 kinematic_hardening_rate = 2E6*Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.13: Kinematic Hardening Pure Shear Cyclic Loading.
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405.3.3.3 Uniaxial Strain, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 5E4*Pa
7 kinematic_hardening_rate = 2E6*Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control uniaxial monotonic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 number_of_increment = 99;
17 bye;

Material Response:
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Figure 405.14: Kinematic Hardening Uniaxial Monotonic Loading
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405.3.3.4 Uniaxial Strain, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 add material # 1 type VonMises
3 mass_density = 2E3*kg/m^3
4 elastic_modulus = 2E7 * Pa
5 poisson_ratio=0.25
6 von_mises_radius = 5E4*Pa
7 kinematic_hardening_rate = 2E6*Pa
8 isotropic_hardening_rate = 0.0*Pa ;
9 define NDMaterial constitutive integration algorithm Backward_Euler

10 yield_function_relative_tolerance = 1E-2
11 stress_relative_tolerance = 1E-3
12 maximum_iterations = 30;
13 simulate constitutive testing strain control uniaxial cyclic loading use ←↩

material # 1
14 confinement_strain = 0.001
15 strain_increment_size = 0.0001
16 maximum_strain = 0.01
17 number_of_cycles = 1;
18 bye;

Material Response:
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Figure 405.15: Kinematic Hardening Uniaxial Cyclic Loading
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405.3.4 Elastic Plastic, Armstrong-Frederick, von-Mises, Constitutive Examples

405.3.4.1 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "vmaf";
2 add material # 1 type vonMisesArmstrongFrederick
3 mass_density = 0.0*kg/m^3
4 elastic_modulus = 2E7*N/m^2
5 poisson_ratio = 0.0
6 von_mises_radius = 100 * Pa
7 armstrong_frederick_ha = 2E7*N/m^2
8 armstrong_frederick_cr = 1000
9 isotropic_hardening_rate = 0*Pa ;

10 define NDMaterial constitutive integration algorithm Backward_Euler
11 yield_function_relative_tolerance = 1E-6
12 stress_relative_tolerance = 1E-6
13 maximum_iterations = 30;
14 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
15 confinement_strain = 0.001
16 strain_increment_size = 0.0001
17 maximum_strain = 0.01
18 number_of_cycles = 1;
19 bye;

Material Response:
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Figure 405.16: Material von-Mises Armstrong-Frederick under Pure Shear Cyclic Loading.
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405.3.5 Elastic Plastic, Armstrong-Frederick, Drucker-Prager, Constitutive Examples

405.3.5.1 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Material properties in Real-ESSI input:

1 model name "test";
2 phi = 5;
3 phirad = pi*phi/180;
4 eta = 6*sin(phirad)/(3-sin(phirad));
5 add material # 1 type DruckerPragerNonAssociateArmstrongFrederick
6 mass_density = 0.0*kg/m^3
7 elastic_modulus = 2E7*N/m^2
8 poisson_ratio = 0.0
9 druckerprager_k = eta

10 armstrong_frederick_ha = 2E7*N/m^2
11 armstrong_frederick_cr = 100
12 isotropic_hardening_rate = 0*Pa
13 initial_confining_stress = 1*Pa
14 plastic_flow_xi = 0.0
15 plastic_flow_kd = 0.0 ;
16 define NDMaterial constitutive integration algorithm Backward_Euler
17 yield_function_relative_tolerance = 1E-6
18 stress_relative_tolerance = 1E-6
19 maximum_iterations = 30;
20 simulate constitutive testing strain control pure shear cyclic loading use ←↩

material # 1
21 confinement_strain = 0.001
22 strain_increment_size = 0.0001
23 maximum_strain = 0.01
24 number_of_cycles = 1;
25 bye;

Material Response:
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Figure 405.17: Drucker-Prager Armstrong-Frederick under Pure Shear Cyclic Loading.

405.3.6 Elastic Plastic, SaniSAND, Constitutive Examples

405.3.6.1 Bardet Constraint Examples

The compressed package of Real-ESSI input files and postprocessing scripts and results for this example

is available HERE. Material Response is shown in Figure 405.18
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Figure 405.18: SaniSAND response.
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405.4 Stiffness Reduction and Damping Curves Modeling

405.4.1 Multi-yield-surface von-Mises

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

405.4.1.1 Model description

This model illustrates the G/Gmax input to multi-yield-surface von-Mises material. This example is

based on one Gauss-point with multi-yield-surface von-Mises material. The G/Gmax is converted to

material modeling parameters (yield-surface size and hardening parameter) inside the DSL.

405.4.1.2 Real-ESSI input file

1 model name "test";
2 add material # 1 type vonMisesMultipleYieldSurfaceGoverGmax
3 mass_density = 0.0*kg/m^3
4 initial_shear_modulus = 3E8 * Pa
5 poisson_ratio = 0.0
6 total_number_of_shear_modulus = 9
7 GoverGmax =
8 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
9 ShearStrainGamma =

10 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01"
11 ;
12 define NDMaterial constitutive integration algorithm Backward_Euler
13 yield_function_relative_tolerance = 1E-6
14 stress_relative_tolerance = 1E-6
15 maximum_iterations = 30
16 ;
17 incr_size = 0.000001 ;
18 max_strain= 0.005 ;
19 num_of_increm = max_strain/incr_size -1 ;
20 simulate constitutive testing strain control pure shear use material # 1
21 confinement_strain = 0.0
22 strain_increment_size = incr_size
23 maximum_strain = max_strain
24 number_of_increment = num_of_increm;
25 bye;

Material Response at Gauss Point:

Computed G/Gmax curve exactly matches the one used for input at control points.

The difference in G/Gmax between control points can be reduced by using more than just 9 control

points as in this example.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 405.4. STIFFNESS REDUCTION AND DAMPIN . . . page: 1971 of 3287

0.000 0.002 0.004 0.006 0.008 0.010
Strain / (unitless)

0

50000

100000

150000

200000

St
re

ss
 / 

(P
a)

Material Behavior: Stress-Strain

Input
 ESSI

Figure 405.19: Stress-Strain Relationship
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Figure 405.20: The G/Gmax results.
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Figure 405.21: Damping Ratio Plot
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405.4.2 Multi-yield-surface Drucker-Prager

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

405.4.2.1 Problem description

This model illustrates the G/Gmax input to multi-yield-surface Drucker-Prager material. Purely devia-

toric plastic flow is used in this material, which means that the parameter dilation scale is set to zero. If

user wants to model change of volume (dilation or compression) for this material, then G/Gmax curve

need to be iterated upon manually by changing yield surface size directly, which is done using different

DruckerPragerMultipleYieldSurface command. This example is based on one Gauss-point which use

multi-yield-surface Drucker-Prager material. The G/Gmax is converted to the yield-surface size and

hardening parameter inside the DSL.

405.4.2.2 Real-ESSI input file:

1 model name "test";
2

3 add material # 1 type DruckerPragerMultipleYieldSurfaceGoverGmax
4 mass_density = 0.0*kg/m^3
5 initial_shear_modulus = 3E8 * Pa
6 poisson_ratio = 0.0
7 initial_confining_stress = 1E5 * Pa
8 reference_pressure = 1E5 * Pa
9 pressure_exponential_n = 0.5

10 cohesion = 0. * Pa
11 dilation_angle_eta =1.0
12 dilation_scale = 0.0
13 total_number_of_shear_modulus = 9
14 GoverGmax =
15 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
16 ShearStrainGamma =
17 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01"
18 ;
19 define NDMaterial constitutive integration algorithm Backward_Euler
20 yield_function_relative_tolerance = 1E-6
21 stress_relative_tolerance = 1E-6
22 maximum_iterations = 30;
23 simulate constitutive testing strain control pure shear use material # 1
24 confinement_strain = 0.0
25 strain_increment_size = 0.000001
26 maximum_strain = 0.005
27 number_of_increment = 0.005 / 0.000001 -1 ;
28 bye;
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Figure 405.22: Nested-Yield-Surface Drucker-Prager Stress-Strain Relationship

Inside the DSL, the yield surface radius is calculated as
√

3σy, where σy is the yield stress of the

corresponding yield surface. Then, the radius is divided by the confinement to obtain the slope (opening

angle).

The hardening parameter is calculated as

1
H ′

i
=

1
Hi

–
1

2G
(405.2)

where H ′
i is the current hardening parameter corresponding to yield surface i. Hi is the current tangent

shear modulus to surface i, namely, Hi = 2(τi+1 – τi)/(γi+1 – γi). And G is the initial shear modulus.
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Figure 405.23: Nested-Yield-Surface Drucker-Prager G/Gmax results
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Figure 405.24: Damping Ratio Plot
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405.4.3 Simulate Stiffness Reduction using von-Mises Armstrong-Frederick

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

405.4.3.1 Model description

This model illustrates the simulation of stiffness reduction using von-Mises Armstrong-Frederick. This

example is based on one Gauss-point.

405.4.3.2 Real-ESSI input file:

1 model name "test";
2

3 add material # 1 type vonMisesArmstrongFrederick
4 mass_density = 2500.0*kg/m^3
5 elastic_modulus = 3E7*N/m^2
6 poisson_ratio = 0.2
7 von_mises_radius = 300 * Pa
8 armstrong_frederick_ha = 5*3E7*N/m^2
9 armstrong_frederick_cr = 25000

10 isotropic_hardening_rate = 0*Pa
11 ;
12 define NDMaterial constitutive integration algorithm Backward_Euler
13 yield_function_relative_tolerance = 1E-6
14 stress_relative_tolerance = 1E-6
15 maximum_iterations = 30
16 ;
17 incr_size = 0.000001 ;
18 max_strain= 0.005 ;
19 num_of_increm = max_strain/incr_size -1 ;
20 simulate constitutive testing strain control pure shear use material # 1
21 confinement_strain = 0.0
22 strain_increment_size = incr_size
23 maximum_strain = max_strain
24 number_of_increment = num_of_increm;
25 bye;

The von-Mises Armstrong-Frederick material behavior matches the stiffness reduction curve.
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Figure 405.25: The stiffness reduction results.
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Figure 405.26: Damping Ratio Plot
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405.5 Cosserat, Micropolar Material Modeling
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405.5.1 Cosserat, Micropolar Elastic Material Model (example in development)
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405.5.2 Cosserat, Micropolar Elastic-Plastic von Mises Material Model (example in development)
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405.5.3 Cosserat, Micropolar Elastic-Plastic Druekcr Prager Material Model (example in development)
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Chapter 406

Static Examples

(2016-2017-2019-2021-)

(In collaboration with Prof. José Abell, Dr. Yuan Feng, Mr. Sumeet Kumar Sinha, and Dr. Han Yang)

406.1 Chapter Summary and Highlights

In this Chapter static modeling and simulation of solids and structures is illustrated through a number

of examples.

All the examples described here, and many more, organized in sub-directories, for constitutive be-

havior, static and dynamic behavior can be directly downloaded from a repository at: http://sokocalo.

engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_

examples. These examples can then be tried, analyzed using Real-ESSI Simulator that is available on

Amazon Web Services (AWS) computers around the word. Login to AWS market place and search for

Real-ESSI...

406.2 Static Elastic Solid Examples

406.2.1 Statics, Bricks, with Nodal Forces

406.2.1.1 Statics, 8 Node Brick, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with a nodal force at the tip. Length=6m, Width=1m, Height=1m,

Force=100N, E=1E8Pa, ν = 0.0. The force direction was shown in Figure (406.1).

The mesh is generated with elastic 8 node brick.

1982
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Figure 406.1: Problem description for cantilever beams.

Figure 406.2: Six 8NodeBrick elements.

406.2.1.2 Statics, 27 Node Brick, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with a nodal force at the tip. Length=6m, Width=1m, Height=1m,

Force=100N, E=1E8Pa, ν = 0.0. The force direction was shown in Figure (406.3).

Figure 406.3: Problem description for cantilever beams.

The mesh is generated with elastic 27 node brick.
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Figure 406.4: Six 27NodeBrick elements.

406.2.1.3 Statics, 8-27 Node Brick, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with a nodal force at the tip. Length=2m, Width=2m, Height=2m,

ν = 0.0. The force direction was shown in Figure (406.5).

Figure 406.5: Problem description for cantilever beams.

The mesh is generated with an elastic 8-27 node brick. As shown in the Figure 406.16, some of the

nodes are missing on purpose. The variable node brick element is usually used as the transition mesh

between 8 node brick and 27 node brick.

Figure 406.6: One 8-27 Node elements.
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406.2.2 Statics, Bricks, with Surface Loads

406.2.2.1 Statics, 8 Node Brick, with Surface Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with the load on one surface. Length=2m, Width=2m, Height=2m,

ν = 0.0. The force distribution was shown in Figure (406.7).

Figure 406.7: Problem description for cantilever beams.

The mesh is generated with an elastic 8 node brick.

Figure 406.8: One element with surface load.

406.2.2.2 Statics, 27 Node Brick, with Surface Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with the load on one surface. Length=2m, Width=2m, Height=2m.

The force distribution was shown in Figure (406.9).
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Figure 406.9: Problem description for cantilever beams.

The mesh is generated with an elastic 27 node brick.

Figure 406.10: One element with surface load.

406.2.3 Statics, Bricks, with Body Forces

406.2.3.1 Statics, 8 Node Brick, with Body Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with self weight on the whole element. Length=6m, Width=1m,

Height=1m, ν = 0.3. The force direction was shown in Figure (406.11).

The mesh is generated with an elastic 8 node brick.
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Figure 406.11: Problem description for cantilever beams.

Figure 406.12: Six 8NodeBrick elements.
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406.2.3.2 Statics, 27 Node Brick, with Body Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with self weight on the whole element. Length=6m, Width=1m,

Height=1m, ν = 0.3. The force direction was shown in Figure (406.13).

Figure 406.13: Problem description for cantilever beams.

The mesh is generated with an elastic 27 node brick.

Figure 406.14: Six 27NodeBrick elements.
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406.2.3.3 Statics, 8-27 Node Brick, with Body Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with self weight on the whole element. Length=2m, Width=2m,

Height=2m, ν = 0.3. The force direction was shown in Figure (406.15).

Figure 406.15: Problem description for cantilever beams.

The mesh is generated with an elastic 8-27 node brick. As shown in the Figure 406.16, some of the

nodes are missing on purpose. The variable node brick element is usually used as the transition mesh

between 8 node brick and 27 node brick.

Figure 406.16: One variable Node Brick elements.
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406.3 Static Elastic Structural Examples

406.3.1 Statics, Truss, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with the nodal load on the tip. Length=1m, Cross Section=1m2.

The cross section shape is not necessarily a square. The force direction was shown in Figure (406.17).

Truss only takes axial force.

Figure 406.17: Problem description for a cantilever.
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406.3.2 Statics, Elastic Beam, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with nodal load on the tip. Length=1m, Width=1m, Height=1m,

E=1Pa. The force direction was shown in Figure (406.18).

Figure 406.18: Problem description for cantilever beams.
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406.3.3 Statics, Elastic Beam, with Body Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with self weight. Length=1m, Width=1m, and Height=1m. The

force direction was shown in Figure (406.19).

Figure 406.19: Problem description for cantilever beams.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/elastic_structural_element/beam_elastic_body/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/elastic_structural_element/beam_elastic_body/beam_elastic_body.tgz


Je
re
m
ić
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406.3.4 Statics, ShearBeam Element

406.3.4.1 Problem description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

In the element type ”ShearBeam”, only one Gauss point exists. ShearBeam element was used

here to test the von Mises Armstrong-Frederickó material model. Vertical force Fz was used to apply

confinement to the element. Then, cyclic force Fx is used to load. Usually, pressure-dependent materials,

like Drucker-Prager, require the confinement. The pressure-independent materials, like von Mises, do

not require the confinement.

Figure 406.20: ShearBeam element.

406.3.4.2 Results

Resulting stress-strain relationship is shown in Fig.(707.51).
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Figure 406.21: Shear stress-strain response.
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406.3.5 Statics, Elastic Shell, with Nodal Forces

406.3.5.1 ANDES Shell, out of Plane Force

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0.

The force direction was shown in Figure (406.22).

Figure 406.22: Problem description for cantilever beams.

406.3.5.2 ANDES Shell, Perpendicular to Plane, bending

The mesh and the out-of-plane force is shown in Fig. 406.23.

Figure 406.23: Six 4NodeANDES elements.

406.3.5.3 ANDES Shell, In-plane Force

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with a nodal force at the tip. Length=6m, Width=1m, Height=1m,

Force=100N, E=1E8Pa, ν = 0.0. The force direction was shown in Figure (406.24).

The mesh and the inplane force is shown in Fig. 406.25.
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Figure 406.24: Problem description for cantilever beams.

Figure 406.25: Six 4NodeANDES elements.
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406.3.6 Statics, Elastic Shell, with Body Forces

406.3.6.1 ANDES shell under the out-of-Plane Body Force

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. The

force direction was shown in Figure (406.26).

Figure 406.26: Problem description for cantilever beams.

Figure 406.27: Six 4NodeANDES elements.

406.3.6.2 ANDES Shell, In-plane Body Force

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Problem description: a cantilever with a nodal force at the tip. Length=6m, Width=1m, Height=1m,

Force=100N, E=1E8Pa, ν = 0.0. The force direction was shown in Figure (406.28).
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Figure 406.28: Problem description for cantilever beams.

Figure 406.29: Six 4NodeANDES elements.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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406.4 Statics, Interface/Contact Elements

406.4.1 Statics, Two Bar Normal Interface/Contact Problem Under Monotonic Loading.

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

This is an example of normal monotonic loading on a 1-D contact/interface between two bars

separated by an initial gap of 0.1 unit. An illustrative diagram of the problem statement is shown below.

Figure 406.30: Illustration of Two Bar Normal Interface/Contact Problem under monotonic loading with

initial gap.

The displacement output of Node 2 and Node 3 are shown below.

Figure 406.31: Displacement of Nodes 2 and 3.
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406.4.2 Statics, Four Bar Interface/Contact ProblemWith Normal and Shear Force Under Mono-

tonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

This is an example to show the normal and tangential behavior (stick and slip case) of contacts using

four bars in 2-D plane. The bars in x-directions are in contact/interface (initial gap=0).

Figure 406.32: Illustration of Four Bar Normal Interface/Contact Problem With Normal and Shear Force

Under Monotonic Loading with no initial gap.
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The displacement output of Node 2 and Node 3 are shown below.

Figure 406.33: Displacement of Nodes 2 and 3 along y direction.
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406.4.3 Statics, 3-D Truss example with normal confinement and Shear Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

A simple 3-D truss example with Normal confinement in z-direction of FN = 0.5N , friction coefficient

µ = 0.2 and shear loading of magnitude Fs = 0.5N . Figure 707.57 below, shows the description of the

problem.

Figure 406.34: Illustration of 3-D Truss Problem with confinement loading in z-direction of 0.5N and

then shear loading of 0.5N in x-y plane.

The generalized displacement response of the tangential loading stage is shown below.
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Figure 406.35: Displacements of Node 2 with applied shear tangential load step.
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Figure 406.36: Resisting force by the contact/interface element with applied shear tangential load step.
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406.4.4 Statics, Six Solid Blocks Example With Interface/Contact

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

This is a 3-D solid block example with initial normal and then tangential load on different surfaces

as shown below.

Figure 406.37: Illustration of Six Solid Blocks Example with Interface/Contact with first normal and

then tangential loading stages.

The generalized displacement field of the two loading stages normal loading and tangential loading

is shown below..

Figure 406.38: Generalized displacement magnitude visualization of normal loading.
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Figure 406.39: Generalized displacement magnitude visualization of tangential loading.

406.5 Static Inelastic Solid Examples

406.5.1 Statics, Bricks, Elastic-Plastic, von Mises, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.40: Perfectly Plastic Pure Shear Cyclic Loading.

Material Response at Gauss Point:

406.5.2 Statics, Bricks, Elastic-Plastic, Drucker Prager, with Nodal Forces

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.
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Figure 406.41: Results of Perfectly Plastic Pure Shear Cyclic Loading.

Model Description:

Figure 406.42: Diagram of Drucker-Prager Armstrong-Frederick Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.43: Result of Drucker-Prager Armstrong-Frederick Pure Shear Cyclic Loading.
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406.6 Static Inelastic Shell Examples (example in development)

406.7 Statics, Elastic Single Solid Finite Finite Element Examples

406.7.1 Statics, Linear Elastic, Solid Examples

406.7.1.1 Statics, Pure Shear, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.44: Diagram Linear Elastic Solid Pure Shear Monotonic Loading.

Material Response at Gauss Point:
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Figure 406.45: Results of Linear Elastic Solid Pure Shear Monotonic Loading.
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406.7.1.2 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.46: Diagram Linear Elastic Solid Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.47: Results of Linear Elastic Solid Pure Shear Cyclic Loading.

406.7.1.3 Uniaxial Strain, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.48: Diagram Linear Elastic Uniaxial Strain Solid Monotonic Loading.
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Figure 406.49: Results of Linear Elastic Pure Shear Monotonic Loading.

406.7.1.4 Uniaxial Strain, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:

406.7.2 Statics, Nonlinear Elastic, Duncan-Chang, Pure Shear, Solid Examples

406.7.2.1 Pure Shear, Monotonic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.
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Figure 406.50: Linear Elastic Uniaxial Strain Cyclic Loading.
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Figure 406.51: Results of Linear Elastic Pure Shear Cyclic Loading.

Model Description:

Material Response at Gauss Point:

406.7.2.2 Pure Shear, Cyclic Loading

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.
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Figure 406.52: Nonlinear Elastic Uniaxial Strain Monotonic Loading.
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Figure 406.53: Results of Nonlinear Elastic Pure Shear Monotonic Loading.

Model Description:

Material Response at Gauss Point:
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Figure 406.54: Nonlinear Elastic Uniaxial Strain Cyclic Loading.
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Figure 406.55: Results of Nonlinear Elastic Pure Shear Cyclic Loading.

406.8 Statics, Elastic-Plastic Single Solid Finite Element Examples

406.8.1 Statics, Elastic Perfectly Plastic, Cyclic Loading, Pure Shear Solid Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.56: Perfectly Plastic Pure Shear Cyclic Loading.
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Figure 406.57: Results of Perfectly Plastic Pure Shear Cyclic Loading.

406.8.1.1 Statics, von-Mises Yield Function, Isotropic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.58: Pure Shear Cyclic Loading.
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Figure 406.59: Material von-Mises Isotropic Hardening under Pure Shear Cyclic Loading.

406.8.1.2 Statics, von Mises Yield Function, Kinematic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 406.8. STATICS, ELASTIC-PLASTIC SINGLE SO . . . page: 2016 of 3287

Figure 406.60: Pure Shear Cyclic Loading.
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Figure 406.61: Results of von-Mises Kinematic Hardening Pure Shear Cyclic Loading.

406.8.1.3 Statics, Drucker Prager Yield Function, von-Mises Plastic Potential Function, Perfectly Plas-

tic Hardening Rule

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:
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Figure 406.62: Pure Shear Cyclic Loading.
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Figure 406.63: Results of Drucker Prager Yield Surface with Purely Deviatoric Plastic Flow under Pure

Shear Cyclic Loading.

406.8.1.4 Statics, Drucker Prager Yield Function, Drucker Prager Plastic Potential Function, Perfectly

Plastic Hardening Rule

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.64: Pure Shear Cyclic Loading.
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Figure 406.65: Results of Associative Drucker Prager Pure Shear Cyclic Loading.

406.8.2 Statics, Drucker Prager with Armstrong Frederick Nonlinear Kinematic Hardening Ma-

terial Model

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.66: Pure Shear Cyclic Loading.
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Figure 406.67: Result of Drucker-Prager Armstrong-Frederick Pure Shear Cyclic Loading.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 406.9. STATICS, ELASTIC, FIBER CROSS SECT . . . page: 2020 of 3287

406.9 Statics, Elastic, Fiber Cross Section Beam Finite Element Examples

406.9.1 Statics, Linear Elastic, Normal Loading and Pure Bending Fiber Cross Section Beam

Finite Element Examples

406.9.1.1 Linear Elastic Normal Loading, Fiber Cross Section Beam Finite Element Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The linear elastic beam is represented by the elastic section. This example is under the load of normal

loading.

Figure 406.68: Normal Loading on the Fiber Beam with Elastic Section.

The elastic section represents the cross section properties of the beam.

Figure 406.69: Diagram of the Fiber Beam with Elastic Section.
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406.9.1.2 Linear Elastic Pure Bending, Fiber Cross Section Beam Finite Element Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The linear elastic beam is represented by the elastic section. This example is under the bending load.

Figure 406.70: Bending on the Fiber Beam with Elastic Section.

The elastic section represents the cross section properties of the beam.

Figure 406.71: Diagram of the Fiber Beam with Elastic Section.
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406.10 Statics, Elastic-Plastic, Fiber Cross Section Beam Finite Element Exam-

ples

406.10.1 Statics, Elastic-Plastic, Normal Loading and Pure Bending Fiber Cross Section Beam

Finite Element

406.10.1.1 Elastic-Plastic Normal Loading, (Fiber Cross Section) Beam Finite Element Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The Elastic-Plastic beam is represented by the fiber section. This example is under the load of normal

loading.

Figure 406.72: Normal Loading on the Fiber Beam with Elastic-Plastic Section.

The fiber represents the rebar. The section of all fibers represents the cross section properties of the

inelastic beam.

Figure 406.73: Diagram of the Fiber Beam with Elastic-Plastic Section.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/fiberSectionBeam/beam/elastoplastic/normal_loading/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/fiberSectionBeam/beam/elastoplastic/normal_loading/normal_loading.tgz


Je
re
m
ić
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406.10.1.2 Elastic-Plastic Pure Bending, (Fiber Cross Section) Beam Finite Element Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The Elastic-Plastic beam is represented by the fiber section. This example is under the load of normal

loading.

Figure 406.74: Bending on the Fiber Beam with Elastic-Plastic Section.

The fiber represents the rebar. The section of all fibers represents the cross section properties of the

inelastic beam.

Figure 406.75: Diagram of the Fiber Beam with Elastic-Plastic Section.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/fiberSectionBeam/beam/elastoplastic/pure_bending/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Static_Examples/fiberSectionBeam/beam/elastoplastic/pure_bending/pure_bending.tgz


Je
re
m
ić
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406.11 Statics, Elastic, Inelastic Wall Finite Element Examples

406.11.1 Statics, Linear Elastic, Wall Finite Element Examples

406.11.1.1 Statics, Linear Elastic, Wall Finite Element Examples
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406.11.1.2 Linear Elastic, Bi-Axial, Wall Finite Element Examples
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406.11.1.3 Linear Elastic, Shear, (Fiber Cross Section) Wall Finite Element Examples
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406.12 Statics, Elastic-Plastic Wall Finite Element Examples

406.12.1 Statics, Elastic-Plastic, in Plane, Wall Finite Element Examples

406.12.1.1 Elastic-Plastic, Uni-Axial, Wall Finite Element Examples
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406.12.1.2 Elastic-Plastic, Bi-Axial, Wall Finite Element Examples
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 406.12. STATICS, ELASTIC-PLASTIC WALL FIN . . . page: 2029 of 3287

406.12.1.3 Elastic-Plastic, Shear, Wall Finite Element Examples
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406.13 Statics, Solution Advancement Control

406.13.1 Increments: Load Control

When load-control is used as the solution advancement method, perfectly plastic model will fail imme-

diately after the yield point. Load-control works with isotropic hardening and kinematic hardening.

406.13.1.1 Solids Example, Elastic Plastic Isotropic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.76: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.77: Material von-Mises Isotropic Hardening under Pure Shear Cyclic Loading.
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406.13.1.2 Solids Example, Elastic Plastic Kinematic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.78: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.79: Material von-Mises Kinematic Hardening under Pure Shear Cyclic Loading.
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406.13.1.3 Inelastic Beam Example, Steel and Reinforced Concrete

The Real-ESSI input files for this example are available HERE.

The compressed package of Real-ESSI input files and postprocessing results for this example is

available HERE.

The Elastic-Plastic beam is represented by the fiber section. This example is under the load of normal

loading.

Figure 406.80: Normal Loading on the Beam with Fiber Section.

The fiber represents the rebar. The section of all fibers represents the cross section properties of the

inelastic beam.

Figure 406.81: Diagram of the Beam with Fiber Section.

406.13.2 Statics, Increments: Displacement Control

406.13.2.1 Statics, Single Displacement Control

406.13.2.2 Solids Example, Elastic-Perfectly Plastic

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.82: Pure Shear Cyclic Loading.
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Figure 406.83: Displacement-Control of Perfectly Plastic Material under Pure Shear Cyclic Loading.

406.13.2.3 Solids Example, Elastic Plastic Isotropic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:

406.13.2.4 Solids Example, Elastic Plastic Kinematic Hardening

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Material Response at Gauss Point:
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Figure 406.84: Pure Shear Cyclic Loading.
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Figure 406.85: Displacement-Control of Isotropic Hardening Material under Pure Shear Cyclic Loading.

Figure 406.86: Pure Shear Cyclic Loading.
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Figure 406.87: Displacement-Control of Kinematic Hardening Material under Pure Shear Cyclic Loading.

406.13.2.5 Inelastic Beam Example, Steel and Reinforced Concrete

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The Elastic-Plastic beam is represented by the fiber section. This example is under the load of normal

loading.

Figure 406.88: Bending on the Fiber Beam with Elastic-Plastic Section

The fiber represents the rebar. The section of all fibers represents the cross section properties of the

inelastic beam.
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Figure 406.89: Diagram of the Fiber Beam with Elastic-Plastic Section.
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406.13.3 Statics, Solution Algorithms

406.13.3.1 Statics, Solution Algorithm: No Convergence Check

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

When no convergence check is used, the stress-strain curves drift away a little. The stress-strain

curve did not close, as shown in Figure 406.57.

Model Description:

Figure 406.90: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.91: Results of No-Convergence-Check Pure Shear Cyclic Loading.
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406.13.3.2 Statics, Solution Algorithm: Newton Algorithm

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.92: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.93: Results of Convergence Check with Newton-Raphson Iteration under Pure Shear Cyclic

Loading.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 406.13. STATICS, SOLUTION ADVANCEMENT . . . page: 2039 of 3287

406.13.3.3 Statics, Solution Algorithm: Newton Algorithm with Line Search

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.94: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.95: Results of Convergence Check with Newton-Raphson Iterations and Line Search under

Pure Shear Cyclic Loading.
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406.13.4 Statics, Solution Advancement Control, Iterations: Convergence Criteria

406.13.4.1 Statics, Solution Advancement Control, Convergence Criteria: Unbalanced Force

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.96: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.97: Results of Convergence Check with Unbalanced Force Criteria under Pure Shear Cyclic

Loading.
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406.13.4.2 Statics, Solution Advancement Control, Convergence Criteria: Displacement Increment

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model Description:

Figure 406.98: Pure Shear Cyclic Loading.

Material Response at Gauss Point:
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Figure 406.99: Results of Convergence Check with Displacement Increment under Pure Shear Cyclic

Loading.
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406.13.5 Statics, Solution Advancement Control, Different Convergence Tolerances (Examples in prepa-

ration)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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406.14 Statics, Small Practical Examples

406.14.1 Statics, Elastic Beam Element for a Simple Frame Structure

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

406.14.1.1 Problem Description

• Dimensions: width=6m, height=6m, force=100N

• Element dimensions: length=6m, cross section width=1m, cross section height=1m, mass density

ρ = 0.0kN/m3, Young’s modulus E = 1E8 Pa, Poisson’s ratio ν = 0.0.

Figure 406.100: Elastic frame with beam elastic elements.
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406.14.2 Statics, 4NodeANDES Square Plate, Four Edges Clamped

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

406.14.2.1 Problem description

Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is a self weight.

Figure 406.101: Square plate with four edges clamped.

406.14.2.2 Numerical model

The element side length is 1 meter.
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Figure 406.102: 4NodeANDES edge clamped square plate with element side length 1m.
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406.14.3 Statics, Six Solid Blocks Example With Interface/Contact

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

This is a 3-D solid block example with initial normal and then tangential load on different surfaces

as shown below.

Figure 406.103: Illustration of Six Solid Blocks Example with Interface/Contact with first normal and

then tangential loading stages.

The generalized displacement field of the two loading stages normal loading and tangential loading

is shown below..

Figure 406.104: Generalized displacement magnitude visualization of normal loading.
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Figure 406.105: Generalized displacement magnitude visualization of tangential loading.
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Chapter 407

Dynamic Examples

(2016-2017-2018-2019-2021-)

(In collaboration with Prof. José Abell, Dr. Yuan Feng, Mr. Sumeet Kumar Sinha, Dr. Hexiang Wang, and Dr.

Han Yang)

407.1 Chapter Summary and Highlights

In this Chapter dynamic/transient modeling and simulation of solids and structures is illustrated through

a number of examples.

All the examples described here, and many more, organized in sub-directories, for constitutive be-

havior, static and dynamic behavior can be directly downloaded from a repository at: http://sokocalo.

engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_Examples/education_

examples. These examples can then be tried, analyzed using Real-ESSI Simulator that is available on

Amazon Web Services (AWS) computers around the word. Login to AWS market place and search for

Real-ESSI...

407.2 Dynamic Solution Advancement (in Time)

407.2.1 Dynamics: Newmark Method

407.2.1.1 Newmark Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at one side. Second, the model starts free vibration.

2048
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 407.2. DYNAMIC SOLUTION ADVANCEMENT . . . page: 2049 of 3287

Figure 407.1: Problem Description for Newmark Method

407.2.1.2 Newmark Results

With damping, the displacement peak is smaller and smaller. The displacement at the top is
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Figure 407.2: Results for Newmark Method

407.2.2 Dynamics: Hilber-Hughes-Taylor (α) Method

407.2.2.1 HHT Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at one side. Second, the model starts free vibration.

407.2.2.2 HHT Results

With NO damping, the displacement peak keeps the same. The displacement at the top is
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Figure 407.3: Problem Description for HHT Method
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Figure 407.4: Results for HHT Method

407.3 Dynamics: Solution Advancement: Time Step Size

407.3.1 Dynamics: Solution Advancement: Equal Time Step

407.3.1.1 Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The model is given an earthquake input motion at the bottom with equal time step. After the wave

propagation, the motion at the top is recorded.

407.3.1.2 Results

The input motion is on the left, while the output motion is on the right.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 407.3. DYNAMICS: SOLUTION ADVANCEMEN . . . page: 2051 of 3287

Figure 407.5: Problem Description for Solution Advancement
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Figure 407.6: Input Motion (Left) And Output Motion (Right)

407.3.2 Dynamics Solution Advancement: Variable Time Step

407.3.2.1 Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The model is given an earthquake input motion at the bottom with variable time step. After the

wave propagation, the motion at the top is recorded.

Figure 407.7: Problem Description for Newmark Method
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407.3.2.2 Results

The input motion is on the left, while the output motion is on the right. The input motion is in variable

time step. As shown in Fig 407.8, from time 10-11 second, the input motion is a straight line (a big

time step) without the small time steps.
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Figure 407.8: Input Motion (Left) And Output Motion (Right)

407.4 Dynamics: Energy Dissipation, Damping

407.4.1 Dynamics: Energy Dissipation: Viscous Damping

407.4.1.1 Dynamics: Energy Dissipation, Viscous Damping: Rayleigh Damping

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at the top from 0 to 1 second. Second, after the

time 1 second, the model starts free vibration.

Figure 407.9: Problem Description for Newmark Method

Results This model employs Rayleigh damping. The displacement at the top is
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Figure 407.10: Results for Newmark Method

407.4.1.2 Dynamics: Energy Dissipation, Viscous Damping: Caughey Damping

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at the top from 0 to 1 second. Second, after the

time 1 second, the model starts free vibration.

Figure 407.11: Problem Description for Newmark Method

Results This model employs Caughey damping. The displacement at the top is

407.4.2 Dynamics: Energy Dissipation: Material (Elastic-Plastic, Hysteretic) Damping

407.4.2.1 Dynamics: Energy Dissipation, Material Damping: Elastic Perfectly Plastic Models

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

The model is a one-element solid brick example with perfectly plastic materials.

Results The Hysteretic loop at the Gauss point is

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/EnergyDissipation/ViscousDamping/Caughey/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/EnergyDissipation/ViscousDamping/Caughey/Caughey.tgz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/EnergyDissipation/MaterialDamping/perfectly_plastic/main.fei
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/EnergyDissipation/MaterialDamping/perfectly_plastic/perfectly_plastic.tgz


Je
re
m
ić
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Figure 407.12: Results for Newmark Method

Figure 407.13: Problem Description for Newmark Method
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Figure 407.14: Results for Newmark Method
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407.4.2.2 Dynamics: Energy Dissipation, Material/Hysteretic Damping: Elastic Plastic Isotropic Hard-

ening Models

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

The model is a one-element solid brick example with isotropic hardening materials.

Figure 407.15: Problem Description for Newmark Method

Results The Hysteretic loop at the Gauss point is
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Figure 407.16: Results for Newmark Method

407.4.2.3 Dynamics: Energy Dissipation, Material/Hysteretic Damping: Elastic Plastic Kinematic

Hardening Models

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.
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The model is a one-element solid brick example with kinematic hardening materials.

Figure 407.17: Problem Description for Newmark Method

Results The Hysteretic loop at the Gauss point is
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Figure 407.18: Results for Newmark Method

407.4.2.4 Dynamics: Energy Dissipation, Material/Hysteretic Damping: Elastic Plastic Armstrong-

Frederick Models

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

The model is a one-element solid brick example with materials with nonlinear hardening Armstrong-

Frederick.

Results The Hysteretic loop at the Gauss point is
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Figure 407.19: Problem Description for Newmark Method
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Figure 407.20: Results for Material Armstrong-Frederick

407.4.3 Dynamics: Energy Dissipation: Numerical Damping

407.4.3.1 Energy Dissipation, Numerical Damping: Newmark Method

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement in the first loading stage. In the second loading

stage, the model starts free vibration.

Results This model employs Newmark numerical damping. The displacement at the top in the second

loading stage is
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Figure 407.21: Problem Description for Newmark Method
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Figure 407.22: Results for Newmark Method

407.4.3.2 Dynamics: Energy Dissipation, Numerical Damping: Hilber-Hughes-Taylor (α) Method

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement in the first loading stage. In the second loading

stage, the model starts free vibration.

Results This model employs HHT numerical damping. The displacement at the top in the second

loading stage is
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Figure 407.23: Problem Description
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Figure 407.24: Results for HHT Method

407.5 Dynamics: Elastic Solid Dynamic Examples

407.5.1 Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at the top from 0 to 1 second. Second, after the

time 1 second, the model starts free vibration.

407.5.2 Results

This model employs Caughey damping. The displacement at the top is
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Figure 407.25: Problem Description for Newmark Method
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Figure 407.26: Results for Newmark Method

407.6 Dynamics: Elastic Structural Dynamic Examples

407.6.1 Model Description

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement in the first loading stage. In the second loading

stage, the model starts free vibration.

407.6.2 Results

With NO damping, the displacement peak keeps the same. The displacement at the top is
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Figure 407.27: Problem Description for Newmark Method
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Figure 407.28: Results for Newmark Method
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407.7 Dynamics: Interface/Contact Elements

407.7.1 Dynamics: Hard Interface/Contact: One Bar Normal Interface/Contact Dynamics

407.7.1.1 Model Description

This is an example of a ball, bouncing on a solid flat surface. There is only normal contact/interface

between the ball and the floor. An upward force is first applied to the concentrated mass lifting it up by

0.1m and then the force is removed, resulting in free vibration of the ball. An illustrative diagram of the

problem is shown below.

Figure 407.29: Illustration of one bar normal contact/interface dynamics.

The same example can be modeled with different contact/interface and simulation parameters as

shown below. For all the different cases shown below, no numerical damping is applied. Only the contact

parameters are changed to expose their functionality. The response of node 2 is plotted for all the cases.
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407.7.1.2 Dynamics: No Viscous Damping

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results Here, no viscous damping between the contact/interface pair nodes is applied. The displace-

ment output of Node 2 is shown below.
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Figure 407.30: Displacement of Node 2

407.7.1.3 Dynamics: Normal Viscous Damping Between Interface/Contact Node Pairs

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results Viscous damping between the contact/interface pair nodes is applied in normal contact/inter-

face direction. The displacement output of Node 2 is shown below.
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Figure 407.31: Displacement of Node 2
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407.7.1.4 Dynamics: Explicit Simulation

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results With no viscous damping, the analysis is run explicitly without any convergence check. The

displacement output of Node 2 is shown below.
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Figure 407.32: Displacement of Node 2
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407.7.2 Dynamics: Hard Interface/Contact: Frictional Single Degree of Freedom Problem

Model Description This is an example of a block on a rough surface under gravity. It has been attached

to a spring at one end. At the other end a tangential load is applied greater than the coulomb friction

and is then removed. The block oscillates back and forth with continuously loosing energy because

of frictional force and then stops, with some permanent deformation. This kind of damping is called

frictional damping which is linear as compared to exponential in case of viscous damping. An illustrative

diagram of the problem is shown below.

Figure 407.33: Illustration of frictional single degree of freedom problem

The same example can be modeled with different contact/interface and simulation parameters as

shown below. For all the different cases shown below, no numerical damping is applied. Only the

contact/interface parameters are changed to expose their functionality. The response of node 2 is

plotted for all the cases.
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407.7.2.1 Dynamics: No Viscous Damping

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results In this examples, no viscous damping between the contact/interface pair nodes is applied. The

displacement output of Node 2 is shown below.
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Figure 407.34: Displacement of Node 2

407.7.2.2 Dynamics: Tangential Viscous Damping Between Interface/Contact Node Pairs

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results Viscous damping between the contact/interface pair nodes is applied in tangential contact/in-

terface direction. The displacement output of Node 2 is shown below.
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Figure 407.35: Displacement of Node 2
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407.7.2.3 Dynamics: Explicit Simulation

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results With no viscous damping, the analysis is run explicitly without any convergence check. The

displacement output of Node 2 is shown below.
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Figure 407.36: Displacement of Node 2
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407.7.3 Dynamics: Soft Interface/Contact: One Bar Normal Interface/Contact Dynamics

Model Description This is an example of a ball, bouncing on a solid flat surface. There is only normal

contact/interface between the ball and the floor. An upward force is first applied to the concentrated

mass lifting it up by 0.1m and then the force is removed, resulting in free vibration of the ball. An

illustrative diagram of the problem is shown below.

Figure 407.37: Illustration of one bar normal contact/interface dynamics

The same example can be modeled with different contact/interface and simulation parameters as

shown below. For all the different cases shown below, no numerical damping is applied. Only the

contact/interface parameters are changed to expose their functionality. The response of node 2 is

plotted for all the cases.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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407.7.3.1 Dynamics: No Viscous Damping

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results In this example, no viscous damping between the contact/interface pair nodes is applied. The

displacement output of Node 2 is shown below.
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Figure 407.38: Displacement of Node 2

407.7.3.2 Dynamics: With Normal Viscous Damping Between Interface/Contact Node Pairs

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results Viscous damping between the contact/interface pair nodes is applied in normal contact/inter-

face direction. The displacement output of Node 2 is shown below.
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Figure 407.39: Displacement of Node 2
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407.7.3.3 Dynamics: Explicit Simulation

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results With no viscous damping, the analysis is run explicitly without any convergence check. The

displacement output of Node 2 is shown below.
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Figure 407.40: Displacement of Node 2
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407.7.4 Dynamics: Soft Interface/Contact: Frictional Single Degree of Freedom Problem

Model Description This is an example of a block on a rough surface under gravity. It has been attached

to a spring at one end. At the other end a tangential load is applied greater than the coulomb friction

and is then removed. The block oscillates back and forth with continuously loosing energy because

of frictional force and then stops, with some permanent deformation. This kind of damping is called

frictional damping which is linear as compared to exponential in case of viscous damping. An illustrative

diagram of the problem is shown below.

Figure 407.41: Illustration of frictional single degree of freedom problem

The same example can be modeled with different contact/interface and simulation parameters as

shown below. For all the different cases shown below, no numerical damping is applied. Only the

contact/interface parameters are changed to expose their functionality. The response of node 2 is

plotted for all the cases.
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407.7.4.1 Dynamics: No Viscous Damping

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results In this example, no viscous damping between the contact/interface pair nodes is applied. The

displacement output of Node 2 is shown below.
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Figure 407.42: Displacement of Node 2

407.7.4.2 Dynamics: Tangential Viscous Damping Between Interface/Contact Node Pairs

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results Viscous damping between the contact/interface pair nodes is applied in tangential contact/in-

terface direction. The displacement output of Node 2 is shown below.
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Figure 407.43: Displacement of Node 2
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407.7.4.3 Dynamics: Explicit Simulation

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Results With no viscous damping, the analysis is run explicitly without any convergence check. The

displacement output of Node 2 is shown below.
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Figure 407.44: Displacement of Node 2
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407.7.5 Dynamics: Split Beam

407.7.5.1 Model Description

In this example, a normal beam is split into two halves along its depth. A uniform surface load of 50 Pa

is applied to the top half of the beam, pulling it away from its lower part. Then, the load is removed, to

allow free vibration between the split beams. An illustrative diagram of the problem is shown below.

Figure 407.45: Illustration of Split Beam Analysis

The same example was modelled with soft and hard contact/interface. Numerical as well as viscous

damping between contact/interface pair nodes was applied. The displacement response of the extreme

right mid node of top half beam is plotted.

407.7.5.2 Dynamics: Split Beam With Hard Interface/Contact

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.
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Figure 407.46: Displacement response of extreme mid node of top half beam
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407.7.5.3 Dynamics: Split Beam With Soft Interface/Contact

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s] 

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

D
is

p
la

ce
m

e
n
ts

 i
n
 y

-d
ir

e
ct

io
n
 [

m
] 

 

Figure 407.47: Displacement response of extreme mid node of top half beam
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407.7.6 Dynamics: Block on Soil ESSI

Model Description The Real-ESSI input files for this example are available HERE. The compressed

package of Real-ESSI input files and postprocessing results for this example is available HERE.

A solid block is placed in the soil. There is contact/interface between the interface of solid and the

soil. First, self-weight and then a uniform acceleration in x-direction is applied to the whole model. This

analysis would provide relative displacement, velocity and acceleration response for the given shaking.

An illustrative diagram of the problem is shown below.

Figure 407.48: Illustration of frictional single degree of freedom problem

Figure 407.49: Applied Motion

Results Displacement response of the top of the solid block is shown below. Numerical Damping,

Raleigh damming and viscous damping between contact/interface node pairs are applied.
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Figure 407.50: Displacement response at the top of the block

(a) Self Wight Stage (b) Uniform Acceleration Stage at 0.85 sec

Figure 407.51: Simulation results visualization
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407.8 Dynamics: Inelastic Solid Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Firstly, the model is given an initial displacement at the top from 0 to 1 second. Second, after the

time 1 second, the model starts free vibration.

Figure 407.52: Problem Description for Newmark Method

Results This model has material damping. The displacement at the top is
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Figure 407.53: Results for Newmark Method
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407.9 Dynamics: Inelastic Structural Examples

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

The column beam is represented by the fiber section. This example is under the dynamic load of

ground motion.

Figure 407.54: Ground motion on the Fiber Beam with Column Section

The fiber represents the rebar. The section of all fibers represents the cross section properties of the

inelastic beam.

Figure 407.55: Diagram of the Fiber Beam with Column Section
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407.10 Dynamics: Domain Reduction Method (DRM)

407.10.1 Dynamics: DRM One Dimensional (1D) Model

The Real-ESSI input files with 8NodeBrick for this example are available

HERE.

The same model for this example with 27NodeBrick is available

HERE.

A simple 1D DRM model is shown in Fig.(707.44). The ”DRM element”, ”Exterior node” and

”Boundary node” are required to be designated in the DRM HDF5 input. The format and script for the

HDF5 input is available in DSL/input manual.

Figure 407.56: 1D DRM model.

Numerical model

Long 1D DRM model 1000:1 The Real-ESSI input files for this example are available

HERE.

The results can also be seen from this

ANIMATION.

To show the wave propagation explicitly, a long 1D model (1000:1) similar to the 1D DRM model

above was made in this section.

The model description is same to Fig.(707.44) except this model use far more soil elements.

The general view is shown in Fig.(707.46) below.

There is still now outgoing waves at the exterior layers, which is shown in Fig(707.47).
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Figure 407.57: 1D DRM model.
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Figure 407.58: Long 1D DRM model
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Figure 407.59: Long 1D DRM model: exterior layer
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407.10.2 Dynamics: Three Dimensional (3D) DRM Model

The Real-ESSI input files with 8NodeBrick for this example are available

HERE.

The same model for this example with 27NodeBrick is available

HERE.

As shown in Fig.(707.48), the DRM layer is used to add the earthquake motion.

Figure 407.60: The diagram for 3D Domain Reduction Method example.

Numerical result
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Figure 407.61: Diagram for the 3D DRM model.
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407.10.3 Dynamics: DRM Model with Structure

Problem description The Real-ESSI input files for this example are available HERE.

The compressed package of Real-ESSI input files and postprocessing results for this example is

available HERE.

As shown in Fig.(407.62), the structure is placed in the middle. Five different materials are assigned

to structure, contact/interface zones, soil, DRM layer, and damping layers, respectively.

Figure 407.62: A Domain Reduction Method example with a Simple Structure.
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407.11 Dynamics: Eigen Analysis

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files and postprocessing results for this example is available HERE.

Model is a brick beam with distributed mass.

Figure 407.63: Problem Description for Newmark Method

Figure 407.64: Solid Brick Cantilever Eigen Mode 1, 3, 4(From left to Right)

Results
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407.12 Dynamics: Fully Coupled u-p-U and u-p Elements

The Real-ESSI input files for coupled example are available HERE.
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407.13 Dynamics: Partially Saturated / Unsaturated u-p-U Element (example in development)
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407.14 Dynamics: Coupled Interface/Contact Element (example in development)
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407.15 Dynamics: Buoyant Forces (example in development)
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407.16 Chapter Summary and Highlights

In this Chapter stochastic/probabilistic modeling and simulation is illustrated through a number of

examples. These examples can then be analyzed using Real-ESSI Simulator that is available for Linux,

Windows (through ESL) or MacOS, and on Amazon Web Services (AWS) computers. Please refer to the

Real-ESSI web site real-essi.us , for more information on how to install Real-ESSI on your computer

(Linux, Windows, MacOS...).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Chapter 408

Stochastic Examples

(2018-2019-2020-2021-)

(In collaboration with Dr. Hexiang Wang)

408.1 Probabilistic Constitutive Modeling

408.1.1 Probabilistic Constitutive Modeling: Linear Elastic

The model description:

The Real-ESSI input files for this example are available in a zip archive HERE.

A stochastic uniaxial elastic material with lognormal distributed random elastic modulus, mean 155

MPa and coefficient of variation 30%.

Results:

The probabilistic stress strain response of the stochastic uniaxial elastic material is shown in Fig-

ure 408.1.

408.1.2 Probabilistic Constitutive Modeling: Elasto-Plastic

The model description:

The Real-ESSI input files for this example are available in a zip archive HERE.

A stochastic uniaxial elastoplastic material with vanishing elastic region and nonlinear Armstrong-

Frederick kinematic hardening rule is modeled. The model parameters are: Armstrong-Frederick pa-
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Figure 408.1: Constitutive behavior of stochastic uniaxial elastic material.

rameter Ha follows lognormal distribution with marginal mean 12 MPa and coefficient of variation 20%.

Armstrong-Frederick parameter Cr follows lognormal distribution with marginal mean 200 and coefficient

of variation (CV) 20%.

Results:

The probabilistic stress strain response of the stochastic uniaxial elastic material is shown in Fig-

ure 408.2.
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Figure 408.2: Constitutive behavior of stochastic uniaxial elastoplastic material.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 408.2. PROBABILISTIC CHARACTERIZATION . . . page: 2095 of 3287

408.2 Probabilistic Characterization of Seismic Motions

The model description:

The Real-ESSI input files for this example are available in a zip archive HERE.

For stochastic analysis with uncertain seismic excitations, it is important to characterize input un-

certain motions as a non-stationary random process. The random process can be quantified through

marginal mean, marginal standard deviation and correlation structure, and can be represented as Her-

mite polynomial chaos (PC). This example presents such a random process of seismic motions with

marginal mean, marginal standard deviation and correlation structure defined through plain text files. It

is noted that this random process is used as input bedrock excitations in the subsequent stochastic wave

propagation analysis.

Results:

It is important to check that the statistics synthesized from PC representation matches well with

the input. Figures 408.3 and 408.2 compare the marginal statistics and correlation structure synthesized

from PC representation with the target input.
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Figure 408.3: Verification of marginal statistics of random process motions.
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Figure 408.4: Input correlation structure (Left) and PC-synthesized correlation structure (Right).

408.3 1D Stochastic Seismic Wave Propagation

408.3.1 1D Stochastic Seismic Wave Propagation: Linear Elastic

The model description:

The Real-ESSI input files for this example are available in a zip archive HERE.

Presented is 1D stochastic seismic wave propagation through uncertain linear elastic, layered ground.

The uncertain motions characterized in section 408.2 is adopted as bedrock input. The ground is 10m

thick with three layers and discretized with 10 stochastic shear beam elements as shown in Figure 408.5.

• Layer #1: Thickness 3m, uncertain elastic modulus follows lognormal distribution with marginal

mean 120 MPa and 20% coefficient of variation.

• Layer #2: Thickness 3m, uncertain elastic modulus follows lognormal distribution with marginal

mean 150 MPa and 25% coefficient of variation.

• Layer #3: Thickness 4m, uncertain elastic modulus follows lognormal distribution with marginal

mean 180 MPa and 25% coefficient of variation.

The correlation structure of the uncertain elastic modulus random field follows exponential correlation

with correlation length as 10m.

Results:

Time evolving marginal mean and marginal standard deviation of surface probabilistic displacement

and acceleration response are shown in Figure 408.6 and 408.7.
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Figure 408.5: 1D layered ground and stochastic shear beam FEM model.
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Figure 408.6: Probabilistic displacement response of ground surface.

408.3.2 1D Stochastic Seismic Wave Propagation: Elasto-Plastic

The model description:

The Real-ESSI input files for this example are available in a zip archive HERE.

The model geometry and input seismic excitations are identical to the example in section 408.3.1.

The only difference is the constitutive model of soil. In this example, probabilistic elastoplastic soil model

with vanishing elastic region and Armstrong-Frederick kinematic hardening is adopted.
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Figure 408.7: Probabilistic acceleration response of ground surface.

Results:

Time evolving marginal mean and marginal standard deviation of surface probabilistic displacement

and acceleration response are shown in Figure 408.8 and 408.9.
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Figure 408.8: Probabilistic displacement response of ground surface.
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Figure 408.9: Probabilistic acceleration response of ground surface.

408.4 1D Stochastic Seismic Wave Propagation: Sobol Sensitivity Analysis

The Real-ESSI input files for this example are available in a zip archive HERE.

Sobol sensitivity analysis is performed for the stochastic wave propagation example in section 408.3.1.

From the sensitivity analysis results for probabilistic response at ground surface, it is shown that for this

specific case most of the variance comes from the uncertain input motions.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Modeling_and_Simulation_Examples_Stochastic_Example/1D_Stochastic_Seismic_Wave_Propagation_Sobol_Sensitivity_Analysis


Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 409

Large Scale, Realistic Examples

(2016-2018-)

(In collaboration with Dr. Yuan Feng, Mr. Sumeet Kumar Sinha, Dr. Han Yang, and Dr. Hexiang Wang)

Full scale, realistic examples of statics and dynamics of bridges, dams, buildings and nuclear power

plants are presented in part 500 on page 2189 in Jeremić et al. (1989-2025).
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ić
et

al
.,
R
ea
l-
E
S
S
I

Chapter 410

Short Course Examples

(2017-2023-)

(In collaboration with Dr. Yuan Feng and Dr. Han Yang)
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410.1 Nonlinear Analysis Steps

410.1.1 Free Field 1C

Elastic Material. The Real-ESSI input files for elastic example are available HERE.

The modeling parameters are listed below:

• Elastic Material Properties

– Mass Density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

Elastoplastic Material, von Mises with Armstrong-Frederick Kinematic Hardening The Real-ESSI input

files for elastoplastic material example are available HERE.

The modeling parameters are listed below

• von-Mises nonlinear hardening material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– von Mises radius, k, 60 kPa

– Nonlinear kinematic hardening, Ha, 30 MPa

– Nonlinear kinematic hardening, Cr , 60

– Shear strength (≈
√

2/3 Ha/Cr), Su, 408 kPa

– Isotropic hardening rate, Kiso, 0 Pa

Results of the simulation are shown in Fig. 410.1.

The time series of simulation results is shown in Fig. 410.3.

The response spectrum of motion is shown in Fig. 410.4.
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Figure 410.1: Simulation model.

Figure 410.2: Simulation model.
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Figure 410.3: Simulation results: acceleration time series.
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Figure 410.4: Simulation results: response spectrum at soil top.
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410.1.2 Free Field 3C

Elastic Material. The compressed package of input files for this example is HERE.

The Modeling parameters are listed below:

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 5 minutes.

von-Mises Armstrong-Frederick Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises nonlinear hardening material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– von Mises radius, k, 60 kPa

– Nonlinear kinematic hardening, Ha, 30 MPa

– Nonlinear kinematic hardening, Cr , 60

– Shear strength (≈
√

2/3 Ha/Cr), Su, 408 kPa

– Isotropic hardening rate, Kiso, 0 Pa

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 17 minutes.

von-Mises G/Gmax Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises G/Gmax material model
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– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Total number of shear modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 565 minutes.

Drucker-Prager G/Gmax Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• Drucker-Prager G/Gmax material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Initial confining stress, p0, 100 kPa

– Reference pressure, prefer , 100 kPa

– Pressure exponential, n, 0.5

– Cohesion, n, 1 kPa

– Total number of Shear Modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 565 minutes.

Results are shown in Fig. 410.56.

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 871 minutes.

The time series of simulation results is shown in Fig. 410.7.

The response spectrum of motion is shown in Fig. 410.8.
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Figure 410.5: Simulation model.

Figure 410.6: Simulation model.
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Figure 410.7: Simulation results: acceleration time series.
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Figure 410.8: Simulation results: response spectrum at soil top.
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410.1.3 Soil-Foundation Interaction 3D

Elastic Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 13 minutes.

von-Mises Armstrong-Frederick Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises nonlinear hardening material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– von Mises radius, k, 60 kPa

– Nonlinear kinematic hardening, Ha, 30 MPa

– Nonlinear kinematic hardening, Cr , 60

– Shear strength (≈
√

2/3 Ha/Cr), Su, 408 kPa

– Isotropic hardening rate, Kiso, 0 Pa

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 36 minutes.

von-Mises G/Gmax Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises G/Gmax material model
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– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Total number of shear modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 726 minutes.

Drucker-Prager G/Gmax Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• Drucker-Prager G/Gmax material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Initial confining stress, p0, 100 kPa

– Reference pressure, prefer , 100 kPa

– Pressure exponential, n, 0.5

– Cohesion, n, 1 kPa

– Total number of Shear Modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 1252 minutes.
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Contact/Interface/Joint Elements. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 24 minutes.

Both Elastoplastic Material and Contact/Interface/Joint Elements. The compressed package of input

files is HERE.

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 41 minutes.

40m

5m

100m

Soil

DRM Layer

Damping Layers

Contact

100m
5m 10m

45m

5m
10m

30m

Figure 410.9: Simulation model.

Results of the simulation are shown in Fig. 410.12.
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Figure 410.10: Soil foundation interaction results.
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410.1.4 Soil-Structure Interaction 3D

Elastic Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 10 minutes.

von-Mises Armstrong-Frederick Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises nonlinear hardening material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– von Mises radius, k, 60 kPa

– Nonlinear kinematic hardening, Ha, 30 MPa

– Nonlinear kinematic hardening, Cr , 60

– Shear strength (≈
√

2/3 Ha/Cr), Su, 408 kPa

– Isotropic hardening rate, Kiso, 0 Pa

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 46 minutes.

von-Mises G/Gmax Material. The compressed package of input files is HERE.

The Modeling parameters are listed below:

• von-Mises G/Gmax material model
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– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Total number of shear modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 755 minutes.

Drucker-Prager G/Gmax Material. The compressed package of input files is HERE.

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 1178 minutes.

The Modeling parameters are listed below:

• Drucker-Prager G/Gmax material model

– Mass density, ρ, 2000 kg/m3

– Shear wave velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

– Initial confining stress, p0, 100 kPa

– Reference pressure, prefer , 100 kPa

– Pressure exponential, n, 0.5

– Cohesion, n, 1 kPa

– Total number of Shear Modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

SIMULATION TIME: With 8 cores, the running time for this example is

Contact/Interface/Joint Elements. The compressed package of input files is HERE.

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 15 minutes.
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Both Elastoplastic Material and Contact/Interface/Joint Elements. The compressed package of input

files is HERE.

The thickness of the shell structure is 2 meters.

30m

65
m

5m
3x

20
m

2x15m

100m

Soil

DRM Layer

Damping Layers

Contact

5m 10m

45m5m
10m

30m

Figure 410.11: Simulation Model.

Results of the simulation are shown in Fig. 410.12.

SIMULATION TIME: With 8 cores on AWS EC2 c4.2xlarge instance, the running time for this

example is 47 minutes.

Simulation with 1C motion. The time series of simulation results is shown in Fig. 410.13.

The response spectrum of motion is shown in Fig. 410.14.

Simulation with 3 × 1C motion. The time series of simulation results is shown in Fig. 410.15.
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Figure 410.12: Simulation Model.
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Figure 410.13: Simulation Results: Acceleration Time Series with 1C motion.

The response spectrum of motion is shown in Fig. 410.16.
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Figure 410.14: Simulation Results: Response Spectrum of Structure Top with 1C motion.
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Figure 410.15: Simulation Results: Acceleration Time Series with 3C motion.
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Figure 410.16: Simulation Results: Response Spectrum of Structure Top with 3C motion.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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410.1.5 Analysis of a Structure without Soil

410.1.5.1 Eigen Analysis

Eigen analysis of a fixed base structural model should provide a good check of the structural model,

natural (eigen) frequencies, and natural (eigen) modes.

The compressed package of input files is HERE.

30m
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Figure 410.17: Structure on a fixed based simulation model.

For this particular example, eigen modes and frequencies are given in Figures 410.18 and 410.19

Figure 410.18: Eigen frequencies: f1 = 3.47Hz f2 = 3.47Hz f3 = 6.88Hz (eigen mode 1 to 3 from left to

right).
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Figure 410.19: Eigen frequencies: f4 = 11.50Hz f5 = 11.50Hz f6 = 12.13Hz (eigen modes 4 to 6 from left

to right).

Input files for eigen analysis of the fixed base structure are available at this LINK, and can be

directly simulated using Real-ESSI Simulator, http://real-essi.us/, that is available on Amazon

Web Services, https://aws.amazon.com/.
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410.1.5.2 Imposed Motion

The Real-ESSI input files for this example are available HERE. The compressed package of input files is

HERE.

In addition to eigen analysis, fixed base structural model is used to test response of a fixed base

structure. This is important as it provides an opportunity to compare results between different finite

element programs, some of which can only model dynamics of fixed base structures.l

The simulation model is shown below.
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Figure 410.20: Simulation Model.

The simulation results:

Figure 410.21: Simulation Results.

The time series of simulation results is shown in Fig. 410.22.
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Figure 410.22: Simulation Results: Acceleration Time Series with 1C imposed motion.

The response spectrum of motion is shown in Fig. 410.23.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 410.1. NONLINEAR ANALYSIS STEPS page: 2125 of 3287

10-1 100 101 102

Frequency [Hz]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
se

u
d
o
-S

p
e
ct

ra
l 
A

cc
e
le

ra
ti

o
n
 S

a
 [

g
]

Pseudo-Spectral Acceleration

10-1 100 101 102

Frequency [Hz]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

S
p
e
ct

ra
l 
D

is
p
la

ce
m

e
n
t 

[m
]

Spectral Displacement

0 1 2 3 4 5
Period [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
se

u
d
o
-S

p
e
ct

ra
l 
A

cc
e
le

ra
ti

o
n
 S

a
 [

g
]

Pseudo-Spectral Acceleration

0 1 2 3 4 5
Period [s]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

S
p
e
ct

ra
l 
D

is
p
la

ce
m

e
n
t 

[m
]

Spectral Displacement

Figure 410.23: Simulation Results: Response Spectrum of Structure Top with 1C imposed motion.
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410.2 Day 1: Overview

410.2.1 Nuclear Power Plant with 3C motions from SW4

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.24: Simulation Model.

The Modeling parameters are listed below:

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25

– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure

– Unit weight, γ, 24 kPa
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– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21

The input motion at the bottom is a 3C wave from SW4.

SIMULATION TIME: With 32 cores on AWS EC2 c4.8xlarge instance, the running time for this

example is 17 hours.
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410.2.2 Nuclear Power Plant with 1C motions from Deconvolution

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.25: Simulation Model.

The input motion at the bottom is the deconvolution of the Northridge earthquake records.

Figure 410.26: Motion Deconvolution.

The Modeling parameters are listed below:

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25
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– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure

– Unit weight, γ, 24 kPa

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21
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410.2.3 Nuclear Power Plant with 3×1C motions from Deconvolution

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.27: Simulation Model.

The input motion at the bottom is the deconvolution of the Northridge earthquake records.

Figure 410.28: Acceleration Deconvolution, from left to right in x, y, z directions respectively. .

Figure 410.29: Displacement Deconvolution, from left to right in x, y, z directions respectively. .
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The Modeling parameters are listed below:

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25

– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure

– Unit weight, γ, 24 kPa

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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410.2.4 Single Element Models: Illustration of the Elastic-Plastic Behavior

The compressed package of Real-ESSI input files for this example with von-Mises material model are

available HERE.

The compressed package of Real-ESSI input files for this example with Drucker-Prager material

model are available HERE.

The Modeling parameters are listed below:

• von-Mises linear hardening material model

– Mass Density, ρ, 0.0 kg/m3

– Young’s modulus, E, 20 MPa

– Poisson’s ratio, ν, 0.0

– von Mises radius, k, 100 kPa

– kinematic hardening rate, Kkine, 2 MPa

– isotropic hardening rate, Kiso, 0 Pa

• Drucker-Prager nonlinear hardening material model

– Mass Density, ρ, 0.0 kg/m3

– Young’s modulus, E, 20 MPa

– Poisson’s ratio, ν, 0.0

– Drucker-Prager, k, 0.179527

– nonlinear kinematic hardening, Ha, 20 MPa

– nonlinear kinematic hardening, Cr , 100

– isotropic hardening rate, Kiso, 0 Pa

– initial confining stress, p0, 1 Pa

Inelastic/nonlinear material behavior is shown in Fig. 410.31.
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Figure 410.30: Simulation Model of Single Element.

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Strain [unitless]

100000

50000

0

50000

100000

S
tr

e
ss

 [
P
a
]

Material Behavior: Stress-Strain

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Strain [unitless]

200000

150000

100000

50000

0

50000

100000

150000

200000

S
tr

e
ss

 [
P
a
]

Material Behavior: Stress-Strain

Figure 410.31: Inelastic/Nonlinear material behavior.
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410.2.5 Pushover for Nonlinear Frame

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.
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Figure 410.32: Model for pushover simulation and the cross section of fiber beam (concrete and rein-

forcement).

Result are shown in Fig. 410.33.

Figure 410.33: Results for fiber beam pushover.

The Modeling parameters are listed below:

• Uniaxial concrete

– Compressive strength, 24 MPa

– Strain at compressive strength, 0.001752
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Figure 410.34: Boundary condition ux for fiber beam pushover.

– Crushing strength, 0.0 Pa

– Strain at compressive strength, 0.003168

– lambda, 0.5

– Tensile strength, 0 Pa

– Tension softening stiffness, 0 Pa

• Uniaxial steel

– Yield strength, 413.8 MPa

– Young’s modulus, 200 GPa

– Strain hardening ratio, 0.01

– R0, 18.0

– cR1, 0.925

– cR2, 0.15

– a1, 0.0

– a2, 55.0

– a3, 0.0

– a4, 55.0
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410.2.6 Pre-Processing examples with Gmsh

410.2.6.1 Cantilever Example

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.35: Simulation Model Cantilever.

Results are shown in Fig. 410.36.

Figure 410.36: Simulation model. cantilever, results.
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410.2.6.2 Brick-shell-beam Example

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.37: Simulation Model Brick-Shell-Beam.

Results are shown in Fig. 410.38.
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Figure 410.38: Brick-Shell-Beam, Results.
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410.2.6.3 DRM 2D Example

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.39: Simulation Model DRM 2D.

Results of free field DRM 2D Model under 1C motion are shown in Fig. 410.40.

Figure 410.40: Simulation Model DRM 2D.
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410.2.6.4 DRM 3D Example

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.41: Simulation Model DRM 3D.

Results of free field DRM 3D Model under 1C motion are shown in Fig. 410.42.

Figure 410.42: Simulation Model DRM 2D.
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410.2.7 Post-processing examples with ParaView

410.2.7.1 Slice Visualization

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.43: Slice Visualization with ParaView.
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410.2.7.2 Stress Visualization

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.44: Stress Visualization with ParaView.
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410.2.7.3 Pore Pressure Visualization with upU Element

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.45: Pore Pressure Visualization with Paraview.
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410.2.7.4 Eigen Visualization

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.46: Eigen Mode Visualization with Paraview.
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410.2.8 Check Model and Visualization of Boundary Conditions

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.47: Partition Information Visualization with Paraview.

Figure 410.48: Partition Information Visualization with Paraview.
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410.2.9 Restart Simulation

410.2.9.1 Restart in the next stage

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.49: Restart Simulation.

This group of examples illustrates the restart functionality between loading stages. There are three

test cases in this example. The two loading stages in the first test case is split into two test cases to

show the restart feature.

• The first test case run through two loading stages.

• The second test case only run the first loading stage and saves model state at the end.

• The third test case restart the simulation from the saved model state of the second test case.

Then, with the restart model state, the test case run the second loading stage only.

Results of the third test case are exactly the same to the first test case.
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410.2.9.2 Restart inside the stage

For the case of lack of convergence, restart with the previous loading stage.

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.50: Restart Simulation.

This group of examples illustrate the restart functionality inside one loading stage when the simulation

cannot converge in the nonlinear analysis. The nonlinear material model, von-Mises Armstrong-Frederick,

is used in all test cases.

There are three test cases in this example.

• The first test case run through the whole simulation with a relatively big tolerance of the unbalanced

force.

• The second test case failed in the middle of the simulation with a relatively small tolerance of the

unbalanced force. When the second test failed, the model reverted to the last commit model state

and saved model state.

• The third test case load the saved model state, increased the tolerance of the unbalanced force,

and added the remaining load to the model to continue the simulation.

Results of the third test case are exactly the same to the first test case.

Note that in the third test case only the remaining load should be added to the model. Whenever

the new loading stage is used, the previous loading are all finished, which means that the static loading

becomes constant and the dynamic loading vanishes.
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410.3 Day 2: Seismic Motions

410.3.1 Deconvolution and Propagation of 1C Motions, 1D Model

Various deconvolution and propagation 1D models for one component (1C) wave propagation are provided

through links below.

Note: Please make sure that the input acceleration record is baseline corrected and the displacement

record has no permanent deformation. Otherwise, the unrealistic high frequency components can be

brought into the simulation results.

• Deconvolution of Ormsby wavelet, input files are available HERE.

• Deconvolution of Northridge earthquake, input files are available HERE.

• Deconvolution of and DRM propagation of Ormsby wavelet, input files are available HERE.

• Deconvolution of and DRM propagation of Northridge earthquake, input files are available HERE.

410.3.2 Convolution and Propagation of 1C Motions, 1D Model

Various convolution and propagation 1D models for one component (1C) wave propagation are provided

through links below:

Note: Please make sure that the input acceleration record is baseline corrected and the displacement

record has no permanent deformation. Otherwise, the unrealistic high frequency components can be

brought into the simulation results.

• Convolution of Ormsby wavelet, input files are available HERE.

• Convolution of Northridge earthquake, input files are available HERE.

• Convolution of and DRM propagation of Ormsby wavelet, input files are available HERE.

• Convolution of and DRM propagation of Northridge earthquake, input files are available HERE.

410.3.3 Convolution, Deconvolution and Propagation of 1C Motions, 2D Model

Various convolution, deconvolution and propagation 2D models for one component (1C) wave propaga-

tion are provided through links below.

Note #1: Please make sure that the input acceleration record is baseline corrected and the displace-

ment record has no permanent deformation. Otherwise, the unrealistic high frequency components can

be brought into the simulation results.
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Note #2: Please make sure that you develop seismic motions by doing deconvolution and then

convolution before analyzing the actual model. File run.sh in examples directory has a proper sequence

of commands, that is one should first run Real-ESSI on Deconvolution_DRM_motion.fei and then,

when motions are developed, analyze model.

Examples are available through links below:

• Convolution/Deconvolution of and DRM propagation of Ormsby wavelet, input files are available

HERE.

• Convolution/Deconvolution of and DRM propagation of Kobe earthquake records, input files are

available HERE.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Short_Course_Examples/Day2/1C_motions_2D_model_deconvolution_and_convolution/Deconvolution_DRM_Propagation_Ormsby_2D_model/
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Short_Course_Examples/Day2/1C_motions_2D_model_deconvolution_and_convolution/Deconvolution_DRM_Propagation_Kobe_2D_model/


Je
re
m
ić
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410.3.3.1 ESSI 3D building model, deconvolution 1C model, shell model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Elastic Soil Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear Wave Velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

• Elastic Structure Material Properties

– Mass density, ρ, 2500 kg/m3

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.1

Figure 410.51: Simulation Model.

Results of DRM 3D shell Structure Model under 1C motion are shown in Fig. 410.52.
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Figure 410.52: Simulation Model.
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410.3.4 Deconvolution 3×1C Motions

410.3.4.1 Free field 1C model, deconvolution 3×1C motion, model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Elastic Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear Wave Velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

Figure 410.53: Simulation Model.

Results of the simulation are shown in Fig. 410.1.
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Figure 410.54: Simulation Model.
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410.3.4.2 Free field 3D model, deconvolution 3×1C motion, model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Elastic Soil Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear Wave Velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

Figure 410.55: Simulation Model.

Results of the simulation are shown in Fig. 410.56.

Figure 410.56: Simulation Model.
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410.3.4.3 ESSI 3D building model, deconvolution 3×1C motion, shell model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Elastic Soil Material Properties

– Mass density, ρ, 2000 kg/m3

– Shear Wave Velocity, Vs, 500 m/s

– Young’s modulus, E, 1.1 GPa

– Poisson’s ratio, ν, 0.1

• Elastic Structure Material Properties

– Mass density, ρ, 2500 kg/m3

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.1

Figure 410.57: Simulation Model.

Results of DRM 3D shell Structure Model under 1C motion are shown in Fig. 410.58.
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Figure 410.58: Simulation Model.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 410.3. DAY 2: SEISMIC MOTIONS page: 2157 of 3287

410.3.5 Mesh Dependence of Wave Propagation Frequencies

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Show the mesh dependence of high frequency wave with Ormsby wavelet.

Figure 410.59: Simulation Model.

Results of mesh dependence are shown in Fig. 410.60.
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Figure 410.60: Convolution Results and Mesh Dependence.
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410.3.6 Application of 3C Motions from SW4

410.3.6.1 3C Seismic Motion from SW4

A 3C seismic motion field has been developed by using SW4. The characteristic parameters of the

seismic motion are given below:

• Geological model: length 3km, width 3km, height 1.7km, grid size 50m, width of super grid damping

layer 30m.

• Material model: Elastic material, First 1km: Vp = 4630.76m/s, Vs = 2437.56m/s, ρ = 2600kg/m3.

1km ∼ 1.7km: Vp = 6000m/s, Vs = 3464m/s, ρ = 2700kg/m3

• Source type: point moment source, moment seismic moment Mxy = 5e15N ·m, moment magnitude

4.5.

• Time function: Gaussian function, with dominant frequency 2.5Hz and maximum frequency 6.5Hz.

The time series displacement and acceleration response at the center of the model is shown below

in figure 410.61. And figure 410.62 gives corresponding FFT response.
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Figure 410.61: Time series response of 3C motion.

During the simulation of SW4, the time series motions at many ESSI nodes (basically are some

pre-defined record stations) of an ESSI box (300m × 300m × 100m) are recorded and written into SAC
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Figure 410.62: FFT response of 3C motion.

files. Then an transition program SW42ESSI has been developed to interpolate these motions to DRM

nodes of localized ESSI model by specifying some geometric translational and rotational transformation,

as shown in figure ??.

To launch SW42ESSI, following parameters are needed:

• DRM input: specify the name of DRM input files. This DRM file just contains the geometric

information of DRM layer in ESSI model (e.g. DRM node IDs, nodal coordinates, etc).

• SW4 motion directory: specify the output directory of SW4, that contains SAC files.

• origin coordinates of ESSI box (x, y, z): the SW4 coordinates of the origin of ESSI box, i.e. the

coordinates of ESSI nodes, whose station ID is (0, 0, 0).

• dimensions of ESSI Box (length, width, height): specify the dimension (length, width and height)

of ESSI box.

• spacing of ESSI nodes: specify the grid spacing of ESSI nodes (i.e. motion recording stations)

• interval of time steps for sampling: specify the sampling frequency, if 1 is used here, ESSI simulation

time step is the same as the simulation time step of SW4.
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• reference point in ESSI model for translational transformation (x, y, z): specify the coordinate of

reference point for translational transformation in ESSI model.

• reference point in SW4 model for translational transformation (x, y, z): specify the coordinate of

reference point for translational transformation in SW4 model.

• conduct rotational transformation (yes/no): input yes and provide more rotational transformation

parameters to enable rotational transformation. If input no, no more parameters are required.

• reference point in SW4 model for rotational transformation (x, y, z): specify the coordinate of

reference point for rotational transformation in SW4 model.

• degrees of rotation along three axes (x, y, z): specify the degrees of rotation along three axes.

The sign of rotation degrees follows right hand rule.

ESSI nodes

 SW42ESSI

1 2 31 2 3 , ,( ), , ,u u u   

 72m×72m×56m
36m embedded

300m ×300m ×100m
Grid spacing ～ 5m

ESSI  Box 

30km × 14km ×5 km 

Figure 410.63: Illustration of transition from SW4 to Real-ESSI.

410.3.6.2 Free field 3D model, 3C motion, model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Results of free field DRM 3D Model under 3C motion are shown in figure 410.65.
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Figure 410.64: Simulation Model.

Figure 410.65: Simulation of 3D free field model under 3C seismic motion.
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410.3.6.3 ESSI 3D building model, 3C motion, shell model with DRM

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.66: Simulation Model.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 410.4. DAY 3: INELASTIC, NONLINEAR ANALYSIS page: 2164 of 3287

410.4 Day 3: Inelastic, Nonlinear Analysis

410.4.1 Single Element Models: Illustration of the Elastic-Plastic Behavior

410.4.1.1 von-Mises Perfectly Plastic Material Model.

The Real-ESSI input files for von-Mises perfectly plastic example are available HERE. The compressed

package of Real-ESSI input files for this example is available HERE.

410.4.1.2 von-Mises Armstrong-Frederick Material Model.

The Real-ESSI input files for von-Mises Armstrong-Frederick example are available HERE. The com-

pressed package of Real-ESSI input files for this example is available HERE.

The Modeling parameters are listed below:

• Left: von-Mises linear hardening material model

– Mass Density, ρ, 0.0 kg/m3

– Young’s modulus, E, 20 MPa

– Poisson’s ratio, ν, 0.0

– von Mises radius, k, 100 kPa

– kinematic hardening rate, Kkine, 2 MPa

– isotropic hardening rate, Kiso, 0 Pa

• Right: Drucker-Prager nonlinear hardening material model

– Mass Density, ρ, 0.0 kg/m3

– Young’s modulus, E, 20 MPa

– Poisson’s ratio, ν, 0.0

– Drucker-Prager, k, 0.179527

– nonlinear kinematic hardening, Ha, 20 MPa

– nonlinear kinematic hardening, Cr , 100

– isotropic hardening rate, Kiso, 0 Pa

– initial confining stress, p0, 1 Pa

Results are shown in Fig. 410.68.
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Figure 410.67: Simulation Model of Single Element.
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Figure 410.68: Simulation Results of Single Element.
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410.4.1.3 von-Mises G/Gmax Material Model

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• von-Mises G/Gmax material model

– Mass density, ρ, 2000 kg/m3

– Young’s modulus, E, 200 MPa

– Poisson’s ratio, ν, 0.1

– Total number of shear modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

Figure 410.69: Simulation Model of Single Element.
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410.4.1.4 Drucker-Prager Perfectly Plastic Material Model

The Real-ESSI input files for this Drucker-Prager perfectly plastic example are available HERE. The

compressed package of Real-ESSI input files for this example is available HERE.

410.4.1.5 Drucker-Prager Armstrong-Frederick Non-Associated Material Model

The Real-ESSI input files for this Drucker-Prager Armstrong-Frederick example are available HERE. The

compressed package of Real-ESSI input files for this example is available HERE.

Figure 410.70: Simulation model, single element.

Results are shown in Fig. 410.71.
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Figure 410.71: Simulation results for single element.
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410.4.1.6 Drucker-Prager G/Gmax Non-Associated Material Model

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Drucker-Prager G/Gmax material model

– Mass density, ρ, 2000 kg/m3

– Young’s modulus, E, 200 MPa

– Poisson’s ratio, ν, 0.1

– Initial confining stress, p0, 100 kPa

– Reference pressure, prefer , 100 kPa

– Pressure exponential, n, 0.5

– Cohesion, n, 1 kPa

– Total number of Shear Modulus 9

– G over Gmax, 1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063

– Shear strain gamma, 0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01

Figure 410.72: Simulation Model of Single Element.

Results are shown in Fig. 410.73.
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Figure 410.73: Simulation Results of Single Element.
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410.4.2 Wave Propagation Through Elasto-plastic Soil

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.74: Wave Propagation through elastoplastic Soils.

The displacement series at the surface are plotted in time and frequency domain.
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Figure 410.75: Simulation Results of Wave Propagation.
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410.4.3 Contact/Interface/Joint Examples

410.4.3.1 Axial Behavior: Stress-Based Hard Contact/Interface/Joint Example

The Real-ESSI input files for hard contact/interface example are available HERE. The compressed pack-

age of Real-ESSI input files for this example is available HERE.

410.4.3.2 Axial Behavior: Stress-Based Soft Contact/Interface/Joint Example

The Real-ESSI input files for soft contact/interface example are available HERE. The compressed package

of Real-ESSI input files for this example is available HERE.

The axial behavior of hard contact/interface and soft contact/interface is illustrated in Fig. 410.76.
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Figure 410.76: Simulation results for axial behavior of (left) soft contact/interface and (right) hard

contact.
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410.4.3.3 Shear behavior: Stress-Based Elastic Perfectly Plastic Contact/Interface/Joint

The Real-ESSI input files for the the elastic-perfectly plastic example are available HERE. The compressed

package of Real-ESSI input files for this example is available HERE.

410.4.3.4 Shear behavior: Stress-Based Elastic-Hardening Contact/Interface/Joint

The Real-ESSI input files for the elastic-hardening contact/interface example are available HERE. The

compressed package of Real-ESSI input files for this example is available HERE.

410.4.3.5 Shear behavior: Stress-Based Elastic-Hardening-Softening Contact/Interface/Joint

The Real-ESSI input files for the elastic-hardening-softening example are available HERE. The compressed

package of Real-ESSI input files for this example is available HERE.

The shear behavior of elastic-perfectly plastic, elastic-hardening plastic, elastic and hardening and

softening plastic is illustrated in Fig. 410.77.
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Figure 410.77: Simulation results for shear behavior for stress based contac.t elements: elastic-perfectly

plastic, elastic-hardening plastic, elastic, hardening and softening plastic.
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410.4.3.6 Force Based Contact/Interface/Joint Example: Base Isolator

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.78: Simulation Model.

Results are show in Fig.410.79.

Figure 410.79: Simulation Results for Contact/Interface/Joint Examples.
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410.4.4 Inelastic Frame Pushover

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Uniaxial concrete

– Compressive strength, 24 MPa

– Strain at compressive strength, 0.001752

– Crushing strength, 0.0 Pa

– Strain at compressive strength, 0.003168

– lambda, 0.5

– Tensile strength, 0 Pa

– Tension softening stiffness, 0 Pa

• Uniaxial steel

– Yield strength, 413.8 MPa

– Young’s modulus, 200 GPa

– Strain hardening ratio, 0.01

– R0, 18.0

– cR1, 0.925

– cR2, 0.15

– a1, 0.0

– a2, 55.0

– a3, 0.0

– a4, 55.0

Result is shown in Fig. 410.81.
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Figure 410.80: Model for pushover simulation and the cross section of fiber beam (concrete and rein-

forcement).

Figure 410.81: Results for fiber pushover.
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Figure 410.82: Boundary condition ux for a fiber beam pushover.
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410.4.5 Inelastic Wall Pushover

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Concrete Wall

– Young’s modulus, 36.9 GPa

– Poisson’s ratio, 0.2

– Tensile yield strength, 5 MPa

– Compressive yield strength, 56 MPa

– Plastic deformation rate, 0.4

– Damage parameter Ap, 0.1

– Damage parameter An, 1.5

– Damage parameter Bn, 0.75

• Uniaxial steel

– Yield strength, 457.5 MPa

– Young’s modulus, 200 GPa

– Strain hardening ratio, 0.011042

– a1, 0.0

– a2, 55.0

– a3, 0.0

– a4, 55.0
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Figure 410.83: Model for wall element pushover.
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410.4.6 Viscous Nonlinear behavior

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.84: Simulation Model.

Result are shown in Fig. 410.85 and Fig. 410.86.

0 2 4 6 8
Time [s]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Di
sp

la
ce

m
en

t [
m

]

Top Displacement
Bottom Displacemnt

0 2 4 6 8 10
Frequency [Hz]

0.000

0.002

0.004

0.006

0.008

0.010

Fo
ur

ie
r A

m
pl

itu
de

Top Displacement
Bottom Displacement

Figure 410.85: Results for low viscous damping.
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Figure 410.86: Results for high viscous.
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410.4.7 Numerical Damping Example

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

Figure 410.87: Simulation Model.

Result are shown in Fig. 410.85 and Fig. 410.89 .
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Figure 410.88: Results of low numerical damping.
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Figure 410.89: Results of high numerical damping.
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410.4.8 Nuclear Power Plant Example with Nonlinearities

The Real-ESSI input files for this example are available HERE. The compressed package of Real-ESSI

input files for this example is available HERE.

The Modeling parameters are listed below:

• Soil

– Unit weight, γ, 21.4 kPa

– Shear velocity, Vs, 500 m/s

– Young’s modulus, E, 1.3 GPa

– Poisson’s ratio, ν, 0.25

– Shear strength, Su, 650 kPa

– von Mises radius, k, 60 kPa

– kinematic hardening, Ha, 30 MPa

– kinematic hardening, Cr , 25

• Structure

– Unit weight, γ, 24 kPa

– Young’s modulus, E, 20 GPa

– Poisson’s ratio, ν, 0.21

• Contact/Interface/Joint

– Initial axial stiffness, kinit
n , 1e9 N/m

– Stiffening rate, Sr , 1000 /m

– Maximum axial stiffness, kmax
n , 1e12 N/m

– Shear stiffness, kt , 1e7 N/m

– Axial viscous damping, Cn, 100 N · s/m

– Shear viscous damping, Ct , 100 N · s/m

– Friction ratio, µ, 0.25

SIMULATION TIME: With 32 cores on AWS EC2 c4.8xlarge instance, the running time for this

example is 30 hours.
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Figure 410.90: Simulation Model.
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410.4.9 Buildings, ATC-144/FEMA-P-2091 Examples

The Real-ESSI building examples, models from FEMA-P-2091 report are available in Sections 509.2

(page 2676), 509.4 (page 2684), and 509.5 (page 2688), in Lecture Notes by Jeremić et al. (1989-2025)

(Lecture Notes URL).
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501.1 Chapter Summary and Highlights

501.2 Numerical Analysis of Pile Behavior under Lateral Loads in Layered Elastic–

Plastic Soils

Material presented here has been previously published in our paper Yang and Jeremić (2005).

501.2.1 Introduction

The p – y approach (Reese et al. Reese et al. (2000a)) has been widely used to design piles subjected

to lateral loading. Based on the Winkler foundation theory, the method models the lateral soil-structure

interaction with empirically derived nonlinear springs. The advancement of computer technology has

made it possible to study this problem using more rigorous Finite Element Method (FEM).

Mentioned are a few representative finite element applications. Maqtadir and Desai Muqtadir and

Desai (1986) studied the behavior of a pile-group using a three dimensional program with nonlinear

elastic soil model. An axisymmetric model with elastic-perfectly plastic soil was used by Pressley and

Poulos Pressley and Poulos (1986) to study group effects. Brown and Shie Brown and Shie (1990a)

Brown and Shie (1990b) Brown and Shie (1991) and Trochanis Trochanis et al. (1991) conducted a

series of 3D FEM studies on the behavior of single pile and pile group with elastic-plastic soil model. In

particular, interface element was used to account for pile-soil separation and slippage. Moreover, Brown

and Shie derived p – y curves from FEM data, which provide some comparison of the FEM results with

the empirical design procedures in use. A number of model tests of free- or fixed-headed pile groups

under lateral loading has been simulated by Kimura et al. Kimura et al. (1995) and Wakai et al. Wakai

et al. (1999) using 3D elasto-plastic FEM. A good correlation between the experiments and the analysis

has been observed in these studies. All these results demonstrated that FEM can capture the essential

aspects of the nonlinear problem. It is noted that there is not much literature reporting on FEM studies

of pile behavior under lateral loading in layered soil system. In addition to that, there is a very small

number of studies on the effects of layering system on the commonly used p – y curve approach.

This paper describes four 3D finite element models of a laterally loaded pile embedded in uniform

and layered soil profiles with the dimensions and soil parameters similar to those used in the centrifuge

study by McVay et al. McVay et al. (1998) and Zhang et al. Zhang et al. (1999). The bending

moments derived by integrating vertical stresses from FEM are numerically differentiated once and twice

to compute the shear force and pressure diagrams, respectively. Particularly, p – y curves are generated

and cross compared to illustrate the effects of soft clay (sand) layer on the p–y curves of the overlaid sand

(soft clay) layer. The results from FEM are also compared with those from centrifuge test and LPILE.
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In addition, a limited parametric study of pressure redistribution is conducted by changing the undrained

shear strength of the soft clay layer and the friction angle of the sand layer to further investigate the

layering effects. An early version of OpenSees OpenSees Development Team (Open Source Project)

(2000-2006) finite element program was used in presented computations. Developed models are now

available within our new framework FEI. Soil modeling was performed using Template Elastic–Plastic

approach (Jeremić and Yang Jeremić and Yang (2002)).

501.2.2 Constitutive Models

Two simple models were used in this numerical study. Specifically, clay was modeled by a simple

von Mises material model which is completely defined with the undrained shear strength. Sand was

simulated by a Drucker–Prager material model with non-associated flow rule. The reason for using such

simple models is that the experimental results used to compare our simulations against did specify only

those two material properties for sands and clays. Figure 501.1 presents yield surfaces for both models.

In both material models, the Young’s moduli vary with confining pressure, as shown in Eqn. (501.1).

E = Eo

(
p
pa

)a
(501.1)

where Eo is Young’s Modulus at atmospheric pressure, p is the effective mean normal stresses, pa is the

atmospheric pressure, and a is constant for a given void ratio. In this work, 0.5 was used.

(a)

p

q

e 
pl

Yield Surface

1

1
a2

a1

Plastic Potential 
Surface

(b)

p

q

Yield Surface

Const

Figure 501.1: Elastic plastic models used in this study: (a) Drucker–Prager model specified with friction

angle and dilation angle, and (b) von Mises model specified with undrained shear strength Cu.

The following parameters were used for medium dense sand: friction angle ϕ of 37.1o, Shear modulus

at a depth of 13.7 m of 8960 kPa (Eo = 17400 kPa), Poisson’s ratio of 0.35 and unit weight of 14.50

kN/m3. These parameters were given by Zhang et al. Zhang et al. (1999). A dilation angle of 0o is

used in this work (Brown and Shie Brown and Shie (1990a)). The undrained shear strength, Young’s

modulus, Poisson’s ratio and unit weight of clay were chosen to be 21.7 kPa, 11000 kPa, 0.45, 13.7
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kN /m3, respectively. It should be noted that the above material models are available within the Template

Elastic–Plastic Material Modeling paradigm (Jeremić and Yang Jeremić and Yang (2002)). It should also

be noted that the use of simple Drucker–Prager model can over-predicted the friction angle to triaxial

extension stress path. However this influence is limited to the zone behind the pile, within the interface

zone and thus this drawback of the Drucker–Prager model was neglected.

501.2.3 Simulation Results

Presented in this subsection are representative results related to the behavior of piles in uniform and

layered soil systems. Presented results are compared with those from the centrifuge study (McVay et

al. McVay et al. (1998)), and with results obtained using LPILE program (Reese et al. Reese et al.

(2000a,b).

501.2.3.1 Pile Models

A number of static pushover tests for single pile models were simulated using uniform soil and layered

soil setups. Figure 501.2 shows the model setups. There are four main setups. Two of these are dealing
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Figure 501.2: (a) Single pile models, dimensions and layers of case #1 and #2. (b) Single pile models,

dimensions and layers of case #3 and #4.

with uniform sand and clay soils, while two others are featuring layered soils. In particular, the case # 1
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is a uniform soft clay soil, case # 2 includes top and bottom layers of soft clay with an in–between layer

of medium dense sand. On the other hand, case # 3 features uniform medium dense sand soil, while

case # 4 features top and bottom layers of medium dense sand with an in–between layer of soft clay.

Detailed layering setup is given in Figure 501.2.

Figure 501.3 shows the finite element mesh for all four cases. Based on symmetry, only half of the

model is meshed. Twenty node brick elements are used for both soil, pile and interface. It should be

noted that these quadratic elements exhibit high accuracy even for high aspect ratios and can model

accurately bending of solid piles with two layers of elements. During mesh design stage, a study was

performed to decide on appropriate (balanced) mesh size. That study showed that a much larger mesh,

with many more elements (with lower aspect ratios) would account for a fairly small change in results,

so it was decided that the current mesh is sufficient for our analysis.

The square pile, with a width of 0.429 m, consist of four elements (per cross subsection) with

the elastic property of aluminum. The fine mesh in the upper part of the model is to provide data

points for the computation of shear forces and p – y curves of sufficient reliability as well as for the

investigation of layering effects. The sides and bottom of the model are fixed with the exception of the

symmetric boundary, which is only supported in Y direction. The interface layer between aluminum pile

and surrounding soil is represented by one thin layer of elements. The purpose of this layer is to mimic

the installation effects on piles (drilled or driven). It also serves a purpose of a simplified interface which

allows for tension cut-off (gaping) and controlled, coupled horizontal and vertical stiffness. All interface

elements were simulated by Drucker–Prager model with a friction angle of 25o, and a dilation angle of

0o.

501.2.3.2 Plastic Zones

The static pushover test were conducted using load control at pile head. The final plastic zones are

depicted in Figures 501.4, 501.5. Plastic zones are actually presented by plastified Gauss points. In

particular, Figure 501.4(a) shows developed plastic zones for the uniform clay soil (case # 1). It is

interesting to note that the plastic zone propagates fairly deep while it does not extend far from the pile

in clay. Moreover, compression side (right side) features much larger plastic zone while the plastic zone

for the extension side (left side) is confined to the interface layer and a few Gauss points outside the

interface layer. The case with clay and sand layer in–between is shown in Figure 501.4(b). The main

difference is that the plastic zone is even smaller than for uniform clay layer. It is worth mentioning that

this case, which includes sand layer, is stiffer than the uniform clay case, thus displacements are smaller

in clay and the plastic zone does not propagate as much as in uniform clay soil.

Figure 501.5(a)(b) shows plastic zones at the end of loading process for sand and sand and clay soils.
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Figure 501.3: Mesh of single pile model, side view, top eight layers of finite elements are either clay or

sand (depending on the cases), middle eight layers of finite elements are sand or clay (again depending

on the cases) and the bottom is all uniform clay or sand, interface zone around the aluminum pile is also

present.

In particular, Figure 501.5(a) shows the plastic zone for uniform sand. It is interesting to note that the

plastic zone propagates toward the surface with the collapse mechanics similar to the active and passive

failure. In this case of course the system is 3D and so the failure propagation angles do not match the

active and passive failure angles, however the difference between active and passive zones propagation

angles is almost exactly π/2. Figure 501.5(b) shows plastic zone for the case # 4 which includes a layer

of clay between –1.72m and –3.44m (Z coordinate, origin is in the pile center at the ground surface) .

It is noted that the plastic zone is deeper, but not as nicely defined as in the previous case.

501.2.3.3 p – y Curves

Results from static pushover tests on piles were used to generate p – y curves. The bending moments

derived by integrating vertical stresses are numerically differentiated once and twice to compute the

shear force and pressure diagrams, respectively. Direct integration of shear stresses was also performed to

check results and it was found that shear forces were within 5% accuracy. The combination of calculated
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a) b)

Figure 501.4: The plastic zones for (a) case # 1, and (b) case # 2 at lateral loading of 400kN.

a) b)

Figure 501.5: The plastic zones of case 3 and 4 at lateral loading of 400kN.
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pressures (p) and displacements obtained from the finite element solution, allowed for generation of p– y

curves at various depths along the pile.

In what follows, presented are generated p – y curves for both uniform soils (sand and clay) as well

as for layered systems. It is noted that the graphical presentation of results for bending moments, shear

forces and lateral pressures (load) on a pile beam are shown with 10 lines, each one representing results

for one increment (1/10) of the total load.

Uniform Clay Soil. Figure 501.6 shows bending moments, shear forces and pressures along the depth

of a pile in clay soil. It should be noted that the maximum bending moment, as well as the switching of

sign for shear force, moves quite a bit from the depth of approximately –1.7m all the way to the depth

of –3.4m. Pressure distribution shows that the top layers are already at the ultimate values of pressures

and thus the pressure diagram propagates downward. There is a slight fluctuation of pressures at the

depths of 4– 5m, which is attributed to the small numerical problems while doing double differentiations.
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Figure 501.6: Bending moment, shear force and pressure distributions for the uniform clay profile.

Figure 501.7 shows generated p – y curves for uniform clay layer. It is obvious that most of the clay

(at least until the depth of –2.6m) has reached its peak resistance.
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Figure 501.7: Calculated p – y curves for the uniform clay profile.

Uniform Sand Soil. Figure 501.8 shows bending moments, shear forces and pressures for a pile in a

uniform sand soil. In this case it is interesting to note that the maximum bending moment, as well as

the change of sign for the shear force is moving only between the depths –1.8m and –2.0m. Moreover,

the pressure diagram shows steady increase (with top layers reaching ultimate pressures) until the depth

of –1.7m and then steadily decreases, and changes sign at greater depths (below –4.0m).

Figure 501.9 shows generated p–y curves for the uniform sand case. It is interesting to note that only

the top layer at the depth of about –0.3m will reach the ultimate pressure. All the other sand material

is far away from corresponding ultimate pressures. It is also worth noting that the displacements in the

case of uniform sand are much smaller (almost twice as small) than what has been observed in uniform

clay case.

Clay Soil with a Layer of Sand. Figure 501.10 shows bending moments, shear forces and pressures for

a layered soil case. In this case a layer of sand extends from –1.72m to –3.44m. The rest of soil is soft

clay. It is interesting to note a large jump in pressures for the sand layer (as expected) and that the

pressures in the top clay layer (from the surface to –1.7m) reaches ultimate values. Small non–uniform

distribution of the pressures at the interface of sand and clay at –3.44m is attributed to the coarseness

of the finite element mesh. In comparing Figure 501.10 with the results for uniform clay case (Figure

501.6) it is obvious that the sand layer arrests the propagation of deformation and forces in depth and
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Figure 501.8: Bending moment, shear force and pressure distributions for the uniform sand profile.
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Figure 501.9: Calculated p – y curves for the uniform sand profile.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.2. NUMERICAL ANALYSIS OF PILE BEHAV . . . page: 2199 of 3287

−1000 0 1000 2000
−10

−8

−6

−4

−2

0

2

SOFT CLAY

Cu = 21.7 kPa

−1.718

SAND

φ = 37.1o

−3.436

SOFT CLAY

Cu = 21.7 kPa

Bending Moment (kN.m)

D
ep

th
 (

m
)

−400 −200 0 200 400 600
−10

−8

−6

−4

−2

0

2

Shear Force (kN)
0 200 400

−10

−8

−6

−4

−2

0

2

Pressure (kN/m)

Figure 501.10: Bending moment, shear force and pressure distributions for the clay soil with a sand

layer.

fixes the maximum moment to approx. –2.1m.

Figure 501.11 shows generated p – y curves for the layered case (single layer of sand in clay). The

p– y curves were generated only for the top layer of clay and middle layer of sand, to the depth of –2.7m.

It is interesting to note that the p – y curve for clay at the depth of –1.61m (close to the sand layer)

exhibits strong hardening, unlike similar curve for the uniform clay soil, in Figure 501.7. The increase

in pressure (transversal loading on the pile) between uniform clay (Fig. 501.7) and clay underlain by a

medium dense sand layer (Fig. 501.11) at the displacement of 0.06m is more than two times.

Sand Soil with a Layer of Clay. Figure 501.12 shows bending moments, shear forces and transversal

pressures for a case where a layer of soft clay is present within sand soil. Unlike the case of uniform

sand soil (Figure 501.8) the presence of soft clay layer will change the depth of maximum moment by

almost 1m (from –2.0m to –3.0m). In addition to that, the distribution of pressures on a pile is changed

significantly, as seen in the right plot of Figure 501.12. The reduction of pressures will extend into the

sand layer and present significant influence of soft clay on pressures in sand.

Figure 501.13 shows generated p – y curves for the case of sand with a soft clay layer. It is noted

that the p – y curves for sand that is some distance away from the interface with clay are much the same

as for the uniform sand case (refer to Fig. 501.9 and Fig. 501.19(a)). However, the p – y curves in sand
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Figure 501.11: Calculated p – y curves for the clay soil underlain by a medium dense sand layer.
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Figure 501.12: Bending moment, shear force and pressure distributions for the sand soil with a soft

clay layer.
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close to the interface are changed in some cases significantly. For example, the p – y curve at depth

of –1.61m is showing pressure of approx. p = 265kN /m at the displacement of 0.042m for the uniform

sand case, while the same p – y curve, still in sand, has a drop in pressure at the same displacement to

p = 140kN /m. Similar trend is observed for other p – y curves close to the interface of sand with clay.
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Figure 501.13: Calculated p – y curves for the sand soil underlain by a soft clay layer.

501.2.3.4 Comparisons of Pile Behavior in Uniform and Layered Soils

Comparison of pile behavior in uniform and layered soils can also be performed by looking at the dis-

placement and bending moment distributions. For example, Figure 501.14 compares the distributions

of displacements for the uniform sand case with the sand and clay layer case. First observation is that

the uniform sand layer allows smaller displacements of the pile head (0.12m) while the inclusion of clay

layer raises those displacements to 0.22m. Second observation is that the point of rotation for the pile

(point which does not move as the loading is applied) is pushed deeper, from 5m to approximately 6m.

Moreover, the propagation of displacements along the depth of a pile is much greater for a layered case,

the surface displacement is extended from 0.09m to almost 0.13m.

Figure 501.15 shows similar results for uniform clay and clay with a layer of sand case. In this case,

the inclusion of a sand layer will increase the stiffness of the pile (as expected) and will also reduce

propagation of displacements with depth.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 501.14: Pile displacement distributions along the depth in a uniform sand profile (left) and sand

with clay layer profile (right).
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Figure 501.15: Pile displacement distributions along the depth in a uniform clay profile (left) and clay

with sand layer profile (right).
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Figure 501.16 shows comparison of pile head displacements for all four cases. It is noted that the

two layered cases exhibit similar behavior in terms of displacements, both at the pile head and in terms

of displacement profiles (compare right plot in Fig. 501.14 and left plot in Fig. 501.15).
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Figure 501.16: Pile head displacement comparison for all the four cases.

Figure 501.17 shows comparison of the maximum bending moment calculated for the pile for all four

cases. It is interesting to note that the difference between the two uniform soil cases (uniform sand and

uniform clay) is not that pronounced. Of course one has to remember that the material for pile was

assumed to be linear elastic, no yielding was allowed for the aluminum pile.

The p– y curves for uniform clay and clay with a layer of sand were plotted together in Figure 501.18

(a) for comparison. It can be seen that all the p – y curves in clay except the one right next to the layer

interface are almost identical. In order to measure the magnitude of the effects of sand layer on the

pressure of soft clay layer, the ratio of pressures in clay layer for clay soils with a sand layer and uniform

clay soils lateral displacement of 12%D, i.e. 5.15 cm, were computed and plotted against the distance

in terms of times of pile width D in Figure 501.18. It is noted that the disturbance to the pressure

field is much more confined to the immediate vicinity (within 0.75D) of the layer interface. In addition,

the results from two more analysis of the same model with different sands (friction angles ϕ
′

= 25o, 30o

respectively, other parameters remain the same.) were included in Figure 501.18. It is shown that the

lateral pressure ratio is affected considerably when sand friction angle increases from 25o to 37o (from

1.5 times to 2.2 times more pressure).

The p – y curves for uniform sand and sand with a layer of soft clay were also plotted together for
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Figure 501.17: Maximum bending moment comparison for all the four cases.

comparison purposes. It was found that the effect of soft clay on the pressures in sand propagates far

away from the layer interface. Therefore, three cases of an additional model with a thicker sand layer

(2.4m in thickness) underlain by a soft clay layer were analyzed by varying the undrained shear strength

(Cu = 13.0 kPa, 21.7 kPa, 30.3 kPa) of the soft clay layer. Similarly, the pressure ratios at 6.5% D, i.e.

2.8 cm, were plotted in Figure 501.19. It is noted that the effects extends to as far as 4.75D from the

layer interface and the reduction of pressures adjacent to the interface is about 0.6 in all three cases.
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Figure 501.18: (a) Comparison of p–y curves for uniform clay versus clay with a layer of sand (ϕ
′

= 37o).

(b) Pressure ratio distributions in clay layer for sands with different friction angle (ϕ
′

= 25o, 30o, 37o).
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Figure 501.19: (a) Comparison of p – y curves for uniform sand versus sand with a layer of soft clay

(Cu = 21.7 kPa). (b) Pressure ratio distributions in sand layer for clays with different undrained shear

strength (Cu = 13.0 kPa, 21.7 kPa, 30.3 kPa).
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501.2.3.5 Comparison to Centrifuge Tests and LPile Results

The pile head displacements for uniform sand profile from 3D FEM, LPILE (Reese et al. Reese et al.

(2000a,b)), and centrifuge test (McVay et al. McVay et al. (1998)) were plotted against pile head load

in Figure 501.20. It can be seen that they agree with each other fairly well. It should be noted that

the material properties for our 3D finite element simulations were not in any particular way calibrated to

improve the results. They were simply used as presented in the centrifuge study by McVay et al. McVay

et al. (1998) and numerical simulation by Zhang et al. Zhang et al. (1999). Whereas, the results from

LPILE were back-fitted since the coefficient of subgrade reaction ηh was back-calculated as 2714 kN /m3

(Zhang et al. Zhang et al. (1999)).
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Figure 501.20: Simulated versus experimental pile head displacements.

The bending moments, shear forces and lateral pressures of uniform sand and clay profiles from 3D

FEM and LPILE were plotted against pile depth at several pile head loads in Figure 501.21 and 501.22.

In general, there is a good agreement between the results from FEM and LPILE in uniform sand profile.

In uniform soft clay profile, it is noted that the pressures at shallow depth from LPILE are smaller than

those computed by FEM, which agrees with one of the findings by the work of Steven and Audibert

Stevens and Audibert (1979). For example, the pressures at lateral load of 120kN and 200kN from

LPILE are only about half of those from FEM. Because the pressures at shallow depths are so small in

LPILE that the pile head has to deform much more than in FEM and the passive pressure zone in LPILE
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extends to fairly large depth.

Since LPILE currently uses the equivalent depth method developed by Geogiadis Georgiadis (1983)

for layered soil profiles, the LPILE output pressure distribution along pile depth, especially across the

layer interface does not take into account of the layering effect, thus it is not that meaningful to compare

pressure distributions of layered profiles from LPILE versus FEM.
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Figure 501.21: Comparison of bending moment, shear force and pressure computed by FEM and LPILE

in uniform sand profile(case #3).

It is also interesting to compare the p– y curves derived from FEM with those used in LPILE. Figures

501.24 and 501.23 show FEM derived and LPILE used p – y curves for uniform clay and sand profiles,

respectively. It should be noted that the coefficient of subgrade reaction ηh was again back-calculated

as 8969 kN /m3 in order to get a reasonable p – y curves. From Figures 501.24 (a) and (b), it is clear

that p – y curves in sand profile from LPILE have lower resistance at depth close to ground surface. The

p – y curves for clay profile shown in Figures 501.24 (a) and (b) are seen to have much lower resistance

at shallow depths.

501.2.4 Summary

This paper presents results from a finite element study on the behavior of a single pile in elastic–plastic

soils. The analysis included single pile behavior in sand, clay and layered soils. Based on the results
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Figure 501.22: Comparison of bending moment, shear force and pressure computed by FEM and LPILE

in uniform soft clay profile(case #1).

presented, it is concluded that three dimensional finite element analysis using very simple elastic-plastic

soil models can predict the pile head deflection with very good accuracy.

The main findings of this numerical study can be summarized as follows:

• When a sand layer is present within a clay deposit, the increase in lateral pressure in clay near the

interface is confined to a narrow zone, up to two times of pile width, therefore the layering effect

in this case is not prominent.

• When a clay layer is present within a sand deposit, the reduction in pressures spread well into the

sand layer (up to four times of pile width). The layering effects are of more importance in this case

since the disturbance zone is large and the pressure reduction is significant. Reduction factors are

given in terms of charts of pressure reduction versus the distance from the interface.

In addition, comparison with centrifuge data shows generally a good agreement between the bending

moments, shear forces and lateral resistance. Moreover, a comparison with results from program LPILE,

used in extensively in practice, show some discrepancies ultimate pressures in shallow soil layers.
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Figure 501.23: p– y curves from FEM (a) and LPILE (b) in uniform sand profile (ηh = 8969 kN /m3, ϕ =

37.1o).
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Figure 501.24: p – y curves from FEM (a) and LPILE (b) in uniform clay profile (ϵ50 = 0.02, Cu =

21.6 kPa).
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501.3 Study of soil layering effects on lateral loading behavior of piles

Material presented here has been previously published in our paper Yang and Jeremić (2005).

501.3.1 Introduction

The theory of beams on a Winkler-type subgrade (Hartog (1952) ), also known as the p–y approach,

has been widely used to design piles subjected to lateral loading. Based on that theory, the method

models the lateral soil–foundation interaction with empirically derived nonlinear springs (p–y curves). The

advancement of computer technology has made it possible to study this problem using more rigorous

elastic–plastic Finite Element Method (FEM).

Here mentioned are a few representative examples of finite element studies of pile foundations.

Muqtadir and Desai (1986) studied the behavior of a pile–group using a three dimensional (3D) program

with nonlinear elastic soil model. An axisymmetric model with elastic-perfectly plastic soil was used by

Pressley and Poulos (1986) to study group effects. Brown and Shie (1990a), Brown and Shie (1990b),

Brown and Shie (1991), and Trochanis et al. (1991) conducted a series of 3D FEM studies on the

behavior of a single pile and a pile group with elastic-plastic soil model. These researchers used interface

elements to account for pile–soil separation and slippage. Moreover, Brown and Shie derived p–y curves

from FEM data, which provide some comparison of the FEM results with the empirical design procedures

in use. Kimura et al. (1995) conducted 3D FEM analysis of the ultimate behavior of laterally loaded

pile groups in layered soil profiles with the soil modeled by Drucker–Prager model and pile modeled by

nonlinear beam elements. A number of model tests of free– or fixed–headed pile groups under lateral

loading in homogeneous soil profiles have been simulated by Wakai et al. (1999) using 3D elasto-plastic

FEM. Pan et al. (2002) studied the performance of single piles embedded in soft clay under lateral soil

movements. A good correlation between the experiments and the analysis has been observed in these

studies. All these results demonstrated that FEM can capture the essential aspects of the nonlinear

problem.

Information about the lateral behavior of piles in layered soil profiles is very limited. Some analytical

studies have been conducted by Davisson and Gill (1963) and Lee and Karunaratne (1987) to define the

influence of pile length, the thickness of upper layer and the ratio of stiffness ratio of adjacent layers on

the pile response based on the assumption that the soil is elastic. Reese et al. (1981) conducted small

scale laboratory tests on a 25 mm diameter pile and a field test with 152 mm diameter pile in layered

soils and found that there was a relatively good agreement between deflections measured in the tests

and deflections computed using homogeneous p–y curves at small loads. Georgiadis (1983) proposed an

approach which is currently used in the LPILE program (Reese et al. (2000a,b)). This method assumes
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the p–y curves of the first layer are the same as those for homogeneous soils. The effects of upper layers

on the p–y curves of the lower layers are accounted for by the equivalent depth of the overlying layers

based on strength parameters.

To the Authors’ knowledge, there is no literature reporting on FEM study of layering effects on the

behavior of laterally loaded piles in layered profiles. However, it is of great interest to investigate the

layering effects since in practice, most of soil deposits are layered systems. In a predominantly clay site

with a minor sand layer, the sand layer will still be counted on to provide most of the soil resistance. In

this case, the layering effects (probably reduction of resistance in the sand layer) must be considered.

Current practice is to “make an educated guess to reduce the sand p–y curves to account for the soil

layering effects” (Lam and Law (1996)). Obviously, an educated guess might not result in optimal

design. It is very important to find out how these layers in the layered system affect each other in order

to carry out a more accurate analysis of pile foundation and therefore provide a more effective way for

the design of pile foundations in layered soil systems.

This paper describes four 3D finite element models of a laterally loaded pile embedded in uniform

and layered soil profiles, with the dimensions and soil parameters similar to those used in the centrifuge

studies by McVay et al. (1998) and Zhang et al. (1999). Visualization tool Joey3D (Yang (2002))

was used to compute the bending moment, shear force and lateral resistance diagrams along the pile.

Model calibration, comparison of finite-element analysis results with those from centrifuge tests and the

LPILE program, and comparison of finite-element generated p–y curves with traditional p–y curves are

summarized in a separate paper (Yang and Jeremić (2003). In this paper, p–y curves from each model

were cross compared to illustrate both the effects of an intermediate soft clay (or sand) layer on the p–y

curves of the sand (or soft clay) layers and the effects of sand (or soft clay) layers on the intermediate

soft clay (or sand) layer. In addition, a limited parametric study was conducted to further investigate

the layering effects in terms of lateral resistance ratios. The OpenSees OpenSees Development Team

(Open Source Project) (2000-2006) finite element framework was employed for all the computations.

Soil modeling was performed using the Template Elasto–Plastic Framework (Jeremić and Yang (2002))

and solid elements while the piles were modeled using linear elastic solid elements, all developed by the

Authors.

501.3.2 Finite Element Pile Models

Single pile finite element models with the dimensions similar to the prototype model described in the

above centrifuge tests were developed and a number of static pushover tests were simulated with 3D

FEM using uniform soil and layered soil cases. The models for all cases were illustrated in Figure 501.25

(a). There are four main analysis models. Two of them are dealing with uniform sand and clay deposits,
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Figure 501.25: (a) Single pile models, dimensions and layers for models #1, #2, #3 and #4, including

pile-soil interfaces and (b) 3D mesh of the single pile model.

while the other two are featuring layered soil deposits. In particular, model # 1 has a uniform soft clay

deposit, model # 2 includes top and bottom layers of soft clay with an interlayer of medium dense sand.

Model # 3 features uniform medium dense sand deposit, while model # 4 features top and bottom

layers of medium dense sand with an interlayer of soft clay.

Figure 501.25 (b) shows the finite element mesh for all four models. Based on symmetry, only

half of the model is meshed. Twenty–node brick elements are used to mesh the soil, pile and pile–soil

interface. The square pile, with a width of 0.429 m and length of 13.7 m1, is divided into four elastic

elements (per cross subsection) with the properties of aluminum. The mesh is refined at the upper part

of the model in order to provide data points for the computation of shear force and lateral resistance of

sufficient reliability as well as for investigation of the layering effects. Additional finite element analysis

of a cantilever beam using the same mesh as the pile was carried out and comparison of the beam

displacement from FEM and beam theory solution indicated that the mesh was fine enough to capture

the pile behavior. As to the boundaries, the sides and bottom of the model are fixed with the exception

of the symmetric boundary, which is only supported in Y direction. Since the sides are 13 times of the

pile width away from the pile center, it is believed that the fixed boundaries have very limited effects on

the results. In addition to that the model size is closely following that of the physical, centrifuge model,

which resided in a container of similar size. The pile–soil interface is represented by one thin layer of

elements. The purpose of this layer is to mimic the installation effects on the pile (drilled or driven). It

1All dimensions are from the centrifuge study, prototype scale.
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also serves a purpose of a simplified interface which allows for tension cut-off (gapping) and controlled,

coupling of horizontal and vertical resistance according to Coulomb frictional laws.

501.3.3 Constitutive Models

Two simple models were used in this numerical study. Specifically, clay was modeled by von Mises

material model which is completely defined with the undrained shear strength. Sand was simulated

by Drucker–Prager material model with nonassociated flow rule, defined with the friction and dilation

angles. The reason for using such simple models is that the experimental results used in comparison

with simulations did specify only very limited number of material properties for sands. Furthermore, a

small number of model parameters needed by simple models are convenient for parametric study. In

both material models, the Young’s moduli vary with confining pressure, as shown in Eqn. (501.2) (cf.

Janbu (1963), Duncan and Chang (1970)):

E = Eo

(
p
pa

)a
(501.2)

where Eo is Young’s Modulus at atmospheric pressure, p is the effective mean normal stresses, pa is the

atmospheric pressure, and a is constant for a given void ratio. In this work, 0.5 was used.

The following parameters were used for medium dense sand: friction angle ϕ = 37.1o, Shear modulus

G at a depth of 13.7 m = 8960 kPa (Eo = 17400 kPa), Poisson’s ratio ν = 0.35 and unit weight

γ = 14.50 kN/m3. These parameters were given by Zhang et al. (1999). A dilation angle of ψ = 0o is used

in this work (Brown and Shie (1990a)). The undrained shear strength, Young’s modulus, Poisson’s ratio

and unit weight of clay were chosen to be Cu = 21.7 kPa, E0 = 11000 kPa, ν = 0.45, γ = 11.8 kN/m3,

respectively. The interface elements were simulated by Drucker–Prager model with a friction angle

ϕ = 25o, and a dilation angle ψ = 0o. All material properties were summarized in Table 501.1.

Table 501.1: Material properties of sand, clay, pile and soil–pile interface used in FEM analysis.

Soil Eo (kPa) ν γ (kN /m3) ϕ (o) ψ (o) Cu (kPa)

Medium dense sand 17400 0.35 14.5 37.1 0 –

Loose sand 16000 0.35 14.1 34.5 0 –

Clay 11000 0.47 11.8 – – 21.7

Pile 69000000 0.33 26.8 – – –

Soil–pile interface Variable Variable Variable 25 0 –
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501.3.4 Comparison of p–y Behavior in Uniform and Layered Soil Deposits

This subsection presents representative results related to the behavior of piles in uniform and layered soil

deposits. Specifically the p–y response curves derived for 3D FEM results for homogeneous and layered

soil deposits are compared with each other to investigate the layering effects.

501.3.4.1 Uniform Clay Deposit and Clay Deposit with an Interlayer of Sand.

The p–y curves of uniform clay deposit and clay deposit with a layer of sand were compared in Figure

501.26. It is clearly seen that the p–y curve (Z = –3.75D) close to the interface (Z = –4D) is significantly

different from that in uniform soil profile.
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Figure 501.26: Comparison of p–y curves of uniform clay deposit versus clay deposit with an interlayer

of sand (Sand: ϕ = 37o; Clay: Cu = 21.7 kPa).

In order to measure the magnitude of the effects of the intermediate sand layer on the lateral

resistance of the soft clay layers and vice versa, the ratios of soil lateral resistances in the layered (p)

and uniform models (phomog. model) at several lateral displacements (i.e. 0.5%, 1.0%, 2.0%, 2.5%, 8.0%

and 10.0% of pile width D) were computed and plotted against vertical coordinate (Z) normalized by
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pile width D in Figures 501.27 and 501.282. In addition, the results from two more analyses of the same

model with different sands (friction angle ϕ were varied from 25o to 30o, while originally, the friction

angle was set to 37o) were also included in these figures.

From Figure 501.27, it is observed that the lateral resistance ratios are independent of friction angle

ϕ of sand at small lateral displacements ranging from 0.5% to 1.0% of pile width D. When the lateral

displacement is greater than 1.0%, the variation in ϕ starts to affect the lateral resistance ratio, as shown

in Figure 501.28.
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Figure 501.27: Lateral resistance ratio distributions (Clay:Cu = 21.7 kPa, Eo = 11000 kPa) for sands

with various ϕ at lateral displacements of 0.5% and 1.0% pile width.

Overall, the effect of the sand layer reduces to less than 10% at about one pile width above the upper

sand interface and the lateral resistance ratio at a quarter pile width above the upper sand interface is

1.3 at lateral deflection of 0.5% pile width. It may be noted that the two dashed vertical lines in the

lateral resistance plots correspond to lateral resistance ratios of 0.9 and 1.1, indicating ±10% change

in lateral resistance. The 10% change will be used to judge the extent of influence throughout the rest

of the paper. The resistance ratio below the lower sand interface was not processed since the mesh is

becoming coarse and the results are affected by mesh effects and numerical differentiation, and the pile

displacements are very small.

Besides the effect the sand interlayer has on the clay layer, it is interesting to observe in Figure 501.27

2The lateral resistance ratio is only shown for the upper clay layer since the resistance corresponding to large y is not

available at larger depth due to the fact that the pile is loaded at the pile head and the deflection decreases quickly as

depth increases. Also due to the limit of space, plots for 2.0%, 2.5% pile width are not shown in this paper.
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Figure 501.28: Lateral resistance ratio distributions in clay layer (Cu = 21.7 kPa, Eo = 11000 kPa) for

sands with various ϕ at lateral displacements of 8% and 10% pile width.

that the soft clay layers also have significant effect on the lateral resistance of the intermediate sand

layer. The lateral resistance ratios are less than 0.9 throughout the interlayer of sand. Surprisingly, the

effects are not symmetric at lateral deflection of 0.5%. The resistance ratio is 0.85 at 0.25D below the

upper sand interface, while that is 0.72 at 0.25D above the lower sand interface. This non–symmetry is

probably due to the non–symmetric deformation3 mode in the pile. As the pile is loaded laterally at the

pile head, the right–hand–side sand close to the pile below certain depth tends to move downward to the

right, which can be observed in Figure 501.32 (b). Therefore, the sand close to the upper interface moves

against sand, while that close to the lower interface moves against soft clay. This type of movement

results in the larger reduction in resistance at the lower sand interface than at the upper sand interface.

The decrease in lateral resistance is mainly due to the lower stiffness in the adjacent soft clay layers. In

addition, the smaller unit weight of the soft clay results in smaller mean effective normal stresses in the

sand layer than the homogeneous model, which will reduce the stiffness of the sand and therefore also

contribute to the reduction in lateral resistance at the intermediate sand layer.

3Non–symmetric with respect to the horizontal plane in between the interfaces (midway through the sand layer).
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501.3.4.2 Uniform Sand Deposit and Sand Deposit with an Interlayer of Soft Clay.

By comparing the p–y curves of uniform sand deposit and sand deposit with an interlayer of soft clay, it

was found that the effect of soft clay on the lateral resistance of sand propagates further away from the

interface than Clay-Sand-Clay case, as described above in subsection 501.3.4.1. In addition to that, it

was found that the heave in front of the pile will affect the lateral resistance of sand at shallow depth.

Therefore, for sand deposit with an interlayer of soft clay, the thickness of upper sand layer was increased

from 1.72 m to 2.36 m (the thickness of the soft clay layer was kept the same) to investigate the range

of layering effects. Three models were analyzed by only varying the undrained shear strength Cu ( i.e.

13.0, 21.7 and 30.3 kPa ) of the soft clay layer.

Similar to the previous analysis, the p–y curves from the uniform deposit and the re-configured layered

deposit were compared in Figure 501.29 and the lateral resistance ratios at several lateral displacements

(i.e. 0.5%, 1.0%, 2.0%, 2.5%, 5.0% and 6.5% of pile width D ) for all three models were computed

and shown in Figures 501.30 and 501.31. It may be observed from Figure 501.29 that obvious difference

may be observed in several p – –y curves further away from the interface.
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Figure 501.29: Comparison of p–y curves for uniform sand deposit versus sand deposit with an interlayer

of soft clay (Sand: ϕ = 37o; Clay: Cu = 21.7 kPa).
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Figure 501.30: Lateral resistance ratio distributions (Sand:ϕ = 37o, Eo = 17400 kPa) for clays with

various Cu at lateral displacements of 0.5% and 1.0% pile width.

0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

Z
 / 

D

p / p
homog. case

y/D = 0.050

SAND
γ=14.5kN/m3

CLAY, γ=11.8kN/m3

Cu=13.0kPa,Eo=11000kPa
Cu=21.7kPa,Eo=11000kPa
Cu=30.3kPa,Eo=11000kPa

0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

p / p
homog. case

y/D = 0.065

SAND
γ=14.5kN/m3

CLAY, γ=11.8kN/m3

Cu=13.0kPa,Eo=11000kPa
Cu=21.7kPa,Eo=11000kPa
Cu=30.3kPa,Eo=11000kPa

Figure 501.31: Lateral resistance ratio distributions (Sand:ϕ = 37o, Eo = 17400 kPa) for clays with

various Cu at lateral displacements of 5.0% and 6.5% pile width.
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From Figure 501.30, it is noted that the effects of the intermediate soft clay layer are also independent

of its undrained shear strength at small lateral displacements ranging from 0.5% D to 1.0% D. When

the lateral displacement is greater than 1.0% D, the change in Cu starts to affect the lateral resistance

ratio, as shown in Figure 501.31. Similar to the Clay–Sand–Clay model, the effect of the intermediate

soft clay layer reduces to less than 10% at one pile width above the clay interface. The lateral resistance

ratio at 0.25D above the clay interface is about 0.75. For large lateral displacements ranging from 5.0%

D to 6.5% D, the 10% change in lateral resistance extends to 1.5 D - 2 D, as can be observed in Fig.

501.31. It may be noted that, at a lateral displacement of 6.5% D, the lateral resistance ratio at 0.25D

above the clay interface changes from 0.58 to 0.67 when Cu increases from 13.0 kPa to 30.3 kPa.

Figures 501.32 (a) and (b) show the details of displaced models around the interfaces for the Sand-

Clay-Sand and Clay-Sand-Clay profiles, respectively. The deformed model was overlapped with unde-

formed model for comparison. Ground heave can be easily observed in front of the pile from both figures.

It is noted from Figure 501.32 (a) that the sand crosses the upper clay interface and moves into the

intermediate soft clay layer. The movement slightly strengthens the soft clay soil and partially causes

the slight increase of lateral resistance at the top of soft clay layer. Most importantly, the movement

will soften the sand close to the upper layer interface, due to the reduction of confinement to the sand.

For the Clay-Sand-Clay profile, the stronger sand layer penetrates into the softer clay layers at both

interfaces. This penetration softens the sand close to both interface, due to the same reason as above.

501.3.5 Parametric Study for the Lateral Resistance Ratios in Terms of Stiffness and Strength

Parameters.

To further investigate the effects of soil stiffness on the lateral resistance ratios at small displacement

and/or large displacement, further analyses were carried out for the Clay–Sand–Clay and Sand–Clay–

Sand models by changing both stiffness parameter (i.e. Eo) and strength parameter ( Cu for clay, or ϕ

for sand) using the same finite element models as above. The model configurations and intermediate

layer soil parameters were summarized in Tables 501.2 and 501.3.

Lateral resistance ratios were plotted in Figures 501.33 and 501.34 for the Clay–Sand–Clay model,

and in Figures 501.35 and 501.36 for the Sand–Clay–Sand model. By comparing Figures 501.28 and

501.34 for pile displacements of 8% D and 10% D, and Figures 501.31 and 501.36 for pile displacements

of 5% D and 6.5% D, it is clear that the lateral resistance ratios are almost the same for the upper layer

soil even if the stiffness parameter Eo of intermediate layer soil was varied by more than 30%. However,

the lateral resistance ratios at small displacement (0.5% D and 1.0% D) were obviously influenced by

the variation of Eo, as can be observed by comparing Figures 501.27 and 501.33 for the Clay–Sand–Clay

model, and Figures 501.30 and 501.35 for the Sand–Clay–Sand model. For medium pile displacements
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(a) (b)

Figure 501.32: Details of displaced model indicating ground heave and movement of soils across the

layer interfaces at lateral load of 400 kN: (a) sand deposit with an interlayer of soft clay and (b) clay

deposit with an interlayer of medium sand. The pile elements are removed so that the interface layer in

the middle can be seen clearly.

Table 501.2: Summary of model configurations and intermediate sand layer parameters for Clay–Sand–

Clay model in the parametric study.

Case Soil Profile Depth of Interfaces Intermediate Sand Layer

Upper Lower Eo (kPa) ϕ

1 Clay–Sand–Clay -1.72 m -3.43 m 11500 25o

2 Clay–Sand–Clay -1.72 m -3.43 m 13500 30o

3 Clay–Sand–Clay -1.72 m -3.43 m 17400 37o
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Table 501.3: Summary of model configurations and intermediate clay layer parameters for Sand–Clay–

Sand model in the parametric study.

Case Soil Profile Depth of Interfaces Intermediate Clay Layer

Upper Lower Eo (kPa) Cu (kPa)

1 Sand–Clay–Sand -2.36 m -4.08 m 8000 13.0

2 Sand–Clay–Sand -2.36 m -4.08 m 11000 21.7

3 Sand–Clay–Sand -2.36 m -4.08 m 12500 30.3

(e.g. 2% D and 2.5% D), both stiffness and strength parameters have effects on the lateral resistance

ratios.

0.5 1 1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Z
 / 

D

p/p
homog. case

y/D = 0.005

CLAY

γ=11.8kN/m3

SAND

γ=14.5kN/m3

CLAY

γ=11.8kN/m3

φ=25o,Eo=11500kPa
φ=30o,Eo=13500kPa
φ=37o,Eo=17400kPa

0.5 1 1.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

p/p
homog. case

y/D = 0.010

CLAY

γ=11.8kN/m3

SAND

γ=14.5kN/m3

CLAY

γ=11.8kN/m3

φ=25o,Eo=11500kPa
φ=30o,Eo=13500kPa
φ=37o,Eo=17400kPa

Figure 501.33: Lateral resistance ratio distributions (Clay:Cu = 21.7 kPa, Eo = 11000 kPa) for sands

with various ϕ and Eo at lateral displacements of 0.5% and 1.0% pile width.

It will be useful to relate the effects of (a) the relative stiffness which controls the lateral resistance

ratio at small lateral displacements and (b) the relative strength which determines the lateral resistance

ratio at large lateral displacements with the lateral resistance ratio. To exclude the effects of unit weight,

only the results above the upper interface in the Sand–Clay–Sand model are processed. The ratio of

Young’s moduli of clay and sand soils was used to define the relative stiffness Rstiffness of the two layers.
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Figure 501.34: Lateral resistance ratio distributions in clay layer (Cu = 21.7 kPa, Eo = 11000 kPa) for

sands with various ϕ and Eo at lateral displacements of 8% and 10% pile width.
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Figure 501.35: Lateral resistance ratio distributions (Sand:ϕ = 37o, Eo = 17400 kPa) for intermediate

layer of clays with various Cu and Eo at lateral displacements of 0.5% and 1.0% pile width.
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Figure 501.36: Lateral resistance ratio distributions (Sand:ϕ = 37o, Eo = 17400 kPa) for clays with

various Cu and Eo at lateral displacements of 5.0% and 6.5% pile width.

On the other hand, the ratio of largest lateral resistances of uniform clay and sand4 at the upper interface

(-2.36 m) was used to define the relative strength Rstrength–FEM , as described in Equations (501.3) and

(501.4).

Rstiffness =
Eo–clay
Eo–sand

(501.3)

Rstrength–FEM =
pclay–FEM
psand–FEM

(501.4)

The lateral resistance ratios at lateral displacement of 6.5% D were plotted against Cu in Figure 501.37.

For comparison, the relative stiffness Rstiffness and relative strength Rstrength–FEM were also included in

the same plot.

As can be observed from this plot, the lateral resistance ratio decreases from 0.69 to 0.56 almost

proportionally as Cu drops from 30 kPa to 13 kPa at 0.25 D above the upper interface, and the ratio

is greater than the relative strength Rstrength–FEM . Since the ultimate resistance of uniform sand will

be larger than the computed largest value (which is still increasing , as can be observed from Figure

501.29 at Z=-3.75D) and that of uniform clay almost will almost remain the same (refer to Figure

4It would be better to use the ultimate lateral resistances for both clay and sand to define the relative strength but these

values are not available from the current numerical results since pile displacement y is not large enough.
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Figure 501.37: Lateral resistance ratios in the upper sand layer (ϕ = 37o) at various distances from the

interface for pile displacement of 6.5% pile width.

501.26 at Z=-3.75D), this relative strength value will drop and the above statement still holds. There is

certain correlation between the lateral resistance ratio close to the upper interface and Rstrength–FEM at

6.5%D pile displacement. As the distance to the upper interface increases, this correlation diminishes.

The relative stiffness curve intercepts with the lateral resistance ratio curves at 0.25D above the upper

interface. This implies that the presence of the clay, which is softer than the sand, somehow caused

the layered system to be softer than either of the homogeneous models. This seems illogical, and in

fact previous discussions and comparisons showed that Rstrength–FEM is more important than Rstiffness at

these large relative displacements.

It is also interesting to examine the relationship between the lateral resistance ratio and the relative

variables (i.e. strength and stiffness) when lateral displacement increases, as presented in Figures 501.38

and 501.39. Figure 501.38 shows that the lateral resistance ratios at 0.25D above the interface decreases

and come closer to the relative strength Rstrength–FEM curve as the lateral displacement increases from

4.0%D to 6.5%D. The relative stiffness Rstiffness was also plotted in Figure 501.38 and it intercepts

with the lateral resistance ratio curve, which has similar implications as the above discussion for Figure

501.37 and is illogical. On the other hand, as the lateral displacement decreases from 1.5%D to 0.5%

D, the lateral resistance ratios keep decreasing and come closer to the relative stiffness ratio Rstiffness,

as shown in Figure 501.39. There is almost a linear relationship between the lateral resistance ratio and

the relative stiffness at small displacements.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.3. STUDY OF SOIL LAYERING EFFECTS . . . page: 2227 of 3287

12 14 16 18 20 22 24 26 28 30 32
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Undrained Shear Strength of Soft Clay C
u
 (kPa)

p 
/ p

ho
m

og
. c

as
e a

t 0
.2

5D
 a

bo
ve

 th
e 

In
te

rf
ac

e

Deflection = 6.5% D
Deflection = 5.0% D
Deflection = 4.0% D
R

strength−FEM
R

stiffness

Figure 501.38: Lateral resistance ratio at a quarter pile width above the upper clay interface for various

deflections.
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Figure 501.39: Lateral resistance ratio at one quarter pile width above the upper clay interface for clays

with various Cu and Eo at small pile displacements ranging from 0.5% to 1.5% pile width.
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From the above analysis, it is safe to say that the lateral resistance ratio is dominated by the relative

stiffness Rstiffness at small displacement (i.e. ≤ 0.5%D), while that is controlled by the relative strength

Rstrength–FEM at large displacement ( i.e. ≥ 4.0%D). For small displacement, the smaller the displacement

is, the closer the lateral resistance ratio is to the relative stiffness; for large displacement, the larger the

displacement, the closer the lateral resistance ratio is to the relative strength.

Figures 501.40, 501.41 and 501.42 summarize observed lateral resistance ratios in layered profiles.

Figure 501.40 shows the lateral resistance ratios in the intermediate sand layer corresponding to various

relative stiffness Rstiffness at pile displacement of 0.5%D for the Clay–Sand–Clay model. Figures 501.41

and 501.42 show the lateral resistance ratios corresponding to various relative stiffness Rstiffness and

relative strength Rstrength–FEM at pile displacements of 0.5% D and 6.5% D for the Sand–Clay–Sand

model. The effects of the intermediate clay layer on the upper sand layer reduce to less than 10% at a

distance of 0.5 to 1.5 D above the interface at small pile displacement (e.g. 0.5% D), while that effects

reduce to less than 10% at a distance of 1.25 to 2.0 D above the interface at large pile displacement

(e.g. 6.5%D).

One may notice that the lateral resistance ratios corresponding to the relative stiffness Rstiffness =

0.63 in Figures 501.40 and 501.41 are not the same. The ratios close to the lower sand interface in the

Clay–Sand–Clay model is slightly larger than that in the Sand–Clay–Sand model. This difference is due

to the fact that the lateral resistance ratios in the intermediate sand layer also include the effects of

smaller unit weight of upper layer clay.

501.3.6 Summary

This subsection summarizes results from finite element analysis on the behavior of a single pile in elastic–

plastic layered soils. Based on the results presented, the following conclusions can be drawn.

1. The layering effects are two–way. Not only the lower layers are affected by the upper layers, but

the upper layers are also affected by the lower layers. Furthermore, the layering effects are not

symmetric. In the case of pile laterally loaded at the pile head, the effect of an interface extends

further into the layer above the interface than it does into the layer below the interface at small

displacements.

2. In the Clay–Sand–Clay model, the lateral resistance of soft clay increases by as much as 30% and

the effect extends to one pile width above the upper sand interface for Rstiffness = 0.63 at small

pile displacement (0.5%D). Nonetheless, the increase of lateral resistance in the upper clay layer at

large pile displacement (8–10%D) extends only one finite element above the upper sand interface.
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Figure 501.40: Summary of observed lateral resistance ratios from FEM analysis for the Clay–Sand–Clay

profile at small deflection (y/D=0.5%).
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Figure 501.41: Summary of observed lateral resistance ratios from FEM analysis for the Sand–Clay–

Sand profile at small deflection (y/D=0.5%).
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Figure 501.42: Summary of observed lateral resistance ratios from FEM analysis for the Sand–Clay–

Sand profile at large deflection (y/D=6.5%).

On the other hand, the clay layers also have significant effects on the lateral resistance of sand

throughout the intermediate layer.

3. In the Sand–Clay–Sand model, the intermediate clay layer has considerable effects on the lateral

resistance of the upper sand layer, and the sand layers also have significant effects on the lateral

resistance of the intermediate clay layer, causing 10 to 40% increase in its lateral resistance.

4. The lateral resistance ratio is dominated by the relative stiffness at small displacements (i.e. ≤
1.0%D), while that is controlled by the relative strength at large displacements (i.e. ≥ 5.0%D).

It must be pointed out that the above observed lateral resistance ratios may only be applied to similar

stratigraphies, pile deformation modes, and other conditions considered in this work. Further analyses

are needed to investigate the effects of other stratigraphies, pile deformation modes, pile diameters, and

other factors, in order to draw more general guidelines. Future studies with a refined mesh around the

interface will provide better resolution of the resistance ratio around the interface. Future studies of the

effects of the interface layer on the layering effects will also be very interesting.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.4. NUMERICAL STUDY OF GROUP EFFEC . . . page: 2231 of 3287

501.4 Numerical Study of Group Effects for Pile Groups in Sands

Material presented here has been previously published in our paper Yang and Jeremić (2005).

501.4.1 Introduction

Single pile foundations have been successfully modeled by the p – y approach, as implemented in LPILE

(Reese et al. Reese et al. (2000a) ). However, the behavior of a pile within a group may differ greatly from

that of a single pile and vary depending on the position due to the interaction between the neighboring

piles. To study this interaction effects, only a couple of field tests have been carried out because of the

large costs incurred. Brown et al. Brown et al. (1988) conducted cyclic loading tests on instrumented

3 × 3 steel pile group. The p–multiplier concept was presented based on the measured soil resistance

data and specific p–multipliers were suggested for the three rows. Ruesta and Townsend Ruesta and

Townsend (1997) reported an in-situ test on piles at Roosevelt Bridge. Rollins et al. Rollins et al. (1997)

tested another full–scale pile group founded in clay and suggested a set of p–multipliers for corresponding

pile groups. Ng et al. Ng et al. (2001) presented results on full–scale lateral load tests of one single pile

and three pile groups with large–diameter bored piles. Besides in-situ testing, many centrifuge tests were

conducted to predict the behaviors of pile groups under static and dynamic loading. Recently, McVay et

al. McVay et al. (1995) McVay et al. (1998) conducted a series of lateral load tests on large pile groups

(3× 3 to 7× 3) founded in sands to study the interaction effects within a group.

Based on these field and centrifuge tests, it was found that:

1. All the test results have clearly shown that the lateral resistance of a pile within the group is

strongly influenced by its row position and the p–multiplier method was suggested by Brown et

al. Brown et al. (1988) to account for this behavior. Specifically, each row within the group is

assigned a different p–multiplier fm and the p–y curve for a single pile is multiplied by fm to produce

p–y curves for all the piles in the same row.

2. The p–multipliers are independent of soil density and only depend on the pile geometry. And at

sufficient deformation and under static loading, they are constant for practical purposes (McVay

et al. McVay et al. (1998)).

3. For 3–diameter spacing, the suggested p–multiplier fm was 0.8, 0.4, 0.3 (front row to back row)

for the 3 × 3 group (Brown et al. Brown et al. (1988)), 0.8, 0.4, 0.3, 0.3 for the 4 × 3 group,

and 0.8, 0.4, 0.3, 0.2, 0.3 for the 5 × 3 group, and 0.8, 0.4, 0.3, 0.2, ..., 0.3 for all larger group

size (McVay et al. McVay et al. (1998)).
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4. For concentric loading (located at the geometrical center of the pile group), the difference between

the side and middle piles within a row is small and may be neglected, while the moments in the

side piles within a given row are slightly larger than that in the middle piles but may be represented

by the average (McVay et al. McVay et al. (1998)).

Together with the physical modeling, a few numerical simulations have also been performed. We

mention a few representative finite element studies of pile groups. Maqtadir and Desai Muqtadir and

Desai (1986) studied the behavior of a pile-group using a three dimensional program with nonlinear

elastic soil model. An axisymmetric model with elastic-perfectly plastic soil was used by Pressley and

Poulos Pressley and Poulos (1986) to study group effects. Brown and Shie Brown and Shie (1990a)

Brown and Shie (1990b) Brown and Shie (1991) and Trochanis Trochanis et al. (1991) conducted a

series of 3D Finite Element Method (FEM) studies on the behavior of single pile and pile group with

elastic-plastic soil model. In particular, interface element was used to account for pile-soil separation and

slippage. Moreover, several model and field tests of free- or fixed-head pile groups have been analyzed

by Kimura et al. Kimura et al. (1995) and Wakai et al. Wakai et al. (1999) using 3D elasto-plastic

FEM.

This paper describes 3D elastic-plastic finite element modeling of two pile groups founded in sands

with emphasis on the interaction effects within pile group. Specifically, bending moment and load

distribution in individual piles were examined and compared with centrifuge test data. Special attention

was given to out-of-loading-plane bending moment and p–y behavior of individual piles in a group. The

OpenSees OpenSees Development Team (Open Source Project) (2000-2006) finite element framework

was employed to complete all the computations. Soil modeling was performed using the Template

Elastic–Plastic approach (Jeremić and Yang Jeremić and Yang (2002)).

This paper is organized as follows. Section 501.4.2 summarizes the centrifuge tests and describes

finite element models including the soil elastic–plastic model used for 3×3 and 4×3 pile group simulations.

Section 501.4.5 presents a number of results and discussion describing simulated behavior of analyzed pile

groups. In particular, presented are developed plastic zones (Section 501.4.6), pile bending moments

(Section 501.4.7), pile load distributions (Section 501.4.8), comparison of p – y curves for individual

piles (Section 501.4.9), and comparison with centrifuge tests (Section 501.4.10). Section 501.4.11 gives

concluding remarks.
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501.4.2 Pile Models

501.4.3 Summary of Centrifuge Tests

In the centrifuge tests reported by McVay et al. McVay et al. (1998), 3×3 to 7×3 pile groups embedded

in homogeneous sands under lateral load were tested. The rectangular–shaped sample container was

fabricated from aluminum alloy with an inside dimensions of 0.254 m wide, 0.457 m long, and 0.305 m

high. The piles were spaced by three times the pile width and the pile caps (made of aluminum) were

rigidly connected with the piles. The model square piles and pile cap were fabricated from solid square

aluminum (alloy 6061) bars. Each individual pile is 9.5 mm wide and 304.8 mm long. To simulate the

installing effects of field driven piles, the piles were driven in flight into sands by hydraulic equipment

and tested at 45 g.

The sands (artificially mixed by a number of different gradations) studied were at two different relative

densities: a loose sand with relative density Dr=36%, unit weight γ = 14.05 kN /m3 and a medium dense

sand with Dr = 55%, γ = 14.50 kN /m3. The shear modulus G, Poisson’s ratio ν and friction angle

ϕ are 8230 kN /m2, 0.35, 34.5o for the loose sand and 8960 kN /m2, 0.35, 37.1o for the medium dense

sand. It is noted that the friction angles were determined from drained triaxial compression tests, and

the shear moduli were back–computed from instrumented vertical load tests ( Zhang et al. Zhang et al.

(1998)) and were valued at a depth of 13.7 m.

501.4.4 Finite Element Pile Models

Among these tested pile groups, 3× 3 and 4× 3 groups were chosen to be modeled in prototype scale

using 3D elasto–plastic finite element method to investigate pile group interaction effects. The typical

layout of 4 × 3 pile group is shown in Fig. 501.43. The whole centrifuge model in prototype scale is

22.8 m wide, 20.6 m long and 13.2 m deep. Only half of each centrifuge model is meshed considering

the symmetry . Figure 501.44 shows the finite element mesh for the 4× 3 pile group. Additional finite

element analysis of a cantilever beam using the same mesh as an individual pile in the group was carried

out and comparison of the displacement at the top of the beam from FEM and beam theory solution

indicated that the mesh was fine enough to capture the pile behavior. Soil, pile and soil–pile interface

are all modeled with twenty node brick elements. Each pile consists of four elements (per cross section)

made of elastic material with properties corresponding to aluminum. There are 1268 and 1414 brick

elements in the two models respectively. The sides and bottom of each model are fixed in all three

coordinate directions with the exception of the symmetric boundary, which is only supported in the

direction perpendicular to the symmetry plane. This type of boundary conditions are fairly close to the

actual friction boundary conditions in the centrifuge tests.
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All the parameters except the Young’s moduli for sands were the same as from the centrifuge studies.

The Young’s modulus is assumed to depend on the mean effective normal stress p′ (Manzari and Dafalias

Manzari and Dafalias (1997) ) as:

E = Eo

(
p′

pa

)n
(501.5)

where Eo is Young’s modulus at the atmospheric pressure, p′=σii/3 is the mean effective normal stress,

pa is the atmospheric pressure, and n is constant for a given void ratio. Usually 0.5 is used for n. For

the medium dense sand, the Young’s modulus at the atmospheric pressure computed by Eqn. (501.5)

(Lateral pressure coefficient Ko = 0.55 was used) from the back–computed shear modulus was 200000

kPa and then adjusted to be 17400 kPa for the medium dense sand, so as to well simulate the load–

displacement curve obtained from centrifuge tests. For the loose sand, the computed Young’s modulus at

the atmospheric pressure from the back–computed shear modulus was 18700 kPa and similarly adjusted

to be 16000 kPa.

Sand was simulated by Drucker–Prager material model with nonassociated flow rules. Since the

centrifuge studies we used to compare our simulations against did specify only the friction angle of test

sands which were obtained from drained triaxial compression tests, the yield surface was chosen to agree

with Mohr–Coulomb hexagon at triaxial compression. Future study using Mohr–Coulomb material model

will be useful to determine the effects of varying friction angle in Drucker–Prager model on the results.

Since there is no test data on the dilation angle ψ of the tested sands, a dilation angle of 0o was used

in this work, as similar dilation angle was also used in Brown and Shie Brown and Shie (1990a). The

soil–pile interface was represented by one thin layer of elements. The material of the interface element

was also simulated by Drucker–Prager model with a friction angle of 25o, a dilation angle of 0o, and

the same Young’s modulus and Poisson’s ratio as corresponding sands. In the future, a realistic dilation

angle needs to be used for sand to further investigate the effects of dilation angle on the pile group

interaction behavior, especially the out–of–loading–plane bending moment.

501.4.5 Simulation Results

In this section we present results related to the behavior of 3 × 3 and 4 × 4 pile groups in loose

and medium dense sands. A number of static pushover tests were simulated using FEM. Specifically,

modified Newton–Raphson method were used to solve the system of equations in the finite element

level and implicit algorithm (Jeremić and Yang Jeremić and Yang (2002)) was used in constitutive level

integration. Results are also compared with those from the centrifuge studies by McVay et al. McVay

et al. (1998) and Zhang et al. Zhang et al. (1999).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.4. NUMERICAL STUDY OF GROUP EFFEC . . . page: 2235 of 3287

a)

3D

3D

D=0.429 m

Side Piles

Side Piles

 

 

Y

X
Middle Piles

b)

2.
3 

m
10

.9
 m

T
ra

il 
R

ow

3r
d 

R
ow

2n
d 

R
ow

L
ea

d 
R

ow

Sand

Lateral
Load

Figure 501.43: Layout of 4× 3 pile group: a) top view, b) side view.

Figure 501.44: Finite element mesh for half of 4× 3 pile group.

501.4.6 Plastic Zone

The static pushover tests were conducted using load control at the pile head with the loading applied

in the X direction. The final plastic zones (represented by plastified Gauss points) for two pile groups

are depicted in Figures 501.45 and 501.46. In particular, Figure 501.45 shows different views of the

3D plastic zone developed in the 3× 3 pile group at the lateral load of 2,200 kN. Figure 501.46 shows

the different views of the 3D plastic zone developed in the 4× 3 pile group at the lateral load of 2,970
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kN. Both figures clearly show a wedge shaped plastic zone at the shallow depth. Also apparent is the

propagation of the plastic zone (shear yielding) along the pile–soil interface, resulting from the rocking

behavior of the group.

a) b)

Figure 501.45: Plastic Gauss–Points for the 3× 3 pile group: (a) 3D view and (b) side view.

a) b)

Figure 501.46: Plastic Gauss–Points for the 4× 3 pile group: (a) 3D view and (b) side view.
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501.4.7 Bending Moment

The maximum bending moment in the piles often controls the design of pile groups and therefore has to

be analyzed accurately. In order to generate the bending moments from the stress field in piles vertical

stresses at Gauss points from each pile element are integrated numerically. The moments with reference

to the Y-axis (My) of each individual pile in the 3× 3 and 4× 3 pile groups are plotted in Figure 501.47

and 501.48, respectively. Figure 501.47 shows the moment diagrams of the 3× 3 group at a lateral load

of 2200 kN. The calculated maximum moment for each pile occurs at the pile cap, which is consistent

with the fixed pile cap condition. The lead row piles, for both side and middle piles, in both 3× 3 and

4× 3 pile groups, carry the maximum bending moment. It is also interesting to note that in the 4× 3

group, the moment diagrams for the piles in the third and fourth rows appear to be almost identical,

which implies that they behave almost the same within the group.

The variations of maximum bending moments in each pile of 3× 3 and 4× 3 groups are illustrated

in Figures 501.49 and 501.50, respectively. The maximum moments develop in the lead–row side piles,

while the smallest maximum moments occur in the trail–row middle piles in both groups. It is obvious

that the maximum moments developed in the middle and side piles within the lead row are quite different

for both pile groups, implying the load shared by each pile in the same row is different. For example, in

the 3 × 3 group, the maximum moment in the middle pile at the end load is 600 kN.m, while that of

the side pile is 670 kN.m, the difference is about 11%. For the 4× 3 pile group, the maximum moment

on the lead–row side pile was about 10% greater than that for the lead–row middle pile.

It is interesting to look at the moments with reference to the X-axis (out-of-loading-plane moment,

Mx). Figure 501.51 (a, b) shows Mx diagram for each pile as well as deformed piles for the 3 × 3 pile

group. Similar plots for the 4 × 3 pile group are shown in Figure 501.53 (a, b). The maximum value

of Mx in the 3 × 3 pile group reaches 50 kN.m, which is about 8% of the maximum value of My. For

the 4 × 3 pile group, the maximum value of Mx is about the same amount, which is about 6% of the

maximum value of My.

It is noted that the signs of the Mx moments in the lead and trail rows are different, indicating the

bending directions are opposite to each other. This is further verified by looking at the deformed shape

of the pile group shown in Figure 501.51(b) with only the displacement in Y direction shown. This

kind of bending is caused by the the complex displacement field of the soil surrounding the pile group,

as illustrated by the horizontal displacement vector and contour plots of displacement in X direction in

Figures 501.52 and 501.54 for the 3 × 3 and 4 × 3 pile groups, respectively. The soil in front of the

lead row tends to “squeeze into” the group, while the soil outside of the trail row tends to “come back”

toward the pile group when the pile group is moving forward, which consequently results in the fact that
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Figure 501.47: Comparison of bending moment diagram at lateral load of 2200 kN for piles in 3 × 3

group.
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Figure 501.48: Comparison of bending moment diagram at lateral load of 2970 kN for piles in 4 × 3

group.
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Figure 501.49: Maximum bending moments in individual piles in 3× 3 group.
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Figure 501.50: Maximum bending moments in individual piles in 4× 3 group.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.4. NUMERICAL STUDY OF GROUP EFFEC . . . page: 2240 of 3287

the lead row bends outward and the trail row bends inward.
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Figure 501.51: (a) Out-of-loading-plane bending moment diagram and (a) Out-of-loading-plane defor-

mation for the 3× 3 pile group.
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Figure 501.52: Horizontal displacement vector and contour of displacement in X direction at ground

surface for the 3× 3 pile group.
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Figure 501.53: (a) Out-of-loading-plane bending moment diagram and (b) Out-of-loading-plane defor-

mation for the 4× 3 pile group.
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Figure 501.54: Horizontal displacement vector and contour of displacement (cm) in X direction at

ground surface for 4× 3 pile group.
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501.4.8 Load Distribution

In order to compute the load taken by each pile, the values of bending moment at element centers

along with the boundary condition at the bottom of pile (zero moment) were fitted with a 5th order

polynomial by least square technique. According to the theory of beam on a Winkler-type subgrade

(Hartog Hartog (1952) ), the moment curve was differentiated once to compute the shear force. Then,

the shear forces at three sampling points between the ground surface and the pile cap were averaged to

compute the load carried by each individual pile. The accuracy of the load measuring scheme has been

verified by comparing the total load actually applied on the pile cap and the sum of all loads carried by

each individual pile.
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Figure 501.55: Variations of load taken by each row in the 3× 3 group.

Figures 501.55 and 501.56 show the load and percentage of total load carried by each row of the

3× 3 group. It is easily seen that not only the load but the percentage of total load taken by each row,

especially the lead and trail rows, change steadily during loading process. It is observed in Figure 501.55

that the lead row and trail row share almost the same amount of load at small lateral displacement.

However, as deflection increases, the lead row picks up the load much faster that the trail row, although

the load taken by the three rows all increase.

More interestingly, the variation in the percentage of load carried by each row exhibits completely

different trends. In the initial loading stage, the percentage shared by the lead row increases and that

by the trail row drops quickly, while the percentage shared by the middle row almost remains constant.
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Figure 501.56: Variations of percentage of total load taken by each row in the 3× 3 group.

In the final loading stage, however, the percentages carried by the lead and trail rows tend to stabilize.

The lead row takes the most load, more than 46%, while the trail row takes the least, only around 25%.

In addition, Figure 501.56 shows that the trail row takes a greater percentage of load than the lead row

at small lateral deformation, which were attributed to some load measuring error and the fact that the

denominator is relatively small.

Similar plots for the 4 × 3 group are shown in Figures 501.57 and 501.58. While the lead row still

carries much more load that the trail row, the third row and the trail row share almost the same amount

of load at large lateral displacement, which is in agreement with the fact that the same p–multiplier

was recommended for the third and fourth row by McVay et al. McVay et al. (1998). It should also be

observed from Figures 501.57 and 501.58 that the lead row carries more than twice the load of the trail

row.

It is worthwhile noting that the distribution of load in the same row can be quite different. Figures

501.59 and 501.60 show the variations of load and the percentage of total load taken by each pile of the

3× 3 group, respectively. Similar plots for the 4× 3 group are shown in Figures 501.61 and 501.62. It

is obvious that the piles at the sides take more load than the piles in the middle at the same row. For

the 3× 3 group, the side pile in lead row takes 350 kN or 16% of total load while the middle pile takes

325kN or 14.6% of total load at the end of loading.
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Figure 501.57: Variations of load taken by each row in the 4× 3 group.
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Figure 501.58: Variations of percentage of total load taken by each row in the 4× 3 group.
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Figure 501.59: Variations of load taken by each pile in the 3× 3 group.
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Figure 501.60: Variations of percentage of total load taken by each pile in the 3× 3 group.
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Figure 501.61: Variations of load taken by each pile in the 4× 3 group.
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Figure 501.62: Variations of percentage of total load taken by each pile in the 4× 3 group.
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501.4.9 p – y Curve

To further investigate the behavior of each pile, it is worthwhile to examine the p– y behavior of each pile

in the group. The fitted moment curve and the resulting displacement from FEM were used to derive

the p – y curves according to beam theory. Figures 501.63, 501.64, 501.65 and 501.66 show the derived

p – y curves at given depths for all individual piles in the two groups. As is evident from p – y plots for

the two groups, the piles in the lead row exhibit much larger resistances than the piles in the middle and

trail rows at large lateral displacement, due to the well–known “shadowing effect”. Comparison of the

p – y curves at different depths in the same pile shows that the lateral resistance p increases as depth

increases. For example, at deflection of 4 cm in the 3D (3 pile diameters) spaced 3×3 group, the lateral

resistance on the lead-row side pile is 120 kN/m at a depth of -1.54 m, while it is only 90 kN/m at

a depth of -0.58 m. This is caused by the increases in vertical stress and Young’s modulus as depth

increases.

More interestingly, it is seen that the p–y curves of the lead–row and trail–row piles at the depth of

-1.54 m are identical at small lateral displacement (y < 0.5 cm). Then the p–y curves of the piles within

the trail row soften drastically as lateral displacement increases in the 3×3 group. Similarly for the 4×3

group, both the p–y curves of the lead–row and trail–row piles, and the p–y curves of the third–row and

second–row piles at the depth of -2.04 m are almost identical at small lateral displacement (y < 0.7

cm). As deflection increases, the p–y curves of the trail–row and third–row piles soften quickly.

Obviously, each pile in the group exhibits quite different behavior than each other. It is believed that

the different behavior of each pile is directly related to the yielding of soil in front of these piles. This

observation can be verified by the fact that the softening behavior of the trail-row piles starts at larger

lateral displacement as the depth increases, since the plastic zone first develops at the ground surface

and then extends downward as deflection increases. These observations also imply that the p–multiplier

approach might not be appropriate, especially at small deflection, since it obtains the p – y curves for

piles within the group by simply scaling the single–pile p – y curve. In addition, as a comparison with

3D (3 pile diameters) spaced pile group, also plotted in Figures 501.63 and 501.64 is the p–y curve of a

lead–row side pile from a 6D spaced pile group. It is apparent that the lateral resistance increases with

the increase of spacing.

501.4.10 Comparison with the Centrifuge Tests

The pile head displacements for the two pile groups from 3D FEM and centrifuge tests (McVay et al.

McVay et al. (1998)) were plotted against pile head load in Figures 501.67 and 501.68. It can be seen

that they agree with each other fairly well at the small lateral displacement and the FEM model is
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Figure 501.63: p-y curves for each individual pile in the 3× 3 group at the depth -0.58m.
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Figure 501.64: p-y curves for individual piles in the 3× 3 group at the depth of -1.54m.

relatively stiffer at large lateral displacement.

The accuracy of finite element modeling can also be examined in terms of maximum bending mo-

ments. The maximum moment developed in 4 × 3 group was compared with that from the centrifuge

study ( Zhang et al. Zhang et al. (1999) ) in Figure 501.69. The results from the centrifuge study are

slightly larger than that from FEM, which is partially due to the relatively simple elastic-plastic soil model

used. Moreover, all the above results can be further improved if the mesh is refined, since the refined pile

group mesh will exhibit softer load–displacement response, and therefore develop larger bending moment

in individual piles.

The percentage of total lateral load taken by each row from 3D FEM and centrifuge tests (McVay
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Figure 501.65: p-y curves for individual piles in the 4× 3 group.
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Figure 501.66: p-y curves for individual piles in the 4× 3 group.

et al. McVay et al. (1998)) at a lateral load of 1650 kN and 2300 kN for the 3 × 3 and 4 × 3 pile

groups, respectively, were compared in Figures 501.70 and 501.71. Results for both loose and medium

dense sand cases are included. Figures 501.70 and 501.71 show that the density of sand does not have

much effects on the load distribution. It is evident that the load distributions to all rows as obtained

from FEM and centrifuge tests in all the cases for both pile groups agree very well (the differences are

within 3%).

Finally, the variation of distribution of total load to each row as obtained from 3D FEM and centrifuge

tests for the 4 × 3 pile group was compared in Figure 501.72. At small lateral displacement, the FEM
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Figure 501.67: Comparison of load displacement response for the 3× 3 pile group.
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Figure 501.68: Comparison of load displacement response for the 4× 3 pile group.
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Figure 501.69: Comparison of maximum bending moment response for the 4× 3 group.
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Figure 501.70: Comparison of percentage of total lateral load taken by each row in the 3× 3 group
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Figure 501.71: Comparison of percentage of total lateral load taken by each row in the 4× 3 group

computed percentage of total load acting on the lead row was smaller than measured in the centrifuge

tests and the load acting on the trail row was larger than measured in the centrifuge tests. When lateral

displacement is beyond 3–4 cm, however, the FEM computed load distribution tends to stabilize and

agrees well with that from centrifuge tests.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.4. NUMERICAL STUDY OF GROUP EFFEC . . . page: 2253 of 3287

0 1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

La
te

ra
l L

oa
d 

D
is

tr
ib

ut
io

n 
in

 E
ac

h 
R

ow
 (

%
)

Lateral Displacement at Pile Group Cap (cm)

FEM − Trail Row
FEM − Third Row
FEM − Second Row
FEM − Lead Row
Centrifuge − Trail Row
Centrifuge − Third Row
Centrifuge − Second Row
Centrifuge − Lead Row

Figure 501.72: Variation of percentage of total load taken by each row in the 4× 3 pile group.
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501.4.11 Conclusions

This paper presents results from the finite element study on the interaction effects of pile groups founded

in sands. Specifically the 3 × 3 and 4 × 3 pile groups were analyzed in terms of plastic zone, bending

moment and load distribution among individual piles. Comparison of results from FEM and centrifuge

study shows that elasto–plastic finite element analysis can predict the behavior of pile group with very

good accuracy. Particularly, load distribution results from finite element analyses agree very well with

that from centrifuge study.

It was shown that not only the load taken by each row in the group is different, but the load shared

by individual piles and maximum bending moment developed in individual piles within the same row

vary quite a bit, as observed in the centrifuge tests. Although the difference between the loads taken by

lead–row middle and side piles is less than 2% of the total load, the difference between the maximum

bending moments developed in the lead–row middle and side piles reaches 10–11% in the two pile groups.

Interestingly, it was found that bending moment also occurs in the plane perpendicular to the loading

direction.

The numerically generated p–y curves were used to study the behavior of each pile in a group. It was

found that individual piles in the group exhibit quite different p–y behavior at small deflection, which

means that the interaction in elastic range is different than that for loading in plastic range. Therefore,

different interaction factors would be more appropriate depending on the loading range.

Since FEM can capture the critical aspects of group effects, it could now be used to systematically

study various pile group configurations at much smaller cost than actual load tests, and derive interaction

factors for elastic and plastic loading levels that could be used in standard design practice.
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501.4.12 Single Pile in Dry Soil Modeling

Figure 501.73: Han Yang Pile Model # 1.

Figure 501.74: Han Yang Pile Model # 2.
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Figure 501.75: Han Yang Pile Model # 3.

Figure 501.76: Han Yang Pile Model # 4.
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Figure 501.77: Han Yang Pile Model # 5.

Figure 501.78: Han Yang Pile Model # 5.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 501.4. NUMERICAL STUDY OF GROUP EFFEC . . . page: 2258 of 3287

Figure 501.79: Han Yang Pile Model # 6.
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502.1 Chapter Summary and Highlights

502.2 Free Field Ground Motions

Seismic waves propagate from the source (rupturing fault) through the bedrock, surface rock and soil

layers to the site of interest where a Nuclear Power Plant is located (or planned). Seismic (compressional

and shear) waves do travel through various rock and soil domains, which can be represented by layers,

which are sometimes horizontal, but mostly inclined. In addition to that, layers usually have variable

thicknesses, creating a complex underground picture of soil/rock domains of different stiffness, mass,

energy dissipating characteristics (damping). Most commonly, the stiffness of layers (horizontal and/or

inclined) increases with depth. This change in stiffness results in seismic wave refraction, as shown in

Figure 502.1.
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Figure 502.1: Propagation of seismic waves in nearly horizontal local geology, with stiffness of soil/rock

layers increasing with depth, and refraction of waves toward the vertical direction.

When soil/rock layers are mostly horizontal, inter-layer refraction causes seismic waves (both P and

S) to tend toward vertical propagation. This case is shown in Figure 502.1. However, (near) horizontal

layering of geologic layers is not very frequent, unless young deposits of soil in river valleys are of concern.

More often the soil/rock layers are inclined, thus creating conditions for variable directivity of seismic

motions due to refraction. Figure 502.2 shows one such case where inclined soil/rock layers contribute

to mainly horizontal propagation of seismic motions close to the surface, in the vicinity of an NPP.

A general conclusion can be made that seismic waves arriving at the particular site (surface) will be

fully three dimensional (3C), uncorrelated, and incoming at an oblique angle. As noted by Zerva (2009),

seismic motions will feature lack of correlations of motions between two monitored points at the surface.

Lack of correlation is mainly due to (see more details in section 109.2.8):

• Attenuation effects,

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 502.2: Propagation of seismic waves in inclined (close to vertical) local geology, with stiffness

of soil/rock layers increasing through geologic layers, and refraction of waves away from the vertical

direction.

• Wave passage effects,

• Scattering effects,

• Extended source effects

Due to all the above mentioned 3C effects, realistic modeling of seismic wave propagation can only

properly be done by fully and realistically incorporating:

• Body waves (P and S),

• Surface waves (Love and Rayleigh),

• seismic waves coming at an oblique angle (which will actually be done when the above two types

of waves are properly modeled),

• Full three dimensional (3C) wave field,

• Lack of correlation (incoherence) effects,

• Energy dissipation effects (damping).
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502.2.1 Seismic Motions: Available Data

There exist a large number of recorded earthquake motions. Most records feature data in three per-

pendicular directions, East-West (E-W), North-South (N-S) and Up-Down (U-D). Number of recorded

strong motions, is (much) smaller. A number of strong motion databases (publicly available) exist,

mainly in the east and south of Asia, west cost of north and south America, and Europe. There are

regions of world that are not well covered with recording stations. These same regions are also seismically

fairly inactive. However, in some of those regions, return periods of (large) earthquakes are long, and

recording of even small events would greatly help gain knowledge about tectonic activity and geology.

Ergodic Assumption. Development of models for predicting seismic motions based on empirical evidence

(recorded motions) rely on Ergodic assumption. Ergodic assumption allows statistical data (earthquake

recordings) obtained at one (or few) worldwide location(s), over a long period of time, to be used at

other specific locations at certain times. This assumption allows for exchange of average of process

parameters over statistical ensemble (many realizations, as in many recordings of earthquakes) is the

same as an average of process parameters over time.

While ergodic assumptions is frequently used, there are issues that need to be addressed when it is

applied to earthquake motion records. For example, earthquake records from different geological settings

are used to develop GMP equations for specific geologic settings (again, different from those where

recordings were made) at the location of interest.

3C (6C) versus 1C Records/Motions. Recordings of earthquakes around the world show that earthquakes

are almost always featuring all three components (E-W, N-S, U-D). There are very few known recorded

events where one of the components was not present or is present in much smaller magnitude. Presence

of two horizontal components (E-W, N-S) of similar amplitude and appearing at about the same time

is quite expectable. The four cardinal directions (North, East, South and West) which humans use to

orient recorded motions have little to do with the earthquakes mechanics. The third direction, Up-Down

is different. Presence of the vertical motions before main horizontal motions appear signify arrival of

Primary (P) waves (hence the name). In addition, presence of vertical motions at about the same time

when horizontal motions appear, signifies Rayleigh surface waves. On the other hand, lack (or very

reduced amplitude) of vertical motions at about the same time when horizontal motions are present

signifies that Rayleigh surface waves are not present. This is a very rare event, that the combination of

source, path and local site conditions produce a plane shear (S) waves that surfaces (almost) vertically.

One such example (again, very rare) is a recording LSST07 from Lotung recording array in Taiwan (Tseng

et al., 1991). Figure 502.3 shows three directional recording of earthquake LSST07 that occurred on
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May 20th, 1986, at the SMART-1 Array at Lotung, Taiwan.

Figure 502.3: Acceleration time history LSST07 recorded at SMART-1 Array at Lotung, Taiwan, on

May 20th, 1986. This recording was at location FA25. Note the (almost complete) absence of vertical

motions. signifying absence of Rayleigh waves. Figure from Tseng et al. (1991).

Note almost complete lack of vertical motions at around the time of occurrence of two components

of horizontal motions, signifies absence of Rayleigh surface waves. In other words, a plane shear wave

front was propagating vertically and surfaced as a plane shear wave front. Other recordings, at locations

FA15 and FA35 for event LSST07 reveal almost identical earthquake shear wave front surfacing at the

same time (Tseng et al., 1991).

On the other hand, recording at the very same location, for a different earthquake (different source,

different path) (LSST12, occurring on July 30th 1986) revels quit different wave field at the surface, as

shown in Figure 502.4.
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Figure 502.4: Acceleration time history LSST12 recorded at SMART-1 Array at Lotung, Taiwan, on

July 30th, 1986. This recording was at location FA25. Figure from Tseng et al. (1991).
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502.2.2 Multi-Directional and Seismic Input Coming in at Inclined Angle

Both multi-directional and seismic input coming at an inclined angle is possible by using (and in fact it

is inherent to) the DRM, described in previous section. It is important to note that both seismic body

waves (P and S) and seismic surface waves (Rayleigh and Love) are present in all situations, and do

contribute to multi-directional and inclined seismic input.

Figure 502.5: Illustration of seismic body waves, namely the P (primary) and S (secondary) waves

(illustration from MTU web site).

Importance of surface waves. It has long been recognized that surface waves are responsible for majority

of destruction and the seismic energy at some distance from the epicenter during earthquakes (Kramer

(1996a), Semblat and Pecker (2009)). In a perfectly linear elastic half-space, Rayleigh waves become

significant source of seismic motions at distance R = h/(
√

(vp/vR)2 – 1) where h is hypocenter depth (for

uniform half-space) and vp is the compressional (primary) wave velocity, while vR is the Rayleigh wave

velocity (Kramer (1996a)). For example, if vR ≈ 0.93vS = 0.93× 0.6vp = 0.56vp it follows that R ≈ 1.5h

where vS is the shear wave velocity (Semblat and Pecker (2009)). Of course for a case with realistic

geology, the pattern of occurrence of Rayleigh waves is much more complex. However, since Rayleigh

waves represent the result of interaction of body waves (P and S) with the free surface, it is safe to

conclude that they are always present.
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Figure 502.6: Illustration of seismic surface waves, namely the Rayleigh and Love waves (illustration

from MTU web site).

502.2.3 Free Field Motion Development

For verification of and for full analysis of ESSI using the DRM, we develop seismic motions using a

number of approaches

• Closed form solution,

– One Component (1C) of three times one components (3 × 1C) using deconvolution (rec-

ommended) or convolution (not recommended, due to possible and negative interference of

seismic waves at depth, see examples with the SMR)

– Three Components (3C), plane waves, body and surface (Thomson, 1950; Haskell, 1953)

• Integration equation, Green’s functions (frequency – wavenumber method, fk)

• FEM (fault slip model using Real-ESSI)

• Finite Difference models, SW4

502.2.3.1 Details of Free Field Motion Development

Closed Form Solution Analytic solutions used can impose simplified motions (not all components):

• Monochromatic harmonic wave
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– Body wave: P, SV, SH

– Surface wave: Rayleigh, Love

– Incident, reflected, transmitted wave components

• Ormsby wavelet

– Body wave: P, SV, SH

– Surface wave: Rayleigh, Love

– Incident, reflected, transmitted wave components

• Ricker wavelet

– Body wave: P, SV, SH

– Surface wave: Rayleigh, Love

– Incident, reflected, transmitted wave components

Definitions for Ormsby and Ricker wavelet are given in chapter 311.2 on page 1786.

Figure 502.7: Ormsby wavelet.

Closed Form Solution – Ormsby Wavelet?

• Ormsby wavelet is a broad band signal

• Idea: ”Shake” the model (or components) with a broad frequency signal to evaluate effects of

different frequencies

• Verifying models, propagation of waves of different frequencies
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Figure 502.8: Ricker wavelet.

Closed Form Solution – Ricker Wavelet?

• Ricker wavelet is a narrow band signal

• Idea: ”Shake” the model (or components) with a narrow frequency signal to evaluate its effects

• Verifying models, propagation of waves of this particular frequency

Frequency-Wavenumber Method (fk method)

• fk method developed originally by Haskell (1964), Wang and Herrmann (1980)

• Based on Green’s functions

• Current fk program developed by Zhu and Rivera (2002)

• available at http://www.eas.slu.edu/People/LZhu

• fk program is widely used in seismology and geophysics

Fault Slip Model (FEM)

• Develop large FEM model (5km × 10km

• One element (or more) used to initiate the fault rupture

• Fault rupture can be a realistic stress drop, or Ormsby or Ricker wavelets

• Use initial set of motions before the reflections of boundaries interfere (but can use those too!)

FE Model
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Figure 502.9: 2D model.

Figure 502.10: 2D model, with observation point location.

FE Model

Properties

• Model Properties

– 190 m × 100 m × 10 m dimension

– Vs = 100 m/s
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– Poisson’s ratio = 0.3

– Density = 2000 kg/m3

• Input Wave Properties

– Ricker Wavelet (dominant frequency 1 Hz)

– Body (SH, SV), Surface (Rayleigh)

– 0◦, 30◦ inclination from the vertical

– Evaluated closed-form solution (incident, reflected waves)

0 2 4 6 8 10
Time (s)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

D
is

p
la

ce
m

e
n
t 

(m
) Analytic solution at top

Observed at top, FEM

Figure 502.11: Results at the observation point, vertical incident SV wave, horizontal displacements.

SH Ricker Wavelet Input, 0 deg, y Component

502.2.4 Free Field Ground Motions Development: Closed Form Solution

502.2.4.1 Three Component, 3C Motion Development

Thomson (1950), Haskell (1953)

502.2.4.2 One Component, 1C Motion Development

Note on Viscous Damping for 1C Deconvolution and Convolution. Viscous damping used in 1C analytic

solution needs to be properly calibrated. For deconvolution, using analytic/closed form solution, propa-

gation of surface record back in time to the depth the viscous damping model used is Voigt damping.

Voigt viscous damping features constant damping ratio over all frequencies. For propagation of that

same wave back to the surface using FEM solution, Rayleigh viscous damping is used. Rayleigh viscous

damping is not constant over frequencies. Rayleigh damping parameters α and β (C = α ∗M + beta ∗K)

have to be calibrated. Calibration of Rayleigh viscous damping parameters α and β has to be done in
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such a way so that Rayleigh viscous damping can approximate behavior of Voigt viscous damping over

main frequency range of seismic motion,

It is suggested that for deconvolution and convolution, propagation of motions upward, damping

parameters first be set as zero (0.0) for both de-convolution and FEM propagation. This is done to

verify the model and make sure that everything else is correct and that surface free field response can be

recovered. This is important in order to make sure that surface motions can be successfully recovered

from prescribed motions, through deconvolution and convolution process, that rely on different methods,

and without influence of damping.

Only after model is verified with no viscous damping, one should proceed to calibrate viscous damping

parameters. The common values that work well for a number of examples, using Real-ESSI, are:

1 a_0 = 10/s; // calibrated parameters
2 a_1 = 0.06*s; //calibrated parameters
3

4 soil_damping = 0.02; // change this value accordingly
5 add damping # 1 type Rayleigh with a0 = a_0*soil_damping a1 = a_1*soil_damping ←↩

stiffness_to_use = Initial_Stiffness;
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502.2.5 Free Field Ground Motions Development: Frequency Wave Number Method (Green’s

functions) (fk)

Figure 502.12: 3D model.

FE Model

Figure 502.13: 3D model, with observation point location.

FE Model
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Properties

• Model Properties

– 90 m × 90 m × 90 m dimension

– Vs1 = 300 m/s, Vs2 = 400 m/s

– Poisson’s ratio1 = 0.25, Poisson’s ratio2 = 0.25

– Density1 = 940 kg/m3, Density2 = 990 kg/m3

• Input Wave Properties

– Generated using fk program

– Variables are chosen to simulate Northridge Earthquake
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Figure 502.14: Observation point displacements (top - EW, middle - NS, bottom UD) comparison

between fk motions and DRM motions (that were developed using fk motions as input.

FEM Results, EW, NS, UD Components

Artificial 1D Downhole Array
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Figure 502.15: Artificial 1D Downhole Array

Figure 502.16: EW Component, Station Depth = 0 m
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Figure 502.17: Component, Station Depth = 50 m

Figure 502.18: Component, Station Depth = 0 m
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Figure 502.19: Component, Station Depth = 50 m

Figure 502.20: Component, Station Depth = 0 m
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Figure 502.21: Component, Station Depth = 50 m
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502.2.6 Free Field Ground Motions Development: Fault Slip Model

Figure 502.22: Fault Slip FE Model at -2km -2km.

Figure 502.23: Fault Slip FE Model at -2km -3km.

Figure 502.24: Fault Slip DRM Model.

Properties
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.2. FREE FIELD GROUND MOTIONS page: 2279 of 3287

• Model Properties

– Vs = 700 m/s

– Poisson’s ratio1 = 0.1

– Density = 1800 kg/m3

• Input Wave Properties

– Generated using 2 different ‘Fault Slip Model’ (2 km × 2 km, 2 km × 3 km)

– Ricker Wavelet (dominant frequency of 1 Hz)

Figure 502.25: Fault Slip Model, -2km -2km, (left) X and (right) Z displacements at middle top.

Figure 502.26: Fault Slip Model, -2km -3km, (left) X and (right) Z displacements at middle top.

Plane Wave Model
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Figure 502.27: Fault Slip Model, -2km -2km, X displacements outside of Γ (DRM) domain.
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Figure 502.28: Plane wave model.
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Figure 502.29: 2D fault slip model disposition.

Figure 502.30: Seismic source mechanics. stress drop, Ormsby wavelet.
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Figure 502.31: (left) Ormsby wavelet displacement and (right) Fourier transform. Used for stress drop.
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Figure 502.32: Location of a measuring array, vertical, above source.
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Figure 502.33: Accelerations along the measuring array above source: (left) horizontal, and (right)

vertical.
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Figure 502.34: Location of a measuring array, vertical, middle.
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Figure 502.35: Accelerations along the measuring array in the middle: (left) horizontal, and (right)

vertical.
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Figure 502.36: Location of a measuring array, horizontal, surface.
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Figure 502.37: Accelerations along the measuring array at the surface: (left) horizontal, and (right)

vertical.
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502.2.6.1 Input Motion

The point fault (element) is located at X=3000m and Z=3000m as shown in Fig. 502.113 (that is 2000m

under and 2000m to the left of surface location of interest). The source is at the angle of 45deg, from

the site at the middle top of the model. Pure shear is applied on the fault element in order to generate

both S wave and P wave as a double couple source. In the actual analysis, equivalent nodal forces are

used, and were obtained from constant surface tractions. Equivalent nodal forces for 27 nodes brick are

shown in Fig. 502.38.

X

Y
Z

Figure 502.38: Equivalent nodal forces to apply pure shear on 27 node brick element (Loading factors:

1/36 for black, 4/36 for blue, 16/36 for red)

Ormsby wavelet is used as the time history of the shear force amplitude. The time history and its

Fourier amplitude are shown in Figs. 502.39 and 502.40.
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Figure 502.39: Time history of the Ormsby wavelet (f1 = 0 [Hz], f2 = 1 [Hz], f3 = 1 [Hz], f4 = 1.5 [Hz])
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Figure 502.40: Fourier amplitude of the Ormsby wavelet (f1 = 0 [Hz], f2 = 1 [Hz], f3 = 1 [Hz], f4 = 1.5

[Hz])
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502.2.6.2 Select Seismic Motions, Displacement Array Traces

The horizontal and vertical displacements, and particle motions in XZ plane at the site are observed in

Fig. 502.41. Particle motions of every 1.2 sec are shown in the figure as well. Various color schemes

were used for time section, to aid visualization of particle motions.

The point seismic source, as used in this case, a single finite element with cycles of pure shear,

creates both primary (P, compressional) and secondary (S, shear). Initially only the P wave reaches the

point of interest at the surface in the middle of the model, because of the radiation pattern and the site

location (directly, at 45deg away from the point source). On the other hand S wave propagates in the

horizontal and vertical directions most strongly while there are traces of this wave away from these main

propagation directions. With the P wave velocity Vp = 4899m/s (assumed of isotropic material) the first

arrival time is 0.58 sec. Once the body waves hit the surface, surface (Rayleigh) wave is generated and

propagates horizontally. Therefore, the obvious P wave particle motion can be seen only for the first 1.2

sec, while the ellipse orbit, which is the typical Rayleigh characteristic, is observed after 1.2 sec.
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Figure 502.41: Displacement and particle motions at the site. (right top) Displacement time history,

(let top) particle motion of the whole analysis, (bottom) particle motions of every 1.2 sec, S: Start, E:

End
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To understand wave propagation better, displacement time history and particle motions are plotted

on five observatory arrays.

• Array1: diagonal array from the fault to the site (Fig. 502.42)

• Array2: horizontal array from the source (Fig. 502.65)

• Array3: vertical array upon the fault (Fig. 502.77)

• Array4: horizontal array on the surface (Fig. 502.89)

• Array5: vertical array below the site (Fig. 502.101)

Array1: Displacement time history and particle motion on Array1 are shown in Fig. 502.43 to Fig. 502.53.

Fig. 502.43 and Fig. 502.53. show the resultant motions at the site and the fault respectively. It is ex-

pected that the direct wave propagating along this array is only P wave, not S wave, because of the

radiation pattern and the homogeneous medium. Nodes moves in both horizontal and vertical direction

together with the direct P wave. Dominant P wave can be seen at the beginning of the motion at every

single nodes on this array. It is also observed that direct wave amplitude decreases when the observation

point is far from the fault, a so called geometrical damping effect. Since direct S wave does not exist

in this array, all non-diagonal displacements are caused by reflection wave and Rayleigh wave. Particle

motion of Rayleigh wave is observed as ellipse in XZ plane. It is obviously confirmed that the effect of the

Rayleigh wave is more significant as the observation point is near the surface. In order to make it easy

to distinguish P and S wave propagation along the diagonal array, these resultant waves are converted

into radial/transverse coordinate from vertical/horizontal coordinate (RT conversion). Converted waves

of Array1 are shown in Fig. 502.54 to Fig. 502.64. It is now easy to observe P wave motion in radial

direction and no S wave in Transverse direction.

Array2 and Array3: Results of Array2 are shown in Fig. 502.66 to Fig. 502.76 and results of Array3 are

shown in Fig. 502.78 to Fig. 502.88. Since S wave is dominant in vertical and horizontal direction from

the source while P wave is dominant in diagonal direction, only horizontal motion and vertical motion

are observed well for the first several seconds until reflected wave and surface wave reach on these two

arrays. Geometry damping effect is observed as well as P wave propagation in Array1. Rayleigh wave

effects are propagating in depth. We can still see Rayleigh wave motion on these arrays, even though

the effect of surface wave is less significant than Array1.
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Array 4: Results of Array4 are shown in Fig. 502.90 to Fig. 502.100. Array4 is located on the surface

and affected by surface wave effects the most.

Array 5: Results of Array5 are shown in Fig. 502.102 to Fig. 502.112. It is sometimes assumed (by

others) that wave propagate in vertical direction near the surface in case of horizontally layered ground

model. In this case, the incident angle is 45 degree and the vertical wave propagation assumption is

obviously not valid.

fault element

Z=5000m

45°

Z=0m

X=0m X=5000m X=10000m

Figure 502.42: Observation array of Array1
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Figure 502.43: diagonal array X=5000m, Z=5000m
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Figure 502.44: diagonal array X=4800m, Z=4800m
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Figure 502.45: diagonal array X=4600m, Z=4600m
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Figure 502.46: diagonal array X=4400m, Z=4400m
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Figure 502.47: diagonal array X=4200m, Z=4200m
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Figure 502.48: diagonal array X=4000m, Z=4000m
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Figure 502.49: diagonal array X=3800m, Z=3800m
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Figure 502.50: diagonal array X=3600m, Z=3600m
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Figure 502.51: diagonal array X=3400m, Z=3400m
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Figure 502.52: diagonal array X=3200m, Z=3200m
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Figure 502.53: diagonal array X=3000m, Z=3000m
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Figure 502.54: diagonal array X=5000m, Z=5000m
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Figure 502.55: diagonal array X=4800m, Z=4800m
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Figure 502.56: diagonal array X=4600m, Z=4600m
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Figure 502.57: diagonal array X=4400m, Z=4400m
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Figure 502.58: diagonal array X=4200m, Z=4200m
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Figure 502.59: diagonal array X=4000m, Z=4000m
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Figure 502.60: diagonal array X=3800m, Z=3800m
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Figure 502.61: diagonal array X=3600m, Z=3600m
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Figure 502.62: diagonal array X=3400m, Z=3400m
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Figure 502.63: diagonal array X=3200m, Z=3200m
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Figure 502.64: diagonal array X=3000m, Z=3000m
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Figure 502.65: Observation array of Array2
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Figure 502.66: X array2 X=5000m, Z=2950m
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Figure 502.67: X array2 X=4800m, Z=2950m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.2. FREE FIELD GROUND MOTIONS page: 2304 of 3287

Z 
di

sp
(m

) xmax= 0.00000
zmax= 0.00015

0.0-1.2s

S
E

xmax= 0.00004
zmax= 0.00057

1.2-2.4s

SE

xmax= 0.00026
zmax= 0.00285

2.4-3.6s

SE

xmax= 0.00127
zmax= 0.02177

3.6-4.8s

S

E xmax= 0.01012
zmax= 0.02177

4.8-6.0sS

E

X disp(m)

Z 
di

sp
(m

) xmax= 0.01275
zmax= 0.00941

6.0-7.2s

S

E

X disp(m)

xmax= 0.00470
zmax= 0.01103

7.2-8.4s

S

E

X disp(m)

xmax= 0.00486
zmax= 0.01024

8.4-9.6s

S

E

X disp(m)

xmax= 0.01409
zmax= 0.01358

9.6-10.8s

S

E

X disp(m)

xmax= 0.01074
zmax= 0.00948

10.8-12.0s

S

E

0.05 0.00 0.05
X disp(m)

0.05

0.00

0.05

Z 
di

sp
(m

)

0 2 4 6 8 10 12
time(s)

0.05

0.00

0.05

X 
di

sp
(m

) 0.05

0.00

0.05

Z 
di

sp
(m

) dummy0.0-2.4s 2.4-4.8s 4.8-7.2s 7.2-9.6s 9.6-12.0s

Figure 502.68: X array2 X=4600m, Z=2950m
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Figure 502.69: X array2 X=4400m, Z=2950m
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Figure 502.70: X array2 X=4200m, Z=2950m
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Figure 502.71: X array2 X=4000m, Z=2950m
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Figure 502.72: X array2 X=3800m, Z=2950m
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Figure 502.73: X array2 X=3600m, Z=2950m
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Figure 502.74: X array2 X=3400m, Z=2950m
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Figure 502.75: X array2 X=3200m, Z=2950m
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Figure 502.76: X array2 X=3000m, Z=2950m
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Figure 502.77: Observation array of Array3
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Figure 502.78: Z array2 X=2950m, Z=5000m
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Figure 502.79: Z array2 X=2950m, Z=4800m
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Figure 502.80: Z array2 X=2950m, Z=4600m
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Figure 502.81: Z array2 X=2950m, Z=4400m
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Figure 502.82: Z array2 X=2950m, Z=4200m
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Figure 502.83: Z array2 X=2950m, Z=4000m
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Figure 502.84: Z array2 X=2950m, Z=3800m
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Figure 502.85: Z array2 X=2950m, Z=3600m
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Figure 502.86: Z array2 X=2950m, Z=3400m
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Figure 502.87: Z array2 X=2950m, Z=3200m
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Figure 502.88: Z array2 X=2950m, Z=3000m
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Figure 502.89: Observation array of Array4
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Figure 502.90: X array1 X=5000m, Z=5000m
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Figure 502.91: X array1 X=4800m, Z=5000m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.2. FREE FIELD GROUND MOTIONS page: 2318 of 3287

Z 
di

sp
(m

) xmax= 0.00006
zmax= 0.00009

0.0-1.2s

S

E

xmax= 0.00026
zmax= 0.00023

1.2-2.4s

S

E

xmax= 0.00042
zmax= 0.00053

2.4-3.6s

S

E

xmax= 0.00455
zmax= 0.00696

3.6-4.8s

S

E
xmax= 0.01485
zmax= 0.00871

4.8-6.0s

S
E

X disp(m)

Z 
di

sp
(m

) xmax= 0.00666
zmax= 0.00432

6.0-7.2s

S

E

X disp(m)

xmax= 0.02192
zmax= 0.01020

7.2-8.4s

S
E

X disp(m)

xmax= 0.02136
zmax= 0.01175

8.4-9.6s

S E

X disp(m)

xmax= 0.00902
zmax= 0.01483

9.6-10.8s

S
E

X disp(m)

xmax= 0.01617
zmax= 0.01181

10.8-12.0s

S

E

0.05 0.00 0.05
X disp(m)

0.05

0.00

0.05

Z 
di

sp
(m

)

0 2 4 6 8 10 12
time(s)

0.05

0.00

0.05

X 
di

sp
(m

) 0.05

0.00

0.05

Z 
di

sp
(m

) dummy0.0-2.4s 2.4-4.8s 4.8-7.2s 7.2-9.6s 9.6-12.0s

Figure 502.92: X array1 X=4600m, Z=5000m
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Figure 502.93: X array1 X=4400m, Z=5000m
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Figure 502.94: X array1 X=4200m, Z=5000m
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Figure 502.95: X array1 X=4000m, Z=5000m
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Figure 502.96: X array1 X=3800m, Z=5000m

Z 
di

sp
(m

) xmax= 0.00013
zmax= 0.00012

0.0-1.2s

S

E

xmax= 0.00080
zmax= 0.00034

1.2-2.4s

S
E

xmax= 0.00294
zmax= 0.00102

2.4-3.6s

S
E

xmax= 0.01936
zmax= 0.01478

3.6-4.8s

S
E

xmax= 0.02899
zmax= 0.01174

4.8-6.0s

S
E

X disp(m)

Z 
di

sp
(m

) xmax= 0.00675
zmax= 0.01728

6.0-7.2s

SE

X disp(m)

xmax= 0.01899
zmax= 0.01763

7.2-8.4s

S

E

X disp(m)

xmax= 0.01690
zmax= 0.00902

8.4-9.6s

S
E

X disp(m)

xmax= 0.02025
zmax= 0.00899

9.6-10.8s

S
E

X disp(m)

xmax= 0.01471
zmax= 0.00718

10.8-12.0s

S

E

0.05 0.00 0.05
X disp(m)

0.05

0.00

0.05

Z 
di

sp
(m

)

0 2 4 6 8 10 12
time(s)

0.05

0.00

0.05

X 
di

sp
(m

) 0.05

0.00

0.05

Z 
di

sp
(m

) dummy0.0-2.4s 2.4-4.8s 4.8-7.2s 7.2-9.6s 9.6-12.0s

Figure 502.97: X array1 X=3600m, Z=5000m
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Figure 502.98: X array1 X=3400m, Z=5000m
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Figure 502.99: X array1 X=3200m, Z=5000m
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Figure 502.100: X array1 X=3000m, Z=5000m
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Figure 502.101: Observation array of Array5
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Figure 502.102: Z array1 X=5000m, Z=5000m
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Figure 502.103: Z array1 X=5000m, Z=4800m
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Figure 502.104: Z array1 X=5000m, Z=4600m
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Figure 502.105: Z array1 X=5000m, Z=4400m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.2. FREE FIELD GROUND MOTIONS page: 2326 of 3287

Z 
di

sp
(m

) xmax= 0.00005
zmax= 0.00003

0.0-1.2s

S

E

xmax= 0.00025
zmax= 0.00015

1.2-2.4s

S

E

xmax= 0.00047
zmax= 0.00032

2.4-3.6s

S
E

xmax= 0.00659
zmax= 0.00208

3.6-4.8s

S
E

xmax= 0.00912
zmax= 0.00692

4.8-6.0s

S

E

X disp(m)

Z 
di

sp
(m

) xmax= 0.00855
zmax= 0.00386

6.0-7.2s

S

E

X disp(m)

xmax= 0.01355
zmax= 0.00769

7.2-8.4s

S E

X disp(m)

xmax= 0.01100
zmax= 0.00567

8.4-9.6s

S
E

X disp(m)

xmax= 0.00609
zmax= 0.00415

9.6-10.8s

S
E

X disp(m)

xmax= 0.00933
zmax= 0.00614

10.8-12.0s

S

E

0.05 0.00 0.05
X disp(m)

0.05

0.00

0.05

Z 
di

sp
(m

)

0 2 4 6 8 10 12
time(s)

0.05

0.00

0.05

X 
di

sp
(m

) 0.05

0.00

0.05

Z 
di

sp
(m

) dummy0.0-2.4s 2.4-4.8s 4.8-7.2s 7.2-9.6s 9.6-12.0s

Figure 502.106: Z array1 X=5000m, Z=4200m
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Figure 502.107: Z array1 X=5000m, Z=4000m
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Figure 502.108: Z array1 X=5000m, Z=3800m
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Figure 502.109: Z array1 X=5000m, Z=3600m
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Figure 502.110: Z array1 X=5000m, Z=3400m

Z 
di

sp
(m

) xmax= 0.00003
zmax= 0.00011

0.0-1.2s

S

E xmax= 0.00014
zmax= 0.00057

1.2-2.4s

S

E

xmax= 0.00030
zmax= 0.00236

2.4-3.6s

S

E

xmax= 0.00402
zmax= 0.01575

3.6-4.8s

S

E xmax= 0.00733
zmax= 0.02253

4.8-6.0s

S
E

X disp(m)

Z 
di

sp
(m

) xmax= 0.00900
zmax= 0.00581

6.0-7.2s
S

E

X disp(m)

xmax= 0.00702
zmax= 0.01257

7.2-8.4s

S
E

X disp(m)

xmax= 0.00831
zmax= 0.01239

8.4-9.6s

S

E

X disp(m)

xmax= 0.00986
zmax= 0.01259

9.6-10.8s
S

E

X disp(m)

xmax= 0.00764
zmax= 0.01166

10.8-12.0s

S

E

0.05 0.00 0.05
X disp(m)

0.05

0.00

0.05

Z 
di

sp
(m

)

0 2 4 6 8 10 12
time(s)

0.05

0.00

0.05

X 
di

sp
(m

) 0.05

0.00

0.05

Z 
di

sp
(m

) dummy0.0-2.4s 2.4-4.8s 4.8-7.2s 7.2-9.6s 9.6-12.0s

Figure 502.111: Z array1 X=5000m, Z=3200m
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Figure 502.112: Z array1 X=5000m, Z=3000m
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502.2.6.3 Animations of Fault Slip Motions

All the motions are developed from a point source at a depth of –2km while the distance from the center

of the model (where the observation point, or object of interest is) is 1km (27deg off vertical), 2km

(45deg off vertical) and 3km (56deg off vertical). There are three surface soil cases, homogeneous, single

layer of soft soil and two layers of soft soil. Stress drop (input, pure shear at the one element) is defined

by an Ormsby wavelet.

• Homogeneous soil/rock, 56deg off vertical) (link to a movie, 39MB)

• Homogeneous soil/rock, 45deg off vertical) (link to a movie, 32MB)

• Homogeneous soil/rock, 27deg off vertical) (link to a movie, 37MB)

• Single layer soft soil with homogeneous soil/rock, 56deg off vertical) (link to a movie, 30MB)

• Single layer soft soil with homogeneous soil/rock, 45deg off vertical) (link to a movie, 34MB)

• Single layer soft soil with homogeneous soil/rock, 27deg off vertical) (link to a movie, 32MB)

• Two layers of soft soil with homogeneous soil/rock, 56deg off vertical) (link to a movie, 30MB)

• Two layers of soft soil with homogeneous soil/rock, 45deg off vertical) (link to a movie, 31MB)

• Two layers of soft soil homogeneous soil/rock, 27deg off vertical) (link to a movie, 32MB)

Details motions at the top of the model:

• Homogeneous soil/rock, 45deg off vertical) motions at the top 2km × 2km (link to a movie, 30MB)

• Homogeneous soil/rock, 45deg off vertical) motions at the very top, location of observation point

and/or structure (link to a movie, 134MB)
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502.2.6.4 Point Fault Slip Motions, Arrays and Particle Motions

The FEM model used is shown in Fig. 502.113. The brief description of FEM model is as follows:

• Model size: 10000m × 20m × 5000m

• Mesh size: 10m

• Element size: 20m (27 node brick element is used)

• Elastic parameters:

– Poisson ratio ν = 0.4

– Shear wave velocity Vs = 2000m/s

• Fixed boundary at X = 0m, X = 10000m, and Z = 0m

• Free boundary at Z = 5000m

• Plane strain condition in y-direction (all nodes on y = 0m, y = 20m are fully fixed).

fault element

Z=5000m

45°

Z=0m

X=0m X=5000m X=10000m

Figure 502.113: FEM model (red square:fault element, blue circle: observation site)
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502.3 Dynamic Soil-Foundation-Structure Interaction

Theoretical details for this section are given in Section 109.3 on page 566.

502.3.1 Animation of the DRM on a 1D Stack of Elements

(link to a movie, 8.9MB)
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502.3.2 Using External Finite-Diference Seismic Code for DRM Motions

Introduction This section explores the numerical conditions under which a high-performance fourth-

order finite difference code for seismic modeling, henceforth the ‘seismic’ code, can be coupled successfully

with a general purpose parallel non-linear finite element simulator, the FEM simulator, through the use of

the domain reduction method (DRM). The approach taken consists in modeling a simple homogeneous

half-space subjected to a single double-couple point-source to generate motions. DRM will be used to

input these motions into the FEM simulator for an equivalent model of the domain, and the response

compared at a control point on the surface. The seismic code used is SW4 (Sjögreen and Petersson,

2011) developed at Lawrence Livermore National labs, while the FEM simulator will be the Real-ESSI

Simulator developed at the University of California Davis. Both are high-performance parallel programs

highly regarded in their respective domains of application.

As originally proposed by Bielak et al. (2003a), the DRM input motions can be generated using a

different method to compute the seismic wave field than the FEM code used to model site and structure.

The rationale being that both methods will be approximating the same equations of elastodynamics and

should both converge to the same solution as grid spacing tends to get smaller. What was implicit in

that seminal work, but not explored or tested, is the effect of using different methods with possibly

different orders of convergence, and how this affects convergence of the overall method.

The advantage of using different codes is that it is possible to choose a ‘seismic modeling’ code which

is better suited and optimized for simulating earthquakes and then use the DRM to input the resulting

motions into a code which is more suitable for modeling of non-linear soil and structural behavior in the

chosen site. For example, SW4 has very convenient features for the input of double couple sources and

also for extended sources, a task which would be much harder to achieve in a civil-engineering oriented

code such as Real-ESSI Simulator. It is important to use the proper tools for modeling task, both for

efficiency and credibility of the results used for design.

When solving the elastodynamic equations, it is expected that different solution schemes will yield

different solutions for the same problem. Even if the seismic code’s finite difference grid points coincide

spatially with the FE nodes, the different mathematical transformations involved in advancing the solution

and the different orders of approximation will no-doubt lead to some degree of disagreement on the

nodal values. When using the seismic code as DRM input into the FEM code it is expected that this

disagreement will manifest itself in two ways: first, that the solution at a common control point within

the DRM domain and on the seismic domain will differ and, second, consequently there will be a portion

of the wave-field that will not be absorbed at the DRM boundary leading to outgoing motions which

need to be damped out. Again, it is expected that both the difference in motions and the outgoing
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Figure 502.114: Model layout and coordinate system origin and orientation for (a) SW4 (b) Real-ESSI

Simulator

wave-field will diminish with decreasing spatial and temporal discretization.

Format for Node Coordinates, for Direct Extraction of Motions from SW4 This is based on Rodgers

(2017).

A list of DRM nodes need to be supplied to SW4 modeler.

This list should be a simple 4-column asci file with node-name (6-10 characters), x, y, z location

relative to origin (top, center) of ESSI domain.

Example Figure 502.115 illustrates the general layout of the DRM boundary elements with respect to

the SW4 model for the domain used in this study. The seismic model consists on a single material

elastic box of size 8 km × 4 km × 4 km, various values of the grid size are chosen (h = 10 m or 20 m), a

point double-couple source is placed at (2 km, 2 km, 2 km) such that it represents a reverse fault with a

45◦ dip. The center of both models coincide. SW4 uses a right-handed coordinate system with z-axis

positive downwards, while the FE meshes developed1 for Real-ESSI simulator use a right-handed system

with z-axis upwards. Both models x-axis’ and origins are made to coincide. Thus, the transformation

from SW4 coordinates to Real-ESSI Simulator coordinates is:

xSW4 = xESSI ySW4 = –yESSI zSW4 = –zESSI (502.1)

Figure 502.115 shows the construction of the DRM model used in this study. It consists of an

internal domain (within the DRM boundary) of dimensions 200 m × 200 m × 40 m with discretization

dx = dy = dz = h = 5 m, 10 m or 20 m. The elastic properties throughout both SW4 and Real-ESSI

1This is for convenience when using the meshing program gmsh to develop the mesh.
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Table 502.1: Mesh information for DRM models used with Real-ESSI simulator.

h, m Number of Nodes Number of elements

20.0 28,577 3,200

10.0 78,141 9,000

5.0 295,829 35,000

Simulator domains are such that the speed of P-waves is Vp = 2000 m/s, the speed of S-waves is

Vs = 1000 m/s and the density is ρ = 2000 kg/m3.

For the absorbent layer 4, 8 and 16 elements are used with Rayleigh damping ratios of ξ = 0, 0.05, 0.1.

The Real-ESSI meshes are made up of second-order 27-node bricks with 27 Gauss-integration points.

Table 502.1 summarizes the number of elements and nodes for the Real-ESSI Simulator meshes used.

The Real-ESSI meshes are generated using gmsh (Geuzaine and Remacle, 2009) and results are

visualized using the custom visualizer plugin for ParaView (https://www.paraview.org/) (Ayachit,

2015).

Figure 502.116 shows the visualization of the displaced Real-ESSI mesh for h = 20 m (left) and

h = 10 m (right) at time point t = 3.40 s. No damping was used at the absorbing boundary at this point.

This instant in time corresponds to the end of the arrival of the P-wave and, it can be observed, that DRM

is working to eliminate the outgoing motions as the absorbing boundary has little or no displacement.

Furthermore, the h = 10 m mesh seems to be doing a better job at absorbing the out-going motions.

Figure 502.117 shows the same situation for time point t = 3.93 s. At this time the S-wave is coming

into the domain. It can be seen that the h = 20 m domain is producing large out-going motions while

the finer domain is still handling the out-going motions.

Figures 502.116 shows the trace plots for the control point at the center of the domain for both

SW4 results as well as the results with DRM when using a DRM domain with discretization h = 20 m

and h = 10 m respectively.

P-waves are faster than S-waves, in this case, by a factor of 2. Since wave resolvability for a given

time-step size is proportional to wave speed, P-waves will be better resolved than S-waves. This manifests

itself in the fact that initially, for P-wave arrivals, DRM works at capturing out-going motions and later,

for S-waves, some out-going motions escape the boundary. These out-going motions are not absorbed by

damping since damping is not applied at this point, therefore, reflecting off the model boundaries back

into the domain. This why there is oscillatory motion, corresponding to energy trapped in the system,

observed after t = 4 s. Note that the oscillatory motion is mainly seen in the x-component and not the

others.

To mitigate these trapped waves, the absorbent boundary is assigned Rayleigh damping of varying

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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intensities. Rayleigh damping can be applied in many ways. From (Tafazzoli, 2012) several lessons can

be drawn regarding how to design the absorbent boundary for maximum efficiency. The following is a

summary of these lessons:

• Increasing in-absorbent-boundary damping has the general effect of reducing the amplitude of

waves reflected at the domain boundary back into the internal domain.

• Sharp damping contrasts produce additional reflected waves at the DRM/absorbing boundary

interface.

• Gradually increasing the damping ratio with increasing distance to the DRM boundary alleviates

the reflection issue while retaining a similar damping efficiency.

• Increasing the thickness in elements of the absorbent boundary also increases the damping effi-

ciency.

• When selecting two frequencies to provide for specification of Rayleigh damping, the best frequency

is not related to the ‘natural’ frequency of the soil stratum as is commonly assumed in practice and

some research. The best frequency is related, instead, to the frequency of the out-going waves.

In this study a uniform value for the damping ratio assigned to the Rayleigh damping coefficients is

used. Figure 502.119 shows the effect that this additional damping has on DRM models with different

sizes. The beneficial effect of this damping in capturing the energy leaking out from the DRM boundary

is apparent.

Perfect matching of the motions obtained with SW4 and Real-ESSI simulation with DRM modeling

was not achieved. A key reason for this is that the SW4 simulations were done at h = 20 m while varying

the mesh size for the Real-ESSI simulations. This means that SW4 motions had to be interpolated

between grid spaces when the grids did not match. SW4 provides only ‘nearest’ neighbor interpolation

for requested output stations, so an improvement on this is needed if better matching is expected.

Alternatively, it is possible to achieve better agreement by decreasing the discretization on both domains.

From these experiments it is possible to extract the following design considerations when seeking to

couple DRM-based finite element simulations with other forms of seismic modeling:

• Size of the DRM domain is irrelevant for the ‘free-field’ problem.

• Relative order of accuracy of the Finite-element mesh and the code that produces seismic input is

important when designing mesh sizes for both the finite-element and the seismic simulation.
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• Matching motions perfectly might result in expensive computations, beyond what is needed due

to physical and numerical constraints for the propagation problem alone.

• Out-going motions due to mismatch need to be absorbed outside the DRM domain by some

method.

Ultimately, the purpose of using the DRM is as the enabling technology allowing the rational modeling

of perturbations of the free-field model in order to reduce the cost of jointly modeling complex site and

structure response along with the seismic wave propagation problems. In such a case, out-going motions

will be unavoidable and have to be dealt with efficiently. In any such study it will be very important to

demonstrate that the DRM motions and forces developed agree with the free-field model as a basic way

of showing the adequacy of the numerical implementations involved in the modeling effort.

Practical considerations Using SW4 to generate motions for DRM in Real-ESSI requires the following

steps:

1. Generate a large-scale geologic model in SW4.

2. Generate a FEM mesh for Real-ESSI, generate the following lists:

• Coordinates and numbers of nodes in DRM layer.

• A flag indicating whether a particular node is internal or external.

• List of elements in DRM layer.

3. Within the SW4 input file write recorder lines (USGS format) for all DRM nodes. Example:

1 rec x=4037.5 y=2050.0 z=40.0 file=node000734b sacformat=0 usgsformat=1

4. Run SW4.

5. Collect the results for each recorded node in one DRM HDF5 input file.

Some notes to complement the above steps.

• Nodes in SW4 input file must have coordinates in SW4 coordinates. Remember that, in SW4,

down is positive. The best is to develop FEM model centered around origin of a coordinate system,

so that determining the position in SW4 coordinates is a simple translation and flipping of the

signs for both Z and Y coordinates.
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• Use the SW4 output file name in a meaninful way to determine which node number it belongs to.

In the example nodeXXXY where XXX has the node number and Y is either e or b depending if it

is an internal (boundary) node or external.

• Remember to reverse the sign of Y and Z results when writing the DRM HDF5 input file from the

SW4 results.

• It is recommended to use chunking and compression in HDF5 dataset to speed up loading times

and optimize storage usage.

Template code for generating HDF5 input suitable for DRM analysis in Real-ESSI.

need to move the code here and not have it in Figure-files!!!!

1 import h5py
2 import scipy as sp
3 import time
4

5 #Global parameters
6 Ntimesteps = 1000
7 dt = 0.0001
8 Nnodes = 10000
9 Nelements = 4000

10

11 #Create HDF5 file - note filename
12 h5file = h5py.File("earthquake.h5.drminput","w")
13

14

15 #Initialize memory
16 u = sp.zeros((3*Nnodes, Ntimesteps), dtype = sp.double) #Will hold dispalcements
17 a = sp.zeros((3*Nnodes, Ntimesteps), dtype = sp.double) #Will hold accelerations
18

19 nodelist = sp.zeros(Nnodes,dtype=sp.int32)
20 is_boundary_node = sp.zeros(Nnodes,dtype=sp.bool_)
21 elements = sp.zeros(Nelements,dtype=sp.int32)
22

23 #Time vector
24 t = sp.linspace(0,dt*(Ntimesteps-1),dt)
25

26 # =========================
27 # =========================
28 # =========================
29 # * Read in u from SW4 output, determine v and a (differentiate).
30 #
31 # * Remember to flip signs for Y and Z components.
32 #
33 # * Also read in:
34 # - is_boundary_node (boolean vector, see above)
35 # - nodelist (integer vector, see above)
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36 # - elements (integer vector, see above)
37 #
38 # This is problem and formatting specific and likely to change depending on many
39 # factors.
40 # =========================
41 # =========================
42 # =========================
43

44 # Count numbers of nodes (DRM input file needs this)
45 Nb = 0
46 Ne = 0
47 for i in range(Nnodes):
48 if is_boundary_node[i] == True:
49 Nb += 1
50 else:
51 Ne += 1
52

53

54 #Write out HDF5 file.
55

56 h_acc = h5file.create_dataset("Accelerations", (3*Nnodes,Ntimesteps), ←↩
dtype=sp.double, data=a)

57 h_dis = h5file.create_dataset("Displacements", (3*Nnodes,Ntimesteps), ←↩
dtype=sp.double, data=u)

58

59 h5file.create_dataset("Time", data=t)
60 h5file.create_dataset("Elements", data=elements)
61 h5file.create_dataset("DRM Nodes", data=nodelist)
62 h5file.create_dataset("Is Boundary Node", data=is_boundary_node, ←↩

dtype=sp.int32) #This array has 1 if the node at the corresponding position ←↩
in "DRM nodes" array is a boundary node and zero if not

63 h5file.create_dataset("Number of Exterior Nodes", data=Ne)
64 h5file.create_dataset("Number of Boundary Nodes", data=Nb)
65

66 #For big cases, it is better to do this one record at a time.
67

68 # #Write timestamp (time format used is that of c "asctime" Www Mmm dd hh:mm:ss ←↩
yyyy example: Tue Jan 13 10:17:09 2009)

69 localtime = time.asctime( time.localtime(time.time()) )
70 h5file.create_dataset("Created",data=str(localtime))
71

72 #Close HDF5
73 h5file.close()
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Figure 502.115: Free field DRM model for verification of SW4 and Real-ESSI Simulator coupling. From

top, internal domain, DRM boundary, absorbent element layer, complete model.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.3. DYNAMIC SOIL-FOUNDATION- . . . page: 2341 of 3287

Figure 502.116: Visualization of the DRM solution at time t = 3.40 s for DRM mesh sizes of h = 20 m

(left) 10 m (right), SW4 mesh is h = 20 m for both cases. Color shows magnitude of displacement vector.

Arrival of P wave is correctly resolved on both meshses.

Figure 502.117: Visualization of the DRM solution at time t = 3.93 s for same setup as Figure 502.116,

with color showing magnitude of the displacement vector. Arrival of S wave is better resolved on the

h = 10 m mesh but not on the h = 20 m mesh as can be seen by looking at the out-going motions. SW4

mesh is h = 20 m for both cases
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Figure 502.118: Generated motions at the center node (x = 4000m, y = 2000, z = 0), blue blue shows

SW4 motions generated with an h = 2 m grid, and myorange orange shows motions obtained with Real-

ESSI using DRM and variable mesh size.
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h = 20 m
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Figure 502.119: Results from computing motions with Real-ESSI Simulator within the DRM domain for

different ESSI mesh sizes h and Rayleigh damping with ξ = 0.1. All SW4 motions were computed for

h = 20 m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 502.3. DYNAMIC SOIL-FOUNDATION- . . . page: 2344 of 3287

502.3.3 Seismic Wave Propagation Modeling and Simulation: Numerical Accuracy and Stability

The accuracy of a numerical simulation of dynamic SFSI is controlled by two main parameters: a) the

spacing of the nodes of the finite element model (∆h) and b) the length of the time step ∆t. Assuming

that the numerical method converges toward the exact solution as ∆t and ∆h go toward zero the desired

accuracy of the solution can be obtained as long as sufficient computational resources are available.

502.3.3.1 Grid Spacing ∆h

In order to represent a traveling wave of a given frequency accurately about 10 nodes per wavelength

λ are required for finite element with linear displacement interpolations between nodes2 (Bathe and

Wilson, 1976; Hughes, 1987; Argyris and Mlejnek, 1991). Fewer than 10 nodes can lead to numerical

damping as the discretization misses certain peaks of the wave. In order to determine the appropriate

maximum grid spacing the highest relevant frequency fmax that is present in the model needs to be found

by performing a Fourier analysis of the input motion. Typically, for seismic analysis fmax is about 10 Hz.

By choosing the wavelength λmin = v/fmax, where v is the wave velocity, to be represented by 10 nodes

the smallest wavelength that can still be captured partially is λ = 2∆h, corresponding to a frequency of

5 fmax. This is true for finite elements with linear interpolation of displacements.

In general, for finite elements with different interpolation of displacements the following conclusion

can be made about the number of elements used for proper wave propagation:

• Linear interpolation finite elements (1D 2-node truss, 2D 4-node quad, 3D 8-node brick): hLE ≤
v/(10 fmax)

• Quadratic interpolation finite elements (1D 3-node truss, 2D 9-node quad, 3D 27-node brick):

hQE ≤ v/(2 fmax)

• Structural elements (beams, shells) have at least quadratic interpolation functions (Euler-Bernoulli

beam uses cubic Hermite polynomials) and since material is very stiff, and wave propagation speed

is very high, these elements usually satisfy wave propagation criteria a priori.

For example, element size for propagating fmax = 20 Hz, for for linear interpolation element ∆hLE ≤
v/200 Hz while for quadratic interpolation element ∆hQE ≤ v/40 Hz. When material plastifies,

element size needs reduction, depending on the reduction in (shear) wave velocity.

2If quadratic finite elements are use, for example a 27 node brick than only two elements are needed per wave length

as they can properly represent the single wave (as they have quadratic interpolation for displacements, and feature 5 along

the wave).
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Nonlinear, Inelastic, Elastic-Plastic Material: It is very important to note that recommended grid spacing

changes if material stiffness changes. In other words, for softer material grid spacing is to be be reduced.

This means that for elastic-plastic material, when material plastifies the element size should be reduced.

Detailed analysis if grid spacing, finite element size for elastic-plastic material is provided by Watanabe

et al. (2017).

502.3.3.2 Time Step Length ∆t

The time step ∆t used for numerically solving nonlinear vibration or wave propagation problems has to

be limited for two reasons. The stability requirement depends on the numerical procedure in use and

is usually formulated in the form ∆t/Tn < value. Tn denotes the smallest fundamental period of the

system. Similar to the spatial discretization Tn needs to be represented by about 10 time steps. While

the accuracy requirement provides a measure on which higher modes of vibration are represented with

sufficient accuracy, the stability criterion needs to be satisfied for all modes. If the stability criterion is

not satisfied for all modes of vibration, then the solution may diverge. In many cases it is necessary to

provide an upper bound to the frequencies that are present in a system by including frequency dependent

damping to the model.

The second stability criterion results from the nature of the finite element method. As a wave front

progresses in space it reaches one point after the other. If the time step in the finite element analysis is

too large the wave front can reach two consecutive elements at the same moment. This would violate

a fundamental property of wave propagation and can lead to instability. The time step therefore needs

to be limited to

∆t <
∆h
v

(502.2)

where v is the highest wave velocity.

502.3.3.3 Nonlinear Material Models

If nonlinear material models are used the considerations for stability and accuracy as stated above don’t

necessarily remain valid. Especially modal considerations need to be examined further for these cases.

It is however save to assume that the natural frequencies decrease as plastic deformations occur. The

minimum time step required to represent the natural frequencies of the dynamic system can therefore

taken to be the same as in an elastic analysis.

A high frequency component is introduced due to plastic slip and counter balancing of the resulting

displacement. This is especially true if a linear algorithm with no iterations within one time step is used.

Figure 502.120 shows a part of an acceleration time history from an analysis involving elastic-plastic
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Figure 502.120: Resulting acceleration using Linear and Newton-Raphson algorithms

material. It can be seen that the out-of-balance forces at the end of a time step can be quite large if

a linear algorithm is used. While the Newton-Raphson algorithm minimizes out-of-balance forces within

one time step the linear algorithm requires several time steps to return to a stable equilibrium path.

The frequencies corresponding to these peaks are typically of the order of 1 /(a few∆t). Normally

the time step is small enough so that these frequencies don’t interfere with the input motion. They can

be prevented from propagating through the model by an appropriate choice of algorithmic or material

damping.

For stability the time step used in a nonlinear analysis needs to be smaller than in a linear elastic

analysis. By how much it has to be reduced is difficult to predict as this depends on many factors such

as the material model, the applied loading or the numerical method itself. Argyris and Mlejnek (1991)

suggest the time step to be reduced by 60% or more compared to the time step used in an elastic

analysis. The best way to determine whether the time step is appropriate for a given analysis consists in

running a second analysis with a reduced time step.

502.3.4 Seismic Wave Propagation Modeling and Simulation: Domain Boundaries

One of the biggest problems in dynamic SFSI in infinite media is related to the modeling of domain

boundaries. Because of limited computational resources the computational domain needs to be kept

small enough so that it can be analyzed in a reasonable amount of time. By limiting the domain however

an artificial boundary is introduced. As an accurate representation of the soil-structure system this

boundary has to absorb all outgoing waves and reflect no waves back into the computational domain.

The most commonly used types of domain boundaries are presented in the following:
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• Fixed or free

By fixing all degrees of freedom on the domain boundaries any radiation of energy away from the

structure is made impossible. Waves are fully reflected and resonance frequencies can appear that

don’t exist in reality. The same happens if the degrees of freedom on a boundary are left ’free’, as

at the surface of the soil.

A combination of free and fully fixed boundaries should be chosen only if the entire model is large

enough and if material damping of the soil prevents reflected waves to propagate back to the

structure.

• Absorbing Lysmer Boundaries

A way to eliminate waves propagating outward from the structure is to use Lysmer boundaries. This

method is relatively easy to implement in a finite element code as it consists of simply connecting

dash pots to all degrees of freedom of the boundary nodes and fixing them on the other end (Figure

502.121).
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Figure 502.121: Absorbing boundary consisting of dash pots connected to each degree of freedom of a

boundary node

Lysmer boundaries are derived for an elastic wave propagation problem in a one-dimensional semi-

infinite bar. It can be shown that in this case a dash pot specified appropriately has the same

dynamic properties as the bar extending to infinity (Wolf, 1988). The damping coefficient C of

the dash pot equals

C = A ρ c (502.3)
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where A is the section of the bar, ρ is the mass density and c the wave velocity that has to

be selected according to the type of wave that has to be absorbed (shear wave velocity cs or

compressional wave velocity cp).

In a 3d or 2d model the angle of incidence of a wave reaching a boundary can vary from almost 0◦

up to nearly 180◦. The Lysmer boundary is able to absorb completely only those under an angle

of incidence of 90◦. Even with this type of absorbing boundary a large number of reflected waves

are still present in the domain. By increasing the size of the computational domain the angles of

incidence on the boundary can be brought closer to 90◦ and the amount of energy reflected can

be reduced.

• Infinite elements

• More sophisticated boundaries modeling wave propagation toward infinity (boundary elements)

For a spherical cavity involving only waves propagating in radial direction a closed form solution for

radiation toward infinity, analogous to the Lysmer boundary for wave propagation in a prismatic rod,

exists (Sections 3.1.2 and 3.1.3 in Wolf (1988)). Since this solution, in contrast to the Lysmer

boundary, includes radiation damping it can be thought of as an efficient way of eliminating

reflections on a semi-spherical boundary surrounding the computational domain.

More generality in terms of absorption properties and geometry of the boundary are provided by

the various boundary element methods (BEM) available in the literature.

502.3.5 Soil/Rock Modeling and Simulation

502.3.6 Soil/Rock – Foundation Contact (Slipping and Gaping) Modeling and Simulation
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502.3.7 Buoyancy Modeling and Simulation

For self weight and other static loads, and if we assume infinitely stiff structures, buoyant force B can

be calculated and applied as a single resultant force directed upward. Calculation of static buoyant force

is based on the Archimedes principle: ”Any object immersed in water is buoyed up by a force equal to

the weight of water displaced by the object”, and therefor such a buoyancy force is given as:

B = ρwgV (502.4)

where ρw = 999.972 kg/m3 is the mass density of water (at temperature of +4oC with small changes

of less than 1% up to +40oC), g = 9.81 m/s2 is the gravitational acceleration, and V is the volume of

displaced fluid.

For seismic and other dynamic loading, and for structures which have finite stiffness (real stiffness),

effects of buoyant (pressure) force will have to be modeled and simulated using methods that are more

sophisticated than the simple static approach noted above.

Two main approaches to buoyancy modeling are described below:

• Sharp contrast in permeability (naturally occurring), between soil/rock and foundation concrete

can be used to model buoyant pressures (and consequentially buoyant forces). This approach

has been used before (Cheng and Jeremić, 2009b) and it works quite satisfactory if gap is not

expected to form between soil/rock and concrete. Using sharp contrast approach, the buoyant

forces are created by providing physical permeabilities for soil/rock (permeable rock, which can have

high permeability) and for concrete which is quite impermeable (but not absolutely impermeable,

permeability of concrete is couple of orders of magnitude lower than that of soil/rock). When the

water tries to move (natural process due to pore water pressure gradient), it is restricted by the low

permeability of the concrete, and thus forms a region of pressure (hydrostatic for static loading,

or a different, dynamic pressure that results from dynamic behavior of soil/rock). This pressure is

actually acting as a buoyant force on the concrete foundation. However, this approach only works

well when there is no gap opening. In addition to that, there are modeling problems, with high

pressure gradient close to the boundary between soil/rock and concrete, modeler needs to carefully

mesh that region, to overcome too large pressure gradients in single layer of finite elements. A

better approach, with or without gap opening is to use special coupled contact/interface finite

element described below.

• Special coupled contact/interface finite element explicitly models water displacements and pres-

sures and allows for explicit gap opening, filling of gap with water, slipping (frictional) when the
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gap is closed, and pumping of water as gap opens and closes. This contact/interface element in-

corporates the pore water pressure information, as well as the information about the displacement

(movement) of pore water within a gap. It is based on a previous version of the contact/interface

element with two important features in addition to features available to the dry contact element:

– Pore water pressure values (physical values obtained from simulation) from one side of the

special coupled contact/interface element (side in contact/interface with saturated soil/rock)

will be communicated (directly transferred) to the other side of this element. With this water

pressure information available, the applied water pressure will be acting on the foundation

finite elements. Foundation finite element will integrate pressure field on a given face (or

faces) of the element and will create a buoyant force. Integration of pressure on an element

face into buoyant forces is done using standard finite element procedure for calculating nodal

forces (these are the buoyant forces in our case) from face pressures (Jeremić et al., 1989-

2025):

Fbuoyant
Ia =

∫
Sm

f buoyant
a HI dSm (502.5)

where Fbuoyant
Ia is the buoyant force at each node of the foundation finite element, f buoyant

a

is the distribution of buoyant pressures on a face the foundation finite element, and HI is a

standard shape function of the foundation finite element (in our case, linear for 8 node brick,

or quadratic for a 27 node brick). The integration is performed over a surface area Sm of

each finite element face where buoyant pressures are present. With buoyant forces acting

at the bottom (or sides) of a foundation, a proper reduction (change) of contact/interface

pressures (forces) will be calculated. This means that the slipping (frictional) criteria of the

contact/interface element will have all the necessary information about the normal forces

(now reduced because of buoyant forces) and will determine is the contact/interface will slip

and remain attached (at the location of that contact/interface element).

– Gap opening (physical values obtained from simulations) will be used to create suction and

compression pore/gap water field. This will be achieved by connecting the displacements

of the pore fluid from soil/rock finite elements (we will be using u-p-U finite elements for

soil/rock modeling (Jeremić et al., 2008)), to the contact/interface element node on the

opposite side of the special coupled contact element. This way, if the gap opens, and the con-

tact/interface element now features an opening, the water displacements from the soil/rock

side of the contact/interface element will be ”pulled” to follow the uplifting foundation. This

water movement will create pressure gradients in the soil/rock elements beneath, which will
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be accurately modeled using fully coupled u-p-U finite elements for soil/rock (Jeremić et al.,

2008; Jeremić and Cheng, 2009).

Using above described approach to modeling will provide for high fidelity modeling and simulation

of the buoyant pressures/forces, which will resolve all the difficulties related to this modeling.

502.3.8 Structural Foundations Modeling and Simulation

27 node solid bricks
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502.3.9 Seismic Isolator Modeling and Simulation

Latex Rubber

Neoprene Rubber

Rubber with lead core

Frictional Pendulum
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502.3.10 Structural Components Modeling and Simulation

Shells

Thick shells
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502.3.11 Nonlinear Time Domain Analysis Progress and Example

502.3.11.1 Model Development

Mesh Development

Material Model Development

Loading Stages Development

502.3.11.2 Simulation Development

Sequential versus Parallel

Simulation Progress and Control

502.3.11.3 Seismic Motions

Full 3C Seismic Wave Field

• 1C wave field (deconvolution)

• 3C, inclined or vertical (body and surface waves) wave field, using 2D FEM fault slip model, see

section 502.2.6 on page 2278

• 3C, inclined (body and surface waves) wave field, using fk (see section 706.1 on page 2926

• 3C, inclined (body and surface waves) wave field, using analytic solutions (Kausel, 2006)

Seismic Input Using DRM Theory, see section 109.4.1.1 on page 569.

Input, see section section 205.3 on page 827

502.4 Step by Step, Hierarchical Inelastic ESSI Analysis

502.4.1 ESSI Model Verification

ESSI Model Verification consists of gradual, hierarchical development of the large, detailed ESSI model,

with verification of model response as sophistication level increases.

Recommended nonlinear/inelastic modeling and simulation phases for an SSI system are shown in

Figure 502.122.
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Figure 502.122: Step by step, hierarchical inelastic ESSI modeling and simulations.

It is highly recommended to proceed in phases, from simpler to more sophisticated, while employing

sound engineering judgement at the end of each phase in order to understand static and dynamic response

of the system and its components. For example, for an SSI system shown in Figure 502.122, advice is

to follow these steps:

• start with a 1D model for one component (1C) shear wave, SV free field wave propagation, linear

elastic soil, simple wavelet motions (Ricker, Ormsby)

• For a 1D-1C free field wave propagation, linear elastic soil, use more realistic motions, using

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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deconvolution of surface motions and convolution of rock motions from depth

• For a 1D model, apply 1 component (1C) vertical motions, a free field P wave

• For a 1D model, apply 2 component (2C), shear wave, SV, motions, for a free field wave propa-

gation,

• For a 1D model, apply 3 component (3×1C) motions, for a free field wave

• For a 1D-1C, 1D-2C and 1D-3×1C free field wave propagation, update soil model to mild nonlin-

ear/inelastic and perform wavelet and seismic motions, as noted above

• For a 1D-1C, 1D-2C and 3×1C models, update soil model to more realistic nonlinear/inelastic

model and perform wavelet and seismic motions, as noted above

• Develop a 3D model of a free field and follow above steps, 3D-1C, 3D-2C, 3D-3×1C, elastic,

inelastic, wavelet, realistic seismic input

• For a 3D model develop full 3C motions, inclined waves, and test your system, using phased

modeling of material (elastic-inelastic), and motions, wavelets, then realistic seismic motions

• For a 3D-1C, 3D-2C and 3D-3×1C, models, add foundation slab, follow steps from above, elastic,

inelastic soil, wavelets, realistic motions.

• Develop model of a structure, fully fixed DoFs at the bottom and perform eigen-analysis.

• For a fixed base structural model, apply motions from above,

• Progression in modeling sophistication from simpler material models, linear elastic, to more so-

phisticated, inelastic material models, should be followed for each component of the model, soils,

structures, special elements, &c.

• Finally you might be able to develop a full 3D model, first linear then slowly nonlinear/inelastic,

first simple motions, wavelets, then more realistic 1C, 2C, 3×1C and 3C motions

Progression in modeling sophistication from simpler material models, linear elastic, to more sophis-

ticated, inelastic material models, as suggested above, should be followed by progression of simulation

sophistication, as noted below:

• Start with linear elastic material models for all components, including bonded contact/inter-

face/joints.
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• Proceed with explicit, non convergence check simulation at both constitutive and global levels:

– On constitutive level, use Forward Euler algorithm. Theory for the Forward Euler, explicit con-

stitutive algorithm is described in Section 104.3, on page 206, in Jeremić et al. (1989-2025).

Commands for constitutive level Forward Euler algorithm are given in Section 205.3.5.15, on

page 1117, in Jeremić et al. (1989-2025).

– With Forward Euler, explicit computations on the constitutive level, it is only appropriate

to use global, finite element algorithm with no convergence check, that is also known as

the explicit global algorithm. This algorithm is described in some detail in Section 107.3,

on page 523, in Jeremić et al. (1989-2025). Commands for constitutive level Forward Euler

algorithm are given in Section 205.3.5.14, on page 1116, in Jeremić et al. (1989-2025).

• For fully implicit algorithm, with enforcement of equilibrium on constitutive and global, finite

element levels, proceed with Backward Euler (or one of the variants) on constitutive level and

Newton algorithm (or one of variants) on global level:

– On constitutive level, use Backward Euler algorithm. Theory for the Backward Euler, im-

plicit constitutive algorithm is described in Section 104.4, on page 207, in Jeremić et al.

(1989-2025). Commands for constitutive level Forward Euler algorithm are given in Sec-

tion 205.3.5.15, on page 1117, in Jeremić et al. (1989-2025).

– With Backward Euler, implicit computations on the constitutive level, it is appropriate to

use global, finite element algorithm with or without convergence check, that is, one can use

either explicit or implicit global algorithm. Thesealgorithm is described in some detail in

Section 107.3, on page 523, in Jeremić et al. (1989-2025). Commands for constitutive level

Backward Euler algorithm are given in Section 205.3.5.14, on page 1116, in Jeremić et al.

(1989-2025).

A section from IAEA TECODC chapter will be used for this section ...

Pecker et al. (2022)

Input files for all the examples are available online at this LINK. All the examples can run directly at

the Amazon Web Services, through Real-ESSI image.

502.4.2 ESSI Model Validation

Quality assurance and confidence in aalysis results is developed through full program verification, all the

available model validation, as described in in chapters in part 300 on page 1436. For a particular model

that is analyzed, step by step analysis procedures are decribed in section 502.4 on page 2354.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/Step_by_Step_Inelastic_Analysis


Je
re
m
ić
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It is higtly advisable to perform ESSI model validation as well. ESSI model validation increases

confidence in validity of modeling results. ESSI model validation consists of developing models for

all the components of the large detailed model, and performing analysis of each of these components

using material parameters that are used in large detailed model. While this activity does not strictly

represent validation, as results do not have to be directly compared to available tests results, ESSI model

validation provides engineers with a way to crudely, approximately assess simple mechanical behavior

model components.

For example, a number of elastic and inelastice models might be used to model behavior of soil and

rock beneath the structure. Single finite element models are to be developed, models that replicate

simple behavior, for example simple shear, pure shear, triaxial conditions, etc. Similarly, structural model

components, fibers, beams, shells, are developed and tested using simple loads, 1D uniaxial loads, pure

bending, etc. Interface, contact joint models shouls also be developed.

These simple models are to be numerically analyzed, tested, using sets of material parameters/prop-

erties that are used in a large, detailed model. Engineering analyst is to inspect simple mechanial

responses, and, using her/his experience and engineering judgement, assess approximately if material

parameters used for modeling provide reasonable mechanical response for model components.

502.5 Metamaterials and ESSI

Brillouin (1953)

Carta et al. (2017), Basone et al. (2019), Casablanca et al. (2018), Colombi et al. (2020), Mu et al.

(2020), Brûlé et al. (2014), Cacciola et al. (2020), Colombi et al. (2016a), Colombi et al. (2016b),

Krödel et al. (2015), Miniaci et al. (2016), Palermo et al. (2016), Palermo et al. (2018), Palermo and

Marzani (2018), Zaccherini et al. (2020), AL-Shudeifat et al. (2013), Shen et al. (2021), AL-Shudeifat

(2014), Wang et al. (2020b), Wenzel et al. (2020), Chen et al. (2020), Antoniadis et al. (2017), Yuksei

and Yilmaz (2020), Chondrogiannis et al. (2020), Chondrogiannis et al. (2021), Banerjee et al. (2018),

Cai et al. (2020), Wehmeyer et al. (2019), Fiore et al. (2020), Dertimanis et al. (2016), Cheng and Shi

(2018), Kacin et al. (2021), Kanellopoulos et al. (2022),
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503.1 Chapter Summary and Highlights
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503.2 Case History: Earthquake-Soil-Structure Interaction for a Bridge System

503.2.1 Prototype Bridge Model Simulation

The final objective this work is to improve current modeling techniques through the comparative study

between numerical and experimental components. In this work, a whole prototype bridge model has been

built using finite element techniques demonstrated in previous sections. Domain Reduction Method (Bielak

et al., 2003b; Yoshimura et al., 2003b) (DRM) has been used to reduce the model size while still preserves

the accuracy of the ground motion analysis.

503.2.1.1 Soil Model

Capitol Aggregates, a local quarry located in the south of Austin, has been selected to be the test site for

this project. Site characterization has been preformed to collect information on the soil (Kurtulus et al.,

2005). Based on the only triaxial test data available, a nonlinear soil constitutive model is developed in

this work for prototype finite element analysis.

Undrained triaxial compression test has been carried out on one, 1.5in diameter triaxial test specimen

trimmed from an undisturbed soil sample obtained from borehole at an approximate depth of 10.6ft.

The initial size and index properties of the soil specimen are given in Table 503.1 (Kurtulus et al., 2005).

Table 503.1: Index Properties of the Undisturbed Triaxial Test Specimen

Soil Index Property Inital After Consolidation Failure

Diameter D (inch) 1.50 1.48 1.56

Height H (inch) 3.00 2.87 2.56

Total Unit Weight γt (pcf ) 107.3 111.1 112.8

Water Content w (%) 18 18 18

Dry Unit Weight γd (pcf ) 90.9 94.3 95.7

Void Ratio e1 0.84 0.77 0.75

Degree of Saturation Sr1(%) 57 62 64
1Specific Gravity Gs is assumed to be 2.68.

In the triaxial cell, the specimen was allowed to come into equilibrium (compress/consolidate with

drainage lines open) under an isotropic pressure equal to the assumed in-situ mean total stress, which

is about 5.6psi. Upon equilibrating, the specimen was sheared under undrained conditions with a strain

rate of %1 per hour. No pore pressure readings were taken since the specimen was unsaturated. The

resulting stress-strain curve is presented in Figure 503.1. An estimate of the undrained shear strength in

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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terms of total stresses was measured as 13.41psi (1931psf ) at about 9% strain. The specimen failed in

a bulging mode. The index properties of the specimen at failure are presented in Table 503.1.

Figure 503.1: Total Stress Strain Curve Determined from Undrained Triaxial Compression Test (Undis-

turbed Sample from Depth 10.6ft)

Based on the laboratory triaxial test data, a nonlinear elastic-plastic soil model has been developed

to calibrate the finite element simulation. Associative Drucker-Prager plasticity model, combined with

nonlinear Armstrong-Frederick kinematic hardening rule, yields good match between laboratory data and

numerical results, as shown in Figure 503.2. The same model has been exposed to various confinements

to test robustness of the model for soils at different depths.

503.2.1.2 Element Size Determination

The accuracy of a numerical simulation of dynamic SFSI (Soil-Structure-Foundation-Interaction) prob-

lems is controlled by two main parameters (Preisig, 2005):

1. The spacing of the nodes of the finite element model ∆h

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 503.2: Total stress strain curve obtained using simulation of triaxial test (from depth 10.6ft)

2. The length of the time step ∆t.

Assuming that the numerical method converges toward the exact solution as ∆t and ∆h go toward zero

the desired accuracy of the solution can be obtained as long as sufficient computational resources are

available.

As presented in Preisig (2005), in order to represent a traveling wave of a given frequency accurately

about 10 nodes per wavelength are required. Fewer than 10 nodes can lead to numerical damping as

the discretization misses certain peaks of the wave. In order to determine the appropriate maximum grid

spacing the highest relevant frequency fmax that is present in the model needs to be found by performing

a Fourier analysis of the input motion. Typically, for seismic analyses fmax is about 10Hz. By choosing

the wavelength λmin = v/fmax, where v is the wave velocity, to be represented by 10 nodes the smallest

wavelength that can still be captured partially is λ = 2∆h, corresponding to a frequency of 5fmax.

The maximum grid spacing should not exceed

∆h ≤ λmin
10

=
v

10fmax
(503.1)

where v is the smallest wave velocity that is of interest in the simulation.
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Table 503.2: Maximum Element Size Determination (fmax = 10HZ)

Depth (ft) Thickness (ft) vshear (fps) ∆hmax (ft) hmax (m)

0 1 320 3.2 0.98

1 1.5 420 4.2 1.28

2.5 4.5 540 5.4 1.65

7 7 660 6.6 2.01

14 7.5 700 7.0 2.13

21.5 17 750 7.5 2.29

38.5 half-space 2200 22.0 6.7

In this work, the prototype site chosen is Capitol Aggregates, a local quarry located in the south of

Austin. According to the site characterization report Kurtulus et al. (2005), we obtain Table 503.2 for

element size determination.

Mechanical properties of soil changes with cyclic loadings. In order to predict more accurately the

dynamic behaviors of soil subject to earthquake loadings, various laboratory and in situ tests have been

performed to examine the degradation of dynamic soil properties. Equivalent linear model has been used

extensively in practice (Kramer, 1996b). Moduli reduction curve (G/Gmax) and damping ratio relationship

have been obtained for prototype soil at the site of Capitol Aggregates as shown in Figure 503.3.
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Figure 503.3: Comparison of the Variation in Normalized Shear Modulus and Damping Ratio with

Shearing Strain from the Resonant Column Tests with Modulus Reduction Curves proposed by Seed et

al. (1986) and Darendeli (2001) (Kurtulus et al., 2005)
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Table 503.3: Element Size Determination after Degradation of G(vs) (fmax = 10HZ)

Depth (ft) Thickness (ft) vs (fps) Min G/Gmax2 Min vs ∆hmax (ft) hmax (m)

0 1 320 0.36 192 1.92 0.59

1 1.5 420 0.36 252 2.52 0.77

2.5 4.5 540 0.36 324 3.24 0.99

7 7 660 0.36 396 3.96 1.21

14 7.5 700 0.36 420 4.20 1.28

21.5 17 750 0.36 450 4.50 1.37

38.5 half-space 2200 0.36 1320 13.20 4.02
2The value is obtained from the lab test data, which corresponds to 0.2% strain level.

The degradation of dynamic soil properties as observed in experiments has to be considered in finite

element analysis in order to capture more accurate behaviors. As the shear wave velocity correlates with

shear modulus by Equation 503.2,

vshear =
√

G
ρ

(503.2)

we can readily obtain the dynamic degradation of wave velocities. This leads to smaller element size

required for detailed simulation of wave propagation. The newly calculated element sizes are listed

in Table 503.3. A three bent prototype finite element model has been developed with element size

∆h = 0.6m as shown in Figure 503.4

503.2.1.3 Time Step Length Requirement

As stated in Preisig (2005), the time step ∆t used for numerically solving nonlinear vibration or wave

propagation problems has to be limited for two reasons. The stability requirement depends on the

numerical procedure in use and is usually formulated in the form ∆t = Tn < value. Tn denotes the

smallest fundamental period of the system. Similar to the spatial discretization Tn needs to be represented

by about 10 time steps. While the accuracy requirement provides a measure on which higher modes

of vibration are represented with sufficient accuracy, the stability criterion needs to be satisfied for all

modes. If the stability criterion is not satisfied for all modes of vibration, then the solution may diverge.

In many cases it is necessary to provide an upper bound to the frequencies that are present in a system

by including frequency dependent damping to the model.

The second stability criterion results from the nature of the finite element method. As a wave front

progresses in space it reaches one point after the other. If the time step in the finite element analysis is
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Figure 503.4: Detailed Three Bent Prototype SFSI Finite Element Model - 3 Bent SFSI, 484,104 DOFs,

151,264 Elements, Frequency Cutoff 10Hz, Element Size 0.3m, Minimum G/Gmax 0.08, Maximum Shear

Strain γ 1%

too large the wave front can reach two consecutive elements at the same moment. This would violate

a fundamental property of wave propagation and can lead to instability. The time step therefore needs

to be limited to

∆t <
∆h
v

(503.3)

where v is the highest wave velocity.

According to Table 503.3, the time step requirement can be obtained as

∆t <
∆h
v

= 0.00256 (503.4)

in seconds.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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503.2.1.4 Domain Reduction Method

Domain reduction method was originally proposed in Bielak et al. (2003b); Yoshimura et al. (2003b) The

theory aims at reducing the size of simulation domain by means of variable interchange. This method

features a two-stage strategy for complicated three dimensional earthquake engineering simulations. The

first is an auxiliary problem that simulates the earthquake source and propagation path effects with a

model that encompasses the source and a background structure from which the localized feature has been

removed. The second problem models local site effects. Its input is a set of equivalent localized forces

derived from the first step. These forces act only within a single layer of elements adjacent to the interface

between the exterior region and the geological feature of interest. The beauty of this theory comes from

the fact that we can use established numerical and/or experimental approaches to solve the first-stage

wave propagation problem. With the outcome of the first phase solution, we greatly reduce the size of

the problem and then efforts can be focused on the second phase to deliver more accurate simulation

on local responses. This approach can be successfully used in soil-foundation-structure-interaction finite

element modeling without the need to incorporate unnecessary far-field motion simulations.

503.2.1.5 Structural Model

The nonlinear structure model developed in this work is a joint effort of UCB and UCD. Experimental

data has been collected from UNR shaking table tests to calibrate the structural models. The effort in

this work has been focused on how to integrate advanced structure model with geotechnical model to

enable full-scale prototype simulations. The assumption that the plastic hinge forms either on the top

of column or at the fixed bottom does not hold for SFSI problems. This restriction has been removed

as the geotechnical and structural models are connected together.
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Figure 503.5: Simplified Hinge Model Developed for SFSI Prototype Simulations (Dryden, 2005)
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Figure 503.6: Moment-Rotation Relationship of Structural Hinge Model (Dryden, 2005)
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Figure 503.7: Developed structural model (Dryden, 2005).
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503.2.1.6 Simulation Scenarios

In order to fully investigate how the relative strength of soil to the structure can affect the system

behaviors, a thorough parametric study has been performed. The prototype model used in this work

is a 4-span bridge structure with 3 bents. The supporting soil foundation can be varied according to

different site conditions. The mesh of the prototype finite element model is shown in the Figure 503.8.

The underlying soil of the bridge can be soft bay mud or stiff sand. In order to fully investigate the SFSI

response, various scenarios are simulated as shown in Table 503.4 and results are analyzed.
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Table 503.4: Simulation Scenarios for Prototype SFSI Studies

Simulation Cases Soil Block 1 Soil Block 2 Soil Block 3

Case 1 Stiff Sand Stiff Sand Stiff Sand

Case 2 Stiff Sand Stiff Sand Soft Clay

Case 3 Stiff Sand Soft Clay Stiff Sand

Case 4 Stiff Sand Soft Clay Soft Clay

Case 5 Soft Clay Stiff Sand Stiff Sand

Case 6 Soft Clay Stiff Sand Soft Clay

Case 7 Soft Clay Soft Clay Stiff Sand

Case 8 Soft Clay Soft Clay Soft Clay

Constitutive Modeling of Stiff Sand For the stiff sand, the constitutive model developed in previous

sections, as shown in Table 503.1 will be used.

Constitutive Modeling of Soft Clay This soil model aims at simulating in-situ undrained behavior of

soft bay mud. Undrained shear strength can be easily determined and a simple von Mises model is used

in this research.

503.2.2 Earthquake Simulations - 1994 Northridge

Starting from this section, detailed numerical simulation results will be presented to show how the

finite element simulation techniques can be used in prototype earthquake simulations. The results are

presented here, and discussions will follow. Figure 503.9 shows the input motion recorded from 1994

Northridge which contains lots of high frequency contents. There are totally two motions are selected

for this work, one with primary short period (high frequency) contents, and the other with primary long

period (low frequency) contents. The purpose is to study every single component of the SFSI system

trying to expose how each affects the SFSI system response.

503.2.2.1 Input Motion

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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503.2.2.2 Displacement Response

This section presents the displacement results from numerical simulations.

There are a couple of interesting things that deserve attention. Firstly, in the 1994 Northridge

earthquake which contains much high frequency content, the structural response from softer soil actually

is smaller than those on top of stiff soil. This is interesting because it basically controdicts the common

notion that stiffer the soil, stabler the structure. That is the case for static design. But for earthquake

design, we are presenting different stories. Secondly, we see the soil displacement near structure is largely

affected by the SFSI. So the question if it is valid to apply outcrop motion directly to fixity point to

excite the structure, just as people commonly do, might need a revisit.

Figure 503.10: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 1)
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Figure 503.11: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 1)

Figure 503.12: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 2)
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Figure 503.13: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 2)

Figure 503.14: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 3)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2379 of 3287

Figure 503.15: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 3)
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503.2.2.3 Acceleration Response

The acceleration results are shown in this section, which also supports the observation that stiffer soil

might not necessarily enhance the stability of the structure. Acceleration time series consistently show

that the stiff soil will excite larger amplification for structures.

Figure 503.16: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 1)

Figure 503.17: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 1)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2381 of 3287

Figure 503.18: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 2)

Figure 503.19: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 2)
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Figure 503.20: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases with Free Field Motions (Soil Block 3)

Figure 503.21: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Eight Cases (Structure Bent 3)
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503.2.2.4 Displacement Response Spectra

It will be very interesting to look into the frequency domain what is going on. The structure is always

stiffer than underlying soils. So if the underlying soil is stronger, it implies the natural frequency of the

stiff soil will be closer to the structure on top of it.

If, the input motion contains much high frequency content, it will directly excite the stiffer soil so

the structure on top will receive very large amplification. This conclusion is supported by following plots.

Figure 503.22: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 1)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 503.23: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 1)

Figure 503.24: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 2)
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Figure 503.25: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 2)

Figure 503.26: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 3)
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Figure 503.27: Simulated Displacement Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 3)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2387 of 3287

503.2.2.5 Acceleration Response Spectra

The acceleration spectra have also been plotted to support the observation we made before. The

consistent discovery is that stiffer soil will have amplification concentrated to the lower period side. If

the input motion also have lower period contents, those will amplify the response the structure can see.

Figure 503.28: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 1)

Figure 503.29: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 1)
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Figure 503.30: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 2)

Figure 503.31: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 2)
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Figure 503.32: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases with Free Field Motions (Soil Block 3)

Figure 503.33: Simulated Acceleration Response Spectra, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 3)
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503.2.2.6 Structural Response

Finally we come to the point that we can see exactly how the structure responds to excitation mechani-

cally. The moment time series shown here tells some important stories during dynamic shaking. Firstly,

the structure on top of stiffer soil will yield much faster than those in soft soils. This makes perfect sense

after the observations we made in previous sections. The input motion contains very similar frequency

content as the stiff soil so stiff soil and the structure on top of it are excited much more than the

soft-soil-structure system. Secondly, The structure on top of soft soil will see larger residual response

than the stiffer soil. This exactly tells the story that the soft soil will respond much largely to the long

period content of input motions which is much closer to the natural period of the soft soil.

Figure 503.34: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 1 Pile 1)
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Figure 503.35: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 1 Pile 2)

Figure 503.36: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 2 Pile 1)
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Figure 503.37: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 2 Pile 2)

Figure 503.38: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 3 Pile 1)
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Figure 503.39: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Eight Cases (Structure Bent 3 Pile 2)
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503.2.3 Earthquake Simulations - 1999 Turkey Kocaeli

It has been well observed that the characteristics of input ground motion also affects the SFSI system re-

sponse. From the perspective of soil dynamics, stiffer soil will have shorted natural period and thus higher

natural frequency. One can argue that the conclusion that has been established in Section 503.2.4.1

might exactly reflect the case that for earthquake input motions containing much high frequency content,

the stiff soil will always receive much stronger shaking. The 1994 Northridge earthquake has been known

to contain very high frequency component as shown in Figure 503.40.

Figure 503.40: Frequency Contents of Ground Motions - Acceleration Time Series

So it will be also legitimate to question that if the ground motion has much long frequency (long

period) content, the structure supported by soft soil might be the one to be exposed.

In this work, the question has been studied using the exact finite element models that we created in

the previous sections.

The 1999 Turkey Kocaeli earthquake motion recorded at station Yarimca (YPT330) has been used

as the target long period motion to study the SFSI behavior with different soil profiles.
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It has been shown in this work that long period (low frequency) motion will excites stronger response

from softer clay soil layers which has a lower natural frequency as opposed to the conclusion we draw

before in Section 503.2.4.1.

503.2.3.1 Displacement Response

This section is designed specifically to expose the effect of input motion on SFSI system responses.

From the pictures shown below, you can see that now the structure on top of soft soil will show much

larger response from the shaking. The story behind is obvious to explain. Now the input motion from

Turkey Kocaeli earthquake contains primary long period content, which is similar to the natural frequency

content of the soft soil. During shaking, this underlying resonance excites the response of the whole

SFSI to a larger degree. While on the other hand, the stiff soil now is further away from the primary

frequency of the input motion. The consequence is that now the stiff soil will not see much excitation,

neither will the structure on top of it.

Figure 503.42: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases with Free Field Motions (Soil Block 1)
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Figure 503.43: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases (Structure Bent 1)

Figure 503.44: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases with Free Field Motions (Soil Block 2)
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Figure 503.45: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases (Structure Bent 2)

Figure 503.46: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases with Free Field Motions (Soil Block 3)
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Figure 503.47: Simulated Displacement Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of

Two Cases (Structure Bent 3)
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503.2.3.2 Acceleration Response

Acceleration plots might not show as clearly as those in displacement plots due to the reason that

acceleration is derivative of displacement, so acceleration is more responsive to higher frequency contents

than lower frequency contents. This effect actually can be observed from any recorded displacement and

acceleration spectra records. The acceleration spectra will shift to the low period or high frequency side.

This observation will be further explained in later sections when we discuss the moment time series.

Figure 503.48: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases with Free Field Motions (Soil Block 1)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2401 of 3287

Figure 503.49: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases (Structure Bent 1)

Figure 503.50: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases with Free Field Motions (Soil Block 2)
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Figure 503.51: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases (Structure Bent 2)

Figure 503.52: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases with Free Field Motions (Soil Block 3)
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Figure 503.53: Simulated Acceleration Time Series, Turkey Kocaeli 1999, Yarimca, Comparison of Two

Cases (Structure Bent 3)
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503.2.3.3 Displacement Response Spectra

The response spectra are useful tools to look deep into the frequency domain. As we explained before,

the Turkey Kocaeli shaking was picked for this study because it contains much longer period contents

that were not present in the 1999 Northridge earthquake. In this section, we can clearly see how the soil

foundation can affect the structures on top of it. Firstly, structures supported by stiff soil will only see

amplification from those low period, high frequency components. Correspondingly, structures supported

by soft soil tend to respond much more to long period, low frequency components of the shaking motion.

Secondly, this plots exactly show how important the SFSI analysis is. It will not make much sense if one

wants to analyze the structure without acknowledging the characteristics of the underlying soil foudation

and the input motion. How the structure behaves is the combination of answers to many questions such

as the stiffness of soil and the frequency contents of the motions.

Figure 503.54: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 1)
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Figure 503.55: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 1)

Figure 503.56: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 2)
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Figure 503.57: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 2)

Figure 503.58: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 3)
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Figure 503.59: Simulated Displacement Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 3)
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503.2.3.4 Acceleration Response Spectra

As we discussed before, the acceleration response shows much focused content to the high frequency (low

period) side as acceleration is the derivative of displacement. But it is still clearly shows the difference

between the structures supported by stiff soil and those supported by soft soil. SFSI is crucial in the

sense that the structure response must be determined by both short period and long period components.

The overall response is determined by the primary periods of both underlying soil and the input motion.

Figure 503.60: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 1)
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Figure 503.61: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 1)

Figure 503.62: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 2)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2410 of 3287

Figure 503.63: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 2)

Figure 503.64: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases with Free Field Motions (Soil Block 3)
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Figure 503.65: Simulated Acceleration Response Spectra, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 3)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2412 of 3287

503.2.3.5 Structural Response

The structure response now directly shows how differently the structure can react to the same input

motion, given different soil conditions. We can again see the structure on top of soft soil exhibits much

response to long period content especially for the fact that the structure on top of the soft soil reaches

maximum moment for about 3 seconds, which is not present in the stiff soil case. This is also consistent

with the observation that the displacement of the structure supported by soft soil is much larger due to

the much longer time for plastic slip when the plastic moment is reached.

Figure 503.66: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 1 Pile 1)
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Figure 503.67: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 1 Pile 2)

Figure 503.68: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 2 Pile 1)
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Figure 503.69: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 2 Pile 2)

Figure 503.70: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 3 Pile 1)
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Figure 503.71: Simulated Maximum Moment Time Series, Turkey Kocaeli 1999, Yarimca, Comparison

of Two Cases (Structure Bent 3 Pile 2)
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Table 503.5: Simulation Scenarios for Prototype ESSI Studies

Simulation Cases Soil Block 1 Soil Block 2 Soil Block 3

Case 1 Stiff Sand Stiff Sand Stiff Sand

Case 8 Soft Clay Soft Clay Soft Clay

503.2.4 Earthquake Soil Structure Interaction Effects

In the following sections we analyze various Earthquake Soil Structure Interaction (ESSI) effects.

503.2.4.1 How Strength of Soil Foundations Affects ESSI

It has been well known that stiffer soil layer will provide higher bearing capacity of structures so site

improvements will always be preferred in engineering practice when one talks about foundation design.

While for dynamic cases, this widely-held impression will not be valid anymore. In order to see

how stiffness of soil can affect the response of the whole ESSI system during earthquake shaking, two

distinct scenarios listed in Table 503.5, Case 1 with all stiff soil foundations, and Case 8 with all soft soil

foundations have been extracted to show the dynamic system response.

Figure 503.72: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of Two

Cases - First 25s (Structure Bent 1)

Case 1 and Case 8
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Figure 503.73: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of Two

Cases - First 25s (Structure Bent 2)

Figure 503.74: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of Two

Cases - First 25s (Structure Bent 3)
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Figure 503.75: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Two Cases - First 25s (Structure Bent 1)

Figure 503.76: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Two Cases - First 25s (Structure Bent 2)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 503.77: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Two Cases - First 25s (Structure Bent 3)
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It has been shown in this research that if the soil layer is stiffer, structures will see much more

amplification from earthquake shaking. Figures 503.72 to 503.74 show the acceleration response from

ESSI systems with stiff sand and soft clay, which clearly shows that stiff sand delivers much stronger

energy input to superstructures. The superstructures on top of stiffer soil also yield sooner than softer

soil layers as shown in maximum moment time series Figures 503.75 to 503.77. This observation proves

one interesting point that in order to improve structural stability, site improvement is not necessarily

improving the dynamic resistance of the ESSI system. In later section of this work, further observation

will be made to correlate this conclusion with the characteristics of the input motion.

As for the soil side, near-structure soil motion will be also affected by ESSI. So the traditional way of

assuming that recorded ground motion can be used as input motion to ESSI analysis should be revisited.

According to Figures 503.78 503.79 503.80, we can see that stiff soil also shows stronger surface motion

records during earthquake shaking.

Figure 503.78: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Two Cases - First 25s (Soil Block 1)
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Figure 503.79: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Two Cases - First 25s (Soil Block 2)

Figure 503.80: Simulated Displacement Time Series, Northridge 1994, Century City, Comparison of

Two Cases - First 25s (Soil Block 3)
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Table 503.6: Simulation Scenarios for Prototype ESSI Studies

Simulation Cases Soil Block 1 Soil Block 2 Soil Block 3

Case 3 Stiff Sand Soft Clay Stiff Sand

503.2.4.2 How Site Non-Uniformity Affects ESSI

Bridge is always constructed over gulfs or bays. It is a common case that for multi-span bridge, different

bents will inevitably sit on soil foundations with totally different strength. This site nonuniformity

complicates design because individual structure response might be largely varied.

In order to study the effects of site non-uniformity on the dynamic response of ESSI system, Case 3

listed in Table 503.6 has been selected as the test bed of our simulation. This scenario corresponds to

the case that a 4-span bridge sits on solid abutments but with much softer bay-mud type foundation in

the middle of a bay.

Figure 503.81: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Case 3

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 503.82: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Figure 503.83: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)
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Figure 503.84: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)

Figure 503.85: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)
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Figure 503.86: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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Table 503.7: Simulation Scenarios for Prototype ESSI Studies

Simulation Cases Soil Block 1 Soil Block 2 Soil Block 3

Case 2 Stiff Sand Stiff Sand Soft Clay

Case 5 Soft Clay Stiff Sand Stiff Sand

From acceleration Figures 503.81, 503.82, 503.83, and moment Figures 503.84, 503.85 and 503.86,

we can clearly see that due to the presence of a soft soil block, all structures show smaller magnitude

in response. This is especially true for the superstructure that directly sits on top of the softer soil

foundation. For Case 3 listed in Table 503.6, the superstructure (bent 2) gets much smaller response

because it is right on top of clay (bay mud) foundation. As a matter of fact, the middle bent (bent 2)

does not yield at all.

We want to extend this observation to other cases as listed in Table 503.7. Case 2 shows the scenario

that the soil foundation supporting bent 3 is soft bay mud, while Case 5 shows it for bent 1.

The same reasoning can be applied to these similar cases. Figures 503.87 to 503.92 show the results

of Case 2 and Figures 503.93 to 503.98 for Case 5.

Figure 503.87: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Case 2
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Figure 503.88: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Figure 503.89: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)
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Figure 503.90: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)

Figure 503.91: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)
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Figure 503.92: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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Figure 503.93: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Figure 503.94: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Case 5
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Figure 503.95: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)

Figure 503.96: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)
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Figure 503.97: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)

Figure 503.98: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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Table 503.8: Simulation Scenarios for Prototype ESSI Studies

Simulation Cases Soil Block 1 Soil Block 2 Soil Block 3

Case 4 Stiff Sand Soft Clay Soft Clay

Case 6 Soft Clay Stiff Sand Soft Clay

Case 7 Soft Clay Soft Clay Stiff Sand

As a final conclusion, if there exists one substantially weaker soil layer for the ESSI system, the

dynamic response for the whole ESSI system will be attenuated. The structure that directly sits on top

of the soft soil block will receive significantly smaller excitation during earthquake shakings.

The other side of story can be also formulated using results obtained in this work. What if there is

a substantially stronger soil foundation in the ESSI system? It would be worthwhile exploring the other

side of reasoning. In this work, three other cases have been used to observe how the ESSI system will

behave for the cases that one soil block is much stronger that the other blocks as listed in Table 503.8.

Figure 503.99: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Case 4
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Figure 503.100: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Figure 503.101: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)
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Figure 503.102: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)

Figure 503.103: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)
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Figure 503.104: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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It can easily be seen from Figures 503.99 to 503.104 that the structure on top of the strong soil

block will exhibit much bigger response and while the other structures sitting on weaker soil blocks will

not get much shaking at all.

Figure 503.105: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Figure 503.106: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Case 6
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Figure 503.107: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)

Figure 503.108: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)
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Figure 503.109: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)

Figure 503.110: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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Figure 503.111: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 1)

Figure 503.112: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 2)

Case 7
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Figure 503.113: Simulated Acceleration Time Series, Northridge 1994, Century City, Comparison of

Three Cases - First 25s (Structure Bent 3)

Figure 503.114: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 1)
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Figure 503.115: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 2)

Figure 503.116: Simulated Maximum Moment Time Series, Northridge 1994, Century City, Comparison

of Three Cases - First 25s (Structure Bent 3)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 503.2. CASE HISTORY: EARTHQUAKE-SOIL- . . . page: 2443 of 3287

As a conclusion, dynamic behaviors of the ESSI system on non-uniform sites can be much more

complicated than the uniform case. Generally speaking, the existence of soft soil foundation will attenuate

the dynamic response of the whole ESSI system. The structure supported by soft soil block will see far

less shakings than the ones supported by stiff soil. From the design perspective, the structure on top of

strong soil foundations should be designed to higher safety with larger margin.

503.2.4.3 How Input Motion Affects ESSI

All the results have been shown in previous section, the purpose is to investigate how the whole ESSI

system will respond to excitations with different predominant frequency.

From Figure 503.117 and 503.118, we can clearly see the difference in frequency contents of the two

ground motions studied. THe 1999 Turkey Kocaeli earthquake contains more long period components

that are not present at the 1994 Northridge site.

Figure 503.117: Frequency Contents of Ground Motions - Acceleration Time Series
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Figure 503.118: Frequency Contents of Ground Motions - Displacement Time Series
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Depending on different site conditions, ESSI system will exhibit varied response to excitations with

different predomiant frequencies. As we can see from Figure 503.42 to Figure 503.47, the structure

sitting on softer soil foundations now exhibits much larger structural response when it is subject to long

period excitations. This conclusion has been supported by every single plot that records the response

spetra of structures such as Figure 503.61, Figure 503.63 and Figure 503.65. For the long perdominant

periods present in the Kocaeli earthquake, the structures supported by soft clays exhibit much larger

amplification than those supported by stiff soils.

It is also worthwhile to look deeper into the transfer function that tells some other aspects of the

simulation scenarios. We can see from Figure 503.119 to Figure 503.130 that in terms of transfer

function, which defines the amplification from soil surface to top of the structure, the structure is able to

pick up much high frequency content that is not present within the soil layers. The visual representation

of this is that the transfer function has much larger value at the high frequency end (low period end).

This can be explained that typically people construct pile foundation inside the stiff soil (or bedrock).

In our simulation, we also have a very stiff sustaining layer to provide pile tip resistance. The results

shown in transfer functions make sense and also verifies our numerical model. Acceleration results are

also shown as following.
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Figure 503.119: Transfer Function of Simulated Displacement Time Series for Both Long Period and

Short Period Motions (Structure Bent 1, from Soil Surface to Top of Bent)

Figure 503.120: Zoomed View: Transfer Function of Simulated Displacement Time Series for Both

Long Period and Short Period Motions (Structure Bent 1, from Soil Surface to Top of Bent)
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Figure 503.121: Transfer Function of Simulated Displacement Time Series for Both Long Period and

Short Period Motions (Structure Bent 2, from Soil Surface to Top of Bent)

Figure 503.122: Zoomed View: Transfer Function of Simulated Displacement Time Series for Both

Long Period and Short Period Motions (Structure Bent 2, from Soil Surface to Top of Bent)
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Figure 503.123: Transfer Function of Simulated Displacement Time Series for Both Long Period and

Short Period Motions (Structure Bent 3, from Soil Surface to Top of Bent)

Figure 503.124: Zoomed View: Transfer Function of Simulated Displacement Time Series for Both

Long Period and Short Period Motions (Structure Bent 3, from Soil Surface to Top of Bent)
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Figure 503.125: Transfer Function of Simulated Acceleration Time Series for Both Long Period and

Short Period Motions (Structure Bent 1, from Soil Surface to Top of Bent)

Figure 503.126: Zoomed View: Transfer Function of Simulated Acceleration Time Series for Both Long

Period and Short Period Motions (Structure Bent 1, from Soil Surface to Top of Bent)
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Figure 503.127: Transfer Function of Simulated Acceleration Time Series for Both Long Period and

Short Period Motions (Structure Bent 2, from Soil Surface to Top of Bent)

Figure 503.128: Zoomed View: Transfer Function of Simulated Acceleration Time Series for Both Long

Period and Short Period Motions (Structure Bent 2, from Soil Surface to Top of Bent)
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Figure 503.129: Transfer Function of Simulated Acceleration Time Series for Both Long Period and

Short Period Motions (Structure Bent 3, from Soil Surface to Top of Bent)

Figure 503.130: Zoomed View: Transfer Function of Simulated Acceleration Time Series for Both Long

Period and Short Period Motions (Structure Bent 3, from Soil Surface to Top of Bent)
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504.1 Stick/Solid Finite Element Model

The 3D finite element model is shown in Figure (504.1). The finite element model is created using both

8 node brick elements for modeling the soil part and 27 node brick elements for modeling the foundation

part, and displacement beam element for structural components.

The size of the model is 140m along the X and Y directions, and 50m along the Z direction (the height

of the soil layer). Shear wave velocity of the soil is considered to be 700m/s with density of 2200kg/m3.

Foundation has the height of 5m embedded in the soil layer, with size of 90m in each horizontal direction.

Concrete is chosen to have shear wave velocity of 2000m/s with density of 2400kg/m3. The size of the

elements are 5m in each direction for both foundation and soil elements. Structural beam is composed

of 12 displacement beam elements attached to each other with different stiffness and mass properties.

Domain Reduction Method is used to apply the input effective forces. Both 1C and 3C wave propagation

cases are using the same finite element model for second stage of DRM analysis.

Frictional contact/interface elements are placed at the interface of foundation and soil layer. The

contact/interface element used here has the same normal and tangential stiffness with magnitude of

108N /m. Friction ratio and cohesion of the contact/interface element are µ = 0.4 and c = 0.0 respectively.

Contact elements are oriented along the Z axis of global model.

Figure 504.1: 3D finite element SFSI model considering slipping behavior at the interface of foundation

and soil layer

In general it is accepted that in order to represent a traveling wave of a given frequency, the size of

the finite elements have to have about 10 nodes per wavelength λ (Hughes (1987); Argyris and Mlejnek

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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(1991)). Using fewer than 10 nodes per wave length λ specially for linear elements leads to numerical

damping of higher frequencies as such element discretization misses certain frequencies of the wave. In

order to satisfy this requirement, the size of the mesh should satisfy Equation (504.1) which is a function

of the maximum frequency (fmax) of the input motion and also the shear wave velocity of the media

Vs =
√

G/ρ where G is the shear modulus and ρ is density of the soil.

∆h ≤ λ/10 = Vs/(10 fmax) (504.1)

In this model, the size of the elements are chosen to be 5m in each direction. Considering that the

shear wave velocity of the soil is 700m/s, the maximum frequency able to be propagated through this

model is 14Hz.
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504.1.1 Slipping behavior of SFSI models by considering 1C wave propagation

In this section, slipping behavior of SFSI systems is studied under 1C seismic wave propagation assumption

to come up with the input motion to be used for the model prepared for second stage of DRM. Morgan

Hill earthquake and Ricker wavelets are used as the source of motion.

Domain Reduction Method is used to apply the input effective forces. In order to obtain the displace-

ment and acceleration time histories used for calculating the DRM layer effective forces, a finite element

soil column with shear behavior is considered representing the 1C wave propagation. The motions are

applied at the base of the 1C finite element model and propagated through the soil column using multiple

support excitation pattern.
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504.1.1.1 Morgan Hill earthquake

Figures (504.2) to (504.3) show the acceleration and displacement time histories and FFT of the Morgan

Hill earthquake at the base of the 1D model. Figure (504.4) shows the acceleration time histories recorded

at the bottom and top of the structure in X and Z directions.

As it is observed, the acceleration time history of slipping and no-slipping model has differences in

amplitude and the phase in X direction of the model. However, the differences in phases of the recorded

motions seems to be more along the Z direction. It shows that considering the slipping behavior has

caused a lag in phase of the response. Comparison of displacement time histories of the same models

is shown in Figure (504.5) along X and Z directions. As it is shown, displacement time histories along

X direction are quite similar in this case while along Z direction they have different amplitudes due to

initial settlement and different phases. FFT of the accelerations do not have much of a difference in

terms of frequency content (shown in Figure (504.6) but they are different in amplitude which has been

observed in acceleration time histories as well. In general it is observed that in this earthquake the the

magnitude of accelerations and displacements are less at top of the structure comparing to the ones

recorded at the bottom of the structure for both slipping and no-slipping behavior cases.

Figure (504.7) shows the distribution of sliding at the interface of foundation and the soil layer at 9

different time steps of analysis from 0.5 to 1.3 seconds. As it is observed, location of maximum sliding

is changed along the foundation in time while magnitude and direction of the applied motion changes.

Slipping happens at the specific steps and parts of the interface zone in which the applied force is more

than the resistant one.
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Figure 504.2: Acceleration and displacement time histories of Morgan Hill earthquake
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Figure 504.3: FFT of Morgan Hill earthquake
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Figure 504.4: Comparison of acceleration time histories of the structure between slipping and no-slipping

models for Morgan Hill earthquake
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Figure 504.5: Comparison of displacement time histories of the structure between slipping and no-slipping

models for Morgan Hill earthquake

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 504.6: Comparison of FFT of the acceleration of the structure between slipping and no-slipping

models for Morgan Hill earthquake
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Figure 504.7: Distribution of sliding along the contact/interface for Morgan Hill earthquake (gray scale

given in meters)
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504.1.1.2 Ricker wave

In order to investigate more, the Ricker wave with dominant frequency of 1Hz is used for analysis of the

same model. The maximum of this function happens at 1 second. Figures (504.8) and (504.9) show the

acceleration and displacement time histories as well as the FFT of the Ricker wave respectively.

As shown in Figure (504.10), displacement time history of top of the structure along X direction

is higher when slipping behavior is not considered, while along Z direction it is higher considering the

slipping behavior. Since structural components have rotational degrees of freedom, the slipping behavior

and gaps in the model will lead to have more rotational movement and rocking of the foundation. There

is also a phase lag in response of the structure in slipping behavior model. The displacement time

histories at the bottom of the structure are slightly different in X direction. It can also be observed that

along Z direction, the response of the structure in slipping model is higher comparing to the no-slipping

one.

In this analysis slipping behavior make the movement to be less along the X direction. This might

be due to the fact that while the foundation and structure are moving, there are gaps created at some

parts of the interface which will affect the rocking movement of the foundation.

Figure (504.11) shows the FFT of the acceleration at the bottom and top of the structure. As it

is observed, there is a slight shift in predominant frequency of the response between the slipping and

no-slipping behavior. By considering the slipping behavior, the dominant frequency of the motion is

decreased along the X direction while is increased along the Z direction. This means that the system

gets softer along X direction and stiffer along Z direction. This is due to the gap openings and slidings at

the foundation and soil layer interface. Since sliding happens along the X direction, and also considering

the gap openings occur along the Z direction which can lead to the rocking of the foundation, it makes

the system softer along the X direction. In general this shows the fact that the natural frequency of the

system can be changed due to the slipping behavior.

Figures (504.12) and (504.13) show the distribution of gap openings and slidings at the interface

of foundation and the soil layer at 9 different time steps of analysis from 0.5 to 1.3 seconds. It can be

observed from Figure (504.12) how the location of gap openings are changed on different parts of the

contact/interface as the dynamic motion is applied. The location of gap openings are changed from one

side to the other while the magnitude and direction of the applied motion changes. The maximum of

the gap openings at these time steps happen at 1.3 second with maximum amount of 0.1m on the right

side of the interface. Maximum sliding at the shown range of time steps happens at 1.0 second with

maximum value of 0.07m on the left side of the interface.
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Figure 504.8: Acceleration and displacement time histories of Ricker wave with dominant frequency of

1Hz
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Figure 504.9: FFT of Ricker wave with dominant frequency of 1Hz
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Figure 504.10: Comparison of displacement time histories of the structure between slipping and no-

slipping models for Ricker wave
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Figure 504.11: Comparison of FFT of the acceleration of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.12: Distribution of gap openings along the contact/interface for Ricker wave (gray scale given

in meters)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.1. STICK/SOLID FINITE ELEMENT MODEL page: 2467 of 3287

0.5s 0.6s 0.7s

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0.8s 0.9s 1.0s

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

1.1s 1.2s 1.3s

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 30  40  50  60  70  80  90  100 110

X (m)

 30

 40

 50

 60

 70

 80

 90

 100

 110

Y
 (

m
)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Figure 504.13: Distribution of sliding along the contact/interface for Ricker wave (gray scale given in

meters)
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504.1.2 Slipping behavior of SFSI models by considering 3C wave propagation

In this section, the same finite element SFSI model as previous section is used with 3C wave propagated

motions as input motions for simulations. The input motion used here is Ricker wave (as shown in Figure

(504.8)).

In order to study the slipping behavior of SFSI considering 3C wave propagation for first stage of

DRM simulation, a finite element model with dimensions of 10000m× 50m× 5000m is considered. Two

cases are studied here with the source of motion (fault) to be located at (x = 3000m, y = 0, z = 3000m)

and (x = 3000m, y = 0, z = 3000m). Figures (504.14) and (504.15) show these two cases respectively.

The size of the elements is chosen to be 50m in all directions for both cases in order to reduce the

computational time. The soil parameters are: shear wave velocity of 700m/s and density of 2200kg/m3.

Analyses for the fault slip model are done by applying the motion at the nodes of one element. This

is done in order to represent the the wave propagation starting from the fault using multiple support

excitation pattern. This is representing the first stage of analysis of DRM in which a big model including

the fault is considered for free field case in order to obtain the required motions for DRM layer.

0m 5000m 10000m

5000m

0m

2000m

20
00

m

Fault

Figure 504.14: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of 45◦

with respect to the top middle point of the model
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Figure 504.15: Domain to be analyzed for the 1st stage of DRM with fault located at an angle of 34◦

with respect to the top middle point of the model
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504.1.2.1 Ricker wave, with fault located at 45◦ towards the top middle point of the model

For the first case to be studied here, Ricker wavelet is considered as an input motion with dominant

frequency of 1Hz. The fault is located with angle of 45◦ toward the top middle point of the model

(Figure (504.14)).

Displacement time histories of the structure along X and Z directions are shown in Figure (504.16).

It is observed that along the X direction, the amplitude of displacement is little less at the beginning

of the shaking of the slipping behavior model and a slight phase lag can be observed as well. However,

when the actual pick of the motion is gone, it is shown that the motion for no-slipping model will damp

out sooner. So the magnitude of displacements are higher at this time range for slipping model which

could be because of the gap/sliding at the interface zone. The displacement time histories do not have

a significant difference at the bottom of the structure. Displacement time histories observed along the

Z direction shows the fact that magnitude of displacements for slipping model is higher and will damp

out later comparing to the no-slipping model.

Acceleration time histories along X and Z directions at the bottom and top of the structure are

shown in Figure (504.17). It is observed that along the X direction the amplitude of acceleration is less

considering the slipping behavior and also there is a phase lag in the observed motion. However, the

amplitude of the acceleration along Z direction is much higher in case of considering the slipping case.

This is the same behavior observed in 1C wave propagation as well but with higher difference in time

histories amplitudes.

As shown in Figure (504.18), the dominant frequency of the response in case of slipping is less than

the one observed in no-slipping case along X direction while it is higher along Z direction.

Figures (504.19) and (504.20) show the distribution of sliding at the interface of foundation and

the soil layer at 9 different time steps of analysis from 4.5 to 5.3 seconds. It can be observed from

Figure (504.19) that maximum gap opening of 0.12m is occured at 4.7 seconds while the location of

the openings are changed during the analysis. In addition, maximum sliding at the interface zone in

this case happens at 4.8 seconds with magnitude of 0.03m. In both gap and slide distribution plots, it

can be observed that the place of maximum is close to the middle of the foundation which is where the

structure is located.

Distribution of cumulative dissipated energy due to sliding of the foundation and soil layer contac-

t/interface zone is shown in Figure (504.21). By modeling the slipping behavior at the interface zone,

part of the seismic energy is dissipated through the sliding and rocking of the foundation and therefore,

less amount will be transferred to the structural components. Figure (504.22) shows how energy can be

dissipated during the analysis for the point at the middle of the interface zone (location of the structure).
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When sliding happens, some part of the energy is dissipated as shown while there will be no change in

dissipated energy if the foundation and soil are sticking to each other.
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Figure 504.16: Comparison of displacement time histories of the structure between slipping and no-

slipping models for Ricker wave
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Figure 504.17: Comparison of acceleration time histories of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.18: Comparison of FFT of the acceleration of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.19: Distribution of gap openings along the contact/interface interface for Ricker wave (gray

scale given in meters).
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Figure 504.20: Distribution of sliding along the contact/interface for Ricker wave (gray scale given in

meters).
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Figure 504.21: Distribution of cumulative dissipated energy due to sliding along the contact/interface

for Ricker wave (gray scale given in kJ).
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Figure 504.22: Cumulative dissipated energy time history due to sliding at the mid-center of the con-

tact/interface for Ricker wave (gray scale given in kJ).
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504.1.2.2 Ricker wave, with fault located at 34◦ towards the top middle point of the model

The last simulation to be studied here is the case which the location of the fault has an angle of 34◦

with respect to the top middle point of the model (Figure (504.15)). Same Ricker wave is used as an

input motion to be propagated through the model built for first stage of DRM analysis. In this case,

since the source of the motion is farther from the interested domain (comparing to previous case with

the angle of 45◦), motions will arrive later at the interface zone, and structure start shaking later.

Displacement time histories at the bottom and top of the structure are recorded and shown in Figure

(504.23) along X and Z directions. Comparing to the previous case along X direction, at the beginning

of the shaking the magnitude of the displacement for slipping behavior model is a bit smaller while it

damps out sooner as well. Along the X direction, the trend of the displacement time histories are pretty

much the same with a slight difference in magnitudes in time.

Acceleration time histories of the structure are shown in Figure (504.24) along X and Z directions.

The same behavior is observed here as previous case such that the amplitude of the acceleration is

significantly higher for case of no-slipping along the X direction while it is less along the Z direction.

The seismic wave damps out sooner along X direction in case of considering the slipping behavior.

The frequency content change is shown in Figure (504.25) by comparing the FFT of the accelerations

obtained from the model considering the slipping behavior and the one with no-slipping behavior. It can

be observed that there is a slight change in frequency content and predominant frequencies along both

X and Z directions.

Figure (504.26) shows the distribution of gap openings along the soil-foundation contact/interface

zone for 9 time steps from 4.5 to 5.3 seconds. The maximum gap opening happens at 4.5 seconds with

magnitude of 0.12m. On the other hand, the sliding at the contact/interface zone is shown in Figure

(504.27) with maximum magnitude of 0.0035m happening at 4.5 seconds. In this case, the maximum

sliding happens around the location of the structure.

Figures (504.28) and (504.29) show the distribution of the dissipated seismic energy at the interface

zone and dissipated energy time history at the middle of the contact/interface zone respectively.
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Figure 504.23: Comparison of acceleration time histories of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.24: Comparison of acceleration time histories of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.25: Comparison of FFT of the acceleration of the structure between slipping and no-slipping

models for Ricker wave
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Figure 504.26: Distribution of gap openings along the contact/interface for Ricker wave (gray scale given

in meters)
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Figure 504.27: Distribution of sliding along the contact/interface for Ricker wave (gray scale given in

meters)
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Figure 504.28: Distribution of cumulative dissipated energy due to sliding along the contact/interface

for Ricker wave (gray scale given in kJ)
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Figure 504.29: Cumulative dissipated energy time history due to sliding at the mid-center of the con-

tact/interface for Ricker wave (gray scale given in kJ)
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504.2 Three Dimensional (3C) Seismic Wave Fields and Behavior of Nuclear

Power Plants (NPPs)

504.2.1 Development of Seismic Motions: Large Scale Free Field Model

• Large scale seismic free field

• Close up for large scale seismic free field

504.2.2 NPP Response, Model #01

• Free field at NPP location

• NPP response

• NPP response, cut-out of the model, inside response

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_small_model_April2015/movie_input.mp4
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_small_model_April2015/movie_input_closeup.mp4
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Model01_ESSI_Response_April2015/movie.mp4
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Model01_ESSI_Response_April2015/movie_npp.mp4
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Model01_ESSI_Response_April2015/movie_npp_interior.mp4


Je
re
m
ić
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504.3 3D Representative NPP Structure Model(s)
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504.3.1 Model #01, Single NPP

Total number degrees of freedom (DOFs, unknowns) for Model 01 is 681,648. Table 504.3.1, gives other

basic statistics for this model, while Figures 504.3.1 to 504.3.1 show disposition and views of the finite

element mesh.

Table 504.1: Model 01 Statistics

Components Number of

3 DOF Nodes 205875

6 DOF Nodes 14413

27 node Bricks 23916

ANDES Shells 15627

Contact elements 2124

9 DOF Beams 583

 

PLAN VIEW (distances given in ft) 
 
Notes for Auxiliary Building:  

• Interior walls except those highlighted above have a thickness = 2 ft. 
• Exterior walls have a thickness of 3 ft.  

 

3 ft thick 
wallsA A

323.00

Figure 504.30: Model01: Plan view (dimensions in feet).
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Figure 504.31: Model01: Section view (dimensions in feet).

Figure 504.32: Model01: Soil layers.
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Figure 504.33: Model01: Soil with the DRM (no slab).

Figure 504.34: Model01: Soil, with the slab and the DRM.
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Figure 504.35: Model01: Slab only.

Figure 504.36: Model01: Auxillary building
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Figure 504.37: Model01: Containment building.

Figure 504.38: Model01: Full view.
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504.3.2 Model #02, Single NPP

Simplified Representative 3D Model. Total number degrees of freedom (DOFs, unknowns) for Model

02 is 260,883. Table 504.2, gives other basic statistics for this model, while Figures 504.3.1 to 504.3.2

show disposition and views of the finite element mesh.

Table 504.2: Model 02 Statistics

Components Number of

3 DOF Nodes 84820

6 DOF Nodes 3263

27 node Bricks 9576

ANDES Shells 8384

Contact elements 1249

9 Node Beams 490

Figure 504.3.2 shows a general disposition of a representative 3D NPP model #02.
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Figure 504.39: General disposition of a representative 3D NPP model (model #02).

The model was developed as a cylindrical containment with dome top, while the auxiliary building

surrounds the containment. There is no contact/interface between containment and the auxiliary building

and current model has a gap of 0.2m while a new model (currently under development) will reduce this

gap space, while still maintaining independence of two structural systems.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Finite element mesh for components and the complete system is shown in Figures 504.3.2 to 504.3.2.

Figure 504.40: Model02: Soil with the fondation slab and the DRM layers.

Figure 504.41: Model02: Foundation slab only.

Both structures (containment and auxiliary building) were placed on a slab foundation and then

placed on a soil/rock base. Model is flexible enough that soil/rock properties and geology can be
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Figure 504.42: Model02: Layered soil.

Figure 504.43: Model02: Auxillary building.

varied. The sub-base model also includes a layer of elements for the DRM motion input, as well as two

layers of elements outside the DRM layer for damping any outgoing waves. Models with a single NPP

(Figure 504.3.2) is developed and used in analysis.
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Figure 504.44: Model02: Containment building.

Figure 504.45: Model02: Auxillary and containment buildings.
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Figure 504.46: Model02: Full view, Finite element model for a single NPP with the containment and

auxiliary buildings on a common base mat, as well as the soil/rock sub-base, DRM layer for seismic

motions input and the layers outside of DRM for damping out outgoing waves.
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504.3.3 Model #03, Double NPP, Soil-Structure-Soil-Structure Intaraction

Total number degrees of freedom (DOFs, unknowns) for Model 03 is 518,472. Table 504.3, gives other

basic statistics for this model, while Figures 504.3.3 to 504.3.3 show finite element mesh.

Table 504.3: Model III Basic Statistics

Components Number of

3 DOF Nodes 168405

6 DOF Nodes 6526

27 node Bricks 19152

ANDES Shells 16768

Contact elements 2498

9 Node Beams 950

Figure 504.47: Model03: Soil, foundation slabs and the DRM layers.
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Figure 504.48: Model03: Foundation slabs only.

Figure 504.49: Model03: Layered soil.
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Figure 504.50: Model03: Auxillary buildings.

Figure 504.51: Model03: Containment buildings.
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Figure 504.52: Model03: Auxillary and containment buildings.

Figure 504.53: Model03: Full view.
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Soil-Structure-Soil-Structure Interaction. Soil-Structure-Soil-Structure Interaction (SSSSI) need to be

taken into account sometimes, as it might contribute to higher levels of seismic shaking for NPPs. It

seems that in the case of making an assumption of elastic soil and rock beneath the NPP foundation,

the SSSSI will have a larger effect most of the time, while with the inclusion of elastic-plastic models for

soil and rock under the NPP foundation, those SSSSI influences will be reduced most of the time. This

is illustrated in one of the models that was developed for analyzing SSSSI. While SSSSI for two NPPs

(of similar stiffness and mass) conforms to the above observations, it is noted that SSSSI influences of

smaller structures on larger (NPPs) can be mostly neglected, the SSSSI influence of larger structures

(NPPs) on smaller structures Probably cannot be neglected.

There are a number of ways to model SSSSI.

• Direct Models. The simplest and most accurate is to develop a direct model of both (two or

more) structures on subsurface soil and rock, to develop input seismic motions and analyze results.

While this approach is the most involved, it is also the most accurate, as it allows for proper

modeling of all the structure, foundation and soil/rock geometries and material without making

any unnecessary simplifying assumptions.

• Symmetry and Anti-Symmetry Models. These models are sometimes used in order to reduce

complexity and sophistication of the direct model (see recent paper by Roy et al. (2013) for

example). However, there are a number of concerns regarding simplifying assumptions that need

to be made in order for these models to work. These models have to make an assumption of a

vertically propagating shear waves and as such do not take into account surface waves (Rayleigh,

Love, etc) that carry significant amount of seismic energy. These surface waves will additionally

excite NPP for rocking and twisting motions, which will then be transferred to adjacent NPP by

means of additional surface waves. If only vertically propagating waves are used for input (as is

the case for symmetry and anti-symmetry models) energy of input surface waves is neglected. It is

noted that depending on the surface wave length and the distance between adjacent structures, a

simple analysis can be performed to determine if particular surface waves, emitted/radiated from

one structure toward the other one (and in the opposite direction) can influence adjacent structures.

It is noted that the wave length can be determined using a classical equation λ = v/f where λ is

the length of the (surface) wave, v is the wave speed1 and f is the wave frequency of interest.

Table504.4 below gives Rayleigh wave lengths for four different wave frequencies (1, 5, 10, 20 Hz

and for three different Rayleigh (very close to shear) wave velocities (300, 1000, 2500 m/s):

1For Rayleigh surface waves, their speed is just slightly below the shear wave speed (within 10%, depending on elastic

properties of material), so a shear wave speed can be used for making these Rayleigh wave length estimates.
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Table 504.4: Rayleigh wave length as a function of wave speed [m/s] and wave frequency [Hz].

1.0Hz 5.0Hz 10.0Hz 20Hz

300m/s 300m 60m 30m 15m

1000m/s 1000m 200m 100m 50m

2500m/s 2500m 500m 250m 125m

It is apparent that for given separation between NPP buildings, different surface wave (frequencies)

will be differently transmitted with different effects. For example, for an NPP building that has a

basic linear dimension (length along the main rocking direction) of 100m, the surface wave the low

frequency waves (1Hz) in soft soil (vs ≈ 300m/s) will be able to encompass a complete building

within a single wave length, while for the same soil stiffness, the high frequency (20Hz) will produce

waves that are too short to efficiently propagate through such NPP structure. On the other hand,

for higher rock stiffness (vs ≈ 2500m/s), waves with frequencies all the way up to approximately

5Hz and maybe even 10Hz, have an extent that can easily be affecting a building with a 100m

dimension.

Further comments on symmetric and antisymmetric models:

– Symmetry: motions of two NPPs are out phase and this represents an unrealistic case, unless

the wave length of surface wave created by one NPP (toward the other NPP) is so large that

half wave length will encompass both NPPs. This type of motions (symmetry) is illustrated

in figure 504.3.3 below

Figure 504.54: Symmetric mode of deformation for two NPPs near each other.

– Antisymmetry: motions of two NPPs are in phase and while that is more realistic than the

symmetry case, still requires perfect matching of 1C input motions and the soil/rock condi-

tions beneath, and as such is not realistic. This type of SSSSI is illustrated in figure 504.3.3

below
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Figure 504.55: Anti-symmetric mode of deformation for two NPPs near each other.
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504.3.4 Model #04, Small Modular Reactor (SMR)

Figure 504.56: Small Modular Reactor model, top (surface) view.

Figure 504.57: Small Modular Reactor model, cross section (half model) view.
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504.4 3C (6C) vs 1C Seismic Motions

Realistic seismic wave fields are fully three dimensional, consisting of a body and surface waves, and

featuring translational and rotational components of motions at and near the surface. However, current

focus of various seismic analysis standards is on 1C motions. These 1C motions are representing one

component of a full 3C wave field. More recently, use of 3×1C wave fields have been advocated,

where 1C wave motions are replicated in other horizontal and a vertical direction with certain scaling

factors. Use of 3×1C motions makes an implicit assumption that vertical motions are resulting from 1C

compressional waves. This assumption is usually not true, as most of the vertical motions are a result

of surface wave motions.

504.4.1 Appropriate Use of 3C and 3×1C and 1C Seismic Motions

We start by pointing out one of the biggest simplifying assumptions made, is that of a presence and use

of 1C seismic waves. As pointed out in section 4.2.1 above, worldwide records do not show evidence of

1C seismic waves. It must be noted, that an assumption of neglecting full 3C seismic wave field and

replacing it with a 1C wave field can sometimes be appropriate. However, such assumption should be

carefully made, taking into account possible intended and unintended consequences.

A brief discussion on 1C, 3×1C and 3C seismic wave modelling and effects on SSI is provided below:

• 1C modelling of seismic waves is possible if material modelling for soil is linear or equivalent

linear elastic. In this case, 1C motions from different directions (horizontal) can be combined, as

superposition principle applies for linear elastic systems (soil in this case). Modeling of vertical

motions using 1C approach is abit different as an analysis needs to be performed to decide if the

vertical wave is a compressional wave (primary, P wave) or if vertical motions are a consequence of

vertical components of surface waves. More on those options is provided below in 3×1C modelling

option.

• 3×1C modeling of seismic waves is possible, similarly to the above case, if soil material is linear

or equivalent linear elastic. SAs noted above, superposition principle can be applied and motions

from each direction can be superimposed to obtained 3C motions at the surface. Since most of

the time vertical motions are a results (consequence) of Rayleigh surface waves, it is important

to analyze vertical motions and decide if modelling motions as 1C is appropriate. To this end, a

wave length of surface wave plays an important role. If the Rayleigh surface wave length (which

features both horizontal and vertical components) is longer than 12 times the dimension of the

object (NPP), than object rotations, due to differential vertical displacements at object ends, are
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indeed fairly small and object does move up and down as if excited with a vertical wave. This is

shown in Figure 504.58 as the upper case. On the other hand, if the wave is long less than 12

object dimensions, then vertical motions are gradually replaced by object rotations, while vertical

motions are reduced. Case in the lower left corner of Figure 504.58 shows a limiting case where

seismic wave is 4 times longer than object dimension, which results in minimal vertical motions

of the object, and maximum rotations, due to differential motions of object ends. For shorter

surface waves, as shown in Figure 504.58, lower right case, waves might not even be exciting any

significant dynamic behavior of the object (except local deformation) as their wave lengths are

shorter than twice object length.

• 3C modelling, when done properly will capture all the body and surface wave effects for SSI analysis

of NPPs.

L o

L o L o

Lw

Lw Lw

Figure 504.58: 1C vs 3×1C vs 3C. Three different cases of surface wave wave length. Upper case is

where the surface wave length is 12 or more times longer than the object (NPP) dimension). Lower left

case is where the surface wave length is only four times longer than the wave length, and lower right

case is where the surface wave length is only two times longer than the object length.

504.4.2 Illustration of Use of 3C and 1C Seismic Motions

A simple example can be used to illustrate differences in 1C vs 3C seismic motions. Assume that a full 3C

(6C, 3 translational components and 3 rotational components) motions at the surface are only recorded

in one horizontal direction. From a 1C recorded component one can develop a vertically propagating

shear wave in 1C, that exactly models 1C recorded motion. This is usually done using de-convolution

Kramer (1996a). Figure 504.59 illustrates the idea of using a full 3C seismic wave field to develop a

reduced, 1C wave field
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Figure 504.59: Illustration of the idea of using a full 3C (6C) seismic motion field to develop a 1C

seismic motion field.

Two seismic wave fields, the original wave field and a subset 1C wave field now exist. The original

wave field includes body and surface waves, and features translational and rotational motions. On

the other hand, subset 1C wave field only has one component of motions, usually an SV component

(vertically polarized component of S (Secondary) body waves).

Figure 504.61 shows a snapshot of a full 3C wave field, resulting from a large scale regional simulation,

from a point source (simplified), propagating P and S waves through layers.

Figure 504.62 shows a snapshot of the same wave field as in Figure 504.61, now focused on an

immediate viscinity of location of interest, where blue stick is positioned.

It should be noted that regional simulation model shown in Figures 504.62 and 504.61 is rather

simple, consisting of a point source at shallow depth in a 3 layer elastic media. Waves propagate, refract

at layer boundaries (turn more ”vertical”) and, upon hitting the surface, create surface waves (in this

case, Rayleigh waves). In our case (as shown), out of plane translations and out of plane rotations are

not developed, however this simplification will not affect conclusions that will be drawn. A seismic wave

field with full 3 translations and 3 rotations (6C) will only emphasize differences that will be shown later.

Figures 504.63 and 504.64 show local free field model with 3C and 1C wave fields respectively.

Please note that seismic motions are input in an exact way, using the Domain Reduction Method

Bielak et al. (2003a); Yoshimura et al. (2003a) and how there are no waves leaving the model out

of DRM element layer (4th layer from side and lower boundaries). It is also important to note that

horizontal motions in one direction at the location of interest (in the middle of the model) are exactly

the same for both 3C motions case and for a 1C motions case.

Figure 504.65 shows a snapshot of an animation (available through a link within a figure) of difference
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Figure 504.60: Snapshot of a full 3C wave field

Figure 504.61: Snapshot of a full 3C wave field, with body and surface waves, resulting from a point

source at 45o at depth, down-left. This is a regional scale model of a (simplified) point source (fault)

with soil layers. Figure is a link to an animation of a full wave propagation.

in response of an NPP excited with full 3C (6C) seismic wave field, and a response of the same NPP to

1C seismic wave field.

Figures 504.66 and 504.67 show displacement and acceleration response on top of containment

building for both 3C and 1C seismic wave fields.

Figures ?? and ?? show displacement and acceleration response on top of containment building for

both 3C and 1C seismic wave fields.

A number of remarks can be made:

• Accelerations and displacements (motions, NPP response) of 6C and 1C cases are quite different.

In some cases 1C case gives bigger influences, while in other, 6C case gives bigger influences.

• Differences are particularly obvious in vertical direction, which are much bigger in 6C case.

• Some accelerations of 6C case are larger that those of a 1C case. On the other hand, some

displacements of 1C case are larger than those of a 6C case. This just happens to be the case for

given source motions (a Ricker wavelet), for given geologic layering and for a given wave speed

(and length). There might (will) be cases (combinations of model parameters) where 1C motions

model will produce larger influences than 6C motions model, however motions will certainly again
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Figure 504.62: Snapshot of a full 3C wave field, with body and surface waves, resulting from a point

source at 45o at depth, down-left. This is a large regional scale model of a (simplified) fault with soil

layers. Figure is a link to an animation of a full wave propagation.

be quite different. There will also be cases where 6C motions will produce larger influences than

1C motions. These differences will have to be analyzed on a case by case basis.

In conclusion, response of an NPP will be quite different when realistic 3C (6C) seismic motions are

used, as opposed to a case when 1C, simplified seismic motions are used.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.4. 3C (6C) VS 1C SEISMIC MOTIONS page: 2509 of 3287

Figure 504.63: Snapshot of a full 3C wave field at the location of interest (where an NPP will be

founded), featuring body and surface waves.

Figure 504.64: Snapshot of a reduced 1C wave field at the location of interest (where an NPP will be

founded), featuring just SV body waves.
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Figure 504.65: Snapshot of a 3C (6C) vs 1C response of an NPP, upper left side is the response of the

NPP to full 3C wave field, lower right side is a response of an NPP to 1C wave field.

Figure 504.66: Displacements response on top of a containment building for 3C and 1C seismic input.
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Figure 504.67: Acceleration response on top of a containment building for 3C and 1C seismic input.

Figure 504.68: Displacements response at the top corner of auxiliary for 3C and 1C seismic input.
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Figure 504.69: Acceleration response at the top corner of auxiliary for 3C and 1C seismic input.
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504.5 3C (6C) vs 3 × 1C vs 1C Seismic Motions

This section is from our paper (Abell et al., 2018).
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504.6 3D Nonlinear Modeling for Nuclear Power Plants

This section is based on Sinha et al. (2017).

It noted that input files for these models are available at this LINK, and can be directly simulated

using Real-ESSI Simulator, http://real-essi.us/, that is available on Amazon Web Services, https:

//aws.amazon.com/.

504.6.1 Introduction

Seismic simulations to structures are often done by 1-D input excitations defined from a family of damped

response spectra. These input motions are applied uniformly to the entire base of the structure regardless

of its dimension and dynamic characteristics of the soil, foundation and motion itself. This not only

ignores the foundation and its contact/interface with soil, soil-structure interaction (SSI) but also the

3C nature and variability of seismic waves.

Interest to study SSI effects has grown significantly in recent years. However Tyapin (2007) and

Lou et al. (2011) note that even after four decades of extensive SSI research, there still exists a large

gap. Lou et al. (2011) notes that spatial analysis of full model in 3D is hardly done. To reduce the

amount of calculations, many existing publications simplify extremely the super-structure to spring mass

damper model or consider only limited interaction. Elgamal et al Elgamal et al. (2008) performed a

3D analysis of a full soil–bridge system, focusing on interaction of liquefied soil in foundation and bridge

structure. Jeremić et al. (2009) showed a full 3D soil-structure interaction of a prototype bridge, devised

as a part of grand challenge, pre-NEESR project.

Investigations of SSI have shown that the dynamic response of a structure supported on elastic-

plastic soil may differ significantly from the response of the same structure when supported on a rigid

base Chopra and Gutierrez (1974); Bielak (1978). The difference comes because of the dissipation

of part of the vibrational energy (seismic energy) by hysteresis action of the soil or structure itself.

This results in damping of high frequency components, which could potentially prove quite useful for

equipment that are prone to damage from high frequencies. On the other hand Jeremić et al. (2004)

found that SSI can have detrimental effects on structural behavior as well and is dependent on the

dynamic characteristics of the earthquake motion, the foundation soil and the structure.

Dissipation of energy during seismic events is another important factor to consider in design for its

safety and economy. Dissipating energy in structure can lead to material degradation and damage. It

is desired to dissipate most of the energy in soil with acceptable level of deformations in structure. A

common neglect of plastic free energy has been observed in many publications, which results in clear

violation of the second law of thermodynamics. A thermomechanical framework that can correctly
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evaluate energy transformation and dissipation in dynamic SSI simulation was presented by Yang et al.

(2018, 2019a) based on works of Rosakis et al. (2000); Dafalias et al. (2002). This framework is applied

to the prototype NPP model that is being analyzed in this paper. Locations with high possibility of

damage are identified and insights on design improvement are discussed.

Only a few full 3D SSI interactions have been studied that too mainly focusing on bridges or small soil-

foundation system. However, as per author’s knowledge a full 3D non-linear analysis for a structure with

soil-foundation-structure and contact/interface effects have not been investigated. Purpose of this paper

here is to present a methodology for high fidelity modeling of seismic soil–foundation-structure (SFSI)

interaction for a prototype of Nuclear Power Plant (NPP) with surface (shallow) foundation. Presented

methodology employs the currently best available models and simulation procedures. In addition to

presenting such state-of-the-art modeling, simulation results are used to illustrate non-linear-effects on

seismic response of a prototype NPP model.

504.6.2 Model Development and Simulation Details

The Nuclear Power Plant (NPP) modeled here is a symmetric structure with shallow foundation of

thickness 3.5m and size 100m. Figure 504.70 shows a slice view of the model in normal y direction

(perpendicular to plane of the paper). Solid brick elements were used to model soil and foundation.

The NPP structure was modelled by elastic shell elements. This section describes the material and

modeling parameters summarized in Table 504.5, foundation, structure, and contact. Given also is a

brief description of staged loading and seismic force application using domain reduction method (DRM).

Containment 
Building

Auxiliary 
Building

Foundation

Contact

Soil

Damping 
Layers

Damping 
Layers

DRM Layer

Center of 
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Figure 504.70: Nuclear power plant model with shallow foundation.
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Figure 504.71: Modeling parameters.

504.6.2.1 Structure Model

The NPP structure consists of auxiliary building, containment building and shallow foundation as shown

in Figure ??. The auxiliary building consists of 4 floors of 0.6m thickness, ceiling floor of 1m thickness,

exterior wall of 1.6m thickness and interior walls of 0.4m thickness. The exterior and interior walls are

embedded down to the depth of the foundation. The containment building is a cylinder of diameter

20m and height 40m with wall thickness of 1.6m. There is a gap of 0.2m between the containment and

auxiliary building. Top of the containment building is covered by semi-spherical dome of radius 20m.

The foundation is square shallow footing of size 100m and thickness 3.5m. The containment building

and the auxiliary building were modelled as shell elements and foundation as linear brick elements, both

having the properties of concrete of elastic Young’s modulus 20GPa, poison’s ratio 0.21 and density

2400kg/m3. The containment building which is more flexible than the auxiliary building had its first

mode as bending with fundamental frequency at 4Hz.

504.6.2.2 Soil Model

The depth of the soil modelled below the foundation was 120 m, which is also the depth of DRM

layer Sec 504.6.2.5. It is assumed that within this range the soil will plastify because of its self-weight,

structure and seismic motions. The soil is assumed to be a stiff saturated-clay with undrained behavior

having shear velocity of 500 m/s, unit weight of 21.4 kPa and Poisson’s ratio of 0.25. To represent the

travelling wave accurately for a given frequency, about 10 nodes per wavelength i.e. about 10 linear or

3 quadratic brick elements are required. Here, the seismic waves are analyzed up to fmax = 10Hz. The

smallest wavelength λmin to be captured thus, can be estimated as

λmin = v/fmax (504.2)
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where, v is the smallest shear wave velocity of interest. For v = 500m/s and fmax = 10Hz the minimum

wavelength λmin would be (500m/s)(10/s) = 50m. Choosing 10 nodes/elements per wavelength the

element size would be 5m. Jeremić et al. (2009); Watanabe et al. (2017) state that even by choosing

mesh size ∆h = λmin/10, smallest wavelength that can be captured with confidence is λ = 2∆h i.e. a

frequency corresponding to 5fmax . Based on the above analysis, soil was modeled as linear 8-node brick

elements with grid spacing of ∆h = 5m.

Because of the complex plastic-behavior of the soil many sophisticated models Yang et al. (2003);

Dafalias and Manzari (2004b) have been developed to capture the non-linear response of soil. Wair et al.

(2012) provides an empirical correlation to predict the shear strength of soil for given shear velocity Vs.

Dickenson (1994) proposed the following relationship Eq 504.3 between Vs and undrained strength Su

for cohesive soils in San Francisco Bay Area.

Vs[m/s] = 23(Su[kPa])0.475 (504.3)

Thus, for Vs = 500m/s, the undrained strength Su would be 650kPa. Here, two scenarios of soil properties

were considered in analysis. One linear elastic and the other as von-Mises with non-linear kinematic

hardening of Armstrong – Frederick type. For Su of 650kPa and E = 1.3Gpa, the non-linear inelastic

model was calibrated for yield strength achieved at 0.01% shear strain with linear kinematic hardening

rate (ha) as 30MPa and non-linear hardening rate (cr) as 25. The soil properties is summarized in

Table 504.5. The stress-strain response for the non-linear material model is shown in Figure ??
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Figure 504.72: Soil and contact/interface modeling.

504.6.2.3 Interface/Contact Modeling

Node-to-node penalty based soft contact/interface element Sinha and Jeremić (2017) was used to model

the interaction between foundation and soil as they are not one continuum material. In soft contact,

normal contact/interface force Fn from soft-soil is assumed to increases exponential with penetration δn
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as shown in Eq 504.4. The normal force Fn and stiffness Kn in defined as

Fn = kinit
n ∗ exp(Sr ∗ δn) ∗ δn

Kn = max(kinit
n ∗ exp(Sr ∗ δn) ∗ (1 + kinit

n ∗ δn), kmax
n )

(504.4)

where δn refers to the relative displacement between contact/interface node pairs in normal contact

direction, kinit
n refers to the normal stiffness in normal contact/interface direction, Sr refers to the

stiffening rate in normal contact direction. kMax
n refers to maximum normal stiffness and provides a cap

on exponentially increasing stiffness to make the solution numerically stable. The soft contact/interface

was implemented to capture the phenomenon of increasing stiffness of soil with increasing penetration.

Figure ?? shows the stiffness curve with penetration for the chosen contact/interface parameters also

shown in Table 504.5.

Contact elements were applied all around the foundation connecting to the soil as shown in Figure ??

in red color zone. To ensure the stability of the numerical solution, the penalty stiffness in normal

direction was chosen 2 – 3 order magnitude greater than the stiffness of the soil. The Coulomb’s friction

coefficient µ between the soil and the foundation was chosen as 0.25. Viscous damping of 100Ns/m in

normal and tangential damping was provided to model viscous damping arising from water.

504.6.2.4 Seismic Motions

3C seismic motions were developed by Rodgers (2017) using SW4 (Serpentine Wave Propagation of

4th order) Petersson and Sjögreen (2018) for an earthquake of magnitude (Mw) of 5.5 modelled with

a point source on a fault of dimension 5.5 × 5.6km with up-dip rupture slip model. The ESSI (Earth-

quake Soil Structure Interaction) box to capture the free-field motion was located on the foot-wall of the

reverse thrust fault. The generated motion had a directivity effect as the fault slips and propagates in

x-direction. Also, since the ESSI box was located perpendicular to the fault, strong motions in y-direction

was expected.
Acceleration and displacement time-series of the motion at the center of ESSI box is shown in

Figure 504.86. The peak ground acceleration (PGA) in x and y direction is about 0.5g. Significant

amount of vertical motions PGA of 0.2g can be observed which is neglected in many conventional

seismic simulations. Since, the fault is located at foot-wall side of reverse thrust fault, there is permanent

subsidence of about 50mm in z-direction at the end of shaking event. Fourier transform and response

spectrum of the motions are shown in Figure 504.87. The frequency range of the motion is within

20Hz. Response spectrum plot shows amplification for natural frequency greater than 2Hz. Since, many

equipments in nuclear industry operate at high frequencies, determination of high frequency excitation

of NPP building is critical for design.
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Figure 504.73: Acceleration and displacement time series.
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Figure 504.74: Strong motion Fourier transform and response spectrum.

504.6.2.5 Domain Reduction Method

Domain Reduction Method (DRM) Bielak et al. (2003a) was used to apply 3C seismic motions generated

from SW4 all around the model as shown in Figure ??. DRM is one of the best methods that can apply

free field 3C ground motions to a finite-element model. It features a two-stage strategy for a complex,

realistic 3D earthquake engineering simulation. First, is the generation of free field model with correct

geology and second is the application of the generated free-field to the structure of interest. The DRM

layer here is modeled as a single layer of elastic soil. Three damping (absorbing) layers adjacent to DRM

layer were modeled to prevent incoming of reflected waves. For this analysis, 60% Rayleigh damping was

applied in each of the damping and DRM layers. The Rayleigh damping was applied in the frequency

range of 1-5Hz.
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504.6.2.6 Staged Simulation

The whole analysis was simulated with two loading stages. First stage was static self-weight to get

the initial stress state of the soil and contact/interface elements. In second stage, seismic motion was

applied using DRM method. For each stage, equilibrium was achieved using full Newton-Raphson method

with a small tolerance of 1e–4N on second-norm of unbalanced force. For dynamic analysis, Newmark

integration method with numerical damping γ = 0.7 was used. Rayleigh damping of 2% in structure

and 30% in soil was applied. The time step considered here was 0.02 seconds with simulation running

in total for 40 seconds.

The analysis was run in parallel in Real-ESSI Simulator Jeremić et al. (1988-2025), http://real-essi.

info. on eight CPUs. The model consisted of about 300k degrees of freedoms (dofs). Four scenarios (a)

elastic no contact/interface (b) elastic with contact (c) elastic-plastic no contact and (d) elastic-plastic

with contact/interface were performed. In this paper, unless specified elastic means elastic without

contact/interface and inelastic means elastic-plastic with contact.

504.6.3 Simulation Results

Due to the space restriction, only few locations are selected to study the non-linear effects on NPP

structure. The selected locations are shown in Figure 504.75. Since the containment building is more

flexible than auxiliary building, location (D) in Figure 504.75 located on the top of the containment

building is naturally the point of interest as it describes maximum drift during shaking. Three locations

(A), (B) and (C) located at center of foundation is also selected to study the slip at interface during

shaking.
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Figure 504.75: Locations selected to study non-linear effects and plot of total displacement at center

of model Elastic (elastic with contact) and Inelastic (Elastic-Plastic with contact).

Since the site is located on the foot wall, during seismic shaking the whole structure along with soil

subsides down by about 50mm in elastic and 100mm in inelastic case. Overall, if self-weight stage is also
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included, the soil settles by 150mm in elastic and 350mm in inelastic case as shown in Figure ??.

It is important to predict the development of high frequency excitation during shaking because it

can prove to be alarming (when close to fundamental frequency) for nuclear-equipment. These high

frequencies are thus, important to be monitored, predicted during earthquakes, for design of nuclear

building to ensure the safety of equipment. Figure 504.76 plots the acceleration and its Fourier amplitude

for the location (D). It is interesting to observe, the elastic-plastic analysis kills high frequency excitations

in the structure which are persistent in elastic analysis. Elastic-plastic soil shows natural damping to

some high frequencies because of dissipation of energy in form of heat by hysteresis loop.This can prove

to be bigly useful for safe operation of nuclear equipments even at strong seismic events. The effects

of contacts coupled with elastic-plastic material leads to huge dissipation of energy reducing the high

frequency modes. In Z-direction, very little significant excitation was observed.
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Figure 504.76: Seismic response at top of containment building Elastic (elastic without contact) and

Inelastic (elastic-plastic with contact).

The introduction of contact/interface can result in opening and closing of gaps at the soil-foundation

interface for stronger earthquakes. However, here for the considered seismic motion for both elastic and

inelastic case with contact, no uplift was observed. Figure 504.77 shows the relative displacement of

NPP structure for elastic and inelastic analysis at 11 seconds. In elastic case, the structure drifts a lot

while the deformation in soil remains small. Whereas, in the inelastic case, the soil deforms and plastify

in z-direction keeping the structure deformation small. Thus the elasto-plastic soil acts as a natural base

isolators material. This demonstrates that for the considered earthquake motions, the elastic-plastic soil

can prove to quite beneficial because of small deformation and excitation in structure.
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Elastic With Contact Elastic-Plastic With Contact

Figure 504.77: Deformation of the NPP structure at 11 seconds (scaled 100 times).

Figure 504.78 plots the inter-slip of foundation with respect to soil at location (A), (B) and (C)

for elastic and elastic-plastic case with contact. It can be observed that point (A) and (B) slips both

relatively towards each other describing the presence of surface waves. The center of the foundation

(B) bends and slides comparatively less than the exterior ends. This also strongly shows the directivity

effects of the motion coming from the –x to +x direction. The directivity effect is more pronounced in

inelastic analysis resulting in comparatively more slip and permanent deformation. Careful observation

of sliding in x-direction, shows a permanent slip of 18mm for elastic-plastic soil. Although not shown in

figure, the whole NPP structure show tendency of rotation about its center of mass during the DRM

stage.
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Figure 504.78: Slip of foundation with respect to soil beneath it in x-y slice plane for Elastic (elastic

with contact) and Inelastic (Elastic-Plastic with contact).
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Figure 504.79: Animation of a linear elastic vs inelastic response of an NPP.
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Figure 504.80: Free Field.
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Figure 504.81: Acceleration traces, elastic vs inelastic.

504.6.4 Energy Dissipation

The energy dissipation in decoupled elastic plastic material under isothermal condition is given by Yang

et al. (2019a):

Φ = σij ϵ̇ij – σij ϵ̇
el
ij – ρψ̇pl ≥ 0 (504.5)

where Φ is the rate of change of energy dissipation per unit volume (or dissipation density), σij and

ϵij are the stress and strain tensors respectively, ϵel
ij is the elastic part of the strain tensor, ρ is the mass

density of the material, and ψpl is the plastic free energy per unit volume (or plastic free energy density).

Note that Equation 504.8 is derived from the first and second laws of thermodynamics, which indicate

the conditions of energy balance and nonnegative rate of energy dissipation, respectively. Considering

all possible forms of energy inside SSI system, the energy balance between input mechanical work WInput

and the combination of internal energy storage EStored and energy dissipation EDissipated can be expressed

as:

WInput = EStored + EDissipated = KE + SE + PF + PD (504.6)

where KE is the kinetic energy, SE is the elastic strain energy, PF is the plastic free energy, and PD is

the energy dissipation due to material plasticity. Equations for each energy component can be found in

Yang et al. (2018). Note that the plastic dissipation term PD includes energy dissipated in both elastic

plastic solids (soil) and contact/interface elements.

Figure ?? shows the accumulated plastic dissipation density field of the NPP model at the end of

seismic event. The super-structure does not dissipate energy since it is modeled as a linear elastic

material. Significant amount of seismic energy is dissipated in the contact/interface zone between the

structure and underlying soil, especially at regions around the corners and edges of the foundation.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.6. 3D NONLINEAR MODELING FOR NUCL . . . page: 2525 of 3287

An arch-shaped elastic region is formed under the structure, where the soil moves together with the

foundation and dissipates little energy. Such observation is consistent with classic bearing capacity

analysis, which also indicates the formation of a relatively undeformed ”active zone” beneath foundation.

As can be observed in Figure ??, the plastic dissipation density at location (A) is the highest. From

Figure ??, it can be observed that more than 80% of the total input work is dissipated due to material

plasticity or contact slipping. About 70% of the energy dissipation happens due to contact/interface

slipping, which indicates that the property and behavior of the interface between foundation and soil is

crucial in SSI system. It is worth pointing out that there is about 10% of the input work transformed

into plastic free energy, which falls in the typical range reported by Taylor and Quinney (1934).
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Figure 504.82: Energy dissipation in SMR model for inelastic (elastic-plastic soil with contact).
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Figure 504.83: Animation of energy dissipation for an NPP.
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504.6.5 Conclusion

Presented was a high fidelity seismic simulation methodology for investigating non-linear SSI effects on

NPP structures. The site being in foot-wall of the reverse thrust fault, results in permanent subsidence

in vertical direction. Due to plastification, elastic-plastic soil produces comparatively more vertical

settlement than linear elastic soil. It also leads to damping of some higher frequency waves. This effect

of non-linear material could be beneficial to the machines which are fatal to high frequency waves. It was

found that with elastic-plastic soil, there was comparatively less seismic excitation and deformation in the

NPP structure for the considered seismic motion. This illustrates that the stiff soil does not necessarily

help in seismic behavior of structure. This also emphasizes the fact that linear elastic modeling of soil

can lead to wrong conclusions resulting in huge capital loss. With the advancement of super-computers,

uncertainty in modeling can be significantly reduced by following the high-fidelity modelling techniques

discussed in this paper.

The non-linear effect studied here is with respect to the specific motion (Mw 5.5 up-dip slip fault).

The non-linear effect cannot be fully described using this motion itself. More similar kind of research

studies using different motions and geology needs to be carried out to find out the overall non-linear

and geology effects on soil-structure interaction. The author also feels that new quantities needs to be

formulated to study and compare different models to categories and unify the nonlinear effects on Soil

Structure Interaction (SSI) effects. Energy dissipation analysis showed that the soil close to the corners

and edges of the NPP structure dissipates large amount of seismic energy. An arch-shaped elastic region

was identified where design can be improved so that soil strength at these locations can contribute to

the overall safety of the SSI system.
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504.7 3D Nonlinear Modeling for Small Modular Reactors (SMRs)

Figure 504.84 shows a generic model (half is only shown, full model is simulated) of an SMR. It is

Figure 504.84: Generic model of a Small Modular Reactor (SMR).

important to note extensive contact/interface zone of SMR walls with surrounding soil. This brings

forward a number of modeling and simulation issues for SMRs:

• Seismic Motions: There will be a difference in seismic wave fields at the surface and at depth.

Surface waves do extend somewhat into depth (about two wave lengths at most Aki and Richards

(2002)), so different motion frequencies, wave lengths, and depending on soil stiffness, SMR will

experience very different motions at tha surface and at the base. This seismic motion incoherence

will affect seismic response of an SRM.

• Nonlinear/Inelastic Contact: Large contact/interface zone, with its nonlinear/inelastic behavior

will have significant effect on dynamic response of a deeply embedded SMR.

• Nonlinear/Inelastic Soil Behavior: With deep embeddement, dynamic behavior an SMR is signifi-

cantly influenced by the nonlinear/inelastic behavior of adjacent soil.

• Buoyant Forces: With deep embeddement, and (a possible) presence of underground water (water

table that is within depth of embeddement), water pressure on walls of SMR will create buoyant

forces. During earthquake shaking, those forces will change dynamically, with possibility of cyclic

mobility and liquefaction (even for dense soil, due to water pumping during shaking).

• Uncertainty in Motions and Material: Due to large contact/interface area and significant embed-

dement, significant uncertainty and variability (incoherence) in seismic motions will be present.
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Moreover, uncertainties in properties of soil material surrounding SMR will add to uncertainty of

the response.

Figure 504.85: Four main issues for realistic modeling of Earthquake Soil Structure Interaction of

SMRs: variable weave field at depth and surface, inelastic behavior of contact/interface and adjacent

soil, dynamic buoyant forces, and uncertain seismic motions and material.

Writeup that follows is based on Wang et al. (2017).

It noted that input files for this model are available at this LINK, and can be directly simulated

using Real-ESSI Simulator, http://real-essi.info/, that is available on Amazon Web Services,

https://aws.amazon.com/.

504.7.1 Introduction

Seismic performance of nuclear facilities is carefully analyzed considering the significant problems that

damage of such structures can bring. The structure investigated here is a deeply embedded Small
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Modular Reactor (SMR). Model SMR structure analyzed here is deeply embedded (36 meters) with only

14 meters of structure above ground.

In recent years, many researchers (Spyrakos et al. (1989); El Ganainy and El Naggar (2009); Iida

(2012)) made efforts to perform realistic modeling of dynamic SSI system and seismic response of

underground structure. Romero et al. (2013) coupled FEM and BEM method to model wave propagation

in elastic foundation and corresponding dynamic response of the structure. Fatahi and Tabatabaiefar

(2013) investigated the seismic performance of mid-rise buildings on soft soils using existing earthquake

records. An elastoplastic SSI analysis was conducted by Shahrour et al. (2010) to explore the seismic

response of tunnels in soft soils. However, some inherent modeling uncertainties still existed in these

previous studies and were not well addressed:

• A very important modeling uncertainty comes from the ground motion. For surface structures, it

is common to use historical earthquake records and simplified 1C seismic wave propagation models

(Paolucci et al. (2008)). Vertical ground motion are usually neglected. However, Oprsal and

Fäh (2007) has emphasized the necessity to use 3C ground motion by showing the big difference

between 1C and 3C computation result. The modeling uncertainty of input motion for seismic

modeling of underground structure is even higher. Due to the lack of ground motion observations

along the depth, deconvolution method is usually adopted in many studies (Elgamal et al. (2008))

to get the excitation motion at certain depth. The deconvolution procedure represents a 1C

linear inverse analysis. This inverse analysis is seemingly simple but it can introduce considerable

confusion and uncertainties to the modeling system (Mejia and Dawson (2006)).

• Another uncertainty comes from the method that is used to input seismic motion into SSI sys-

tem. Usually free field motion are directly imposed to the structure without considering ESSI

effects. This is especially common for underground structures where simplified static loads are

directly imposed and these structures are simply designed to accommodate the estimated free field

deformation(Hashash et al. (2001)).

• Nonlinear ESSI effects are also important factor that is neglected or simplified in many existing

studies. There are three sources of significant nonlinearity in an ESSI system: (a) Inelastic (elastic-

plastic) behavior of soil, (b) inelastic (elastic-plastic) behavior of the contact/interface zone, and

(c) inelastic (elastic-damage-plastic) behavior of the structure. Early works found that structural

response can be quite different when elastoplasticity of surrounding soil is considered (Bielak

(1978); Iguchi and Luco (1981)). In addition to that Jeremić et al. (2004) reported that ESSI

behavior can have both beneficial and detrimental effects on structural behavior. The nonlinear
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contact (interface) was analyzed by Hu and Pu (2004) and it was shown that its accurate modeling

is a key part to realistic modeling of ESSI systems.

Due to computational limitations and complicated nature of ESSI problems mentioned above, there

exist only few high-fidelity ESSI simulations, for bridges (Jeremić et al. (2009)) and tunnels (Corigliano

et al. (2011)). To the Author’s knowledge, there is no high fidelity (realistic 3C motions, realistic elastic

plastic soil modeling, and realistic contact/interface modeling) for a deeply embedded SMR structure. In

this paper, we present high fidelity modeling of SMR using state-of-the-art ESSI methodology. Realistic

3C free field seismic motions are modeled using regional scale wave propagation models. Developed free

field motions are then input into ESSI system using Domain Reduction Method (Bielak et al. (2003a)).

Modeling description section presents inelastic/nonlinear modeling details for elastic-plastic models of

surrounding soils and nonlinear interface/contact behavior. The inelastic/nonlinear modeling result are

compared with linear elastic in Simulation Results section.

In addition to accurate modeling of 3C motions and nonlinear effects, energy propagation through

the model is also accurately modeled. Energy dissipation is a widely used indicator of material damage in

elastic plastic materials. A common misconception does exist, however, on the meaning of plastic work

and plastic energy dissipation, as observed in a number of publications. Correct evaluation of energy

dissipation should follow the principles of thermodynamics that incorporated plastic free energy (Rosakis

et al., 2000; Dafalias et al., 2002). The thermodynamics framework presented by Yang et al. (2018,

2019a) is implemented in the Real-ESSI Simulator Jeremić et al. (1988-2025), and is used to perform

energy analysis on the SMR model in this paper. Energy dissipation in the SMR model is discussed in

some detail.

504.7.2 Domain Reduction method

Input seismic motions into finite element model is an indispensable step for the simulation of soil structure

interaction. The method we used here is called Domain Reduction Method, developed by Bielak et al.

(2003a). It is a modular, two-step dynamic procedure aimed at reducing the large computation domain

to a more manageable size. Firstly, large scale regional free field model is developed encompassing

causative fault and location of SMR structure (however SMR structure is not present, it is a free field

model). Time series of free field motions (displacements and accelerations) are recorded at locations of

DRM elements, a single layer of finite elements encompassing soil structure SMR model. Those motions

are then used in the second step, to develop effective forces that are used to input free field motions

into ESSI SMR model.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.7.3 3C Free Field Motions

Development of free field motions was done using a fourth order finite difference program SW4 (Petersson

and Sjögreen (2018) developed at LLNL. Modeled was propagation of fault rupture in a model with

dimensions 9km× 6km× 20km . The magnitude of simulated earthquake is 5.5. The shear wave velocity

of soils in surface layer (500 meters thick) is Vs = 500m/s. Motions were recorded in a box with

dimensions 300m× 300m× 200m

The characteristic ground motions recorded by ESSI nodes are plotted in Figure 504.86. The peak

ground acceleration (PGA) in x and y direction is about 1g. Apart from that, significant amount of

vertical motions with PGA 0.5g is also observed. The peak ground displacement (PGD) is about 0.1m in

horizontal direction. Since ESSI box is located in the foot wall of the reverse fault, the permanent ground

subsidence of about 6cm is recorded. Fourier transformation and response spectrum of the motions are

shown in figure 504.87. The frequency range of the motion is within 15Hz. The dominant frequency of

the motion is around 5 Hz. In response spectrum, we also see significant resonance effects for structure

whose fundamental period is around 0.2s corresponding to 5 Hz fundamental frequency.
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Figure 504.86: Acceleration and Displacement Time Series of Motion
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Figure 504.87: Strong Motion Fourier Transform and Response Spectrum
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Figure 504.88: FEM model for an SMR.

504.7.4 Model Description

In order to reduce model size using DRM method, we develop our target model with 6 layers. As shown

in figure 504.88, the innermost part is a structure layer, which is surrounded by a soil layer. Following

that, there is a DRM layer used to apply equivalent earthquake force. Outside DRM layer, there are three

damping layers. These damping layers are designed to add high Rayleigh damping so that the outgoing

wave (vibrations of structure, radiation damping) can be adsorbed. Table 504.5 shows the material

used. The size of whole FEM model is 72m×72m×56m. There are 177,806 nodes, 20172 27-node

brick elements, 3,177 contact/interface elements (modeling the interface between soil and embedded

structure), with a total of over 533 thousand degrees of freedom (DoFs)l. The average mesh size is 3

meters. Newmark time integration method is used in this study with parameters γ =0.7 and β=0.36

addingl numerical damping that reduces high frequency motions that were introduced by SW4. In

order to capture the wave propagation in FEM model, mesh size should be controlled so that there is

no artificial filtering to motions above certain frequency (Watanabe et al., 2017). As pointed out by

Hughes (1987), 10 linear interpolation finite elements and 2 quadratic interpolation elements are needed

per wave wavelength. Since second order 27 node brick element are used here, the minimum wave length

captured is 6 meters. Considering shear wave velocity vs = 500m/s, the maximum frequency calculated

by equation 504.7 is 83 Hz. Even when material plasticifies (becomes softer), model is still propagating

high frequencies of up to required fmax ≤ 15Hz.

fmax = vs/λmin (504.7)
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504.7.4.1 Embedded Nuclear Structure

Small Modular Reactor (SMR) analyzed here is a 4 storied reinforced concrete structure with total height

50 meters and 36 meters embedded in the ground. The length and width of the structure is 30 meters.

The whole structure is modeled using 27-node solid brick element with linear elastic material. The

Young’s modulus is selected as E = 30GPa and Poisson’s ratio ν = 0.2. Single layer of 27 node bricks

can accurately model (beam and plate) bending, and is hence chosen for structural model.

504.7.4.2 Soil Model

The depth of the model surrounding the structure is 45m. The soil is assumed to be saturated soil

with undrained behavior during the earthquake. In order to considering nonlinear site effects, the soil

is modeled with elastoplastic material. In the past 20 years, many 3D constitutive models Yang et al.

(2003); Dafalias and Manzari (2004b); Park and Byrne (2004); Pisanò and Jeremić (2014) have been

developed. Undrained behavior can be approximately modeled using von Mises material model (Yang

and Jeremić, 2003). Elastic plastic von Mises material model with linear kinematic hardening rule is used

here. The material parameters are presented in table 504.5. Backward Euler implicit algorithm (Jeremić

and Sture (1997)) is used for the equilibrium iterations at constitutive level.

504.7.4.3 Soft Contact Element

Model for contact/interface (axial contact, gap opening and closing and slip behavior) of the interface

between structure and surrounding soil, relies on a node-to-node soft contact/interface element (Sinha

and Jeremić (2017)). In soft contact, the normal stiffness exponentially grows as the relative displacement

between two contact/interface nodes increases and finally reaches maximum normal stiffness. 3,177

contact elements are placed at the soil-structure interface. Contact/Interface parameters are shown in

Table 504.5.

504.7.4.4 Simulation Procedure

The nonlinear ESSI analysis was conducted using Real-ESSI Simulator (Jeremić et al. (1988-2025))

developed at UC Davis and LBNL. Two SMR simulation models were simulated. First model uses linear

elastic soil without contact element and second model uses inelastic/nonlinear soil with inelastic/nonlinear

contact. In both cases, two loading stages were modeled: First loading stage is a self weight, developed

by adding a uniform gravity field. This is a necessary stage for inelastic analysis in order to develop initial

stress state of structure and surrounding soil before earthquake comes. Self weight was also applied to

the elastic model, just so that we have comparable displacement results. Then second loading stage

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Table 504.5: Modeling parameters

shear wave velocity [m/s] 500

Young’s modulus [GPa] 1.25

Poisson ratio 0.25

von Mises radius [kPa] 60
Material parameters

kinematic hardening rate [MPa] 0

initial normal stiffness [N/m] 1e9

hardening rate [/m] 1000

maximum normal stiffness [N/m] 1e12

tangential stiffness [N/m] 1e7

normal damping [N/(m/s)] 100

tangential damping [N/(m/s)] 100

Contact parameters

friction ratio 0.25

structure layer 5%

surrounding soil 15%

DRM layer 20%

outside layer 1 20%

outside layer 2 40%

Damping parameters

outside layer 3 60%

is an earthquake load. Simulations were performed on a local parallel computer with parallel version

of the Real-ESSI Simulator using 10 CPUs. It is noted that Real-ESSI Simulator is also available on

Amazon and Google cloud parallel computers as well as on large national parallel compters at the LBNLf

(EDISON and CORI). Local parallel computer (a workstation) was used in order to illustrate versatility

of Real-ESSI Simulator and to show that high fidelity parallel computations do not need to require high

price parallel computers.

504.7.5 Simulation Results

Figure 504.89 shows time series acceleration response of top center of SMR.

The elastic results represent simulation case where the surrounding soil is modeled using linear elastic

material and no contact elements in soil-structure interface. The inelastic results represent simulation

case where the surrounding soil is modeled using inelastic soil material and an inelastic contact. Signifi-
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Figure 504.89: Time Series Acceleration Response.

cant acceleration decreases can be seen in the inelastic case. The horizontal peak acceleration values is

reduced by almost 40%. This is due to plastification of soil and inelastic response of the contact/interface

zone. Moreover significant seismic energy is dissipated, so that inelastic soil and inelastic contact/inter-

face act as seismic dissipators and isolators during seismic event. The acceleration difference in vertical,

z direction is less significant than horizontal direction.

Figure 504.90 shows Fourier magnitude that high frequency component of horizontal acceleration

was significant decreased in inelastic case.
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Figure 504.90: Acceleration Response in frequency domain

Material Modeling Influence on Results is Shown in Figure 504.91.

SMR: Variation of Acceleration with Depth is Shown in Figures 504.92 and 504.93.

SMR: PGA and PGD Depth Variation is Shown in Figure 504.94.

• The PGA & PGD of SSI systems are (very) different from free field motions,

• Material nonlinearity has significant effect on acceleration response.

SMR: Elastic vs Inelastic response is shown in Figure 504.95.

Figure 504.96 shows the distribution of plastic strain in surrounding soil. There are two main plastic

zones near two bottom corners of the structure. Also the plastic strain at the soil-structure interface is

higher than adjacent area. It is interesting to note that there is an elastic zone beneath structure. The
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Figure 504.91: Upper: Material A: nonlinear, vM - AF; Lower: Material B: Bilinear.
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Figure 504.92: Free field response, left: elastic, right, inelastic.
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Figure 504.93: ESSI for an SMR response, left: elastic, right, inelastic.
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Structure Bottom

Structure Bottom

Figure 504.94: SMR: PGA and PGD variation with depth.

Figure 504.95: Animation of a linear elastic vs inelastic response of an SMR.

shape of the elastic zone resembles a bulb and is due to self weight and stiffness of the structure that

compresses soil beneath
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Figure 504.96: Distribution of the magnitude of plastic strain

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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504.7.6 Energy Dissipation

According to the thermodynamics framework presented by Yang et al. (2019a), the energy dissipation

in any decoupled material undergoing isothermal process can be expressed as:

Φ = σij ϵ̇ij – σij ϵ̇
el
ij – ρψ̇pl ≥ 0 (504.8)

where Φ is the rate of change of energy dissipation per unit volume (or dissipation density), σij and

ϵij are the stress and strain tensors respectively, ϵel
ij is the elastic part of the strain tensor, ρ is the

mass density of the material, and ψpl is the plastic free energy per unit volume (or plastic free energy

density). Equation 504.8 ensures the energy balance and nonnegative energy dissipation conditions that

correspond to the first and second law of thermodynamics.

With Equation 504.8, the energy balance of a SSI system is simply given by:

WInput = EStored + EDissipated = KE + SE + PF + PD (504.9)

where WInput is the input work due to external loading, KE is the kinetic energy, SE is the elastic

strain energy, PF is the plastic free energy, and PD is the energy dissipation due to material plasticity.

Formulation for each energy component can be found in Yang et al. (2018). Note that in Equation 504.9,

it is assumed that no other forms of energy dissipation exists in the system.

Figure 504.97 (a) shows the distribution of plastic dissipation density in the SMR model at the

end of simulation. The case presented in this section is elastic plastic soil without contact/interface

element. Note that the structure is modeled with elastic material, so they do not dissipate any energy.

As expected, more seismic energy is dissipated around the corners and edges of the structure due to

stress concentration. It can be observed that there are several elastic regions around the boundaries

of the structure, which means that the soil there does not plastify much and moves together with the

structure. Economy of the design can be improved by better utilizing the strength of soil around these

locations.

Figure 504.97 (b) show the evolution of energy components at location A. It can be observed that

the amount of plastic energy dissipation is much larger than the other forms of energy, indicating that

the nonlinear effect is quite significant in deeply embedded structure. Another interesting observation is

the small amount of plastic free energy whose quantity largely depends on material hardening parameters

and loading conditions. It should be pointed out that even if it is small, plastic free energy should never

be neglected so that the condition of nonnegative incremental energy dissipation can be upheld Rosakis

et al. (2000); Taylor and Quinney (1934).

SMR: Energy Dissipation for an SMR, Figure 504.98.
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Figure 504.97: Energy dissipation in SMR model: (a) Plastic dissipation density field at the end of

simulation; (b) Evolution of energy components at location A.
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Figure 504.98: Animation of energy dissipation for an SMR.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.8. INCLINED WAVES, FREE FIELD AND S . . . page: 2543 of 3287

504.7.7 SMR Inelastic Modeling Conclusions

The seismic response of an embedded SMR has been modeled with high fidelity. Using state-of-the-

art nonlinear ESSI simulation techniques, many modeling uncertainties have been eliminated. The

methodology shown here is also applicable to many other ESSI problems (buildings, bridges, dams,

etc.). The simulation result of SMR shows that the acceleration response of the structure decreases

with nonlinear effects properly modeled. In addition, the high frequency component of acceleration is

significantly damped out in inelastic case due to soil plastification.

Energy dissipation analysis shows that the soil close to the edge of the SMR structure dissipates large

amount of seismic energy during shaking. Such observation also indicates significant nonlinear effect

when elastoplastic material is used for soil modeling. Several elastic regions are identified where design

can be improved so that soil strength at these locations can contribute to the safety of the SSI system.

504.8 Inclined Waves, Free Field and SMR Modeling

Methodology developed by Wang et al. (2020a) and presented in section 109.2.5 on page 557 is illustrated

here. This is really a repeat of results from Wang et al. (2020a).

Input files for these models are available HERE.

Presented WPF-DRM method is implemented in the Real-ESSI Simulator (Jeremić et al., 1988-

2025). Described examples and publicly available executables for the Real ESSI sequential and parallel

programs are available through Real ESSI Simulator web site http://real-essi.info/. All numerical

examples presented here are analyzed using Real-ESSI Simulator version 20.01, in parallel computing

mode, on UC Davis and Amazon Web Services parallel computers.

504.8.1 Free Field Modeling and Verification

Free field response of layered ground excited by an inclined incident seismic wave is used to illustrate

and verify developed methodology. Analytic solutions based on Thomson-Haskell propagation matrix

technique (Thomson, 1950; Haskell, 1953; Silva, 1976) are used for verification.

A finite element model for the free field, that is 300m wide and 200m deep, consisting of three layers,

as described in Table 504.6, is used.

It is noted that dimension of analyzed model is 300m × 200m, however there exist additional finite

elements outside this domain: DRM layer is a single layer of finite elements that surround the interior

domain. Beside the DRM layer, there are absorbing layers consisting of multiple layers of finite elements

with high viscous damping. These damping layers should be thick enough to absorb the outgoing waves.
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Table 504.6: Properties of layers: thickness d, density ρ, shear wave velocity Vs, compressional wave

velocity Vp and Poisson’s ratio ν.

Layer d [m] ρ [kg/m3] Vs [m/s] Vp [m/s] ν

1 50 2100 500 816.5 0.2

2 100 2300 750 1403.1 0.3

3 ∞ 2500 1000 2081.7 0.35

The thickness and damping parameters of these absorbing layers are determined such that the response

of exterior damping layer given by earthquake soil structure interaction analysis is negligible compared

to the inner part. A fixed boundary condition is applied to the outer boundary. It is also noted that

theoretically there should be no waves propagating outside of the DRM layer for a free field response.

Additional damping layers are added in order to accommodate further, non-free field model expansions

and additions. Finite element size is set to 5m, and with 10 finite elements per wave length, this mesh can

accurately propagate waves of up to f = 10Hz, for surface soil with shear wave velocity of Vs = 500m/s2,

as per Lysmer and Kuhlemeyer (1969); Watanabe et al. (2017).

A number of monochromatic, single frequency plane SV wave, represented by a cosine function,

with variable inclinations θ = 10o, 45o, 60o, 80o and variable frequencies, f = 1.0, 2.5, 5.0, 10.0Hz, are

applied to the layered ground model using developed methodology. The incident SV wave magnitude

from the depth is 0.06m and is kept the same for all the analyzed cases. It is noted that inclination angle

θ is measured between a wave propagation direction vector and vertical axes. The wave inclination θ

depends on many factors, e.g., source focal mechanism and radiation pattern, wave propagation path

and local site geology and topography. The typical range of inclination is 0◦ ∼ 40◦ (Tabatabaie et al.,

1986; Sigaki et al., 2000). For example, Tabatabaie et al. (1986) estimated that the incidence angle

of shear waves at the SMART-1 array site is around 20 degrees using the recorded motions from 1981

Taiwan earthquake. For far-field, flat engineering site with large impedance contrast (e.g., soft soil

overlying stiff bedrock), the assumption of vertical wave propagation can be adopted due to very small

inclination of incident seismic waves. However, for near-field, hard rock site with low impedance contrast

or engineering site with significant topography, incidence angle of seismic waves tends to be large and

inclined wave propagation should be carefully modeled.

Free field motions are developed and introduced into the model through WPF-DRM. Figure 504.99

shows snapshots of wave displacements in the model, for a wave frequency of f = 5Hz, for different input

plane wave inclinations, θ = 10o, 45o, 60o, 80o. Figure 504.100 shows snapshots of wave displacements

in the model, for a wave that is inclined at θ = 60o, for variable input plane wave frequencies f =

1.0, 2.5, 5.0, 10.0Hz.
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Figure 504.99: Displacement magnitudes for a free field response under incident SV wave, frequency

f = 5Hz, with different incident wave inclinations: (a) θ = 10◦ (b) θ = 45◦ (c) θ = 60◦ (d) incident angle

θ = 80◦.

Few notes are in order upon visual inspection of results in Figures 504.99 and 504.100. The outgoing

waves in exterior region, outside DRM layer, are negligibly small, almost zero for all the cases. This is

indeed expected, as it follows from the theory of the domain reduction method (Bielak et al., 2003a;

Yoshimura et al., 2003a), whereby the so called residual field (we) should be non-existent for free field

motions, that were used to develop effective DRM forces.

Comparing free field responses for SV wave with different incident angles, Figure 504.99, the θ = 10◦

case behaves very similar to 1D vertically propagating motion field that is commonly used in engineering

practice. It is noted, however that there are still vertical motions at the surface due to such almost

vertical SV wave interacting with the free surface. For cases where wave inclination is more significant,

for θ = 45◦ and θ = 60◦, significant surface motions are observed, with pronounced vertical and horizontal

motions. When the incident wave inclination is θ = 80◦, seismic wave propagates almost horizontally

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 504.100: Displacement magnitudes for a free field response under incident SV wave at an angle

of θ = 60o, with different frequencies: (a) f = 1.0Hz (b) f = 2.5Hz (c) f = 5.0Hz (d) f = 10.0Hz.

without generating significant surface motions. It is also noted that the displacement magnitude of the

seismic wave field for wave inclination case θ = 80◦ is much smaller than for the other cases. This is

reasonable considering the site amplification for other free field cases comes, in part, from the impedance

contrast of vertical wave propagation.

Results, snapshots of displacement field magnitudes for wave fields of different frequencies are shown

in Figure 504.100 for seismic motion inclined SV wave field at θ = 60◦. It is noted that layer boundaries,

impedance contrasts, are at –50m, and at –150m. Those layer boundaries can be visually identified from

distribution of waves through model depth with positive and negative interference reflected and refracted

waves within different layers of the domain.

Figures 504.101 and 504.102 compare simulated free field horizontal and vertical displacement magni-

tudes against corresponding analytical solutions along the depth. It is noted that acceleration magnitudes

can be obtained by multiplying displacement magnitudes with w2. Very good agreement is observed
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Figure 504.101: Verification of free field modeling under incident SV wave f = 5Hz with different

incident angles θ: (a) θ = 10◦, (b) θ = 45◦, (c) θ = 60◦ (d) θ = 80◦.

between results given by WPF-DRM simulation and analytical solutions. Several interesting observations

can also be made:

1. Along with the increase in frequencies, the vertical wave length becomes shorter, and that results

in more wave interferences along the depth.

2. The existence of layers and interfaces at z = –50m and z = –150m complicates the spatial variation

of wave field along the depth, especially for higher frequencies, f = 5Hz and 10Hz. The response

curves at depths 0 ∼ 50m and 50 ∼ 150m are quite different in both amplitude and variation

pattern.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.8. INCLINED WAVES, FREE FIELD AND S . . . page: 2548 of 3287

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement magnitude [m]

0

50

100

150

200

D
e
p
th

 [
m

]

Analytical Ux

WP-DRM Ux

Analytical Uz

WP-DRM Uz

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement magnitude [m]

0

50

100

150

200

D
e
p
th

 [
m

]

Analytical Ux

WP-DRM Ux

Analytical Uz

WP-DRM Uz

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement magnitude [m]

0

50

100

150

200

D
e
p
th

 [
m

]

Analytical Ux

WP-DRM Ux

Analytical Uz

WP-DRM Uz

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement magnitude [m]

0

50

100

150

200

D
e
p
th

 [
m

]

Analytical Ux

WP-DRM Ux

Analytical Uz

WP-DRM Uz

Figure 504.102: Verification of free field modeling under incident θ = 60o SV wave with different

frequencies f : (a) f = 1.0Hz, (b) f = 2.5Hz, (c) f = 5.0Hz, (d) f = 10.0Hz.

3. From Fig. 504.101, it can be seen that inclination angle of input SV wave also plays a crucial

role in the interference characteristic of inclined wave field. Periodic peaks and troughs shown in

the case of 10◦ inclination are typical interference characteristics of 1D homogeneous, vertically

propagating wave field. However, the interference characteristics given by other wave inclinations

show significant differences. These different variation patterns along the depth, that might not

make much difference for shallow founded surface structures, can result in very different seismic

response for deeply embedded structures.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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504.8.2 Deeply Embedded Soil-Structure Model

Deeply embedded structural model, a model of a Small Modular Reactor (SMR) is analyzed and used

to illustrate developed methodology. The FEM model of an SMR structure embedded in layered ground

is shown in Figure 504.103(a). The embedment depth is 36m, while the height of SMR structure above

ground is 14m. The structure width is 30m and the whole model width of SSI system is 150m. It is

noted that the lateral extent of soil domain should be large enough such that the outgoing waves passing

through DRM layer are insignificant. These waves can then be damped out through the absorbing layer

and would have negligible influence on the dynamic response of SMR. Key factors to determine the model

width of SSI system include structural width, intensity of seismic excitations, etc. Detailed discussions

regarding the required lateral extent of soil domain for dynamic SSI analysis can be found in Sharma

et al. (2020). Eleven representative points, point A to point K in Figure 504.103(b), are selected to

monitor the dynamic response of SMR. The layered ground parameters are the same as those used in

free field study given in Table 504.6.

To proper model wave propagation, the finite element size and time step should be carefully controlled

to reduce discretization errors. For linear displacement approximation within finite element, in this case

eight-node brick elements, at least 10 nodes per wavelength should be used (Watanabe et al., 2017).

The time step length ∆t is limited by Courant-Friedrichs-Lewy condition (Courant and Hilbert, 1989)

for stability. In addition, following requirement needs to be met to accurately capture the propagation

of wave front (Jeremić et al., 2009), where ∆h is the mesh size and v is the highest wave velocity.

∆t <
∆h
v

(504.10)

In this study, eight-node brick element with 4m mesh size is used for spatial discretization. The

maximum frequency the model can propagate is about 12.5Hz considering the minimum elastic shear

wave velocity 500m/s. Time step is chosen as ∆t = 0.005s. Newmark time integration method (Newmark,

1959) is used with Newmark parameters γ = 0.505 and β = 0.25(0.5 + γ)2. Since parameter γ > 0.5, a

small amount of numerical, algorithmic damping is introduced to damp out unrealistic high frequency

responses from spatial discretization (Argyris and Mlejnek, 1991). See Yang et al. (2019b,c) for more

information about the proper selection of Newmark parameters for dynamic analysis. Gradually increasing

Rayleigh damping (7%, 15% and 30%) is assigned to the inner, middle and exterior part of the absorbing

layers, outside of the DRM layer, to prevent reflection of radiated outgoing waves (Jeremić et al., 2009;

Abell et al., 2018). These damping values are determined such that after dynamic SSI analysis the

response of the exterior absorbing layer is negligible compared to the inner part.
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Figure 504.103: FEM model of embedded SMR and representative points.
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504.8.3 SMR Excited with Inclined SV Waves

Deeply embedded SMR structure is excited with inclined plane waves, at inclination angles of θ =

10◦, 45◦, 60◦ and 80◦. Seismic wave frequency used for this set of numerical test was set at f = 5Hz.

As described in table 504.6 on page 2544, shear wave velocities of top 50m layer is Vs = 500m/s while

the lower layer is 100m think and has a shear wave velocity of Vs = 750m/s. Due to presence of layers,

seismic wave field close to the surface is made up Rayleigh and Stoneley waves (Aki and Richards, 2002;

Semblat and Pecker, 2009). It might thus be difficult to separate influence of these different surface

waves the response of the SMR. For example, in Figure 504.99 on page 2545, that shows displacement

magnitudes at certain time, for different inclination of incident plane wave, Stoneley wave is apparent

close to depth of 50m. In addition, Rayleigh wave is also apparent close to free field surface. Those

wave fields, when applied to the SMR SSI system, produce response, at location of point A2 on SMR

structure, as shown in Figures 504.104 and 504.105.

It is noted that corresponding free field motions at the same location are also plotted for comparison.

Variations of displacement magnitudes caused by different inclinations of incident SV wave are quite

noticeable for vertical displacements and accelerations, while influence on horizontal displacements and

accelerations is much less significant. The reduction of vertical displacement and accelerations that is

observed in all the four cases, is consistent with the concept of “base averaging”, “ironing out” of seismic

motions by Housner (1957). The most significant reduction occurs for the case of incident wave at an

angle θ = 45◦ while little reduction is seen in the case of θ = 80◦.

The deformed shapes of SMR at t = 0.4s for four scenarios are shown in Figure 504.106. In the

cases of seismic waves at inclinations θ = 45◦ and θ = 60◦, rocking responses of SMR are quite evident

when compared with the cases of almost vertical wave propagation (θ = 10◦) and almost horizontal wave

propagation (θ = 80◦).

2Location of point A is in the middle of SMR structure, where center of the free field model would be, please see

Figure 504.103 on page 2550.
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Figure 504.104: Displacement response of point A within embedded SMR, excited by an inclined SV

wave with f = 5Hz and different inclination angles, θ = 10◦, 45◦, 60◦ and 80◦: (a) horizontal displacement

(b) vertical displacement.
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Figure 504.105: Acceleration response of point A within embedded SMR, excited by an inclined SV

wave with f = 5Hz and different inclination angles, θ = 10◦, 45◦, 60◦ and 80◦: (a) horizontal acceleration

(b) vertical acceleration.
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Figure 504.106: The deformed shapes of SMR at t = 0.4s for incident SV wave at different inclinations

θ = 10◦, 45◦, 60◦ and 80◦.
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504.8.4 SMR Excited with Variable Frequency Inclined SV Waves

Keeping incidence angle constant, at θ = 60◦, dynamic responses of an SMR under different frequencies

of SV wave (f = 1Hz, 2.5Hz, 5Hz and 10Hz) is investigated next. Figures 504.107 and 504.108, show

displacement and acceleration responses at point A of SMR model.

It is noted that, again, free field response at the location of point A is also shown for comparison

purposes. Significantly variation in displacement and acceleration responses are produced by incident

SV wave at different frequencies. The largest horizontal displacement magnitude 0.30m is observed for

the case of frequency of f = 2.5Hz while the smallest horizontal magnitude of 0.047m for f = 1Hz.

The vertical displacement responses varies from 0.02m for f = 2.5Hz to 0.085m for f = 10Hz. SSI

effects are almost negligible in the case of f = 1Hz due to long horizontal wave length of 1154m. This

observation follows similar observation made many years ago by Housner (1957) for large stiff buildings.

Both horizontal and vertical displacements of SMR overlap with corresponding free field response for

f = 1Hz. Along with the increase of incident frequency, SSI effects become more significant, especially

for the vertical components of displacement and acceleration. In the cases of f = 2.5Hz and f = 5Hz,

horizontal response of SMR is still very close to its free field counterpart, for both displacements and

accelerations, however the reduction of vertical response of SMR becomes more significant for frequency

of f = 5Hz, For relatively high frequency of f = 10Hz, both horizontal and vertical response of SMR are

significantly different from free field modeling in both displacements and accelerations.

The spatial variation of displacements at the surface of free field model and at the same location

within SMR model, along the horizontal line through SMR (i.e. x ∈ [–75m, 75m], y = 0m, z = 0m), at

t = 3.5s are shown in Figure 504.109. It is noted that SMR structure occupies space for x ∈ [–15m, 15m],

where flat trace of displacements within a stiff structure is observed. The base slab averaging is observed

for higher frequency, shorter wave length cases of f = 5Hz and f = 10Hz, while it is almost negligible for

incident waves at frequencies of f = 1Hz or f = 2.5Hz due to the wavelength being longer that object

size for those low frequencies.

Similar spatial variation of displacement along the transverse axis (i.e. x = 0m, y ∈ [–75m, 75m], z =

0m) is shown in Figure 504.110. Since the incident SV wave propagates within the XZ plane, uniform

distribution of both horizontal and vertical free field response along the transverse axis (Y axis) is expected

and presented in Figure 504.110. However, the existence of SMR alters the original uniform distribution,

and a wave field in this, out plane of polarization direction. Significant wave field disturbance effects

can be observed within the structure part (y ∈ [–15m, 15m]) in the cases of medium (f = 5Hz) to high

frequency (f = 10Hz). In other words, 3C dynamic response of soils surrounding the structure has been

induced from 2C excitation by an SV wave due to SSI and transverse wave field disturbance effects.
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Figure 504.107: Displacement response of point A for scenarios with different frequencies of incident

SV wave: (a) Horizontal displacement (b) Vertical displacement.
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Figure 504.108: Acceleration response of point A for scenarios with different frequencies of incident SV

wave: (a) Horizontal acceleration (b) Vertical acceleration.
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Figure 504.109: Spatial variation of displacement along the horizontal axis at t = 3.5s for a wave at

θ = 60o different incident wave frequencies (a) f= 1Hz (b) f= 2.5Hz (c) f= 5Hz (d) f= 10Hz.

Another important observation from Fig. 504.110(d) is that, although the reduction of displacement

amplitude is observed within the structure, in locations where y ∈ [–15m, 15m], near field motions close

to the structure can be amplified, for example, motion within region y ∈ ±[25m, 50m] in this case. This

implies that there are potentially significant structure-soil-structure dynamic effects for closely spaced

structures.

The deformed shapes of SMR for four frequency scenarios at t = 0.3s with different frequencies are

shown in Fig. 504.111. The aforementioned wave field disturbance effects are clearly visible for the low

wave length, high frequency case of f = 10Hz. The existence of local structure has significantly altered

the near field seismic wave due to strong SSI effect, since wave lengths are shorter than the dominant

dimension of the structure.
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Figure 504.110: Spatial variation of displacement along the transverse axis at t = 3.5s for for a wave at

θ = 60o at different incident wave frequency (a) f= 1Hz (b) f= 2.5Hz (c) f= 5Hz (d) f= 10Hz.
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Figure 504.111: The deformed shapes of SMR at t = 0.3s for four scenarios.
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504.9 Three Dimensional (3D) Inelastic Modeling for Structure Soil Structure

Interaction
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504.10 Case Study of Cruas Nuclear Power Plant under Seismic Load from Le

Teil Earthquake
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504.10.1 Introduction

Seismic hazard in different regions of Central Europe has been recently revised, see, e.g., (Renault et al.,

2013). The studies have been based on the historical evidence, like the earthquake in Basel, Switzerland,

in 1356 (Mayer-Rosa and Cadiot, 1979). It turns out that quite a few nuclear facilities are located in

areas where a weak to moderate seismic activity has been recorded.

Much effort has lately been put into the assessment of existing nuclear stations and into the design

of new ones in these earthquake-prone areas. Hence the knowledge on the mechanical behavior of the

so-called earthquake-soil-structure interaction (ESSI) systems is currently of significant importance in

structural and geotechnical engineering.

The nuclear power plant (NPP) in Cruas is located in the south of France, on the right bank of the Rhône

River. This NPP was built in the 1970s and it is seismically isolated at the base. On November 11, 2019,

the NPP was excited by an earthquake near Le Teil (Viallet et al., 2022). The resulting ground motions

were recorded at different locations, both, near Le Teil and at Cruas NPP. The structural vibrations of

the NPP were also measured.

Here, simulation of the ground motions and of the mechanical behavior of the NPP under the earthquake

load is conducted. For this purpose, the Real-ESSI Simulator (Jeremić et al., 1988-2025) is used. It

is a finite element (FE) system developed to reproduce the behavior of soils and structures, and their

interaction, under static and dynamic loads. The results obtained in this research are evaluated by

comparison with the available field data. In this way, the current design and assessment of ESSI systems

can be validated and possibly improved.

This study is conducted within the SMATCH benchmark3 organized by the Institut de Radioprotection

et de Sûreté Nucléaire (IRSN), Électricité de France (EDF) and Organisation for Economic Co-operation

and Development-Nuclear Energy Agency (OECD-NEA).

3https://www.smatch-benchmark.org/
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504.10.2 Notation

Bold-face letters, like σ, are vectors or second rank tensors. Sans-serif letters, like E, are fourth rank

tensors. Gibbs notation, like σ̇ = E : ε̇, or index notation, σ̇ij = Eijklε̇kl, in the Cartesian coordinate

system with usual summation over repeated (dummy) indices is used. The mechanical sign convention

is applied to stress, σ, and strain, ε, with compression negative.

The basic Latin variables are explained below.

E Young modulus

f frequency

u displacement

x location

Vp primary, compressional, wave velocity

Vs secondary, shear, wave velocity

The basic Greek variables are given below.

ε strain

λ,µ Lamé constants

ν Poisson ratio

ρ mass density

σ stress, tension positive

The following notation is used.

⊔̇ material rate of ⊔, ⊔̇ = ∂ ⊔ /∂t = ⊔,t

⊔̈ material acceleration of ⊔, ∂2 ⊔ /∂t2 = ⊔,tt

The essential abbreviations are listed below.

DRM Domain Reduction Method

ESSI Earthquake-Soil-Structure Interaction

FE Finite Element

NPP Nuclear Power Plant

THMM Thomson-Haskell Matrix Method

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.10.3 Le Teil Earthquake

Some basic knowledge about Le Teil earthquake is indispensable to determine the seismic load in the

simulation of the mechanical behavior of Cruas NPP. After a brief introduction of the necessary seismo-

logical definitions, a short description of the earthquake in Le Teil is given. It will allow to establish the

seismic input in Section 504.10.7.

504.10.3.1 A Short Résumé on the Seismological Description of Earthquakes

Origins of Earthquakes Tectonic plates, pieces of the Earth’s litosphere, move, due to, i.a., the convec-

tion in the Earth’s mantel (Andel, 2008; Bragg, 2022), and interact with each other at interfaces. An

interface, also known as a fault, between two tectonic plates is rough, jigsaw-like, and the movement of

the plates is hindered. This is similar to shearing along a fault in a rock (Wittke, 2014).

During shearing along an interface, the jigsaw-like boundaries of the plates undergo the plastic defor-

mation. Stress at the interface is being increased, which is known as hardening, and the plastic work is

being done at the interface. A part of the plastic work, the so-called frozen elastic energy, also known

as the plastic free Helmholtz energy, is being accumulated at the fault.

When the stress limit is reached, the peak friction is mobilized, at the fault, a sudden, dynamic, brittle

slip occurs and causes an earthquake. A slip is a movement of the plates along the interface. A ductile

slip is also possible but it is aseismic (Kramer, 1996a) and hence it is not considered here. A brittle slip

is also called a rupture.

The strain is localized along the fault and the stress decreases, which is known as softening. The frozen

elastic energy accumulated at the interface is transformed into other forms of energy, like acoustic energy

or heat. In seismology, the origins of earthquakes are explained with the so-called elastic-rebound theory

(Kramer, 1996a; Bragg, 2022). It is based on the assumption of repeatable accumulation and release of

the frozen elastic energy at a fault.

However, an earthquake may also result from various, natural or anthropogenic, events within a sin-

gle tectonic plate (Kramer, 1996a; Semblat and Pecker, 2009), for example, from a large underground

explosion, a volcanic eruption or a slip triggered by fracking. A slip may generally occur along, e.g.,

an interface between two rock masses and not necessarily along an interface between two tectonic plates.

Here, a shallow earthquake, triggered at a depth of less than 5 km, is examined. It was caused by a slip

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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along a fault in a rock.

Types of Faults A slip is described by jump in displacement [[u]] between two rock masses, or two

tectonic plates. This [[u]] is measured along the slip plane, π. At a fault, discontinuity, in a rock, ∥[[u]]∥
can achieve several kilometers (Wittke, 2014). Two rock masses, or two tectonic plates, can (Wittke,

2014; Bragg, 2022; Andel, 2008):

• slide past each other at a transform fault, particularly:

– in horizontal direction at a strike-slip fault, inclined or vertical, Figure 504.112(a)

– in vertical direction at a dip-slip fault, vertical, Figure 504.112(b)

– in both, horizontal and vertical, directions at an oblique-slip fault, vertical, Figure 504.112(c)

• move towards each other, collide, at a reverse fault, also called thrust fault, inclined or horizontal,

Figure 504.112(d)

• move apart from each other at a normal fault, inclined or horizontal, Figure 504.112(e).

Figure 504.112: Types of faults: a) strike-slip fault, here, inclined; b) dip-slip fault; c) oblique-slip fault;

d) reverse fault, here, inclined; e) normal fault, here, inclined.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Mechanism and Orientation of a Slip in a Cartesian Coordinate System Mechanism and orientation of

a slip are commonly described in a Cartesian coordinate system using the so-called focal mechanism.

It is a graphic representation of the slip and it is known in the seismological community as the “beach

ball”4. A focal mechanism is defined by strike angle, dip angle and rake angle (Aki and Richards, 2002;

Wittke, 2014), see Figure 504.113.

Figure 504.113: a) Inclined fault before a slip; b) Inclined fault after a reverse slip: the slip plane, π,

is defined by the unit normal vector, n, that points upwards; nhor is a unit vector that is normal to the

horizontal plane and points upwards; s = (nhor × n)→; strike angle, α ∈
[
0, 360◦

]
, is the azimuth of s; dip

angle, β ∈
[
0, 90◦

]
, describes the inclination of π; rake angle, γ ∈

[
0, 360◦

]
, is measured anticlock-wise

from s to the jump in displacement, [[u]], on π. F is the so-called foot wall and H is the hanging wall.

Strike angle, dip angle and rake angle can be found in Mathematica for a slip plane, π, defined by

the unit normal vector, n, with given displacement of the foot wall, uF(π), and of the hanging wall,

uH(π), along π.

n = Normalize[{1, 1, 1}]; nhor = {0, 0, 1}; s = Normalize[Cross[nhor, n]]; north = {0, 1, 0};

rotclockwise = {{Cos[a], Sin[a], 0}, {-Sin[a], Cos[a], 0}, {0, 0, 1}};

solua = Solve[rotclockwise.north == s, a][[1]] /. C[1] -> 0; (* solve for strike angle *)

rotanticlockwise = {{Cos[a], -Sin[a], 0}, {Cos[a], Sin[a], 0}, {0, 0, 1}}; nprime = (rotanticlockwise.n) /. solua;

solub = Solve[Tan[b] == nprime[[3]]/nprime[[1]], b][[1]] /. C[1] -> 0; (* solve for dip angle *)

uF = {0, 0, 0}; uH = {1, 1, -2}; jump = uH - uF;

solug = Solve[((rotclockwise /. a -> g).jump/Norm[jump])[[1]] == 1, g][[1]] /. C[1] -> 0; (* solve for rake angle *)

4Focal mechanism is briefly explained under https://www.iris.edu/hq/inclass/animation/focal_mechanisms_

explained. Knowing the strike, dip and slip angle, one can easily plot the focal mechanism in Mathematica using the

code by Prof. Scherbaum from the University of Potsdam, available on the Internet, https://demonstrations.wolfram.

com/EarthquakeFocalMechanism/.
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{a //. solua, b /. solub, Re[g /. solug]} // N (* strike angle, dip angle, rake angle *)

504.10.3.2 Slip along Rouvière Fault near Le Teil

Le Teil earthquake was recorded on November 11, 2019 (Marconato et al., 2022; Ritz et al., 2020; Viallet

et al., 2022). This earthquake resulted from a slip along Rouvière fault within the existing les Cévennes

faults system in Southern France, near Le Teil, Figure 504.114. The slip might have been caused by

a reduction of the effective stress at Rouvière fault either due to the increase in the ground water level,

caused by a heavy rain, (Burnol et al., 2023) or due to the progressive unloading of the ground in the

nearby quarry (Novellis et al., 2020).

Basic characteristics of the slip that caused shallow Le Teil earthquake are given in Table 504.7 and

explained in Figure 504.113. The location of the source of the earthquake is shown in Figure 504.114.

Table 504.7: Basic characteristics of the slip along Rouvière fault

Latitude Longitude Depth Mw Dip angle Strike angle Rake angle Velocity

◦ ◦ km - ◦ ◦ ◦ m/s

44.5188 ± 0.01 4.6694 ± 0.01 1 ± 0.5 4.9 ± 0.1 55 ± 5 45 ± 5 90 ± 10 1800

504.10.3.3 Site Description

A number of free-field and in-structure instruments were used to record the seismic motions at Cruas

NPP, the local site, and near Le Teil. The data are accessed via the SMATCH project. Unfortunately,

the elastic soil and rock parameters are available at the epicenter of the earthquake and at two locations

at the local site only.

Locations of the Free-field Recordings Locations of the free-field instruments are given in Table 504.8

and shown in Figure 504.114. In-structure recordings are discussed in Section 504.10.6.

Elastic Soil and Rock Parameters The elastic soil and rock parameters at station 1 and station 2, at

Cruas NPP, and at the epicenter of the earthquake are given in Table 504.9. The elevations at station 1

and 2 are given in Table 504.8. The elevation of the epicenter, ≈ 260 m, can be estimated using, e.g.,

an online map with elevation contours.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 504.8: Locations of the free-field instruments at Cruas NPP and near Le Teil

Station Latitude Longitude Elevation

◦ ◦ m

1 44.636253 4.758796 77

2 44.630001 4.753816 80.5

3 44.37408 4.76974 90

4 44.307 4.689 46

5 44.3561 4.8572 141.2

6 44.324346 4.73236 68

Figure 504.114: Locations of the free-field instruments near Le Teil and at Cruas NPP and location of

the source of the earthquake

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Table 504.9: Elastic soil and rock parameters at station 1 and station 2, at Cruas NPP, and at the

epicenter of the earthquake

Station 1 Station 2 Epicenter of the earthquake

z ρ Vs ν z ρ Vs ν z ρ Vs ν

m kg/m3 m/s - m kg/m3 m/s - m kg/m3 m/s -

0 1988 300 0.48 0 2039 300 0.48 0 2500 2047 0.21

1 1978 160 0.45

3 2141 450 0.45

6.5 1937 180 0.45

7 2350 800 0.45

7.5 2141 450 0.45

12.5 2500 1600 0.4

17 2500 1600 0.4

62 2500 60 + 23.7z 0.4

65.5 2500 60 + 23.7z 0.4

100 2500 2500 0.4

103.5 2500 2500 0.4

628 2600 3645 0.21

1197 2300 1200 0.20

1416 2500 2291 0.22

2026 2500 2314 0.23

2194 2600 3457 0.23

5956 2600 3616 0.21

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.10.4 FE Simulation of Ground Motions from Le Teil Earthquake

Ground motions from Le Teil earthquake had been intensively studied within the SIGMA2 project5 (Vial-

let et al., 2022). Two kinds of methods for the simulation of seismic motions had been used, that is,

the empirical ones and the physically based ones. The latter include both 1D (Fasan, 2016; Fasan et al.,

2016; Hassan et al., 2020; Magrin et al., 2016; Magrin, 2012; Panza et al., 2012) and 3D (Mazzieri

et al., 2013; Paolucci et al., 2020, 2021) simulations. Some recent 3D numerical calculations of seismic

motions from Le Teil earthquake are reported in (Lehmann et al., 2023; Smerzini et al., 2023).

Elastic soil and rock parameters are available at three locations only, see Table 504.9. This scarcity of

data alone precludes a realistic FE reproduction of Le Teil earthquake. Different assumptions about the

regional geology could be made, of course. Then, a parametric back-analysis of the earthquake could be

conducted to match the measured ground motions. However, such analysis would require a very large FE

domain to avoid the corruption of the obtained results by an unreal behavior at the model boundaries,

which generally cannot be avoided, see, e.g., (Baffet et al., 2012). It is well-known that in dynamics

a parametric FE calculation with a large spatial domain involves a considerable computation time.

Here, we aim to save the computation time. For this purpose, we make a few physically justified

simplifying assumptions about the ground motions from Le Teil earthquake. Based on these assumptions,

the seismic input will be determined and used in a computationally efficient simulation of the mechanical

behavior of Cruas NPP, Section 504.10.7. To establish the necessary assumptions, we first conduct

a preliminary FE calculation of the seismic wave field from Le Teil earthquake using the Real-ESSI

Simulator (Jeremić et al., 1988-2025).

504.10.4.1 Preliminary 2D Simulation of Le Teil Earthquake

In the case of a shallow earthquake, the incident angle larger than the critical angle, αi > αic, see

(504.13) and (504.14), should be expected at the ground surface. Such αi > αic results in a Rayleigh

wave, see, e.g., (Nowacki, 1974).

A preliminary simulation of the earthquake in Le Teil is performed and used to examine the possible

presence of a Rayleigh wave. The calculated ground motions will be validated by a qualitative compari-

son with the field measurements.

5https://www.sigma-2.net/
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The geometry, geology, material description and mechanism of the slip are simplified. The FE model

represents 2000× 1× 300 m3 ground with a 280 m thick rock that is overlayed by a 20 m thick soil, see

Figure 504.115, cf. Table 504.9.

Figure 504.115: FE model used in the preliminary 2D simulation of Le Teil earthquake

Both materials are isotropic linear elastic with parameters given in Table 504.10 (with Young modulus

E = 2ρV2
s (1 + ν)).

Table 504.10: Material properties in preliminary 2D simulation of Le Teil earthquake

Material z ρ Vs ν

m kg/m3 m/s

Soil [0, –20] 1988 300 0.48

Rock [–20, –300] 2500 1600 0.4

The ground is discretized into a single layer (in y direction, Figure 504.115) of 6000 27NodeBrick ele-

ments. The size of the element is 10 m.

The slip is simulated as the pure shear of an element at x = {200, 0, –100}. The dynamic distur-

bance is introduced onto faces of the element in the form of a shear load, τ (t) = τ ampl sin (2πft) with

τ ampl = –60 GPa and the frequency f = 1 Hz.

Newmark integration procedure is used in search of the dynamic equilibrium. Numerical damping is

introduced using parameters γ = 0.6 and β = 0.3025 in the Newmark algorithm.

Time functions of the horizontal displacement, ux(t), and the vertical displacement, uz(t), at the ground
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surface, x = {1500, 0, 0} m, and at the top of the rock layer, x = {1500, 0, –20} m, are plotted in

Figure 504.116(a) and in Figure 504.117(a), respectively. Additionally, the corresponding hodographs,

uz(ux), are shown in Figure 504.116(b) and in Figure 504.117(b). The horizontal ground acceleration,

üx(t), and the vertical ground acceleration, üz(t), at x = {1500, 0, 0} m and at x = {1500, 0, –20} m are

plotted in Figure 504.118(a) and in Figure 504.119(a). The corresponding diagrams üz(üx) are shown in

Figure 504.118(b) and in Figure 504.119(b).

Figure 504.116: Preliminary 2D simulation of Le Teil earthquake: a) ux(t) and uz(t), and b) uz(ux) at

the ground surface, x = {1500, 0, 0} m

Judging by the hodograph from Figure 504.116(b), the motions at the ground surface can be interpreted

as a Rayleigh wave, a surface wave. It is probably overlapped by the Stoneley wave from Figure 504.117(b)

which propagates along the interface between the soil and the rock.
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Figure 504.117: Preliminary 2D simulation of Le Teil earthquake: a) ux(t) and uz(t), and b) uz(ux) at

the top of the rock layer, x = {1500, 0, –20} m
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Figure 504.118: Preliminary 2D simulation of Le Teil earthquake: a) üx(t) and üz(t), and b) üz(üx) at

the ground surface, x = {1500, 0, 0} m
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Figure 504.119: Preliminary 2D simulation of Le Teil earthquake: a) üx(t) and üz(t), and b) üz(üx) at

the top of the rock layer, x = {1500, 0, –20} m
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.10. CASE STUDY OF CRUAS NUCLEAR P . . . page: 2577 of 3287

Some “unreal” reflections and refractions of the waves, at the bottom and side boundaries of the model,

are present in the simulation due to the very small size of the model. Reflection and refraction of a wave

is governed by the Snell law. It is assumed that the “unreal” waves do not corrupt the preliminary results

significantly.

Let us consider a 2D S-wave, see Figure (a) below, or a 2D P-wave, Figure (b) below, that travels

from the source, through the rock.

The incident wave arrives at the interface between the rock and the soil at an incident angle,

αi ∈ [0, 90◦), and it is reflected and refracted. Component of the wave that is normal to the interface

is reflected back into the rock at α
p
r and transmitted, refracted, into the soil at α

p
t as a P-wave.

Component tangent to the interface is reflected back into the rock at αs
r and transmitted into the soil

at αs
t as a S-wave.

According to the Snell law, the following holds

sinαi
VsA

= sinαp
r

VpA
= sinαs

r
VsA

= sinαp
t

VpB
= sinαs

t
VsB

for the incident wave being a S-wave and
sinαi
VpA

= sinαp
r

VpA
= sinαs

r
VsA

= sinαp
t

VpB
= sinαs

t
VsB

for the incident wave being a P-wave ,
(504.11)

wherein

Vp =

√
λ

ρ
+ 2V2

s with λ =
Eν

(1 + ν)(1 – 2ν)
(504.12)

and VpA, VsA denote the wave velocities in material from which a wave arrives at the interface and

VpB, VsB denote the wave velocities in material into which the wave is transmitted.

Additionally, one defines the so-called critical angle, αic. It is the incident angle for which the incident
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wave is transmitted or reflected parallel to the interface between two layers, here, rock and soil,

sinαsrp
ic = VsA

VpA
with α

p
r = 90◦ and VsA < VpA for an incident S-wave reflected as the P-wave

sinαstp
ic = VsA

VpB
with α

p
t = 90◦ and VsA ≤ VpB for an incident S-wave transmitted as the P-wave

sinαsts
ic = VsA

VsB
with αs

t = 90◦ and VsA ≤ VsB for an incident S-wave transmitted as the S-wave
(504.13)

and

sinαptp
ic = VpA

VpB
with α

p
t = 90◦ and VpA ≤ VpB for an incident P-wave transmitted as the P-wave

sinαpts
ic = VpA

VsB
with αs

t = 90◦ and VpA ≤ VsB for an incident P-wave transmitted as the S-wave.
(504.14)

If the incident angle, αi, exceeds the critical angle, αic, it follows that

sinαi > sinαic with VA ≤ VB
VA
VB

sinαt >
VA
VB

sinαt > 1 (504.15)

for transmission of the incident wave from layer A to layer B or, analogously,

sinαi > sinαic with VsA < VpA
VsA
VpA

sinαp
r >

VsA
VpA

sinαp
r > 1 (504.16)

for reflection of the incident S-wave as the P-wave in layer A. If (504.15) or (504.16) holds, then

an interface wave is present, e.g., the Rayleigh wave.

504.10.5 Validation of the Preliminary 2D Simulation of Le Teil Earthquake

Ground accelerations at station 1, at Cruas NPP, see Table 504.8 and Figure 504.114, are plotted as time

functions, üNS(t), üEW(t), üUD(t), in Figure 504.120(a). Indices NS, EW and UD denote the North-South,

East-West and up-down components of ü, respectively. Accelerations üNS(t), üEW(t), üUD(t) were inte-

grated over time t into displacements uNS, uEW, uUD. Functions uNS(t), uEW(t), uUD(t) are given in

Figure 504.120(b).
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Figure 504.120: Ground motions from Le Teil earthquake recorded at station 1, at Cruas NPP: a) ac-

celerations üNS(t), üEW(t), üUD(t) and b) displacements uNS(t), uEW(t), uUD(t).
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Figure 504.121: Ground accelerations from Le Teil earthquake recorded at station 1, at Cruas NPP, for

t ∈ [10, 13.15] s: a) üNS(t), üUD(t) and b) üUD(üNS).
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Figure 504.122: Ground accelerations from Le Teil earthquake recorded at station 1, at Cruas NPP, for

t ∈ [10, 13.15] s: a) üEW(t), üUD(t) and b) üUD(üEW).
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Figure 504.123: Ground displacements from Le Teil earthquake recorded at station 1, at Cruas NPP,

for t ∈ [10, 13.15] s: a) uNS(t), uUD(t) and b) uUD(uNS).
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Figure 504.124: Ground displacements from Le Teil earthquake recorded at station 1, at Cruas NPP,

for t ∈ [10, 13.15] s: a) uEW(t), uUD(t) and b) uUD(uEW).
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Figure 504.125: Ground accelerations from Le Teil earthquake recorded at station 1, at Cruas NPP, for

t ∈ [13, 17] s: a) üNS(t), üUD(t) and b) üUD(üNS).
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Figure 504.126: Ground accelerations from Le Teil earthquake recorded at station 1, at Cruas NPP, for

t ∈ [13, 17] s: a) üEW(t), üUD(t) and b) üUD(üEW).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 504.127: Ground displacements from Le Teil earthquake recorded at station 1, at Cruas NPP,

for t ∈ [13, 17] s: a) uNS(t), uUD(t) and b) uUD(uNS).
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Figure 504.128: Ground displacements from Le Teil earthquake recorded at station 1, at Cruas NPP,

for t ∈ [13, 17] s: a) uEW(t), uUD(t) and b) uUD(uEW).
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 504.10. CASE STUDY OF CRUAS NUCLEAR P . . . page: 2588 of 3287

504.10.5.1 Estimation of the Seismic Input

Seismic loads on ESSI systems are generally uncertain. Different earthquake scenarios and regional ge-

ology are probable. A parametric FE simulation of the mechanical behavior of an ESSI system using

models at the regional scale would be required. It is usually quite problematic due to large computation

time, however. Apart from that, unrealistic reflections of the waves at the model boundaries cannot

be avoided (Baffet et al., 2012). Even larger FE models, and computation time, would be needed to

ensure that the obtained results are not corrupted by the resulting so-called spurious waves. Hence it is

advantageous to test ESSI systems parametrically using models at the local scale.

Different simplified approaches have been used in the literature (Semblat and Pecker, 2009; Zienkiewicz

et al., 1999b) in order to shorten the computation time in FE solutions of the seismic wave propagation in

ESSI systems. These methods rely on reduction of the size of the model and replacement of the distant

earthquake load with a proxy seismic load applied at the local scale using some simplifying assump-

tions. Here, the domain reduction method (DRM) (Bielak et al., 2003a) is adapted. The proxy seismic

input, also called the DRM load, will be used to “stress”-test Cruas NPP efficiently and fairly realistically.

An earthquake load usually arrives at the local site in the form of a plane seismic wave. This is due to the

large distance between the source and the local site. The inclination of this incident plane wave has been

shown, e.g., in (Hori, 2006; Teisseyre et al., 2006; Trifunac, 1982), to have significant influence on the

mechanical behavior of ESSI systems. For this reason, Cruas NPP will be tested under an inclined plane

wave, an incoherent wave. The DRM load will be obtained using the Thomson-Haskell matrix method

(THMM) (Haskell, 1953). It is a closed-form solution of the propagation of an inclined monochromatic

plane wave in a 3D linear elastic medium with horizontal isotropic layers.

Domain Reduction Method (DRM) The DRM (Bielak et al., 2003a; Yoshimura et al., 2003a) allows to

significantly shorten the computation time in a FE solution of the seismic wave propagation in an ESSI

system. However, some simplifying assumptions are needed. It is assumed that the real seismic ground

motions do not differ significantly from the approximate ground motions. These approximate seismic

ground motions correspond to:

• the far field simplified into the linear elastic medium and

• the local site simplified into the linear elastic free field, i.e., without the structure.
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The earthquake load at the source is replaced by a proxy load at the local site. This proxy load is also

called the DRM load. It can be calculated analytically, possibly with additional simplifying assumptions.

Here, a plane wave is assumed to arrive at Cruas NPP, the local site, and the THMM is used.

It will be shown sufficient to apply the proxy load to solely a single layer of elements around the FE

domain at the local scale. In this way, the regional domain can be remarkably reduced. The single layer

of elements is called the DRM layer. The formulation of the DRM is given in what follows.

Global System of Equations We recall the global system of equations for dynamics, here, without an

artificial damping,

Kαiβj Uβj + Mαiβj Üβj = Fext
αi at given t . (504.17)

Eq. (504.17) describes the discretized, in space only, weak form of the dynamic equilibrium equation

(EE) and it is solved numerically in a FE calculation for a given time, t. The global tangent stiffness

matrix is Kαiβj . It stores the contributions from all elements and, generally, it can be either elastic,

Kel
αiβj , or elasto-plastic, Kel-pl

αiβj . The Greek indices, α,β = 1, 2, . . . , N , correspond to the global node

numbers and the Latin indices, i, j = 1, 2, 3, denote the degrees of freedom (DOFs). The displacement

at node β in direction j is Uβj . Analogously, Mαiβj is the constant global mass matrix that stores the

contributions from all elements. The acceleration at node β in direction j is Üβj . The external force at

node α in direction i is Fext
αi .

Global System of Equations in the Regional Model The regional domain includes the source of the earth-

quake and it is denoted as R. The local-site domain, with the structure, is denoted as L, Fig. 504.129(a).

Let us write (504.17) for R, L and the boundary, Γ, between R and L,
Kel
αiβj Kel

αibj 0αiBj

Kel
aiβj KR el

aibj + KL el–pl
aibj Kel–pl

aiBj

0Aiβj Kel–pl
Aibj Kel–pl

AiBj

 ·


Uβj

Ubj

UBj

+


Mαiβj Mαibj 0αiBj

Maiβj MR
aibj + ML

aibj MaiBj

0Aiβj MAibj MAiBj

 ·


Üβj

Übj

ÜBj

 =


Fext
αi

0ai

0Ai

 ,

(504.18)

wherein KR el
aibj , M

R
aibj correspond to the elements in R and KL el–pl

aibj , ML
aibj correspond to the elements

in L. The Greek indices, α,β = 1, 2, . . . , N , denote the nodes in R. The lower-case sans-serif letters,

a, b = 1, 2, . . . , N , denote the nodes at Γ and the upper-case ones, A, B = 1, 2, . . . , N , denote the nodes

in L. Domain R is much, say, 103×, larger than domain L. The Neumann BC, Fext
αi , is prescribed to

the nodes in R only. The materials in R are assumed to be linear elastic. The material behavior in L
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may be strongly non-linear. Hence L may require some sophisticated constitutive description and a fine

discretization, both, in space and time. Computational cost of this regional model is mainly related to

the size of domain R and to the material non-linearity inside domain L.

Figure 504.129: DRM: a) regional model, b) regional model with the simplified local site and c) reduced

model. L is the local-site domain, R is the regional domain and Γ is the boundary between L and R.

The BC, Fext, is replaced by the proxy load, Fext⋆, applied to the DRM layer only.

Global System of Equations in the Regional Model with the Simplified Local Site Let us temporarily

remove the structure from domain L, Fig. 504.129(b), and assume the linear elastic behavior within L.

We rewrite (504.18) using index ⊔⋆ for a quantity, ⊔, that corresponds to the regional model with the

simplified local site. The following holds.
Kel
αiβj Kel

αibj 0αiBj

Kel
aiβj KR el

aibj + KL el
aibj Kel

aiBj

0Aiβj Kel
Aibj Kel

AiBj

 ·


U⋆
βj

U⋆
bj

U⋆
Bj

 +


Mαiβj Mαibj 0αiBj

Maiβj MR
aibj + ML ⋆

aibj M⋆
aiBj

0Aiβj M⋆
Aibj M⋆

AiBj

 ·


Ü⋆
βj

Ü⋆
bj

Ü⋆
Bj

 =


Fext
αi

0ai

0Ai


(504.19)

The simplification of L does not influence either the stiffness matrices or the mass matrices corresponding

to the elements in R. Neither the BC, Fext
αi , is affected.

Material in the far field is assumed linear elastic independently of the temporary simplification of L, so

the displacement and its time derivates are additive, that is,

∆Uβj = Uβj – U⋆
βj and ∆Üβj = Üβj – Ü⋆

βj (504.20)

hold in R.

Global System of Equations in the Reduced Model The force

Fext
αi = Kel

αiβjU
⋆
βj + Kel

αibjU
⋆
bj + MαiβjÜ

⋆
βj + MαibjÜ

⋆
bj (504.21)
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from (504.19) can be substituted together with (504.20) into (504.18) and one obtains the following

system of equations.Kel
αiβj Kel

αibj 0αiBj

Kel
aiβj KR el

aibj + KL el–pl
aibj Kel–pl

aiBj

0Aiβj Kel–pl
Aibj Kel–pl

AiBj

·


∆Uβj

Ubj

UBj

+

Mαiβj Mαibj 0αiBj

Maiβj MR
aibj + ML

aibj MaiBj

0Aiβj MAibj MAiBj

·


∆Üβj

Übj

ÜBj

 =


Kel
αibjU

⋆
bj + MαibjÜ⋆

bj

–Kel
aiβjU

⋆
βj – MaiβjÜ⋆

βj

0Ai


(504.22)

The RHS of (504.22),
Fext⋆
αi

Fext⋆
ai

0Ai

 =


Kel
αibjU

⋆
bj + MαibjÜ⋆

bj

–Kel
aiβjU

⋆
βj – MaiβjÜ⋆

βj

0Ai

 , (504.23)

can be used as the BC instead of Fext from (504.18).

It is evident in (504.23) that the proxy forces, Fext⋆, take on non-zero values for elements with nodes

a, b, in domain R, or both, a, b, in domain R, and α,β, at boundary Γ, only. This means that Fext⋆ can

be applied to solely the single layer of elements adjacent to Γ, namely, the DRM layer, and hence the

model can be reduced, Fig. 504.129(c).

The discrete proxy load, Fext⋆, is only a rough estimation of the real seismic load because it corresponds

to the simplified local site. Hence using the DRM, one saves the computation time at the cost of the

reliability of the obtained results.

This Fext⋆ is obtained in Real-ESSI Simulator from an inclined plane wave in horizontally layered soil

using the THMM.

Thomson-Haskell Matrix Method (THMM) The propagation of an inclined plane wave in a linear elastic

ground with horizontal isotropic layers is solved analytically using the Thomson-Haskell matrix method

(THMM) (Haskell, 1953; Thomson, 1950). In this way, reflections and refractions of the wave at in-

terfaces between the layers are captured. Also, the Rayleigh wave is taken into account. The use of

a closed-form solution eliminates the problem of unrealistic reflections of the wave at the boundaries of

the FE model.

The THMM holds for monochromatic waves only. If the wave is non-monochromatic, it can be de-

composed into harmonic components with the Fourier analysis. The THMM is then used for each
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monochromatic component and the solutions are synthesized using, again, the Fourier analysis.

The analytical solution of the wave propagation is generally established from the boundary conditions

at the interfaces between the layers and at the surface. The Helmholtz decomposition theorem is incor-

porated and the wave field is separated into two parts, i.e., the part pertaining to the purely volumetric

deformation and the part related to the pure rotation of material particles (Nowacki, 1974). The Snell

law describes reflections and refractions of the waves at the interfaces between the layers and at the

surface. In the THMM, the governing equations are conveniently rewritten into a matrix form to ease

the computation of the wave propagation.

A comprehensive description of the implementation of the THMM into Real-ESSI Simulator is given in

(Wang et al., 2021).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.10.5.2 Preliminary 2D Simulation of Le Teil Earthquake using DRM with THMM

Rock is isotropic, linear elastic, E, ν with E = 2ρV2
s (1 + ν), Table 504.11.

Table 504.11: Material properties in preliminary 2D simulation of the earthquake in Le Teil using DRM

with THMM

Material z ρ Vs ν

m kg/m3 m/s

Rock [0, –∞] 2500 1600 0.4

Time functions of the horizontal ground acceleration, üx(t), and the vertical ground acceleration, üz(t),

at x = {140, 0, 0} m is plotted in Figure 504.130(a). The corresponding hodograph, uz(ux), is shown in

Figure 504.130(b).

Figure 504.130: Preliminary 2D simulation of the earthquake in Le Teil using DRM with THMM:

a) üx(t) and üz(t), and b) uz(ux) at x = {140, 0, 0} m.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.10.6 Cruas Nuclear Power Plant (NPP)

Base isolators are located at approximately -9.0 to -12.0 m. This means that the NPP is founded on

rock, see the soil profile from Table 504.9 on page 2570.

Figure 504.131: Cruas NPP, section 01, according to Viallet et al. (2022).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 504.132: Cruas NPP, section 02, according to Viallet et al. (2022).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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504.10.7 FE Simulation of Cruas NPP under Seismic Load from Le Teil Earthquake

. . .

504.10.7.1 Verification of the Simulation

FE simulation of an ESSI system requires one to specify:

• the domain of simulation (both, in space and in time)

• the boundary conditions (BCs)

• the initial conditions (ICs)

• the material laws

• the material parameters

• the discretization (in space and in time) and

• the numerical procedures used in the calculation,

wisely. A parametric study using a simple FE model may be helpful in understanding the influence of

the above aspects on the results of the simulation. This influence can be additionally quantified in

a sensitivity study (Sobol, 2001). Also, in the case of a simple model, the numerical solution can be

compared with the corresponding analytical one. In this way, a complex FE model can be verified.

Element Tests The mechanical behavior of chosen critical parts of Cruas NPP (being an ESSI system)

is investigated in suitable element tests. They are conducted on different structural materials and on

different soils with various:

• BCs (displacement, seismic load)

• ICs (initial stress and strain)

• material laws

• material parameters.

The resulting evolution of the stress, σ(x, t), and strain, ε(x, t), fields is examined.

Beam Element Tests on Reinforced Concrete A cantilever beam is tested on reinforced concrete with

different material laws for concrete and for steel in:

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• uniaxial compression or extension, Figure . . .

• uniaxial bending, Figure . . .

• biaxial bending, Figure . . .

• torsion, Figure . . . .

A (displacement-based) fiber beam-column element similar to the one from (Taucer et al., 1991) is used.

It is called BeamColumnDispFiber3d Corotational. The co-rotational formulation by (Crisfield, 1990)

is implemented. The local coordinate system co-rotates with the element during a rigid body rotation

and hence BeamColumnDispFiber3d Corotational is applicable also in the case of the geometric

non-linearity, i.e., when large deformations are involved. Otherwise, during a large deformation with

a significant rigid body rotation, an excessive stiffness might be obtained in such beam element.

The element has two nodes and the user defines the number of Gauß points along the element.

BeamColumnDispFiber3d Corotational may represent multiple 1D so-called fibers. They are simply

connected in parallel, Figure 504.133. A fiber is defined by its cross-section, A, and location in the

element cross-section, {y, z}. The cross-section is constant along the beam.

Figure 504.133: Fiber beam-column element in uniaxial bending: The second moment of area, I,

pertains to the whole cross-section and the density, ρ, describes the average density of the material.

Each fiber has a prescribed material law. Different material laws can be prescribed to different fibers.

The strain in a single fiber is obtained assuming that the cross-section remains plane and normal to the

beam axis during the deformation. This means that BeamColumnDispFiber3d Corotational is an Eu-

ler-Bernoulli beam. The shear stress is neglected which is allowed in beams for which the cross-sectional

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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dimensions are much smaller than the length, see, e.g., (Nowacki, 1974).

However, the cross-section is additionally (independently of the fibers) described by the product, GJ,

of the shear modulus, G, and the torsional constant, J. Hence the element has four nodal degrees of

freedom (DOFs) altogether, i.e., three translations and the angle of twist due to the torsional moment,

Mx.

Shell Element Tests on Concrete . . .

Solid Element Tests on Concrete Different constitutive laws for concrete are tested in:

• triaxial compression, Figure 504.134(a),

• simple shear, Figure 504.134(b),

• pure shear (here, understood as isochoric shear with no rotation of the principal stress and strain

directions), Figure 504.134(c).

The 3D solid brick element, 8NodeBrick, is used.

Figure 504.134: Solid element tests: a) triaxial compression, b) simple shear, c) pure shear (isochoric

with no rotation of the principle stress and strain directions), d) pure shear (in soil mechanics, commonly

understood as isochoric shear).

Solid Element Tests on Soil Similarly as in the case of the solid element tests on concrete, different

constitutive laws for soils are tested in:

• triaxial compression, Figure 504.134(a),

• simple shear, Figure 504.134(b),

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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• pure shear (here, understood as isochoric shear with no rotation of the principal stress and strain

directions), Figure 504.134(c).

The 3D solid brick element, 8NodeBrick, is used.

Interface Element Tests . . .

Seismic Isolator and Dissipator Element Tests . . .

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Report for Phase 2 of Stage 1, Simulation of the Ground Motions

Ground motions from the Le Teil earthquake had been intensively studied within the SIGMA2 project6

(Viallet et al., 2022). Two types of methods for the simulation of seismic motions had been used,

the empirical methods and the physically based methods. The latter include both, 1D (Fasan, 2016;

Fasan et al., 2016; Hassan et al., 2020; Magrin et al., 2016; Magrin, 2012; Panza et al., 2012) and 3D

(Mazzieri et al., 2013; Paolucci et al., 2020, 2021) simulations. Some recent 3D numerical calculations of

seismic motions from the Le Teil earthquake are reported in (Lehmann et al., 2023; Smerzini et al., 2023).

Seismic input due to the Le Teil earthquake is needed to simulate the inelastic behavior of the Cruas

NPP. A FE simulation of the wave field from the earthquake is conducted using the Real-ESSI Simulator

(Jeremić et al., 1988-2025). Unfortunately, the knowledge about the local and regional geology is very

limited. Soil and rock profiles are available at three locations only. This scarcity of data precludes the

preparation of a realistic model at the regional scale. Hence an accurate reproduction of the seismic

wave field from the earthquake in Le Teil is impossible.

Based on a preliminary simplified FE simulation and the recent work by Viallet et al. (2022), some

important observations are made about the studied seismic wave field.

- The preliminary simulation using a simple 2D model with a shallow point source reveals a possible

occurence of the Stoneley wave and the Rayleigh wave. This should, indeed, be expected from

a shallow earthquake, particularly with the rupture that achieves the surface.

- Based on Viallet et al. (2022), the horizontal and vertical components of ground motions at the

Cruas NPP occur almost simultaneously. We interprete these motions as the overlapping Rayleigh

and Stoneley waves.

- Earthquake loads are usually simulated as one dimensional (1D), one component (1C) waves, pos-

sibly superposed, wherein 1D pertains to the direction of propagation, either vertical or horizontal,

while 1C corresponds to the direction of polarization, analogously, either vertical or horizontal. The

probable presence of the Rayleigh wave and the Stoneley wave excludes this common approach to

modelling of seismic loads. In the case of the surface and interface waves, the simulated seismic

wave field is shown to be significantly different than the one obtained using the common approach.

The seismic response of a structure will also be different depending on the seismic input. The

difference is most evident in the case of shorter wave lengths, that is, for higher wave frequencies.

6https://www.sigma-2.net/
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These and other observations will be presented during the next SMATCH benchmark meeting in Novem-

ber 2023.
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504.10.8 Finite Element Models

Figure 504.135: Cruas NPP, section 01, according to Viallet et al. (2022).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 504.136: Cruas NPP, section 02, according to Viallet et al. (2022).
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505.1 Chapter Summary and Highlights

505.2 Introduction

Liquefaction is one of the most complex phenomena in earthquake engineering. Liquefaction also rep-

resents one of the biggest contributors to damage of constructed facilities during earthquakes (Kramer,

1996a). Prediction of behaviors of liquefiable soils is difficult but achievable. There are number of meth-

ods that can be utilized to predict such behaviors. Methods currently used can have varying prediction

accuracy and certainty. Of particular interest in this paper is the description of verified and validated

numerical simulation methodology based on rational mechanics that is used to model, simulate and

predict behavior of a single pile in liquefiable soil subjected to seismic loading. Both level and sloping

ground pile systems are modeled and simulated. Detailed description of background theory, formulation

and implementation were recently given by Cheng et al. (2007) and Jeremić et al. (2008).

It should be noted that presented development does show great promise in analyzing a myriad of

liquefaction related problems in geotechnical and structural engineering. The effectiveness and power

of numerical simulation tools for analyzing liquefaction problems becomes even more important and

prominent in the light of potential disadvantages of models used in experimental simulations. These

disadvantages, related to proper scaling (Wood, 2004) and problems in maintaining appropriate similari-

ties (Harris and Sabnis, 1999) for first order important phenomena, can render scaled models ineffective,

when used for physical simulations (under one-step or multiple-step gravity loading).

In what follows, a brief literature review is provided. The literature review comprises sections on

observations of liquefaction behavior in case studies, non–continuum modeling efforts, review of redis-

tribution of voids and pore fluid volume/pressures phenomena and continuum modeling efforts.

Observation of Behavior. Liquefaction behavior was observed during a number of earthquakes in the

past. During Alaskan Earthquake (1964), liquefaction was the main cause of severe damage to 92 high-

way bridges, moderate to light damage to another 49 highway bridges, and moderate to sever damage

to 75 railroad bridges (Youd and Bartlett, 1989). During Niigata Earthquake (1964) liquefaction in-

duced damage to foundation piles under Yachiya bridge (Hamada, 1992). During that same earthquake,

girders of Showa Bridge toppled as the support structure and piles moved excessively due to liquefac-

tion (Japanese Society of Civil Engineers, 1966). During Kobe Earthquake (1995), liquefaction was the

primary cause of damage to many pile supported or caisson supported bridges and structures. For ex-

ample, Shin–Shukugawa bridge was subjected to excessive pile foundation movement due to liquefaction

(Yokoyama et al., 1997).

Opposed to these failures and collapses, there were a number of bridges with pile foundations that
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did not suffer much or even minor damage even though there was liquefaction around foundations. For

example, pile foundations of the Landing Road Bridge in New Zealand performed quite well during

Edgecumbe earthquake (1987) even with a significant liquefaction recorded (Berril et al., 1997; Dobry

and Abdoun, 2001). In addition to that, Second Maya Bridge piles (large steel pipes) were not damaged

during Kobe earthquake despite significant liquefaction in surrounding soils (Yokoyama et al., 1997).

Non–Continuum Modeling Efforts. Modeling and simulation of piles in liquefied grounds has been focus

of a number of recent studies. The simple approach, based on scaling of p-y springs has been suggested

early by Japanese Road Association (1980), Architectural Institutive of Japan (1988), Liu and Dobry

(1995), Miura et al. (1989) and O’Rourke (1991). However, large inconsistencies with material parameter

selection are present when p-y spring approach is used for piles in liquefied soils. Since p-y methodology

for liquefied soils is not based on rational mechanics, appropriate choice of material parameters is primarily

based on empirical observations of behaviors of piles in liquefied soils in experimental studies. A number

of experimental studies have carefully examined pile behaviors in liquefiable soils. We mention Tokida

et al. (1992), Liu and Dobry (1995), Abdoun et al. (1997), Horikoshi et al. (1998) and Boulanger and

Tokimatsu (2006). Studies using physical model can be used to obtain very high quality data on behavior

of piles in liquefied soils, provided that similarity of important physical phenomena is maintained (Wood,

2004; Harris and Sabnis, 1999). Some of the recent papers that discussed use of these models and gave

recommendations about parameter choices are listed for reference: Tokimatsu and Asaka (1998), Martin

et al. (2002), Dobry et al. (2003), Liyanapathirana and Poulos (2005), Rollins et al. (2005), Čubrinovski

and Ishihara (2006), Brandenberg et al. (2007).

Redistribution of Voids and Pore Fluid Volume/Pressures. Mechanics of pile behavior in liquefiable

grounds is based on the concept of redistribution of voids and pore fluid volume/pressures (RVPFVP). It

should be emphasized that geomechanics phenomena of redistribution of voids – pore fluid volume/pres-

sure is used here in purely mechanistic way. That is, RVPFVP is a phenomena that occurs in saturated

soils and that phenomena is responsible for (is manifested in) liquefaction related soil behaviors with

or without piles. This is noted as in some recent publications, RVPFVP terminology is explicitly used

for problems of liquefaction induced failures of sloping grounds without piles. Our understanding of the

RVPFVP phenomena is that RVFVP is responsible for many more facets of behavior of liquefied soils,

rather than only failure of liquefied slopes.

The early investigation of the RVPFVP phenomena was related to the behavior of infinite slopes. For

example, loss of shear strength in infinite slopes is one of the early understood manifestations of RVPFVP

(Whitman, 1985; National Research Council, 1985; Malvick et al., 2006). Laboratory investigation of
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sand was also used to observe the RVPFVP phenomena (Casagrande and Rendon, 1978; Gilbert, 1984)

Continuum Modeling Efforts. Continuum based formulations for modeling liquefaction problems have

been present for over two decades. In a landmark paper, Zienkiewicz and Shiomi (1984) presented three

possible coupled formulations for modeling of soil skeleton – pore fluid problems. The most general and

complete one is the so called u-p-U formulations while the other two, the u-p and the u-U have a number

of restrictions on the domain of application. Here, the unknowns are the soil skeleton displacements

u; the pore fluid (water) pressure p; and the pore fluid (water) displacements U. The u-p formulation

captures the movements of the soil skeleton and the change of the pore pressure, and is the most

simplistic one of the three mentioned above. This formulation neglects the differential accelerations

of the pore fluid (it does account for acceleration of pore fluid together with soil skeleton, but not the

differential one if it exists), and in one version neglects the compressibility of the fluid (assuming complete

incompressibility of the pore fluid). In the case of incompressible pore fluid, the formulation requires

special treatment of the approximation function (shape function) for pore fluid to prevent the volumetric

locking (Zienkiewicz and Taylor, 2000). The majority of the currently available implementations are

based on this formulation. For example Elgamal et al. (2002) and Elgamal et al. (2003) developed an

implementation of the u-p formulation with the multi-surface plasticity model by Prevost (1985b), while

Chan (1988) and Zienkiewicz et al. (1999a) used generalized theory of plasticity Pastor et al. (1990).

The u-U formulations tracks the movements of both the soil skeleton and the pore fluid. This

formulation is complete in the sense of basic variables, but might still experience numerical problems

(volumetric locking) if the difference in volumetric compressibility of the pore fluid and the solid skeleton

is large.

The u-p-U formulation resolves the issues of volumetric locking by including the displacements of both

the solid skeleton and the pore fluid, and the pore fluid pressure as well. This formulation uses additional

dependent unknown field of pore fluid pressures to stabilize the solution of the coupled system. The

pore fluid pressures are connected to (dependent on) displacements of pore fluid. With known (given)

volumetric compressibility of the pore fluid, pore fluid pressure can be calculated. Despite it’s power,

the u-p-U formulation has rarely been implemented into finite element code, and has never (at least to

our knowledge) been used to analyze pile – liquefied soil interaction. This can be attributed in part to

a sophistication of implementation that is required, and to a sizable increase in computational cost for

u-p-U elements.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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505.3 Liquefaction of Level and Sloping Grounds

Material presented here is from Cheng et al. (2007); Jeremić et al. (2008).

Liquefaction of level and sloping grounds represents a very common behavior during earthquakes.

Of interest is to estimate settlement for level ground, and horizontal movements for sloping grounds. In

next few sections, presented are results for a 1D, vertical (level ground) and sloping ground cases for

dense and loose sand behavior during seismic shaking.

505.3.1 Model Description

Vertical soil column consists of a multiple-elements subjected to an earthquake shaking. The soil is

assumed to be Toyoura sand and the calibrated parameters are from Dafalias and Manzari (2004a), and

are given in the Table (505.1).

Table 505.1: Material parameters of Dafalias-Manzari model.

material parameter value material parameter value

Elasticity G0 125 kPa Plastic modulus h0 7.05

v 0.05 ch 0.968

Critical sate M 1.25 nb 1.1

c 0.712 Dilatancy A0 0.704

λc 0.019 nd 3.5

ξ 0.7 Fabric-dilatancy zmax 4.0

er 0.934 cz 600.0

Yield surface m 0.01

The other parameters, related to the boundary value problem are given in table (505.2).

For tracking convenience, the mesh elements are labeled from E01 (bottom) to E10 (surface) and

nodes at each layers are labeled from A (bottom) to K (surface).

A static application of gravity analysis is performed before seismic excitation. The resulting fluid

hydrostatic pressures and soil stress states along the soil column serve as initial conditions for the

subsequent dynamic analysis.

It should be noted that the self weight loading is performed on an initially zero stress (unloaded) soil

column and that the material model and numerical integration algorithms are powerful enough to follow

through this early loading with proper evolution. The boundary conditions are such that the soil and

water displacement degree of freedom (DOF) at the bottom surface are fixed, while the pore pressure

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 505.3. LIQUEFACTION OF LEVEL AND SLOPI . . . page: 2610 of 3287

Table 505.2: Additional parameters used in boundary value problem simulations (other than material

parameters from the Table (505.1)).

Parameter Symbol Value

Solid density ρs 2700 kg/m3

Fluid density ρf 1000 kg/m3

Solid particle bulk modulus Ks 3.6× 107 kN /m2

Fluid bulk modulus Kf 2.2× 106 kN /m2

permeability k 5.0× 10–4 m/s

HHT parameter α -0.2

DOFs are free; the soil and water displacement DOFs at the upper surface are free upwards to simulate

the upward drainage. The pore pressure DOFs are fixed at surface thus setting pore pressure to zero.

On the sides, soil skeleton and water are prevented from moving in horizontal directions while vertical

movement of both is free. It is emphasized that those displacements (of soil skeleton and pore fluid)

are different. In order to simulate the 1D behavior, all DOFs at the same depth level are connected

in a master–slave fashion. Modeling of sloping ground is done by creating a constant horizontal load,

sine of inclination angle, multiplied by the self weight of soil column, to mimic sloping ground. In

addition to that, for a sloping ground, there should be a constant flow (slow) downhill, however this

is neglected in our modeling. The permeability is assumed to be isotropic k = 5.0×10–4 m/s. The

input acceleration time history (Figure (505.1)) is taken from the recorded horizontal acceleration of

Model No.1 of VELACS project Arulanandan and Scott (1993) by Rensselaer Polytechnic Institute,

http://geoinfo.usc.edu/gees/velacs/. The magnitude of the motion is close to 0.2 g, while main

shaking lasts for about 12 seconds (from 1 s to 13 s). For the sloping ground model a slope of % 3 was

considered.

It should be emphasized that the soil parameters are related to Toyoura sand, not Nevada sand which

is used in VELACS project. The purpose of presented simulation is to show the predictive performance

using verified and validated formulation, algorithms, implementation and models.

505.3.2 Behavior of Saturated Level Ground

Figure (505.2) describes the response of the sample with loose sand e0 = 0.85. This figure shows

the typical mechanism of cyclic decrease in effective vertical stress due to pore pressure build up as

expected for the looser than critical granular material. The lower layers show only the reduction of

effective vertical stress from the beginning. Once the effective vertical (and therefore confining) stress

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 505.3. LIQUEFACTION OF LEVEL AND SLOPI . . . page: 2611 of 3287

0 2 4 6 8 10 12 14 16 18 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

g

Figure 505.1: Input earthquake ground motion for the soil column.

approaches the smaller values, signs of the so-called butterfly shape can be observes in the stress path.

Similar observation can made in the upper layers which have the smaller confining pressure comparing to

the lower layers from the very beginning due to lower surcharge. The upper layers have lower confining

pressure (lower surcharge) at the beginning of the shaking, hence less contractive response is expected in

these layer; however, soon after the initiation of the shaking these top layers start showing the liquefaction

state and that type of response continues even after the end of the shaking. The top section of the

model has remained liquefied well past the end of shaking. This is explained by the large supply of

pore fluid from lower layers, for which the dissipation starts earlier. For example, for the lowest layer,

the observable drop in excess pore pressure start as soon as the shaking ends, while, the upper layers

then receive this dissipated pore fluid from lower layers and do liquefy (or continue being liquefied) well

past end of shaking (which happens at approximately 13 seconds). It is very important to note the

significance of this incoming pore water flux on the pore water pressure of the top layers. Despite the

less contractive response of soil skeleton at the top elements, the transient pore water flux, that enters

these elements from the bottom, forces those to a liquefaction state. In other words, the top elements

have not liquefied only due to their loose state but also because of the water flow coming from the

bottom layers. The maximum horizontal strains can be observed in the middle layers due to liquefaction

and prevents upper layers from experiencing larger strains. The displacements of water and soil are

presented in the last column. It shows that in all layers the upward displacement of water is larger than

the downward displacement of soil. This behavior reflects soil densification during shaking.
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Figure (505.3) describes the response of the sample with dense sand (e0 = 0.75). This figure also

shows the typical mechanism of cyclic decrease in effective vertical stress. However, in case of this dense

sample the decreasing rate of the effective confining pressure is much smaller than what was observed

in the loose sample. Signs of the partial butterfly shape in the effective stress path can be observed

from early stages of shaking. The butterfly is more evident in the upper layers with the lower confining

pressure, i.e. more dilative response. In later stages of the shaking, i.e. when the confining pressure

reduces to smaller value the butterfly shape of the stress path gets more pronounced due to having

more dilative response in the lower confining pressure based on CSSM concept. In comparing this dense

case to the case of shaking the loose sand column, the current case does not show any major sign of

liquefaction (when stress ratio ru = 1). This is due to the less contractive (more dilative) response of the

sand in this case, which is coming from the the denser state of the sample. Because of having partial

segments of dilative response, the whole column of the sand has not loosed its strength to the extent

that happened for the case of loose sand and therefore smaller values of horizontal strains has been

observed in the results. The absolute values of soil and water vertical displacements are also smaller

than the case of loose sand which can be again referred to the less overall contractive response in this

case.

Overall, it can be noted that the response in the case of loose sand (e0 = 0.85) is mainly below

the dilatancy surface (phase transformation surface) while the denser sand sample with e0 = 0.75 shows

partially dilative response referring to the denser than critical state.

505.3.3 Behavior of Saturated Sloping Ground

Figures (505.4) and (505.5) present the result of the numerical simulations for shaking the inclined soil

columns (toward right) with loose and dense sand samples, respectively. The inclination of the soil

column results in presence of the offset shear stress to the right side. This essentially poses asymmetric

horizontal shear stresses (toward the direction of inclination) during cycles of shaking. On one hand, this

offset shear stress makes the sample more dilative in the parts of shaking toward the right side (think

about the state distance from the phase transformation line or dilatancy line in the p – q space). As

a result asymmetric butterfly loops will be induced causing the soil to regain its stiffness and strength

(p) in the dilative parts of the corresponding cycles, therefore only instantaneous spikes of ru = 1 can

be observed in case of the sloped columns of soil. There is also a permanent liquefaction in terms of

having stationary portions of ru = 1 in this case. On the other hand, the offset shear stress results

generation of more horizontal strains in the portions of loading which are directed toward the right

side than those which are directed back toward the left side. As a result the horizontal shear strains

will accumulative toward the right side and create larger permanent horizontal displacement comparing
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Figure 505.2: Seismic results for (loose sand) soil column in level ground (e0 = 0.85).
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Figure 505.3: Seismic results for (dense sand) soil column in level ground (e0 = 0.75).
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to the case of level ground soil column. Since the overall dilative response of the dense sample, i.e.

Figure (505.5), is larger than that of the loose sample, i.e. Figure (505.4), the dense sample shows

stiffer response and therefore less accumulative horizontal shear strains than the loose sample. The

difference in predicted horizontal displacements is almost three times, that is, for the dense sample the

final, maximum horizontal displacement is approx. 0.5 m, while for the loose sand sample, it almost

1.5 m,

   
−25

0

25

E10

τ h (
kP

a)

   
−25

0

25

E07

τ h (
kP

a)

   
−25

0

25

E04

τ h (
kP

a)

0 50 100
−25

0

25

E01

τ h (
kP

a)

σ′
v
 (kPa)

     
0

 

 

 

 

1
E10

R
u

     
0

 

 

 

 

1
E07

R
u

0 20 40 60 80
0

 

 

 

 

1
E04

R
u

0 20 40 60 80
0

 

 

 

 

1
E01

R
u

Time (s)

   
−25

0

25

E10

τ h (
kP

a)
   

−25

0

25

E07

τ h (
kP

a)

   
−25

0

25

E04

τ h (
kP

a)

0 10 20
−25

0

25

E01

τ h (
kP

a)

ε
h
 (%)

   
0

1.5 

K

D
x 

(m
)

   
0

1.5 

H

D
x 

(m
)

   
0

1.5 

E

D
x 

(m
)

0 10 20
0

1.5 

B
D

x 
(m

)

Time (s)

E
10

ABCDFGHIJK

E

E
01E
02E
03E
04E
05E
06E
07E
08E
09

Figure 505.4: Seismic results for (loose sand) soil column in sloping ground (e0 = 0.85).

505.4 Pile in Liquefied Ground, Staged Simulation Model Development

Material presented here is from Cheng and Jeremić (2009a,b) Model development for a pile in the

liquefiable soil follows physics (mechanics) of the problem as close as possible. Numerical simulation of

such problems in geomechanics is usually based on stages of loading and increments within those stages.

All load stages are applied to a series of finite element models, all of which share features of an initial

soil model. This initial soil model consists of a soil block with dimension of 12×12×15 m (length × width

× depth). Due to the symmetry of the model, only half of the block is modeled. Symmetry assumptions

is based on assumption that all the loads, dynamic shaking and other influences are symmetric with
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Figure 505.5: Seismic results for (dense sand) soil column in sloping ground (e0 = 0.75).

respect to the plane of symmetry. This specialization to symmetric model reduces model generality (for

example this use of symmetry will preclude analysis of dynamic shaking perpendicular to sloping ground

dip). However, as our goal is to present a methodology of analyzing behavior of piles in liquefying

ground, this potential drawback is not deemed significant in this study. Finite element mesh for the

model is presented in Figure (505.6). The initial mesh consists of 160 eight node u-p-U elements.

Each node of the mesh has 7 degrees of freedom, three for soil skeleton displacements (ui), one for

pore water pressure (p), and three for pore water displacement (Ui). While it can be argued that the

mesh is somewhat coarse, it is well refined around the pile, yet to be installed, in place of gray region in

the middle.

A single set of parameters is used with the Dafalias-Manzari material model. Soil is modeled as

Toyoura sand and material parameters (summarized in Table 505.4) are calibrated using tests by Verdugo

and Ishihara (1996), while initial void ration was set to e0 = 0.80. It is very important to emphasize that

the state of stress and internal variables from initial state (zero for stress and given value for void ratio

and fabric) will evolve through all stages of loading by proper modeling and algorithms, by using single

set of material parameters. Table 505.4 presents additional parameters, other than material parameters
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Figure 505.6: Left: Three dimensional finite element mesh featuring initial soil setup, where all the

soil elements are present. The gray region of elements is excavated (numerically) and replaced by a

pile during later stages of loading; Right: Side view of the pile-soil model with some element and node

annotation, used to visualize results.

presented in Table 505.4, used for numerical simulations.

505.4.1 First Loading Stage: Self Weight

The initial stage of loading is represented by the application of self weight on soil, including both the

soil skeleton and the pore water. Initial state in soil before application of self weight is of a zero stress

and strain while void ratio and fabric are given initial values. The state of stress/strain, void ratio and

fabric will evolve upon application of self weight. At the end of self weight loading stage, soil is under

appropriate state of stress (K0 stress), the void ratio corresponds to the void ratio after self weight

(redistributed such that soil is denser at lower layers), while soil fabric has evolved with respect to stress
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Table 505.3: Material parameters used for Dafalias-Manzari elastic–plastic model.

Material Parameter Value Material Parameter Value

Elasticity G0 125 kPa Plastic modulus h0 7.05

v 0.05 ch 0.968

Critical sate M 1.25 nb 1.1

c 0.8 Dilatancy A0 0.704

λc 0.019 nd 3.5

ξ 0.7 Fabric-dilatancy zmax 4.0

er 0.934 cz 600.0

Yield surface m 0.02

Table 505.4: Additional parameters used in FEM simulations.

Parameter Value

Solid density ρs 2800 kg/m3

Fluid density ρf 1000 kg/m3

Solid particle bulk modulus Ks 1.0× 1012 kN /m2

Pore fluid bulk modulus Kf 2.2× 106 kN /m2

permeability k 1.0× 10–4 m/s

Gravity g 10 m/s2

induced anisotropy. All of these changes are modeled using Dafalias–Manzari material model and using

constitutive and finite element level integration algorithms developed within UC Davis Computational

Geomechanics group in recent years.

Boundary conditions (BC) for self weight stage of loading are set in the following way:

• Soil skeleton displacements (ui), are fixed in all three directions at the bottom of the model. At

the side planes, nodes move only vertically to mimic self-weight effect. All other nodes are free to

move in any direction.

• Pore water pressures (p), are free to develop at the bottom plane and at all levels of the mod-

els except at the top level at soil surface where they are fixed (set to zero, replicating drained

condition),

• Pore water displacements (Ui), are fixed in all three directions at the bottom, are free to move

only vertically at four sides of the model and are free to move in any direction at all other nodes.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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These boundary condition are consistent with initial self-weighting deformation condition for soil and

pore water at the site.

For the case of sloping ground, an additional load sub-stage is applied after self weight loading,

in order to mimic self weight of inclined (sloping) ground. This is effectively achieved by applying a

resultant of total self weight of the soil skeleton times the sine of the inclination angle at uphill side of

the model. This load is applied only to the solid skeleton DOFs, and not on the water DOFs. Physically

it would be correct to consider the sloping ground effects on the pore water as well. This will create a

constant flow field of the water downstream, which, while physically accurate, is small enough that it

does not have any real effect on modeling and simulations performed here.

505.4.2 Second Loading Stage: Pile–Column Installation

After the first loading stage, comprising self weight applications (for level or sloping ground, as discussed

above), second loading stage includes installation (construction) of the pile–column. Modeling changes

performed during loading stage included:

• Excavation of soil occupying space where the pile will be installed. This was done by removing

elements, nodes and loads on elements shown in gray in Figure (505.6).

• These elements were replaced by very soft set of elements with small stiffness, low permeability.

This was done in order to prevent water from rushing into the newly opened hole in the ground

after original soil elements (used in the first loading stage) are removed.

• Installation of a pile in the ground and a superstructure (column) above the ground. Nonlinear

bean–column elements were used for both pile and column together with addition of appropriate

nodal masses at each beam-column node, and with the addition of a larger mass at the top

representing lumped mass of a bridge superstructure. Pile beam-column elements were connected

with soil skeleton part of soil elements using a specially devised technique.

As mentioned earlier, the volume that would be physically occupied by the pile in the pile hole, is

“excavated” during this loading stage. Beam–column elements, representing piles, are then placed in

the middle of this opening. Pile (beam–column) elements are then connected to the surrounding soil

elements by means of stiff elastic beam–column elements. These “connection” beam–column elements

extend from each pile node to surrounding nodes of soil elements. The connectivity of nodes to soil

skeleton nodes is done only for three beam–column translational DOFs, while the three rotational DOFs

from the beam–column element are left unconnected. These three DOFs from the beam–column side are

connected to first three DOFs of the u-p-U soil elements, representing displacements of the soil skeleton
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(ui). Water displacements (Ui) and pore water pressures (p) are not connected in any way. Rather,

these two sets of DOFs representing pore water behave in a physical manner (cannot enter newly created

hole around pile beam–column elements) because of the addition of a soft, but very impermeable set of

u-p-U elements, replacing excavated soil elements. By using this method, both solid phase (pile with

soil skeleton) and the water phase (pore water within the soil) are appropriately modeled. Figure (505.7)

shows in some detail schematics of coupling between the pile and soil skeleton part finite elements.

Pile

u−p−U
solid

Beam

u
U
p
θ

i

i

i

Figure 505.7: Schematic description of coupling of displacement DOFs (ui) of beam-column element

(pile) with displacement DOFs (ui) of u-p-U elements (soil).

Nonlinear force based beam–column elements (Spacone et al., 1996a,b) were used for modeling

the pile–column. Pile was assumed to be made of aluminum. This was done in order to be able to

validate simulations with centrifuge experiments (when they become available). Presented models were

all done in prototype scale, while for (possible future) validation, select results will be carefully scaled and

compared with appropriate centrifuge modeling. Pile and the column were assumed to have a diameter

of d = 1.0 m, with Young’s modulus of E = 68.5 GPa, yield strength fy = 255 kPa, and the density

ρ = 2.7 kg/m3. Wall thickness of prototype pile–column is t = 0.05 m. Lumped mass of pile and column

was distributed along the beam–column nodes, while an additional mass was added on top (m = 1200 kg)

that represents (small) part of the superstructure mass. This particular mass (m = 1200 kg) comes from

a standard (scaled up in our case) centrifuge model for pile–column–mass used at UCD.

Figure (505.6) (right side) shows side view of the column-pile-soil model after second stage of loading.

505.4.3 Third Loading Stage: Seismic Shaking

After the application of self weight on the uniform soil profile, excavation and construction of the single

pile with column and super structure mass on top and application of their self weight, the model is at the
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appropriate initial state for further application of loading. In this case, this additional loading comprises

seismic shaking. For this stage, fixed horizontal DOFs used on the side planes during the first stage are

removed (set free).

The input acceleration time history, shown in Figure (505.8) was taken from the recorded horizontal

acceleration of Model No.1 of VELACS project Arulanandan and Scott (1993) by Rensselaer Polytechnic

Institute, http::/geoinfo.usc.edu/gees/velacs/. The magnitude of the motion is close to 0.2 g,
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Figure 505.8: Input earthquake ground motions.

while main shaking lasts for about 12 seconds (from 1 s to 13 s). Although the input earthquake motions

lasts until approx. 13 seconds, simulations are continued until 120 seconds so that both liquefaction

(dynamic) and pore water dissipation (slow transient) can be appropriately simulated during and after

earthquake shaking (Jeremić et al., 2008).

505.4.4 Free Field, Lateral and Longitudinal Models

Six models were developed during the course of this study. First three models (model numbers I, II

and III) were for level ground, while last three models (model numbers IV, V, and VI) were for sloping

ground. First in each series of models (model I for level ground and model IV for sloping ground) were

left without the second loading stage, without a pile–column system. Other four models (numbers II, III,

V and VI) were analyzed for all three loading stages. Second in each series of models (models number

II and V) had all displacements and rotations of pile–column top (where additional mass representing

superstructure was placed) left free, without restraints. Thus, these two models represent lateral behavior

of a bridge. Third in each series of models (model numbers III and VI) had rotations in y directions

fixed at the pile–column top, thus representing longitudinal behavior of a bridge. Modeling longitudinal

behavior of a bridge by restraining rotations perpendicular to the bridge superstructure is appropriate if
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the stiffness of a bridge superstructure is large enough, which in this case it was, as it was assumed to be

a post–tensioned concrete box girder, so that realistically, the top of a column does not rotate (much)

during application of loads. Table 505.5 summarizes models described above.

Table 505.5: Cases descriptions.

Case Model sketch Descriptions

I horizontal ground, no pile

II horizontal ground, single pile, free column head

III horizontal ground, single pile, no rotation at column head

IV sloping ground, no pile

V sloping ground, single pile, free column head

VI sloping ground, single pile, no rotation at column head

505.5 Simulation Results

505.5.1 Pore Fluid Migration

Figures (505.9) through (505.11) show the Ru time history for up to 30 seconds, for elements (at one of

Gauss point) e1, e3, e5 and e7 (refer to right side of Figure (505.6)). It is important to note that Ru is

defined as the ratio of the difference of initial mean and current mean effective stresses over the initial

mean effective stress:

Ru =
p′initial – p′current

p′initial

where mean effective stress is defined as p′ = σ′kk/3. This is different from traditional definition for

Ru, that uses ratio of excess pore pressure over the initial mean effective stress (p′initial). However,

these two definitions are essentially equivalent, as soil is in the state of liquefaction for Ru = 1 (so that

p′current = 0), while there is no excess pore pressure for Ru = 0 (so that p′initial = p′current). However,
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the former definition is advocated here as it avoids the interpolation of pore pressure or extrapolation

of the stresses (as the latter definition requires), since for the u-p-U element, stresses are available at

Gauss points while pore pressures are available element nodes. In particular, Figure 505.9 shows Ru time
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u

0 5 10 15 20 25 30
0

1

e3

R
u
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Figure 505.9: Ru times histories for elements e1 (top element), e3, e5, and e7 (bottom element) Gauss

point) for Cases I (level ground, no pile) and IV (sloping ground, no pile).

histories for four points for models I (level ground without pile) and model IV (sloping ground without

pile). It is noted that differences are fairly small. It is interesting to observe that lower layers do not

liquefy as supply of pore fluid for initial void ratio of e0 = 0.8 is too small, and the pore fluid dissipation

upward seems to be to rapid. On the other hand, the upper soil layers do reach close to or liquefaction

state (Ru = 1). This is primarily due to the propagation of pore fluid pressure/volume from lower layers

upward (pumping effect) and, in addition to that, to a local excess pore fluid production. These results

can also be contrasted with those of Jeremić et al. (2008), where similar pumping scenario has been

observed. The main difference between soil used by Jeremić et al. (2008) and here is in the coefficient

of permeability. Namely, here k = 1.0 × 10–4 m/s was used (Čubrinovski et al., 2008; Uzuoka et al.,

2008) while Jeremić et al. (2008) used k = 5.0 × 10–4 m/s. It is important to note that other values

of permeability for Toyoura sand have also been reported (Sakemi et al., 1995), but current value was
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chosen based on Čubrinovski (2007 –).

In addition to that, similar to Jeremić et al. (2008), sloping ground case shows larger Ru spikes, since

there is static shear force (stress) that is always present from gravity load on a slope. This static gravity

on a slope will result in an asymmetric horizontal shear stresses in the down–slope direction during cycles

of shaking. This asymmetric shear stress induces a more dilative response for down–slope shaking which

will help soil regain its stiffness in the dilative parts of the loading cycles. This observation can be used

to explain smaller Ru spikes for the sloping ground case. Of course, this asymmetry in loading will result

in larger accumulation of down–slope deformation.

While Ru ratios for level and sloping ground cases are fairly similar along the depth of the model,

the response changes when the pile is present. Figure (505.10) shows Ru responses at four different

points (along the depth) approximately midway between the pile and the model boundary, in the plane

of shaking (see location of those elements in Figure (505.6) on page 2616). In comparison to behavior

without the pile (Figure (505.9)), it is immediately obvious that addition of a pile with a mass on top

reduces Ru during shaking for the top element (e1). This is to be expected as presence of a pile–column–

mass (PCM) system changes the dynamics of the top layers of soil significantly enough to reduce total

amount of shear. This is particularly true for the top layers of soil as effects of column–mass tend to

create compressive and extensive movements (compression when the PCM system moves toward soil

and extension, and possibly even tension, when PCM system moves away from soil). However, this

extension, or possible tension, is not directly observable in presented plots since array of elements where

we follow Ru (e1, e3, e5, e7) is some distance away from the pile–soil interface. Middle layers (e3 and

e5), on the other hand, display similar response to that of Cases I and IV, as shown in Figure (505.9).

It is noted that in a case with of sloping ground with pile, the Ru measurements are always larger that

those for level ground (this is also observed for Cases III and VI, as shown in Figure (505.11)). This is

expected as presence of a pile in loose sand, and particularly the dynamic movement of a pile during

seismic shaking, create an additional shearing deformation field (in the soil adjacent to the pile) that

provides for additional (faster) compression of soil skeleton and thus creates additional volume of pore

fluid, that is then distributed to adjacent soil (adjacent to the pile).

Particularly interesting are Ru results for soil element e7, which is located below pile tip level (see

Figure (505.6)). Observed Ru for Case V in element e7 is significantly larger than for the same element

for Case II. Similarly, simulated Ru is larger than what was observed in cases without a pile (see bottom

of Figure (505.9)). This increase in Ru for Case V (sloping ground with pile) is explained by noting that

the pile “reinforces” upper soil layers and thus prevents excess shear deformation in the upper 12.0 m

of soil (above pile tip). The reduction of deformation in upper layers of soil (top 12.0 meters) results in

transfer of excessive soil deformation to soil layers below pile tip (where element e7 is located). This,
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Figure 505.10: Ru times histories for elements e1, e3, e5, and e7 (upper Gauss point) for Cases II (level

ground, with pile–column, free column head) and V (sloping ground, with pile–column, free column

head).

in turn, results in a much larger and faster shearing of those lower loose soil layers. This significantly

larger shearing results in a much higher Ru. Deformed shape, shown in Figure (505.12) for Case V,

reinforces this explanation, showing much large shearing deformation in lower soil layers, below pile tip.

Same observation can be made for Case VI, shown in Figure (505.12).

Observation similar to the above, for Cases II and V can be made for Cases III and VI, results

for which are shown in Figure (505.11). One noticeable difference in Ru results between cases with

free column head (Cases II and V) and cases with fixed rotation column head (Cases III and VI) is in

significantly larger (and faster) development of Ru close to soil surface for a stiffer, no rotation column

cases (Cases III and VI). This much larger Ru observed in a “stiffer” PCM system setup, is due to larger

shearing deformation that develops in soils adjacent to the pile during shaking. The stiffer PCM system

can displace less (because of additional no rotation condition on column top) while the soil beneath is

undergoing shaking (same demand in all cases), thus resulting in larger relative shearing of soil, which

then results in larger and faster pore pressure development close to the soil surface, where the column
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Figure 505.11: Ru times histories for elements e1, e3, e5, and e7 (upper Gauss point) for Cases III

(level ground, with pile, no rotation of pile head) and VI (sloping ground, with pile-column, no rotation

of column head).

no rotation effect is most pronounced.

505.5.2 Soil Skeleton Deformation

A number of deformation modes is observed for both level and sloping ground cases, with or without PCM

system. Figure (505.12) shows deformation patterns and excess pore pressures in symmetry plane for all

six cases over a period of eighty seconds. A number of observation can be made on both deformation

patterns, excess pore fluid patterns and their close coupling.

Level Ground without Pile (Case I). Excess pore pressures and deformations in symmetry plane for level

ground without a pile are shown in Figure (505.12) (I). At the very beginning (at t = 2 s) there is initial

development of excess pore fluid pressure in the middle soil layers. This expected, as the self weight

loading stage has densified lower soil layers enough so that their response is not initially contractive

enough to produce excess pore pressure. Top soil layers, on the other hand, have a drainage boundary
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I

II

III

IV

V

VI

t= 2 sec 5 sec 10 sec 15 sec 20 sec 80 sec

Figure 505.12: Time sequence of deformed shapes and excess pore pressure in symmetry plane of a soil

system. Deformation is exaggerated 15 times; Color scale for excess pore pressures (above) is in kN /m2.

Graph of ground motions used (also shown in Figure (505.8)) is placed below appropriate time snapshots

and is matching for t = 2, 5, 10, 15, 20 seconds while at t = 80 seconds there is no seismic shaking.
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(top surface) too close to develop any significant excess pore pressures. As seismic shaking progresses (for

t = 5, 10 s), the excess pore pressure increases, and starts developing in lower soil layers as well. It should

be noted that a small non-uniformity in results is present. For example, zones of variable, nonuniform

excess pore pressures on the lower mid and right side for Case I at t = 10 s develop. Nonuniform mesh

(many small, long elements in the middle, large elements outside this middle zone) may introduce small

numerical errors in results which can be observed by slightly nonuniform results at t = 10 s and t = 15 s.

It should be noted that results for excess pore pressure shown for first 13 seconds (during shaking) in

Figure (505.12) (I) are transient in nature, that is, seismic waves are traveling throughout the domain

(model) during shaking (first 13 seconds) and slight oscillations in vertical stresses are possible. This

oscillations will contribute to the (small) non-uniformity of excess pore pressure results. After the shaking

(after 15 seconds) resulting excess pore pressure field is quite uniform.

Level Ground with Pile (Cases II and III). Excess pore pressures and deformations in symmetry plane

for models with PCM system and with two different boundary conditions at top of column (see model

description in section 505.4.4) in level ground are shown in Figures (505.12) (II and III). One of the

interesting observations is significant shearing and excess pore pressure generation adjacent to the pile

tip. The reason for this is that pile is too short, that is, pile tip has significant horizontal displacements

during shaking. Those pile tip displacements shear the soil, resulting in excess pore pressure generation.

As soon as there is time for dissipation, this localized excess pore pressure dissipates to adjacent soil, and

then, after shaking has ceased (at t = 13 s and later), it slowly dissipates upward. Addition of pile into

the model (construction), with a highly impermeable elements (that mimic permeability of concrete) is

apparent as there is a low excess pore pressure region in the middle of model, where pile is located.

Sloping Ground without Pile (Case IV). Excess pore pressures and deformation in symmetry plane for

sloping ground without pile is shown in Figures (505.12) (IV). It is noted that initially the excess pore

pressure starts developing in middle soil layers,similar to the Case I above. Bottom layers start developing

excess pore pressure only after significant shear deformation occurs (at t = 10 s) at approximately 2/3

of the model depth. Lower layers have densified enough during self weight stage of loading that initial

shaking is not strong enough to create excess pore water pressure, rather, those layers are fed by the

excess pore pressure from above. Lower soil layers also do not develop much deformation, while middle

and upper layers together develop excessive horizontal deformation.

Sloping Ground with Pile (Cases V and VI). Excess pore pressures and deformation in symmetry plane

for sloping ground with PCM system are shown in Figures (505.12) (V and VI). Similar to the above cases
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(II and III), pile is too short and there is again excessive shearing of soil at the pile tip, suggesting large

movement of that pile tip. In addition to that, pile introduces significant stiffness to upper 12 meters

of soil (along the length of pile) and helps reduce deformation of those upper soil layers. Down-slope

gravity load is thus transferred to lower soil layers (below pile tip) which exhibit most of the deformation.

It should be noted that soil in middle and upper layers (adjacent to pile) does deform, just not as much

as the soil below pile tip. The predominant mode of deformation of middle soil layers is shearing in

horizontal plane, around the pile. Deformation in horizontal plane is not significant as the pile is short in

this examples (as mentioned above) and does not have enough horizontal support at the bottom. The

deformation pattern of a soil – pile system is such that pile experiences significant rotation, and deforms

with the soil that moves down-slope. If the pile was longer, and if it had significant horizontal support

at the bottom, the middle and upper soil layers would have showed more significant flow around the pile

in horizontal planes.

Upper layers undergo significant settlement, as seen in Figure (505.13). This settlement is mainly

caused by the above mentioned rotation of pile–soil system, where soil in general settles (compacts) but

also undergoes differential settlement, between left (up–slope from pile) and right (down–slope from

pile) side of the model. As significant shearing with excess pore pressure generation develops in lower

soil layers, below pile tip, those lower layers contribute to most of down–slope horizontal deformation. In

a sense, all the demand from down-slope gravity forces and seismic shaking is now responded to by lower

soil layers, which contribute to most of the excess pore pressure generation and consequently, to most

of the soil deformation. Soil surface horizontal deformation is thus strongly influenced by significant

shearing of the bottom layers and by rotation of the middle and upper soil layers with the pile. It is

interesting to note that the largest settlement is observed just down-slope from pile for Cases V and VI.

505.5.3 Pile Response

Figure (505.14) shows bending moment envelops for pile–column–mass (PCM) system for all four cases

(II, III, V and VI). It should be noted that bending moment diagrams are plotted on compression side

of the beam–column. A number of observations can be made about bending moment envelopes. For

cases with free pile head (shaking transverse to the bridge main axes, Cases II and V) the maximum

moments are attained in soil, at depths of approximately 0.6D – 1.2D, where D (= 1.0 m in this case)

is the pile diameter. Opposed to that are cases for PCM systems with restricted rotations at the pile

top which (Cases III and VI), which, of course feature largest moment at the column top. Maximum

bending moments for section of PCM system in soil (pile) in these two cases are now attained at the

depth of approximately 1.8D – 2.0D.

It is noted that bending moment envelopes are mostly symmetric. Slight non–symmetry is introduced
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I II III

IV V VI

Figure 505.13: Soil surface settlements at 120 s for all six cases. Color scale given in meters

for cases on sloping ground (Case V and VI). It is also noted that moments do exist (are not zero) all the

say to the bottom of the pile. Theoretically, moments should be zero at the pile tip, but since physical

volume of the pile is considered (see note on that in section 505.4.2 and Figure (505.7)), differential

pressure on pile bottom from soil will produce small (non–zero) moments even at the pile tip. More

importantly, non–zero moments at the bottom and along the lower part of the pile show that pile is

indeed too short, and thus changing curvatures are present along the whole length of the pile.

505.5.4 Pile Pinning Effects

Piles in sloping liquefying ground can also be used to resists movement of soil (all liquefied or liquefied

with hard crust on top) down–slope. For models developed in this paper, pile pinning effect can be

investigated for Cases IV, V and VI. In particular, deformation of sloping ground without the pile (Case

IV) can be compared with either of the cases of piles in sloping ground, Cases V and VI. It is very

important to note, again, that models developed here had relatively short pile, and that major soil

shearing developed below the pile tip. This apparent shortcoming of a short pile results in reduced

pile pinning capacity, thus reducing the down–slope movement by only approximately half, from 0.35 m

(Case IV) to 0.22 m (Case V) and to 0.18 m (Case VI) as seen in Figure (505.15). It would have been

expected that, had the pile been longer and had it penetrated in deeper, non-liquefiable layers, it would

have reduced down–slope movement of the soil to a much larger extent. However, had the pile been

longer and had it penetrated non-liquefiable layers, it would have had a much firmer horizontal support
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Figure 505.14: Envelope of bending moments for pile–column system for Cases II, III, V and VI.

at the bottom and would have thus attracted much larger forces too, potentially leading to pile damage

and yielding.
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Figure 505.15: Down–slope movement at the ground surface (model center) for Cases IV (no pile), V

and VI (with pile–mass system).
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506.1 Chapter Summary and Highlights

506.2 Introduction

Presented here is a brief overview of a work on determining factors of safety for a 3D slope for one of

the prominent dams in the midwest, for different saturation and water level conditions.

506.3 Dam Section Geometry

Figures 506.1 and 506.2 shows the satellite picture of location

Figure 506.1: Dam satellite picture. Upstream (south facing) three dimensional slope at connection of

the embankment and concrete gravity dam is evaluated for potential stability problem.

Figure 506.3 shows the sonar data for water depth measurements at the location of a 3D slope in

question.

An interesting topographical feature resembling a valley should be noted at the toe of (beginning

of) wrap around section of upstream section of the embankment. That topographical feature is also

apparent in a photo taken during Wold Creek Dam construction in 1948, show in Figure 506.4. Figure

506.5 shows rock surface under the embankment and alluvial fill, that serves as base rock foundation for

both the alluvial fill and the embankment above. Figures 506.6, 506.7 and 506.8 show sections of the

curved, 3D slope of the upstream embankment next to the concrete dam section. In particular, Figure

506.6 shows a dam section perpendicular to the dam axes. Note a significant extent of the alluvium that

was left in place during dam construction. Similarly, the alluvium is present in both section inclined at

45o to dam axes (Figure 506.7) and a section parallel to the dam axes (Figure 506.8).

Analyzed 3D, curved section of the upstream embankment is also shown in a photograph in Figure

506.9, taken on morning of April 21st, 2010. Note a significant length/extent of the two sheet pile walls

(one running along the length of work platform and the other one at the end of work platform, next to
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Figure 506.2: Dam satellite picture with location of 3D slope under consideration for potential stability

problem.

Figure 506.3: Dam sonar data for water depth for the analyzed 3D slope.

concrete dam section).
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Figure 506.4: Dam during construction, 1948. View toward the upstream curved slope. Note shallow

valley where the straight section of pole line ends, approximately at the end or straight slope, toward

the beginning of curves slope section (Photo courtesy of Mike Zoccola, USACE).
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Figure 506.5: Dam rock surface data under the embankment and alluvial fill (under analyzed 3D slope

), used for defining FEM model boundary conditions.

Figure 506.6: Dam section perpendicular to the dam axes for analyzed 3D slope.
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Figure 506.7: Dam section inclined at 45o to dam axes for analyzed 3D slope.

Figure 506.8: Dam section parallel to the dam axes for analyzed 3D slope.
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Figure 506.9: Dam view toward the curved, ”wrap” section, upstream side.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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506.4 Finite Element Modeling

Analysis of 2D and 3D slope stability problem was performed using finite element method. In particular,

the strength reduction method was used in conjunction with 2D and 3D finite element models to assess

factors of safety. Main focus was on determining the difference between 2D and 3D factors of safety.

506.4.1 Material Models

During initial teleconference, in early April, it was decided to perform two dimensional and three dimen-

sional analysis using finite element method for two limiting cases of material behavior:

• fully drained material behavior, with material defined by a friction angle and no cohesion,

• fully undrained material behavior, with material defined by an undrained shear strength.

Parameters for drained material modeling are given in table 506.1 below. In addition to that table

Table 506.1: Drained strength material parameters.

Material Unit Weight [pcf] ϕ [deg] Su [psf]

Embankment Fill 126.7 30 0

Alluvial Soil 116 25 0

Random Fill 120 20 0

Riprap 110 40 0

Shot Rock Fill 145 45 0

Platform Extension Fill 120 20 0

506.2 below, defines parameters for undrained material modeling. Those material parameters were agreed

upon after few and a discussion. It should be noted that USACE has initiated a testing program that

will determine material parameters of the embankment and the alluvium with higher certainty.

Two material models were used for analysis. For drained analysis, a Drucker Prager material model

was used. This model is described in some detail in Section 3.5.7 of my lecture notes Jeremić et al.

(1989-2025) (available online through my web site). It is important to note that single value of friction

angle was used, thus rendering friction angle for both compression and extension the same. While there

might be an influence of the difference of friction angle for compression and extension, such difference

was not analyzed here. For undrained analysis a total stress, von Mises model was used. This model

is also described in some details in Section 3.5.6 of my lecture notes Jeremić et al. (1989-2025). Both

models used here feature perfectly plastic behavior after yielding, with associated plastic flow.
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Table 506.2: Revised undrained strength material parameters.

Material Unit Weight [pcf] ϕ [deg] Su [psf]

Embankment Fill 126.7 0 2000

Alluvial Soil 116 0 1000-1500

Random Fill 120 0 500

Riprap 110 40 0

Shot Rock Fill 145 45 0

Platform Extension Fill 120 20 0

506.4.2 Two Dimensional Models

Three two dimensional (2D) models were developed in order to test the effects mesh size has on quality

of simulations. Developed 2D mesh was based on perpendicular cross section, shown in Figure 506.6.

Mesh for a 2D model, shown in Figure 506.10, represents a very coarse mesh, which, if higher order

elements are used (with displacement interpolation higher than linear) might actually work quite well.

However, with linear interpolating displacements, this mesh is clearly of low quality. However, this mesh

was used as a first iteration, and to gain initial insight into 2D behavior.

Figure 506.10: Coarse mesh model used for the 2D upstream section of the Dam.

Meshes shown in Figures 506.11 and 506.12, represent a refinement of the first mesh. Models

using both meshes were tested for both drained and undrained material models. Results for both fine

mesh (Fig. 506.11) and finest mesh (Fig. 506.12) were the same for all practical purposes (differences

were negligible for the purpose of analysis), hence it was decided to use fine mesh (Fig. 506.11) for all
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Figure 506.11: Fine mesh model used for the 2D upstream section of the Dam. This mesh was chosen

as appropriate enough for all subsequent 2D analysis.

subsequent analysis in 2D.

Figure 506.12: Much finer mesh model used for the 2D upstream section of Dam. Results obtained this

mesh were the same as previous mesh (shown in Figure 506.11), leading to the choice of the previous

mesh (Figure 506.11) for all 2D analysis.

It is important to note that all 2D meshes were actually developed using 3D, brick elements (in this

case a linear interpolation, 8 node bricks). Appropriate boundary conditions were used to prevent out

of plane displacements. While this approach uses extra resources (use of 3D element for a 2D problem)

it allowed us to use the very same element and material models for both 2D and 3D problems, thus

removing modeling uncertainty and emphasizing accuracy of determination of differences between 2D
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and 3D slope stability. The finite element used for analysis in 2D (and later in 3D) was based on an

eight node brick element, described in some more details in Section 2.3 of my lecture notes Jeremić

et al. (1989-2025).

Mesh in Figure 506.11 has 250 brick finite elements while finest mesh in Figure 506.12 has 1000

brick finite elements. Boundary conditions for the 2D mesh were such that right vertical boundary (at

the current Barrier wall) was allowed to move down but not horizontally. Lower mesh boundary (contact

with base rock) was fully supported, while left vertical boundary (far into alluvium) was also allowed to

move vertically but not horizontally. Work platform was modeled using loads, instead of extending the

mesh to include the shape of the platform. This allowed for additional modeling flexibility, without the

loss of accuracy. Loading tests with and without the work platform show that its influence on calculated

factors of safety is negligible. Figure 506.13 shows a 2D model with location of work platform, water

level at 680 ft, boundary conditions and the extent of alluvium layer.
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Figure 506.13: A 2D model with boundary conditions, water level at 680 ft and the work platform as

load.

506.4.3 Three Dimensional Models

The Dam is a full three dimensional solid, consisting of foundation rock, concrete section and soil

embankment section with barrier wall(s) (old and new one when finished). Ideally we would model

the complete foundation-concrete-embankment-wall system with porous solid (soil skeleton), pore fluid
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(water in fully and partially saturated pores), structural components (barrier walls) as well as solid

concrete section.

Particular focus on assessing 2D versus 3D slope stability for the upstream, curved (wrap around)

section, as well as the very short time frame for this project, dictated development of small part of the

complete model. The most important feature of the 3D model was to use optimal model size (extent) so

that all important features are properly captured. This was done by developing 3D model for upstream

curved, wrap slope in two stages. First stage comprised development of the conical portion of mesh,

which was then extended, using a straight second stage, extending the model into the embankment by

200 ft (60 meters).

Conical Section of a 3D Slope Three sections shown in Figures 506.6, 506.7 and 506.7 were used to

develop three dimensional mesh. Conical wrap around part of the mesh features 1344 brick elements

and is shown in Figure 506.14.

Figure 506.14: Conical section of the 3D upstream slope of the Dam, 3D mesh.

Boundary conditions are such that two vertical sections (one adjacent to the concrete monolith and

the one adjacent to straight embankment sections have free vertical and in plane horizontal displacements

while no out of plane displacement. A small quarter cylinder boundary was also developed at the top

of the curved, wrap around section. This small part of boundary (radius of 2 meters) was necessary to

properly mesh radial directions of the 3D model. Boundary conditions at that location are such that

they prevent radial deformation while allowing vertical and tangential movement. This is achieved using

short, stiff truss elements.
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At the lower end of the model (well into alluvium), curved, radial section of the model is supported

in such a way that radial deformation is prevented while vertical and horizontal tangential movement is

allowed, again achieved using short, stiff truss elements.

Figure 506.15: Curved section of the 3D upstream slope of the Dam, 3D mesh, top view. Note the

difference in extent of the actual embankment (slightly different color of elements, alluvium is represented

by last two layers of elements on the outskirts of model. Also note a small cylindrical section close to

center of conical slope, that was used to control meshing.

Conical and Straight Section of a 3D Slope While conical section of the slope represent accurately the

curved section of the dam, influence of the straight section cannot be neglected. A section (200 ft,

60 meters) of a straight embankment was added to a curved section in order to have a more realistic

modeling of the complete upstream 3D embankment. Figures 506.16 and 506.17 show extended 3D

mesh for curved and part of straight section of the upstream slope.

Boundary conditions were similar to the previous case for conical part of mesh, except where mesh

extension was applied. Extended mesh was fully supported at the bottom, while vertical faces were

supported in such a way not to have out of plane displacements while in plane (horizontal and vertical)

displacements were left free. Loads from work platform and from water in the lake were applied as

appropriate nodal forces.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 506.16: Curved and straight section of the 3D upstream slope of the Dam, 3D mesh.

Figure 506.17: Curved and straight section of the 3D upstream slope of the Dam, 3D mesh.
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506.4.4 Modeling Issues

Mesh Size Multiple mesh sizes were tested to alleviate any mesh dependency of the computed solution

close to stability loss (close to but not into the development of localized deformation).

Following the Equilibrium Path Numerical integration of elastic-plastic constitutive equations was per-

formed using both explicit and implicit algorithms (see Jeremić et al. (1989-2025), Sections 3.3 and

3.4). This was necessary in order to verify the solution accuracy. For explicit constitutive computations,

explicit global solution scheme was used (see more detailed description of equilibrium following path

algorithms in my lecture notes Jeremić et al. (1989-2025), Chapter 7). For implicit constitutive integra-

tions, Newton method (cf. Dennis and Schnabel (1983), and Jeremić et al. (1989-2025), Chapter 7)

was used on both constitutive and global solution levels. Global solution advancement was constrained

using both load control (appropriate for factor of safety stability simulations) as well as displacement

control (in order to validate load control solutions). Detailed discussion on both load and displacement

control algorithms is given in lecture notes Jeremić et al. (1989-2025), Sections 7.3. and 7.4.

Strength Reduction Method Strength reduction method is often used with finite elements to assess

factors of safety for slopes, foundations and other problems in geotechnical engineering where elastic-

perfectly plastic failure is expected Duncan (1996) Griffiths and Lane (1999). Strength reduction method

can be performed in two ways:

• Apply self weight to a model where strength parameters are reduced by Factor of Safety (FS).

Perform analysis number of times for larger and larger FS, until the finite element system is not

in equilibrium, that is external forces cannot be balanced by internal forces (see Section 7.1 in

Jeremić et al. (1989-2025)). This approach has the benefit of not being mesh dependent, that

is, for elastic – perfectly plastic material models (without softening), dependence of solution on

mesh refinment does not become an issue (Lu et al., 2009). One potential drawback is that since

there is no softening involved, deformation will not localize into localized zone, rather failure mode

is somewhat diffuse, however still following proper displacement of blocks of material as system

becomes unbalanced.

• Apply self weight to a model with full strength material parameters, and then gradually start

softening the material parameters, by dividing them with FS. Perform reduction in parameters,

until there is loss of equilibrium, that is until external forces cannot be balanced by internal forces

(again see Section 7.1 in Jeremić et al. (1989-2025)). This approach might have a potential

problem in that the mesh size/refinment will affect the solution, as material models involved are
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softening, and different meshes will create different localization patterns and hence lead to different

solutions. The benefit of this approach is that deformation will indeed localize in a very thin band,

thus resembling the limit equilibrium approach that is popular for slope stability problems, however,

such deformation patterns are mesh size/refinment dependent and thus not unique.

In this work, the first approach is used, that is self weight computations are performed for a number

of models where strength parameters are reduced by FS, until such FS for which equilibrium between

external and internal forces cannot be achieved.

Variable Water Levels Comparison of 2D vs 3D stability for two water elevation was originally sug-

gested. Discussions during a meeting at a Dam site, further clarified conceptual problems with two

water elevation, namely lake at 680 ft and water table in the embankment at 720 ft. For any water table

that is above the lake level, there will exist a water flow (seepage) within the embankment toward the

(lower level) lake water. Such seepage will create a seepage force fs = γw(dh)/(dl) = γwi where, γw is the

unit weight of water, and i = (dh)/(dl) is the hydraulic gradient. Clearly, with seepage from embankment

toward the lake, such force destabilizes the embankment (slope). Finite Element formulation and tools

that can model and simulate such fully coupled system (transient analysis of deforming porous soil with

moving pore fluid) are available (Cheng et al., 2007; Jeremić et al., 2008; Cheng and Jeremić, 2009a,b),

however material parameters for soil permeability as well as the extent of phreatic surface need to be

determined. Due to unavailable test data for permeability of embankment soil and due to (high) uncer-

tainty in the extent of phreatic surface (number of piesometric measurements placing the water table in

the embankment at 720 ft were highly questionable, as discussed by the panel), only single phase soil

(either effective stress or total stress) analysis were performed. This decision has no effect on analysis

for cases where both lake and phreatic line in the embankment are at 680 ft. However, such decisions

affects cases with different water levels (lake at 680 ft, phreatic line at):

• Fully undrained case with lake level at 680 ft, embankment phreatic level at 720 ft, was analyzed

and in fact provides (based on theory of undrained soil behavor) the same factors of safety as no

seepage case, that is, same water level in lake and embankment. This is due to the fact that for

total stress analysis, pore fluid pressure does not influence the shear strength. In addition to that,

with the assumption of fully undrained conditions, coefficient of permeability is nonexistent, there

is no seepage, and hence there is no seepage force. In reality coefficient of permeability for soil

is never really zero, however this case was treated as an extreme case, used purely for checking

differences in factors of safety between 2D and 3D slope stability.

• Fully drained case with lake level at 680 ft, embankment phreatic level at 720 ft, was not analyzed
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as neglecting seepage force would place calculated factors of safety on the unsafe side. While such

analysis can be run using either buoyant weight approach (however somewhat inconsistent as noted

by Duncan (1996)) or by mixing total stress and effective stress approach (more inconsistent) it

was decided not to simulate this case.

506.5 Results: Factors of Safety

A large number of computations on a number of models were performed.

Factors of Safety for 2D Models

• Drained, Lake/Embankment at 680 ft,

FS2D = 1.89

• Undrained, Lake/Embankment at 680 ft, alluvium weak of most likely (Su = 1000 psf),

FS2D = 2.22

• Undrained, Lake/Embankment at 680 ft, alluvium at most likely value (Su = 1500 psf),

FS2D = 2.50

Factors of Safety for Extended 3D Models

• Drained, Lake/Embankment at 680 ft,

FS3D = 1.78

• Undrained, Lake/Embankment at 680 ft, (alluvium weak of most likely Su = 1000psf),

FS = 2.0

Comparison of 2D vs 3D Factors of Safety

• Drained, lake/water in embankment at 680 ft,

FS2D = 1.89 vs FS3D = 1.78

FS reduced by 5.8 %.

• Undrained, Lake at 680 ft, embankment at 680 ft

(alluvium weak of most likely Su = 1000psf),

FS2D = 2.22 vs FS3D = 2.00

FS reduced by 9.91 %.
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• Undrained, Lake at 680 ft, embankment at 720 ft

(alluvium weak of most likely Su = 1000psf),

FS2D = 2.22 vs FS3D = 2.00

FS reduced by 9.91 %.

506.6 Uncertainty of Results

Full probabilistic analysis for large scale, elastic-plastic finite element models is currently within reach

(Sett et al., 2011a) and will probably become a standard simulation tool within next 5 to 10 years.

However, for such an analysis, a(n) (extensive) site characterization program is necessary, if probabilistic

simulations are to be useful (Sett and Jeremić, 2009). Alternatively, one can use a simplified method-

ology, described in detail by Duncan (2000a), that can give sensible estimates of mean and standard

deviation of common results obtained in soil mechanics. However, in view of lack of consistent material

properties for the embankment further work on estimating uncertainty of factors of safety was discontin-

ued. It is important to note that a program was initiated by the USACE to perform extensive testing of

embankment soil and upon completion of that program, it will be possible to perform a simplified (and

even a more accurate, full probabilistic analysis, as mentioned above) estimation of influence of material

uncertainty on obtained factors of safety.

506.7 Conclusion

The main purpose of this study was to investigate changes in factors of safety for failure between 2D

and 3D slope problems for curved part of the upstream section of a Dam embankment. Detailed models

(both 2D and 3D) were developed for the upstream section of Wold Creek Dam and were analyzed.

Strength reduction method was used to assess factors of safety in both 2D and 3D. It was shown that for

a number of different cases (drained or undrained soil, lake at 680 ft and water table in the embankment

either at 680 ft or at 720 ft for undrained case) the factor of safety is reduced in 3D when compared to

2D. Such reduction, however was not significant (up to approx. 10 %).

Of particular importance for this factor of safety comparison (2D vs 3D) was the robustness of

simulations and a number of methods were used to ensure that obtained factors of safety, determined as

failure to converge upon strength reduction, were due to loss of equilibrium, and not due to numerical

problems leading to loss of convergence.

Appendix given below, contains two additional sections, describing numerical tool used in factor of

safety computations (available in public domain) and deformation patterns close to failure for select
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cases.

506.8 Displacement Patterns

Hypothetical displacement patterns are presented below in Figures 506.18, 506.19 and 506.20. It should

be noted that displacements that results from simulations of stability by strength reduction method

are not necessarily the failure modes, rather, they are just a side-product of simulation. However, it

is instructive to inspect those displacements just before equilibrium is lost in order to gain a better

understanding of potential failure patterns.

Figure 506.18 shows a 2D displacement pattern for a drained case with lake and embankment water

level at 680 ft where FS2D = 1.89. Noted is a clear rotating pattern of the slope just before loss of

equilibrium.

Figure 506.18: Drained case, lake and embankment water lever 680 ft, FS2D = 1.89.

Figure 506.19 shows a 2D displacement pattern for an undrained case with more likely (stronger)

alluvium (Su = 1000psf). Note that while displacement pattern is somewhat similar to the previous

case, the block movement on top of alluvium is much reduced, and main failure is through rotation

mechanism.

Figure 506.20 shows a plan view of a 3D displacement pattern (vectors) for an undrained case with

limiting weak alluvium and lake at 680 ft. Noted is the dominant 3D deformation pattern by which

the curved and straight sections of the slope rotate around vertical axes and move toward the lake with

direction biased toward dam axes. It is important to note that there is no single 2D section of the 3D
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Figure 506.19: Undrained, L680 E680, Most Likely to Weak Alluvium, FS2D = 2.22.

slope that can be used to model such failure as failure mode is fully three dimensional.
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Figure 506.20: Plan view of a 3D undrained case, displacement vectors, lake and embankment at 680 ft,

FS3D = 2.00.
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507.1 Chapter Summary and Highlights

507.2 Concrete Wall/Membrane

507.2.1 Introduction

OECD organized project to investigate modeling of concrete walls that have alkali - silica reaction (ASR)

has been going on for few years. Our modeling and simulation group, based at the University of California

at Davis, in California, USA, and at the Lawrence Berkeley National Laboratory at Berkeley, in California,

USA, has joined this effort only at the beginning of 2018. We have gotten project description and already

existing reports from participants, in January/February of 2018. We managed to quickly make a model

of the wall and to calibrate parameters for a concrete model that we use in our modeling and simulation

program.

We rely on and used our program, called the Real-ESSI Simulator (Realistic Modeling and Simulation

of Earthquakes, and Soils, and Structures and their Interaction), that is also known as the MS ESSI

Simulator1 (Jeremić et al., 1988-2025) (http://real-essi.info/). Real-ESSI Simulator is a software,

hardware and documentation system for high fidelity, high performance, time domain, nonlinear/inelastic,

deterministic or probabilistic, 3D, finite element modeling and simulation of (a) statics and dynamics of

soil, (b) statics and dynamics of rock, (c) statics and dynamics of structures, (d) statics of soil-structure

systems, and (e) dynamics of earthquake-soil-structure system interaction.

The Real-ESSI Simulator systems is used for the design and assessment of static and dynamic

behavior of infrastructure objects, including buildings, bridges, dams, nuclear installations, tunnels, etc.

For design, multiple linear elastic load cases can be combined and design quantities, sectional forces

exported for design and cross section dimensioning. For assessment, realistic inelastic load staged analysis

is performed, with all the inelastic components properly modeled, as listed below, and with all the

simulation, algorithmic features available, as listed below. Analysis is performed in order to assess safety

and economy of objects. The work on Real-ESSI Simulator is based on a philosophy that aims to develop

modeling and simulations that inform and predict rather than (force) fit.

507.2.1.1 Motivation

The alkali - silica reaction (ASR), is a reaction that occurs over time in concrete, between the alkaline

cement paste and the silica found in many common aggregates, triggered by the presence of moisture.

The ASR does volumetric expansion of interface between cement paste and the aggregate, thus resulting

1The Real-ESSI Simulator was developed in collaboration and with financial support from the US-DOE, US-NRC,

US-NSF, CNSC-CCSN, Caltrans, etc.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 507.2. CONCRETE WALL/MEMBRANE page: 2655 of 3287

in potentially damaging tensile stress within concrete. A comprehensive study of this effect on concrete

properties has been done at University of Toronto, funded by Canadian Nuclear Safety Commission

(CNSC). Five shear walls, two regular (REG A, REG B) and three ASR (ASR A1, ASR B1, ASR B2)

along with their control specimens were tested as a part of Phase 1, Phase 2, and Phase 3 of the

investigation program [ref Prof. Sheikh presentation].

It was proven that ASR causes changes in mechanical properties of the concrete, introducing inaccu-

racies if conventional analysis is used, without taking into account ASR. Beyond a certain age, modulus

of elasticity and tensile strength of ASR concrete decrease, in contrast to regular concrete. Observed is

degradation of the ductility in ASR specimens. While concrete expands, the bonding strength between

concrete and rebars decreases causing drop in ductility. However, despite these changes in concrete,

tested ASR shear wall showed higher peak shear strength compared to regular concrete.

This newly understood behavior of ASR concrete necessitates development of reliable numerical

simulation, to be used for the design of new structures as well as to predict behavior of existing ones.

In order to model behavior of the examined wall specimens, Real-ESSI Simulator, (Jeremić et al.,

1988-2025) was used.

Plane stress finite element with an inelastic plane stress material model for concrete was used for

modeling of shear wall specimens. All inelastic material models and finite elements inside the Real-ESSI

Simulator feature accurate energy dissipation modeling and calculation (Yang et al., 2018, 2019a).

Results from ASCET benchmark tests are used for validation of shear behavior for plane stress

inelastic reinforced concrete wall tests.

507.2.2 Model Availability

The Real-ESSI input files for the ASR concrete wall example are available HERE.

507.2.3 Model Development

507.2.3.1 Model Mesh

Finite element model includes all relevant parts of the experimental setup, as shown in Figures 507.3

and 507.2.

Beam slabs and steel plates are modeled using 27NodeBrick element, while steel bolt is represented

as a single truss element. The shear wall is modeled using nonlinear layered plane stress elements. For the

web part of the wall, the elements have a horizontal rebar layer, a vertical rebar layer, and an unconfined

concrete layer. For the flanges (columns) of the shear wall, the elements have an additional layer of

confined concrete. It is emphasized that the main wall is really made from unconfined concrete, and the
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Figure 507.1: 3D rendered view and finite element mesh of the reinforced concrete shear wall model.
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Figure 507.2: Different views of the finite element mesh.

only actually confined concrete is within concrete flanges. Detailed rebar plan and model dimensions are

shown in Fig 507.3.

The bottom of the model is restrained in all directions, while the lateral sides of the bottom beam slab

are restrained in direction of imposed motion. Since the shear wall consists of 2D plane stress elements

the out-of plane displacement is also precluded. The sides of the top beam slab are also restrained to

have the same displacement, which is important to represent the boundary conditions of the physical

experiment. Initial model included inelastic contact/interface elements (stick-slip and gap open and

close) at the bottom boundary. However it was concluded that there will be no slip and there is no gap

opening so these elements were removed in order to speed up computations.

To correctly simulate the loading process of the experiment, four loading stages are applied:

1. Self-weight loading is applied to the whole model.

2. To represent post-tensioned force in the truss (bolt) element, the truss is stretched so that an

adequate force is obtained and after that the bottom of the bolt is fixed.
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Figure 507.3: Schematics for the rebar plan of the shear wall model.

3. Two-point vertical loading is applied to the top steel plate.

4. Cyclic horizontal loading is applied (using displacement control) to the sides of the top beam slab.

507.2.3.2 Plastic Damage Concrete Material Model

Details for this model are given in Section 104.9.

507.2.3.3 Uniaxial Steel Material Model

Details for this model are given in Section 104.9.

507.2.3.4 Material Model Parameters

There are two approaches to determine the ASR affected concrete model parameters. The first choice

is to obtain concrete samples directly from the existing structure. Those samples can be tested in the
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laboratory to determine mechanical properties of the concrete material. This is a preferred way to obtain

material properties.

In this project, the material properties for ASR affected concrete were obtained using laboratory, for

concrete aged to 260, 610, and 995 days, as shown in Table 507.1. These values are used in the material

models for finite element simulations.

Table 507.1: Mechanical properties for the ASR concrete at 260, 610, and 995 days.

Wall Age (Days) Compressive Strength (MPa) Tensile Strength (MPa) Elastic Modulus (MPa) Expansion (%)

ASR A1 260 63.7 3.24 35750 0.190

ASR B1 610 67.1 N/A 32600 0.215

ASR B2 995 63.0 3.18 28100 0.223

The second approach is to estimate change of material properties, future material properties, based

on currently measured material properties and empirical correlations. In what follows, it is demonstrated

how to predict the mechanical properties of the ASR concrete at 610 and 995 days using the values at

260 days.

First, according to data provided for ASCET II workshop, the maximum ASR expansions of the

concrete prisms in longitudinal and transverse directions are approximately 0.25% and 0.28%. For

simplicity, an average value of 0.265% is chosen.

Estimations of ASR expansion rates at 260, 610, and 995 days are needed. According to various

ASR models (Charlwood et al., 1992; Saouma and Perotti, 2006), the rate of expansion after about 365

days is very small. So it is reasonable to use the maximum value of expansion (0.265%) for estimating

mechanical properties of ASR concrete at 610 and 995 days. At 260 days, the expansion is estimated to

be 0.23%.

The correlation between normalized mechanical properties of ASR concrete and rate of expan-

sion/swelling from Capra and Sellier (2003) is used. At 0.265% swelling, at 365 days, the normalized

compressive strength is 0.60 while the normalized tensile strength is 0.55. The normalized elastic modulus

ranges from 0.60 to 0.70.

On the other hand, at 0.23% swelling, at 260 days, the normalized compressive strength is 0.65 while

the normalized tensile strength is 0.60. The normalized elastic modulus is approximately 0.70. Therefor,

from 260 days to 365 and consequently at 610 and 995 days, the compressive and tensile strengths both

decrease approximately 92%. Similarly, the elastic modulus decreases approximately 85%.

Using these values, for ASR concrete older than 365 days , the compressive strength is 58.6MPa,

the tensile strength is 2.98MPa, and elastic modulus 30387MPa. Note that these values match well

with the experimental results shown in Table 507.1. It is important to note that concrete is a composite
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material and that expansion of mass of concrete, within confines of reinforcing, can produce increase in

confinement, which can have beneficial effects on concrete behavior.

507.2.4 Modeling of Energy Storage and Dissipation

Described in this section is modeling and calculation of energy storage and dissipation within concrete

and steel. This section is based on recent work by Yang et al. (2018, 2019a).

507.2.4.1 Plastic Damage Concrete Material

The Helmholtz free energy potential postulated for the plastic damage concrete material has the form:

ψ(ϵij , ϵ
p
ij , d

+, d–) = (1 – d+)ψ+
0 (ϵij , ϵ

p
ij) + (1 – d–)ψ–

0 (ϵij , ϵ
p
ij) (507.1)

where ψ+
0 and ψ–

0 are tensile and compressive parts of the elastic free energy (strain energy), that are

defined as:

ψ+
0 (σ̄ij(ϵij , ϵ

p
ij)) =

1
2
σ̄+

ijD
–1
ijklσ̄kl =

1
2
σ̄+

ij (ϵij – ϵpij) (507.2)

ψ–
0 (σ̄ij(ϵij , ϵ

p
ij)) =

1
2
σ̄–

ijD
–1
ijklσ̄kl =

1
2
σ̄–

ij(ϵij – ϵpij) (507.3)

The rate of strain energy can be calculated from:

ĖS = ψ̇+
0 + ψ̇–

0 = σij(ϵ̇ij – ϵ̇pij) (507.4)

Taking the time derivative of Equation 507.1 gives the rate form of Helmholtz free energy:

ψ̇ =
∂ψ

∂ϵij
ϵ̇ij +

∂ψ

∂ϵ
p
ij
ϵ̇
p
ij +

∂ψ

∂d+ ḋ+ +
∂ψ

∂d– ḋ– = (σij ϵ̇ij – σij ϵ̇
p
ij) + (–ψ+

0 ḋ+ – ψ–
0 ḋ–) (507.5)

where the first term is the rate of strain energy given by Equation 507.4.

For a decoupled material model, the Helmholtz free energy can be decomposed into elastic and

plastic parts (Collins and Houlsby, 1997). Subtracting the elastic part of the free energy (strain energy)

from Equation 507.5 gives the rate form of the plastic free energy:

ĖP = ψ̇ – ĖS = –ψ+
0 ḋ+ – ψ–

0 ḋ– = –
1
2

(σ̄+
ij ḋ

+ + σ̄–
ij ḋ

–)(ϵij – ϵpij) (507.6)

The plastic energy dissipation DP is defined as the difference between plastic work and plastic free

energy (Farren and Taylor, 1925; Taylor and Quinney, 1934). The rate of plastic dissipation can be

expressed as:

ḊP = σij ϵ̇
p
ij – ĖP = σij ϵ̇

p
ij +

1
2

(σ̄+
ij ḋ

+ + σ̄–
ij ḋ

–)(ϵij – ϵpij) (507.7)
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It can be proven that the rate of plastic dissipation given by Equation 507.7 is always non-negative.

This means that the concrete material model used in this study satisfies the Clausius-Duhem inequality,

which represents a form of the second law of thermodynamics.

Combining Equation 507.4, 507.6, and 507.7, the rate form of energy balance in this concrete material

model is achieved:

ĖS + ĖP + ḊP = σij ϵ̇ij (507.8)

507.2.5 Uniaxial Steel Material

The energy computation procedure for the uniaxial steel model is shown in Figure 507.4. Note that the

only difference between the monotonic loading branch (Figure 507.4(a)) and the cyclic loading branch

(Figure 507.4(b)) is that the strain reversal point c is at the origin o in the monotonic case. So the

following explanation of the proposed energy computation method applies to both monotonic and cyclic

loading scenarios.
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Figure 507.4: Energy computation of uniaxial steel fiber: (a) Monotonic loading branch; (b) Cyclic

loading branch.

Firstly, the elastic strain energy density ES is defined in accordance with the classic assumption that

it is only a function of current stress state of the material, which yields:

ES = ES(σ) =
1

2E0
σ2 (507.9)

where E0 is the initial stiffness of the material.

Graphically, the elastic strain energy density of the material shown in Figure 507.4 at states a and b

are the triangular areas afd and bge. Then the incremental form of Equation 507.9 is simply:

dES =
1

E0
σdσ (507.10)
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Next, the incremental plastic dissipation density DP from state a to b is assumed to be the triangular

area abc:

dDP =
1
2

[(σ – σr)dϵ – (ϵ – ϵr)dσ] (507.11)

This assumption ensures that the incremental plastic dissipation is non-negative, and that ensures that

the second law of thermodynamics is satisfied.

For general case where the material does exhibit cyclic softening, plastic free energy density EP is

graphically described as the areas adoc and beoc at states a and b, respectively. The formulation for

plastic free energy density EP representing this assumption is given by:

EP =
1
2

[
σ

(
ϵ –

σ

E0
– ϵr
)

+ σrϵ

]
(507.12)

The incremental form of Equation 507.12 is:

dEP =
1
2

[
(σ + σr) dϵ +

(
ϵ –

1
E0
σ – ϵr

)
dσ
]

(507.13)

Adding Equation 507.10, 507.11, and 507.13, the incremental form of energy balance is achieved:

dES + dEP + dDP = σdϵ (507.14)

where the increment of three energy components add up to the increment of stress power during any

loading step.

507.2.6 Modeling and Simulation Results

In this chapter, the simulation results are presented and compared with corresponding experimental re-

sults. Three sets of FEM simulations (Reg A, Reg B, and ASR A1) using the Real-ESSI Simulator system

(Jeremić et al., 1988-2025) (http://real-essi.info/) are performed. In the following sections, the

force–displacement responses of these three sets of simulations are shown and discussed. The strain and

stress distributions, that share similar pattern in all three simulations, are also presented. In order to

investigate the level of damage in the shear wall, the evolution of concrete damage index as well as the

plastic dissipation density are plotted and discussed.

507.2.6.1 Force–Displacement Response

Figures 507.5 and 507.6 present the force–displacement responses of the simulation and experiment

results for regular concrete (Reg A and Reg B) and ASR concrete.

The ESSI simulation curves show good matching of experimental results. The differences in the

envelopes of the cyclic loading curves, between the numerical and experimental results are within 10%.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 507.5: Force–Displacement responses of regular concrete tests: (a) Reg A; (b) Reg B.
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Figure 507.6: Force–Displacement response of ASR concrete test (ASR A1).

The shear strengths and failure loads/displacements given by ESSI simulations match well with the values

determined by physical experiments. Note that this particular case with ASR concrete has a much larger

unloading-reloading cyclic area, which means that ASR concrete has the capability of dissipating more

input energy. It is important to note that this conclusion dos not hold for other ASR concrete walls

that were tested. This might indicate that for some structures with the ASR concrete, it is possible to

dissipate more seismic energy if the structure is under earthquake cyclic loading. On the other hand, for

some other structure with the ASR concrete, such conclusion might not hold as other test data suggests

reduction of seismic energy dissipation capacity. This leads to the conclusion that variability of ASR

concrete quality and material behavior can be significant.
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507.2.6.2 Strain and Stress Distribution

Due to the fact that the stress, strain, and damage patterns in all three cases are very similar, only plots

for the Reg A case is presented and discussed in the following sections.

Figure 507.7 shows the distribution of displacement components in the shear wall model at uy =

6 mm. The vertical displacement distribution is almost symmetric. The left part of the shear wall is

Figure 507.7: Distribution of displacement components in the shear wall model at uy = 6 mm: (a)

Vertical displacement ux; (b) Horizontal displacement uy.

compressed down while the right part is extended up. It is noted that the upper support beam is thus not

remaining horizontal, rather, it is applying bending load to the shear wall. The horizontal displacement

in the top beam slab is almost uniform.

Figure 507.8 shows the distribution of strain components in the shear wall model at uy = 6 mm.

The dominant components of the strains are the vertical normal strain ϵxx due to the vertical loading,

and the shear strain ϵxy due to the horizontal loading. As can be seen in the distribution of ϵxx, the

maximum tensile strain is much larger than the maximum compressive strain. Tensile strain actually

means that there is a crack that opened at the location. This is expected since the compressive strength

of concrete is higher than the tensile strength.

A 45o shear zone can be observed in the shear wall, with significant amounts of tensile and shear

strains. In addition, large tensile strains are developing around the top-left and bottom-right corners. As

will be shown in the following section, the concrete in these areas is significantly damaged during the

test.

Figure 507.9 shows the distribution of stress components in the shear wall model at uy = 6 mm. To
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Figure 507.8: Distribution of strain components in the shear wall model at uy = 6 mm: (a) Vertical

normal strain ϵxx; (b) Horizontal normal strain ϵyy; (c) Shear strain ϵxy; (d) Strain magnitude |ϵ|.

make the plots more clear, only stresses in the shear wall is plotted. Again, a 45o shear zone can be

observed, that is consistent with the pattern in the strain plots.

Large compressive normal stresses are developed around the top-right and bottom-left corners, while

large tensile normal stresses are observed around the top-left and bottom-right corners. The shear

stresses at all four corners are significant.

Stress/force and strain/deformation distributions are not enough to directly quantify the level of

damage in structures, especially in the case of cyclic loading. In order to analyze damage conditions, the

concrete damage index and plastic energy dissipation are calculated and plotted, as shown in the next

section.
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Figure 507.9: Distribution of stress components in the shear wall model at uy = 6 mm: (a) Vertical

normal stress σxx; (b) Horizontal normal stress σyy; (c) Shear stress σxy; (d) Stress magnitude |σ|.

507.2.6.3 Concrete Damage and Energy Dissipation

Figure 507.10 shows the evolution of shear wall concrete damage index d+, defined in Equation 104.622,

at different levels of deformation during cyclic loading. Only tensile damage index is presented in

Figure 507.10 as no compressive damage occurs in the wall. It is noted that, according to damage

evolution from Figure 507.10, three damage/cracks zones are observed in the wall for load/displacement

cycles of uy = ±1.4mm. Two 45o tensile/shear zones with opposite directions as well as a tensile failure

zone along the bottom of the wall are developing. Note that the flanges experience damage at the

bottom due to tension, which indicates that wall-flange system experiences bending, and not pure shear

as intended.
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Figure 507.10: Evolution of concrete damage index in the shear wall model for different levels of cyclic

loading: (a) At uy = ±1.4mm; (b) At uy = ±1.8mm; (c) At uy = ±3.0mm; (d) At uy = ±5.0mm.

As the loading/deformation cycles increase, the damage zones extends and the level of damage

increases. At the end, the entire wall is damaged. In reality, due to variability of material properties,

some wall regions will experience localization of deformation, as observed in experiments. Modeling

of localization of deformation suffers from mesh dependency effects. It is noted that localization of

deformation zones, as seen in Figures 507.10 and 507.11 are about the size of single finite element. It

is likely that upon mesh refinement these zones would change (Lu et al., 2009), however this type of

sensitivity study was not done here due to time constraints. We also note that a more sound approach

to modeling localized deformation behavior would be through the use of Cosserat continuum (Cosserat,

1909; de Borst, 1987). Cosserat continuum finite element and micropolar elastic and elastic-plastic
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models are available within the Real-ESSI Simulator, however calibration of material parameters for

those models from current test results is beyond the scope and time frame of this study, and was not

done.

Other than damage index, plastic energy dissipation density can also be used to illustrate damage in

structures. The main difference between damage index and plastic energy dissipation is that the plastic

energy dissipation increases even after an element is completely damaged, that is when d+ = 1.0. 2

Figure 507.11 shows the evolution of plastic energy dissipation density in the shear wall model at

different stages of loading. At the beginning of the test, Figure 507.11(a), the distribution of plastic

energy dissipation density is very similar to the distribution of a damage index (d+). However, as the load

cycles progress and displacement increase, Figure 507.11(b), significant amount of energy is dissipated

at bottom corners of both flanges. Most of that plastic dissipation happens due to opening of gaps,

tensile cracking, and some shear. Plastic dissipation due to tensile cracking can happen only once, as

cracks will not ”heal”, hence there is a redistribution of loads and deformation within flange-wall system.

Once flange cannot dissipate any more energy, only wall is left to pick up loads and dissipate energy

due to tension and shear. It is noted again that there was no observed development of compression

damage, hence there is no plastic dissipation in compressed concrete. Toward the end of simulation,

Figure 507.11(c), a failure zone that is X shaped, with distinct 45o tensile plastic dissipation zones in

the wall, and the plastic dissipation zone at the corners, bottom and top of flanges, is observed. At the

end of the simulation, Figure 507.11(d), a failure zone due to tension and shear, encompasses flange

corners and most of the wall.

Figure 507.12 shows animation of plastic dissipation development in the wall/membrane.

2Plastic dissipation is also very important for following seismic energy as it propagates through the soil structure system

during earthquakes (Sinha et al., 2017; Wang et al., 2017). If seismic energy, and plastic dissipation can be accurately

followed and its path even directed, during earthquake soil structure interaction (ESSI), soil structure systems can be

optimized for safety and economy.
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Figure 507.11: Evolution of plastic energy dissipation density in the shear wall model: (a) At uy =

±1.4mm; (b) At uy = ±1.8mm; (c) At uy = ±3.0mm; (d) At uy = ±5.0mm.
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Figure 507.12: Animation of plastic dissipation in the wall/membrane.
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508.1 Chapter Summary and Highlights

508.2 Pine Flat Dam
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509.1 2D Frame with Energy Dissipation
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Figure 509.1: 2D frame model.

Figure 509.2: Energy Dissipation for a frame on spread foundations.
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Figure 509.3: Energy Dissipation for a frame on slab foundation.

Finite element model, input files for the Real-ESSI simulator for Concrete Frame model are available:

• All model files, one by one,

• Model archive (tar xz)

For uncompressing and un-taring the model archive file, please use

tar -xvf Concrete_frame_PEER_model.txz.
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509.2 Ventura Hotel

509.2.1 Finite Element Model

Figure 509.4: Ventura hotel model.

Figure 509.5: Ventura hotel model.
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Figure 509.6: Ventura hotel model.

Figure 509.7: Ventura hotel model.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 509.2. VENTURA HOTEL page: 2678 of 3287

Figure 509.8: Ventura hotel model, view in X direction.

Figure 509.9: Ventura hotel model, view in Y direction.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 509.2. VENTURA HOTEL page: 2679 of 3287

Figure 509.10: Ventura hotel model, view in Z direction.

Figure 509.11: Ventura hotel model, view along X direction.
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Figure 509.12: Ventura hotel model, view along Y direction.

Figure 509.13: Ventura hotel model, view along Z direction.
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Finite element model, input file for the Real-ESSI simulator for Ventura hotel model with and without

SSI are available:

• Full SSI model, (7.8MB)

• Structure only, non-SSI model, (84kB)

NOTE: while full SSI model is only 11MB in compressed format, using xz compressor, fully uncom-

pressed model files are over 3.7GB large, that is 3,770MB, or 3,868,356Kb.

For uncompressing and un-taring, please use

tar -xvf _Ventura_hotel_Full_SSI_Model_.tar.xz,

and

tar -xvf _Ventura_hotel_non_SSI_Model_.tar.xz.
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509.3 Loma Linda Hospital

509.3.1 Finite Element Model

Figure 509.14: Loma Linda hospital 3D view.

Figure 509.15: Loma Linda hospital view in X direction.
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Figure 509.16: Loma Linda hospital view in Y direction.

Figure 509.17: Loma Linda hospital view in Z direction.
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509.4 ASCE-7 Model, Low, Steel Building

509.4.1 Finite Element Model
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Figure 509.18: Low steel building model, 3D view.

Figure 509.19: Low steel building model, 3D view.
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Figure 509.20: Low steel building model, 3D view.

Figure 509.21: Low steel building model, 3D view.
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Figure 509.22: Low steel building model, 3D view.
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Figure 509.23: Low steel building model, 3D view.
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ESSI Notes 509.4. ASCE-7 MODEL, LOW, STEEL BUILDING page: 2687 of 3287

Finite element model, input file for the Real-ESSI simulator for full SSI ASCE-7 model, low, steel

building are available HERE.

NOTE: This model is 1.1GB (1,102MB, 1,127,928Kb) in size even when compressed, due to large

file describing incoherent motions. When uncompressed

(use

tar -xvf _ASCE-7_low_steel_building_Model_.tar.xz), models files grow to 3.0GB, that is 2,977MB,

or 3,047,532Kb, so please be aware of disk space requirements for the model alone.
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509.5 ASCE-7 Model, High, Concrete Building

509.5.1 Finite Element Model
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Figure 509.24: High concrete building model, 3D view.
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Figure 509.25: High concrete building model, XZ plane view.
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Figure 509.26: High concrete building model, YZ plane view.
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Figure 509.27: High concrete building model, cut through model view.

Figure 509.28: High concrete building model, cut through model view.
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ESSI Notes 509.5. ASCE-7 MODEL, HIGH, CONCRETE BUI . . . page: 2691 of 3287

Finite element model, input file for the Real-ESSI simulator for full SSI ASCE-7 model, high concrete

building are available HERE.

NOTE: This model is only 11MB large when compressed. When uncompressed (use

tar -xvf _ASCE-7_tall_concrete_building_Model_.tar.xz), models files grow to 1.9GB, that is

1,867MB, or 1,911,524Kb, so please be aware of disk space requirements for the model alone.
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ESSI Notes 510.1. MOTIVATION: MODELING AND SIMUL . . . page: 2693 of 3287

510.1 Motivation: Modeling and Simulation of Earthquake Soil Structure Inter-

action

Main motivation of this write-up (chapter, guidebook) is to provide a clear, practical, up to date guide

on how to perform linear elastic and nonlinear, inelastic Earthquake Soil Structure Interaction (ESSI)

modeling and simulations for infrastructure objects, including buildings, dams, bridges, nuclear installa-

tions, etc. This is particularly important at this time as a number of endeavors are underway to perform

realistic ESSI analysis for a number of important soil, rock – structure systems, including dams, nuclear

installations, bridges, buildings, etc.

This write-up is further motivated by the modeling and simulation challenges that are part of any

soil, rock – structure system. These challenges are illustrated in Figure 510.1 for a number of soil, rock

and soil/rock-structure systems.
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Figure 510.1: ESSI modeling and simulation challenges: Free field motions, 3C/6C vs 3×1C; Nuclear

Power Plant structure – soil/rock system, Small Modular Reactor structure – soil/rock system; Low

and High Building-foundation-soil system; Dam-Foundation-Fluid system; Bridge-soil system; Aspects

of modeling: 1) Seismic motions, 2) Inelastic soil and rock, 3) Inelastic interface/contact/joints, foun-

dation with soil/rock and interfaces/contacts/joints within structure, 4) Inelastic structure, systems and

components, 5) Solid, Structure – Fluid interaction, external (reservoirs, fluid pools...) and internal

(fully saturated and partially, (un-)saturated soil, rock and concrete).
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Challenges for Modeling of Mechanics of Earthquake – Soil/Rock – Structure – Interaction. Presented

are challenges related to the modeling of mechanics of ESSI problems.

1 Seismic motions: use of 1C, 3×1C and 3C motions, seismic motions input and radiation damping.

2 Inelastic, elastic plastic modeling of soil and rock, dry and/or partially or fully saturated, and

energy dissipation in those soil/rock – structure components,

3 Inelastic, elastic plastic modeling of foundation concrete – soil/rock contacts/interfaces/joints that

may be dry and/or partially or fully saturated, and energy dissipation in those parts of soil/rock –

structure system,

4 Inelastic, elastic damage plastic modeling of structure, systems and components (SSCs). SSCs:

beams, walls, plates, shell made of steel and reinforced concrete, base isolators and dissipators,

systems and etc. and energy dissipation in those soil/rock – structure components,

5 Interaction of soil/rock – structure systems with internal, within structure or in pores of porous

materials (soil, rock, concrete) and external fluids, reservoirs, pools, etc.

Challenges for Numerical Simulations of Earthquake – Soil/Rock – Structure – Interaction. Presented

are challenges related to the numerical simulation of ESSI problems.

A Inelastic simulations on constitutive level, stress-strain, constitutive problem solutions

B Inelastic simulations on finite element level, nonlinear system of equations solutions

C Time marching algorithms, numerical damping

D High performance, parallel computing

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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510.2 Introduction

Focus is on modeling and simulation of linear elastic and nonlinear, inelastic, elastic-plastic behavior of

soil/rock – structure systems during earthquakes.

It is assumed that earthquake motions, earthquake field is known. Earthquake motion or earthquake

field, can be given as a simple 1C (1 Component) vertically propagating shear wave, that is obtained from

a de-convolution of a given (1C) surface motion, using, for example SHAKE type analysis. Earthquake

motion or earthquake field can also be given as a full 3C (3 Component) wave field that is obtained

from analytic wave propagation solutions or from a regional geophysical model simulations, using, for

example SW4 type analysis. In addition, earthquake motions can be defined in a probabilistic way...

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.3. SEISMIC ENERGY INPUT AND DISSIPATION page: 2697 of 3287

510.3 Seismic Energy Input and Dissipation

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

More details about these topics are given in Section 109.2, on page 547 in Jeremić et al. (1989-2025).

510.3.1 Seismic Energy Input

Seismic energy input flux

510.3.2 Seismic Energy Dissipation

510.3.2.1 Seismic Energy Dissipation, Wave Reflection and Wave Radiation

Wave reflection and radiation damping

510.3.2.2 Seismic Energy Dissipation, Viscous Coupling

velocity proportional, viscous damping

510.3.2.3 Seismic Energy Dissipation, Material Inelasticity

Elastic-plastic energy dissipation of material, Displacement proportional

510.3.2.4 Seismic Energy Dissipation, Numerical, Algorithmic Positive and Negative Damping

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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510.4 Modeling: Seismic Motions

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

More details about these topics are given in Section 502.2, on page 2260 in Jeremić et al. (1989-

2025).

510.4.1 Seismic Motions: Available Data

Details are given in Section 502.2.1, on page 2262 in Jeremić et al. (1989-2025).

510.4.2 Seismic Motion Development

Details are given in Section 502.2.3, on page 2266 in Jeremić et al. (1989-2025).

510.4.2.1 Seismic Motions from Empirical Models

Details are given in Section 109.2.3, on page 553 in Jeremić et al. (1989-2025).

510.4.2.2 Seismic Motions from Geophysical Models

Details are given in Section 109.2.6, on page 561 in Jeremić et al. (1989-2025).

Small Scale Geophysical Models.

Large Scale Regional Geophysical Models

510.4.2.3 Seismic Motions from 3D/3C Analytic Models

Details are given in Section 109.2.5, on page 557 in Jeremić et al. (1989-2025).

510.4.2.4 Seismic Motions from Full Waveform Inversion

This is based on recent work by Guidio (2020); Guidio et al. (2022b); Guidio and Jeong (2021); Guidio

et al. (2022a).

510.4.3 6C vs 3C vs 3×1C vs 1C Seismic Motions

Details are given in Section 504.4.1, on page 2504 in Jeremić et al. (1989-2025).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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510.4.4 Incoherent Seismic Motions

Details are given in Section 109.2.8, on page 562 in Jeremić et al. (1989-2025).

510.4.5 Seismic Motion Input into FEM Models

Details are given in Section 109.4.1, on page 568 in Jeremić et al. (1989-2025).
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ESSI Notes 510.5. MODELING: INELASTIC, NONLINEAR M . . . page: 2700 of 3287

510.5 Modeling: Inelastic, Nonlinear Material Modeling for Solids and Struc-

tures

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

510.5.1 Inelastic Material Modeling of Rock

Details are given in Section 104.8, on page 329 in Jeremić et al. (1989-2025).

510.5.1.1 Calibration of Inelastic Material Model Parameters for Rock

Details are given in Section 104.10, on page 368 in Jeremić et al. (1989-2025).

510.5.2 Inelastic Material Modeling of Soil

510.5.2.1 Dry Soil

Details are given in Section 104.6, on page 220 in Jeremić et al. (1989-2025).

510.5.2.2 Fully Saturated Soil

Details are given in Section 102.12, on page 137 in Jeremić et al. (1989-2025).

510.5.2.3 Partially Saturated, Unsaturated Soil

Details are given in Section 102.12.2, on page 152 in Jeremić et al. (1989-2025).

510.5.2.4 Calibration of Inelastic Material Model Parameters for Soil

Details are given in Section 104.10, on page 368 in Jeremić et al. (1989-2025).

510.5.3 Inelastic Material Modeling of Steel

Details are given in Section 104.9, on page 363 in Jeremić et al. (1989-2025).

510.5.3.1 Calibration of Inelastic Material Model Parameters for Steel

Details are given in Section 104.10, on page 368 in Jeremić et al. (1989-2025).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures


Je
re
m
ić
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ESSI Notes 510.5. MODELING: INELASTIC, NONLINEAR M . . . page: 2701 of 3287

510.5.4 Inelastic Material Modeling of Concrete

Solids, Beams, Plates, Walls and Shells

Details are given in Section 104.9, on page 363 in Jeremić et al. (1989-2025).

510.5.4.1 Calibration of Inelastic Material Model Parameters for Concrete

Details are given in Section 104.10, on page 368 in Jeremić et al. (1989-2025).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.6. MODELING: INELASTIC, NONLINEAR M . . . page: 2702 of 3287

510.6 Modeling: Inelastic, Nonlinear Material Modeling for Contacts, Interfaces,

and Joints

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

510.6.1 Material Modeling of Dry Contacts, Interfaces, and Joints (Concrete, Steel – Soil, Rock)

Details are given in Section 104.7, on page 306 in Jeremić et al. (1989-2025).

510.6.1.1 Calibration of Inelastic Material Model Parameters for Dry Contacts, Interfaces, and Joints

(Concrete, Steel – Soil, Rock)

510.6.2 Material Modeling of Saturated Contacts, Interfaces, and Joints (Concrete, Steel – Soil,

Rock)

Details are given in Section 104.7, on page 306 in Jeremić et al. (1989-2025).

510.6.2.1 Calibration of Inelastic Material Model Parameters for Saturated Contacts, Interfaces, and

Joints (Concrete, Steel – Soil, Rock)

510.7 Modeling: Buoyancy

Details are given in Section 502.3.7, on page 2349 in Jeremić et al. (1989-2025).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.8. MODELING: BASE ISOLATOR AND BAS . . . page: 2703 of 3287

510.8 Modeling: Base Isolator and Base Dissipator Systems

510.8.1 Base Isolator Systems

Details are given in Section 102.11, on page 136, in Jeremić et al. (1989-2025).

510.8.1.1 Calibration of Elastic/Inelastic Material Model Parameters for Base Isolator Systems

510.8.2 Base Dissipator Systems

Details are given in Section 102.11, on page 136, in Jeremić et al. (1989-2025).

510.8.2.1 Calibration of Elastic/Inelastic Material Model Parameters for Base Dissipator Systems

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.9. MODELLING: FINITE ELEMENT SYSTEM page: 2704 of 3287

510.9 Modelling: Finite Element System

510.9.1 Mass Matrix

Details are given in Section 102.4, on page 114, Section 102.6, on page 126, Section 102.7, on page 126,

Section 102.8, on page 129, Section 102.9, on page 135, Section 102.10, on page 135, Section 102.11,

on page 136, and Section 102.12, on page 137, in Jeremić et al. (1989-2025).

510.9.1.1 Consistent Mass Matrix

510.9.1.2 Lumped Mass Matrix

510.9.2 Viscous Damping Matrix

Details are given in Section 108.4, on page 540, in Jeremić et al. (1989-2025).

510.9.2.1 Rayleigh Damping

510.9.2.2 Caughey Damping

510.9.3 Stiffness Matrix

Details are given in Section 102.4, on page 114, Section 102.6, on page 126, Section 102.7, on page 126,

Section 102.8, on page 129, Section 102.9, on page 135, Section 102.10, on page 135, Section 102.11,

on page 136, and Section 102.12, on page 137, in Jeremić et al. (1989-2025).

510.9.3.1 Tangent Stiffness Matrix

510.9.3.2 Consistent Stiffness Matrix

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.10. MODELING: SOLID, STRUCTURE – FL . . . page: 2705 of 3287

510.10 Modeling: Solid, Structure – Fluid Interaction Modeling

Details of OpenFOAM – Real-ESSI Simulator coupling are available starting with Section 111.2, on page

685, in Jeremić et al. (1989-2025).
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ESSI Notes 510.11. SIMULATION: NONLINEAR FINITE EL . . . page: 2706 of 3287

510.11 Simulation: Nonlinear Finite Elements

Details are given in Section 102.2, on page 100 in Jeremić et al. (1989-2025).

510.11.1 Time Marching Algorithms for Solution of Nonlinear Equations of Motion

Details are given in Section 108.3, on page 538 in Jeremić et al. (1989-2025).

510.11.1.1 Newmark Algorithm

Details are given in Section 108.3.1, on page 538 in Jeremić et al. (1989-2025).

510.11.1.2 Hilber Hughes Taylor α Algorithm

Details are given in Section 108.3.2, on page 539 in Jeremić et al. (1989-2025).

510.11.2 Solution of Elastic-Plastic Constitutive Equations

Details are given in Section 104.2.2, on page 182 in Jeremić et al. (1989-2025).

510.11.2.1 Explicit Integration of Elastic-Plastic Constitutive Equations

Details are given in Section 104.3, on page 206 in Jeremić et al. (1989-2025).

Error accumulation.

510.11.2.2 Implicit Integration of Elastic-Plastic Constitutive Equations

Details are given in Section 104.4, on page 207 in Jeremić et al. (1989-2025).

Iterations and tolerance issues.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.12. MODELLING GUIDE FOR ESSI page: 2707 of 3287

510.12 Modelling Guide for ESSI

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

More details about these topics are given in Section 502.3, on page 2332 in Jeremić et al. (1989-

2025).

510.12.1 Buildings and NPPs on Shallow Foundations, Models

Details are given in Section 504.6, on page 2514 in Jeremić et al. (1989-2025).

510.12.2 Buildings and NPPs on Deeply Embedded Foundation (SMRs), Models

Details are given in Section 504.7, on page 2528 in Jeremić et al. (1989-2025).

510.12.3 Buildings and NPPs on Piles and Pile Group Foundations, Models

Details are given in Section 504.6, on page 2514 in Jeremić et al. (1989-2025).

510.12.4 Structure – Soil – Structure Interaction, Models

Details are given in Section 504.9, on page 2561 in Jeremić et al. (1989-2025).
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ESSI Notes 510.13. PRACTICAL STEPS FOR INELASTIC E . . . page: 2708 of 3287

510.13 Practical Steps for Inelastic ESSI Analysis

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

See Model Development section in Pecker et al. (2022).

510.13.1 Model Development for ESSI

Details are given in Section 502.4, on page 2354 in Jeremić et al. (1989-2025).

510.13.2 Earthquake Soil Structure Interaction: Model Analysis

510.13.3 Earthquake Soil Structure Interaction: Results Postprocessing

Details are given in Section 208.2, on page 1289 in Jeremić et al. (1989-2025).
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ESSI Notes 510.14. QUALITY ASSURANCE PROCEDURES . . . page: 2709 of 3287

510.14 Quality Assurance Procedures for ESSI Modeling and Simulation

Details of the quality assurance are given in Sections 314.3, on page 1893 and 314.4, on page 1896, in

Jeremić et al. (1989-2025).

Moreover, verification procedures for ESSI modeling is given in part 300, on page 1436 in Jeremić

et al. (1989-2025).

See also Verification and Validation section in Pecker et al. (2022).

510.14.1 Verification

510.14.2 Validation

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ESSI Notes 510.15. PRACTICAL EXAMPLES, NONLINEAR, . . . page: 2710 of 3287

510.15 Practical Examples, Nonlinear, Inelastic ESSI

Recorded lectures, together with slides, about these topics are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/OnlineLectures

510.15.1 Nuclear Power Plant, Inelastic Structure, Inelastic Soil, Inelastic Contact/Interface,

6C/3C/3×1C/1C Seismic Motions

510.15.2 Nuclear Power Plant on Piles, Inelastic Structure, Inelastic Soil, Inelastic Contact/In-

terface, 6C/3C/3×1C/1C Seismic Motions

510.15.3 Nuclear Power Plant, High Water Table, Inelastic Structure, Inelastic Soil, Cyclic

Mobility and Liquefaction, Inelastic Saturated Contact/Interface, Buoyant Pressures,

6C/3C/3×1C/1C Seismic Motions

510.15.4 Small Modular Reactor, Deeply Embedded, Inelastic Structure, Inelastic Soil, Inelastic

Contact/Interface, 6C/3C/3×1C/1C Seismic Motions

510.15.5 Small Modular Reactor, Deeply Embedded, High Water Table, Inelastic Structure,

Inelastic Soil (Cyclic Mobility and Liquefaction), Inelastic Saturated Contact/Interface

(Buoyant Pressures), 6C/3C/3×1C/1C Seismic Motions

510.15.6 Multiple Buildings and Nuclear Power Plants (Structure-Soil-Structure Interaction), In-

elastic Structure, Inelastic Soil, Inelastic Contact/Interface, 6C/3C/3×1C/1C Seismic

Motions

510.15.7 Multiple Small Modular Reactors (Structure-Soil-Structure Interaction), Deeply Em-

bedded, High Water Table, Inelastic Structure, Inelastic Soil, Cyclic Mobility and Lique-

faction, Inelastic Saturated Contact/Interface, Buoyant Pressures, 3C Seismic Motions

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.1 Motivation: Modeling and Simulation of Earthquake Soil Structure Inter-

action

Main motivation of this write-up, chapter is to provide a clear, practical, up to date guide on how to

perform nonlinear, inelastic Earthquake Soil Structure Interaction (ESSI) modeling and simulations for

nuclear installations. This is particularly important at this time as a number of endeavors are underway

to perform realistic ESSI analysis for a number of nuclear installations.

This write-up is further motivated by the modeling and simulation challenges that are part of any

soil, rock – structure system. These challenges are illustrated in Figure 511.1 for a number of soil, rock

and soil/rock-structure systems.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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1 1
2 2

1

2

3

4

5

Figure 511.1: ESSI modeling and simulation challenges: Free field motions, 3C vs 3×1C; Nuclear

Power Plant structure – soil/rock system, Small Modular Reactor structure – soil/rock system. As-

pects of modeling: 1) Seismic motions, 2) Inelastic soil and rock, 3) Inelastic interface/contact/joints,

foundation with soil/rock and interfaces/contacts/joints within structure, 4) Inelastic structure, systems

and components, 5) Interaction with external (reservoirs, fluid pools...) and internal (saturated and

un-saturated soil/rock and concrete.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Challenges for Modeling of Mechanics of Earthquake – Soil/Rock – Structure – Interaction. Presented

are challenges related to the modeling of mechanics of ESSI problems.

1 Seismic motions: use of 1C, 3×1C and 3C motions, seismic motions input and radiation damping.

2 Inelastic, elastic plastic modeling of soil and rock, dry and/or partially or fully saturated, and

energy dissipation in those soil/rock – structure components,

3 Inelastic, elastic plastic modeling of foundation concrete – soil/rock contacts/interfaces/joints that

may be dry and/or partially or fully saturated, and energy dissipation in those parts of soil/rock –

structure system,

4 Inelastic, elastic damage plastic modeling of structure, systems and components (SSCs). SSCs:

beams, walls, plates, shell made of steel and reinforced concrete, base isolators and dissipators,

systems and etc. and energy dissipation in those soil/rock – structure components,

5 Interaction of soil/rock – structure systems with internal, within structure or in pores of porous

materials (soil, rock, concrete) and external fluids, reservoirs, pools, etc.

Challenges for Numerical Simulations of Earthquake – Soil/Rock – Structure – Interaction. Presented

are challenges related to the numerical simulation of ESSI problems.

A Inelastic simulations on constitutive level, stress-strain, constitutive problem solutions

B Inelastic simulations on finite element level, nonlinear system of equations solutions

C Time marching algorithms, numerical damping

D High performance, parallel computing

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.2 Introduction

Focus is on modeling and simulation of linear elastic and nonlinear, inelastic, elastic-plastic behavior of

soil/rock – structure systems during earthquakes.

It is assumed that earthquake motions, earthquake field is known. Earthquake motion or earthquake

field, can be given as a simple 1C (1 Component) vertically propagating shear wave, that is obtained from

a de-convolution of a given (1C) surface motion, using, for example SHAKE type analysis. Earthquake

motion or earthquake field can also be given as a full 3C (3 Component) wave field that is obtained

from analytic wave propagation solutions or from a regional geophysical model simulations, using, for

example SW4 type analysis. In addition, earthquake motions can be defined in a probabilistic way...

Pecker et al. (2022).

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.3 Seismic Energy Input and Dissipation

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.3.1 Seismic Energy Input

Seismic energy input flux

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.3.2 Seismic Energy Dissipation

511.3.2.1 Seismic Energy Dissipation, Wave Reflection and Wave Radiation

Wave reflection and radiation damping

511.3.2.2 Seismic Energy Dissipation, Viscous Coupling

velocity proportional, viscous damping

511.3.2.3 Seismic Energy Dissipation, Material Inelasticity

Elastic-plastic energy dissipation of material, Displacement proportional

511.3.2.4 Seismic Energy Dissipation, Numerical, Algorithmic Positive and Negative Damping

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.4 Modeling: Seismic Motions
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511.4.1 Seismic Motions: Available Data

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.4.2 Seismic Motion Development

511.4.2.1 Seismic Motions from Empirical Models

511.4.2.2 Seismic Motions from Geophysical Models

Small Scale Geophysical Models.

Large Scale Regional Geophysical Models

511.4.2.3 Seismic Motions from 3D/3C Analytic Models

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.4.3 6C vs 3C vs 3×1C vs 1C Seismic Motions

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.4.4 Incoherent Seismic Motions

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.4.5 Seismic Motion Input into FEM Models

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.5 Modeling: Inelastic, Nonlinear Material Modeling for Solids and Struc-

tures

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.5.1 Inelastic Material Modeling of Rock

511.5.1.1 Calibration of Inelastic Material Model Parameters for Rock

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.5.2 Inelastic Material Modeling of Soil

511.5.2.1 Dry Soil

511.5.2.2 Fully Saturated Soil

511.5.2.3 Partially Saturated, Unsaturated Soil

511.5.2.4 Calibration of Inelastic Material Model Parameters for Soil

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.5.3 Inelastic Material Modeling of Steel

511.5.3.1 Calibration of Inelastic Material Model Parameters for Steel

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.5.4 Inelastic Material Modeling of Concrete

Solids, Beams, Plates, Walls and Shells

511.5.4.1 Calibration of Inelastic Material Model Parameters for Concrete

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.6 Modeling: Inelastic, Nonlinear Material Modeling for Contacts, Interfaces,

and Joints

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.6.1 Material Modeling of Dry Contacts, Interfaces, and Joints (Concrete, Steel – Soil, Rock)

511.6.1.1 Calibration of Inelastic Material Model Parameters for Dry Contacts, Interfaces, and Joints

(Concrete, Steel – Soil, Rock)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ESSI Notes 511.6. MODELING: INELASTIC, NONLINEAR M . . . page: 2732 of 3287

511.6.2 Material Modeling of Saturated Contacts, Interfaces, and Joints (Concrete, Steel – Soil,

Rock)

511.6.2.1 Calibration of Inelastic Material Model Parameters for Saturated Contacts, Interfaces, and

Joints (Concrete, Steel – Soil, Rock)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.7 Modeling: Base Isolator and Base Dissipator Systems
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511.7.1 Base Isolator Systems

511.7.1.1 Calibration of Elastic/Inelastic Material Model Parameters for Base Isolator Systems

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.7.2 Base Dissipator Systems

511.7.2.1 Calibration of Elastic/Inelastic Material Model Parameters for Base Dissipator Systems

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 511.8. MODELING: BURIED PIPES AND COND . . . page: 2736 of 3287

511.8 Modeling: Buried Pipes and Conduits
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511.9 Modeling: Buoyancy
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511.10 Modelling: Finite Element System
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511.10.1 Mass Matrix

511.10.1.1 Consistent Mass Matrix

511.10.1.2 Lumped Mass Matrix

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.10.2 Viscous Damping Matrix

511.10.2.1 Rayleigh Damping

511.10.2.2 Caughey Damping

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.10.3 Stiffness Matrix

511.10.3.1 Tangent Stiffness Matrix

511.10.3.2 Consistent Stiffness Matrix

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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511.11 Modeling: Solid, Structure – Fluid Interaction Modeling
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511.12 Simulation: Nonlinear Finite Elements
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511.12.1 Time Marching Algorithms for Solution of Nonlinear Equations of Motion

511.12.1.1 Newmark Algorithm

511.12.1.2 Hilber Hughes Taylor α Algorithm

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.12.2 Solution of Elastic-Plastic Constitutive Equations

511.12.2.1 Explicit Integration of Elastic-Plastic Constitutive Equations

511.12.2.2 Implicit Integration of Elastic-Plastic Constitutive Equations

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.13 Modelling Guide for ESSI
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ESSI Notes 511.13. MODELLING GUIDE FOR ESSI page: 2747 of 3287

511.13.1 Buildings and NPPs on Shallow Foundations, Models

511.13.2 Buildings and NPPs on Deeply Embedded Foundation (SMRs), Models

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.13.3 Buildings and NPPs on Piles and Pile Group Foundations, Models

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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511.13.4 Structure – Soil – Structure Interaction, Models
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511.14 Practical Steps for Inelastic ESSI Analysis
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511.14.1 Model Development for ESSI
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511.14.2 Earthquake Soil Structure Interaction: Model Analysis
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511.14.3 Earthquake Soil Structure Interaction: Results Postprocessing
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511.15 Quality Assurance Procedures for ESSI Modeling and Simulation
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511.15.1 Verification
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511.15.2 Validation
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511.16 Standard for Nonlinear/Inelastic Earthquake-Soil-Structure Analysis

511.16.1 Standard for Solids Analysis

511.16.2 Standard for Structure Analysis

511.16.3 Standard for Elastic-Plastic Analysis
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 511.17. PRACTICAL EXAMPLES, NONLINEAR, . . . page: 2758 of 3287

511.17 Practical Examples, Nonlinear, Inelastic ESSI
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511.17.1 Nuclear Power Plant, Inelastic Structure, Inelastic Soil, Inelastic Contact/Interface,

6C/3C/3×1C/1C Seismic Motions
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511.17.2 Nuclear Power Plant on Piles, Inelastic Structure, Inelastic Soil, Inelastic Contact/In-

terface, 6C/3C/3×1C/1C Seismic Motions
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511.17.3 Nuclear Power Plant, High Water Table, Inelastic Structure, Inelastic Soil, Cyclic

Mobility and Liquefaction, Inelastic Saturated Contact/Interface, Buoyant Pressures,

6C/3C/3×1C/1C Seismic Motions
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511.17.4 Small Modular Reactor, Deeply Embedded, Inelastic Structure, Inelastic Soil, Inelastic

Contact/Interface, 6C/3C/3×1C/1C Seismic Motions
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511.17.5 Small Modular Reactor, Deeply Embedded, High Water Table, Inelastic Structure,

Inelastic Soil (Cyclic Mobility and Liquefaction), Inelastic Saturated Contact/Interface

(Buoyant Pressures), 6C/3C/3×1C/1C Seismic Motions
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511.17.6 Multiple Buildings and Nuclear Power Plants (Structure-Soil-Structure Interaction), In-

elastic Structure, Inelastic Soil, Inelastic Contact/Interface, 6C/3C/3×1C/1C Seismic

Motions
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511.17.7 Multiple Small Modular Reactors (Structure-Soil-Structure Interaction), Deeply Em-

bedded, High Water Table, Inelastic Structure, Inelastic Soil, Cyclic Mobility and Lique-

faction, Inelastic Saturated Contact/Interface, Buoyant Pressures, 3C Seismic Motions
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512.1 Core Functionality for ESSI Analysis of Nuclear Installations

Presented here are models that represent core functionality for elastic and inelastic analysis of infras-

tructure objects, including nuclear installations. There exist a number of other models, with different

sophistication levels, that can be used, depending on the amount of data available, about the soil, rock,

concrete, contacts/interfaces and seismic motions (Jeremić et al., 1989-2025). However, in order to

begin to use of inelastic/nonlinear analysis, and assess inelastic/nonlinear effects on a dynamic response

of soil structure systems, a set of initial models and analysis parameters are needed. Provided below

is a set of models and materials parameters that are recommended for initial use of inelastic/nonlinear

analysis of soil structure systems, using the Real-ESSI Simulator system. (http://real-essi.info/).

It is noted that a detailed description of examples, commands and the Real-ESSI Simulator system is

provided by Jeremić et al. (1989-2025, 1988-2025) and is also available at the Real-ESSI Simulator web

site http://real-essi.info/. In addition, preprocessing, model development and postprocessing, re-

sults visualization for the Real-ESSI Simulator system is also described in detail pre and post processing

documents that are available at http://real-essi.info/.

512.2 Model Setup

Each model has to be named:

model name "model_name_string";

In addition to that, there are a number of other considerations to be aware of:

• Each command line has to end with a semicolon ”;”

• Comment on a line begins with either ”//” or ”!” and last until the end of current line.

• Units are required (see more below) for all quantities and variables.

• Include statements allow splitting source into several files

• All variables are double precision (i.e. floats) with a unit attached.

• All standard arithmetic operations are implemented, and are unit sensitive.

• Internally, all units are represented in the base SI units (m - s - kg).

• The syntax ignores extra white spaces, tabulations and newlines. Wherever they appear, they are

there for code readability only. (This is why all commands need to end with a semicolon).
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512.3 Linear Elastic Modeling

for single stage linear elastic modeling, one stage of loading has to be defined

1 new loading stage "self weight loading stage";

512.4 Nonlinear/Inelastic Modeling

For inelastic modeling, stages of loading have to be defined in proper sequence.

input

loading stage

increment

iteration

output

Figure 512.1:

1 new loading stage "self weight loading stage";

. . .

1 new loading stage "Seismic Loading";

. . .

512.5 Model Domain

Finite element model is developed by defining the finite element mesh which is made of nodes, finite

elements, the material, and the loads.
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512.5.1 Nodes

For example:

1 add node No 1 at (1.0*m, 2.5*m, 3.33*m) with 3 dofs;

adds a node number 1 at coordinates x = 1.0m, y = 2.5m and z = 3.33m with 3 dofs. The nodes can

be of 3dofs [ux, uy, uz], 4dofs []ux, uy, uz, p] (u-p elements) , 6dofs [ux, uy, uz, rx, ry, rz] (beams and shells)

and 7 dofs [ux, uy, uz, p, Ux, Uy, Uz] (upU element) types.

512.5.2 Boundary Conditions

Example fix translation x and y for node #3 fix node # 3 dofs ux uy;

Example fix all appropriate DOFs for node #7. fix node # 7 dofs all;

512.5.3 Static Acceleration Field

Example adding acceleration induced loading field for (some) elements

1 add acceleration field # 1
2 ax = 0*m/s^2
3 ay = 0*m/s^2
4 az = -9.81*m/s^2;

512.5.4 Dynamic Acceleration Field, Earthquake

One Example of add DRM load from wave fields:

1 add load # 1 type DRM from wave field
2 # 1 in direction ux
3 # 2 in direction uy
4 soil_surface at z = 60.0*m
5 hdf5_file = "input.hdf5" ;

512.5.5 Super Element

Super element is defined by providing mass and stiffness matrix, together with nodes and DOF numbering.

It is assumed that the Super Element is a linear elastic element that is made up of a number of other

finite elements. Super Element represents a part of model (structure, solid) that is linear elastic, and

that has stiffness and mass matrix already defined using other finite element programs. Other finite

element programs export stiffness and mass matrix. In addition, information about Super Element node

numbers and degrees of freedom (DOFs) needs to be supplied as well.
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512.6 Structural Modeling

Presented in this section are models that are used for modeling and simulation of structural behavior.

Following the usually made assumption that structural components will remain linear elastic, only linear

elastic material is used for structural modeling. It is noted, that fully nonlinear (inelastic, elastic-damage-

plastic) models are also available for modeling of structural components (Jeremić et al., 1989-2025,

1988-2025). However, for the purpose of presenting core functionality features, those models are not

covered here.

It is noted that a complete structural model can be replaced with one linear elastic super element,

as described in section 512.5.5 on page 2769.

512.6.1 Truss

Truss element represents a 3D two node linear geometry truss member. Real-ESSI command for truss

element is given in detail in section ??.

1 add element # 1 type truss
2 with nodes (1,2)
3 use material # 1
4 cross_section = 1*m^2
5 mass_density = 2000*kg/m^3;

512.6.2 Beam

Beam finite element represents a 3D linear geometry, two node Bernoulli beam member, with 6 DOFs

per node. Real-ESSI command for beam element is given in detail in section ??.

1 add element # 1 type beam_elastic
2 with nodes (1, 2)
3 cross_section = 1*m^2
4 elastic_modulus = 2e8*Pa
5 shear_modulus = 1e8*Pa
6 torsion_Jx = 0.33*m^4
7 bending_Iy = 1.0/12*m^4
8 bending_Iz = 1.0/12*m^4
9 mass_density = 2000*kg/m^3

10 xz_plane_vector = (1, 0, 1 )
11 joint_1_offset = (0*m, 0*m, 0*m )
12 joint_2_offset = (0*m, 0*m, 0*m );
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512.6.3 Shell

Shell finite element represents a 3D linear elastic geometry, 4 node ANDES shell member with 6DOFs

per node, including drilling DOFs (in plane twist). Real-ESSI command for shell element is given in

detail in section ??.

1 add element # 1 type 4NodeShell_ANDES
2 with nodes (1,2,3,4)
3 use material # 1
4 thickness = 1*m ;

512.7 Solid Modeling

Presented in this section are models that are used for modeling and simulation of soils, using solid and

contact/interface elements for interface of foundations and soil. Models for soil can be linear elastic, while

they can also be nonlinear/inelastic, mimicking simple G/Gmax behavior. Models for contact/interface

can represent bonded contact, where no slip or gapping is allowed, and also a frictional slip and gapping

contact/interface.

It is noted, that a number of more or less sophisticated material models for soil and for contact/in-

terface are also available (Jeremić et al., 1989-2025, 1988-2025). However, for the purpose of presenting

core functionality features, those models are not covered here.

512.7.1 Solid Brick

Solid brick finite element with 8 nodes, linear interpolation of displacements between nodes, and three

DOFs per node is available. This element is very good for modeling soil volume close to and far away

from the structural. Real-ESSI command for 8 node solid brick is given in detail in section ??.

1 add element # 1 type 8NodeBrick
2 using 2 Gauss points each direction
3 with nodes (1, 2, 3, 4, 5, 6, 7, 8)
4 use material # 1;

512.7.2 Contact, Interfaces, Joints

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes (1, 2)
3 initial_axial_stiffness = 5*MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 800*MPa
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6 initial_shear_stiffness = 800*kPa
7 axial_viscous_damping = 50*Pa*s
8 shear_viscous_damping = 50*Pa*s
9 residual_friction_coefficient = 0.68

10 shear_zone_thickness = 5e-3*m
11 contact_plane_vector = (0, 0, 1 );

512.8 Core Material Modeling Parameters for Soil, Rock, Concrete, and Steel

512.8.1 Linear and Nonlinear Elastic Soil, Rock, Concrete, and Steel Modeling

512.8.2 Inelastic/Nonlinear Soil Modeling

Simple modeling of soil can be done using the so called stiffness degradation curves, or G/Gmax curves,

and damping curves, as developed by Seed and Idriss (1970a).

As an example, an elastic plastic material model based on von Mises yield surface with isotropic

hardening or softening and Armstrong Frederick nonlinear kinematic hardening can be used to develop

such curves. Model parameters are given below:

1 add material # 1 type vonMisesArmstrongFrederick
2 mass_density = 2500*kg/m^3
3 elastic_modulus = 30 * MPa
4 poisson_ratio = 0.3
5 von_mises_radius = 300 * Pa
6 armstrong_frederick_ha = 150 * MPa
7 armstrong_frederick_cr = 25000
8 isotropic_hardening_rate = 0*Pa;

while the corresponding G/Gmax and damping curves are given in Figure 512.2.

It is noted that von Mises Armstrong-Frederick Nonlinear Kinematic Hardening material model is

a full 3D elastic plastilc material model, that is capable of modeling G/Gmax and damping behavior,

defined in 1D shear testing, fairly well in full 3D.

The command is

1 add material # <.> type vonMisesArmstrongFrederick
2 mass_density = <M/L^3>
3 elastic_modulus = <F/L^2>
4 poisson_ratio = <.>
5 von_mises_radius = <.>
6 armstrong_frederick_ha = <F/L^2>
7 armstrong_frederick_cr = <.>
8 isotropic_hardening_rate = <F/L^2> ;
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Figure 512.2: Stiffness degradation (G/Gmax) and damping curves developed using von Mises Armstrong-

Frederick Nonlinear Kinematic Hardening material model.

512.8.3 Inelastic/Nonlinear Rock Modeling

512.8.4 Inelastic/Nonlinear Concrete Modeling

512.8.5 Inelastic/Nonlinear Steel Modeling

512.9 Core Material Modeling Parameters for Contacts, Interfaces and Joints
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The command for stress based dry soft nonlinear hardening is:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes (1, 2)
3 initial_axial_stiffness = 5*MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 800*MPa
6 initial_shear_stiffness = 800*kPa
7 axial_viscous_damping = 50*Pa*s
8 shear_viscous_damping = 50*Pa*s
9 residual_friction_coefficient = 0.68

10 shear_zone_thickness = 5e-3*m
11 contact_plane_vector = (0, 0, 1 );

512.9.1 Mass Concrete Against Silt, Sand, Gravel and Clay

A set of initial recommended material parameters for frictional contact/interface are given in Tables 512.1

for contact between mass concrete and sand/gravel. Frictional properties given below are recommended

by NAVFAC (1986).

Table 512.1: Friction coefficients for contact/interface of dissimilar materials, mass concrete against soil.

Mass concrete on soil Friction coefficient (tan ϕ) Friction angle (ϕ)

Clean sound rock 0.70 35o

Clean gravel, gravel sand mixture, coarse sand 0.55 – 0.60 29o – 31o

Clean fine to medium sand, silty medium to coarse sand 0.45 – 0.55 24o – 29o

Fine sandy silt, nonplastic silt 0.35 – 0.45 19o – 24o

Very stiff clay 0.40 – 0.50 22o – 27o

Example command for a contact/interface element for mass concrete against clean sand, silty sand-

gravel mix, single size rock fill (friction coefficient 0.30) is given below:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes ( 1, 2)
3 initial_axial_stiffness = 10 * MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 50 * MPa
6 initial_shear_stiffness = 40 * kPa
7 axial_viscous_damping = 100 * Pa * s
8 shear_viscous_damping = 100 * Pa * s
9 residual_friction_coefficient = 0.30

10 shear_zone_thickness = 5e-3*m
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11 contact_plane_vector = (0, 0, 1);

Another example, for contact/interface element for mass concrete against clean gravel, gravel sand

mixture, coarse sand (friction coefficient 0.55-0.60) is given below:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes ( 1, 2)
3 initial_axial_stiffness = 20 * MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 100 * MPa
6 initial_shear_stiffness = 80 * kPa
7 axial_viscous_damping = 200 * Pa * s
8 shear_viscous_damping = 200 * Pa * s
9 residual_friction_coefficient = 0.55

10 shear_zone_tkness = 1e-2*m
11 contact_plane_vector = (0, 0, 1);

512.9.2 Steel Sheet Against Sand, Gravel and Rockfill

Recommended material parameters for frictional contact/interface of steel sheets against sand and gravel

are given in Tables 512.2. Frictional properties given below are recommended by NAVFAC (1986).

Table 512.2: Friction coefficients for contact/interface of dissimilar materials, steel sheet piles against

soil.

Steel sheets against soil Friction coefficient (tan ϕ) Friction angle (ϕ)

Clean gravel, sand-gravel mix, well graded rock fill 0.40 22o

Clean sand, silty sand-gravel mix, single size rock fill 0.30 17o

Fine sandy silt, nonplastic silt 0.20 11o

Example commands for contact/interface element for steel sheets against clean sand, silty sand-gravel

mix, single size rock fill (friction coefficient 0.30) is given below:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes ( 1, 2)
3 initial_axial_stiffness = 1000 * MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 5 * GPa
6 initial_shear_stiffness = 4 * MPa
7 axial_viscous_damping = 100 * Pa * s
8 shear_viscous_damping = 100 * Pa * s
9 residual_friction_coefficient = 0.30
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10 shear_zone_thickness = 5e-3*m
11 contact_plane_vector = (0, 0, 1);

and for steel sheets against clean gravel, sand-gravel mix, well graded rock fill, with friction coefficient

0.40, command is:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes ( 1, 2)
3 initial_axial_stiffness = 2000 * MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 10 * GPa
6 initial_shear_stiffness = 8 * MPa
7 axial_viscous_damping = 100 * Pa * s
8 shear_viscous_damping = 100 * Pa * s
9 residual_friction_coefficient = 0.40

10 shear_zone_thickness = 5e-3*m
11 contact_plane_vector = (0, 0, 1);

512.9.3 Formed Concrete Against Sand, Gravel and Rockfill

Recommended material parameters for frictional contact/interface of formed concrete against sand and

gravel are given in Tables 512.3. Frictional properties given below are recommended by NAVFAC (1986).

Table 512.3: Friction coefficients for contact/interface of dissimilar materials, formed concrete against

soil.

Formed concrete against soil Friction coefficient (tan ϕ) Friction angle (ϕ)

Clean gravel, sand-gravel mix, well graded rock fill 0.40 – 0.50 22o – 27o

Clean sand, silty sand-gravel mix, single size rock fill 0.30 – 0.40 17o – 22o

Silty sand, gravel or sand mixed with silt and clay 0.30 17o

Fine sandy silt, nonplastic silt 0.25 14o

Example command for contact/interface element for formed concrete against clean gravel, sand-

gravel mix, well graded rock fill (friction coefficient 0.40-0.50) is given below:

1 add element # 1 type StressBasedSoftContact_NonLinHardShear
2 with nodes ( 1, 2)
3 initial_axial_stiffness = 30 * MPa
4 stiffening_rate = 100
5 max_axial_stiffness = 150 * MPa
6 initial_shear_stiffness = 120 * kPa
7 axial_viscous_damping = 100 * Pa * s
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 512.10. EARTHQUAKE MOTION MODELING page: 2777 of 3287

8 shear_viscous_damping = 100 * Pa * s
9 residual_friction_coefficient = 0.40

10 shear_zone_thickness = 5e-3*m
11 contact_plane_vector = (0, 0, 1);

512.9.4 Rock or Concrete on Rock or Concrete

More recently, Lei and Barton (2022) presented a very nice set of experiments with data for proper

choice of interface parameters for rock on rock interface, that can also be used for concrete as well.

512.10 Earthquake Motion Modeling

512.10.1 One Component (1C) Seismic Motions Defined at Surface or at Depth

DRM...

One can add DRM loading directly, where input.hdf5 specifies the DRM motions to all DRM

nodes.

1 add load # 1 type DRM
2 hdf5_file = "input.hdf5"
3 scale_factor = 1.0 ;

Since the direct specification of DRM motions to all DRM nodes is complicated, alternatively, user

is able to specify DRM motion using a surface motion. Internally, wave deconvolution is conducted to

specify the DRM motions to all DRM nodes.

1 add wave field # 1 with
2 acceleration_filename = "acceleration.txt"
3 unit_of_acceleration = 1 * m/s^2
4 displacement_filename = "displacement.txt"
5 unit_of_displacement = 1 * m
6 add_compensation_time = 0.0 * s
7 motion_depth = 0 * m
8 monitoring_location = within_soil_layer
9 soil_profile_filename = "soil_profile.txt"

10 unit_of_Vs = 1 * m/s
11 unit_of_rho = 1 * kg/m^3
12 unit_of_damping = absolute
13 unit_of_thickness = 1*m
14 ;

1 add load # 1 type DRM from wave field # 1 in direction ux
2 soil_surface at z = 0.0*m
3 hdf5_file = "input.hdf5" ;
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where input.hdf5 specifies the HDF5 file which contain the information about the DRM elements

and DRM nodes.

512.10.2 3 × 1C Seismic Motions Defined at Surface or at Depth

One Example of add DRM load from wave fields:

1 add load # 1 type DRM from wave field
2 # 1 in direction ux
3 # 2 in direction uy
4 # 3 in direction uz
5 soil_surface at z = 0.0*m
6 hdf5_file = "input.hdf5" ;

512.10.3 Seismic Motions Imposed at Model Base

1 add load # 1 type imposed motion to node # 1 dof ux
2 time_step = 0.01*s
3 displacement_scale_unit = 1*m
4 displacement_file = "displacement.txt"
5 velocity_scale_unit = 1*m/s
6 velocity_file = "velocity.txt"
7 acceleration_scale_unit = 1*m/s^2
8 acceleration_file = "acceleration.txt";

512.10.4 Eigen Analysis

For structural model alone.

1 simulate using eigen algorithm
2 number_of_modes = 3;

512.11 Core Modeling and Simulation Commands: Simulation Parameters

Developed model, using core functionality, as described above, numerically simulated using core func-

tionality simulation controls.

Finite element system of equations can be solved in sequential processing mode, for smaller models,

on sequential, single CPU computers (laptops, desktops, single CPU Amazon Web Services computers,

etc.):

1 define solver sequential umfpack;
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For larger models, parallel processing mode, on parallel computers ( (multi CPU laptops, multi CPU

desktops, clusters of PCs, Amazon Web Services parallel computers, Supercomputers, etc.):

Command Example for a direct solver:

1 define solver parallel petsc "-pc_type lu -pc_factor_mat_solver_package mumps" ;

For selfweight phase of loading, static solution algorithm is used:

1 simulate 100 steps using static algorithm;

For static loading, for example self weight as described above, load application and the siulation

process is controlled trough load control:

1 define load factor increment 0.01;

For dynamic loads, simulation process is controlled using Newmark time integration method:

1 define dynamic integrator Newmark with gamma = 0.6000 beta = 0.3025;

The dynamic simulation process is performed in a number of steps:

1 simulate 2000 steps using transient algorithm time_step = 0.01*s;

For proper integration of constitutive equations on the integration point (Gauss point) level, within

each finite element, constitutive algorithm needs to be defined:

1 define NDMaterial constitutive integration algorithm Forward_Euler;

For the finite element level, analysis of nonlinear systems require definition of nonlinear iteration

algorithm:

1 define algorithm With_no_convergence_check;
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

https://link.springer.com/article/10.1007/s11071-014-1256-x#citeas
https://www.sciencedirect.com/science/article/pii/S0020746213000322
https://www.sciencedirect.com/science/article/pii/S0020746213000322


Je
re
m
ić
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

https://www.nature.com/articles/srep19238
https://www.sciencedirect.com/science/article/pii/S0022460X20303692
https://www.sciencedirect.com/science/article/pii/S0022460X20303692


Je
re
m
ić
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Y. Dubois-Pèlerein and T. Zimmermann. Object–oriented finite element programing: Iii. an efficient

implementation in c++. Computer Methods in Applied Mechanics and Engineering, 108:165–183,

1993.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes BIBLIOGRAPHY page: 2799 of 3287
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes BIBLIOGRAPHY page: 2810 of 3287

http://www.sdsc.edu/user services/datastar/. Ibm datastar user guide. San Diego Supercomputer Cen-

ter at UCSD, 2020.

L. Hu and J. Pu. Testing and modeling of soil-structure interface. Journal of Geotechnical and

Geoenvironmental Engineering, 130(8):851–860, 2004.

C. Hua. An inverse transformation for quadrilateral isoparametric elements: analysis and application.

Finite elements in analysis and design, 7(2):159–166, 1990.

Y.-N. Huang, A. S. Whittaker, and N. Luco. Seismic performance assessment of base-isolated safety-

related nuclear structures. Earthquake Engineering and Structures Dynamics, Early View: 20 SEP

2010 — DOI: 10.1002/eqe.1038:1–22, 2010.

T. Hughes. The Finite Element Method ; Linear Static and Dynamic Finite Element Analysis. Prentice

Hall Inc., 1987.

T. Hughes and K. Pister. Consistent linearization in mechanics of solids and structures. Computers and

Structures, 8:391–397, 1978.

T. J. R. Hughes and W. K. Liu. Implicit-explicit finite elements in transient analaysis: implementation

and numerical examples. Journal of Applied Mechanics, pages 375–378, 1978a.

T. J. R. Hughes and W. K. Liu. Implicit-explicit finite elements in transient analaysis: stability theory.

Journal of Applied Mechanics, pages 371–374, 1978b.

F.-N. Hwang and X.-C. Cai. A class of parallel two-level nonlinear Schwarz preconditioned inexact

Newton algorithms . Computer Methods in Applied Mechanics and Engineering, 196(8):1603–1611,

January 2007.

I. M. Idriss and J. I. Sun. SHAKE91: A Computer Program for Equivalent Linear Seismic Response

Analyses of Horizontally Layered Soil Deposits. Center for Geotechnical Modeling Department of Civil

& Environmental Engineering University of California Davis, California, 1992.

M. Iguchi and J. E. Luco. Dynamic response of flexible rectangular foundations on an elastic half-space.

Earthquake Engineering and Structural Dynamics, 9(3):239–249, 1 1981.

M. Iida. Three-dimensional finite-element method for soil-building interaction based on an input wave

field. International Journal of Geomechanics, 13(4):430–440, 2012.

A. Il’Iushin. On the postulate of plasticity. Journal of Applied Mathematics and Mechanics, 25(3):

746–752, 1961.
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B. Jeremić. Implicit integration rules in plasticity: Theory and implementation. Master’s thesis, University

of Colorado at Boulder, May 1994.

B. Jeremić. Finite Deformation Hyperelasto–Plasticity of Geomaterials. PhD thesis, University of Col-

orado at Boulder, July 1997.
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B. Jeremić and K. Sett. The influence of uncertain material parameters on stress-strain response. In P. V.

Lade and T. Nakai, editors, Geomechanics II: Testing, Modeling, and Simulation (Proceedings of the

Second-U.S. Workshop on Testing, Modeling, and Simulation in Geomechanics, held in Kyoto, Japan

from September 8-10, 2005), Geotechnical Special Publication No. 156, pages 132–147. American

Society for Civil Engineers, August 2006.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

http://real-essi.us/
http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/


Je
re
m
ić
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E. Kröner. Algemeine kontinuumstheorie der versetzungen und eigenspanungen. Archive for Rational

Mechanics and Analysis, 4(4):273–334, 1960.

P. Krysl and Z. Bittnar. Parallel explicit finite element solid dynamics with domain decomposition and

message passing: dual partitioning scalability. Computers and Structures, 79:345–360, 2001.

R. Kubo. Stochastic Liouville equations. J. Math. Phys., 4(2):174–183, 1963.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481 – 492. University

of California Press, July 31 – August 12 1950 1951.

M. Kumar, A. S. Whittaker, and M. C. Constantinou. An advanced numerical model of elastomeric

seismic isolation bearings. Earthquake Engineering & Structural Dynamics, 43(13):1955–1974, 2014.

ISSN 1096-9845. doi: 10.1002/eqe.2431. URL http://dx.doi.org/10.1002/eqe.2431.

H. Kupfer, H. K. Hilsdorf, and H. Rusch. Behavior of concrete under biaxial stresses. In Journal

Proceedings, volume 66/8, pages 656–666, 1969.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes BIBLIOGRAPHY page: 2820 of 3287

D. B. Larson and G. D. Anderson. Plane shock wave studies of westerly granite and nugget sandstone.

International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(6):

357–363, 1980.

P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displacements. Computer

methods in applied mechanics and engineering, 190(24):3039–3067, 2001.

R. Lebrun and A. Dutfoy. An innovating analysis of the Nataf transformation from the copula viewpoint.

Probabilistic Engineering Mechanics, 24(3):312–320, 2009.

E. H. Lee. Elastic–plastic deformation at finite strains. Journal of Applied Mechanics, 36(1):1–6, 1969.

E. H. Lee and D. T. Liu. Finite–strain elastic–plastic theory with application to plane–wave analysis.

Journal of Applied Physics, 38(1):19–27, January 1967.

J. Lee and G. L. Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of

engineering mechanics, 124(8):892–900, 1998.

L. C. Lee. Wave propagation in a random medium: A complete set of the moment equations with

different wavenumbers. Journal of Mathematical physics, 15(9):1431–1435, September 1974.

S. L. Lee and G. P. Karunaratne. Laterally loaded piles in layered soil. Soils and Foundations, 27(4):

1–10, Dec. 1987.
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M. Loève. Fonctions aleatories du second ordre. Supplement to P. Levy, Processus Stochastic et

Mouvement Brownien, Gauthier-Villars, Paris, 1948.

I. N. Lomov, M. Hiltl, O. Y. Vorobiev, and L. A. Glenn. Dynamic behavior of berea sandstone for

dry and water-saturated conditions. International Journal of Impact Engineering, 26(1-10):465–474,

December 2001.

B. Loret and E. Rizzi. Anisotropic stiffness degradation triggers onset of strain localization. International

Journal of Plasticity, 13(5):447–459, 1997.

M. Lou, H. Wang, X. Chen, and Y. Zhai. Structure–soil–structure interaction: literature review. Soil

Dynamics and Earthquake Engineering, 31(12):1724–1731, 2011.

A. Love. Some problems of geodynamics. Some Problems of Geodynamics Publisher: Cambridge

University Press, Cambridge, 1911, 1, 1911.

X. Lu, J. P. Bardet, and M. Huang. Numerical solutions of strain localization with nonlocal softening

plasticity. Computer Methods Applied Mechanics and Engineering, 198:3702–3711, 2009.

J. Lubliner. On the thermodynamic foundations of non-linear solid mechanics. International Journal of

Non-Linear Mechanics, 7:237–254, 1972.

J. Lubliner. Plasticity Theory. Macmillan Publishing Company, New York., 1990.

J. E. Luco. Impedance functions for a rigid foundation on a layered medium. Nuclear Engineering and

Design, 31:204–217, 1974.

J. E. Luco, H. L. Wong, and F. C. P. D. Barros. Three-dimensional response of a cylindrical canyon in

a layered half-space. Earthquake Engineering & Structural Dynamics, 19(6):799–817, 1990.

P. Lumb. The variability of natural soils. Canadian Geotechnical Journal, 3:74–97, 1966.
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E. Papamichos, I. Vardoulakis, and H.-B. Mühlhaus. Buckling of layered elastic media: A Cosserat-

continuum approach and its validation. International Journal for Numerical and Analytical Methods

in Geomechanics, 14:473–498, 1990.

W. G. Pariseau. Design Analysis in Rock Mechanics. Taylor & Francis, 1st edition, October 2006. ISBN

978-0415413817.

J. Park. A brief review of tensor operations for students of continuum mechanics. Journal of Applied

Engineering Mathematics, 5:1–4, December 2018.

J.-B. Park, Y. Choi, S.-J. Lee, N.-C. Park, K.-S. Park, Y.-P. Park, and C.-I. Park. Modal character-

istic analysis of the apr1400 nuclear reactor internals for seismic analysis. Nuclear Engineering and

Technology, 46(5):689–698, 2014.

S. Park and P. Byrne. Practical constitutive model for soil liquefaction. In Proc., 9th Int. Symp. on

Numerical Models in Geomechanics (NUMOG IX), pages 181–186. CRC Press, Boca Raton, FL, 2004.

M. Pastor, O. C. Zienkiewicz, and A. H. C. Chan. Generalized plasticity and the modeling of soil

behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 14:151–190,

1990.

L. F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Computer

Methods in Applied Mechanics and Engineering, 196(8):1380–1388, January 2007.

C. E. Pearson, editor. Handbook of Applied Mathematics. Van Nostrand Reinhold Company, 1974.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3367
https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3367


Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes BIBLIOGRAPHY page: 2846 of 3287

O. O. Storaasli and P. Bergan. Nonlinear substructuring method for concurrent processing computers.

AIAA Journal, 25(6):871–876, 1987.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes BIBLIOGRAPHY page: 2849 of 3287

analysis: Shaking in the direction perpendicular to ground flow. Soil Dynamics and Earthquake

Engineering, 28(6):436–452, June 2008.

N. G. Van Kampen. Stochastic differential equations. Phys. Rep., 24:171–228, 1976.

R. Van Loon, P. Anderson, F. Van de Vosse, and S. Sherwin. Comparison of various fluid–structure

interaction methods for deformable bodies. Computers & structures, 85(11):833–843, 2007.

E. Vanmarcke. Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, Massachusetts,

1983.

E. H. Vanmarcke. Probabilistic modeling of soil profiles. Journal of Geotechnical Engineering Division,

103(11):1227–1246, 1977.

I. Vardoulakis. Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum

theory. Ingenieur Archiv, 59:106–113, 1989.

I. Vardoulakis and J. Sulem. Bifurcation Analysis in Geomechanics. Blackie Academic & Professional,

1995. ISBN 0-7514-0214-1.

R. S. Varga, E. B. Saff, and V. Mehrmann. Incomplete factorizations of matrices and connections with

H-matrices. SIAM Journal on Numerical Analysis, 17:787–793, 1980.

Various Authors. The C++ report: Columns on C++, 1991-.

A. V. Vasilev, E. E. Lovetskii, and V. I. Selyakov. Injection effect in a contained explosion in a liquid-

saturated medium. translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 4:107–112,

July – August 1980. URL http://www.springerlink.com/index/N24126788T374535.pdf.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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701.1 Chapter Summary and Highlights

701.2 Stress and Strain

This section reviews small deformation stress and strain measures used in this report.

701.2.1 Stress

In this work, the tensile stress is assumed positive, and in general we follow classical strength of materials

(mechanics of materials) conventions for stress and strain. The stress tensor σij is defined as

σij = lim
Ai→0

Fj
Ai

(701.1)

where Fj is a traction (force) in the j direction and Ai is an infinitesimal surface area with normal in i

direction. Cauchy stress tensor has a total of nine components, six of which are independent (symmetry

σij = σji):

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =


σx σxy σzx

σxy σy σyz

σzx σyz σz

 (701.2)

In small deformation theory, this stress is symmetric, that is, σxy = σyx, σyz = σzy, and σzx = σxz. There

are only six independent components and sometimes the stress can be expressed in the vector form

σ =
{
σxx, σyy, σzz,σxy, σyz, σzx

}
(701.3)

The principle stresses σ1, σ2, and σ3 (σ1 ≥ σ2 ≥ σ3) are the eigenvalues of the symmetric tensor

σij in Equation 701.2 and can be obtained by solving the equation∣∣∣∣∣∣∣∣
σxx – σ σxy σxz

σyx σyy – σ σyz

σzx σzy σzz – σ

∣∣∣∣∣∣∣∣ = 0 (701.4)

or in alternative form

σ3 – I1σ2 – I2σ – I3 = 0 (701.5)

The three first-type stress invariants are then

I1 = σii

= σxx + σyy + σzz

= σ1 + σ2 + σ3 (701.6)
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I2 =
1
2
σijσji

= –(σxxσyy + σyyσzz + σzzσxx) + (σ2
xy + σ2

yz + σ2
zx)

= –(σ1σ2 + σ2σ3 + σ3σ1) (701.7)

I3 =
1
3
σijσjkσki = det (σij)

= σxxσyyσzz + 2σxyσyzσzx – (σxxσ
2
yz + σyzσ

2
zx + σzzσ

2
xy)

= σ1σ2σ3 (701.8)

The stress σij can be decomposed into the hydrostatic stress σmδij and deviatoric stress sij as

σij = σmδij + sij , with the definitions

σm =
1
3

I1, sij = σij –
1
3
σkkδij (701.9)

where δij is the Kronecker operator such that δij = 1 for i = j and δij = 0 for i ̸= j.

Since both hydrostatic and deviatoric stresses are stress tensors, they have their own coordinate-

independent stress invariants respectively. The three invariants of the hydrostatic stress are

I1 = 3σm = I1, I2 = –3σ2
m = –

1
3

I2
1 , I3 = σ3

m =
1
27

I3
1 (701.10)

Since I1, I2 and I3 are all simple functions of I1, the hydrostatic stress state can therefore be represented

by only one variable I1.

The three eigenvalues of the deviatoric stresses sij are called principal deviatoric stresses, with the

order s1 ≥ s2 ≥ s3. The three invariants of the deviatoric stress are

J1 = sii = 0 (701.11)

J2 =
1
2

sijsji

=
1
3

I2
1 + I2

=
1
6

[(σ1 – σ2)2 + (σ2 – σ3)2 + (σ3 – σ1)2]

= –(sxxsyy + syyszz + szzsxx) + (s2
xy + s2

yz + s2
zx)

=
1
2

(s2
1 + s2

2 + s2
3) = –(s1s2 + s2s3 + s3s1) (701.12)

J3 =
1
3

sijsjkski = det(sij)

= I3 +
1
3

I1I2 +
2
27

I3
1 = I3 –

1
3

I1J2 –
1
27

I3
1

=
1
27

(2σ1 – σ2 – σ3)(2σ2 – σ3 – σ1)(2σ3 – σ1 – σ2)

= sxxsyyszz + 2sxysyzszx – (sxxs2
yz + syys2

zx + szzs2
xy)

= s1s2s3 (701.13)
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The deviatoric stress state can therefore be represented by only two variables J2 and J3.

Combining hydrostatic and deviatoric stress, we can conclude that the stress state can be be repre-

sented by three variables I1, J2 and J3. Using the three invariants (I1, J2, J3) or its equivalents instead

of the nine components of σij is widely used in geomechanics.

The stress state may also be described in three dimensional space (p, q, θσ), defined as

p = –
1
3

I1 (701.14)

q =
√

3J2 (701.15)

θσ =
1
3

arccos

3
√

3
2

J3√
J3
2

 (701.16)

where θσij is the stress Lode’s angle (0 ≤ θσij ≤ π/3). A stress state with θσ = 0 corresponds to the

meridian of conventional triaxial compression (CTC), while θσ = π/3 to the meridian of conventional

triaxial extension (CTE). The relationship between (σ1,σ2,σ3) and (p, q, θσ) is


σ1

σ2

σ3

 = –p +
2
3

q


cos θσ

cos (θσ –
2
3
π)

cos (θσ +
2
3
π)

 (701.17)

The line of the principal stress space diagonal is called hydrostatic axis. Any plane perpendicular to

the hydrostatic axis is an deviatoric plane, or π plane. The Haigh-Westergaard three dimensional stress

coordinate system (ξ, ρ, θσ) Chen and Han (1988a), is defined as

ξ =
I1√

3
= –
√

3p (701.18)

ρ =
√

2J2 =
√

2
3

q (701.19)

The Haigh-Westergaard invariants have physical meanings. ξ is the distance of the deviatoric plane to

the origin of the Haigh-Westergaard coordinates, and ρ is the distance of a stress point to the hydrostatic

line and represents the magnitude of the deviatoric stress. The projections of the axes σ1, σ2 and σ3 on

the deviatoric plane are assumed σ′1, σ′2 and σ′3 respectively. (ρ, θσ) is the polar coordinate system in the

deviatoric plane with the σ′1 the polar axis and θσ the polar angle. The relationship between (σ1,σ2,σ3)

and (ξ, ρ, θσ) is
σ1

σ2

σ3

 =
1√
3
ξ +
√

2
3
ρ


cos θσ

cos (θσ –
2
3
π)

cos (θσ +
2
3
π)

 (701.20)
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701.2.2 Strain

Point P(xi) and nearby point Q(xi + dxi) displace due to applied loading to new positions P(xi + Ui) and

Q(ui + (∂ui/∂xj)dxj). We can define a displacement gradient tensor ui,j as

ui,j =
∂ui
∂xj

(701.21)

Matrix form of the displacement gradient can decomposed into the symmetric and antisymmetric parts
u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 =


u1,1

1
2 (u1,2 + u2,1) 1

2 (u1,3 + u3,1)
1
2 (u2,1 + u1,2) u2,2

1
2 (u2,3 + u3,2)

1
2 (u3,1 + u1,3) 1

2 (u3,2 + u2,3) u3,3



+


0 1

2 (u1,2 – u2,1) 1
2 (u1,3 – u3,1)

1
2 (u2,1 – u1,2) 0 1

2 (u2,3 – u3,2)
1
2 (u3,1 – u1,3) 1

2 (u3,2 – u2,3) 0

 (701.22)

or

ui,j = ϵij + wij (701.23)

where

ϵij =
1
2
(
ui,j + uj,i

)
(701.24)

wij =
1
2
(
ui,j – uj,i

)
(701.25)

The symmetric part of the deformation gradient tensor, ϵij , is the small deformation strain tensor 1,

while the antisymmetric part of the deformation gradient tensor, wij , is the rotation motion tensor. The

matrix form of the strain ϵij is

ϵ =


ϵxx ϵxy ϵxz

ϵyx ϵyy ϵyz

ϵzx ϵzy ϵzz

 =


ϵx

1
2γxy

1
2γxz

1
2γyx ϵy

1
2γyz

1
2γzx

1
2γzy ϵz

 (701.26)

The engineering strain is usually expressed in the vector form

ϵ =
{
ϵx, ϵy, ϵz, γxy, γyz, γzx

}T
(701.27)

Note that the engineering shear strain γij is the double of the corresponding strain component ϵij .

1Here the second and higher order derivative terms are neglected due to the small deformation assumption.
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Similar to the stress tensor, the strain tensor also has three principle strains ϵi(ϵ1 ≥ ϵ2 ≥ ϵ3), and

three strain invariants I ′1, I ′2, and I ′3, defined as

I ′1 = ϵii

= ϵv

= ϵxx + ϵyy + ϵzz

= ϵ1 + ϵ2 + ϵ3 (701.28)

I ′2 =
1
2
ϵijϵji

= –(ϵxxϵyy + ϵyyϵzz + ϵzzϵxx) + (ϵ2xy + ϵ2yz + ϵ2zx)

= –(ϵ1ϵ2 + ϵ2ϵ3 + ϵ3ϵ1) (701.29)

I ′3 =
1
3
ϵijϵjkϵki = det (ϵij)

= ϵxxϵyyϵzz + 2ϵxyϵyzϵzx – (ϵxxϵ
2
yz + ϵyzϵ

2
zx + ϵzzϵ2xy)

= ϵ1ϵ2ϵ3 (701.30)

The first strain invariant is also called the volumetric strain ϵv.

The strain ϵij can be decomposed into the hydrostatic strain ϵmδij and deviatoric strain eij through

ϵij = ϵmδij + eij where:

ϵm =
1
3

I ′1, eij = ϵij –
1
3
ϵkkδij (701.31)

Since both hydrostatic and deviatoric strains are strain tensors, they have their own strain invariants

respectively. The three invariants of the hydrostatic strain are

I ′1 = 3ϵm = I ′1, I ′2 = –3ϵ2m = –
1
3

(I ′1)2, I ′3 = ϵ3m =
1
27

(I ′1)3 (701.32)

The hydrostatic strain state can therefore be represented by only one variable I ′1.

The three eigenvalues of the deviatoric strains eij are called principal deviatoric strains, with the order

e1 ≥ e2 ≥ e3. The three invariants of the deviatoric strain are

J ′1 = eii = 0 (701.33)

J ′2 =
1
2

eijeji

=
1
3

(I ′1)2 + I ′2

=
1
6

[(ϵ1 – ϵ2)2 + (ϵ2 – ϵ3)2 + (ϵ3 – ϵ1)2]

= –(exxeyy + eyyezz + ezzexx) + (e2
xy + e2

yz + e2
zx)

=
1
2

(e2
1 + e2

2 + e2
3) = –(e1e2 + e2e3 + e3e1) (701.34)
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J ′3 =
1
3

eijejkeki = det(eij)

= I ′3 +
1
3

I ′1I ′2 +
2
27

(I ′1)3 = I3 –
1
3

I ′1J ′2 –
1
27

(I ′1)3

=
1
27

(2ϵ1 – ϵ2 – ϵ3)(2ϵ2 – ϵ3 – ϵ1)(2ϵ3 – ϵ1 – ϵ2)

= exxeyyezz + 2exyeyzezx – (exxe2
yz + eyys2

zx + ezze2
xy)

= e1e2e3 (701.35)

The deviatoric strain state can therefore be represented by only two variables J ′2 and J ′3.

Combining the hydrostatic and deviatoric strain, we can conclude that the strain state can be be

represented by three variables I ′1, J ′2 and J ′3.

Strain state may also be represented with another three invariant (ϵp, ϵq, θϵ), defined as

ϵp = –I ′1 = –ϵv (701.36)

ϵq = 2

√
J ′2
3

(701.37)

θϵ =
1
3

arccos

3
√

3
2

J ′3√
(J ′2)3

 (701.38)

where θϵ is the strain Lode’s angle and 0 ≤ θϵ ≤ π/3. The relationship between (ϵ1, ϵ2, ϵ3) and (ϵp, ϵq, θϵ)

is 
ϵ1

ϵ2

ϵ3

 = –
1
3
ϵp +

√
3
2
ϵq


cos θϵ

cos (θϵ –
2
3
π)

cos (θϵ +
2
3
π)

 (701.39)

701.3 Derivatives of Stress Invariants

In this part of the Appendix, we shall derive some useful formulae, that are rarely found2 in texts treating

elasto–plastic problems in mechanics of solid continua.

First derivative of I1 with respect to stress tensor σij :

∂I1
∂σij

=
∂σkk
∂σij

= δij

First derivative of J2D with respect to stress tensor σij :

2if found at all.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 701.3. DERIVATIVES OF STRESS INVARIANTS page: 2866 of 3287

∂J2D
∂σij

=
∂(1

2smnsnm)
∂σij

=
1
2
∂smn
∂σij

snm +
1
2
∂snm
∂σij

smn =

=
∂snm
∂σij

smn =
∂(σnm – 1

3σkkδnm)
∂σij

smn = (δniδjm –
1
3
δnmδkiδjk)smn =

= (δniδjm –
1
3
δnmδij)smn = δniδjmsnm –

1
3
δnmδijsmn = sij

†

First derivative of J3D with respect to stress tensor σpq:

∂J3D
∂σpq

=
∂(1

3sijsjkski)
∂σpq

=
1
3
∂sij
∂σpq

sjkski +
1
3
∂sjk
∂σpq

sijski +
1
3
∂ski
∂σpq

sijsjk =

=
∂sij
∂σpq

sjkski =
∂(σij – 1

3σkkδij)
∂σpq

sjkski = (δipδqj –
1
3
δijδkpδqk)sjkski =

= δipδqjsjkski –
1
3
δijδkpδqksjkski = sqkskp –

2
3
δpqJ2D = tpq‡

First derivative of spq with respect to stress tensor σmn, or second derivative of J2D with respect to stress

tensors σpq and σmn:

∂spq
∂σmn

=
∂
(
σpq – 1

3δpqσkk

)
∂σmn

=
∂
((
δmpδnq – 1

3δpqδmn
)
σmn

)
∂σmn

=

=
(
δmpδnq –

1
3
δpqδmn

)
= ppqmn

Second derivative of J3D with respect to stress tensors σpq and σmn:

∂tpq
∂σmn

=
∂
(

sqkskp – 2
3δpqJ2D

)
∂σmn

=
∂
(
sqkskp

)
∂σmn

–
∂
(

2
3δpqJ2D

)
∂σmn

=

=
∂
(
sqkskp

)
∂σmn

–
2
3
δpq

∂J2D
∂σmn

=
∂sqk
∂σmn

skp + sqk
∂skp
∂σmn

–
2
3
δpqsmn =

=
(
δqmδnk –

1
3
δqkδnm

)
skp + sqk

(
δkmδnp –

1
3
δkpδnm

)
–

2
3
δpqsmn =

=
(
δqmsnp –

1
3

sqpδnm

)
+
(

sqmδnp –
1
3

sqpδnm

)
–

2
3
δpqsmn =

= snpδqm + sqmδnp –
2
3

sqpδnm –
2
3
δpqsmn = wpqmn

Multiplying stiffness tensor Eijkl with compliance tensor Dklpq:

†because δnmδijsmn ≡ 0
‡since 1

3δijδkpδqksjkski = 1
3δkpδqksikski = 1

3δqpsikski = 2
3δpqJ2D see also Chen and Han (1988a) page 222
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EijklDklpq =
E

2 (1 + ν)
1 + ν
2E

(
2ν

1 – 2ν
δijδkl + δikδjl + δilδjk

)(
–2ν
1 + ν

δklδpq + δkpδlq + δkqδlp

)
=

1
4
(
δikδjlδkpδlq + δilδjkδkpδlq + δikδjlδkqδlp + δilδjkδkqδlp

)
+

+
ν

2 (1 – 2ν)
(
δijδklδkpδlq + δijδklδkqδlp

)
–

ν

2 (1 + ν)
(
δikδjlδklδpq + δilδjkδklδpq

)
–

–
ν2

(1 – 2ν) (1 + ν)
δijδklδklδpq =

1
2
(
δipδjq + δiqδjp

)
+

+
ν

2 (1 – 2ν)
(
δijδkqδkp + δijδkpδkq

)
–

ν

2 (1 + ν)
(
δilδjlδpq + δilδjlδpq

)
–

–
3ν2

(1 – 2ν) (1 + ν)
δijδpq =

1
2
(
δipδjq + δiqδjp

)
+

+
ν

2 (1 – 2ν)
(
δijδpq + δijδpq

)
–

ν

2 (1 + ν)
(
δijδpq + δijδpq

)
–

–
3ν2

(1 – 2ν) (1 + ν)
δijδpq =

1
2
(
δipδjq + δiqδjp

)
+

+
ν

(1 – 2ν)
δijδpq –

ν

2 (1 + ν)
δijδpq –

–
3ν2

(1 – 2ν) (1 + ν)
δijδpq =

1
2
(
δipδjq + δiqδjp

)
+

+
ν (1 + ν) – ν (1 – 2ν) – 3ν2

(1 – 2ν) (1 + ν)
δijδpq =

1
2
(
δipδjq + δiqδjp

)
= Isym

ijpq
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702.1 Chapter Summary and Highlights

Material in this chapter is based on the following publications Jeremić (1993); Jeremić and Sture (1998).

This section describes a programming tool, nDarray, which is designed using an Object Oriented

Paradigm (OOP) and implemented in the C++ programming language. Finite element equations, rep-

resented in terms of multidimensional tensors are easily manipulated and programmed. The usual matrix

form of the finite element equations are traditionally coded in FORTRAN, which makes it difficult to

build and maintain complex program systems. Multidimensional data systems and their implementation

details are seldom transparent and thus not easily dealt with and usually avoided. On the other hand,

OOP together with efficient programming in C++ allows building new concrete data types, namely

tensors of any order, thus hiding the lower level implementation details. These concrete data types prove

to be quite useful in implementing complicated tensorial formulae associated with the numerical solution

of various elastic and elastoplastic problems in solid mechanics. They permit implementing complex

nonlinear continuum mechanics theories in an orderly manner. Ease of use and the immediacy of the

nDarray programming tool in constitutive driver programming and in building finite element classes will

be shown.

702.2 Introduction

In implementing complex programming systems for finite element computations, the analyst is usually

faced with the challenge of transforming complicated tensorial formulae to a matrix form. Considerable

amount of time in solving problems by the finite element method is often devoted to the actual implemen-

tation process. If one decides to use FORTRAN, a number of finite element and numerical libraries are

readily available. Although quick results can be produced in solving simpler problems, when implement-

ing complex small deformation elastoplastic or large deformation elastic and elastoplastic algorithms,

C++ provides clear benefits.

Some of the improvements C++ provides over C and FORTRAN are classes for encapsulating

abstractions, the possibility of building user–defined concrete data types and operator overloading for

expressing complex formulae in a natural way. In the following we shall show that the nDarray tool will

allow analysts to be a step closer to the problem space and a step further away from the underlying

machine.

As most analysts know, the intention (Stroustrup, 1994) behind C++ was not to replace C. Instead,

C was extended with far more freedom given to the program designer and implementor. In C and

FORTRAN, large applications become collections of programs and functions, order and the structure are

left to the programmer. The C++ programming language embodies the OOP, which can be used to
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 702.3. nDarray PROGRAMMING TOOL page: 2870 of 3287

simplify and organize complex programs. One can build a hierarchy of derived classes and nest classes

inside other classes. A concern in C and FORTRAN programming languages is handling data type

conflicts and data which are being operated on or passed. The C++ programming language extends the

definition of type to include abstract data types. With abstract data types, data can be encapsulated

with the methods that operate on it. The C++ programming language offers structure and mechanisms

to handle larger, more complex programming systems. Object Oriented technology, with function and

operator overloading, inheritance and other features, provides means of attacking a problem in a natural

way. Once basic classes are implemented, one can concentrate on the physics of a problem. By building

further abstract data types one can describe the physics of a problem rather that spend time on the

lower level programming issues. One should keep in mind the adage, credited to the original designer

and implementor of C++ programming language, Bjarne Stroustrup: “C makes it easy to shoot yourself

in the foot, C++ makes it harder, but when you do, it blows away your whole leg”.

Rather than attempting here to give a summary of Object Oriented technology we will suggest useful

references for readers who wish to explore the subject in greater depth (Booch, 1994). The current

language definition is given in the Working Paper for Draft Proposed International Standard for Informa-

tion Systems–Programming Language C++ (ANS, 1995). Detailed description of language evolution

and main design decisions are given by Stroustrup (1994). Useful sets of techniques, explanations and

directions for designing and implementing robust C++ code are given in books (Coplien, 1992) (Eckel,

1989) and journal articles (Koenig, 1989 - 1993) (Various Authors, 1991-).

Increased interest in using Object Oriented techniques for finite element programming has resulted

in a number (Donescu and Laursen, 1996) (Eyheramendy and Zimmermann, 1996) (Forde et al., 1990)

(Miller, 1991) (Pidaparti and Hudli, 1993) (Scholz, 1992) (Zeglinski et al., 1994) of experimental de-

velopments and implementations. Programming techniques used in some of the papers are influenced

by the FORTRAN programming style. Examples provided in some of the above mentioned papers are

readable by C++ experts only. It appears that none of the authors have used Object Oriented techniques

for complex elastoplasticity computations.

702.3 nDarray Programming Tool

702.3.1 Introduction to the nDarray Programming Tool

The nDarray programming tool is a set of classes written in the C++ programming language. The

main purpose of the package is to facilitate algebraic manipulations with matrices, vectors and tensors

that are often found in computer codes for solving engineering problems. The package is designed

and implemented using the Object Oriented philosophy. Great care has been given to the problem of
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cross–platform and cross–compiler portability. Currently, the nDarray set of classes has been tested and

running under the following C++ compilers:

• Sun CC on SunOS and Solaris platforms,

• IBM xlC on AIX RISC/6000 platforms,

• Borland C++ and Microsoft C++ on DOS/Windows platforms,

• CodeWarrior C++ on Power Macintosh platform,

• GNU g++ on SunOS, SOLARIS, LINUX, AIX, HPUX and AMIGA platforms.

702.3.2 Abstraction Levels

nDarray tool has the following simple class hierarchy:

nDarray_rep, nDarray

matrix

vector

tensor

Indentation of class names implies the inheritance level. For example, class vector is derived from class

matrix, which, in turn is derived from classes nDarray and nDarray rep. The idea is to subdivide classes

into levels of abstraction, and hide the implementation from end users. This means that the end user

can use the nDarray tool on various levels.

• At the highest level of abstraction, one can use tensor, matrix and vector objects without knowing

anything about the implementation and the inner workings. They are all designed and imple-

mented as concrete data types. In spite of the very powerful code that can be built using Object

Oriented technology, it would be unwise to expect proficiency in Object Oriented techniques and

the C++ programming language from end users. It was our aim to provide power programming

with multidimensional data types to users with basic knowledge of C.

• At a lower abstraction level, users can address the task of the actual implementation of operators

and functions for vector, matrix and tensor classes. A number of improvements can be made,

especially in optimizing some of the operators.

• The lowest level of abstraction is associated with nDarray and nDarray rep classes. Arithmetic

operators1 are implemented at this level.

1Like addition and subtraction.
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Next, classes are described from the base and down the inheritance tree. Later we focus our attention

on nDarray usage examples. Our goal is to provide a useful programming tool, rather than to teach

OOP or to show C++ implementation. For readers interested in actual implementation details, source

code, examples and makefiles are available at http://sokocalo.engr.ucdavis.edu/~jeremic.

702.3.2.1 nDarray rep class

The nDarray rep class is a data holder and represents an n dimensional array object. A simple memory

manager, implemented with the reference counting idiom (Coplien, 1992) is used. The memory manager

uses rather inefficient built–in C memory allocation functions. Performance can be improved if one

designs and implements specially tailored allocation functions for fast heap manipulations. Another

possible improvement is in using memory resources other than heap memory. Sophisticated memory

management introduced by the reference counting is best explained by Coplien (1992). The nDarray rep

class is not intended for stand–alone use. It is closely associated with the nDarray class.

The data structure of nDarray rep introduces a minimal amount of information about a multidimen-

sional array object. The actual data are stored as a one–dimensional array of double numbers. Rank,

total number of elements, and array of dimensions are all that is needed to represent an multidimen-

sional object. The data structure is allocated dynamically from the heap, and memory is reclaimed by

the system after the object has gone out of scope.

702.3.2.2 nDarray class

The nDarray class together with the nDarray rep class represents the abstract base for derived mul-

tidimensional data types: matrices, vectors and tensors. Objects derived from the nDarray class are

generated dynamically by constructor functions at the first appearance of an object and are destroyed

at the end of the block in which the object is referenced. The reference counting idiom provides for the

object’s life continuation after the end of the block where it was defined. To extend an object’s life, a

standard C++ compiler would by default call constructor functions, thus making the entire process of

returning large objects from functions quite inefficient. By using reference counting idiom, destructor

and constructor functions manipulate reference counter which results in a simple copying of a pointer to

nDarray rep object. By using this technique, copying of large objects is made very efficient.

Objects can be created from an array of values, or from a single scalar value, as shown in Table

702.1. Some of the frequently used multidimensional arrays are predefined and can be constructed

by sending the proper flag to the constructor function. For example by sending the “I” flag one

creates Kronecker delta δij and by sending “e” flag, one creates a rank 3 Levi-Civita permutation

tensor eijk. Functions and operators common to multidimensional data types are defined in the nDarray

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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constructor function description

nDarray(int rank_of_nD=1, double initval=0.0) default

nDarray(int rank_of_nD, const int *pdim, double *val) from array

nDarray(int rank_of_nD, const int *pdim, double initval) from scalar value

nDarray(const char *flag, int rank_of_nD, const int *pdim) unit nDarrays

nDarray(const nDarray & x) copy-initializer

nDarray(int rank_of_nD, int rows, int cols, double *val) special for matrix

nDarray(int rank_of_nD, int rows, int cols, double initval) special for matrix

Table 702.1: nDarray constructor functions.

class, as described in Table 702.2. These common operators and functions are inherited by derived

classes. Occasionally, some of the functions will be redefined, overloaded in derived classes. In tensor

multiplications we need additional information about indices. For example Cil = (Aijk + Bijk) ∗Djkl
coded−→

C=(A("ijk")+B("ijk"))*D("jkl"), the temporary in brackets will receive ijk indices, to be used for

multiplication with Djkl. It is interesting to note (Koenig, 1989 - 1993) that operator += is defined as a

member and + is defined as an inline function in terms of += operator.

702.3.2.3 Matrix and Vector Classes

The matrix class is derived from the nDarray class through the public construct. It inherits common

operators and functions from the base nDarray class, but it also adds its own set of functions and

operators. Table (702.3) summarizes some of the more important additional functions and operators for

the matrix class. The vector class defines vector objects and is derived and inherits most operators and

data members from the matrix class. Some functions, like copy constructor, are overloaded in order to

handle specifics of a vector object.

702.3.2.4 Tensor Class

The main goal of the tensor class development was to provide the implementing analyst with the ability

to write the following equation directly into a computer program:

dσmn = –oldrijT–1
ijmn – dλ Eijkl

n+1mklT–1
ijmn

as:

dsigma = -(r("ij")*Tinv("ijmn")) - dlambda*((E("ijkl")*dQods("kl"))*Tinv("ijmn"));
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operator or function left value right value description

= nDarray nDarray nDarray assignment

+ nDarray nDarray nDarray addition

+= nDarray nDarray nDarray addition

- nDarray unary minus

- nDarray nDarray nDarray subtraction

-= nDarray nDarray nDarray subtraction

* double nDarray scalar multiplication (from left)

* nDarray double scalar multiplication (from right)

== nDarray nDarray nDarray comparison

val(...) nDarray reference to members of nDarray

cval(...) nDarray members of nDarray

trace() nDarray trace of square nDarray

eigenvalues() nDarray eigenvalues of rank 2 square nDarray

eigenvectors() nDarray eigenvectors of rank 2 square nDarray

General_norm() nDarray general p-th norm of nDarray

nDsqrt() nDarray square root of nDarray

print(...) nDarray generic print function

Table 702.2: Public functions and operators for nDarray class.

operator or function left value right value description

= matrix matrix matrix assignment

* matrix matrix matrix multiplication

transpose() matrix matrix transposition

determinant() matrix determinant of a matrix

inverse() matrix matrix inversion

Table 702.3: Matrix class functions and operators (added on nDarray class definitions).
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Instead of developing theory in terms of indicial notation, then converting everything to matrix notation

and then implementing it, we were able to copy formulae directly from their indicial form to the C++

source code.

In addition to the definitions in the base nDarray class, the tensor class adds some specific functions

and operators. Table 702.4 summarizes some of the main new functions and operators. The most

operator or function left value right value description

+ tensor tensor tensor addition

- tensor tensor tensor subtraction

* tensor tensor tensor multiplication

transpose0110() tensor Aijkl → Aikjl

transpose0101() tensor Aijkl → Ailkj

transpose0111() tensor Aijkl → Ailjk

transpose1100() tensor Aijkl → Ajikl

transpose0011() tensor Aijkl → Aijlk

transpose1001() tensor Aijkl → Aljki

transpose11() tensor aij → aji

symmetrize11() tensor symmetrize second order tensor

determinant() tensor determinant of 2nd order tensor

inverse() tensor tensor inversion (2nd, 4th order)

Table 702.4: Additional and overloaded functions and operators for tensor class.

significant addition is the tensor multiplication operator. With the help of a simple indicial parser, the

multiplication operator contracts or expands indices and yields a resulting tensor of the correct rank.

The resulting tensor receives proper indices, and can be used in further calculations on the same code

statement.

702.4 Finite Element Classes

702.4.1 Stress, Strain and Elastoplastic State Classes

The next step in our development was to use the nDarray tool classes for constitutive level computations.

The simple extension was design and implementation of infinitesimal stress and strain tensor classes,

namely stresstensor and straintensor. Both classes are quite similar, they inherit all the functions from
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the tensor class and we add some tools that are specific to them. Both stress and strain tensors are

implemented as full second order 3 × 3 tensors. Symmetry of stress and strain tensor was not used to

save storage space. Table 702.5 summarizes some of the main functions added on for the stresstensor

class.

operator or function description

Iinvariant1() first stress invariant I1

Iinvariant2() second stress invariant I2

Iinvariant3() third stress invariant I3

Jinvariant2() second deviatoric stress invariant J2

Jinvariant3() third deviatoric stress invariant J3

deviator() stress deviator

principal() principal stresses on diagonal

sigma_octahedral() octahedral mean stress

tau_octahedral() octahedral shear stress

xi() Haigh–Westergard coordinate ξ

rho() Haigh–Westergard coordinate ρ

p_hydrostatic() hydrostatic stress invariant

q_deviatoric() deviatoric stress invariant

theta() θ stress invariant (Lode’s angle)

Table 702.5: Additional methods for stress tensor class.

Further on, we defined an elastoplastic state, which according to incremental theory of elastoplasticity

with internal variables, is completely defined with the stress tensor and a set of internal variables. This

definition led us to define an elastoplastic state termed class ep state. Objects of type ep state contain

a stress tensor and a set of scalar or tensorial internal variables2.

702.4.2 Material Model Classes

With all the previous developments, the design and implementation of various elastoplastic material

models was not a difficult task. A generic class Material Model defines techniques that form a framework

for small deformation elastoplastic computations. Table 702.6 summarizes some of the main methods

defined for the Material Model class in terms of yield (F) and potential (Q) functions.

2Internal variables can be characterized as tensors of even order, where, for example, zero tensor is a scalar internal

variable associated with isotropic hardening and second order tensors can be associated with kinematic hardening.
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operator or function description

F F Yield function value

dFods ∂F/∂σij

dQods ∂Q/∂σij

d2Qods2 ∂2Q/∂σij∂σkl

dpoverds ∂p/∂σij

dqoverds ∂q/∂σij

dthetaoverds ∂θ/∂σij

d2poverds2 ∂2p/∂σij∂σkl

d2qoverds2 ∂2q/∂σij∂σkl

d2thetaoverds2 ∂2θ/∂σij∂σkl

ForwardPredictorEPState Explicit predictor elastoplastic state

BackwardEulerEPState Implicit return elastoplastic state

ForwardEulerEPState Explicit return elastoplastic state

BackwardEulerCTensor Algorithmic tangent stiffness tensor

ForwardEulerCTensor Continuum tangent stiffness tensor

Table 702.6: Some of the methods in material model class.

It is important to note that all the material model dependent functions are defined as virtual functions.

Integration algorithms are designed and implemented using template algorithms, and each implemented

material model appends its own yield and potential functions and appropriate derivatives. Implementation

of additional material models requires coding of yield and potential functions and respective derivative

functions.

702.4.3 Stiffness Matrix Class

Starting from the incremental equilibrium of the stationary body, the principle of virtual displacements

and with the finite element approximation of the displacement field u ≈ ûa = HI ūIa, the weak form of

equilibrium can be expressed as (Zienkiewicz and Taylor, 1991a)⋃
m

∫
Vm

HI ,b Eabcd HJ,d dVm ūJc =
⋃
m

∫
Vm

fa HI dVm or (fIa (ūJc))int = λ (fIa)ext
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where Eabcd is the constitutive tangent stiffness tensor3. The element stiffness tensor is recognized as

ke
aIcJ =

∫
Vm

HI ,b
tanEabcd HJ,d dVm

This generic form for the finite element stiffness tensor is easily programmed with the help of the nDarray

tool. A simple implementation example is provided later. It should be noted that the element stiffness

tensor in this case is a four–dimensional tensor. It is the task of the assembly function to collect proper

terms for addition in a global stiffness matrix.

702.5 Examples

702.5.1 Tensor Examples

Some of the basic tensorial calculations with tensors are presented. Tensors have a default constructor

that creates a first order tensor with one element initialized to 0.0:

tensor t1;

Tensors can be constructed and initialized from a given set of numbers:

static double t2values[] = { 1,2,3,

4,5,6,

7,8,9 };

tensor t2( 2, DefDim2, t2values); // order 2; 3x3 tensor (like matrix)

Here, DefDim2, DefDim3 and DefDim4 are arrays of dimensions for the second, third and fourth order

tensor4. A fourth order tensor with 0.0 value assignment and dimension 3 in each order (3× 3× 3× 3)

is constructed in the following way:

tensor ZERO(4,DefDim4,0.0);

Tensors can be multiplied using indicial notation. The following example will do a tensorial multiplication

of previously defined tensors t2 and t4 so that tst1 = t2ij t4ijklt4klpqt2pq. Note that the memory is

dynamically allocated to accept the proper tensor dimensions that will result from the multiplication5

tensor tst1 = t2("ij")*t4("ijkl")*t4("klpq")*t2("pq");

Inversion of tensors is possible. It is defined for 2 and 4 order tensors only. The fourth order tensor

inversion is done by converting it to matrix, inverting that matrix and finally converting matrix back to

tensor.

tensor t4inv_2 = t4.inverse();

3Which may be continuum or algorithmic (Jeremić and Sture, 1997) tangent stiffness tensor
4In this case dimensions are 3 in every order.
5In this case it will be zero dimensional tensor with one element.
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There are two built–in tensor types, Levi-Civita permutation tensor eijk and Kronecker delta tensor δij

tensor e("e",3,DefDim3); // Levi-Civita permutation tensor

tensor I2("I", 2, DefDim2); // Kronecker delta tensor

Trace and determinant functions for tensors are used as follows

double deltatrace = I2.trace();

double deltadet = I2.determinant();

Tensors can be compared to within a square root of machine epsilon6 tolerance

tensor I2again = I2;

if ( I2again == I2 )

printf("I2again == I2 TRUE (OK)");

else

printf("I2again == I2 NOTTRUE");

702.5.2 Fourth Order Isotropic Tensors

Some of the fourth order tensors used in continuum mechanics are built quite readily. The most general

representation of the fourth order isotropic tensor includes the following fourth order unit isotropic

tensors7

tensor I_ijkl = I2("ij")*I2("kl");

The resulting tensor I_ijkl will have the correct indices, I ijklijkl = I2ijI2kl. Note that I_ijkl is just

a name for the tensor, and the _ijkl part reminds the implementor what that tensor is representing.

The real indices, ∗ijkl in this case, are stored in the tensor object, and can be used further or changed

appropriately. The next tensor that is needed is a fourth order unit tensor obtained by transposing the

previous one in the minor indices,

tensor I_ikjl = I_ijkl.transpose0110();

while the third tensor needed for representation of general isotropic tensor is constructed by using similar

transpose function

tensor I_iljk = I_ijkl.transpose0111();

The inversion function can be checked for fourth order tensors:

6Machine epsilon (macheps) is defined as the smallest distinguishable positive number (in a given precision, i.e. float (32

bits), double (64 bits) or long double (80 bits), such that 1.0 + macheps > 1.0 yields true on the given computer platform.

For example, double precision arithmetics (64 bits), on the Intel 80x86 platform yields macheps=1.08E-19 while on the

SUN SPARCstation and DEC platforms macheps=2.22E-16.
7Remember that I2 was constructed as the Kronecker delta tensor δij .
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tensor I_ikjl_inv_2 = I_ikjl.inverse();

if ( I_ikjl == I_ikjl_inv_2 )

printf(" I_ikjl == I_ikjl_inv_2 (OK) !");

else

printf(" I_ikjl != I_ikjl_inv_2 !");

Creating a symmetric and skew symmetric unit fourth order tensors gets to be quite simple by using

tensor addition and scalar multiplication

tensor I4s = (1./2.)*(I_ikjl+I_iljk);

tensor I4sk = (1./2.)*(I_ikjl-I_iljk);

Another interesting example is a numerical check of the e – δ identity (Lubliner, 1990) (eijmeklm =
δikδjl – δilδjk)

tensor id = e("ijm")*e("klm") - (I_ikjl - I_iljk);

if ( id == ZERO )

printf(" e-delta identity HOLDS !! ");

702.5.3 Elastic Isotropic Stiffness and Compliance Tensors

The linear isotropic elasticity tensor Eijkl can be built from Young’s modulus E and Poisson’s ratio ν

double Ey = 20000; // Young’s modulus of elasticity

double nu = 0.2; // Poisson’s Ratio

tensor E = ((2.*Ey*nu)/(2.*(1.+nu)*(1-2.*nu)))*I_ijkl + (Ey/(1.+nu))*I4s;

Similarly, the compliance tensor is

tensor D = (-nu/Ey)*I_ijkl + ((1.0+nu)/Ey)*I4s;

One can multiply the two and check if the result is equal to the symmetric fourth order unit tensor

tensor test = E("ijkl")*D("klpq");

if ( test == I4s )

printf(" test == I4s TRUE (OK up to sqrt(macheps)) ");

else

printf(" test == I4s NOTTRUE ");

The linear isotropic elasticity and compliance tensors can be obtained in a different way, by using Lamé

constants λ and µ

double lambda = nu * Ey / (1. + nu) / (1. - 2. * nu);

double mu = Ey / (2. * (1. + nu));

tensor E = lambda*I_ijkl + (2.*mu)*I4s; // stiffness tensor

tensor D = (-nu/Ey)*I_ijkl + (1./(2.*mu))*I4s; // compliance tensor
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702.5.4 Second Derivative of θ Stress Invariant

As an extended example of nDarray tool usage, the implementation for the second derivative of the stress

invariant θ (Lode angle) is presented. The derivative is used for implicit constitutive integration schemes

applied to three invariant material models. The original equation reads:

∂2θ
∂σpq∂σmn

=

–
(

9
2

cos 3θ
q4 sin (3θ)

+
27
4

cos 3θ
q4 sin3 3θ

)
spq smn +

81
4

1
q5 sin3 3θ

spq tmn +

+

(
81
4

1
q5 sin 3θ

+
81
4

cos2 3θ
q5 sin3 3θ

)
tpq smn –

243
4

cos 3θ
q6 sin3 3θ

tpq tmn +

+
3
2

cos (3θ)
q2 sin (3θ)

ppqmn –
9
2

1
q3 sin (3θ)

wpqmn

where:

q =
√

3
2

sijsij ; cos 3θ =
3
√

3
2

1
3sijsjkski√
(1
2sijsij)3

; sij = σij –
1
3
σkkδij

wpqmn = snpδqm + sqmδnp –
2
3

sqpδnm –
2
3
δpqsmn ; ppqmn = δmpδnq –

1
3
δpqδmn

and the implementation follows:

tensor Yield_Criteria::d2thetaoverds2(stresstensor & stress)

{

tensor ret( 4, DefDim4, 0.0);

tensor I2("I", 2, DefDim2);

tensor I_pqmn = I2("pq")*I2("mn");

tensor I_pmqn = I_pqmn.transpose0110();

double J2D = stress.Jinvariant2();

tensor s = stress.deviator();

tensor t = s("qk")*s("kp") - I2*(J2D*(2.0/3.0));

double theta = stress.theta();

double q_dev = stress.q_deviatoric();

//setting up some constants

double c3t = cos(3*theta);

double s3t = sin(3*theta);

double s3t3 = s3t*s3t*s3t;

double q3 = q_dev * q_dev * q_dev;

double q4 = q3 * q_dev;

double q5 = q4 * q_dev;
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double q6 = q5 * q_dev;

double tempss = -(9.0/2.0)*(c3t)/(q4*s3t)-(27.0/4.0)*(c3t/(s3t3*q4));

double tempst = +(81.0/4.0)*(1.0)/(s3t3*q5);

double tempts = +(81.0/4.0)*(1.0/(s3t*q5))+(81.0/4.0)*(c3t*c3t)/(s3t3*q5);

double temptt = -(243.0/4.0)*(c3t/(s3t3*q6));

double tempp = +(3.0/2.0)*(c3t/(s3t*q_dev*q_dev));

double tempw = -(9.0/2.0)*(1.0/(s3t*q3));

tensor s_pq_d_mn = s("pq")*I2("mn");

tensor s_pn_d_mq = s_pq_d_mn.transpose0101();

tensor d_pq_s_mn = I2("pq")*s("mn");

tensor d_pn_s_mq = d_pq_s_mn.transpose0101();

tensor p = I_pmqn - I_pqmn*(1.0/3.0);

tensor w = s_pn_d_mq+d_pn_s_mq - s_pq_d_mn*(2.0/3.0)-d_pq_s_mn*(2.0/3.0);

// finally

ret = (s("pq")*s("mn")*tempss + s("pq")*t("mn")*tempst +

t("pq")*s("mn")*tempts + t("pq")*t("mn")*temptt +

p*tempp + w*tempw );

return ret;

}

702.5.5 Application to Computations in Elastoplasticity

A useful application of the previously described classes is for elastoplastic computations. If the Newton

iterative scheme is used at the global equilibrium level, then in order to preserve a quadratic rate, a

consistent, algorithmic tangent stiffness (ATS) tensor should be used. For a general class of three–

invariant, non–associated, hardening or softening material models, ATS is defined (Jeremić and Sture,

1997) as:

consEep
pqmn = Rpqmn –

Rpqkl
n+1Hkl

n+1nijRijmn
n+1notRotpq n+1Hpq + n+1ξ∗ h∗

where

mkl =
∂Q
∂σkl

; nkl =
∂F
∂σkl

; ξ∗ =
∂F
∂q∗

; Tijmn = δimδnj + ∆λ Eijkl
∂mkl
∂σmn

Hkl = n+1mkl + ∆λ
∂mkl
∂q∗

h∗ ; Rmnkl =
(

n+1Tijmn
)–1

Eijkl

A straightforward implementation of the above tensorial formula follows:

double Ey = Criterion.E();

double nu = Criterion.nu();

tensor Eel = StiffnessTensorE(Ey,nu);
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tensor I2("I", 2, DefDim2);

tensor I_ijkl = I2("ij")*I2("kl");

tensor I_ikjl = I_ijkl.transpose0110();

tensor m = Criterion.dQods(final_stress);

tensor n = Criterion.dFods(final_stress);

double lambda = current_lambda_get();

tensor d2Qoverds2 = Criterion.d2Qods2(final_stress);

tensor T = I_ikjl + Eel("ijkl")*d2Qoverds2("klmn")*lambda;

tensor Tinv = T.inverse();

tensor R = Tinv("ijmn")*Eel("ijkl");

double h_ = h(final_stress);

double xi_ = xi(final_stress);

double hardMod_ = h_ * xi_;

tensor d2Qodqast2 = d2Qoverdqast2(final_stress);

tensor H = m + d2Qodqast2 * lambda * h_;

//

tensor upper = R("pqkl")*H("kl")*n("ij")*R("ijmn");

double lower = (n("ot")*R("otpq"))*H("pq")).trace();

lower = lower + hardMod_;

tensor Ep = upper*(1./lower);

tensor Eep = R - Ep; // elastoplastic ATS constitutive tensor

This ATS tensor can be used further in building finite element stiffness tensors, as will be shown in

our next example.

702.5.6 Stiffness Matrix Example

By applying a numerical integration technique to the stiffness matrix equation

ke
aIcJ =

∫
Vm

HI ,b Eabcd HJ,d dVm

individual contributions are summed into the element stiffness tensor. This process can be implemented

on a integration point level by using the nDarray tool as

K = K + H("Ib") * E("abcd") * H("Jd") * weight ;

It is interesting to note the lack of loops at this level of implementation. However, there exists a loop

over integration points which contributes stiffness to the element tensor.
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702.6 Performance Issues

In the course of developing the nDarray tool, execution speed was not a priority or issue that we tried to

perfect. The benefit of being able to implement and test various numerical algorithms in a straightforward

manner was the main concern. The efficiency of the nDarray tool when compared with FORTRAN or

C was never assessed. In all honesty, some of the formulae implemented in C++ with the help of the

nDarray tool would be difficult to implement in FORTRAN or C. The entire question of efficiency of the

nDarray as compared to FORTRAN or C codes might thus remain unanswered for the time being.

The efficiency of C++ for numerical computations has been under consideration (Robison, 1996) for

some time now. Poor efficiency and possible remedies for improving efficiency of C++ computations has

been reported in literature (Robison, 1996) (Veldhuizen, 1995b) (Veldhuizen, 1996). Novel techniques,

such as Template Expressions (Veldhuizen, 1995b) can be used to achieve and sometimes surpass the

performance of hand–tuned FORTRAN or C codes.

702.7 Summary and Future Directions

A novel programming tool, named nDarray, has been presented which facilitates implementation of

tensorial formulae. It was shown how OOP and efficient programming in C++ allows building of new

concrete data types, in this case tensors of any order. In a number of examples these new data types

were shown to be useful in implementing tensorial formulae associated with the numerical solution of

various elastic and elastoplastic problems with the finite element method. The nDarray tool is been used

in developing of the FEMtools tools library. The FEMtools tools library includes a set of finite elements,

various solvers, solution procedures for non–linear finite element system of equations and other useful

functions.
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ić
et

al
.,
R
ea
l-
E
S
S
I

Appendix 703

Closed Form Gradients to the Plastic Potential
Function

(1993-1994-)

2885



Je
re
m
ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 703.1. CHAPTER SUMMARY AND HIGHLIGHTS page: 2886 of 3287

703.1 Chapter Summary and Highlights

A complete derivation of gradients to the Potential and Yield function follows. The yield function F

and potential function Q are functions of the stress tensor σij and plastic internal variable tensor q∗.

Only derivatives with respect to the stress tensor σij are given here. It is assumed that any stress state

can be represented with three stress invariants p, q and θ given in the following form:

p = –
1
3

I1 q =
√

3J2D cos 3θ =
3
√

3
2

J3D√
(J2D)3

(703.1)

I1 = σkk J2D =
1
2

sijsij J3D =
1
3

sijsjkski sij = σij –
1
3
σkkδij (703.2)

and stresses are chosen as positive in tension. One can write the Potential Function in the following

form:

Q = Q(p, q, θ) (703.3)

and the derivation follows. Hopefully the pace of derivation is rather slow, thus little explanation will be

given until the end of the derivation. Chain rule of differentiation yields:

∂Q
∂σij

=
∂Q
∂p

∂p
∂σij

+
∂Q
∂q

∂q
∂σij

+
∂Q
∂θ

∂θ

∂σij
(703.4)

and the intermediate derivatives are:
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∂p
∂σij

=
∂(– 1

3σkk)
∂σij

= –
1
3
δij (703.5)

∂q
∂σij

=
∂
√

3J2D
∂σij

=
√

3
2

1√
J2D

∂J2D
∂σij

=
√

3
2

1√
J2D

sij =
3
2

1
q

sij (703.6)

∂θ

∂σij
= (703.7)

=
1
3

–1√
1 – (3

√
3

2
J3D
J3/2

2D
)2

3
√

3
2

(
∂J3D
∂σij

1√
(J2D)3

–
3
2

J3D
∂J2D
∂σij

1√
(J2D)5

)
=

=
1

3

√
1 –
(

3
√

3
2

J3D
J3/2

2D

)2
3
√

3
2

(
–tij

1√
(J2D)3

+
3
2

J3Dsij
1√

(J2D)5

)
=

=
1

sin 3θ

√
3

2

(
3
2

J3D
1√

(J2D)5
sij –

1√
(J2D)3

tij
)

=

=
√

3
2

1
sin (3θ)

(√
3 cos (3θ)

q2 sij –
3
√

3
q3 tij

)
=

=
3
2

cos (3θ)
q2 sin (3θ)

sij –
9
2

1
q3 sin (3θ)

tij (703.8)

Second derivatives of the potential function Q using again the chain rule of differentiation are as

follows:
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∂2Q
∂σpq∂σmn

=
∂
(
∂Q
∂σpq

)
∂σmn

=

∂
(
∂Q
∂p

∂p
∂σpq

+ ∂Q
∂q

∂q
∂σpq

+ ∂Q
∂θ

∂θ
∂σpq

)
∂σmn

=

∂
(
∂Q
∂p

)
∂σmn

∂p
∂σpq

+
∂Q
∂p

∂2p
∂σpq∂σmn

+

+
∂
(
∂Q
∂q

)
∂σmn

∂q
∂σpq

+
∂Q
∂q

∂2q
∂σpq∂σmn

+

+
∂
(
∂Q
∂θ

)
∂σmn

∂θ

∂σpq
+
∂Q
∂θ

∂2θ
∂σpq∂σmn

=(
∂2Q
∂p2

∂p
∂σmn

+
∂2Q
∂p∂q

∂q
∂σmn

+
∂2Q
∂p∂θ

∂θ

∂σmn

)
∂p
∂σpq

+
∂Q
∂p

∂2p
∂σpq∂σmn

+

+

(
∂2Q
∂q∂p

∂p
∂σmn

+
∂2Q
∂q2

∂q
∂σmn

+
∂2Q
∂q∂θ

∂θ

∂σmn

)
∂q
∂σpq

+
∂Q
∂q

∂2q
∂σpq∂σmn

+

+

(
∂2Q
∂θ∂p

∂p
∂σmn

+
∂2Q
∂θ∂q

∂q
∂σmn

+
∂2Q
∂θ2

∂θ

∂σmn

)
∂θ

∂σpq
+
∂Q
∂θ

∂2θ
∂σpq∂σmn

and the intermediate derivatives are as follows:

∂2p
∂σpq∂σmn

=
∂2
(

– 1
3σkk

)
∂σpq∂σmn

=
∂
(

– 1
3δkpδqk

)
∂σmn

= ∅

∂2q
∂σpq∂σmn

=
∂
(
∂q
∂σpq

)
∂σmn

=

∂
(√

3
2

1√
J2D

spq
)

∂σmn
=
√

3
2

1√
J2D

∂spq
∂σmn

+
√

3
2

∂ 1√
J2D

∂σmn
spq =

√
3

2
1√
J2D

(
δpmδnq –

1
3
δpqδkmδnk

)
+
√

3
2

(
–1
2

(
1(√

J2D
)3
)

smn

)
spq =

√
3

2
1√
J2D

(
δpmδnq –

1
3
δpqδnm

)
–
√

3
4

(
1√
J2D

)3
smnspq =

3
2

1
q

(
δpmδnq –

1
3
δpqδnm

)
–

9
4

1
q3 smnspq

Let us introduce a slightly different form for the equation ∂2θ
∂σpq∂σmn

in order to simplify writing:
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 703.1. CHAPTER SUMMARY AND HIGHLIGHTS page: 2889 of 3287

∂θ

∂σpq
=

3
2

cos (3θ)
q2 sin (3θ)

spq –
9
2

1
q3 sin (3θ)

tpq =

= AS spq + AT tpq

where:

AS =
3
2

cos (3θ)
q2 sin (3θ)

AT = –
9
2

1
q3 sin (3θ)

Now the problem will be separated in two smaller problems, namely:

∂2θ
∂σpq∂σmn

=
∂ ∂θ
∂σpq

∂σmn
=

∂
(

3
2

cos (3θ)
q2 sin (3θ)spq – 9

2
1

q3 sin (3θ) tpq
)

∂σmn
=

∂
(
AS spq + AT tpq

)
∂σmn

=

∂
(
AS spq

)
∂σmn

+
∂
(
AT tpq

)
∂σmn

Now let us take a look at
∂(AS spq)
∂σmn

. Since:
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∂
(
AS spq

)
∂σmn

=

∂AS
∂σmn

spq + AS
∂spq
∂σmn

=

(
∂AS
∂q

∂q
∂σmn

+
∂AS
∂θ

∂θ

∂σmn

)
spq + AS

∂spq
∂σmn

=

(
–3. cot(3 θ)

q3
3
2

1
q

smn +

+
–4.5 csc(3 θ)2

q2

(
3
2

cos (3θ)
q2 sin (3θ)

smn –
9
2

1
q3 sin (3θ)

tmn

))
spq +

3
2

cos (3θ)
q2 sin (3θ)

ppqmn =

–
9
2

cos 3θ
q4 sin (3θ)

spq smn –
27
4

cos 3θ
q4 sin3 3θ

spq smn +
81
4

1
q5 sin3 3θ

spq tmn +

3
2

cos (3θ)
q2 sin (3θ)

ppqmn =

–
(

9
2

cos 3θ
q4 sin (3θ)

+
27
4

cos 3θ
q4 sin3 3θ

)
spq smn +

81
4

1
q5 sin3 3θ

spq tmn +

3
2

cos (3θ)
q2 sin (3θ)

ppqmn

where:

ppqmn =
∂spq
∂σmn

=
(
δmpδnq –

1
3
δpqδmn

)
is the projection tensor and:

∂AS
∂q

=
–3. cot(3 θ)

q3

∂AS
∂θ

=
–4.5 csc(3 θ)2

q2

The second member is
∂(AT tpq)
∂σmn

:
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∂
(
AT tpq

)
∂σmn

=

∂AT
∂σmn

tpq + AT
∂tpq
∂σmn

=(
∂AT
∂q

∂q
∂σmn

+
∂AT
∂θ

∂θ

∂σmn

)
tpq + AT

∂tpq
∂σmn

=

(
13.5 csc(3 θ)

q4
3
2

1
q

smn+

+
13.5 cot(3 θ) csc(3 θ)

q3

(
3
2

cos (3θ)
q2 sin (3θ)

smn –
9
2

1
q3 sin (3θ)

tmn

))
tpq +

+ –
9
2

1
q3 sin (3θ)

wpqmn =

81
4

1
q5 sin 3θ

tpq smn +
81
4

cos2 3θ
q5 sin3 3θ

tpq smn –
243
4

cos 3θ
q6 sin3 3θ

tpq tmn –

–
9
2

1
q3 sin (3θ)

wpqmn =

(
81
4

1
q5 sin 3θ

+
81
4

cos2 3θ
q5 sin3 3θ

)
tpq smn –

243
4

cos 3θ
q6 sin3 3θ

tpq tmn –

–
9
2

1
q3 sin (3θ)

wpqmn

where:
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wpqmn =
∂tpq
∂σmn

= snpδqm + sqmδnp –
2
3

sqpδnm –
2
3
δpqsmn

∂AT
∂q

=
13.5 csc(3 θ)

q4

∂AT
∂θ

=
13.5 cot(3 θ) csc(3 θ)

q3

Then finally by collecting terms back again we have:

∂2θ
∂σpq∂σmn

=

∂
(
AS spq

)
∂σmn

+
∂
(
AT tpq

)
∂σmn

=

–
(

9
2

cos 3θ
q4 sin (3θ)

+
27
4

cos 3θ
q4 sin3 3θ

)
spq smn +

81
4

1
q5 sin3 3θ

spq tmn +

+

(
81
4

1
q5 sin 3θ

+
81
4

cos2 3θ
q5 sin3 3θ

)
tpq smn –

243
4

cos 3θ
q6 sin3 3θ

tpq tmn +

+
3
2

cos (3θ)
q2 sin (3θ)

ppqmn –
9
2

1
q3 sin (3θ)

wpqmn
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704.1 Chapter Summary and Highlights

704.2 Simo–Serrin’s Formula

In order to derive the analytical gradient of the fourth order tensor

MIJKL =
∂MIJ
∂CKL

(704.1)

we shall proceed by using the third equation in (106.86).

∂MIJ
∂CKL

=
1

D(A)

(
IIKJL –

∂I1
∂ CKL

δIJ + 2λ(A)
∂λ(A)
∂CKL

δIJ +

+
∂I3
∂CKL

λ–2
(A) (C–1)IJ – 2λ–3

(A)
∂λ(A)
∂CKL

I3 (C–1)IJ +
∂(C–1)IJ
∂CKL

λ–2
(A) I3

)
–

–
1

D2
(A)

∂D(A)
∂CKL

(
CIJ –

(
I1 – λ2

(A)

)
δIJ + I3 λ–2

(A) (C–1)IJ
)

(704.2)

where it was used that

∂CIJ
∂CKL

= IIKJL (704.3)

Derivatives ∂λ(A)/∂CKL can be found by starting from equation for CIJ (106.63) and differentiating it

dCIJ = 2λAdλ(A)
(

N (A)
I N (A)

J

)
A

+ λ2
A

(
dN (A)

I N (A)
J

)
A

+ λ2
A

(
N (A)

I dN (A)
J

)
A

(704.4)

By premultiplying previous equation with N (A)
J and post-multiplying with N (A)

I , and by noting that

N (A)
I dN (A)

I ≡ 0 ; ∥N (A)
I ∥ ≡ 1 (704.5)

we get

N (A)
J dCIJ N (A)

I = 2λAdλ(A) (704.6)

or

dCIJN (A)
I N (A)

J = dCIJλ(A) M(A)
IJ = 2λAdλ(A) ⇒ ∂λA

∂CKL
=

1
2
λ(A) (M(A)

KL )A (704.7)

It can be proved1 that

∂I1
∂ CKL

= δIJ ;
∂I2
∂ CKL

= I1 δKL – CKL ;
∂I3
∂ CKL

= I3 (C–1)KL (704.8)

and since I3 = J2

∂J
∂ CKL

=
1
2

J (C–1)KL (704.9)

1See Marsden and Hughes (1983)
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With this in mind, equation (704.2) can be rewritten as:

∂MIJ
∂CKL

=
1

D(A)

(
IIKJL – δKL δIJ + 2λ2

(A)
1
2

M(A)
KL δIJ +

+ I3 λ–2
(A) (C–1)IJ (C–1)KL – λ–2

(A) I3 (C–1)IJ M(A)
KL +

+
1
2

(
(C–1)IK (C–1)JL + (C–1)IL(C–1)JK

)
λ–2

(A) I3

)
–

–
1

D(A)

∂D(A)
∂CKL

MIJ (704.10)

where the definition of MIJ from equation (106.86) was used and also:

∂(C–1)IJ
∂CKL

= –
1
2

(
(C–1)IK (C–1)JL + (C–1)IL(C–1)JK

)
= I(C–1)

IJKL (704.11)

Relation (704.11) can be obtained if one starts from the identity:

CIJ (C–1)JK = δIK (704.12)

which after differentiation reads:

dCIJ (C–1)JK + CIJ d(C–1)JK = 0⇒

⇒ d(C–1)JK = –(C–1)JM dCMN (C–1)NK =

= –
1
2

(
(C–1)JM (C–1)KN + (C–1)JN (C–1)KM

)
dCMN ⇒

⇒ ∂(C–1)JK
∂CMN

= –
1
2

(
(C–1)JM (C–1)KN + (C–1)JN (C–1)KM

)
(704.13)

The derivative of D(A), that was defined in equation (106.77)as

D(A) = 2λ4
(A) – I1λ2

(A) + I3λ–2
(A) (704.14)
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is given by:

∂D(A)
∂CKL

= 8λ3
(A)
∂λ(A)
∂CKL

–
∂I1
∂CKL

λ2
(A) – 2λ(A)I1

∂λ(A)
∂CKL

+
∂I3
∂CKL

λ–2
(A) – 2λ–3

(A)I3
∂λ(A)
∂CKL

= 4λ4
(A) M(A)

KL – δKL λ
2
(A) – λ2

(A)I1 M(A)
KL + I3(C–1)KL λ

–2
(A) – λ–2

(A)I3 M(A)
KL

=
(

4λ4
(A) – λ2

(A)I1 – λ–2
(A)I3

)
M(A)

KL – δKL λ
2
(A) + I3(C–1)KL λ

–2
(A)

= D′
(A) M(A)

KL – δKL λ
2
(A) + I3(C–1)KL λ

–2
(A)

(704.15)

where D′
(A) = 4λ4

(A) – λ2
(A)I1 – λ–2

(A)I3. With the previous derivations, equation (704.10) can be written in expanded

form as:

∂MIJ
∂CKL

=
1

D(A)

(
IIKJL – δKL δIJ + 2λ2

(A)
1
2

M(A)
KL δIJ +

+ I3 λ–2
(A) (C–1)IJ (C–1)KL – λ–2

(A) I3 (C–1)IJ M(A)
KL +

+
1
2

(
(C–1)IK (C–1)JL + (C–1)IL(C–1)JK

)
λ–2

(A) I3 –

–
(

D′
(A) M(A)

KL – δKL λ
2
(A) + I3(C–1)KL λ

–2
(A)

)
MIJ
)

(704.16)

If one collects similar terms, equation (704.16), also known as Simo–Serrin’s formula can be written in the

final form as:

∂MIJ
∂CKL

= MIJKL =

1
D(A)

(
IIKJL – δKL δIJ + λ2

(A)

(
δIJ M(A)

KL + M(A)
IJ δKL

)
+

+ I3 λ–2
(A)

(
(C–1)IJ (C–1)KL +

1
2

(
(C–1)IK (C–1)JL + (C–1)IL(C–1)JK

))
–

– λ–2
(A) I3

(
(C–1)IJ M(A)

KL + M(A)
IJ (C–1)KL

)
– D′

(A) M(A)
IJ M(A)

KL

)
(704.17)

704.3 Derivation of ∂2volW /(∂CIJ ∂CKL)

The volumetric part ∂2volW /(∂CIJ ∂CKL) can be derived by starting from the equation (106.96):
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∂2volW
∂CIJ ∂CKL

=

∂
(

1
2

∂volW
∂J J (C–1)IJ

)
∂CKL

=

1
2

∂
(
∂volW
∂J

)
∂CKL

J (C–1)IJ +
1
2
∂volW
∂J

∂ (J)
∂CKL

(C–1)IJ +
1
2
∂volW
∂J

J
∂
(
(C–1)IJ

)
∂CKL

=

1
2
∂2 (volW

)
∂J ∂J

∂J
∂CKL

J (C–1)IJ +
1
2
∂ volW
∂J

1
2

J (C–1)KL (C–1)IJ +
1
2
∂volW
∂J

J I(C–1)
IJKL

=

1
4

J2 ∂
2 volW
∂J ∂J

(C–1)KL(C–1)IJ +
1
4

J
∂volW
∂J

(C–1)KL (C–1)IJ +
1
2

J
∂volW
∂J

I(C–1)
IJKL

=

1
4

(
J2 ∂

2 volW
∂J ∂J

+ J
∂volW
∂J

)
(C–1)KL (C–1)IJ +

1
2

J
∂volW
∂J

I(C–1)
IJKL

(704.18)

where equations (704.11) and (704.9) were used.

704.4 Derivation of ∂2isoW /(∂CIJ ∂CKL)

The isochoric part ∂2isoW /(∂CIJ ∂CKL) can be derived by starting from equation (106.97)
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∂2isoW (λ(A))
∂CIJ∂CKL

=

1
2

∂
(

wA (M(A)
IJ )A

)
∂CKL

=

1
2
∂wA
∂CKL

(M(A)
IJ )A +

1
2

wA
∂(M(A)

IJ )A
∂CKL

=

1
2
∂wA
∂λB

∂λB
∂CKL

(M(A)
IJ )A +

1
2

wA (M(A)
IJKL)A =

1
2
∂wA
∂λB

1
2
λ(B) (M(B)

KL )B(M(A)
IJ )A +

1
2

wA (M(A)
IJKL)A =

1
4

YAB (M(B)
KL )B (M(A)

IJ )A +
1
2

wA (M(A)
IJKL)A

(704.19)

where equation (704.7) was used and tensor YAB is defined as:

YAB =
∂wA
∂λB

λ(B) (704.20)

704.5 Derivation of wA

wA =
∂isoW
∂λ(A)

λA =
∂isoW
∂λ̃B

∂λ̃B
∂λ(A)

λA (704.21)

where λ̃B is the isochoric part of the stretch defined as

λ̃B = J– 1
3 λB (704.22)

From the definition of λ̃B in equation (704.22) it follows

∂λ̃B
∂λ(A)

=
∂J– 1

3

∂λ(A)
λB + J– 1

3
∂λB
∂λ(A)

= –
1
3

J– 1
3 λ–1

(A) λB + J– 1
3 δB(A) (704.23)

since

∂J– 1
3

∂λ(A)
= –

1
3

J– 4
3
∂λ1λ2λ3
∂λ(A)

= –
1
3

J– 4
3 J λ–1

(A) = –
1
3

J– 1
3 λ–1

(A) (704.24)

then

wA = –
1
3

J– 1
3
∂isoW
∂λ̃B

λ–1
(A) λB λ(A) + J– 1

3
∂isoW
∂λ̃B

δB(A) λ(A)

= –
1
3
∂isoW
∂λ̃B

λ̃B +
∂isoW
∂λ̃(A)

λ̃(A) (704.25)
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704.6 Derivation of YAB

By starting from equation 704.20

YAB =
∂wA
∂λB

λ(B) (704.26)

and by using equation 704.25

wA = –
1
3
∂isoW
∂λ̃C

λ̃C +
∂isoW
∂λ̃(A)

λ̃(A) (704.27)

we can write:

YAB =
∂wA

∂λ̃D

∂λ̃D
∂λB

λ(B) (704.28)

By first considering ∂wA/∂λ̃D we get:

∂wA

∂λ̃D
=

∂

(
– 1

3
∂isoW
∂λ̃C

λ̃C + ∂isoW
∂λ̃(A)

λ̃(A)

)
∂λ̃D

= –
1
3

∂2isoW
∂λ̃C∂λ̃D

λ̃C –
1
3
∂isoW
∂λ̃C

∂λ̃C

∂λ̃D
+

∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A) +
∂isoW
∂λ̃(A)

∂λ̃(A)

∂λ̃D

= –
1
3

∂2isoW
∂λ̃C∂λ̃D

λ̃C –
1
3
∂isoW
∂λ̃C

δCD +
∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A) +
∂isoW
∂λ̃(A)

δ(A)D

= –
1
3

∂2isoW
∂λ̃C∂λ̃D

λ̃C –
1
3
∂isoW
∂λ̃D

+
∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A) +
∂isoW
∂λ̃(A)

δ(A)D (704.29)

Next, from equation 704.23, we have that

∂λ̃D
∂λ(B)

= –
1
3

J– 1
3 λ–1

(B) λD + J– 1
3 δD(B) (704.30)

and by multiplying the result for ∂wA/∂λ̃D from equation 704.29 and the result for ∂λ̃D/∂λ(B) from equation

704.30 we obtain:

∂wA

∂λ̃D

∂λ̃D
∂λ(B)

= +
1
9

∂2isoW
∂λ̃C∂λ̃D

λ̃C J– 1
3 λ–1

(B) λD –
1
3

∂2isoW
∂λ̃C∂λ̃D

λ̃CJ– 1
3 δD(B)

+
1
9
∂isoW
∂λ̃D

J– 1
3 λ–1

(B) λD –
1
3
∂isoW
∂λ̃D

J– 1
3 δD(B)

–
1
3

∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A)J– 1
3 λ–1

(B) λD +
∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A)J– 1
3 δD(B)

–
1
3
∂isoW
∂λ̃(A)

δ(A)DJ– 1
3 λ–1

(B) λD +
∂isoW
∂λ̃(A)

δ(A)DJ– 1
3 δD(B)

= +
1
9

∂2isoW
∂λ̃C∂λ̃D

λ̃C λ–1
(B) λ̃D –

1
3

∂2isoW
∂λ̃C∂λ̃(B)

λ̃C J– 1
3

+
1
9
∂isoW
∂λ̃D

λ–1
(B) λ̃D –

1
3
∂isoW
∂λ̃(B)

J– 1
3

–
1
3

∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A)λ
–1
(B) λ̃D +

∂2isoW
∂λ̃(A)∂λ̃(B)

λ̃(A) J– 1
3

–
1
3
∂isoW
∂λ̃(A)

λ–1
(B) λ̃(A) +

∂isoW
∂λ̃(A)

δ(A)(B) J– 1
3 (704.31)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 704.6. DERIVATION OF YAB page: 2900 of 3287

where equation 704.22 was used. The final form for YAB is obtained by multiplying equation 704.31 with λ̃(B) to

obtain:

YAB =
∂wA

∂λ̃D

∂λ̃D
∂λB

λ(B) =

+
1
9

∂2isoW
∂λ̃C∂λ̃D

λ̃C λ–1
(B) λ̃D λ(B) –

1
3

∂2isoW
∂λ̃C∂λ̃(B)

λ̃C λ̃(B)

+
1
9
∂isoW
∂λ̃D

λ–1
(B) λ̃D λ(B) –

1
3
∂isoW
∂λ̃(B)

λ̃(B)

–
1
3

∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A)λ
–1
(B) λ̃D λ(B) +

∂2isoW
∂λ̃(A)∂λ̃(B)

λ̃(A) λ̃(B)

–
1
3
∂isoW
∂λ̃(A)

λ–1
(B) λ̃(A) λ(B) +

∂isoW
∂λ̃(A)

δ(A)(B) λ̃(B) (704.32)

By recognizing that λ–1
(B)λ(B) ≡ 1 and after rearranging elements, we can finally write the equation for YAB as:

YAB =
∂isoW
∂λ̃(A)

δ(A)(B) λ̃(B) +
∂2isoW

∂λ̃(A)∂λ̃(B)
λ̃(A) λ̃(B)

–
1
3

(
∂2isoW
∂λ̃C∂λ̃(B)

λ̃C λ̃(B) +
∂isoW
∂λ̃(B)

λ̃(B) +
∂2isoW
∂λ̃(A)∂λ̃D

λ̃(A)λ̃D +
∂isoW
∂λ̃(A)

λ̃(A)

)

+
1
9

(
∂2isoW
∂λ̃C∂λ̃D

λ̃C λ̃D +
∂isoW
∂λ̃D

λ̃D

)
(704.33)
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Appendix 705

Body and Surface Wave Analytic Solutions

(2005-2001-2010-2011-2018-2019-2021-)

(In collaboration with Dr. Nima Tafazzoli, Mr. Chang-Gyun Jeong, and Dr. Hexiang Wang)
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Figure 705.1: Motion due to plane pressure waves (P-wave) and shear waves (S-wave) (Semblat and

Pecker, 2009)

Figure 705.2: Particle movement due to surface Rayleigh waves near free surface (Semblat and Pecker,

2009)

705.1 3D Seismic Wave Field: Analytic Solution

In this chapter, wave field generation methods using analytic solution, and frequency wavenumber inte-

gration method are introduced. Theoretical background and examples are presented for each method.

705.1.1 Analytic solution

Seismic waves can be categorized as body waves and surface waves. The seismic body waves are traveling

through the interior of the earth whereas the surface waves are traveling through the surface of the earth.

There are two different body waves, such as the pressure wave (also called as P wave, Figure 705.1

top) and the shear waves (also called as S wave, Figure 705.1 bottom). The shear waves which have

the same velocity VS can be polarized along its plane location to the direction of propagation (vertical

plane - SV and horizontal plane - SH, Figure 705.1 bottom).

Surface waves are mainly categorized as Rayliegh waves (Rayleigh, 1885) and Love waves (Love,
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Figure 705.3: Displacements due to surface Love waves (Semblat and Pecker, 2009)

1911). The Rayleigh waves induce elliptical ground movement near the surface (Figure 705.2) whereas

the Love waves induce shearing movement (Figure 705.3).

Following sections introduce full three dimensional exact-solution and its examples for plane body

and surface waves in homogeneous media. The chapter does not include full derivation of equations

since it’s beyond the scope. Instead, final equations for body and surface waves are presented.

The original works for those problems are done by Green (1848), Knott (1899), and Wiechert and

Zoeppritz (1907). The notations and equations hereafter are mainly based on Semblat and Pecker (2009)

and Aki and Richard’s work (Aki and Richards, 2002).

705.1.1.1 Wave equations for body waves

Hereafter, the reflection and refraction coefficients are indicated by using its wave component symbols.

An acute and grave accents are adapted to explain the direction of propagation. The acute accent

indicates an upcoming wave, and the grave accent indicates a down-going wave (e.g. Ṕ, P̀ ). For

example, if the upcoming incident wave type is P and down-going reflected wave type is S, then reflected

wave will be indicated as ṔS̀.

Reflected and transmitted waves arising from incident SH wave In the case of SH incident wave on the

interface between two half-spaces, reflected wave is SH wave (Figure 705.4). The vector displacements

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 705.4: Schematic cartoon to show all possible coefficients of reflection and transmission with SH

incident wave

for the downgoing and upgoing incident SH waves can be calculated as below equation (705.1) and

(705.2), respectively (Aki and Richards, 2002).

(Downgoing SH) = S(0, S, 0)exp
[
iω
(

px +
cos j1
β1

z – t
)]

(Upgoing SH) = S(0, S, 0)S̀Śexp
[
iω
(

px –
cos j1
β1

z – t
)]

(Downgoing SH) = S(0, S, 0)S̀S̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.1)

(Upgoing SH) = S(0, S, 0)exp
[
iω
(

px –
cos j2
β2

z – t
)]

(Upgoing SH) = S(0, S, 0)ŚŚexp
[
iω
(

px –
cos j1
β1

z – t
)]

(downgoing SH) = S(0, S, 0)ŚS̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.2)

where,

S̀Ś =
ρ1β1 cos j1 – ρ2β2 cos j2

∆

ŚŚ =
2ρ2β2 cos j2

∆

S̀S̀ =
2ρ1β1 cos j1

∆

ŚS̀ = –S̀Ś

∆ = ρ1β1 cos j1 + ρ2β2 cos j2 (705.3)

where α is the P wave velocity, β is the S wave velocity, ρ is the density, p = (sin i)/α = (sin j)/β is the

ray parameter, and S is the amplitude of the incident wave.

Figure 705.4 shows all possible reflection and transmission coefficients with incident SH waves. Equa-

tion (705.4) is a ‘scattering matrix’ which includes every possible reflection and transmission coefficients
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Figure 705.5: Schematic cartoon to show all possible coefficients of reflection and transmission with

P/SV incident wave

for the problem. The matrix components have one to one relation with Figure 705.4.S̀Ś ŚŚ

S̀Ś ŚS̀

 (705.4)

Reflected and transmitted waves arising from incident P/SV wave The displacements generated by

the downgoing incident P/SV and upgoing incident P/SV waves can be calculated as below equation

(705.5), (705.6), (705.7), and (705.8), respectively (Figure 705.5) (Aki and Richards, 2002).

(Downgoing P) = S(sin i1, 0, cos i1)exp
[
iω
(

px +
cos i1
α1

z – t
)]

(Upgoing P) = S(sin i1, 0, – cos i1)P̀Ṕexp
[
iω
(

px –
cos i1
α1

z – t
)]

(Upgoing SV) = S(cos j1, 0, sin j1)P̀Śexp
[
iω
(

px –
cos j1
β1

z – t
)]

(Downgoing P) = S(sin i2, 0, cos i2)P̀P̀exp
[
iω
(

px +
cos i2
α2

z – t
)]

(Downgoing SV) = S(cos j2, 0, – sin j2)P̀S̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.5)
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(Downgoing SV) = S(cos j1, 0, – sin j1)exp
[
iω
(

px +
cos j1
β1

z – t
)]

(Upgoing P) = S(sin i1, 0, – cos i1)S̀Ṕexp
[
iω
(

px –
cos i1
α1

z – t
)]

(Upgoing SV) = S(cos j1, 0, sin j1)S̀Śexp
[
iω
(

px –
cos j1
β1

z – t
)]

(Downgoing P) = S(sin i2, 0, cos i2)S̀P̀exp
[
iω
(

px +
cos i2
α2

z – t
)]

(Downgoing SV) = S(cos j2, 0, – sin j2)S̀S̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.6)

(Upgoing P) = S(sin i2, 0, – cos i2)exp
[
iω
(

px –
cos i2
α2

z – t
)]

(Upgoing P) = S(sin i1, 0, – cos i1)ṔṔexp
[
iω
(

px –
cos i1
α1

z – t
)]

(Upgoing SV) = S(cos j1, 0, sin j1)ṔŚexp
[
iω
(

px –
cos j1
β1

z – t
)]

(Downgoing P) = S(sin i2, 0, cos i2)ṔP̀exp
[
iω
(

px +
cos i2
α2

z – t
)]

(Downgoing SV) = S(cos j2, 0, – sin j2)ṔS̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.7)

(Upgoing SV) = S(cos j2, 0, sin j2)exp
[
iω
(

px –
cos j2
β2

z – t
)]

(Upgoing P) = S(sin i1, 0, – cos i1)ŚṔexp
[
iω
(

px –
cos i1
α1

z – t
)]

(Upgoing SV) = S(cos j1, 0, sin j1)ŚŚexp
[
iω
(

px –
cos j1
β1

z – t
)]

(Downgoing P) = S(sin i2, 0, cos i2)ŚP̀exp
[
iω
(

px +
cos i2
α2

z – t
)]

(Downgoing SV) = S(cos j2, 0, – sin j2)ŚS̀exp
[
iω
(

px +
cos j2
β2

z – t
)]

(705.8)
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 705.1. 3D SEISMIC WAVE FIELD: ANALYTIC S . . . page: 2907 of 3287

where,

P̀Ṕ =
[(

b
cos i1
α1

– c
cos i2
α2

)
F –

(
a + d

cos i1
α1

cos j2
β2

)
Hp2

]
/D

P̀Ś = –2
cos i1
α1

(
ab + cd

cos i2
α2

cos j2
β2

)
pα1/(β1D)

P̀P̀ = 2ρ1
cos i1
α1

Fα1/(α2D)

P̀S̀ = 2ρ1
cos i1
α1

Hpα1/(β2D)

S̀Ṕ = –2
cos j1
β1

(
ab + cd

cos i2
α2

cos j2
β2

)
pβ1/(α1D)

S̀Ś = –
[(

b
cos j1
β1

– c
cos j2
β2

)
E –

(
a + d

cos i2
α2

cos j1
β1

)
Gp2

]
/D

S̀P̀ = –2ρ1
cos j1
β1

Gpβ1/(α2D)

S̀S̀ = 2ρ1
cos j1
β1

Eβ1/(β2D)

ṔṔ = 2ρ2
cosi2
α2

Fα2 (α1D)

ṔŚ = –2ρ2
cos i2
α2

Gpα2/(α2D)

ṔP̀ = –
[(

b
cos i1
α1

– c
cos i2
α2

)
F +

(
a + d

cos i2
α2

cos j1
β1

)
Gp2

]
/D

ṔS̀ = 2
cos i2
α2

(
ac + bd

cos i1
α1

cos j1
β1

)
pα2/(β2D)

ŚṔ = 2ρ2
cos j2
β2

Hpβ2/(α1D)

ŚŚ = 2ρ2
cos j2
β2

Eβ2/(β1D)

ŚP̀ = 2
cos j2
beta2

(
ac + bd

cos i1
α1

cos j1
β1

)
pβ2/(α2D)

ŚS̀ =
[(

b
cos j1
β1

– c
cos j2
β2

)
E +

(
a + d

cos i1
α1

cos j2
β2

)
Hp2

]
/D (705.9)

a = ρ2(1 – 2β2
2p2) – ρ1(1 – 2β2

1p2)

b = ρ2(1 – 2β2
2p2) + 2ρ1β

2
1p2

c = ρ1(1 – 2β2
1p2) + 2ρ – 2β2

2p2

d = 2(ρ2β
2
2 – ρ1β

2
1 ) (705.10)
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E = b
cos i1
α1

+ c
cos i2
α2

F = b
cos j1
β1

+ c
cos j2
β2

G = a – d
cos i1
α1

cos j2
β2

H = a – d
cos i2
α2

cos j1
β1

D = EF + GHp2 = (det M)/(α1α2β1β2) (705.11)

M =


–α1p – cos j1 α2p cos j2
cos i1 –β1p cos i2 –β2p

2ρ1β
2
1p cos i1 ρ1β1(1 – 2β2

1p2) 2ρ2β
2
2p cos i2 ρ2β2(1 – 2β2

2p2)

–ρ1α1(1 – 2β2
1p2) 2ρ1β

2
1p cos j1 ρ2α2(1 – 2β2

2p2) –2ρ2β
2
2p cos j2

 (705.12)

where α is the P wave velocity, β is the S wave velocity, ρ is the mass density, p = (sin i)/α = (sin j)/β is

the ray parameter, and S is the amplitude of the incident wave.

Similar as the incident SH wave case, Figure 705.5 shows all possible reflection and transmission

coefficients. Below equation (705.13) is a ‘scattering matrix’ which includes every possible reflection

and transmission coefficients for the problem. The matrix components have one to one relation with

Figure 705.5.


P̀Ṕ S̀Ṕ ṔṔ ŚṔ

P̀Ś S̀Ś ṔŚ ŚŚ

P̀P̀ S̀P̀ ṔP̀ ŚP̀

P̀S̀ S̀S̀ ṔS̀ ŚS̀

 (705.13)

705.1.1.2 Wave equations for surface waves

Surface wave with incident SH wave – Love wave The displacements of surface wave due to the

incident SH wave can be obtained by solving wave equations under free-surface condition (zero traction

on surface). Below equation (705.14) shows the time history displacement with incident SH wave
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(Semblat and Pecker, 2009).

ui
y = ASHexp

[
iω
VS

(
x sin θSH

i + z cos θSH
i – VSt

)]
uR

y = RSHexp
[

iω
VS

(
x sin θSH

R – z cos θSH
R – VSt

)]
uy = ui

y + uR
y = 2ASH cos

(
ωz cos θSH

i
VS

)
exp
[

iω
VS

(x sin θi – VSt)
]

(705.14)

As shown in equation (705.14) displacements of waves induced by incident SH waves can be calculated

by summing incident and reflected waves on the ground surface. The particle movement of a Love wave

is a perpendicular to the propagation plane.

Surface wave with incident P/SV wave – Rayleigh wave. Equation (705.15) shows the displacements

of surface wave due to the incident P/SV waves (Semblat and Pecker, 2009).

ux =
iω
VR

A

(
eaz –

2ab
b2 + ω2/V2

R
ebz
)

exp
[

iω
VR

(x – VRt)
]

uz = aA

(
eaz –

2ω2/V2
R

b2 + ω2/V2
R

ebz
)

exp
[

iω
VR

(x – VRt)
]

(705.15)

where, a2 = ω2

V2
R

– ω2

V2
P

, and b2 = ω2

V2
R

– ω2

V2
S

.

Imaginary term on ux shows that the components has a 90◦ phase shift from uz. The particle

movement of the wave is ellipses in x, z plane.

705.2 Matlab code – body wave solution

Listing 705.1: Example MATLAB code for surface waves

1 % ======================================================
2 % body.m: inclined wave propagation closed−form solution for layered ground
3 %
4 % ref. Waves and Vibrations in Soils (Semblat and Pecker)
5 %
6 % Chang−Gyun Jeong
7 % Last update: 05/24/2011
8 % ======================================================
9

10 clear all; clc;
11
12 %% initial condition
13 % wave type 'P' / 'SV' / 'SH'
14 wave = 'P';
15
16 % time
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17 t_low = 0; t_up = 1;
18 dt = 0.01;
19 t_no = (t_up − t_low) / dt;
20
21 % x and z
22 min_x = 0; max_x = 100;
23 min_z = 0; max_z = 100;
24 delta_x = 2; delta_z = 2;
25
26 x = min_x : delta_x : max_x; x = x';
27 z = min_z : delta_z : max_z; z = z';
28
29 % frequency
30 freq = 10;
31 omega = freq ∗ 2 ∗ pi;
32
33
34 % incident angle and amplitude
35 th_P_i = 20; A_P = 1;
36 th_SV_i = 20; A_SV = 1;
37 th_SH_i = 20; A_SH = 1;
38
39 % velocity and shear modulus
40 V_S1 = 1000; V_S2 = 300;
41
42 nu = 0.3;
43 gamma = 20000; % (N/mˆ3)
44
45 V_P1 = V_S1 ∗ sqrt((2 − 2 ∗ nu) / (1 − 2 ∗ nu));
46 V_P2 = V_S2 ∗ sqrt((2 − 2 ∗ nu) / (1 − 2 ∗ nu));
47
48 G_1 = gamma ∗ V_S1ˆ2; G_2 = gamma ∗ V_S2ˆ2;
49
50 X_S = V_S2 / V_S1;
51 X_1 = V_P1 / V_S1;
52 X_2 = V_P2 / V_S2;
53
54 %% calculation
55 switch upper(wave)
56 case {'P'}
57 % angle and amplitude
58 th_P_P_r = th_P_i;
59 th_P_P_t = asind(sind(th_P_i) ∗ V_P2 / V_P1);
60 th_SV_P_r = asind(sind(th_P_i) ∗ V_S1 / V_P1);
61 th_SV_P_t = asind(sind(th_P_i) ∗ V_S2 / V_P1);
62
63 temp_left = [−sind(th_P_i), −cosd(th_SV_P_r), sind(th_P_P_t), −cos(th_SV_P_t);...
64 cosd(th_P_i), −sind(th_SV_P_r), cosd(th_P_P_t), sind(th_SV_P_t);...
65 sind(2 ∗ th_P_i), X_1 ∗ cosd(2 ∗ th_SV_P_r), X_1 / X_2 ∗ X_S...
66 ∗ sind(2 ∗ th_P_P_t), −X_1 ∗ X_S ∗ cosd(2 ∗ th_SV_P_t);...
67 −X_1 ∗ cosd(2 ∗ th_SV_P_r), sind(2 ∗ th_SV_P_r), X_2 ∗ X_S...
68 ∗ cosd(2 ∗ th_SV_P_t), X_S ∗ sind(2 ∗ th_SV_P_t);];
69
70 temp_right = A_P ∗ [sind(th_P_i); cosd(th_P_i); sind(2 ∗ th_P_i); X_1 ∗...
71 cosd(2 ∗ th_SV_P_r)];
72
73 temp = temp_left \ temp_right;
74
75 R_SV_P = temp(1, 1);
76 R_P_P = temp(2, 1);
77 T_SV_P = temp(3, 1);
78 T_P_P = temp(4, 1);
79
80 % initialize matrix
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81 ux_P_i = zeros(max(size(z)), max(size(x)));
82 uz_P_i = zeros(max(size(z)), max(size(x)));
83 ux_P_P_r = zeros(max(size(z)), max(size(x)));
84 uz_P_P_r = zeros(max(size(z)), max(size(x)));
85 ux_SV_P_r = zeros(max(size(z)), max(size(x)));
86 uz_SV_P_r = zeros(max(size(z)), max(size(x)));
87 ux_P_P_t = zeros(max(size(z)), max(size(x)));
88 uz_P_P_t = zeros(max(size(z)), max(size(x)));
89 ux_SV_P_t = zeros(max(size(z)), max(size(x)));
90 uz_SV_P_t = zeros(max(size(z)), max(size(x)));
91
92 % calculate incident, reflected, and transmitted wave
93 for t = t_low : dt : t_up
94 for i = 1 : max(size(x))
95 for j = 1 : max(size(z))
96 % incident P
97 ux_P_i(i, j) = real(A_P ∗ sind(th_P_i) ∗ (exp((1i ∗ omega / V_P1) ...
98 ∗ (x(i, 1) ∗ sind(th_P_i) + z(j, 1) ∗ cosd(th_P_i) − V_P1 ∗ t))));
99 uz_P_i(i, j) = real(A_P ∗ cosd(th_P_i) ∗ (exp((1i ∗ omega / V_P1) ...

100 ∗ (x(i, 1) ∗ sind(th_P_i) + z(j, 1) ∗ cosd(th_P_i) − V_P1 ∗ t))));
101 % reflected P
102 ux_P_P_r(i, j) = real(R_P_P ∗ sind(th_P_P_r) ∗ (exp((1i ∗ omega / V_P1) ...
103 ∗ (x(i, 1) ∗ sind(th_P_P_r) − z(j, 1) ∗ cosd(th_P_P_r) − V_P1 ∗ t))));
104 uz_P_P_r(i, j) = real(−R_P_P ∗ cosd(th_P_P_r) ∗ (exp((1i ∗ omega / V_P1) ...
105 ∗ (x(i, 1) ∗ sind(th_P_P_r) − z(j, 1) ∗ cosd(th_P_P_r) − V_P1 ∗ t))));
106 % reflected SV
107 ux_SV_P_r(i, j) = real(R_SV_P ∗ cosd(th_SV_P_r) ∗ (exp((1i ∗ omega / V_S1) ...
108 ∗ (x(i, 1) ∗ sind(th_SV_P_r) − z(j, 1) ∗ cosd(th_SV_P_r) − V_S1 ∗ t))));
109 uz_SV_P_r(i, j) = real(R_SV_P ∗ sind(th_SV_P_r) ∗ (exp((1i ∗ omega / V_S1) ...
110 ∗ (x(i, 1) ∗ sind(th_SV_P_r) − z(j, 1) ∗ cosd(th_SV_P_r) − V_S1 ∗ t))));
111 % transmitted P
112 ux_P_P_t(i, j) = real(T_P_P ∗ sind(th_P_P_t) ∗ (exp((1i ∗ omega / V_P2) ...
113 ∗ (x(i, 1) ∗ sind(th_P_P_t) + z(j, 1) ∗ cosd(th_P_P_t) − V_P2 ∗ t))));
114 uz_P_P_t(i, j) = real(T_P_P ∗ cosd(th_P_P_t) ∗ (exp((1i ∗ omega / V_P2) ...
115 ∗ (x(i, 1) ∗ sind(th_P_P_t) + z(j, 1) ∗ cosd(th_P_P_t) − V_P2 ∗ t))));
116 % transmitted SV
117 ux_SV_P_t(i, j) = real(−T_SV_P ∗ cosd(th_SV_P_t) ∗ (exp((1i ∗ omega / V_S2) ...
118 ∗ (x(i, 1) ∗ sind(th_SV_P_t) + z(j, 1) ∗ cosd(th_SV_P_t) − V_S2 ∗ t))));
119 uz_SV_P_t(i, j) = real(T_SV_P ∗ sind(th_SV_P_t) ∗ (exp((1i ∗ omega / V_S2) ...
120 ∗ (x(i, 1) ∗ sind(th_SV_P_t) + z(j, 1) ∗ cosd(th_SV_P_t) − V_S2 ∗ t))));
121 end
122 end
123
124 % plot
125 subplot(3,4,1)
126 surf(x, z, ux_P_i,'EdgeColor','none'); axis([0 100 0 100 −4 4])
127 xlabel('x direction'); ylabel('z direction'); view(3)
128 title('Incident P x comp.')
129 subplot(3,4,2)
130 surf(x, z, uz_P_i,'EdgeColor','none'); axis([0 100 0 100 −4 4])
131 xlabel('x direction'); ylabel('z direction'); view(3)
132 title('Incident P z comp.')
133
134 subplot(3,4,5)
135 surf(x, z, ux_P_P_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
136 xlabel('x direction'); ylabel('z direction'); view(3)
137 title('Reflected P x comp.')
138 subplot(3,4,6)
139 surf(x, z, uz_P_P_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
140 xlabel('x direction'); ylabel('z direction'); view(3)
141 title('Reflected P z comp.')
142 subplot(3,4,7)
143 surf(x, z, ux_SV_P_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
144 xlabel('x direction'); ylabel('z direction'); view(3)
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145 title('Reflected SV x comp.')
146 subplot(3,4,8)
147 surf(x, z, uz_SV_P_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
148 xlabel('x direction'); ylabel('z direction'); view(3)
149 title('Reflected SV z comp.')
150
151 subplot(3,4,9)
152 surf(x, z, ux_P_P_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
153 xlabel('x direction'); ylabel('z direction'); view(3)
154 title('Refracted P x comp.')
155 subplot(3,4,10)
156 surf(x, z, uz_P_P_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
157 xlabel('x direction'); ylabel('z direction'); view(3)
158 title('Refracted P z comp.')
159 subplot(3,4,11)
160 surf(x, z, ux_SV_P_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
161 title('Refracted SV x comp.')
162 subplot(3,4,12)
163 surf(x, z, uz_SV_P_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
164 title('Refracted SV z comp.')
165
166 drawnow
167 end
168
169 case {'SV'}
170 % angle and amplitude
171 th_P_SV_r = asind(sind(th_SV_i) ∗ V_P1 / V_S1);
172 th_P_SV_t = asind(sind(th_SV_i) ∗ V_P2 / V_S1);
173 th_SV_SV_r = th_SV_i;
174 th_SV_SV_t = asind(sind(th_SV_i) ∗ V_S2 / V_S1);
175
176 temp_left = [cosd(th_SV_i), sind(th_P_SV_r), cosd(th_SV_SV_t), sin(th_P_SV_t);...
177 sind(th_SV_i), −cosd(th_P_SV_r), −sind(th_SV_SV_t), cosd(th_P_SV_t);...
178 −cosd(2 ∗ th_SV_i), (−1 / X_1) ∗ sind(2 ∗ th_P_SV_r), X_S...
179 ∗ cosd(2 ∗ th_SV_SV_t), (−X_S ∗ X_2) ∗ sind(2 ∗ th_P_SV_t);...
180 −sind(2 ∗ th_SV_i), X_1 ∗ cosd(2 ∗ th_SV_SV_r), −X_S...
181 ∗ sind(2 ∗ th_SV_SV_t), −X_2 ∗ X_S ∗ cosd(2 ∗ th_SV_SV_t);];
182
183 temp_right = A_SV ∗ [cosd(th_SV_i); −sind(th_SV_i); cosd(2 ∗ th_SV_i); ...
184 −sind(2 ∗ th_SV_i)];
185
186 temp = temp_left \ temp_right;
187
188 R_P_SV = temp(1, 1);
189 R_SV_SV = temp(2, 1);
190 T_P_SV = temp(3, 1);
191 T_SV_SV = temp(4, 1);
192
193 % initialize matrix
194 ux_SV_i = zeros(max(size(z)), max(size(x)));
195 uz_SV_i = zeros(max(size(z)), max(size(x)));
196 ux_P_SV_r = zeros(max(size(z)), max(size(x)));
197 uz_P_SV_r = zeros(max(size(z)), max(size(x)));
198 ux_SV_SV_r = zeros(max(size(z)), max(size(x)));
199 uz_SV_SV_r = zeros(max(size(z)), max(size(x)));
200 ux_P_SV_t = zeros(max(size(z)), max(size(x)));
201 uz_P_SV_t = zeros(max(size(z)), max(size(x)));
202 ux_SV_SV_t = zeros(max(size(z)), max(size(x)));
203 uz_SV_SV_t = zeros(max(size(z)), max(size(x)));
204
205 % calculate incident, reflected, and transmitted wave
206 for t = t_low : dt : t_up
207 for i = 1 : max(size(x))
208 for j = 1 : max(size(z))
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209 % incident SV
210 ux_SV_i(i, j) = real(A_SV ∗ cosd(th_SV_i) ∗ (exp((1i ∗ omega / V_S1) ...
211 ∗ (x(i, 1) ∗ sind(th_SV_i) + z(j, 1) ∗ cosd(th_SV_i) − V_S1 ∗ t))));
212 uz_SV_i(i, j) = real(−A_SV ∗ sind(th_SV_i) ∗ (exp((1i ∗ omega / V_S1) ...
213 ∗ (x(i, 1) ∗ sind(th_SV_i) + z(j, 1) ∗ cosd(th_SV_i) − V_S1 ∗ t))));
214 % reflected P
215 ux_P_SV_r(i, j) = real(R_P_SV ∗ cosd(th_P_SV_r) ∗ (exp((1i ∗ omega / V_P1) ...
216 ∗ (x(i, 1) ∗ sind(th_P_SV_r) − z(j, 1) ∗ cosd(th_P_SV_r) − V_P1 ∗ t))));
217 uz_P_SV_r(i, j) = real(R_P_SV ∗ sind(th_P_SV_r) ∗ (exp((1i ∗ omega / V_P1) ...
218 ∗ (x(i, 1) ∗ sind(th_P_SV_r) − z(j, 1) ∗ cosd(th_P_SV_r) − V_P1 ∗ t))));
219 % reflected SV
220 ux_SV_SV_r(i, j) = real(−R_SV_SV ∗ sind(th_SV_SV_r) ∗ (exp((1i ∗ omega / V_S1) ...
221 ∗ (x(i, 1) ∗ sind(th_SV_SV_r) − z(j, 1) ∗ cosd(th_SV_SV_r) − V_S1 ∗ t))));
222 uz_SV_SV_r(i, j) = real(R_SV_SV ∗ cosd(th_SV_SV_r) ∗ (exp((1i ∗ omega / V_S1) ...
223 ∗ (x(i, 1) ∗ sind(th_SV_SV_r) − z(j, 1) ∗ cosd(th_SV_SV_r) − V_S1 ∗ t))));
224 % transmitted P
225 ux_P_SV_t(i, j) = real(T_P_SV ∗ cosd(th_P_SV_t) ∗ (exp((1i ∗ omega / V_P2) ...
226 ∗ (x(i, 1) ∗ sind(th_P_SV_t) + z(j, 1) ∗ cosd(th_P_SV_t) − V_P2 ∗ t))));
227 uz_P_SV_t(i, j) = real(−T_P_SV ∗ sind(th_P_SV_t) ∗ (exp((1i ∗ omega / V_P2) ...
228 ∗ (x(i, 1) ∗ sind(th_P_SV_t) + z(j, 1) ∗ cosd(th_P_SV_t) − V_P2 ∗ t))));
229 % transmitted SV
230 ux_SV_SV_t(i, j) = real(T_SV_SV ∗ sind(th_SV_SV_t) ∗ (exp((1i ∗ omega / V_S2) ...
231 ∗ (x(i, 1) ∗ sind(th_SV_SV_t) + z(j, 1) ∗ cosd(th_SV_SV_t) − V_S2 ∗ t))));
232 uz_SV_SV_t(i, j) = real(−T_SV_SV ∗ cosd(th_SV_SV_t) ∗ (exp((1i ∗ omega / V_S2) ...
233 ∗ (x(i, 1) ∗ sind(th_SV_SV_t) + z(j, 1) ∗ cosd(th_SV_SV_t) − V_S2 ∗ t))));
234 end
235 end
236
237 % plot
238 subplot(3,4,1)
239 surf(x, z, ux_SV_i,'EdgeColor','none'); axis([0 100 0 100 −4 4])
240 xlabel('x direction'); ylabel('z direction'); view(3)
241 title('Incident SV x comp.')
242
243 subplot(3,4,2)
244 surf(x, z, uz_SV_i,'EdgeColor','none'); axis([0 100 0 100 −4 4])
245 xlabel('x direction'); ylabel('z direction'); view(3)
246 title('Incident SV z comp.')
247
248 subplot(3,4,5)
249 surf(x, z, ux_P_SV_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
250 xlabel('x direction'); ylabel('z direction'); view(3)
251 title('Reflected P x comp.')
252
253 subplot(3,4,6)
254 surf(x, z, uz_P_SV_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
255 xlabel('x direction'); ylabel('z direction'); view(3)
256 title('Reflected P z comp.')
257
258 subplot(3,4,7)
259 surf(x, z, ux_SV_SV_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
260 xlabel('x direction'); ylabel('z direction'); view(3)
261 title('Reflected SV x comp.')
262
263 subplot(3,4,8)
264 surf(x, z, uz_SV_SV_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
265 xlabel('x direction'); ylabel('z direction'); view(3)
266 title('Reflected SV z comp.')
267
268 subplot(3,4,9)
269 surf(x, z, ux_P_SV_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
270 xlabel('x direction'); ylabel('z direction'); view(3)
271 title('Refracted P x comp.')
272
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273 subplot(3,4,10)
274 surf(x, z, uz_P_SV_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
275 xlabel('x direction'); ylabel('z direction'); view(3)
276 title('Refracted P z comp.')
277
278 subplot(3,4,11)
279 surf(x, z, ux_SV_SV_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
280 xlabel('x direction'); ylabel('z direction'); view(3)
281 title('Refracted SV x comp.')
282
283 subplot(3,4,12)
284 surf(x, z, uz_SV_SV_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
285 xlabel('x direction'); ylabel('z direction'); view(3)
286 title('Refracted SV z comp.')
287
288 drawnow
289 end
290
291 case {'SH'}
292 % angle and amplitude
293 th_SH_r = th_SH_i;
294 th_SH_t = asind(sind(th_SH_i) ∗ V_S2 / V_S1);
295
296 R_SH = A_SH ∗ (G_1 ∗ V_S2 ∗ cosd(th_SH_i) − G_2 ∗ V_S1 ∗ cosd(th_SH_t))...
297 / (G_1 ∗ V_S2 ∗ cosd(th_SH_i) + G_2 ∗ V_S1 ∗ cosd(th_SH_t));
298 T_SH = A_SH ∗ (2 ∗ G_1 ∗ V_S2 ∗ cosd(th_SH_i) / (G_1 ∗ V_S2 ∗ cosd(th_SH_i)...
299 + G_2 ∗ V_S1 ∗ cosd(th_SH_t)));
300
301 % initialize matrix
302 uy_SH_i = zeros(max(size(z)), max(size(x)));
303 uy_SH_r = zeros(max(size(z)), max(size(x)));
304 uy_SH_t = zeros(max(size(z)), max(size(x)));
305
306 % calculate incident, reflected, and transmitted wave
307 for t = t_low : dt : t_up
308 for i = 1 : max(size(x))
309 for j = 1 : max(size(z))
310 % incident SH
311 uy_SH_i(i, j) = real(A_SH ∗(exp((1i ∗ omega / V_S1) ∗ (x(i, 1) ...
312 ∗ sind(th_SH_i) + z(j, 1) ∗ cosd(th_SH_i) − V_S1 ∗ t))));
313 % reflected SH
314 uy_SH_r(i, j) = real(R_SH ∗(exp((1i ∗ omega / V_S1) ∗ (x(i, 1) ...
315 ∗ sind(th_SH_r) − z(j, 1) ∗ cosd(th_SH_r) − V_S1 ∗ t))));
316 % refracted SH
317 uy_SH_t(i, j) = real(T_SH ∗(exp((1i ∗ omega / V_S2) ∗ (x(i, 1) ...
318 ∗ sind(th_SH_t) + z(j, 1) ∗ cosd(th_SH_t) − V_S2 ∗ t))));
319 % adding incident and reflected SH
320 adding_SH(i,j) = (uy_SH_i(i, j) − uy_SH_r(i, j)) / 2;
321
322 end
323 end
324
325 subplot(3,1,1)
326 surf(x, z, uy_SH_i,'EdgeColor','none'); axis([0 100 0 100 −4 4])
327 xlabel('x direction'); ylabel('z direction'); view(3)
328 title('Incident')
329 subplot(3,1,2)
330 surf(x, z, uy_SH_r,'EdgeColor','none'); axis([0 100 0 100 −4 4])
331 xlabel('x direction'); ylabel('z direction'); view(3)
332 title('Reflected')
333 subplot(3,1,3)
334 surf(x, z, uy_SH_t,'EdgeColor','none'); axis([0 100 0 100 −4 4])
335 xlabel('x direction'); ylabel('z direction'); view(3)
336 title('Refracted')
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337 % surf(x, z, adding SH,'EdgeColor','none'); xlabel('x direction'); ylabel('z direction'); view(3)
338
339 drawnow
340 end
341 end
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705.3 Matlab code – surface wave solution

Listing 705.2: Example MATLAB code for surface waves

1
2 % ======================================================
3 % surf.m: inclined wave propagation closed−form exact solution for surface waves
4 %
5 % ref. Waves and Vibrations in Soils (Semblat and Pecker, 2009)
6 %
7 % Chang−Gyun Jeong
8 % Last update: 03/27/2011
9 % ======================================================

10
11 clear all; clc;
12
13 % coordinates to see waves
14 x_cord = 0; z_cord = 0;
15
16 % time limit for time history
17 t_low = 0; t_up = 10; dt = 0.01;
18
19 % wave frequency and initial time for phase
20 freq = 10; % natural frequency of wave
21 t = 0.0; % initial time for phase
22 omega = freq ∗ 2 ∗ pi; % omega
23
24 % incident angle and amplitude
25 A_P = 1; % incident amp. (P wave)
26 A_SH = 1; % incident amp. (SH wave)
27 th_SH_i = 20; % incident angle. (SH wave)
28
29 % velocity and shear modulus (r is assumed to 20 kN/mˆ3)
30 v = 0.3; % Poisson's ratio
31 V_S1 = 50; % Vs for layer 1
32
33 V_R = V_S1 ∗ (0.862 + 1.14 ∗ v) / (1 + v); % Rayleigh wave velocity
34 V_P1 = V_S1 ∗ sqrt((2 − 2 ∗ v) / (1 − 2 ∗ v)); % Vp for layer 1
35
36 % calculate Rayleigh waves
37 a = −1∗abs(sqrt(omegaˆ2 / V_Rˆ2 − omegaˆ2 / V_P1ˆ2));
38 b = −1∗abs(sqrt(omegaˆ2 / V_Rˆ2 − omegaˆ2 / V_S1ˆ2));
39
40 fq_u_x_R = A_P ∗ 1i ∗ omega / V_R ∗ ...
41 (exp(a ∗ z_cord) − ((2 ∗ a ∗ b / (bˆ2 + omegaˆ2 / V_Rˆ2))∗ exp(b ∗ z_cord))) ...
42 ∗ exp((1i ∗ omega / V_R) ∗ (x_cord − V_R ∗ t));
43 fq_u_z_R = A_P ∗ a ∗ ...
44 (exp(a ∗ z_cord) − ((2 ∗ omegaˆ2 / V_Rˆ2) / (bˆ2 + omegaˆ2 / V_Rˆ2) ∗ exp(b ∗ z_cord))) ...
45 ∗ exp((1i ∗ omega / V_R) ∗ (x_cord − V_R ∗ t));
46
47 % calculate Love waves
48 fq_u_y_L = 2 ∗ A_SH ∗ cosd(omega ∗ z_cord ∗ cosd(th_SH_i) / V_S1 ) ...
49 ∗ (exp((1i ∗ omega / V_S1) ∗ (x_cord ∗ sind(th_SH_i) − V_S1 ∗ t)));
50
51 % calculate phase angle and amplutude of harmonic motion
52 time_ang_x=angle(fq_u_x_R); % phase angle (R wave, x)
53 time_abs_x=abs(fq_u_x_R); % amplitude (R wave, x)
54 time_ang_z=angle(fq_u_z_R); % phase angle (R wave, z)
55 time_abs_z=abs(fq_u_z_R); % amplitude (R wave, z)
56 time_ang_y=angle(fq_u_y_L); % phase angle (L wave, y)
57 time_abs_y=abs(fq_u_y_L); % amplitude angle (L wave, y)
58
59 % calculate time history Rayleigh wave
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60 time = t_low : dt : t_up;
61
62 u_x_R = time_abs_x ∗ cos(2∗freq∗pi∗time+time_ang_x) ;
63 u_z_R = time_abs_z ∗ cos(2∗freq∗pi∗time+time_ang_z) ;
64
65 % calculate time history Love wave
66 u_y_L = time_abs_y ∗ cos(2∗freq∗pi∗time+time_ang_y) ;
67
68 % plot
69 subplot(1,4,1)
70 plot(u_x_R, u_z_R)
71 xlabel('x'); ylabel('z');
72 axis([−4 4 −4 4])
73
74 subplot(1,4,2)
75 plot(u_y_L, u_z_R)
76 xlabel('y'); ylabel('z');
77 axis([−4 4 −4 4])
78
79 subplot(1,4,3)
80 plot(u_x_R, u_y_L)
81 xlabel('x'); ylabel('y');
82 axis([−4 4 −4 4])
83
84 subplot(1,4,4)
85 plot3(u_x_R, u_y_L, u_z_R)
86 axis([−4 4 −4 4 −4 4])
87 xlabel('x'); ylabel('y'); zlabel('z');
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705.4 Matlab code – Ricker wavelet as an input motion

Listing 705.3: Example MATLAB code for Ricker wavelet as an input motion

1 % ====================================
2 % Ricker.m: Ricker wavelet propagation on 3D space closed−form exact solution
3 %
4 % ref. Waves and Vibrations in Soils (Semblat and Pecker, 2009)
5 %
6 % Chang−Gyun Jeong
7 % Last update: 01. 05. 2012.
8 % ====================================
9

10 clf; clc; clear all;
11
12 %% Initial condition
13 % max frequency, amplitude, and input angle of ricker wavelet
14 f_max = 1;
15 amplitude = 0.005;
16 th = 40;
17
18 % amplitude ratio
19 % ar PP = 1;
20 % arR = 1;
21
22 % coordinate for extracting waves
23 xxx = 0;
24 zzz = 900;
25
26 dx = 100;
27 x_min = 0;
28 x_max = xxx;
29
30 dz = 100;
31 z_min = 0;
32 z_max = zzz;
33
34 nx = x_max / dx + 1;
35 nz = z_max / dz + 1;
36
37 % Poisson's ratio and wave velocity of ground
38 v = 0.1;
39 Vs = 700;
40 Vp = Vs ∗ sqrt((2 − 2 ∗ v) / (1 − 2 ∗ v));
41 Vr = Vs ∗ (0.862 + 1.14 ∗ v) / (1 + v);
42
43 % time step, peak time, max and min time
44 dt = 0.01;
45 t_min = 0;
46 t_max = 20;
47 t_peak = 4;
48
49 % parameters for plotting
50 t_min_pl = 0;
51 t_max_pl = 10;
52 d_min_pl = −0.02;
53 d_max_pl = 0.02;
54
55 f_min_pl = 0;
56 f_max_pl = 5;
57 f_amp_min_pl = 0;
58 f_amp_max_pl = 0.0006;
59
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60 % amplitude and angle calculation for reducing computation time
61 thrp = asind(sind(th) ∗ Vp / Vs);
62 thrs = asind(sind(th) ∗ Vs / Vp);
63
64 ss = sind(th) / Vs;
65 cc = cosd(th) / Vs;
66 ssrp = sind(thrp) / Vp;
67 ccrp = cosd(thrp) / Vp;
68 ssp = sind(th) / Vp;
69 ccp = cosd(th) / Vp;
70 ssrs = sind(thrs) / Vs;
71 ccrs = cosd(thrs) / Vs;
72
73 as = amplitude ∗ sind(th);
74 ac = amplitude ∗ cosd(th);
75
76 %% Ricker wavelet
77 k = 1;
78 for t = t_min:dt:t_max
79 j = 1;
80 for z = z_min:dz:z_max
81 i = 1;
82 for x = x_min:dx:x_max
83 SV_i_x(i, j) = ac ∗ ...
84 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ss + z ∗ cc)ˆ2) ∗ ...
85 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
86 (t − t_peak + x ∗ ss + z ∗ cc)ˆ2));
87 SV_i_z(i, j) = as ∗ ...
88 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ss + z ∗ cc)ˆ2) ∗ ...
89 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
90 (t − t_peak + x ∗ ss + z ∗ cc)ˆ2));
91
92 SVP_r_x(i, j) = as ∗ sind(thrp) ∗ ...
93 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ssrp − z ∗ ccrp)ˆ2) ∗ ...
94 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
95 (t − t_peak + x ∗ ssrp − z ∗ ccrp)ˆ2));
96 SVP_r_z(i, j) = as ∗ cos(thrp) ∗...
97 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ssrp + z ∗ ccrp)ˆ2) ∗ ...
98 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
99 (t − t_peak + x ∗ ssrp + z ∗ ccrp)ˆ2));

100
101 SVSV_r_x(i, j) = ac ∗ cosd(th) ∗ ...
102 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ss − z ∗ cc)ˆ2) ∗ ...
103 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
104 (t − t_peak + x ∗ ss − z ∗ cc)ˆ2));
105 SVSV_r_z(i, j) = as ∗ sind(th) ∗ ...
106 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t − t_peak + x ∗ ss − z ∗ cc)ˆ2) ∗ ...
107 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
108 (t − t_peak + x ∗ ss − z ∗ cc)ˆ2));
109
110 P_i_x(i, j) = ac ∗ ...
111 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2) ∗ ...
112 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
113 (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2));
114 P_i_z(i, j) = as ∗ ...
115 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2) ∗ ...
116 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
117 (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2));
118
119 PP_r_x(i, j) = as ∗ sind(th) ∗ ...
120 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssp − z ∗ ccp)ˆ2) ∗ ...
121 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
122 (t + 1.35 − t_peak + x ∗ ssp − z ∗ ccp)ˆ2));
123 PP_r_z(i, j) = as ∗ cos(th) ∗...
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124 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2) ∗ ...
125 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
126 (t + 1.35 − t_peak + x ∗ ssp + z ∗ ccp)ˆ2));
127
128 PSV_r_x(i, j) = ac ∗ cosd(thrs) ∗ ...
129 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssrs − z ∗ ccrs)ˆ2) ∗ ...
130 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
131 (t + 1.35 − t_peak + x ∗ ssrs − z ∗ ccrs)ˆ2));
132 PSV_r_z(i, j) = as ∗ sind(thrs) ∗ ...
133 ((1 − 2 ∗ piˆ2 ∗ f_maxˆ2 ∗ (t + 1.35 − t_peak + x ∗ ssrs − z ∗ ccrs)ˆ2) ∗ ...
134 exp(−piˆ2 ∗ f_maxˆ2 ∗ ...
135 (t +1.35 − t_peak + x ∗ ssrs − z ∗ ccrs)ˆ2));
136
137
138 total_x(i, j) = SV_i_x(i, j) + SVP_r_x(i, j) + SVSV_r_x(i, j) + ...
139 P_i_x(i, j) + PP_r_x(i, j) + PSV_r_x(i, j);
140 total_z(i, j) = SV_i_z(i, j) + SVP_r_z(i, j) + SVSV_r_z(i, j) + ...
141 P_i_z(i, j) + PP_r_z(i, j) + PSV_r_z(i, j);
142
143 i = i + 1;
144 end
145 j = j + 1;
146 end
147
148 disp_1(k) = SV_i_x(nx, nz) + P_i_x(nx, nz);
149 disp_2(k) = SV_i_z(nx, nz) + P_i_z(nx, nz);
150 disp_3(k) = SVP_r_x(nx, nz) + PP_r_x(nx, nz);
151 disp_4(k) = SVP_r_z(nx, nz) + PP_r_z(nx, nz);
152 disp_5(k) = SVSV_r_x(nx, nz) + PSV_r_x(nx, nz);
153 disp_6(k) = SVSV_r_z(nx, nz) + PSV_r_z(nx, nz);
154
155 time_hist(k) = t;
156
157 k = k + 1;
158 end
159
160 % Fourier transform
161 Fs = 1 / dt;
162 NFFT = 2ˆnextpow2(((t_max − t_min) / dt));
163 F_1 = fft(disp_1, NFFT) / ((t_max − t_min) / dt);
164 F_2 = fft(disp_2, NFFT) / ((t_max − t_min) / dt);
165 F_3 = fft(disp_3, NFFT) / ((t_max − t_min) / dt);
166 F_4 = fft(disp_4, NFFT) / ((t_max − t_min) / dt);
167 F_5 = fft(disp_5, NFFT) / ((t_max − t_min) / dt);
168 F_6 = fft(disp_6, NFFT) / ((t_max − t_min) / dt);
169 F_7 = fft(disp_1 + disp_3 + disp_5, NFFT) / ((t_max − t_min) / dt);
170 F_8 = fft(disp_2 + disp_4 + disp_6, NFFT) / ((t_max − t_min) / dt);
171 fq = (Fs / 2) ∗ linspace(0, 1, NFFT / 2 + 1);
172
173 %% Rayleigh wave
174 z = 0;
175 x = 0;
176 t = 0;
177
178 omega = fq ∗ 2 ∗ pi();
179 Ax=2 ∗ abs(F_1(1:NFFT/2+1));
180 Az=2 ∗ abs(F_2(1:NFFT/2+1));
181
182 omega(1) = 0.000001;
183
184 for i = 1 : max(size(fq))
185 a = 1∗abs(sqrt(omega(i)ˆ2 / Vrˆ2 − omega(i)ˆ2 / Vpˆ2));
186 b = 1∗abs(sqrt(omega(i)ˆ2 / Vrˆ2 − omega(i)ˆ2 / Vsˆ2));
187
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188 surf_x(i) = (1i ∗ omega(i) ∗ Ax(i) / Vr) ∗ (exp(a ∗ z) − (2 ∗ a ∗ b ∗ exp(b ∗ z)) / ...
189 (bˆ2 + omega(i)ˆ2 / Vrˆ2)) ∗ exp(1i ∗ omega(i) ∗ (x − Vr ∗ t) / Vr);
190 surf_z(i) = a ∗ Az(i) ∗ (exp(a ∗ z) − (2 ∗ omega(i)ˆ2 ∗ exp(b ∗ z) / Vrˆ2) / ...
191 (bˆ2 + omega(i)ˆ2 / Vrˆ2)) ∗ exp(1i ∗ omega(i) ∗ (x − Vr ∗ t) / Vr);
192 end
193
194 % calculate phase angle and amplitude of R wave
195 time_ang_x=angle(surf_x);
196 time_abs_x=abs(surf_x);
197 time_ang_z=angle(surf_z);
198 time_abs_z=abs(surf_z);
199
200 for i = 1:max(size(fq))
201 j = 1;
202 for time = t_min:dt:t_max;
203 u_x_R(i, j) = time_abs_x(i) ∗ cos(omega(i) ∗ (time − t_peak) − time_ang_x(i));
204 u_z_R(i, j) = time_abs_z(i) ∗ cos(omega(i) ∗ (time − t_peak) − time_ang_z(i));
205 j = j + 1;
206 end
207 i = i + 1;
208 end
209
210 u_x = sum(u_x_R);
211 u_z = sum(u_z_R);
212
213 % get max amplitude of R wave to scale it
214 max_R_x = max(u_x);
215 max_R_z = max(u_z);
216
217 % R wave will be recalculated on the point of interest
218 z = xxx;
219 x = zzz;
220
221 for i = 1 : max(size(fq))
222 a = 1∗abs(sqrt(omega(i)ˆ2 / Vrˆ2 − omega(i)ˆ2 / Vpˆ2));
223 b = 1∗abs(sqrt(omega(i)ˆ2 / Vrˆ2 − omega(i)ˆ2 / Vsˆ2));
224
225 surf_x(i) = (1i ∗ omega(i) ∗ Ax(i) / Vr) ∗ (exp(a ∗ z) − (2 ∗ a ∗ b ∗ exp(b ∗ z)) / ...
226 (bˆ2 + omega(i)ˆ2 / Vrˆ2)) ∗ exp(1i ∗ omega(i) ∗ (x − Vr ∗ t) / Vr);
227 surf_z(i) = a ∗ Az(i) ∗ (exp(a ∗ z) − (2 ∗ omega(i)ˆ2 ∗ exp(b ∗ z) / Vrˆ2) / ...
228 (bˆ2 + omega(i)ˆ2 / Vrˆ2)) ∗ exp(1i ∗ omega(i) ∗ (x − Vr ∗ t) / Vr);
229 end
230
231 % calculate phase angle and amplitude of R wave
232 time_ang_x=angle(surf_x);
233 time_abs_x=abs(surf_x);
234 time_ang_z=angle(surf_z);
235 time_abs_z=abs(surf_z);
236
237 for i = 1:max(size(fq))
238 j = 1;
239 for time = t_min:dt:t_max;
240 u_x_R(i, j) = time_abs_x(i) ∗ cos(omega(i) ∗ (time − t_peak) − time_ang_x(i));
241 u_z_R(i, j) = time_abs_z(i) ∗ cos(omega(i) ∗ (time − t_peak) − time_ang_z(i));
242 j = j + 1;
243 end
244 i = i + 1;
245 end
246
247 u_x = sum(u_x_R);
248 u_z = sum(u_z_R);
249
250 % scale R wave
251 u_x = u_x ∗ amplitude / max_R_x;
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252 u_z = u_z ∗ amplitude / max_R_x;
253
254 % set amplitude of R wave as zero
255 % u x = 0;
256 % u z = 0;
257
258 % add all displacement (R + input + reflect)
259 u_xx = u_x + disp_1 + disp_3 + disp_5;
260 u_zz = u_z + disp_2 + disp_4 + disp_6;
261
262 % Fourier transform
263 F_9 = fft(u_x, NFFT) / ((t_max − t_min) / dt);
264 F_10 = fft(u_z, NFFT) / ((t_max − t_min) / dt);
265 F_11 = fft(u_xx, NFFT) / ((t_max − t_min) / dt);
266 F_12 = fft(u_zz, NFFT) / ((t_max − t_min) / dt);
267
268 % make final output matrix
269 disp_out(:, 1) = time_hist';
270 disp_out(:, 2) = u_xx';
271 disp_out(:, 4) = u_zz';
272
273 %% plot
274
275 % figure 1: all components
276 figure(1)
277 subplot(6, 2, 1)
278 plot(time_hist, disp_1, time_hist, disp_2)
279 ylim([d_min_pl d_max_pl])
280 xlim([t_min_pl t_max_pl])
281 xlabel('Time (s)')
282 ylabel('Displacement (m)')
283 title('Input SV + P')
284
285 subplot(6, 2, 3)
286 plot(time_hist, disp_3, time_hist, disp_4)
287 ylim([d_min_pl d_max_pl])
288 xlim([t_min_pl t_max_pl])
289 xlabel('Time (s)')
290 ylabel('Displacement (m)')
291 title('Reflected P')
292
293 subplot(6, 2, 5)
294 plot(time_hist, disp_5, time_hist, disp_6)
295 ylim([d_min_pl d_max_pl])
296 xlim([t_min_pl t_max_pl])
297 xlabel('Time (s)')
298 ylabel('Displacement (m)')
299 title('Reflected SV')
300
301 subplot(6, 2, 7)
302 plot(time_hist, disp_1 + disp_3 + disp_5, time_hist, disp_2 + disp_4 + disp_6)
303 ylim([d_min_pl d_max_pl])
304 xlim([t_min_pl t_max_pl])
305 xlabel('Time (s)')
306 ylabel('Displacement (m)')
307 title('Body total')
308
309 subplot(6,2,9)
310 plot(time_hist, u_x, time_hist, u_z)
311 ylim([d_min_pl d_max_pl])
312 xlim([t_min_pl t_max_pl])
313 xlabel('Time (s)')
314 ylabel('Displacement (m)')
315 title('Surf. Rayleigh')
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316
317 subplot(6,2,11)
318 plot(time_hist, u_xx, time_hist, u_zz)
319 ylim([d_min_pl d_max_pl])
320 xlim([t_min_pl t_max_pl])
321 xlabel('Time (s)')
322 ylabel('Displacement (m)')
323 title('Body and Surface Total')
324
325 subplot(6,2,2)
326 plot(fq, 2 ∗ abs(F_1(1:NFFT/2+1)), fq, 2 ∗ abs(F_2(1:NFFT/2+1)))
327 ylim([f_amp_min_pl f_amp_max_pl])
328 xlim([f_min_pl f_max_pl])
329 xlabel('Frequency (Hz)')
330 ylabel('Fourier Amplitude')
331 title('Input SV + P')
332
333 subplot(6,2,4)
334 plot(fq, 2 ∗ abs(F_3(1:NFFT/2+1)), fq, 2 ∗ abs(F_4(1:NFFT/2+1)))
335 ylim([f_amp_min_pl f_amp_max_pl])
336 xlim([f_min_pl f_max_pl])
337 xlabel('Frequency (Hz)')
338 ylabel('Fourier Amplitude')
339 title('Reflected P')
340
341 subplot(6,2,6)
342 plot(fq, 2 ∗ abs(F_5(1:NFFT/2+1)), fq, 2 ∗ abs(F_6(1:NFFT/2+1)))
343 ylim([f_amp_min_pl f_amp_max_pl])
344 xlim([f_min_pl f_max_pl])
345 xlabel('Frequency (Hz)')
346 ylabel('Fourier Amplitude')
347 title('Reflected SV')
348
349 subplot(6,2,8)
350 plot(fq, 2 ∗ abs(F_7(1:NFFT/2+1)), fq, 2 ∗ abs(F_8(1:NFFT/2+1)))
351 ylim([f_amp_min_pl f_amp_max_pl])
352 xlim([f_min_pl f_max_pl])
353 xlabel('Frequency (Hz)')
354 ylabel('Fourier Amplitude')
355 title('Body Total')
356
357 subplot(6,2,10)
358 plot(fq, 2 ∗ abs(F_9(1:NFFT/2+1)), fq, 2 ∗ abs(F_10(1:NFFT/2+1)))
359 ylim([f_amp_min_pl f_amp_max_pl])
360 xlim([f_min_pl f_max_pl])
361 xlabel('Frequency (Hz)')
362 ylabel('Fourier Amplitude')
363 title('Surf. Rayleigh')
364
365 subplot(6,2,12)
366 plot(fq, 2 ∗ abs(F_11(1:NFFT/2+1)), fq, 2 ∗ abs(F_12(1:NFFT/2+1)))
367 ylim([f_amp_min_pl f_amp_max_pl])
368 xlim([f_min_pl f_max_pl])
369 xlabel('Frequency (Hz)')
370 ylabel('Fourier Amplitude')
371 title('Body and Surface Total')

705.5 Wave Potential Formulation – Domain Reduction Method

Methodology presented here is from Wang et al. (2021).
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Presented is a methodology developed to investigate influence of inclined body and surface seismic

wave on linear or nonlinear earthquake soil structure interaction (ESSI) behavior of soil-structure systems.

Methodology is based on Wave Potential Formulation (WPF) (Thomson, 1950; Haskell, 1953) as well

as Domain Reduction Method (DRM) (Bielak et al., 2003a).

Presented WPF-DRM methodology consists of three main steps:

1. Analytic development of free field ground motions for a layered half space, excited by an incident,

inclined plane wave. Development of this seismic wave field is relying on wave potential formula-

tion in frequency-wave number domain. Time domain spatially varying ground motions are then

synthesized through inverse Fourier transformation.

2. Development of the Effective Earthquake Forces, from DRM formulation, is then performed using

free field seismic motions developed in the previous step.

3. Earthquake Soil Structure Interaction (ESSI) analysis of the soil-structure system is then performed

using effective earthquake forces that are applied to a single layer of finite elements surrounding

soil-structure system, so called DRM layer. The only waves that are radiated from the soil-structure

system and exit the DRM layer are due to oscillations of the structure. These outgoing waves are

absorbed by damping layers.

Sections ?? and ?? below provide details of Wave Potential Formulation and Domain Reduction

Method, respectively.
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Body and Surface Wave Numerical Modeling

(2010-2012-2018-2019-2021-)

(In collaboration with Dr. Nima Tafazzoli, Mr. Chang-Gyun Jeong and Dr. Hexiang Wang)
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706.1 Integral equations

Second method to generate wave fields is frequency-wavenumber integration method. The fk package is

a frequency-wavenumber integration (Haskell, 1964; Wang and Herrmann, 1980) code developed by Zhu

and Rivera (2002). The fk code package can be downloaded from http://www.eas.slu.edu/People/

LZhu. In this section, using fk code package, wave propagation is simulated. The main modules of the

fk code package and its function are shown as followings.

1. fk – compute Green’s functions

2. syn – compute synthetic seismogram

3. fk.pl – PERL script to simplify the use of fk

First of all, Green’s function is computed by fk with ground model properties (model layer dimension,

shear and P wave velocity, density, Q and so on) and source, station (receiver) properties (source depth,

epicentral distance, wave propagation direction, and receiver depth and so on). Then, Using syn with

calculated Green’s function, seismograph is synthesized with given variables such as magnitude, fault

strike/dip/rake, and station azimuth. Synthesized seismograph (by syn) are stored as binary / Seismic

Analysis Code (SAC) form (Goldstein and Snoke, 2005). Thus, in addition to fk package, Python code

to run fk package iteratively, convert results from binary to ASCII text, and make plot is developed

(plot.py). All necessary variables to run fk and syn can be adjusted in plot.py. Variables are explained

in next sections and can also be found in source codes (fk.f, syn,c, fk.pl, and plot.py)

706.1.1 fk3.0 package

In this section, fk3.0 package is briefly introduced. All source code can be downloaded from http:

//www.eas.slu.edu/People/LZhu.

706.1.1.1 fk and ’sample input’

Program fk can be run by using input text file or using PERL wrapper fk.pl as shown in next section.

Example input file ‘sample input’ is used to run fk. ‘sample input’ is included in fk package. Total layer

number, source layer number, source type, and receiver layer number are defined in the first row of input

file. Layer properties are defined from second to fourth row (layer thickness / Vp / Vs / density / Qp

/ Qs values are defined from the first column to sixth column, respectively). Then, sigma, number of
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sampling points, sampling interval, tapering factor, high / low pass filter frequencies, slowness limit,

epicentral distances are defined. In example, variables can be set as following.

Line1: 3 2 2 1 0

3 – total number of layers

2 – source is located at the top of 2nd layer

2 – double coupled source (0: explosion, 1: single coupled)

1 – receiver is located at the top of 1st layer

0 – consider both up and down going wave (1: down going wave, -1: up going wave)

Line2: 10.0000 6.3000 3.5000 2.7860 1000.00 500.00

10.0 – depth (km)

6.3 – Vp (km/s)

3.5 – Vs (km/s)

2.7860 – density (g/cm3)

1000 – Qp

500 – Qs

Line3: 25.0000 6.3000 3.5000 2.7860 1000.00 500.00

ref. Line2

Line4: 0.0000 8.1000 4.7000 3.3620 1600.00 800.00

ref. Line2

Line5: 2 512 0.2 0.5 25 2 1 1

2 – sigma in 1/trace length, the small imaginary frequency (2 – 3)

512 – number of points in the time domain

0.2 – time step (sec, dt)

0.5 – tapering factor to suppress high frequencies

25 – number of points to be saved before t0

2 – smooth factor to increase the sampling rate

1 1 – high pass filter (wc1, wc2)

Line6: 0. 1 0.3 15

0. 1 – minimum and maximum slowness, to sepcify the window for the wavenumber integration

(pmin, pmax)
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0.3 – wavenumber sampling interval

15 – the maximum wavenumber at zero frequency

Line7: 1

1 – number of distance ranges

Line8: 200.00 20.00 200.grn.

200.00 – distance (km)

20.00 – t0

200.grn. – output file name

706.1.1.2 fk.pl

fk also can be run by PERL wrapper. Using the PERL wrapper fk.pl is strongly recommended by Zhu

(README file of fk package). Since most of variables those are introduced on prior section are set to

default values and also can be adjusted on the command line, it is much easier to use fk.pl than run fk.

706.1.1.3 syn

Using syn with calculated Green’s function, seismogram is computed. Direction of fault (strike / dip /

rake) and recording station (azimuth), magnitude have to be defined to run syn.

706.1.1.4 plot.py

As mentioned above, output seismogram is in SAC form (binary). PERL script plot.py is coded to

convert binary to ASCII, run fk / syn repetitively, perform Fourier transform, and plot figures. Necessary

options to run fk and syn can be adjusted in plot.py.

706.1.2 3D seismic wave field generation using integral equation

Using fk package, 3D seismic wave field is generated. Analysis for the most common fault mechanism

(strike-slip, dip-slip, and normal fault) are presented. A real earthquake example (Northridge) is also

given toward the end of the section.

706.1.2.1 Case 1: strike-slip fault / single layer ground

The first example is strike slip fault case. Model is as shown in Figure 706.1. Ground, fault, and wave

properties are shown as below.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 706.1. INTEGRAL EQUATIONS page: 2929 of 3287

Figure 706.1: Ground and fault model used for analysis, results are captured on circles

• Ground properties

– VS = 1 km/s

– VP/VS = 1.73

– Poisson’s ratio = 0.25

– Density = 1.32 g/cm3

– Shear modulus = 1.32 GPa

– Elastic modulus = 3.31 GPa

• Fault properties

– Moment magnitude = 3.5

– Strike = 0◦

– Dip = 90◦

– Rake = 0◦

– Double - coupled source

– Triangular source time function

• Wave properties

– dt = 0.1 s (Max available freq. = 5 Hz, Nyquist freq.)

As indicated above, single layer ground (Vs = 1 km/s) is modeled. Fault is located at 2 km depth,

2 km away from the recording points (stations). Double coupled fault source is assumed and triangular
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source time function is used (Aki and Richards, 2002). Nine recording points are set as recording stations

(Figure 706.1). Direction of the fault is aligned parallel to the north (strike = 0◦) and recording station

azimuth is set to 0◦, 45◦, and 90◦.

Figure 706.2 – 706.10 show analyses results for the example. Legends on figures mean ‘component

(epicentral distance, receiver depth)’. EW, NS, and UD components mean East - West, North - South,

and Up - Down, respectively (those terms are used for all seismograms, hereafter).

Only EW components are predicted on the stations at 0◦ azimuth (Figure 706.2 – 706.4) and NS

components are showed up on the station at 90◦ azimuth (Figure 706.8 – 706.10). On the station at

45◦ azimuth, all components (EW, NS, and UD) are observed.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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706.1.2.2 Case 2: dip-slip fault / single layer ground

Similar fault is tested for vertical (dip) slip (rake = 90◦) fault case. Figure 706.11 shows model used for

the analysis. Ground, fault, and wave properties are shown as below.

Figure 706.11: Ground and fault model used for analysis, results are captured on circles

• Ground properties

– VS = 1 km/s

– VP/VS = 1.73

– Poisson’s ratio = 0.25

– Density = 1.32 g/cm3

– Shear modulus = 1.32 GPa

– Elastic modulus = 3.31 GPa

• Fault properties

– Moment magnitude = 3.5

– Strike = 0◦

– Dip = 90◦

– Rake = 90◦

– Double - coupled source

– Triangular source time function

• Wave properties
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– dt = 0.1 s (Max available freq. = 5 Hz, Nyquist freq.)

Similar to the strike slip example, single layer ground (Vs = 1 km/s) is modeled. Fault is located at 2

km depth, 2 km away from the recording stations. Double coupled fault source is assumed and triangular

source time function is used (Aki and Richards, 2002). Nine recording points are set as recording stations

(Figure 706.11). Direction of the fault is aligned parallel to the north (strike = 0◦) and rake is 90◦.

Station azimuth is set to 0◦, 45◦, and 90◦.

Figure 706.12 – 706.20 show analyses results for this example. Since it’s dip slip case, permanent

deformation on UD components are observed (Figure 706.17 and 706.20).
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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706.1.2.3 Case 3: normal fault / single layer ground

Figure 706.21: Ground and fault model used for analysis, results are captured on circles

Normal fault is tested. Figure 706.21 shows model used for the analysis. Wave is propagated through

the single layer ground (Vs = 1 km/s). Properties are shown as below.

• Ground properties

– VS = 1 km/s

– VP/VS = 1.73

– Poisson’s ratio = 0.25

– Density = 1.32 g/cm3

– Shear modulus = 1.32 GPa

– Elastic modulus = 3.31 GPa

• Fault properties

– Moment magnitude = 5.0

– Strike = 0◦

– Dip = 45◦

– Rake = 90◦

– Double - coupled source

– Triangular source time function

• Wave properties
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– dt = 0.1 s (Max available freq. = 5 Hz, Nyquist freq.)

In this example, the distance between the fault and the station is increased and magnitude is changed

also (Mw = 5.0). Fault is located at 30 km depth, 30 km away from the recording stations (Figure

706.21). Double coupled fault source is assumed and triangular source time function is used (Aki and

Richards, 2002). Recording points are similar as prior examples (total 9 stations). Azimuth of recording

station is set to 0◦, 45◦, and 90◦.

Figure 706.22 – 706.30 show analyses results. Since the distance between fault and station is

increased to 30 km and waves are propagated through the ground with relatively low shear wave velocity,

arrival of propagating and reflecting waves can be observed easily (the first arrival of P wave followed by

S wave). Permanent displacements by the fault movement are observed as desired at all stations (0◦,

45◦, and 90◦).
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706.1.2.4 Case 4: normal fault / layered ground

Figure 706.31: Ground and fault model used for analysis, results are captured on circles

Figure 706.32: Vs profile, square points are hk model; blue line is trend line based on hk model

Normal fault within layered ground is modeled. Model is as shown Figure 706.31 and 706.32.

Properties are shown below.

• Ground properties: see Figure 706.32 and Table 706.1

• Fault properties
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– Moment magnitude = 5.0

– Strike = 0◦

– Dip = 45◦

– Rake = 90◦

– Double - coupled source

– Triangular source time function

• Wave properties

– dt = 0.1 s (Max available freq. = 5 Hz, Nyquist freq.)

Fault is located at depth of 30 km, 30 km away from the recording point (station) at surface. Double

coupled fault source is assumed and triangular source time function is used (Aki and Richards, 2002).

Recording points are similar as prior examples (total 9 stations). The 1D standard southern California

model (Hadley and Kanamori (1977), hk model hereafter) is used for ground layering. As shown in

Figure 706.32, hk model is interpolated and divided to define ground layer (Table 706.1).

Results are shown on Figure 706.33 – 706.35. Since wave is propagated through the layered ground,

compared to prior examples, more realistic waves are observed.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 706.1. INTEGRAL EQUATIONS page: 2965 of 3287

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520
Acc. (cm/s/s)

EW
 c

om
p.

 (0
.0

1 
km

, 0
.0

 k
m

)
EW

 c
om

p.
 (0

.0
1 

km
, 7

.5
 k

m
)

EW
 c

om
p.

 (0
.0

1 
km

, 1
5.

0 
km

)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

NS
 c

om
p.

 (0
.0

1 
km

, 0
.0

 k
m

)
NS

 c
om

p.
 (0

.0
1 

km
, 7

.5
 k

m
)

NS
 c

om
p.

 (0
.0

1 
km

, 1
5.

0 
km

)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

UD
 c

om
p.

 (0
.0

1 
km

, 0
.0

 k
m

)
UD

 c
om

p.
 (0

.0
1 

km
, 7

.5
 k

m
)

UD
 c

om
p.

 (0
.0

1 
km

, 1
5.

0 
km

)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

EW
 c

om
p.

 (1
5 

km
, 0

.0
 k

m
)

EW
 c

om
p.

 (1
5 

km
, 7

.5
 k

m
)

EW
 c

om
p.

 (1
5 

km
, 1

5.
0 

km
)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

NS
 c

om
p.

 (1
5 

km
, 0

.0
 k

m
)

NS
 c

om
p.

 (1
5 

km
, 7

.5
 k

m
)

NS
 c

om
p.

 (1
5 

km
, 1

5.
0 

km
)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

UD
 c

om
p.

 (1
5 

km
, 0

.0
 k

m
)

UD
 c

om
p.

 (1
5 

km
, 7

.5
 k

m
)

UD
 c

om
p.

 (1
5 

km
, 1

5.
0 

km
)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

EW
 c

om
p.

 (3
0 

km
, 0

.0
 k

m
)

EW
 c

om
p.

 (3
0 

km
, 7

.5
 k

m
)

EW
 c

om
p.

 (3
0 

km
, 1

5.
0 

km
)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

NS
 c

om
p.

 (3
0 

km
, 0

.0
 k

m
)

NS
 c

om
p.

 (3
0 

km
, 7

.5
 k

m
)

NS
 c

om
p.

 (3
0 

km
, 1

5.
0 

km
)

0
5

10
15

20
25

30
Ti

m
e 

(s
)

−
20

−
15

−
10−

505101520

Acc. (cm/s/s)

UD
 c

om
p.

 (3
0 

km
, 0

.0
 k

m
)

UD
 c

om
p.

 (3
0 

km
, 7

.5
 k

m
)

UD
 c

om
p.

 (3
0 

km
, 1

5.
0 

km
)

F
ig

u
re

70
6.

33
:

C
al

cu
la

te
d

ti
m

e
h

is
to

ry
ac

ce
le

ra
ti

on
,

st
at

io
n

az
im

u
th

=
0◦
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706.1.2.5 Case 5: Northridge earthquake / layered ground

In this example, Northridge earthquakes are simulated. Northridge earthquake has occurred on January,

1994 with a moment magnitude of 6.7. Properties are shown as below and partly adapted from Hisada

(2008) and Wald et al. (1996).

• Ground properties: see Table 706.2

• Fault properties

– Moment magnitude = 6.7

– Strike = 122◦

– Dip = 40◦

– Rake = 140◦

– Double - coupled source

– Triangular source time function

• Wave properties

– dt = 0.05 s (Max available freq. = 10 Hz, Nyquist freq.)

Source depth is set as 25 km and epicentral distance from the fault to the station is set as 30 km.

Station is located on the ground surface. As shown in Table 706.2, ground is divided into 9 layers

(Hisada, 2008).

Figure 706.42 shows analyses results. Computed results are compared with measured one. Measured

records are obtained from cosmos virtual data center http://db.cosmos-eq.org/. As shown in Figure

706.42, predicted seismogram agrees well with measured ones considering the fk package assumes a

single point source and simplified ground.pdf.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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This chapter presents a number of illustrative examples. The main aim is simple: present Real-ESSI

Simulator features (available elements, algorithms, domain specific language (DSL), &c.) through a

number of simple examples. It is noted that all presented elements and algorithms work in sequential

and parallel mode. However, presented examples are very small, and parallel mode will not bring any

benefits.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.1 Elastic Beam Element Under Static Loading

This is a simple beam example under static loading in three directions. The diagram below shows the

loading in one bending direction.

0.2m

0.2m

Figure 707.1: The cantilever model

ESSI model fei/DSL file:

1 model name "beam_1element" ;
2 // define the node coordinates
3 add node # 1 at ( 0.0*m , 0.0*m, 0.0*m) with 6 dofs;
4 add node # 2 at ( 1.0*m , 0.0*m, 0.0*m) with 6 dofs;
5 // Geometry: width and height. Help the beam definition.
6 b=0.2*m;
7 h=0.2*m;
8 I=b*h^3/12.0;
9 // define the beam element

10 add element # 1 type beam_elastic with nodes (1,2)
11 cross_section = b*h
12 elastic_modulus = 1e9*N/m^2
13 shear_modulus = 5e8*N/m^2
14 torsion_Jx = 0.33*b*h^3
15 bending_Iy = I
16 bending_Iz = I
17 mass_density = 0*kg/m^3
18 xz_plane_vector = ( 1, 0, 1)
19 joint_1_offset = (0*m, 0*m, 0*m)
20 joint_2_offset = (0*m, 0*m, 0*m);
21 // add boundary condition
22 fix node # 1 dofs all;
23 // axial loading
24 new loading stage "axial";
25 add load # 1 to node # 2 type linear Fx = 1*N;
26 define load factor increment 1;
27 define algorithm With_no_convergence_check ;
28 define solver ProfileSPD;
29 simulate 1 steps using static algorithm;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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30 // bending in one direction
31 new loading stage "bending1";
32 remove load # 1;
33 add load # 2 to node # 2 type linear Fy = 1*N;
34 define load factor increment 1;
35 define algorithm With_no_convergence_check ;
36 define solver ProfileSPD;
37 simulate 1 steps using static algorithm;
38 // bending in the other direction
39 new loading stage "bending2";
40 remove load # 2;
41 add load # 3 to node # 2 type linear Fz = 1*N;
42 define load factor increment 1;
43 define algorithm With_no_convergence_check ;
44 define solver ProfileSPD;
45 simulate 1 steps using static algorithm;
46

47 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.2 Elastic Beam Element under Dynamic Loading

Problem description:

0.2m

0.2m

Figure 707.2: The cantilever model.

ESSI model fei/DSL file:

1 model name "beam_1element" ;
2

3 // add node
4 add node # 1 at ( 0.0*m , 0.0*m, 0.0*m) with 6 dofs;
5 add node # 2 at ( 1.0*m , 0.0*m, 0.0*m) with 6 dofs;
6 // Geometry: width and height
7 b=0.2*m;
8 h=0.2*m;
9 // Materials: properties

10 natural_period = 1*s;
11 natural_frequency = 2*pi/natural_period;
12 elastic_constant = 1e9*N/m^2;
13 I=b*h^3/12.0;
14 A=b*h;
15 L=1*m;
16 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
17 possion_ratio=0.3;
18 // add elements
19 add element # 1 type beam_elastic with nodes (1,2)
20 cross_section = b*h
21 elastic_modulus = elastic_constant
22 shear_modulus = elastic_constant/2/(1+possion_ratio)
23 torsion_Jx = 0.33*b*h^3
24 bending_Iy = b*h^3/12
25 bending_Iz = b*h^3/12
26 mass_density = rho
27 xz_plane_vector = ( 1, 0, 1)
28 joint_1_offset = (0*m, 0*m, 0*m)

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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29 joint_2_offset = (0*m, 0*m, 0*m);
30

31 // add boundary condition
32 fix node # 1 dofs all;
33

34 // // ----------------------------------------------------------------------------
35 // // --slowLoading---------------------------------------------------------------
36 // // add load in 180 seconds. (Slow)
37 // // ----------------------------------------------------------------------------
38 // new loading stage "slowLoading";
39 // add load # 1 to node # 2 type path_time_series
40 // Fz = 1.*N
41 // series_file = "slowLoading.txt" ;
42 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
43 // define algorithm With_no_convergence_check ;
44 // define solver ProfileSPD;
45 // simulate 2000 steps using transient algorithm
46 // time_step = 0.1*s;
47

48 // // ----------------------------------------------------------------------------
49 // // --fastLoading---------------------------------------------------------------
50 // // add load in 0.6 seconds (Fast)
51 // // ----------------------------------------------------------------------------
52 // remove load # 1;
53 // new loading stage "fastLoading";
54 // add load # 2 to node # 2 type path_time_series
55 // Fz = 1.*N
56 // series_file = "fastLoading.txt" ;
57 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
58 // define algorithm With_no_convergence_check ;
59 // define solver ProfileSPD;
60 // simulate 1000 steps using transient algorithm
61 // time_step = 0.01*s;
62

63 // // ----------------------------------------------------------------------------
64 // // --freeVibration-------------------------------------------------------------
65 // // add a load and then release to free vibration
66 // // ----------------------------------------------------------------------------
67 // remove load # 2;
68 new loading stage "freeVibration";
69 add load # 3 to node # 2 type path_time_series
70 Fz = 1.*N
71 series_file = "freeVibration.txt" ;
72 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
73 define algorithm With_no_convergence_check ;
74 define solver ProfileSPD;
75 simulate 2000 steps using transient algorithm
76 time_step = 0.01*s;
77

78 bye;
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Displacement Results

0 50 100 150 200
Time (second) 

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

Di
sp

la
ce

m
en

ts
 (m

et
er

)  

Figure 707.3: Slow loading condition, vertical displacements or the cantilever tip.
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Figure 707.4: Fast loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.5: Free vibration, vertical displacements of the cantilever tip.
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707.3 Cantilever, 5 Elastic Beam Elements

Problem description:

0.2m

0.2m

Figure 707.6: The cantilever model.

ESSI model fei/DSL file:

1 model name "beam_5element" ;
2

3 // add node
4 add node # 1 at ( 0.0*m , 0.0*m, 0.0*m) with 6 dofs;
5 add node # 2 at ( 0.2*m , 0.0*m, 0.0*m) with 6 dofs;
6 add node # 3 at ( 0.4*m , 0.0*m, 0.0*m) with 6 dofs;
7 add node # 4 at ( 0.6*m , 0.0*m, 0.0*m) with 6 dofs;
8 add node # 5 at ( 0.8*m , 0.0*m, 0.0*m) with 6 dofs;
9 add node # 6 at ( 1.0*m , 0.0*m, 0.0*m) with 6 dofs;

10

11 // Geometry: width and height
12 b=0.2*m;
13 h=0.2*m;
14

15 // Materials: properties
16 natural_period = 1*s;
17 natural_frequency = 2*pi/natural_period;
18 elastic_constant = 1e9*N/m^2;
19 I=b*h^3/12.0;
20 A=b*h;
21 L=1*m;
22 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
23 possion_ratio=0.3;
24

25 // Cross section geometry: width and height
26 b=0.2*m;
27 h=0.2*m;
28

29 // add elements
30 ii=1;
31 while (ii<6) {
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 707.3. CANTILEVER, 5 ELASTIC BEAM ELEME . . . page: 2986 of 3287

32 add element # ii type beam_elastic with nodes (ii,ii+1)
33 cross_section = b*h
34 elastic_modulus = elastic_constant
35 shear_modulus = elastic_constant/2/(1+possion_ratio)
36 torsion_Jx = 0.33*b*h^3
37 bending_Iy = b*h^3/12
38 bending_Iz = b*h^3/12
39 mass_density = rho
40 xz_plane_vector = ( 1, 0, 1)
41 joint_1_offset = (0*m, 0*m, 0*m)
42 joint_2_offset = (0*m, 0*m, 0*m);
43 ii+=1;
44 }
45

46 // add boundary condition
47 fix node # 1 dofs all;
48

49 // // ----------------------------------------------------------------------------
50 // // --slowLoading---------------------------------------------------------------
51 // // add load in 180 seconds.
52 // // ----------------------------------------------------------------------------
53 // new loading stage "slowLoading";
54 // add load # 1 to node # 6 type path_time_series
55 // Fz = 1.*N
56 // series_file = "slowLoading.txt" ;
57 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
58 // define algorithm With_no_convergence_check ;
59 // define solver ProfileSPD;
60 // simulate 2000 steps using transient algorithm
61 // time_step = 0.1*s;
62

63 // // ----------------------------------------------------------------------------
64 // // --fastLoading---------------------------------------------------------------
65 // // add load in 0.6 seconds.
66 // // ----------------------------------------------------------------------------
67 // remove load # 1;
68 // new loading stage "fastLoading";
69 // add load # 2 to node # 6 type path_time_series
70 // Fz = 1.*N
71 // series_file = "fastLoading.txt" ;
72 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
73 // define algorithm With_no_convergence_check ;
74 // define solver ProfileSPD;
75 // simulate 1000 steps using transient algorithm
76 // time_step = 0.01*s;
77

78 // // ----------------------------------------------------------------------------
79 // // --freeVibration-------------------------------------------------------------
80 // // add a load and then release for free vibration
81 // // ----------------------------------------------------------------------------
82 // remove load # 2;
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83 new loading stage "freeVibration";
84 add load # 3 to node # 6 type path_time_series
85 Fz = 1.*N
86 series_file = "freeVibration.txt" ;
87 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
88 define algorithm With_no_convergence_check ;
89 define solver ProfileSPD;
90 simulate 100 steps using transient algorithm
91 time_step = 0.1*s;
92

93 bye;

Displacement results
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Figure 707.7: Slow loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.8: Fast loading condition, vertical displacements of the cantilever tip.
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Figure 707.9: Free vibration condition, vertical displacements of the cantilever tip.
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707.4 Cantilever, One 27 Node Brick Element, Dynamic Loading

Problem description:

0.2m

0.2m

Figure 707.10: The cantilever model.

ESSI model fei/DSL file:

1 model name "brick_1element" ;
2

3 // Geometry: width and height
4 b=0.2*m;
5 h=0.2*m;
6

7 // Materials: properties
8 natural_period = 1*s;
9 natural_frequency = 2*pi/natural_period;

10 elastic_constant = 1e9*N/m^2;
11 I=b*h^3/12.0;
12 A=b*h;
13 L=1*m;
14 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
15 possion_ratio=0.3;
16

17

18 add material # 1 type linear_elastic_isotropic_3d_LT
19 mass_density = rho
20 elastic_modulus = elastic_constant
21 poisson_ratio = possion_ratio;
22

23 add node # 1 at ( 0.0000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
24 add node # 2 at ( 0.0000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
25 add node # 3 at ( 1.0000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
26 add node # 4 at ( 1.0000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
27 add node # 5 at ( 0.0000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
28 add node # 6 at ( 1.0000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
29 add node # 7 at ( 1.0000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
30 add node # 8 at ( 0.0000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
31 add node # 9 at ( 0.0000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
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32 add node # 10 at ( 0.5000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
33 add node # 11 at ( 1.0000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
34 add node # 12 at ( 0.5000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
35 add node # 13 at ( 0.0000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
36 add node # 14 at ( 0.5000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
37 add node # 15 at ( 1.0000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
38 add node # 16 at ( 0.5000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
39 add node # 17 at ( 0.0000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
40 add node # 18 at ( 0.0000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
41 add node # 19 at ( 1.0000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
42 add node # 20 at ( 1.0000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
43 add node # 21 at ( 0.5000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
44 add node # 22 at ( 0.0000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
45 add node # 23 at ( 0.5000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
46 add node # 24 at ( 1.0000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
47 add node # 25 at ( 0.5000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
48 add node # 26 at ( 0.5000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
49 add node # 27 at ( 0.5000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
50

51 add element # 1 type 27NodeBrickLT with nodes( 2, 1, 3, 4, 5, 8, 7, 6, 9, 10, ←↩
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) use ←↩
material # 1;

52

53 fix node # 1 dofs all;
54 fix node # 2 dofs all;
55 fix node # 5 dofs all;
56 fix node # 8 dofs all;
57 fix node # 9 dofs all;
58 fix node # 13 dofs all;
59 fix node # 17 dofs all;
60 fix node # 18 dofs all;
61 fix node # 22 dofs all;
62

63

64 // // ----------------------------------------------------------------------------
65 // // --slowLoading---------------------------------------------------------------
66 // // ----------------------------------------------------------------------------
67 // new loading stage "slowLoading";
68 // add load # 1 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
69 // add load # 2 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
70 // add load # 3 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
71 // add load # 4 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
72 // add load # 5 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
73 // add load # 6 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
74 // add load # 7 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩
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"slowLoading.txt" ;
75 // add load # 8 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
76 // add load # 9 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩

"slowLoading.txt" ;
77 // // add algorithm and solver
78 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
79 // define algorithm With_no_convergence_check ;
80 // define solver ProfileSPD;
81 // simulate 2000 steps using transient algorithm
82 // time_step = 0.1*s;
83

84 // // ----------------------------------------------------------------------------
85 // // --fastLoading---------------------------------------------------------------
86 // // ----------------------------------------------------------------------------
87 // new loading stage "fastLoading";
88 // add load # 101 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
89 // add load # 102 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
90 // add load # 103 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
91 // add load # 104 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
92 // add load # 105 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
93 // add load # 106 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
94 // add load # 107 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
95 // add load # 108 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
96 // add load # 109 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩

"fastLoading.txt" ;
97 // // add algorithm and solver
98 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
99 // define algorithm With_no_convergence_check ;

100 // define solver ProfileSPD;
101 // simulate 1000 steps using transient algorithm
102 // time_step = 0.01*s;
103

104 // // ----------------------------------------------------------------------------
105 // // ←↩

--freeVibration---------------------------------------------------------------
106 // // ----------------------------------------------------------------------------
107 new loading stage "freeVibration";
108 add load # 201 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
109 add load # 202 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
110 add load # 203 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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"freeVibration.txt" ;
111 add load # 204 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
112 add load # 205 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
113 add load # 206 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
114 add load # 207 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
115 add load # 208 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
116 add load # 209 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩

"freeVibration.txt" ;
117 // add algorithm and solver
118 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
119 define algorithm With_no_convergence_check ;
120 define solver ProfileSPD;
121 simulate 10000 steps using transient algorithm
122 time_step = 0.001*s;
123

124 // end
125 bye;

Displacement results against time series
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Figure 707.11: Slow loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.12: Fast loading condition, vertical displacements of the cantilever tip.
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Figure 707.13: Free vibration condition, vertical displacements of the cantilever tip.
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707.5 Simulate Cantilever Using Five 27 Node Brick Elements

Problem description:

0.2m

0.2m

Figure 707.14: The cantilever model.

ESSI model fei/DSL file:

1 model name "brick_5element" ;
2

3 // Geometry: width and height
4 b=0.2*m;
5 h=0.2*m;
6

7 // Materials: properties
8 natural_period = 1*s;
9 natural_frequency = 2*pi/natural_period;

10 elastic_constant = 1e9*N/m^2;
11 I=b*h^3/12.0;
12 A=b*h;
13 L=1*m;
14 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
15 possion_ratio=0.3;
16

17

18 add material # 1 type linear_elastic_isotropic_3d_LT
19 mass_density = rho
20 elastic_modulus = elastic_constant
21 poisson_ratio = possion_ratio;
22

23 add node # 1 at (0.0*m, 0.0*m , 0.0*m) with 3 dofs;
24 add node # 2 at (0.1*m, 0.0*m , 0.0*m) with 3 dofs;
25 add node # 3 at (0.2*m, 0.0*m , 0.0*m) with 3 dofs;
26 add node # 4 at (0.0*m, 0.1*m , 0.0*m) with 3 dofs;
27 add node # 5 at (0.1*m, 0.1*m , 0.0*m) with 3 dofs;
28 add node # 6 at (0.2*m, 0.1*m , 0.0*m) with 3 dofs;
29 add node # 7 at (0.0*m, 0.2*m , 0.0*m) with 3 dofs;
30 add node # 8 at (0.1*m, 0.2*m , 0.0*m) with 3 dofs;
31 add node # 9 at (0.2*m, 0.2*m , 0.0*m) with 3 dofs;
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32

33 fix node No 1 dofs ux uy uz;
34 fix node No 2 dofs ux uy uz;
35 fix node No 3 dofs ux uy uz;
36 fix node No 4 dofs ux uy uz;
37 fix node No 5 dofs ux uy uz;
38 fix node No 6 dofs ux uy uz;
39 fix node No 7 dofs ux uy uz;
40 fix node No 8 dofs ux uy uz;
41 fix node No 9 dofs ux uy uz;
42 e = 0;
43 hh = 0*m;
44 NBricks=5;
45 dz = 0.2*m;
46 while ( e < NBricks)
47 {
48 hh += dz;
49 add node # 10+18*e at (0.0*m, 0.0*m , hh - 0.5*dz) with 3 dofs;
50 add node # 11+18*e at (0.1*m, 0.0*m , hh - 0.5*dz) with 3 dofs;
51 add node # 12+18*e at (0.2*m, 0.0*m , hh - 0.5*dz) with 3 dofs;
52 add node # 13+18*e at (0.0*m, 0.1*m , hh - 0.5*dz) with 3 dofs;
53 add node # 14+18*e at (0.1*m, 0.1*m , hh - 0.5*dz) with 3 dofs;
54 add node # 15+18*e at (0.2*m, 0.1*m , hh - 0.5*dz) with 3 dofs;
55 add node # 16+18*e at (0.0*m, 0.2*m , hh - 0.5*dz) with 3 dofs;
56 add node # 17+18*e at (0.1*m, 0.2*m , hh - 0.5*dz) with 3 dofs;
57 add node # 18+18*e at (0.2*m, 0.2*m , hh - 0.5*dz) with 3 dofs;
58

59 add node # 19+18*e at (0.0*m, 0.0*m , hh) with 3 dofs;
60 add node # 20+18*e at (0.1*m, 0.0*m , hh) with 3 dofs;
61 add node # 21+18*e at (0.2*m, 0.0*m , hh) with 3 dofs;
62 add node # 22+18*e at (0.0*m, 0.1*m , hh) with 3 dofs;
63 add node # 23+18*e at (0.1*m, 0.1*m , hh) with 3 dofs;
64 add node # 24+18*e at (0.2*m, 0.1*m , hh) with 3 dofs;
65 add node # 25+18*e at (0.0*m, 0.2*m , hh) with 3 dofs;
66 add node # 26+18*e at (0.1*m, 0.2*m , hh) with 3 dofs;
67 add node # 27+18*e at (0.2*m, 0.2*m , hh) with 3 dofs;
68

69 add element # e+1 type 27NodeBrickLT with nodes
70 (
71 21+18*e,
72 27+18*e,
73 25+18*e,
74 19+18*e,
75

76 3+18*e,
77 9+18*e,
78 7+18*e,
79 1+18*e,
80

81 24+18*e,
82 26+18*e,
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83 22+18*e,
84 20+18*e,
85

86 6+18*e,
87 8+18*e,
88 4+18*e,
89 2+18*e,
90

91 12+18*e,
92 18+18*e,
93 16+18*e,
94 10+18*e,
95

96 14+18*e,
97 15+18*e,
98 17+18*e,
99 13+18*e,

100 11+18*e,
101 23+18*e,
102 5+18*e
103 )
104 use material # 1;
105

106 e += 1;
107 };
108

109

110 e = e -1;
111

112

113 // // ----------------------------------------------------------------------------
114 // // --slowLoading---------------------------------------------------------------
115 // // add the 1 Newton load in 180 seconds.
116 // // ----------------------------------------------------------------------------
117 // new loading stage "slowLoading";
118 // add load # 1 to node # (19+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "slowLoading.txt";
119 // add load # 2 to node # (20+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "slowLoading.txt";
120 // add load # 3 to node # (21+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "slowLoading.txt";
121 // add load # 4 to node # (22+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "slowLoading.txt";
122 // add load # 5 to node # (23+18*e) type path_time_series Fx=4/9.0*N ←↩

series_file = "slowLoading.txt";
123 // add load # 6 to node # (24+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "slowLoading.txt";
124 // add load # 7 to node # (25+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "slowLoading.txt";
125 // add load # 8 to node # (26+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "slowLoading.txt";
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126 // add load # 9 to node # (27+18*e) type path_time_series Fx=1/36.0*N ←↩
series_file = "slowLoading.txt";

127 // // add algorithm and solver
128 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
129 // define algorithm With_no_convergence_check ;
130 // define solver ProfileSPD;
131 // simulate 2000 steps using transient algorithm
132 // time_step = 0.1*s;
133

134 // // ----------------------------------------------------------------------------
135 // // --fastLoading---------------------------------------------------------------
136 // // add the 1 Newton load in 0.6 seconds.
137 // // ----------------------------------------------------------------------------
138 // new loading stage "fastLoading";
139 // add load # 101 to node # (19+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "fastLoading.txt" ;
140 // add load # 102 to node # (20+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "fastLoading.txt" ;
141 // add load # 103 to node # (21+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "fastLoading.txt" ;
142 // add load # 104 to node # (22+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "fastLoading.txt" ;
143 // add load # 105 to node # (23+18*e) type path_time_series Fx=4/9.0*N ←↩

series_file = "fastLoading.txt" ;
144 // add load # 106 to node # (24+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "fastLoading.txt" ;
145 // add load # 107 to node # (25+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "fastLoading.txt" ;
146 // add load # 108 to node # (26+18*e) type path_time_series Fx=1/9.0*N ←↩

series_file = "fastLoading.txt" ;
147 // add load # 109 to node # (27+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "fastLoading.txt" ;
148 // // add algorithm and solver
149 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
150 // define algorithm With_no_convergence_check ;
151 // define solver ProfileSPD;
152 // simulate 1000 steps using transient algorithm
153 // time_step = 0.01*s;
154

155 // // ----------------------------------------------------------------------------
156 // // ←↩

--freeVibration---------------------------------------------------------------
157 // // add a load and then release to free vibration
158 // // ----------------------------------------------------------------------------
159 new loading stage "freeVibration";
160 add load # 201 to node # (19+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "freeVibration.txt" ;
161 add load # 202 to node # (20+18*e) type path_time_series Fx=1/9.0*N series_file ←↩

= "freeVibration.txt" ;
162 add load # 203 to node # (21+18*e) type path_time_series Fx=1/36.0*N ←↩

series_file = "freeVibration.txt" ;
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163 add load # 204 to node # (22+18*e) type path_time_series Fx=1/9.0*N series_file ←↩
= "freeVibration.txt" ;

164 add load # 205 to node # (23+18*e) type path_time_series Fx=4/9.0*N series_file ←↩
= "freeVibration.txt" ;

165 add load # 206 to node # (24+18*e) type path_time_series Fx=1/9.0*N series_file ←↩
= "freeVibration.txt" ;

166 add load # 207 to node # (25+18*e) type path_time_series Fx=1/36.0*N ←↩
series_file = "freeVibration.txt" ;

167 add load # 208 to node # (26+18*e) type path_time_series Fx=1/9.0*N series_file ←↩
= "freeVibration.txt" ;

168 add load # 209 to node # (27+18*e) type path_time_series Fx=1/36.0*N ←↩
series_file = "freeVibration.txt" ;

169 // add algorithm and solver
170 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
171 define algorithm With_no_convergence_check ;
172 define solver ProfileSPD;
173 simulate 100 steps using transient algorithm
174 time_step = 0.1*s;
175

176 // end
177 bye;

Displacement Results.
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Figure 707.15: Slow loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.16: Fast loading condition, vertical displacements of the cantilever tip.
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Figure 707.17: Free vibration condition, vertical displacements of the cantilever tip.
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 707.6. ELASTIC BEAM ELEMENT UNDER DYN . . . page: 3000 of 3287

707.6 Elastic Beam Element under Dynamic Loading with concentrated mass

Problem description:

0.2m

0.2m

Figure 707.18: The cantilever-mass model.

ESSI model fei/DSL file:

1 model name "beam-mass_1element" ;
2

3 // add node
4 add node # 1 at ( 0.0*m , 0.0*m, 0.0*m) with 6 dofs;
5 add node # 2 at ( 1.0*m , 0.0*m, 0.0*m) with 6 dofs;
6

7 // Geometry: width and height
8 b=0.2*m;
9 h=0.2*m;

10

11 // Materials: properties
12 natural_period = 1*s;
13 natural_frequency = 2*pi/natural_period;
14 elastic_constant = 1e9*N/m^2;
15 I=b*h^3/12.0;
16 A=b*h;
17 L=1*m;
18 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
19 possion_ratio=0.3;
20

21 // add elements
22 add element # 1 type beam_elastic with nodes (1,2)
23 cross_section = b*h
24 elastic_modulus = elastic_constant
25 shear_modulus = elastic_constant/2/(1+possion_ratio)
26 torsion_Jx = 0.33*b*h^3
27 bending_Iy = b*h^3/12
28 bending_Iz = b*h^3/12
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29 mass_density = rho
30 xz_plane_vector = ( 1, 0, 1)
31 joint_1_offset = (0*m, 0*m, 0*m)
32 joint_2_offset = (0*m, 0*m, 0*m);
33

34 // add boundary condition
35 fix node # 1 dofs all;
36

37 // add mass
38 beamMass=rho*A*L;
39 add mass to node # 2
40 mx = beamMass
41 my = beamMass
42 mz = beamMass
43 Imx = 0*beamMass*L^2
44 Imy = 0*beamMass*L^2
45 Imz = 0*beamMass*L^2;
46

47 // // ----------------------------------------------------------------------------
48 // // --slowLoading---------------------------------------------------------------
49 // // ----------------------------------------------------------------------------
50 // new loading stage "slowLoading";
51 // add load # 1 to node # 2 type path_time_series
52 // Fz = 1.*N
53 // series_file = "slowLoading.txt" ;
54 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
55 // define algorithm With_no_convergence_check ;
56 // define solver ProfileSPD;
57 // simulate 2000 steps using transient algorithm
58 // time_step = 0.1*s;
59

60 // // ----------------------------------------------------------------------------
61 // // --fastLoading---------------------------------------------------------------
62 // // ----------------------------------------------------------------------------
63 // remove load # 1;
64 // new loading stage "fastLoading";
65 // add load # 2 to node # 2 type path_time_series
66 // Fz = 1.*N
67 // series_file = "fastLoading.txt" ;
68 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
69 // define algorithm With_no_convergence_check ;
70 // define solver ProfileSPD;
71 // simulate 1000 steps using transient algorithm
72 // time_step = 0.01*s;
73

74 // // ----------------------------------------------------------------------------
75 // // --freeVibration-------------------------------------------------------------
76 // // ----------------------------------------------------------------------------
77 // remove load # 2;
78 new loading stage "freeVibration";
79 add load # 3 to node # 2 type path_time_series
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80 Fz = 1.*N
81 series_file = "freeVibration.txt" ;
82 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
83 define algorithm With_no_convergence_check ;
84 define solver ProfileSPD;
85 simulate 1000 steps using transient algorithm
86 time_step = 0.01*s;
87

88 bye;

Displacement results against time series
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Figure 707.19: Slow loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.20: Fast loading condition, vertical displacements of the cantilever tip.
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Figure 707.21: Free vibration condition, vertical displacements of the cantilever tip.
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707.7 Elastic Beam, 27 Node Brick Model With Concentrated Mass

Problem description:

0.2m

0.2m

Figure 707.22: The cantilever-mass model.

ESSI model fei/DSL file:

1 model name "brick-mass_1element" ;
2

3 // Geometry: width and height
4 b=0.2*m;
5 h=0.2*m;
6

7 // Materials: properties
8 natural_period = 1*s;
9 natural_frequency = 2*pi/natural_period;

10 elastic_constant = 1e9*N/m^2;
11 I=b*h^3/12.0;
12 A=b*h;
13 L=1*m;
14 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
15 possion_ratio=0.3;
16

17 add material # 1 type linear_elastic_isotropic_3d_LT
18 mass_density = rho
19 elastic_modulus = elastic_constant
20 poisson_ratio = possion_ratio;
21

22 add node # 1 at ( 0.0000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
23 add node # 2 at ( 0.0000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
24 add node # 3 at ( 1.0000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
25 add node # 4 at ( 1.0000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
26 add node # 5 at ( 0.0000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
27 add node # 6 at ( 1.0000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
28 add node # 7 at ( 1.0000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
29 add node # 8 at ( 0.0000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
30 add node # 9 at ( 0.0000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
31 add node # 10 at ( 0.5000 *m, 0.2000 *m, 0.0000 *m) with 3 dofs;
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32 add node # 11 at ( 1.0000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
33 add node # 12 at ( 0.5000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
34 add node # 13 at ( 0.0000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
35 add node # 14 at ( 0.5000 *m, 0.2000 *m, 0.2000 *m) with 3 dofs;
36 add node # 15 at ( 1.0000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
37 add node # 16 at ( 0.5000 *m, 0.0000 *m, 0.2000 *m) with 3 dofs;
38 add node # 17 at ( 0.0000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
39 add node # 18 at ( 0.0000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
40 add node # 19 at ( 1.0000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
41 add node # 20 at ( 1.0000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
42 add node # 21 at ( 0.5000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
43 add node # 22 at ( 0.0000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
44 add node # 23 at ( 0.5000 *m, 0.2000 *m, 0.1000 *m) with 3 dofs;
45 add node # 24 at ( 1.0000 *m, 0.1000 *m, 0.1000 *m) with 3 dofs;
46 add node # 25 at ( 0.5000 *m, 0.0000 *m, 0.1000 *m) with 3 dofs;
47 add node # 26 at ( 0.5000 *m, 0.1000 *m, 0.0000 *m) with 3 dofs;
48 add node # 27 at ( 0.5000 *m, 0.1000 *m, 0.2000 *m) with 3 dofs;
49

50 add element # 1 type 27NodeBrickLT with nodes( 2, 1, 3, 4, 5, 8, 7, 6, 9, 10, ←↩
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) use ←↩
material # 1;

51

52 fix node # 1 dofs all;
53 fix node # 2 dofs all;
54 fix node # 5 dofs all;
55 fix node # 8 dofs all;
56 fix node # 9 dofs all;
57 fix node # 13 dofs all;
58 fix node # 17 dofs all;
59 fix node # 18 dofs all;
60 fix node # 22 dofs all;
61

62

63 // Mapping from 3 dofs to 6 dofs.
64 add node # 1003 at ( 1.0000 *m, 0.2000 *m, 0.0000 *m) with 6 dofs;
65 add node # 1004 at ( 1.0000 *m, 0.0000 *m, 0.0000 *m) with 6 dofs;
66 add node # 1006 at ( 1.0000 *m, 0.0000 *m, 0.2000 *m) with 6 dofs;
67 add node # 1007 at ( 1.0000 *m, 0.2000 *m, 0.2000 *m) with 6 dofs;
68 // And connect the nodes at the same location.
69 add constraint equal dof with master node # 3 and slave node # 1003 dof to ←↩

constrain ux uy uz;
70 add constraint equal dof with master node # 4 and slave node # 1004 dof to ←↩

constrain ux uy uz;
71 add constraint equal dof with master node # 6 and slave node # 1006 dof to ←↩

constrain ux uy uz;
72 add constraint equal dof with master node # 7 and slave node # 1007 dof to ←↩

constrain ux uy uz;
73

74 add mass to node # 24 mx = rho*A*L my = rho*A*L mz = rho*A*L;
75

76 // add 6 beams to connect the mass
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77 smallb=0.01*m;
78 smallh=0.01*m;
79 smallE = 1e9*N/m^2;
80 smallnu=0.3;
81 smallrho=0*kg/m^3;
82 smallI=smallb*smallh^3/12.0;
83 add element # 11 type beam_elastic with nodes (1003,1004)
84 cross_section = smallb*smallh
85 elastic_modulus = smallE
86 shear_modulus = smallE/2/(1+smallnu)
87 torsion_Jx = 0.33*smallb*smallh^3
88 bending_Iy = smallI
89 bending_Iz = smallI
90 mass_density = smallrho
91 xz_plane_vector = ( 1, 0, 1)
92 joint_1_offset = (0*m, 0*m, 0*m)
93 joint_2_offset = (0*m, 0*m, 0*m);
94 add element # 12 type beam_elastic with nodes (1003,1006)
95 cross_section = smallb*smallh
96 elastic_modulus = smallE
97 shear_modulus = smallE/2/(1+smallnu)
98 torsion_Jx = 0.33*smallb*smallh^3
99 bending_Iy = smallI

100 bending_Iz = smallI
101 mass_density = smallrho
102 xz_plane_vector = ( 1, 0, 1)
103 joint_1_offset = (0*m, 0*m, 0*m)
104 joint_2_offset = (0*m, 0*m, 0*m);
105 add element # 13 type beam_elastic with nodes (1003,1007)
106 cross_section = smallb*smallh
107 elastic_modulus = smallE
108 shear_modulus = smallE/2/(1+smallnu)
109 torsion_Jx = 0.33*smallb*smallh^3
110 bending_Iy = smallI
111 bending_Iz = smallI
112 mass_density = smallrho
113 xz_plane_vector = ( 1, 0, 1)
114 joint_1_offset = (0*m, 0*m, 0*m)
115 joint_2_offset = (0*m, 0*m, 0*m);
116 add element # 14 type beam_elastic with nodes (1004,1006)
117 cross_section = smallb*smallh
118 elastic_modulus = smallE
119 shear_modulus = smallE/2/(1+smallnu)
120 torsion_Jx = 0.33*smallb*smallh^3
121 bending_Iy = smallI
122 bending_Iz = smallI
123 mass_density = smallrho
124 xz_plane_vector = ( 1, 0, 1)
125 joint_1_offset = (0*m, 0*m, 0*m)
126 joint_2_offset = (0*m, 0*m, 0*m);
127 add element # 15 type beam_elastic with nodes (1004,1007)
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128 cross_section = smallb*smallh
129 elastic_modulus = smallE
130 shear_modulus = smallE/2/(1+smallnu)
131 torsion_Jx = 0.33*smallb*smallh^3
132 bending_Iy = smallI
133 bending_Iz = smallI
134 mass_density = smallrho
135 xz_plane_vector = ( 1, 0, 1)
136 joint_1_offset = (0*m, 0*m, 0*m)
137 joint_2_offset = (0*m, 0*m, 0*m);
138 add element # 16 type beam_elastic with nodes (1006,1007)
139 cross_section = smallb*smallh
140 elastic_modulus = smallE
141 shear_modulus = smallE/2/(1+smallnu)
142 torsion_Jx = 0.33*smallb*smallh^3
143 bending_Iy = smallI
144 bending_Iz = smallI
145 mass_density = smallrho
146 xz_plane_vector = ( 1, 0, 1)
147 joint_1_offset = (0*m, 0*m, 0*m)
148 joint_2_offset = (0*m, 0*m, 0*m);
149

150

151 // // ----------------------------------------------------------------------------
152 // // --slowLoading---------------------------------------------------------------
153 // // add the 1 Newton load in 180 seconds.
154 // // ----------------------------------------------------------------------------
155 // new loading stage "slowLoading";
156 // add load # 1 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
157 // add load # 2 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
158 // add load # 3 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
159 // add load # 4 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"slowLoading.txt" ;
160 // add load # 5 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
161 // add load # 6 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
162 // add load # 7 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
163 // add load # 8 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩

"slowLoading.txt" ;
164 // add load # 9 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩

"slowLoading.txt" ;
165 // // add algorithm and solver
166 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
167 // define algorithm With_no_convergence_check ;
168 // define solver ProfileSPD;
169 // simulate 2000 steps using transient algorithm
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170 // time_step = 0.1*s;
171

172 // // ----------------------------------------------------------------------------
173 // // --fastLoading---------------------------------------------------------------
174 // // add the 1 Newton load in 0.6 seconds.
175 // // ----------------------------------------------------------------------------
176 // new loading stage "fastLoading";
177 // add load # 101 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
178 // add load # 102 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
179 // add load # 103 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
180 // add load # 104 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"fastLoading.txt" ;
181 // add load # 105 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
182 // add load # 106 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
183 // add load # 107 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
184 // add load # 108 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩

"fastLoading.txt" ;
185 // add load # 109 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩

"fastLoading.txt" ;
186 // // add algorithm and solver
187 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
188 // define algorithm With_no_convergence_check ;
189 // define solver ProfileSPD;
190 // simulate 1000 steps using transient algorithm
191 // time_step = 0.01*s;
192

193 // // ----------------------------------------------------------------------------
194 // // ←↩

--freeVibration---------------------------------------------------------------
195 // // ----------------------------------------------------------------------------
196 new loading stage "freeVibration";
197 add load # 201 to node # 4 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
198 add load # 202 to node # 6 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
199 add load # 203 to node # 3 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
200 add load # 204 to node # 7 type path_time_series Fz=1/36.0*N series_file = ←↩

"freeVibration.txt" ;
201 add load # 205 to node # 20 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
202 add load # 206 to node # 11 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
203 add load # 207 to node # 15 type path_time_series Fz=1/9.0*N series_file = ←↩

"freeVibration.txt" ;
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204 add load # 208 to node # 19 type path_time_series Fz=1/9.0*N series_file = ←↩
"freeVibration.txt" ;

205 add load # 209 to node # 24 type path_time_series Fz=4/9.0*N series_file = ←↩
"freeVibration.txt" ;

206 // add algorithm and solver
207 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
208 define algorithm With_no_convergence_check ;
209 define solver ProfileSPD;
210 simulate 100 steps using transient algorithm
211 time_step = 0.1*s;
212

213 // end
214 bye;

Displacement Results.
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Figure 707.23: Slow loading condition, vertical displacements of the cantilever tip.

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.24: Fast loading condition, vertical displacements of the cantilever tip.
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Figure 707.25: Free vibration condition, vertical displacements of the cantilever tip.
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707.8 Elastic Beam Element, Dynamic Loading, Viscous (Rayleigh/Caughey)

and Numerical (Newmark/HHT) Damping

Problem description:

0.2m

0.2m

Figure 707.26: The cantilever-mass model.

ESSI model fei/DSL file:

1 model name "beam_1element" ;
2

3 // add node
4 add node # 1 at ( 0.0*m , 0.0*m, 0.0*m) with 6 dofs;
5 add node # 2 at ( 1.0*m , 0.0*m, 0.0*m) with 6 dofs;
6

7 // Geometry: width and height
8 b=0.2*m;
9 h=0.2*m;

10

11 // Materials: properties
12 natural_period = 1*s;
13 natural_frequency = 2*pi/natural_period;
14 elastic_constant = 1e9*N/m^2;
15 I=b*h^3/12.0;
16 A=b*h;
17 L=1*m;
18 rho = (1.8751)^4*elastic_constant*I/(natural_frequency^2*L^4*A);
19 possion_ratio=0.3;
20

21 // add elements
22 add element # 1 type beam_elastic with nodes (1,2)
23 cross_section = b*h
24 elastic_modulus = elastic_constant
25 shear_modulus = elastic_constant/2/(1+possion_ratio)
26 torsion_Jx = 0.33*b*h^3
27 bending_Iy = b*h^3/12
28 bending_Iz = b*h^3/12
29 mass_density = rho
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30 xz_plane_vector = ( 1, 0, 1)
31 joint_1_offset = (0*m, 0*m, 0*m)
32 joint_2_offset = (0*m, 0*m, 0*m);
33

34 // add boundary condition
35 fix node # 1 dofs all;
36

37 // // ----------------------------------------------------------------------------
38 // // --no-damping-------------------------------------------------------------
39 // // ----------------------------------------------------------------------------
40 // new loading stage "no-damping";
41 // add load # 1 to node # 2 type path_time_series
42 // Fz = 1.*N
43 // series_file = "freeVibration.txt" ;
44 // define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
45 // define algorithm With_no_convergence_check ;
46 // define solver ProfileSPD;
47 // simulate 100 steps using transient algorithm
48 // time_step = 0.1*s;
49

50 // // ----------------------------------------------------------------------------
51 // // ←↩

--Newmark-damping-------------------------------------------------------------
52 // // ----------------------------------------------------------------------------
53 // remove load # 2;
54 // new loading stage "Newmark-damping";
55 // add load # 3 to node # 2 type path_time_series
56 // Fz = 1.*N
57 // series_file = "freeVibration.txt" ;
58 // define dynamic integrator Newmark with gamma = 0.6 beta = 0.3025;
59 // define algorithm With_no_convergence_check ;
60 // define solver ProfileSPD;
61 // simulate 100 steps using transient algorithm
62 // time_step = 0.1*s;
63 // // ----------------------------------------------------------------------------
64 // // --HHT-damping-------------------------------------------------------------
65 // // ----------------------------------------------------------------------------
66 // remove load # 3;
67 // new loading stage "HHT-damping";
68 // add load # 4 to node # 6 type path_time_series
69 // Fz = 1.*kN
70 // series_file = "freeVibration.txt" ;
71 // define dynamic integrator Hilber_Hughes_Taylor with alpha = -0.20;
72 // define algorithm With_no_convergence_check ;
73 // define solver ProfileSPD;
74 // simulate 300 steps using transient algorithm
75 // time_step = 0.1*s;
76 // // ----------------------------------------------------------------------------
77 // // ←↩

--Rayleigh-damping-------------------------------------------------------------
78 // // ----------------------------------------------------------------------------
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79 // remove load # 4;
80 // simulate using eigen algorithm number_of_modes = 2;
81 f1=0.996807/s;
82 f2=0.996807/s;
83 w1 = 2*pi*f1;
84 w2 = 2*pi*f2;
85 xi=0.05;
86 rayl_a1 = 2*xi/(w1 + w2);
87 rayl_a0 = rayl_a1*w1*w2;
88

89 add damping # 1 type Rayleigh with
90 a0 = rayl_a0
91 a1 = rayl_a1
92 stiffness_to_use = Initial_Stiffness;
93 add damping # 1 to element # 1;
94

95 new loading stage "Rayleigh-damping";
96 add load # 5 to node # 2 type path_time_series
97 Fz = 1.*N
98 series_file = "freeVibration.txt" ;
99 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;

100 define algorithm With_no_convergence_check ;
101 define solver ProfileSPD;
102 simulate 100 steps using transient algorithm
103 time_step = 0.1*s;
104

105 // // ----------------------------------------------------------------------------
106 // // --Caughey3rd-damping--------------------------------------------------------
107 // // ----------------------------------------------------------------------------
108 // add damping # 2 type Caughey3rd with
109 // a0 = 0.560523/s
110 // a1 = 0.0730746*s
111 // a2 = 0.000361559*s^3
112 // stiffness_to_use = Last_Committed_Stiffness;
113 // kk=1;
114 // while (kk<6) {
115 // add damping # 2 to element # kk;
116 // kk+=1;
117 // }
118 // new loading stage "Caughey3rd-damping";
119 // add load # 6 to node # 6 type path_time_series
120 // Fz = 10.*kN
121 // series_file = "freeVibration.txt" ;
122 // For Caughey3rd damping, we have to add some Newmark damping,
123 // Otherwise, there will be some high frequency noise.
124 // define dynamic integrator Newmark with gamma = 0.6 beta = 0.3025;
125 // define algorithm With_no_convergence_check ;
126 // define solver ProfileSPD;
127 // simulate 100 steps using transient algorithm
128 // time_step = 0.2*s;
129
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130

131 // // ----------------------------------------------------------------------------
132 // // --Caughey4th-damping--------------------------------------------------------
133 // // ----------------------------------------------------------------------------
134 // add damping # 2 type Caughey4th with
135 // a0 = 0.560523/s
136 // a1 = 0.0756472*s
137 // a2 = 0.000517195*s^3
138 // a3 = 1.20005*10^(-6)*s^5
139 // stiffness_to_use = Last_Committed_Stiffness;
140 // kk=1;
141 // while (kk<6) {
142 // add damping # 2 to element # kk;
143 // kk+=1;
144 // }
145 // new loading stage "Caughey4th-damping";
146 // add load # 6 to node # 6 type path_time_series
147 // Fz = 10.*kN
148 // series_file = "freeVibration.txt" ;
149 // For Caughey4th damping, we have to add some Newmark damping,
150 // Otherwise, there will be some high frequency noise.
151 // define dynamic integrator Newmark with gamma = 0.6 beta = 0.3025;
152 // define algorithm With_no_convergence_check ;
153 // define solver ProfileSPD;
154 // simulate 100 steps using transient algorithm
155 // time_step = 0.2*s;
156

157 bye;

Displacement results against time series

The ESSI model fei/DSL files for this example can be downloaded here.
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Figure 707.27: Free vibration condition, no damping, vertical displacements of the cantilever tip.
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Figure 707.28: Free vibration condition, viscous (Rayleigh) damping, vertical displacements of the can-

tilever tip.
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Figure 707.29: Free vibration condition, viscous (Caughey3rd) damping, vertical displacements of the

cantilever tip.
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Figure 707.30: Free vibration condition, viscous (Caughey4th) damping, vertical displacements of the

cantilever tip.
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Figure 707.31: Free vibration condition, numerical (Newmark) damping, vertical displacements of the

cantilever tip.
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Figure 707.32: Free vibration condition, numerical (HHT) damping, vertical displacements of the can-

tilever tip.
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707.9 Elastic Beam Element for a Simple Frame Structure

Problem Description

• Dimensions: hidth=6m, height=6m, force=100N

• Element dimensions: length=6m, cross section width=1m, cross section height=1m, mass density

ρ = 0.0kN/m3, Young’s modulus E = 1E8 Pa, Poisson’s ratio ν = 0.0.

Figure 707.33: Elastic frame with beam elastic elements.

ESSI model fei/DSL file:

1 model name "beam_element_presentation" ;
2

3 add node # 1 at ( 0.00*m, 0.00*m, 0.00*m) with 6 dofs;
4 add node # 2 at ( 0.00*m, 0.00*m, 6.00*m) with 6 dofs;
5 add node # 3 at ( 6.00*m, 0.00*m, 6.00*m) with 6 dofs;
6 add node # 4 at ( 6.00*m, 0.00*m, 0.00*m) with 6 dofs;
7

8 elastic_constant = 1e8*N/m^2;
9 b=1*m;

10 h=1*m;
11 rho = 0*kg/m^3; // Mass density
12

13 add element # 1 type beam_elastic with nodes (1, 2)
14 cross_section = b*h elastic_modulus = elastic_constant
15 shear_modulus = elastic_constant/2
16 torsion_Jx = 0.33*b*h^3 bending_Iy = b*h^3/12 bending_Iz = h*b^3/12
17 mass_density = rho xz_plane_vector = (1, 0, 1 )
18 joint_1_offset = (0*m, 0*m, 0*m ) joint_2_offset = (0*m, 0*m, 0*m );
19

20 add element # 2 type beam_elastic with nodes (2,3)
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21 cross_section = b*h elastic_modulus = elastic_constant
22 shear_modulus = elastic_constant/2
23 torsion_Jx = 0.33*b*h^3 bending_Iy = b*h^3/12 bending_Iz = h*b^3/12
24 mass_density = rho xz_plane_vector = (1, 0, 1 )
25 joint_1_offset = (0*m, 0*m, 0*m ) joint_2_offset = (0*m, 0*m, 0*m );
26

27 add element # 3 type beam_elastic with nodes (3,4)
28 cross_section = b*h elastic_modulus = elastic_constant
29 shear_modulus = elastic_constant/2
30 torsion_Jx = 0.33*b*h^3 bending_Iy = b*h^3/12 bending_Iz = h*b^3/12
31 mass_density = rho xz_plane_vector = (1, 0, 1 )
32 joint_1_offset = (0*m, 0*m, 0*m ) joint_2_offset = (0*m, 0*m, 0*m );
33

34 fix node #1 dofs all;
35 fix node #4 dofs all;
36

37 new loading stage "Fz";
38

39 add load # 1 to node # 2 type linear Fz=50*N;
40

41 define algorithm With_no_convergence_check;
42 define solver ProfileSPD;
43 define load factor increment 1;
44 simulate 1 steps using static algorithm;
45

46 bye;

The ESSI model fei/DSL files for this example can be downloaded here.
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707.10 27NodeBrick Cantilever Beam, Static Load

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0. The force direction is shown

in Figure (707.34).

Figure 707.34: Problem description for cantilever beam.

Numerical model:

The 27NodeBrick elements for cantilever beams is shown in Figure (707.35):

Figure 707.35: 27NodeBrick elements for cantilever beams made of solid elements.

ESSI model fei/DSL file:

1 model name "6meter_cantilever_27brick" ;
2

3 add material # 1 type linear_elastic_isotropic_3d
4 mass_density = 0*kg/m^3
5 elastic_modulus = 1e8*N/m^2
6 poisson_ratio = 0.0;
7

8 add node # 1 at ( 0.00 *m, 1.00 *m, 0.00 *m) with 3 dofs;
9 add node # 2 at ( 0.00 *m, 0.00 *m, 0.00 *m) with 3 dofs;
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 707.10. 27NODEBRICK CANTILEVER BEAM, S . . . page: 3021 of 3287

10 add node # 3 at ( 6.00 *m, 1.00 *m, 0.00 *m) with 3 dofs;
11 add node # 4 at ( 5.00 *m, 1.00 *m, 0.00 *m) with 3 dofs;
12 add node # 5 at ( 4.00 *m, 1.00 *m, 0.00 *m) with 3 dofs;
13 add node # 6 at ( 3.00 *m, 1.00 *m, 0.00 *m) with 3 dofs;
14 ...
15 ...
16 add node #117 at ( 5.50 *m, 0.50 *m, 1.00 *m) with 3 dofs;
17

18 add element # 1 type 27NodeBrickLT with nodes( 2, 10, 8, 1, 15, 17, 28, 23, 29, ←↩
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47) use ←↩
material # 1;

19 add element # 2 type 27NodeBrickLT with nodes( 10, 11, 7, 8, 17, 18, 27, 28, ←↩
48, 49, 50, 30, 51, 52, 53, 34, 38, 54, 55, 39, 56, 57, 58, 59, 43, 60, 61) ←↩
use material # 1;

20 add element # 3 type 27NodeBrickLT with nodes( 11, 12, 6, 7, 18, 19, 26, 27, ←↩
62, 63, 64, 49, 65, 66, 67, 52, 54, 68, 69, 55, 70, 71, 72, 73, 58, 74, 75) ←↩
use material # 1;

21 add element # 4 type 27NodeBrickLT with nodes( 12, 13, 5, 6, 19, 20, 25, 26, ←↩
76, 77, 78, 63, 79, 80, 81, 66, 68, 82, 83, 69, 84, 85, 86, 87, 72, 88, 89) ←↩
use material # 1;

22 add element # 5 type 27NodeBrickLT with nodes( 13, 14, 4, 5, 20, 21, 24, 25, ←↩
90, 91, 92, 77, 93, 94, 95, 80, 82, 96, 97, 83, 98, 99, 100, 101, 86, 102, ←↩
103) use material # 1;

23 add element # 6 type 27NodeBrickLT with nodes( 14, 9, 3, 4, 21, 16, 22, 24, ←↩
104, 105, 106, 91, 107, 108, 109, 94, 96, 110, 111, 97, 112, 113, 114, 115, ←↩
100, 116, 117) use material # 1;

24

25 fix node # 1 dofs all;
26 fix node # 2 dofs all;
27 fix node # 15 dofs all;
28 fix node # 23 dofs all;
29 fix node # 32 dofs all;
30 fix node # 36 dofs all;
31 fix node # 37 dofs all;
32 fix node # 40 dofs all;
33 fix node # 45 dofs all;
34

35 new loading stage "Fz";
36 add load # 1 to node # 13 type linear Fz=2.777778*N;
37 add load # 2 to node # 24 type linear Fz=2.777778*N;
38 add load # 3 to node # 3 type linear Fz=2.777778*N;
39 add load # 4 to node # 34 type linear Fz=2.777778*N;
40 add load # 5 to node # 182 type linear Fz=11.111111*N;
41 add load # 6 to node # 177 type linear Fz=11.111111*N;
42 add load # 7 to node # 180 type linear Fz=11.111111*N;
43 add load # 8 to node # 183 type linear Fz=11.111111*N;
44 add load # 9 to node # 186 type linear Fz=44.444444*N;
45

46 define algorithm With_no_convergence_check ;
47 define solver UMFPack;
48 define load factor increment 1;
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49 simulate 1 steps using static algorithm;
50

51 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.11 4NodeANDES Cantilever Beam, Force Perpendicular to Plane

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0.

Figure 707.36: Cantilever beams

Numerical model:

For a force direction perpendicular to the plane, only the bending deformation is present.

The model is shown in Figure (707.37).

Figure 707.37: 4NodeANDES elements for cantilever beams under force perpendicular to plane.

ESSI model fei/DSL file:

1 model name "6meter_cantilever_4NodeANDES" ;
2

3 add material # 1 type linear_elastic_isotropic_3d
4 mass_density = 0*kg/m^3
5 elastic_modulus = 1e8*N/m^2
6 poisson_ratio = 0.0;
7

8 add node # 1 at ( 0.0*m, 0.0*m, 0.0*m) with 6 dofs;
9 add node # 2 at ( 6.0*m, 0.0*m, 0.0*m) with 6 dofs;

10 add node # 3 at ( 1.0*m, 0.0*m, 0.0*m) with 6 dofs;
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11 add node # 4 at ( 2.0*m, 0.0*m, 0.0*m) with 6 dofs;
12 add node # 5 at ( 3.0*m, 0.0*m, 0.0*m) with 6 dofs;
13 add node # 6 at ( 4.0*m, 0.0*m, 0.0*m) with 6 dofs;
14 add node # 7 at ( 5.0*m, 0.0*m, 0.0*m) with 6 dofs;
15 add node # 8 at ( 6.0*m, 1.0*m, 0.0*m) with 6 dofs;
16 add node # 9 at ( 0.0*m, 1.0*m, 0.0*m) with 6 dofs;
17 add node # 10 at ( 5.0*m, 1.0*m, 0.0*m) with 6 dofs;
18 add node # 11 at ( 4.0*m, 1.0*m, 0.0*m) with 6 dofs;
19 add node # 12 at ( 3.0*m, 1.0*m, 0.0*m) with 6 dofs;
20 add node # 13 at ( 2.0*m, 1.0*m, 0.0*m) with 6 dofs;
21 add node # 14 at ( 1.0*m, 1.0*m, 0.0*m) with 6 dofs;
22

23 h = 1*m;
24 add element # 1 type 4NodeShell_ANDES with nodes (1,3,14,9) use material # 1 ←↩

thickness = h ;
25 add element # 2 type 4NodeShell_ANDES with nodes (3,4,13,14) use material # 1 ←↩

thickness = h ;
26 add element # 3 type 4NodeShell_ANDES with nodes (4,5,12,13) use material # 1 ←↩

thickness = h ;
27 add element # 4 type 4NodeShell_ANDES with nodes (5,6,11,12) use material # 1 ←↩

thickness = h ;
28 add element # 5 type 4NodeShell_ANDES with nodes (6,7,10,11) use material # 1 ←↩

thickness = h ;
29 add element # 6 type 4NodeShell_ANDES with nodes (7,2,8,10) use material # 1 ←↩

thickness = h ;
30

31 fix node # 1 dofs all ;
32 fix node # 9 dofs all ;
33

34 new loading stage "Fz";
35 add load # 1 to node # 8 type linear Fz=50*N;
36 add load # 2 to node # 2 type linear Fz=50*N;
37

38 define algorithm With_no_convergence_check ;
39 define solver ProfileSPD;
40 define load factor increment 1;
41 simulate 1 steps using static algorithm;
42

43 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.12 4NodeANDES Cantilever Beams, In-Plane Force

Problem description:

Length=6m, Width=1m, Height=1m, Force=100N, E=1E8Pa, ν = 0.0.

Figure 707.38: Problem description for cantilever beams with in plane force

Numerical model:

The 4NodeANDES elements under in-plane force is shown in Figure (707.39).

Figure 707.39: 4NodeANDES elements for cantilever beams under in-plane force

ESSI model fei/DSL file:

1 model name "6meter_cantilever_4NodeANDES" ;
2

3 add material # 1 type linear_elastic_isotropic_3d
4 mass_density = 0*kg/m^3
5 elastic_modulus = 1e8*N/m^2
6 poisson_ratio = 0.0;
7

8 add node # 1 at ( 0.00*m, 0.00*m, 0.00*m) with 6 dofs;
9 add node # 2 at ( 6.00*m, 0.00*m, 0.00*m) with 6 dofs;

10 add node # 3 at ( 1.00*m, 0.00*m, 0.00*m) with 6 dofs;
11 add node # 4 at ( 2.00*m, 0.00*m, 0.00*m) with 6 dofs;
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12 add node # 5 at ( 3.00*m, 0.00*m, 0.00*m) with 6 dofs;
13 add node # 6 at ( 4.00*m, 0.00*m, 0.00*m) with 6 dofs;
14 add node # 7 at ( 5.00*m, 0.00*m, 0.00*m) with 6 dofs;
15 add node # 8 at ( 6.00*m, 1.00*m, 0.00*m) with 6 dofs;
16 add node # 9 at ( 0.00*m, 1.00*m, 0.00*m) with 6 dofs;
17 add node # 10 at ( 5.00*m, 1.00*m, 0.00*m) with 6 dofs;
18 add node # 11 at ( 4.00*m, 1.00*m, 0.00*m) with 6 dofs;
19 add node # 12 at ( 3.00*m, 1.00*m, 0.00*m) with 6 dofs;
20 add node # 13 at ( 2.00*m, 1.00*m, 0.00*m) with 6 dofs;
21 add node # 14 at ( 1.00*m, 1.00*m, 0.00*m) with 6 dofs;
22

23 h = 1*m;
24 add element # 1 type 4NodeShell_ANDES with nodes (1,3,14,9) use material # 1 ←↩

thickness = h ;
25 add element # 2 type 4NodeShell_ANDES with nodes (3,4,13,14) use material # 1 ←↩

thickness = h ;
26 add element # 3 type 4NodeShell_ANDES with nodes (4,5,12,13) use material # 1 ←↩

thickness = h ;
27 add element # 4 type 4NodeShell_ANDES with nodes (5,6,11,12) use material # 1 ←↩

thickness = h ;
28 add element # 5 type 4NodeShell_ANDES with nodes (6,7,10,11) use material # 1 ←↩

thickness = h ;
29 add element # 6 type 4NodeShell_ANDES with nodes (7,2,8,10) use material # 1 ←↩

thickness = h ;
30

31 fix node # 1 dofs all;
32 fix node # 9 dofs all;
33

34 new loading stage "Fy";
35 add load # 1 to node # 8 type linear Fy=50*N;
36 add load # 2 to node # 2 type linear Fy=50*N;
37

38 define algorithm With_no_convergence_check ;
39 define solver ProfileSPD;
40 define load factor increment 1;
41 simulate 1 steps using static algorithm;
42

43 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.13 27NodeBrick Cantilever Beams, Dynamic Input

Problem description:

Length=20m, Width=1m, Height=1m, E=504MPa, ν = 0.4.

All degree of freedoms at the bottom nodes are fixed.

The load is a self weight with a dynamic displacement of supports.

Figure 707.40: Problem description for one simple dynamic example

Numerical model:

The numerical model applied 27NodeBrick to simulate the 1C (1 component) motion.

Figure 707.41: Numerical model for one simple dynamic example

ESSI model fei/DSL file:

1 model name "dynamic_example";
2

3 add material # 1 type linear_elastic_isotropic_3d_LT
4 mass_density = 2000*kg/m^3

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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5 elastic_modulus = 504000000.00*Pa
6 poisson_ratio = 0.4;
7

8 add node No 1 at (0*m, 0*m, 0*m) with 3 dofs;
9 add node No 2 at (0*m, 0.5*m, 0*m) with 3 dofs;

10 add node No 3 at (0*m, 1*m, 0*m) with 3 dofs;
11 add node No 4 at (0.5*m, 0*m, 0*m) with 3 dofs;
12 add node No 5 at (0.5*m, 0.5*m, 0*m) with 3 dofs;
13 add node No 6 at (0.5*m, 1*m, 0*m) with 3 dofs;
14 ...
15 ...
16 add node No 369 at (1*m, 1*m, 20*m) with 3 dofs;
17

18 add element # 1 type 27NodeBrickLT with nodes ←↩
(27,21,19,25,9,3,1,7,24,20,22,26,6,2,4,8,18,12,10,16,14,15,11,13,17,23,5) ←↩
use material # 1 ;

19 add element # 2 type 27NodeBrickLT with nodes ←↩
(45,39,37,43,27,21,19,25,42,38,40,44,24,20,22,26,36,30,28,34,32,33,29,31,35,41,23) ←↩
use material # 1 ;

20 add element # 3 type 27NodeBrickLT with nodes ←↩
(63,57,55,61,45,39,37,43,60,56,58,62,42,38,40,44,54,48,46,52,50,51,47,49,53,59,41) ←↩
use material # 1 ;

21 add element # 4 type 27NodeBrickLT with nodes ←↩
(81,75,73,79,63,57,55,61,78,74,76,80,60,56,58,62,72,66,64,70,68,69,65,67,71,77,59) ←↩
use material # 1 ;

22 add element # 5 type 27NodeBrickLT with nodes ←↩
(99,93,91,97,81,75,73,79,96,92,94,98,78,74,76,80,90,84,82,88,86,87,83,85,89,95,77) ←↩
use material # 1 ;

23 ...
24 ...
25 add element # 20 type 27NodeBrickLT with nodes ←↩

(369,363,361,367,351,345,343,349,366,362,364,368,348,
26 344,346,350,360,354,352,358,356,357,353,355,359,365,347) use material # 1 ;
27

28 add acceleration field # 1 ax = 0*g ay = 0*g az = -1*g ;
29 add load # 1 to element # 1 type self_weight use acceleration field # 1;
30 add load # 2 to element # 2 type self_weight use acceleration field # 1;
31 add load # 3 to element # 3 type self_weight use acceleration field # 1;
32 add load # 4 to element # 4 type self_weight use acceleration field # 1;
33 add load # 5 to element # 5 type self_weight use acceleration field # 1;
34 add load # 6 to element # 6 type self_weight use acceleration field # 1;
35 ...
36 ...
37 add load # 20 to element # 20 type self_weight use acceleration field # 1;
38

39 fix node No 1 dofs uy uz;
40 fix node No 2 dofs uy uz;
41 fix node No 3 dofs uy uz;
42 fix node No 4 dofs uy uz;
43 fix node No 5 dofs uy uz;
44 fix node No 6 dofs uy uz;
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45 ...
46 ...
47 fix node No 369 dofs uy uz;
48

49 zeta = 0.0166667;
50 fq1 = 3.75;
51 fq2 = 11.25;
52 omega1 = 2*pi*fq1;
53 omega2 = 2*pi*fq2;
54 zeta1 = zeta;
55 zeta2 = zeta;
56 alpha1 = ←↩

2*omega1*omega2*(zeta1*omega2-zeta2*omega1)/(omega2*omega2-omega1*omega1);
57 beta1 = 2* (zeta2*omega2-zeta1*omega1)/(omega2*omega2-omega1*omega1);
58 add damping # 1
59 type Rayleigh
60 with
61 a0 = alpha1/s
62 a1 = beta1*s
63 stiffness_to_use = Initial_Stiffness;
64

65 add damping # 1 to element # 1;
66 add damping # 1 to element # 2;
67 add damping # 1 to element # 3;
68 add damping # 1 to element # 4;
69 add damping # 1 to element # 5;
70 add damping # 1 to element # 6;
71 ...
72 ...
73 add damping # 1 to element # 20;
74

75 new loading stage "impose_motion";
76

77 add imposed motion # 1001 to node # 1 dof ux
78 displacement_scale_unit = 1*m displacement_file = "dis.txt"
79 velocity_scale_unit = 1*m/s velocity_file = "vel.txt"
80 acceleration_scale_unit = 1*m/s^2 acceleration_file = "acc.txt";
81

82 add imposed motion # 1002 to node # 2 dof ux
83 displacement_scale_unit = 1*m displacement_file = "dis.txt"
84 velocity_scale_unit = 1*m/s velocity_file = "vel.txt"
85 acceleration_scale_unit = 1*m/s^2 acceleration_file = "acc.txt";
86

87 add imposed motion # 1003 to node # 3 dof ux
88 displacement_scale_unit = 1*m displacement_file = "dis.txt"
89 velocity_scale_unit = 1*m/s velocity_file = "vel.txt"
90 acceleration_scale_unit = 1*m/s^2 acceleration_file = "acc.txt";
91 ...
92 ...
93 add imposed motion # 1009 to node # 9 dof ux
94 displacement_scale_unit = 1*m displacement_file = "dis.txt"
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95 velocity_scale_unit = 1*m/s velocity_file = "vel.txt"
96 acceleration_scale_unit = 1*m/s^2 acceleration_file = "acc.txt";
97

98 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
99 define algorithm With_no_convergence_check;

100 define solver ProfileSPD;
101 simulate 50 steps using transient algorithm time_step = 0.005*s;
102

103 bye;

The ESSI model fei/DSL files for this example can be downloaded here.
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707.14 4NodeANDES Square Plate, Four Edges Clamped

Problem description:

Length=20m, Width=20m, Height=1m, Force=100N, E=1E8Pa, ν = 0.3.

The four edges are clamped.

The load is a self weight.

Figure 707.42: Square plate with four edges clamped

Numerical model:

The element side length is 1 meter.

ESSI model fei/DSL file:

1 model name "square_plate" ;
2

3 add material # 1 type linear_elastic_isotropic_3d
4 mass_density = 1e2*kg/m^3 elastic_modulus = 1e8*N/m^2 poisson_ratio = 0.3;
5

6 add node # 1 at ( 0.00*m, 0.00*m, 0.00*m) with 6 dofs;
7 add node # 2 at ( 20.00*m, 0.00*m, 0.00*m) with 6 dofs;
8 add node # 3 at ( 1.00*m, 0.00*m, 0.00*m) with 6 dofs;
9 add node # 4 at ( 2.00*m, 0.00*m, 0.00*m) with 6 dofs;

10 add node # 5 at ( 3.00*m, 0.00*m, 0.00*m) with 6 dofs;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 707.43: 4NodeANDES edge clamped square plate with element side length 1m

11 add node # 6 at ( 4.00*m, 0.00*m, 0.00*m) with 6 dofs;
12 ...
13 ...
14 add node # 441 at ( 19.00*m, 19.00*m, 0.00*m) with 6 dofs;
15

16 h = 1*m;
17 add element # 1 type 4NodeShell_ANDES with nodes( 1, 3, 81, 80) use material # ←↩

1 thickness=h;
18 add element # 2 type 4NodeShell_ANDES with nodes( 3, 4, 100, 81) use material # ←↩

1 thickness=h;
19 add element # 3 type 4NodeShell_ANDES with nodes( 4, 5, 119, 100) use material ←↩

# 1 thickness=h;
20 add element # 4 type 4NodeShell_ANDES with nodes( 5, 6, 138, 119) use material ←↩

# 1 thickness=h;
21 add element # 5 type 4NodeShell_ANDES with nodes( 6, 7, 157, 138) use material ←↩

# 1 thickness=h;
22 add element # 6 type 4NodeShell_ANDES with nodes( 7, 8, 176, 157) use material ←↩

# 1 thickness=h;
23 ...
24 ...
25 add element # 400 type 4NodeShell_ANDES with nodes( 441, 41, 22, 43) use ←↩

material # 1 thickness=h;
26

27

28 fix node # 1 dofs all ;
29 fix node # 2 dofs all ;
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30 fix node # 3 dofs all ;
31 fix node # 4 dofs all ;
32 fix node # 5 dofs all ;
33 fix node # 6 dofs all ;
34 ...
35 ...
36 fix node # 80 dofs all ;
37

38

39 new loading stage "self_weight";
40 add acceleration field # 1 ax = 0*g ay = 0*g az = 1*m/s^2;
41 add load # 1 to element # 1 type self_weight use acceleration field # 1;
42 add load # 2 to element # 2 type self_weight use acceleration field # 1;
43 add load # 3 to element # 3 type self_weight use acceleration field # 1;
44 add load # 4 to element # 4 type self_weight use acceleration field # 1;
45 add load # 5 to element # 5 type self_weight use acceleration field # 1;
46 add load # 6 to element # 6 type self_weight use acceleration field # 1;
47 ...
48 ...
49 add load # 400 to element # 400 type self_weight use acceleration field # 1;
50

51

52 define algorithm With_no_convergence_check ;
53 define solver ProfileSPD;
54 define load factor increment 1;
55 simulate 1 steps using static algorithm;
56

57 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ć

e
t

a
l
.
,

R
e
a
l
-
E
S
S
I

ESSI Notes 707.15. ONE DIMENSIONAL DRM MODEL page: 3034 of 3287

707.15 One Dimensional DRM Model

Problem description:

A simple 1D DRM model is shown in Fig.(707.44). The ”DRM element”, ”Exterior node” and

”Boundary node” are required to be designated in the DRM HDF5 input. The format and script for the

HDF5 input is available in DSL/input manual.

Figure 707.44: 1D DRM model.

Numerical model:

ESSI model fei/DSL file:

1 model name "DRM" ;
2

3 //Material for soil
4 add material # 1 type linear_elastic_isotropic_3d_LT
5 mass_density = 2000*kg/m^3
6 elastic_modulus = 1300*MPa
7 poisson_ratio = 0.3;
8

9 //Material for DRM layer
10 add material # 2 type linear_elastic_isotropic_3d_LT
11 mass_density = 2000*kg/m^3
12 elastic_modulus = 1300*MPa
13 poisson_ratio = 0.3;
14

15 //Material for exterior layer
16 add material # 3 type linear_elastic_isotropic_3d_LT
17 mass_density = 2000*kg/m^3
18 elastic_modulus = 1300*MPa
19 poisson_ratio = 0.3;
20 //

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 707.45: 1D DRM model.

21 add node # 1 at ( 0.00*m, 0.00*m, 0.00*m) with 3 dofs;
22 add node # 2 at ( 5.00*m, 0.00*m, 0.00*m) with 3 dofs;
23 add node # 3 at ( 5.00*m, 5.00*m, 0.00*m) with 3 dofs;
24 add node # 4 at ( 0.00*m, 5.00*m, 0.00*m) with 3 dofs;
25 add node # 5 at ( 5.00*m, 0.00*m, 50.00*m) with 3 dofs;
26 add node # 6 at ( 5.00*m, 0.00*m, 5.00*m) with 3 dofs;
27 ...
28 ...
29 add node # 52 at ( 0.00*m, 5.00*m, -5.00*m) with 3 dofs;
30

31 //
32 add element # 1 type 8NodeBrickLT with nodes( 1, 4, 3, 2, 24, 44, 34, 6) use ←↩

material # 1;
33 add element # 2 type 8NodeBrickLT with nodes( 24, 44, 34, 6, 23, 43, 33, 7) use ←↩

material # 1;
34 ...
35 add element # 12 type 8NodeBrickLT with nodes( 48, 47, 45, 46, 52, 51, 49, 50) ←↩

use material # 3;
36

37 //
38 fix node # 1 dofs uy ;
39 fix node # 1 dofs uz ;
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40 fix node # 2 dofs uy ;
41 fix node # 2 dofs uz ;
42 fix node # 3 dofs uy ;
43 fix node # 3 dofs uz ;
44 fix node # 4 dofs uy ;
45 fix node # 4 dofs uz ;
46 ...
47 fix node # 51 dofs ux ;
48

49

50 new loading stage "1D";
51 add domain reduction method loading # 1
52 hdf5_file = "input.hdf5";
53

54 define algorithm With_no_convergence_check ;
55 define solver ProfileSPD;
56 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
57 simulate 999 steps using transient algorithm time_step = 0.01*s;
58

59 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

The same model for this example with 27NodeBrickLT can be downloaded here.

Long 1D DRM model 1000:1

To show the wave propagation explicitly, a long 1D model (1000:1) similar to the 1D DRM model

above was made in this section.

The model description is same to Fig.(707.44) except this model use far more soil elements.

The general view is shown in Fig.(707.46) below.

There is still now outgoing waves at the exterior layers, which is shown in Fig(707.47).

The ESSI model fei/DSL files for this example can be downloaded here.

The results can also be seen in this animation.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 707.46: Long 1D DRM model

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Figure 707.47: Long 1D DRM model: exterior layer
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707.16 Three Dimensional DRM Model

Problem description:

As shown in Fig.(707.48), the DRM layer is used to add the earthquake motion.

Figure 707.48: The diagram for 3D Domain Reduction Method example.

Numerical result:

ESSI model fei/DSL file:

1 model name "DRM" ;
2

3 //Material for soil
4 add material # 1 type linear_elastic_isotropic_3d_LT
5 mass_density = 2000*kg/m^3
6 elastic_modulus = 1300*MPa
7 poisson_ratio = 0.3;
8

9 //Material for DRM layer
10 add material # 2 type linear_elastic_isotropic_3d_LT
11 mass_density = 2000*kg/m^3
12 elastic_modulus = 1300*MPa
13 poisson_ratio = 0.3;
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Figure 707.49: Diagram for the 3D DRM model.

14

15 //Material for exterior layer
16 add material # 3 type linear_elastic_isotropic_3d_LT
17 mass_density = 2000*kg/m^3
18 elastic_modulus = 1300*MPa
19 poisson_ratio = 0.3;
20

21 //
22 add node # 1 at ( 0.00*m, 0.00*m, 0.00*m) with 3 dofs;
23 add node # 2 at ( 50.00*m, 0.00*m, 0.00*m) with 3 dofs;
24 add node # 3 at ( 5.00*m, 0.00*m, 0.00*m) with 3 dofs;
25 add node # 4 at ( 10.00*m, 0.00*m, 0.00*m) with 3 dofs;
26 add node # 5 at ( 15.00*m, 0.00*m, 0.00*m) with 3 dofs;
27 add node # 6 at ( 20.00*m, 0.00*m, 0.00*m) with 3 dofs;
28 add node # 7 at ( 25.00*m, 0.00*m, 0.00*m) with 3 dofs;
29 ...
30 ...
31 add node # 2925 at ( 55.00*m, 55.00*m, -5.00*m) with 3 dofs;
32

33 //
34 add element # 1 type 8NodeBrickLT with nodes( 1, 40, 41, 3, 150, 441, 603, 151) ←↩
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use material # 1;
35 add element # 2 type 8NodeBrickLT with nodes( 3, 41, 50, 4, 151, 603, 684, 160) ←↩

use material # 1;
36 ...
37 add element # 2352 type 8NodeBrickLT with nodes( 2925, 2924, 2922, 2923, 2921, ←↩

2920, 2918, 2919) use material # 3;
38

39 //
40 fix node # 1332 dofs all ;
41 fix node # 1334 dofs all ;
42 ...
43 ...
44 fix node # 2924 dofs all ;
45

46 new loading stage "3D";
47 add domain reduction method loading # 1
48 hdf5_file = "input.hdf5";
49

50 define algorithm With_no_convergence_check ;
51 define solver ProfileSPD;
52 define dynamic integrator Newmark with gamma = 0.5 beta = 0.25;
53

54 simulate 999 steps using transient algorithm time_step = 0.01*s;
55

56 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

The same model for this example with 27NodeBrickLT can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.17 ShearBeam Element, Pisano Material

Problem description:

In the element type ”ShearBeamLT”, only one Gauss point exists. ShearBeamLT element was used

here to test the Pisanó material model.

Vertical force Fz was used to apply confinement to the element. Then, cyclic force Fx is used to

load. point.

Figure 707.50: ShearBeam element.

Results

Resulting stress-strain relationship is shown in Fig.(707.51).

ESSI model fei/DSL file:

1 model name "pisanoLT";
2

3 add node # 1 at (0*m,0*m,0*m) with 3 dofs;
4 add node # 2 at (0*m,0*m,1*m) with 3 dofs;
5

6 fix node # 1 dofs all;
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Figure 707.51: Shear stress-strain response.

7 fix node # 2 dofs uy;
8

9 add material # 1 type New_PisanoLT
10 mass_density = 2000*kg/m^3
11 elastic_modulus_1atm = 325*MPa poisson_ratio = 0.3
12 M_in = 1.4 kd_in = 0.0 xi_in = 0.0 h_in = 700 m_in = 0.7
13 initial_confining_stress = 0*kPa n_in = 0 a_in = 0.0 eplcum_cr_in = 1e-6;
14

15 add element # 1 type ShearBeamLT with nodes (1, 2) \
16 cross_section = 1*m^2 use material # 1;
17

18 new loading stage "confinement";
19

20 add load # 1 to node # 2 type linear Fz = -200*kN;
21 define load factor increment 0.01;
22 define algorithm With_no_convergence_check ;
23 define solver UMFPack;
24 simulate 100 steps using static algorithm;
25

26 new loading stage "test01";
27 gamma_max = 3e-3;
28 add imposed motion # 2 to node # 2 dof ux
29 displacement_scale_unit = gamma_max*m displacement_file = "input_sine.txt"
30 velocity_scale_unit = gamma_max*m/s velocity_file = "input_sine.txt"
31 acceleration_scale_unit = gamma_max*m/s^2 acceleration_file = "input_sine.txt";
32

33 define load factor increment 0.0005;
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 707.17. SHEARBEAM ELEMENT, PISANO MAT . . . page: 3044 of 3287

34 define algorithm With_no_convergence_check;
35 define solver UMFPack;
36 simulate 2000 steps using static algorithm;
37

38 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.18 8NodeBrickLT Element, Drucker-Prager Material, Armstrong-Frederick

Rotational Kinematic Hardening

Problem description:

This example is used to test the materials properties, such as G/Gmax against strains. The element

type is 8NodeBrickLT. And there are two stages of loading. The first loading stage is confinement and

the second loading stage is shearing.

The boundary condition is specially designed such that each Gauss point has the same stress state.

Results

Resulting stress-strain relationship is shown in Fig.(707.52).
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Figure 707.52: Shear stress-strain response.

ESSI model fei/DSL file:

1 // Drucker Prager Armstrong Frederick
2 // This model is created by Jose.
3 model name "druckeraf";
4

5 // Parameters:
6 phi = 5;
7 ha = 1000;
8 cr = 973;
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9 gam = 0.01;
10 Ncyc = 5;
11 Nsteps = 1000;
12 H=1;
13 vp=1000*m/s;
14 vs=500*m/s;
15 rho=2000*kg/m^3;
16 p0 = 250*kPa;
17 G = rho*vs^2;
18 M = rho*vp^2;
19

20 E = G*(3*M-4*G)/(M-G);
21 nu = (M-2*G)/(2*M-2*G);
22

23 K0 = 1.0;
24 phirad = pi*phi/180;
25 M = 6*sin(phirad)/(3-sin(phirad));
26

27 // Define the material:
28 add material # 1 type DruckerPragerArmstrongFrederickLT
29 mass_density = 0*kg/m^3
30 elastic_modulus = E
31 poisson_ratio = nu
32 druckerprager_k = M
33 armstrong_frederick_ha = ha*Pa
34 armstrong_frederick_cr = cr*Pa
35 isotropic_hardening_rate = 0*E
36 initial_confining_stress = 1*Pa;
37

38 // define the node:
39 add node # 1 at (0*m,0*m,1*m) with 3 dofs;
40 add node # 2 at (1*m,0*m,1*m) with 3 dofs;
41 add node # 3 at (1*m,1*m,1*m) with 3 dofs;
42 add node # 4 at (0*m,1*m,1*m) with 3 dofs;
43

44 add node # 5 at (0*m,0*m,0*m) with 3 dofs;
45 add node # 6 at (1*m,0*m,0*m) with 3 dofs;
46 add node # 7 at (1*m,1*m,0*m) with 3 dofs;
47 add node # 8 at (0*m,1*m,0*m) with 3 dofs;
48

49 // add equal degree of freedom in three directions
50 add constraint equal dof with master node # 2 and slave node # 3 dof to ←↩

constrain ux;
51 add constraint equal dof with master node # 2 and slave node # 6 dof to ←↩

constrain ux;
52 add constraint equal dof with master node # 2 and slave node # 7 dof to ←↩

constrain ux;
53

54 add constraint equal dof with master node # 3 and slave node # 4 dof to ←↩
constrain uy;

55 add constraint equal dof with master node # 3 and slave node # 8 dof to ←↩
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constrain uy;
56 add constraint equal dof with master node # 3 and slave node # 7 dof to ←↩

constrain uy;
57

58 add constraint equal dof with master node # 1 and slave node # 2 dof to ←↩
constrain uz;

59 add constraint equal dof with master node # 1 and slave node # 3 dof to ←↩
constrain uz;

60 add constraint equal dof with master node # 1 and slave node # 4 dof to ←↩
constrain uz;

61

62 // Define the element.
63 add element # 1 type 8NodeBrickLT with nodes (1, 2,3 , 4, 5, 6,7, 8) use ←↩

material # 1;
64

65 new loading stage "confinement";
66 fix node # 1 dofs ux uy;
67 fix node # 2 dofs uy;
68 fix node # 4 dofs ux;
69

70 fix node # 5 dofs ux uy uz;
71 fix node # 6 dofs uy uz;
72 fix node # 7 dofs uz;
73 fix node # 8 dofs ux uz;
74

75 sigma_z = -3*p0/(1+2*K0);
76 sigma_x = K0*sigma_z;
77 sigma_y = K0*sigma_z;
78

79 //Z-face
80 add load # 1 to node # 1 type linear Fz = sigma_z*m^2/4;
81 add load # 2 to node # 2 type linear Fz = sigma_z*m^2/4;
82 add load # 3 to node # 3 type linear Fz = sigma_z*m^2/4;
83 add load # 4 to node # 4 type linear Fz = sigma_z*m^2/4;
84

85 //X-face
86 add load # 5 to node # 2 type linear Fx = sigma_x*m^2/4;
87 add load # 6 to node # 6 type linear Fx = sigma_x*m^2/4;
88 add load # 7 to node # 7 type linear Fx = sigma_x*m^2/4;
89 add load # 8 to node # 3 type linear Fx = sigma_x*m^2/4;
90

91 add load # 9 to node # 3 type linear Fy = sigma_y*m^2/4;
92 add load # 10 to node # 7 type linear Fy = sigma_y*m^2/4;
93 add load # 11 to node # 8 type linear Fy = sigma_y*m^2/4;
94 add load # 12 to node # 4 type linear Fy = sigma_y*m^2/4;
95

96 Nsteps_static=100;
97 define load factor increment 1/Nsteps_static;
98

99 define solver UMFPack;
100 define convergence test Norm_Displacement_Increment
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101 tolerance = 1e-6
102 maximum_iterations = 100
103 verbose_level = 4;
104 define algorithm Newton ;
105

106 define NDMaterialLT constitutive integration algorithm Euler_One_Step
107 yield_function_relative_tolerance = 0.002
108 stress_relative_tolerance = 0.002
109 maximum_iterations = 1000;
110

111 simulate Nsteps_static steps using static algorithm;
112

113

114 new loading stage "shearing";
115 compute reaction forces;
116 add load # 13 to node # 1 type from_reactions;
117 add load # 14 to node # 4 type from_reactions;
118

119 free node # 1 dofs ux;
120 free node # 4 dofs ux;
121 fix node # 3 dofs uy;
122 fix node # 6 dofs ux;
123 fix node # 7 dofs ux uy;
124 fix node # 8 dofs uy;
125

126 add constraint equal dof with master node # 1 and slave node # 3 dof to ←↩
constrain ux;

127 add constraint equal dof with master node # 1 and slave node # 4 dof to ←↩
constrain ux;

128 add constraint equal dof with master node # 1 and slave node # 2 dof to ←↩
constrain ux;

129 remove constraint equaldof node # 6;
130 remove constraint equaldof node # 7;
131 remove constraint equaldof node # 8;
132

133 n = 1;
134 while(n<=1)
135 {
136 add load # 14+n to node # n type path_time_series
137 Fx = 170.*kN
138 series_file = "path.txt";
139 n+=1;
140 }
141

142 define load factor increment 1/Nsteps;
143

144 define solver UMFPack;
145 define convergence test Norm_Displacement_Increment
146 tolerance = 1e-5
147 maximum_iterations = 100
148 verbose_level = 4;
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149 define algorithm Newton ;
150

151 define NDMaterialLT constitutive integration algorithm Euler_One_Step
152 yield_function_relative_tolerance = 0.0002
153 stress_relative_tolerance = 0.002
154 maximum_iterations = 1000;
155

156 simulate Ncyc*Nsteps steps using static algorithm;
157

158 bye;

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.19 Contact Element Under Static Loading

Two Bar Normal Contact Problem Under Monotonic Loading.

This is an example of normal monotonic loading on a 1-D contact/interface between two bars

separated by an initial gap of 0.1 unit. An illustrative diagram of the problem statement is shown below.

Figure 707.53: Illustration of Two Bar Normal Contact Problem under monotonic loading with intial

gap

ESSI model fei/DSL file:

1 model name "Two_Bar_Contact_Under_Normal_Monotonic_Loading" ;
2

3 // Adding material
4 add material #1 type uniaxial_elastic elastic_modulus = 1*Pa ←↩

viscoelastic_modulus = 0*Pa*s;
5

6 // Adding Nodes
7 add node #1 at (0*m,0*m,0*m) with 3 dofs;
8 add node #2 at (1*m,0*m,0*m) with 3 dofs;
9 add node #3 at (1.1*m,0*m,0*m) with 3 dofs;

10 add node #4 at (2.1*m,0*m,0*m) with 3 dofs;
11

12 // Adding Fixities
13 fix node #1 dofs ux uy uz;
14 fix node #4 dofs ux uy uz;
15 fix node #2 dofs uy uz ;
16 fix node #3 dofs uy uz ;
17

18 // Adding Truss Elements
19 add element #1 type truss with nodes (1,2) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
20 add element #2 type truss with nodes (3,4) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
21

22 // Adding Contact Element
23 add element #3 type FrictionalPenaltyContact with nodes (2,3)
24 normal_stiffness =1e10*N/m
25 tangential_stiffness = 1e10*Pa*m
26 normal_damping = 0*kN/m*s
27 tangential_damping = 0*kN/m*s
28 friction_ratio = 0.3
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29 contact_plane_vector = (1,0,0);
30

31 new loading stage "Adding_Normal_Load";
32

33 add load #1 to node #2 type linear Fx = 0.3*N;
34

35 Nsteps = 10;
36

37 tol = 5e-12;
38 define convergence test Norm_Displacement_Increment
39 tolerance = tol
40 maximum_iterations = 10
41 verbose_level = 4;
42

43 define algorithm Newton;
44 define solver UMFPack;
45

46 define load factor increment 1/Nsteps;
47 simulate Nsteps steps using static algorithm;
48

49 bye;

The displacement output of Node 2 and Node 3 are shown below.

Figure 707.54: Displacemnet of Nodes 2 and 3

The ESSI model fei/DSL files for this example can be downloaded here.
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707.20 Four Bar Contact Problem With Normal and Shear Force Under Mono-

tonic Loading

This is an example to show the normal and tangential behaviour (stick and slip case) of contacts/inter-

faces using four bars in 2-D plane. The bars in x-directions are in contact (initial gap=0).

Figure 707.55: Illustration of Four Bar Normal Contact Problem With Normal and Shear Force Under

Monotonic Loading with no initial gap

ESSI model fei/DSL file:
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1 model name "Four_Bar_Contact_Under_Monotonic_Normal_and_Shear_Loading";
2

3 // Adding material
4 add material #1 type uniaxial_elastic elastic_modulus = 1*Pa ←↩

viscoelastic_modulus = 0*Pa*s;
5

6 // Adding Nodes
7 add node #1 at (0*m,0*m,0*m) with 3 dofs;
8 add node #2 at (1*m,0*m,0*m) with 3 dofs;
9 add node #3 at (1*m,0*m,0*m) with 3 dofs;

10 add node #4 at (2*m,0*m,0*m) with 3 dofs;
11 add node #5 at (1*m,-1*m,0*m) with 3 dofs;
12 add node #6 at (1*m,1*m,0*m) with 3 dofs;
13

14 // Adding Truss Elements
15 add element #1 type truss with nodes (1,2) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
16 add element #2 type truss with nodes (3,4) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
17 add element #3 type truss with nodes (3,5) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
18 add element #4 type truss with nodes (2,6) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
19

20 // Adding Contact Element
21 add element #5 type FrictionalPenaltyContact with nodes (2,3)
22 normal_stiffness = 1e12*N/m
23 tangential_stiffness = 1e12*N/m
24 normal_damping = 0*N/m*s
25 tangential_damping = 0*N/m*s
26 friction_ratio = 0.4
27 contact_plane_vector = (1,0,0);
28

29 // Adding Fixities
30 fix node #1 dofs ux uy uz ;
31 fix node #4 dofs ux uy uz ;
32 fix node #5 dofs ux uy uz ;
33 fix node #6 dofs ux uy uz ;
34 fix node #2 dofs uz ;
35 fix node #3 dofs uz ;
36

37 new loading stage "Normal_Loading";
38

39 add load #1 to node #2 type linear Fx = 0.1*N;
40

41 tol = 1e-10;
42 define convergence test Norm_Displacement_Increment
43 tolerance = tol
44 maximum_iterations = 10
45 verbose_level = 4;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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46

47 define algorithm Newton;
48

49 Nsteps= 10;
50 define solver UMFPack;
51 define load factor increment 1/Nsteps;
52 simulate Nsteps steps using static algorithm;
53

54 new loading stage "Shear_Loading";
55

56 add load #2 to node #2 type linear Fy = 0.2*N;
57

58 tol = 1e-10;
59 define convergence test Norm_Displacement_Increment
60 tolerance = tol
61 maximum_iterations = 10
62 verbose_level = 4;
63

64 define algorithm Newton;
65

66 Nsteps= 100;
67 define solver UMFPack;
68 define load factor increment 1/Nsteps;
69 simulate Nsteps steps using static algorithm;
70

71 bye;

The displacement output of Node 2 and Node 3 are shown below.

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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Figure 707.56: Displacemnet of Nodes 2 and 3 along y direction
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707.21 3-D Truss example with normal confinement and Shear Loading

A simple 3-D truss example with Normal confinement in z-direction of FN = 0.5N , friction coefficient

µ = 0.2 and shear loading of magnitude Fs = 0.5N . Figure 707.57 below, shows the description of the

problem.

Figure 707.57: Illustration of 3-D Truss Problem with confinement loading in z-direction of 0.5N and

then shear loading of 0.5N in x-y plane

ESSI model fei/DSL file:

1 model name "3-D_Contact_Under_Normal_And_Tangential_Loading" ;
2

3 // Adding material
4 add material #1 type uniaxial_elastic elastic_modulus = 1*Pa ←↩

viscoelastic_modulus = 0*Pa*s;
5

6 // Adding Nodes
7 add node #1 at (0*m,0*m,0*m) with 3 dofs;
8 add node #2 at (0*m,0*m,0*m) with 3 dofs;
9 add node #3 at (-1*m,0*m,0*m) with 3 dofs;

10 add node #4 at (0*m,1*m,0*m) with 3 dofs;
11 add node #5 at (0*m,0*m,1*m) with 3 dofs;
12

13 // Adding Fixities
14 fix node #1 dofs ux uy uz;
15 fix node #3 dofs ux uy uz;
16 fix node #4 dofs ux uy uz;
17 fix node #5 dofs ux uy uz;
18

19 // Adding Truss Elements
20 add element #1 type truss with nodes (2,3) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
21 add element #2 type truss with nodes (2,4) use material # 1 cross_section = ←↩

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 707.21. 3-D TRUSS EXAMPLE WITH NORMAL . . . page: 3057 of 3287

1*m^2 mass_density = 1*kg/m^3;
22 add element #3 type truss with nodes (2,5) use material # 1 cross_section = ←↩

1*m^2 mass_density = 1*kg/m^3;
23

24 // Adding Contact Element
25 add element #4 type FrictionalPenaltyContact with nodes (1,2)
26 normal_stiffness =1e10*N/m
27 tangential_stiffness = 1e10*Pa*m
28 normal_damping = 0*kN/m*s
29 tangential_damping = 0*kN/m*s
30 friction_ratio = 0.2
31 contact_plane_vector = (0,0,1);
32

33 new loading stage "Adding_Normal_Load";
34

35 add load #1 to node #2 type linear Fz = -0.5*N;
36

37 Nsteps = 1;
38

39 tol = 1e-10;
40 define convergence test Norm_Displacement_Increment
41 tolerance = tol
42 maximum_iterations = 1
43 verbose_level = 4;
44

45 define algorithm Newton;
46 define solver UMFPack;
47

48 define load factor increment 1/Nsteps;
49 simulate Nsteps steps using static algorithm;
50

51 new loading stage "Shear_Loading";
52

53 add load #2 to node #2 type linear Fx = 0.4;
54 add load #3 to node #2 type linear Fy = 0.3;
55

56 tol = 1e-12;
57 define convergence test Norm_Displacement_Increment
58 tolerance = tol
59 maximum_iterations = 10
60 verbose_level = 4;
61

62 define algorithm Newton;
63

64 Nsteps= 20;
65 define solver UMFPack;
66 define load factor increment 1/Nsteps;
67 simulate Nsteps steps using static algorithm;
68

69 bye;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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The generalized displacement response of the tangential loading stage is shown below.
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Figure 707.58: Displacements of Node 2 with applied shear tangential load step.
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Figure 707.59: Resisting force by the contact/interface element with applied shear tangential load step.

The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.22 Six Solid Blocks Example With Contact

This is a 3-D solid block example withi initial normal and then tangential load on different surfaces as

shown below.

Figure 707.60: Illustration of Six Solid Blocks Example with Contact having first normal and then

tangential loading stages.

ESSI model fei/DSL file:

1

2 model name "Six_Solid_Blocks_Example_With_Contact";
3

4 // Adding material
5 add material #1 type linear_elastic_isotropic_3d_LT mass_density=2000*kg/m^3 ←↩

elastic_modulus=200*MPa poisson_ratio=0.3;
6

7 // Adding Nodes
8 add node # 1 at (-1.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
9 add node # 2 at (-1.500000*m,0.500000*m,0.000000*m) with 3 dofs;

10 add node # 3 at (1.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
11 add node # 4 at (1.500000*m,0.500000*m,0.000000*m) with 3 dofs;
12 add node # 5 at (-1.500000*m,-0.500000*m,-2.000000*m) with 3 dofs;
13 add node # 6 at (-1.500000*m,0.500000*m,-2.000000*m) with 3 dofs;
14 add node # 7 at (1.500000*m,0.500000*m,-2.000000*m) with 3 dofs;
15 add node # 8 at (1.500000*m,-0.500000*m,-2.000000*m) with 3 dofs;
16 add node # 9 at (-0.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
17 add node # 10 at (0.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
18 add node # 11 at (-0.500000*m,0.500000*m,0.000000*m) with 3 dofs;
19 add node # 12 at (0.500000*m,0.500000*m,0.000000*m) with 3 dofs;
20 add node # 13 at (-0.500000*m,0.500000*m,-2.000000*m) with 3 dofs;

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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21 add node # 14 at (0.500000*m,0.500000*m,-2.000000*m) with 3 dofs;
22 add node # 15 at (0.500000*m,-0.500000*m,-2.000000*m) with 3 dofs;
23 add node # 16 at (-0.500000*m,-0.500000*m,-2.000000*m) with 3 dofs;
24 add node # 17 at (-1.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
25 add node # 18 at (-1.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
26 add node # 19 at (1.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
27 add node # 20 at (1.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
28 add node # 21 at (-0.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
29 add node # 22 at (0.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
30 add node # 23 at (-0.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
31 add node # 24 at (0.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
32

33 add node # 25 at (-0.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
34 add node # 26 at (0.500000*m,-0.500000*m,0.000000*m) with 3 dofs;
35 add node # 27 at (-0.500000*m,0.500000*m,0.000000*m) with 3 dofs;
36 add node # 28 at (0.500000*m,0.500000*m,0.000000*m) with 3 dofs;
37

38 add node # 29 at (-0.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
39 add node # 30 at (0.500000*m,0.500000*m,-1.000000*m) with 3 dofs;
40 add node # 31 at (-0.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
41 add node # 32 at (0.500000*m,-0.500000*m,-1.000000*m) with 3 dofs;
42

43 // Adding Solid 8 Node Brick Elements
44 add element #1 type 8NodeBrickLT with nodes (21,23,17,18,11,9,1,2) use ←↩

material #1;
45 add element #2 type 8NodeBrickLT with nodes (13,16,5,6,21,23,17,18) use ←↩

material #1;
46 add element #3 type 8NodeBrickLT with nodes (30,32,31,29,28,26,25,27) use ←↩

material #1;
47 add element #4 type 8NodeBrickLT with nodes (14,15,16,13,22,24,23,21) use ←↩

material #1;
48 add element #5 type 8NodeBrickLT with nodes (19,20,24,22,4,3,10,12) use ←↩

material #1;
49 add element #6 type 8NodeBrickLT with nodes (7,8,15,14,19,20,24,22) use ←↩

material #1;
50

51 //Adding some variables
52 Kn = 1e12*N/m; // normal penalty stiffness
53 Kt = 1e12*N/m; // tangential penalty stiffness
54 Cn = 0*N/m*s; // normal penalty damping
55 Ct = 0*N/m*s; // tangential penalty damping
56 nu = 0.4; // friction ratio
57

58 // Adding Contact Element
59 add element #7 type FrictionalPenaltyContact with nodes (9,25)
60 normal_stiffness = Kn
61 tangential_stiffness = Kt
62 normal_damping = Cn
63 tangential_damping = Ct
64 friction_ratio = nu
65 contact_plane_vector = (1,0,0);
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66

67 add element #8 type FrictionalPenaltyContact with nodes (10,26)
68 normal_stiffness = Kn
69 tangential_stiffness = Kt
70 normal_damping = Cn
71 tangential_damping = Ct
72 friction_ratio = nu
73 contact_plane_vector = (-1,0,0);
74

75 add element #9 type FrictionalPenaltyContact with nodes (11,27)
76 normal_stiffness = Kn
77 tangential_stiffness = Kt
78 normal_damping = Cn
79 tangential_damping = Ct
80 friction_ratio = nu
81 contact_plane_vector = (1,0,0);
82

83 add element #10 type FrictionalPenaltyContact with nodes (12,28)
84 normal_stiffness = Kn
85 tangential_stiffness = Kt
86 normal_damping = Cn
87 tangential_damping = Ct
88 friction_ratio = nu
89 contact_plane_vector = (-1,0,0);
90

91 add element #11 type FrictionalPenaltyContact with nodes (21,29)
92 normal_stiffness = Kn
93 tangential_stiffness = Kt
94 normal_damping = Cn
95 tangential_damping = Ct
96 friction_ratio = nu
97 contact_plane_vector = (1,0,0);
98

99 add element #12 type FrictionalPenaltyContact with nodes (22,30)
100 normal_stiffness = Kn
101 tangential_stiffness = Kt
102 normal_damping = Cn
103 tangential_damping = Ct
104 friction_ratio = nu
105 contact_plane_vector = (-1,0,0);
106

107 add element #13 type FrictionalPenaltyContact with nodes (23,31)
108 normal_stiffness = Kn
109 tangential_stiffness = Kt
110 normal_damping = Cn
111 tangential_damping = Ct
112 friction_ratio = nu
113 contact_plane_vector = (1,0,0);
114

115 add element #14 type FrictionalPenaltyContact with nodes (24,32)
116 normal_stiffness = Kn
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117 tangential_stiffness = Kt
118 normal_damping = Cn
119 tangential_damping = Ct
120 friction_ratio = nu
121 contact_plane_vector = (-1,0,0);
122

123 add element #15 type FrictionalPenaltyContact with nodes (21,29)
124 normal_stiffness = Kn
125 tangential_stiffness = Kt
126 normal_damping = Cn
127 tangential_damping = Ct
128 friction_ratio = nu
129 contact_plane_vector = (0,0,1);
130

131 add element #16 type FrictionalPenaltyContact with nodes (22,30)
132 normal_stiffness = Kn
133 tangential_stiffness = Kt
134 normal_damping = Cn
135 tangential_damping = Ct
136 friction_ratio = nu
137 contact_plane_vector = (0,0,1);
138

139 add element #17 type FrictionalPenaltyContact with nodes (23,31)
140 normal_stiffness = Kn
141 tangential_stiffness = Kt
142 normal_damping = Cn
143 tangential_damping = Ct
144 friction_ratio = nu
145 contact_plane_vector = (0,0,1);
146

147 add element #18 type FrictionalPenaltyContact with nodes (24,32)
148 normal_stiffness = Kn
149 tangential_stiffness = Kt
150 normal_damping = Cn
151 tangential_damping = Ct
152 friction_ratio = nu
153 contact_plane_vector = (0,0,1);
154

155 // Adding Fixities
156 fix node #5 dofs ux uy uz;
157 fix node #6 dofs ux uy uz;
158 fix node #13 dofs ux uy uz;
159 fix node #16 dofs ux uy uz;
160 fix node #15 dofs ux uy uz;
161 fix node #14 dofs ux uy uz;
162 fix node #7 dofs ux uy uz;
163 fix node #8 dofs ux uy uz;
164 fix node #17 dofs ux uy;
165 fix node #18 dofs ux uy;
166 fix node #1 dofs ux uy;
167 fix node #2 dofs ux uy;
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168 fix node #20 dofs ux uy;
169 fix node #19 dofs ux uy;
170 fix node #3 dofs ux uy;
171 fix node #4 dofs ux uy;
172 fix node #9 dofs uy;
173 fix node #10 dofs uy;
174 fix node #23 dofs uy;
175 fix node #24 dofs uy;
176 fix node #11 dofs uy;
177 fix node #21 dofs uy;
178 fix node #12 dofs uy;
179 fix node #22 dofs uy;
180 fix node #25 dofs uy;
181 fix node #26 dofs uy;
182 fix node #27 dofs uy;
183 fix node #28 dofs uy;
184 fix node #29 dofs uy;
185 fix node #30 dofs uy;
186 fix node #31 dofs uy;
187 fix node #32 dofs uy;
188

189 new loading stage "Normal_Loading";
190

191 add load #1 to element #3 type surface at nodes (25,26,27,28) with magnitude ←↩
(-1*Pa);

192

193 tol = 1e-12;
194 define convergence test Norm_Displacement_Increment
195 tolerance = tol
196 maximum_iterations = 100
197 verbose_level = 4;
198

199 define algorithm Newton;
200

201 Nsteps= 10;
202 define solver UMFPack;
203 define load factor increment 1/Nsteps;
204 simulate Nsteps steps using static algorithm;
205

206 new loading stage "Shear_Loading";
207

208 add load #2 to element #3 type surface at nodes (26,28,30,32) with magnitude ←↩
(-1*Pa);

209

210 tol = 1e-12;
211 define convergence test Norm_Displacement_Increment
212 tolerance = tol
213 maximum_iterations = 100
214 verbose_level = 4;
215

216 define algorithm Newton;
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217

218 Nsteps= 10;
219 define solver UMFPack;
220 define load factor increment 1/Nsteps;
221 simulate Nsteps steps using static algorithm;
222

223 bye;

The generalized displacement field of the two loading stages normal loading and tangentiual loading

is shown below..

Figure 707.61: Generalized displacement magnitude visualization of normal loading

Figure 707.62: Generalized displacement magnitude visualization of tangential loading
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The ESSI model fei/DSL files for this example can be downloaded here.

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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707.23 Pure shear model for G/Gmax plot

Problem description:

The pure shear model for G/Gmax plot

(a) (b)

Figure 707.63: The pure shear model for (a) confinment and (b) shearing

ESSI model fei/DSL file:

1 model name "GGmax" ;
2 // Parameters:
3 phi = 0.0135713590083;
4 ha = 2.94767923453;
5 cr = 1854.31984573;
6

7 rho=1922.5 ;
8 depth=0.1524/2;
9 confinstress=9.8*depth*rho;

10 G=12388.33;
11

12 p0 = confinstress*Pa;
13 phirad = pi*phi/180;
14 M = 6*sin(phirad)/(3-sin(phirad));
15 nu=0.3;
16 add material # 1 type DruckerPragerArmstrongFrederickLT
17 mass_density = rho*kg/m^3
18 elastic_modulus = 2*G*(1+nu)*Pa
19 poisson_ratio = nu
20 druckerprager_k = M
21 armstrong_frederick_ha = ha*Pa
22 armstrong_frederick_cr = cr*Pa
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23 isotropic_hardening_rate = 0*Pa
24 initial_confining_stress = 10*Pa;
25 add node # 1 at ( 1.0000 *m, 0.0000 *m, 0.0000 *m) with 3 dofs;
26 add node # 2 at ( 0.0000 *m, 1.0000 *m, 0.0000 *m) with 3 dofs;
27 add node # 3 at ( 1.0000 *m, 2.0000 *m, 0.0000 *m) with 3 dofs;
28 add node # 4 at ( 2.0000 *m, 1.0000 *m, 0.0000 *m) with 3 dofs;
29 add node # 5 at ( 1.0000 *m, 0.0000 *m, 1.0000 *m) with 3 dofs;
30 add node # 6 at ( 0.0000 *m, 1.0000 *m, 1.0000 *m) with 3 dofs;
31 add node # 7 at ( 1.0000 *m, 2.0000 *m, 1.0000 *m) with 3 dofs;
32 add node # 8 at ( 2.0000 *m, 1.0000 *m, 1.0000 *m) with 3 dofs;
33 add element # 1 type 8NodeBrickLT with nodes(1,2,3,4,5,6,7,8) use material # 1;
34

35 // fix the y direction for node 2,4,6,8
36 fix node # 2 dofs uy ;
37 fix node # 4 dofs uy ;
38 fix node # 6 dofs uy ;
39 fix node # 8 dofs uy ;
40 // fix the x direction for node 1,3,5,7
41 fix node # 1 dofs ux ;
42 fix node # 3 dofs ux ;
43 fix node # 5 dofs ux ;
44 fix node # 7 dofs ux ;
45 // Stage 1: confinement
46 new loading stage "confinement";
47 add load # 1 to node # 1 type linear Fy= p0*m^2;
48 add load # 2 to node # 3 type linear Fy= - p0*m^2;
49 add load # 3 to node # 5 type linear Fy= p0*m^2;
50 add load # 4 to node # 7 type linear Fy= - p0*m^2;
51

52 add load # 5 to node # 2 type linear Fx= p0*m^2;
53 add load # 6 to node # 4 type linear Fx= - p0*m^2;
54 add load # 7 to node # 6 type linear Fx= p0*m^2;
55 add load # 8 to node # 8 type linear Fx= - p0*m^2;
56

57 // confinement at z direction
58 add load # 101 to node # 1 type linear Fz= p0*m^2;
59 add load # 102 to node # 2 type linear Fz= p0*m^2;
60 add load # 103 to node # 3 type linear Fz= p0*m^2;
61 add load # 104 to node # 4 type linear Fz= p0*m^2;
62

63 add load # 105 to node # 5 type linear Fz= - p0*m^2;
64 add load # 106 to node # 6 type linear Fz= - p0*m^2;
65 add load # 107 to node # 7 type linear Fz= - p0*m^2;
66 add load # 108 to node # 8 type linear Fz= - p0*m^2;
67

68 // add algorithm and solver
69 Nsteps=100;
70 define load factor increment 1/Nsteps;
71 define solver ProfileSPD;
72 define convergence test Norm_Displacement_Increment
73 tolerance = 1e-5
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74 maximum_iterations = 100
75 verbose_level = 4;
76 // define algorithm With_no_convergence_check ;
77 define algorithm Newton ;
78 define NDMaterialLT constitutive integration algorithm Euler_One_Step
79 yield_function_relative_tolerance = 0.00002
80 stress_relative_tolerance = 0.0002
81 maximum_iterations = 1000;
82 simulate Nsteps steps using static algorithm;
83 // ------------------------------------------------------------------------
84 // Stage 2: shear
85 new loading stage "shear";
86 // fix all the uz, since we want plane strain.
87 i=1;
88 while (i<9) {
89 remove load # 100+i ;
90 fix node # i dofs uz;
91 i=i+1;
92 };
93 shearforce=1.6*kN;
94

95

96 add load # 9 to node # 1 type linear Fy= shearforce;// series_file = "path.txt" ;
97 add load # 10 to node # 3 type linear Fy=-shearforce;// series_file = ←↩

"path.txt" ;
98 add load # 11 to node # 5 type linear Fy= shearforce;// series_file = ←↩

"path.txt" ;
99 add load # 12 to node # 7 type linear Fy=-shearforce;// series_file = ←↩

"path.txt" ;
100

101 add load # 13 to node # 2 type linear Fx=-shearforce;// series_file = ←↩
"path.txt" ;

102 add load # 14 to node # 4 type linear Fx= shearforce;// series_file = ←↩
"path.txt" ;

103 add load # 15 to node # 6 type linear Fx=-shearforce;// series_file = ←↩
"path.txt" ;

104 add load # 16 to node # 8 type linear Fx= shearforce;// series_file = ←↩
"path.txt" ;

105

106 // add algorithm and solver
107 Nsteps=1e4 ;
108 define static integrator displacement_control using node # 1 dof uy increment ←↩

1e-2/Nsteps*m;
109 define convergence test Norm_Displacement_Increment tolerance = 0.000001 ←↩

maximum_iterations = 100 verbose_level = 0;
110 define solver ProfileSPD;
111 define algorithm Newton ;
112 define NDMaterialLT constitutive integration algorithm Euler_One_Step
113 yield_function_relative_tolerance = 0.00002
114 stress_relative_tolerance = 0.0002
115 maximum_iterations = 1000;
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116

117 simulate Nsteps steps using static algorithm;
118 bye;
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Figure 707.64: The G/Gmax results

The ESSI model fei/DSL files for this example can be downloaded here.
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707.24 Multi-yield-surface von-Mises for G/Gmax plot

Problem description:

This model illustates the G/Gmax input to multi-yield-surface von-Mises material. This example is

based on one Gauss-point with multi-yield-surface von-Mises material. The G/Gmax is converted to

material modelingn parameters (yield-surface size and hardening parameter) inside the DSL.

ESSI model fei/DSL file:

1 model name "GGmax";
2 add material # 1 type vonMisesMultipleYieldSurfaceGoverGmax
3 mass_density = 0.0*kg/m^3
4 initial_shear_modulus = 3E8 * Pa
5 poisson_ratio = 0.0
6 total_number_of_shear_modulus = 9
7 GoverGmax =
8 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
9 ShearStrainGamma =

10 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01"
11 ;
12

13 incr_size = 0.000001 ;
14 max_strain= 0.005 ;
15 num_of_increm = max_strain/incr_size -1 ;
16 simulate constitutive testing strain control pure shear use material # 1
17 confinement_strain = 0.0
18 strain_increment_size = incr_size
19 maximum_strain = max_strain
20 number_of_increment = num_of_increm;
21 bye;

Computed G/Gmax curve exactly matches the one used for input at control points.

The difference in G/Gmax between control points can be reduced by using more than just 9 control

points as in this example.
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Figure 707.65: Stress-Strain Relationship
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Figure 707.66: The G/Gmax results.
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Figure 707.67: Damping Ratio Plot
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707.25 Multi-yield-surface Drucker-Prager for G/Gmax plot

Problem description:

This model illustrates the G/Gmax input to multi-yield-surface Drucker-Prager material. Purely

deviatoric plastic flow is used in this material, which means that the parameter dilation scale is set

to zero. If user wants to model change of volume (dilation or compression) for this material, then

G/Gmax curve need to be iterated upon manually by changing yield surface size directly, which is done

using different DruckerPragerMultipleYieldSurface command. This example is based on one Gauss-point

which use multi-yield-surface Drucker-Prager material. The G/Gmax is converted to the yield-surface

size and hardening parameter inside the DSL.

ESSI model fei/DSL file:

1 model name "GGmax";
2 add material # 1 type DruckerPragerMultipleYieldSurfaceGoverGmax
3 mass_density = 0.0*kg/m^3
4 initial_shear_modulus = 3E8 * Pa
5 poisson_ratio = 0.0
6 initial_confining_stress = 1E5 * Pa
7 reference_pressure = 1E5 * Pa
8 pressure_exponential_n = 0.5
9 cohesion = 0. * Pa

10 dilation_angle_eta =1.0
11 dilation_scale = 0.0
12 total_number_of_shear_modulus = 9
13 GoverGmax =
14 "1,0.995,0.966,0.873,0.787,0.467,0.320,0.109,0.063"
15 ShearStrainGamma =
16 "0,1E-6,1E-5,5E-5,1E-4, 0.0005, 0.001, 0.005, 0.01"
17 ;
18

19 incr_size = 0.000001 ;
20 max_strain= 0.005 ;
21 num_of_increm = max_strain/incr_size -1 ;
22 simulate constitutive testing strain control pure shear use material # 1
23 confinement_strain = 0.0
24 strain_increment_size = incr_size
25 maximum_strain = max_strain
26 number_of_increment = num_of_increm;
27 bye;

Inside the DSL, the yield surface radius is calculated as
√

3σy, where σy is the yield stress of the

corresponding yield surface. Then, the radius is divided by the confinement to obtain the slope (opening

angle).
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Figure 707.68: Nested-Yield-Surface Drucker-Prager Stress-Strain Relationship

The hardening parameter is calculated as

1
H ′

i
=

1
Hi

–
1

2G
(707.1)

where H ′
i is the current hardening parameter corresponding to yield surface i. Hi is the current tangent

shear modulus to surface i, namely, Hi = 2( τi+1–τi
γi+1–γi

). And G is the initial shear modulus.
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ić
et

al
.,
R
ea
l-
E
S
S
I

ESSI Notes 707.25. MULTI-YIELD-SURFACE DRUCKER- . . . page: 3075 of 3287

10-6 10-5 10-4 10-3 10-2

Strain / (unitless)

0.0

0.2

0.4

0.6

0.8

1.0

G/
Gm

ax
 / 

(u
ni

tle
ss

)

Multi-Yield-Surface Drucker-Prager G/Gmax

ESSI
Input

Figure 707.69: Nested-Yield-Surface Drucker-Prager G/Gmax results
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Figure 707.70: Damping Ratio Plot
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This section briefly describes history of the development of the Finite Element Interpreted, FEI, that

is currently represented by the Real-ESSI Simulator system. Developments are presented chronologically,

with very brief description of capabilities, and with references to further reading and documents with

more information.

1986-1988: Development of the FRAME_and_GRID program, in 2D, using BASIC programming

language, on SHARP 1500, CASIO 1000 (48KB RAM) and ZX Spectrum (128KB RAM), by Boris

Jeremić, undergraduate student at the University of Belgrade.

1988-1989: Development of the Earthquake Soil Structure Interaction (ESSI) Program in time

domain for axisymmetric solids with general 3D loads, using higher modes of response in cir-

cumferential direction, expanded in Fourier series, so that any general 3D loading and deforma-

tion can be modeled, earthquake shaking applied through ”heavy” rock at the bottom of the

model, using FORTRAN programming language, on PC-DOS, x286+287, 640KB+384KB RAM,

by Boris Jeremić, undergraduate student at the University of Belgrade, as part of his Diploma

Thesis (Jeremić, 1989).

1989-1992: Development of the Finite Element Interpreter (FEI), a general purpose static and

dynamic, elastic and elastic-plastic finite element program for solids (3D), rudimentary parser for a

simple Domain Specific Language (DSL), using C Programming language, on PC-DOS, x286+287,

640KB+384KB RAM, by Boris Jeremić, a staff engineer at (a) Energoprojekt-Hidroinžinjering

Company in Belgrade, Yugoslavia, at (b) Bekhme Dam Project site in Iraq, and at (c) Gasser&Scepan

Design Bureau in Baar, Switzerland.

1992-1997: Development of the program FEM, featuring small and large deformation (large strain,

large displacements/rotations), elasto-plasticity, solids (bricks with 8, 20 and 27 nodes), solu-

tion advancement control (hyperspherical/arc length control), using C++ Programming language,

on Sun-SparcStation 5, Solaris, 256MB RAM, and on PC-DOS x386, x486 and on PC-Linux-

TurboRedHat, by Boris Jeremić, a graduate student at the University of Colorado at Boulder, as
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part of his Master Thesis (Jeremić, 1994) and PhD Dissertation (Jeremić, 1997).

1997-2000: Continued development of the program FEM, addition of dynamics from ESSI, struc-

tural elements from FRAME_and_GRID, Parallel version, MPI based, linking with FEI, using C++

Programming language, on PC-Linux, and PC-Linux cluster: NorthCountry , 4 nodes + master,

100based T network, by Professor Boris Jeremić, at Clarkson University and at the University of

California at Davis.

2000-2006: Developments continued with introduction of all the previous and new developments

from FEM into G3 Framework, later renamed OpenSEES. at PEER, using C++ Programming

language, on PC-Linux, by Professor Boris Jeremić and co-workers at the University of California

at Davis, CA, USA, see Final Report Presentation .

2006-Present: Development of the Real-ESSI Simulator System (aka Real-ESSI, MS-ESSI, NRC-

ESSI), using C++, FORTRAN, FEI-DSL, Python Programming languages, on PC-Linux, by Pro-

fessor Boris Jeremić and co-workers at UCD. For details see main Real-ESSI Simulator web site

or/and real-essi.us or/and real-essi.info (they all point to the same URL),

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19
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This section lists a number of available computer programs, commercial, Open Source, Public Domain

and Open Use, that can be used and are used for performing Earthquake Soil-Structure Interaction

(ESSI) analysis. Focus is on presenting information about programs without much critical assessment of

programs capabilities for ESSI analysis.

709.1 Overview of Available ESSI Analysis Programs

This section is based in part on material from Pecker et al. (2022).

709.1.1 Program Distribution Methods

Briefly described here are method for distribution of programs, in source code form or in executable form

• Commercial programs (CP): Distributed, sold, made available by commercial companies. It is very

important to note that these companies need to earn funds to support company, staff, etc. Com-

mercial programs usually have features and capabilities that are defined by a commercial license.

Commercial license content is usually controlled and written by company lawyers. Commercial

programs usually guaranty good accuracy of examples provided in the manual. These example

usually show good, nice comparison or results with some, carefully chosen analytic solution. Pub-

licly available, accessible Verification and Validation (V&V) for commercial programs is usually not

available. One of the reasons for this, as privately noted by one of principal engineers from one of

big software companies, is that verification will document level of error for approximate, numerical

methods, however these errors are small, for elements, algorithms. These errors of implemented

numerical approximation methods are not deemed good for business. It is reasonable to assume

that commercial programs do have a significant V&V effort and documentation...

• Open Source programs (OSP): Distributed online by developers, covered by one of the open source

licenses (OSL): (a) General Public License (GPL), (b) Lesser General Public License (LGPL), (c)

Creative Commons (CC)) The OSL guarantees that software source code and derivative source

code will be always available through similar OSL. The OSL does not even attempt to provide any

quality assurance for the quality of program due to legal reasons, liability. The quality assurance

(QA) for a given program, is usually a separate effort. It is noted that QA for OSL programs is

almost impossible, as anyone can obtain a source code for a program, make changes to program

sources, that can possibly destroy any previous QA and V&V effort and present results as using

the same program...
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• Restricted Source programs (RSP): Distributed to select developers, users, using a restricted version

of an open source license. The difference is that developers and program owners can restrict source

code distribution, mostly due to intellectual property reasons. A version of OSL is used, usually a

revised version of CC license. Quality Assurance with restricted source programs is easier, as the

main developer, program owner, quality assurance maintainer controls program sources distribution

and can, therefor, main control of the QA process.

• Open Use programs (OUS): Distributed are executable versions of the program. The program

owner can place limitations on use of the program. The quality assurance (QA) is controlled by

the program owner, distributor. The QA, if it exists, is easily mainteined.

• Public Domain programs (PDP): Distributed are source code and/or executable without any re-

strictions for any future use. Original developer and owner of the program releases all the rights

to the program sources and executables for any future use.

709.1.2 Available Programs

Provided is an incomplete list of programs that can be used and are used for ESSI analysis, or part of the

ESSI analysis. These programs are available using one of the distribution methods as noted in previous

section 709.1.1 on page 3080.

• Commercial Programs:

– ABAQUS (http://www.3ds.com)

– ADINA (http://www.adina.com)

– ANSYS (http://www.ansys.com/)

– CLASSI ()

– GT STRUDL (https://hexagonppm.com/offerings/products/gt-strudl)

– LS-DYNA (http://www.lstc.com)

– NASTRAN (http://www.mscsoftware.com)

– RIGID ()

– SAP2000 (https://www.csiamerica.com)

– SASSI 2010 (http://sassi2000.net)

– ACS SASSI (http://www.ghiocel-tech.com)
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– SMACS ()

– STARDYNE (ftp://ftp.cray.com)

– SOFISTIK (http://www.sofistik.com)

– PLAXIS (http://www.plaxis.nl/)

– FLAC (http://www.itascacg.com)

– DYNAFLOW (https://blogs.princeton.edu/prevost/dynaflow/)

– Zsoil (http://www.zsoil.com)

– Real-ESSI (http://real-essi.us/, http://essi-consultants.com)

• Open Source programs, Restricted Source programs, and Open Use programs:

– FEAP (http://www.ce.berkeley.edu)

– DEEPSOIL (http://deepsoil.cee.illinois.edu/)

– SIMQKE1 (http://nisee.berkeley.edu/)

– OpenSees (http://opensees.berkeley.edu/)

– Code ASTER (http://www.code_astair.org)

– Real-ESSI (http://real-essi.us/)

• Public Domain programs:

– SHAKE91 (http://nisee.berkeley.edu/)

– EERA and NEERA (http://www.ce.memphis.edu/)

– DESRA-2 ()

– SUMDES ()

– D-MOD ()

– TESS ()

– OpenSees (http://opensees.berkeley.edu/)
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This section describes in some detail work organization related to the development of FEI modeling

and computational system.

710.1 Communication

Tablets, smart phones, laptops and computers, using https://zoom.us/ as it works on linux and all

other OSs.

710.2 Writing (Notes, Code, &c.) Version Control

710.2.1 Source Code

Memory Leaks Memory leaks are best discovered by running Valgrind (http://valgrind.org/).

There are a number of tools that can be used with Valgrind. Mentioned are some of the most im-

portant ones, with example commands1

use of tcsh is assumed, with a time stamp (used in commands below) set as: set TIMESTAMP ←↩
= `date +%h_%d_%Y_%Hh_%Mm_%Ss__%A`

• (time valgrind --tool=cachegrind $argv[1] >! $argv[1].cachegrind.$TIMESTAMP.out)>&! ←↩
$argv[1].cachegrind.$TIMESTAMP.err

• (time valgrind --tool=callgrind $argv[1] >! $argv[1].callgrind.$TIMESTAMP.out)>&! ←↩
$argv[1].callgrind.$TIMESTAMP.err

• (time valgrind --tool=massif $argv[1] >! $argv[1].massif.$TIMESTAMP.out)>&! ←↩
$argv[1].massif.$TIMESTAMP.err

• (time valgrind --tool=memcheck --leak-check=full --show-reachable=yes --freelist-vol=100000000 ←↩
$argv[1] >! $argv[1].memcheck.$TIMESTAMP.out)>&! $argv[1].memcheck.$TIMESTAMP.err

• valgrind -v --leak-check=yes --show-reachable=yes --num-callers=32 --trace-malloc=yes ←↩
--error-limit=no --tool=massif $argv[1]

1Examples use synthax from few years ago, so should be proper synthax should be verified using excellent Valgrind

documentation.
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710.2.2 Verification of Real-ESSI

The aim is to run the verification procedure for Real-ESSI as automatically as possible. The verification

of Real-ESSI is based on the verification of C++ libraries by https://www.boost.org/.

The verification is divided into 3 parts:

1. verification of essi.sequential, run by calling bash script

ESSI_VERIFICATION_run_all_verification_SEQUENTIAL.sh

2. verification of essi.parallel, run by calling bash script

ESSI_VERIFICATION_run_all_verification_PARALLEL.sh

3. check of the code stability, run by calling bash script

ESSI_VERIFICATION_run_CODE_STABILITY.sh.

710.2.2.1 Update of the verification procedure from 2019

The following was done in .../oofep/Rad na cml04/GLOBAL RELEASE/Real-ESSI-Examples.

1. In ∗.fei files, variable Gamma was replaced by GammaParam because Gamma is a keyword. The

following was used

grep -rl --include \*.fei ’Gamma’ * | xargs -i@ sed -i ’s/Gamma/GammaParam/g’ @

and then

grep -rl --include $\backslash$*.fei 'ShearStrainGammaParam' * $\vert$ xargs ←↩
-i@ sed -i 's/ShearStrainGammaParam/ShearStrainGamma/g' @

2. Beta was replaced by BetaParam using

grep -rl --include \*.fei ’Beta’ * | xargs -i@ sed -i ’s/Beta/BetaParam/g’ @

3. 2to3 converter was used to convert the ∗.py files from Python2 to Python3 using

cd .../oofep/Rad na cml04/GLOBAL RELEASE/Real-ESSI-Examples/

and then

2to3 -w .

Before that, 2to3 was installed as follows

sudo apt install 2to3

sudo apt install python3-lib2to3

sudo apt install python3-toolz

Jeremić et al. University of California, Davis version: 3Jul2025, 10:19

https://www.boost.org/


Je
re
m
ić
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4. During the evaluation of dynamic examples in ../Real-ESSI-Examples/dynamic test, warn-

ing:

DeprecationWarning: Please use ‘fftfreq‘ from the ‘scipy.fftpack‘ namespace,

the ‘scipy.fftpack.helper‘ namespace is deprecated.

was returned, so in ../Real-ESSI-Examples/dynamic test, the following was done:

grep -rl --include \*.py ’scipy.fftpack.helper’ * | xargs -i@ sed -i ’s/scipy.fftpack.helper/scipy.fftpack/g’

@

5. During the evaluation of dynamic examples in ../Real-ESSI-Examples/dynamic test, an error

was returned:

xi, fs, Ys = measure damping(f[0:N/2], abs(D[0:N/2]))

TypeError: slice indices must be integers or None or have an index method Solution

so in ../Real-ESSI-Examples/dynamic test, the following was done:

grep -rl --include \*.py ’N/2]’ * | xargs -i@ sed -i ’s#N/2]#N//2]#g’ @

6. During the evaluation of dynamic examples in ../Real-ESSI-Examples/dynamic test, an error

was returned:

runall.sh: line 28: cd: */: No such file or directory

Examples in all subfolders are evaluated by runall.sh. The error pertains to the folder pycache .

I added pycache .fei (with just bye; inside), in folder pycache ..

7. ESSI VERIFICATION run all verification SEQUENTIAL.sh and

ESSI VERIFICATION run all verification PARALLEL.sh were modified.

710.2.3 Lecture Notes

Maintain lecture notes using git on https://github.com/.

Checking all http links in lecture notes using script ESSI_check_URLs_in_lecture_notes.sh in

bin.

710.2.4 Bibliography

Bibliography List.

Papers of interest are organized in bibtex files (managed through git version control.
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A list of those paper is compiled and available at:

http://sokocalo.engr.ucdavis.edu/~jeremic/research/Jeremic_et_al_bibliography_mechanics.

pdf

http://sokocalo.engr.ucdavis.edu/~jeremic/research/Jeremic_et_al_bibliography_computers.

pdf

http://sokocalo.engr.ucdavis.edu/~jeremic/research/Jeremic_et_al_bibliography_education.

pdf

Bibliography Repository.

Most listed papers are available at:

http://sokocalo.engr.ucdavis.edu/~jeremic/PAPERSlocalREPO/. This site is only accessible to

members of the Computational Mechanics group at University of California at Davis, and few other

collaborating entities.

710.3 Backup

710.4 Calendar

710.5 Useful Programs and Scripts

710.5.1 Backup Scripts

710.5.2 Domain Reduction Method Processing Programs and Scripts

DRM Node Extraction for fk.

fk Output Processing for DRM.

710.5.3 Pre Processing Programs and Scripts

710.5.4 Post Processing Programs and Scripts

710.5.5 Parallel Computer Architecture

http://www.open-mpi.org/projects/hwloc/
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I

[AG82] B. Amadei and R. E. Goodman. The influence of rock anisotropy on stress measurements by overcoring
techniques. Rock Mechanics, 15:167–180, December 1982. 10.1007/BF01240588.

[AG96a] F. Armero and K. Garikipati. An analysis of strong–discontinuities in inelastic solids with application to the
finite element simulation of strain localization problems. In Y. K. Lin and T. C. Su, editors, Proceedings
of 11th Conference, pages 136–139. Engineering Mechanics Division of the American Society of Civil
Engineers, May 1996.

[AG96b] F. Armero and K. Garikipati. An analysis of strong discontinuity in multiplicative finite strain plasticity
and their relation with the numerical simulation of strain localization in solids. International Journal of
Solids and Structures, 33(20-22):2863–2885, 1996.

[AG99] Cleve Ashcraft and Roger G Grimes. Spooles: An object-oriented sparse matrix library. In PPSC, 1999.

[AG04] Sanjay R. Arwade and Mircea Grigoriu. Probabilistic model for polycrystalline microstructures with
application to intergranular fracture. ASCE Journal of Engineering Mechanics, 130(9):997–1123, 2004.

[AG05] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond. C++ in Depth Series. Addison-Wesley., 2005.

[AG12] M. Arnst and R. Ghanem. A variational-inequality approach to stochastic boundary value problems
with inequality constraints and its application to contact and elastoplasticity. International Journal for
Numerical Methods in Engineering, 89(13):1665–1690, 2012.

[AG20] SOFiSTiK AG. Verification, ve56 interface element. Technical report, SOFISTIK AG, 2020.

[Agh85] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. PhD thesis, MIT,
1985. http://dspace.mit.edu/handle/1721.1/6952.

[AGP+15] Grigorios Antonellis, Andreas G. Gavras, Marios Panagiotou, Bruce L. Kutter, Gabriele Guerrini, An-
drew C. Sander, and Patrick J. Fox. Shake table test of large-scale bridge columns supported on rocking
shallow foundations. Journal of Geotechnical and Geoenvironmental Engineering, 141(5):04015009, 2015.

[AGR+10] Brad T. Aagaard, Robert W. Graves, Arthur Rodgers, Thomas M. Brocher, Robert W. Simpson, Douglas
Dreger, N. Anders Petersson, Shawn C. Larsen, Shuo Ma, and Robert C. Jachens. Ground-motion
modeling of hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground
motions. Bulletin of the Seismological Society of America, 100(6):2945–2977, December 2010.

[AH84] John G Anderson and Susan E Hough. A model for the shape of the fourier amplitude spectrum of
acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5):1969–1993,
1984.

[AH99] Maciej Anders and Muneo Hori. Stochastic finite element method for elasto–plastic body. International
Journal for Numerical Methods in Engineering, 46:1897–1916, 1999.

[AH01] Maciej Anders and Muneo Hori. Tree-dimensional stochastic finite element method for elasto-plastic
bodies. International Journal for Numerical Methods in Engineering, 51:449–478, 2001.

[AH06] M Arnold and I Herle. Hypoplastic description of the frictional behaviour of contacts. Numerical methods
in geotechnical engineering, pages 101–6, 2006.

[AHL12] S. Atamturktur, F.M. Hemez, and J.A. Laman. Uncertainty quantification in model verification and
validation as applied to large scale historic masonry monuments. Engineering Structures, 43:221–234,
2012.

[AHLM82] D Aubry, JC Hujeux, F Lassoudiere, and Y Meimon. A double memory model with multiple mechanisms
for cyclic soil behaviour. In Proceedings of the Int. Symp. Num. Mod. Geomech, pages 3–13, 1982.

[AHM+24] Filip P. Adamus, David Healy, Philip G. Meredith, Thomas M. Mitchell, and Ashley Stanton-Yonge.
Multi-porous extension of anisotropic poroelasticity: Consolidation and related coefficients. International
Journal for Numerical and Analytical Methods in Geomechanics, n/a(n/a), 2024.

[AHMM24] Filip P. Adamus, David Healy, Philip G. Meredith, and Thomas M. Mitchell. Multi-porous extension
of anisotropic poroelasticity: Linkage with micromechanics. International Journal for Numerical and
Analytical Methods in Geomechanics, n/a(n/a), 2024.

ESSI Notes page: 3093 of 3287
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ić
et

al
.,
R
ea
l-
E
S
S
I

[Bak07] Jack W Baker. Probabilistic structural response assessment using vector-valued intensity measures.
Earthquake Engineering & Structural Dynamics, 36(13):1861–1883, 2007.

[Bak13] Jack W. Baker. An introduction to probabilistic seismic hazard analysis (psha). Technical Report Version
2.0.1, Stanford University, 2013.

[Ban93] Prasnata Kumar Banerjee. The Boundary Element Methods in Engineering. McGraw Hill Book Company,
1993.

[Bar89] N. S. Bardell. The application of symbolic computing to the hierarchical finite element method. Interna-
tional Journal for Numerical Methods in Engineering, 28:1181–1204, 1989.

[Bar90] J. P. Bardet. Hypoplastic model for sands. ASCE Journal of Engineering Mechanics, 116(9):1973–1994,
September 1990.

[Bar97] A. A. Barhorst. Symbolic equation processing utilizing vector / dyan notation. Journal of Sound and
Vibration, 208(5):823–839, 1997.

[Bar07] Michele Barbato. FINITE ELEMENT RESPONSE SENSITIVITY, PROBABILISTIC RESPONSE AND
RELIABILITY ANALYSES OF STRUCTURAL SYSTEMS WITH APPLICATIONS TO EARTHQUAKE
ENGINEERING. PhD thesis, Universiy of California, San Diego, 2007.

[Bas09] Ushnish Basu. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves.
International Journal for Numerical Methods in Engineering, 77(2):151–176, 2009.

[Bat82] Klaus-Jürgen Bathe. Finite Element Procedures in Engineering Analysis. Prentice Hall Inc., 1982.

[Bat91] K. J. Bathe. Some remarks and references on recent developments in finite element analysis procedures.
Computers & Structures, 40(2):201–202, 1991.

[Bat96] Klaus-Jürgen Bathe. Finite Element Procedures in Engineering Analysis. Prentice Hall Inc., 1996. ISBN
0-13-301458-4.

[Bat07] Klaus-Jürgen Bathe. Conserving energy and momentum in nonlinear dynamics: a simple implicit time
integration scheme. Computers & Structures, 85(7):437–445, 2007.

[Baz88] Zdenek Bazant, editor. Mathematical Modeling of Creep and Shrinkage of Concrete Simposium. North-
western University, John Wiley and Sons, august 26–29 1988.
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[BDSS20] Íhsan Engin Bal, Dimitris Dais, Eleni Smyrou, and Vasilis Sarhosis. Monitoring of a historical masonry
structure in case of induced seismicity. International Journal of Architectural Heritage, 0(0):1–18, 2020.

[BDVS15] Edson Borin, Philippe R.B. Devloo, Gilvan S. Vieira, and Nathan Shauer. Accelerating engineering
software on modern multi-core processors. Advances in Engineering Software, 84:77–84, June 2015.
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Publication 91:6.
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E. Yreux, M. Rüter, D. Qian, Z. Zhou, S. Bhamare, D. T. O’Connor, S. Tang, K. I. Elkhodary, J. Zhao,
J. D. Hochhalter, A. R. Cerrone, A. R. Ingraffea, P. A. Wawrzynek, B. J. Carter, J. M. Emery, M. G.
Veilleux, P. Yang, Y. Gan, X. Zhang, Z. Chen, E. Madenci, B. Kilic, T. Zhang, E. Fang, P. Liu, J. Lua,
K. Nahshon, M. Miraglia, J. Cruce, R. DeFrese, E. T. Moyer, S. Brinckmann, L. Quinkert, K. Pack,
M. Luo, and T. Wierzbicki. The Sandia fracture challenge: blind round robin predictions of ductile
tearing. International Journal of Fracture, 186:5–68, January 2014.
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[CJ09d] Zhao Cheng and Boris Jeremić. Numerical modeling and simulations of piles in liquefiable soil. Soil
Dynamics and Earthquake Engineering, 29:1405–1416, 2009.

[CJHF02] C. Allin Cornell, Fatemeh Jalayer, Ronald O. Hamburger, and Douglas A. Foutch. Probabilistic basis
for 2000 sac federal emergency management agency steel moment frame guidelines. ASCE Journal of
Structural Engineering, 128(4):526–533, April 2002.

[CJS87] N. C. Costes, V. C. Janoo, and S. Sture. Microgravity experiements on granular materials. In R. H.
Doremus and P. C. Nordine, editors, Material Research Society Symposium Proceedings, volume 87,
pages 203–212, 1987.

[CJW95a] A. H. C. Chan, L. Jendele, and D. Muir Wood. Numerical modelling of moisture, heat and pollutant
transport in partially saturated porous media using object oriented programming. Technical report,
Department of Civil Engineering, University of Glasgow, Scotland G128QQ, 1995.

ESSI Notes page: 3120 of 3287
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[dBF90] René de Borst and Peter H. Feenstra. Studies in anysotropic plasticity with reference to the hill criterion.
International Journal for Numerical Methods in Engineering, 29:315–336, 1990.

[dBK95] R. de Boer and S. J. Kowalski. Thermodynamics of fluid–saturated porous medial with a phase change.
Acta Mechanica, 109:167–189, 1995.

[DBL95a] FCP De Barros and JE Luco. Dynamic response of a two-dimensional semi-circular foundation embedded
in a layered viscoelastic half-space. Soil Dynamics and Earthquake Engineering, 14(1):45–57, 1995.

ESSI Notes page: 3128 of 3287
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[DPZ93b] Yves Dubois-Pèlerein and Thomas Zimmermann. Object–oriented finite element programing: Iii. an
efficient implementation in c++. Computer Methods in Applied Mechanics and Engineering, 108:165–
183, 1993.

[DR87] Jr. Dodds and H. Robert. Numerical techniques for plasticity computations in finite element analysis.
Computers & Structures, 26(5):767–779, 1987.

[DR89] Y. F. Dafalias and M. M. Rashid. The effect of plastic spin on anysotropic material behavior. International
Journal of Plasticity, 5:227–246, 1989.
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[EYP02] Ahmed Elgamal, Zhaohui Yang, and Ender Parra. Computational modeling of cyclic mobility and post–
liquefaction site response. Soil Dynamics and Earthquake Engineering, 22:259–271, 2002.

[EYYC08] Ahmed Elgamal, Linjun Yan, Zhaohui Yang, and Joel P. Conte. Three-dimensional seismic response of
humboldt bay bridge-foundation-ground system. ASCE Journal of Structural Engineering, 134(7):1165–
1176, July 2008.

ESSI Notes page: 3138 of 3287
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Institute of Technology in Zurich, 2000.

[FS85] C. A. Felippa and G. M. Stanley. NICE: A utility architecture for computational mechanics. In Wun-
derlich Bergan, Bathe, editor, Finite Element Methods for Nonlinear Problems, Europe–US Symposium,
Trondheim, Norway, pages 447–463, 1985.

[FS87] Bruce W. R. Forde and Siegfried F. Stiemer. Improved arc length orthogonality methods for nonlinear
finite element analysis. Computers & Structures, 27(5):625–630, 1987.

ESSI Notes page: 3145 of 3287
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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[JJ07b] Boris Jeremić and Guanzhou Jie. Short report: Parallel finite element computations for soil–foundation—
structure interaction problems. Technical Report UCD–CompGeoMech–02–07, University of California,
Davis, 2007. available online: http://sokocalo.engr.ucdavis.edu/~jeremic/wwwpublications/
CV-R23.pdf.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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[JSS+94] Boris Jeremić, Roy Swanson, Stein Sture, Khalid Al-Shibli, and Runing Zhang. Automation of digitization
process for recording grid displacement. Report to NASA Marshall Space Flight Center, Contract: NAS8-
38779, University of Colorado at Boulder, September 1994.

[JSV12] Issam Jassim, Dieter Stolle, and Pieter Vermeer. Two-phase dynamic analysis by material point method.
International Journal for Numerical and Analytical Methods in Geomechanics, pages n/a–n/a, 2012.

[JT91] J. E. Dennis Jr. and Virginia Torzcon. Direct search methods on parallel machines. SIAM Journal On
Optimization, 1(4):448–474, 1991.

[JT06] Hrvoje Jasak and Zeljko Tukovic. Automatic mesh motion for the unstructured finite volume method.
Transactions of FAMENA, 30(2):1–20, 2006.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I

[KHVW95] D Kolymbas, I Herle, and PA Von Wolffersdorff. Hypoplastic constitutive equation with internal variables.
International Journal for Numerical and Analytical Methods in Geomechanics, 19(6):415–436, 1995.

[KI04] H. M. Kim and J. Inoue. A spectral stochastic element free galerkin method for the problems with
random material parameter. International Journal for Numerical Methods in Engineering, 61(11):1957 –
1975, October 2004.

[Kit03] Yoshio Kitada. On a test to resolve issues related to earthquake response of nuclear structures and
the ground motions used for the test. In Proceedings of an OECD workshop of the Relations Between
Seismological DATA and Seismic Engineering, pages 301–310, Istanbul, Turkey, 16-18 October 2003.

[KIT+12] Kiyoshi Kurokawa, Katsuhiko Ishinashi, Koichi Tanaka, Kenzo Oshima, Mitsushiko Tanaka, Hisako
Sakiyama, Shuya Nomura, Reiko Hachisuka, Masafuni Sakurai, and Yochinori Yokoyama. The offi-
cial report of the Fukushima nuclear accident independent investigation commission. Technical report,
The National Diet of Japan, 2012.

[Kiu05] Armen Der Kiureghian. Non–ergodicity and PEER’s framework formula. EARTHQUAKE ENGINEERING
AND STRUCTURAL DYNAMICS, 34:1643–1652, 2005.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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(Miloš Kojić, A General Concept of Implicit Integration of Constitutive Relations for Inelastic Material
Deformation, in Serbian).

ESSI Notes page: 3181 of 3287
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[Koj97] Miloš Kojić. Computational Procedures in Inelastic Analysis of Solids and Structures. Center for Scientific
Research of Srbian Academy of Sciences and Arts and University of Kragujevac and Faculty of Mechanical
Engineering University of Kragujevac, 1997. ISBN 86-82607-02-6.

[KOK20] Hiroyuki Kyokawa, Shintaro Ohno, and Ichizou Kobayashi. A method for extending a general constitu-
tive model to consider the electro-chemo-mechanical phenomena of mineral crystals in expansive soils.
International Journal for Numerical and Analytical Methods in Geomechanics, 44(6):749–771, 2020.

[KOKA07] T. Kawasato, T. Okutani, O. Kurimoto, and M. Akimoto. A study on evaluation of seismic response
considering basemat uplift for soil-building system using 3D fem. In Transactions on the 19th International
Conference on Structural Mechanics in Reactor Technology, August 2007.

[Kol68] Andrei N. Kolmogorov. Logical basis for information theory and probability theory. IEEE Transactions
on Information Theory, IT-14(5):662–664, September 1968.

[Kol77] D Kolymbas. A rate-dependent constitutive equation for soils. Mechanics Research Communications,
4(6):367–372, 1977.

[Kol85] D. Kolymbas. A generalized hypoplastic constitutive law. In Proceedings of the Eleventh International
Conference on Soil Mechanics and Foundation Engineering, page 2626, San Francisco, USA, 12-16 August
1985.

[Kol91] D. Kolymbas. An outline of hypoplasticity. Archive of Applied Mechanics, 61(3):143–151, 1991.

[Kol03] Herbert Kolsky. Stress Waves in Solids. Dover Pheonix, 2003. ISBN0-486-49534-5.

[Kol09] Dimitrios Kolymbas. Kinematics of shear bands. Acta Geotechnica, 4:315–318, 2009.

[Kon05] A. W. A. Konter. Advanced finite element contact benchmarks. Technical report, Netherlands Institute
for Metals Research, 2005.

[Kor33] Alfred Korzybski. Science and Sanity: An Introduction to Non-Aristotelian Systems and General Seman-
tics. International non-Aristotelian library. International Non-Aristotelian Library Publishing Company,
1933.

[Kor97] Jovze Korelc. Automatic generation of finite-element code by simultaneous optimization of expressions.
Theoretical Computer Science, 187(1-2):231–248, 1997.

[KOS+21] Selcuk Kacin, Murat Ozturk, Umur Korkut Sevim, Bayram Ali Mert, Zafer Ozer, Oguzhan Akgol, Emin
Unal, and Muharrem Karaaslan. Seismic metamaterials for low-frequency mechanical wave attenuation.
Natural Hazards, 107:213–229, May 2021.

[KOT95] Marek Klisinski, Thomas Olofsson, and Robert Tano. Modelling of cracking of concrete with mixed
mode inner softening band. In Stein Sture, editor, Proceedings of 10th Conference, pages 1095–1098.
Engineering Mechanics Division of the American Society of Civil Engineers, May 1995.

[KOW15] Kristijan Kolozvari, Kutay Orakcal, and John Wallace. Shear-flexure interaction modeling for reinforced
concrete structural walls and columns under reversed cyclic loading. Technical Report PEER Report
No. 2015/12, Pacific Earthquake Engineering Research Center, Pacific Earthquake Engineering Research
Center, Richmod, CA, December 2015.
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[KS97] Igor Kaljević and Sunil Saigal. An improved element free galerkin formulation. International Journal for
Numerical Methods in Engineering, 40:2953–2974, 1997.

[KS01] Juraj Kralik and Miroslav Simonovic. Earthquake response analysis including site effects of NPP buildings
with reactor wwer 440. In Transactions, SMiRT 16, Washington DC, August 2001.

[KS05a] A. Der Kiureghian and J. L. Sackman. Tangent geometric stiffness of inclined cables under self-weight.
ASCE Journal of Structural Engineering, 131(6):941–945, 2005.

[KS05b] Frances Y Kuo and Ian H Sloan. Lifting the curse of dimensionality. Notices of the AMS, 52(11):1320–
1328, 2005.

[KS08] H.-K. Kim and J.C. Santamarina. Spatial variability: drained and undrained deviatoric load response.
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[KTD15] S. Krödel, N. Thomé, and C. Daraio. Wide band-gap seismic metastructures. Extreme Mechanics Letters,
4:111–117, 2015.

[KU87] H Kishida and M Uesugi. Tests of the interface between sand and steel in the simple shear apparatus.
Geotechnique, 37(1):45–52, 1987.

[Kuh96] Matthew R. Kuhn. Experimantal measurement of strain gradient effects in granular materials. In Y. K. Lin
and T. C. Su, editors, Proceedings of 11th Conference, pages 881–884. Engineering Mechanics Division
of the American Society of Civil Engineers, May 1996.

[Kuh99] Matthew R. Kuhn. Fabric and deformation in granular materials. In N.P. Jones and Roger G. Ghanem,
editors, the Proceedings of the 13th ASCE Engineering Mechanics Division Specialty Conference, Johns
Hopkins University, Baltimore, June 13-16 1999. CD-ROM.

[Kum24] Krishna Kumar. Geotechnical Parrot Tales (GPT): Harnessing large language models in geotechnical
engineering. Journal of Geotechnical and Geoenvironmental Engineering, 150(1):02523001, 2024.

[KV08] D. Kolymbas and A. Verrujt. Discussion on: Hydrostatic paradox of saturated media by El Tani.
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[KŻ96] T. Kurtyka and M. Żysczkovski. Evolution equations for distortional plastic hardening. International
Journal of Plasticity, 12(2):191–213, 1996.
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[LPM+15] Pierre Labbé, Pierre Pegon, Javier Molina, Christian Gallois, and Daniéle Chauvel. The SAFE experimental
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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Ziotopoulou, Željko Žugić, Ian Robertson, and Dimitrios Lignos. StEER-EERI: Petrinja, Croatia december
29, 2020, Mw 6.4 earthquake. Technical Report PRJ-2959, EERI, StEER, 2021.

[MBBS04] Hermann G. Matthies, Christoph E. Brenner, Christian G. Bucher, and C. Guedes Soares. Uncertainties
in probabilistic numerical analysis of structures and solids – stochastic finite elements. Structural Safety,
19(3):283–336, 2004.

[MBDG94] N. Makris, D. Badoni, E. Delis, and G. Gazetas. Prediction of observed bridge response with soil–pile–
structure interaction. ASCE Journal of Structural Engineering, 120(10):2992–3011, October 1994.

[MBG02] Giuseppe Mortara, Marc Boulon, and Vito Nicola Ghionna. A 2-d constitutive model for cyclic interface
behaviour. International journal for numerical and analytical methods in geomechanics, 26(11):1071–
1096, 2002.

[MBH21] Ruisheng Ma, Kaiming Bi, and Hong Hao. Inerter-based structural vibration control: A state-of-the-art
review. Engineering Structures, 243:112655, 2021.

[MBV+00] Paul W. Mayne, Dan Brown, James Vinson, James A. Schneider, and Kimberly A. Finke. Site character-
ization of piedmont residual soils at the NGES, Opelika, Alabama. In Jean Benoit and Alan Lutenegger,
editors, ASCE Geotechnical Special Publication (GSP) No. 93, National Geotechnical Experimentation
Sites (NGES),, pages 160–185, ASCE Reston, Virginia, 2000.

[MC83] E. Mizuno and W. F. Chen. Plasticity analysis of slope with different flow rules. Computers & Structures,
17(3):375–388, 1983.

[MC95] Richard H. McCuen and Peter C. Chang. Multimedia–based instruction in engineering education: Eval-
uation. ASCE Journal of Professional Issues in Engineering Education and Practice, 121(4):220–224,
October 1995.
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ić
et

al
.,
R
ea
l-
E
S
S
I

[ND06] François Nicot and Félix Darve. Micro-mechanical investigation of material instability in granular assem-
blies. International Journal of Solids and Structures, 43(11-12):3569–3595, June 2006.

[ND07a] François Nicot and Félix Darve. Micro-mechanical bases of some salient constitutive features of granular
materials. International Journal of Solids and Structures, 44(22-23):7420–7443, 2007.

[ND07b] François Nicot and Félix Darve. A micro-mechanical investigation of bifurcation in granular materials.
International Journal of Solids and Structures, 44(20):6630–6652, 2007.

[NDH19a] Kamaljyoti Nath, Anjan Dutta, and Budhaditya Hazra. An iterative polynomial chaos approach to-
ward stochastic elastostatic structural analysis with non-gaussian randomness. International Journal for
Numerical Methods in Engineering, 0(0), 2019.

[NDH19b] Kamaljyoti Nath, Anjan Dutta, and Budhaditya Hazra. An iterative polynomial chaos approach to-
wards stochastic elastostatic structural analysis with non-gaussian randomness. International Journal for
Numerical Methods in Engineering, 0, 2019.
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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ić
et

al
.,
R
ea
l-
E
S
S
I
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1995.

[PW25] Sai Sharath Parsi and Andrew S. Whittaker. Numerical simulations of rocking, keyed graphite blocks in
the core of a high-temperature gas reactor. Earthquake Engineering & Structural Dynamics, 54(9):2212–
2230, 2025.

[PWL79] Aris Phillips and Chong Won Lee. Yield surfaces and loading surfaces. experiments and recommendations.
International Journal of Solids and Structures, 15:715–729, 1979.
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[RCMG07] Jean-François Remacle, Nicolas Chevaugeon, Émilie Marchandise, and Christophe Geuzaine. Efficient
visualization of high-order finite elements. International Journal for Numerical Methods in Engineering,
69(4):750–771, 2007.

[RCP22] Mukesh K. Ramancha, Joel P. Conte, and Matthew D. Parno. Accounting for model form uncertainty in
Bayesian calibration of linear dynamic systems. Mechanical Systems and Signal Processing, 171:108871,
2022.

[RD15] R. Regueiro and Z. Duan. Static and dynamic micropolar linear elastic beam finite element formulation,
implementation, and analysis. Journal of Engineering Mechanics, 0(0):04015026, 2015.

[RDI06] Frédéric Ragueneau, Norberto Dominguez, and Adnan Ibrahimbegovic. Thermodynamic-based interface
model for cohesive brittle materials: application to bond slip in rc structures. Computer Methods in
Applied Mechanics and Engineering, 195(52):7249–7263, 2006.

[RDP+17] Ellen M. Rathje, Clint Dawson, Jamie E. Padgett, Jean-Paul Pinelli, Dan Stanzione, Ashley Adair, Pe-
dro Arduino, Scott J. Brandenberg, Tim Cockerill, Charlie Dey, Maria Esteva, Fred L. Haan, Matthew
Hanlon, Ahsan Kareem, Laura Lowes, Stephen Mock, and Gilberto Mosqueda. DesignSafe: New cyber-
infrastructure for natural hazards engineering. Natural Hazards Review, 18(3):06017001, 2017.

[Rea90] James Reason. The contribution of latent human failures to the breakdown of complex systems. Philo-
sophical Transactions of the Royal Society of London. B, Biological Sciences, 327(1241):475–484, 1990.

[Red93] Junuthula N. Reddy. An Introduction to the Finite Element Method. Series in Mechanical Engineering.
McGraww–Hill, 2nd edition, 1993.

[REG23] David Riley, Itai Einav, and François Guillard. A constitutive model for porous media with recurring stress
drops: From snow to foams and cereals. International Journal of Solids and Structures, 262-263:112044,
2023.

[REH03] D Rittel, N Eliash, and JL Halary. Hysteretic heating of modified poly (methylmethacrylate). Polymer,
44(9):2817–2822, 2003.

[Rei99] Sebastian Reich. Backward error analysis for numerical integrators. SIAM Journal on Numerical Analysis,
36(5):1549–1570, 1999.

[Rei08] Robert Reitherman. International aspects of the history of earthquake engineering. Technical report,
Earthquake Engineering Research Institute, Oakland, California, U.S.A., 2008.

[Res93a] Research Systems, Inc., Boulder. IDL Reference Guide, January 1993.

[Res93b] Research Systems, Inc., Boulder. IDL User’s Guide, January 1993.

[RFB13] D. Roten, D. Fäh, and L.F. Bonilla. High-frequency ground motion amplification during the 2011 tohoku
earthquake explained by soil dilatancy. Geophysical Journal International, 193:898–904, 2013.

[RFPH97] Antonio Rodriguez-Ferran, Pierre Pegon, and Antonio Huerta. Two stress update algorithms for large
strains: Accuracy and numerical implementation. International Journal for Numerical Methods in Engi-
neering, 30:4363–4404, 1997.

[RFWS00] A. Rugarcia, R.M. Felder, D.R. Woods, and J.E. Stice. The future of engineering education. i. a vision
for a new century. Chemical Engineering Education, 34(1):16–25, 2000.

ESSI Notes page: 3233 of 3287
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of Technology, Göteborg, Sweden, January 1978. Publication 78:1.

[Run87] Kenneth Runesson. Implicit integration of elastoplastic relations with reference to soils. International
Journal for Numerical and Analytical Methods in Geomechanics, 11:315–321, 1987.

[Run94] Kenneth Runesson. Constitutive theory and computational technique for dissipative materials with em-
phasis on plasticity, viscoplasticity and damage: Part II. Lecture Notes, Chalmers Technical University,
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ić
et

al
.,
R
ea
l-
E
S
S
I

[SCB+98b] Stein Sture, Nicholas Costes, Susan Batiste, Mark Lankton, Khalid AL-Shibli, Boris Jeremić, Roy Swan-
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[SN95] Haluk Sucuoǧlu and Alphan Nurtuǧ. Earthquake ground motion characteristics and seismic energy dissi-
pation. Earthquake Engineering & Structural Dynamics, 24(9):1195–1213, 1995.

[SN96] H. L. Schreyer and M. K. Nielsen. Analytical and numerical tests for loss of material stability. International
Journal for Numerical Methods in Engineering, 39:1721–1736, 1996.

[SN06] E Sharbati and R Naghdabadi. Computational aspects of the Cosserat finite element analysis of localiza-
tion phenomena. Computational materials science, 38(2):303–315, 2006.

[SNCS14] H. Sabetamal, M. Nazem, J.P. Carter, and S.W. Sloan. Large deformation dynamic analysis of saturated
porous media with applications to penetration problems. Computers and Geotechnics, 55(0):117 – 131,
2014.

[Sni98] Roel Snieder. A Guided Tour of Mathematical Physics. Samizdat Press http://samizdat.mines.edu,
1998.

[SNK06a] Sachin K. Sachdeva, Prasanth B. Nair, and Andy J. Keane. Comparative study of projection schemes for
stochastic finite element analysis. Computer Methods in Applied Mechanics and Engineering, 195(19-
22):2371–2392, April 2006.

ESSI Notes page: 3250 of 3287
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[SP11] Björn Sjögreen and N. Anders Petersson. A Fourth Order Accurate Finite Difference Scheme for the
Elastic Wave Equation in Second Order Formulation. J. Sci. Comput., 52(1):17–48, 2011.

[SP12] Navjeev Saxena and D.K. Paul. Effects of embedment including slip and separation on seismic ssi response
of a nuclear reactor building. Nuclear Engineering and Design, 247(0):23 – 33, 2012.

[SP21] Takayuki Shuku and Kok-Kwang Phoon. Three-dimensional subsurface modeling using geotechnical lasso.
Computers and Geotechnics, 133:104068, 2021.

[SPB19] M. Shahbazi, O. Penner, and B. Bergman. Seismic input and topographic effects: A rigorous approach to
simulating 3D dam-foundation interaction in LS-DYNA. In United States Society on Dams, Conference,
Chicago, 2019.

[SPC+13] M.B. Syed, L. Patisson, M. Curtido, B. Slee, and S. Diaz. The challenging requirements of the {ITER}
anti seismic bearings. Nuclear Engineering and Design, 0:–, 2013.

[Spe80] A. J. M. Spencer. Continuum Mechanics. Longman Mathematical Texts. Longman Group Limited, 1980.

[Spi01] Diomidis Spinellis. Notable design patterns for domain-specific languages. Journal of Systems and
Software, 56(1):91–99, February 2001. http://dx.doi.org/10.1016/S0164-1212(00)00089-3.

[SPK89] CC Spyrakos, PN Patel, and FT Kokkinos. Assessment of computational practices in dynamic soil-
structure interaction. Journal of computing in civil engineering, 3(2):143–157, 1989.

[SPK11] Navjeev Saxena, D.K. Paul, and Ram Kumar. Effects of slip and separation on seismic ssi response of
nuclear reactor building. Nuclear Engineering and Design, 241(1):12 – 17, 2011.

[SPM+15] Szilárd Szalay, Max Pfeffer, Valentin Murg, Gergely Barcza, Frank Verstraete, Reinhold Schneider, and
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[SSJ87] Jörg Schlaich, Kurt Schäfer, and Mattias Jennewein. Toward a consistent design of structural concrete.
PCI Journal, 32(3):77–150, May/June 1987.

[SSM95] E. Stein, P. Steinmann, and C. Miehe. Instability phenomena in plasticity: Modeling and computation.
Computational Mechanics, 17:74–87, 1995.

[SSO19] Steve WaiChing Sun, George Spanos, and OTHERS. Verification & validation of computational models
associated with the mechanics of materials. Technical report, TMS, The Minerals, Metals & Metarials
Society, 2019.

[SSR82] Ignacio Sanchez-Salinero and Jose M. Roesset. Static and dynamic stiffness of single piles. Technical
Report Geotechnical Engineering Report GR82-31, Geotechnical Engineering Center, Civil Engineering
Department, The University of Texas at Austin, 1982.

[SSRT83] Ignacio Sanchez-Salinero, Jose M. Roesset, and John L. Tassoulas. Dynamic stiffness of pile groupes:
Approximate solutions. Technical Report Geotechnical Engineering Report GR83-5, Geotechnical Engi-
neering Center, Civil Engineering Department, The University of Texas at Austin, 1983.

[SSSM17] Benshun Shao, Andreas Schellenberg, Matthew Schoettler, and Stephen Mahin. Preliminary studies
on the dynamic response of a seismically isolated prototype gen-iv sodium-cooled fast reactor (pgsfr).
Technical Report 2017/11, Pacific Earthquake Research Center, PEER, 2017. see refined model in
OpenSees, p53, p58fig4.4.

[SSW96] Y. S. Suh, F. I. Saunders, and R. H. Wagoner. Anisotropic yield functions with plastic–strain–induced
anisotropy. International Journal of Plasticity, 12(2):417–438, 1996.

[SSWB04] Jonathan P. Stewart, Patrick M. Smith, Daniel H. Whang, and Jonathan D. Bray. Seismic compression
of two compacted earth fills shaken by the 1994 Northridge earthquake. ASCE Journal of Geotechnical
and Geoenvironmental Engineering, 130(5):461–476, May 2004.

[SSX98] C. Schwab, M. Suri, and C. Xenophontos. The hp finite element methods for problems in mechanics
with boundary layers. Computer methods in applied mechanics and engineering, 157:311–333, 1998.

[SSY99] D. Sheng, S. W. Sloan, and H. S. Yu. Aspects of finite element implementation of critical state models.
Researh report 176.02.1999, The University of Newcastle, 1999. ISBN 0 7259 1070 4.

[ST81] A. S. Saada and F. C. Townsend. Strength laboratory testing of soils. ASTM, STP 740:7–77, June 25th
1981. A State of the Art paper presented at the ASTM Symposium on the Shear Strength of Soils, June
25, 1980,.

[ST85] J. C. Simo and R. L. Taylor. Consistent tangent operators for rate-independent elastoplasticity. Computer
Methods in Applied Mechanics and Engineering, 48:101–118, 1985.

[ST86] J. C. Simo and R. L. Taylor. A returning mapping algorithm for plane stress elastoplasticity. International
Journal for Numerical Methods in Engineering, 22:649–670, 1986.

[ST97] Eckart Schnack and Karsten Türke. Domain decomposition with BEM and FEM. International Journal
for Numerical Methods in Engineering, 40:2593–2610, 1997.

[ST01] S.S.Rajashree and T.G.Sitharam. Nonlinear finite element modeling of batter piles under lateral load.
Journal of Geotechnical and Geoenvironmental Engineering, 127(7):604–612, July 2001.

[Sta92] Bjørn Stavtrup. A proposal regarding invisible logic for object-oriented languages. Journal of object
oriented programming, 5(1):63–65, March/April 1992.

[Sta17] Peter J Stafford. Interfrequency correlations among fourier spectral ordinates and implications for stochas-
tic ground-motion simulationinterfrequency correlations among fourier spectral ordinates and implications.
Bulletin of the Seismological Society of America, 107(6):2774–2791, 2017.

ESSI Notes page: 3254 of 3287
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Kahramanmaraş earthquakes: An in-depth study of 400 reinforced concrete buildings. Soil Dynamics and
Earthquake Engineering, 190:109119, 2025.

[Ste09] George Stefanou. The stochastic finite element method: Past, present and future. Computer Methods
in Applied Mechanics and Engineering, 198:1031–1051, 2009.

[Ste13] John D. Stevenson. Summary of the historical development of seismic design of nuclear power plants in
japan and the u.s. Nuclear Engineering and Design, 0:–, 2013.

[STF01] A.N. Stavrogin, B.G. Tarasov, and (edited by) Charles Fairhurst. Experimental physics and rock mechan-
ics. A.A. Balkema, Lisse ; Exton PA, 2001.

[STH+95] T. Sakemi, M. Tanaka, Y. Higuchi, K. Kawasaki, and K. Nagura. Permeability of pore fluids in the
centrifugal fields. In 10th Asian Regional Conference on Soil Mechanics and Foundation Engineering
(10ARC), Beijing, China, August 29 - Sept 2 1995.
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50(1):43–53, 2000.

[THS98a] J. J. Tweedie, D. N. Humphrey, and T. S. Sanford. Tire shreds as lightweight retaining wall backfill:
Active conditions. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 124(11):1061–1070,
1998.

[THS98b] Jeffrey J. Tweedie, Dana M. Humphrey, and Thomas C. Sanford. Full–scale field trials of tire shreds as
lightweight retaining wall backfill under at–rest conditions. Transportaition Research Record, 1619:64–71,
1998.

[THT01] M.D. Trifunac, T.Y. Hao, and M.I. Todorovska. On energy flow in earthquake response. Technical Report
CE 01-03, University of Southern California, Los Angeles, California, 2001.

[Thu61] Alagiah Thurairajah. Some properties of kaolin and of sand. PhD thesis, Cambridge University, 1961.

[Tim40] Stephen Timoshenko. Strength of Materials. Part I: Elementary Theory and Problems. D. Van Nostrand
Company, Inc., second edition – tenth printing edition, 1940.

[Tim53] Stephen S. Timoshenko. History of Strength of Materials. McGraw–Hill, Book Company, Inc., 1953.

[Tin85] T. C. T. Ting. Determination of C1/2, C−1/2 and more general isotropic tensor functions of C. Journal
of Elasticity, 15:319–323, 1985.

ESSI Notes page: 3259 of 3287
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structures subjected to analytical pulse ground motions. EARTHQUAKE ENGINEERING & STRUC-
TURAL DYNAMICS, 42:2043–2060, 2013.

[VTS15] Michalis F. Vassiliou, Rico Truniger, and Božidar Stojadinović. An analytical model of a deformable
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Jeremić. Time domain intrusive stochastic seismic risk analysis using ground motion prediction equations
of Fourier amplitude spectra. to be submitted to: Earthquake Spectra, 2019.

[WWB+20] Hexiang Wang, Fangbo Wang, Jeff Bayless, Han Yang, Marco Baglio, Norman A. Abrahamson, and Boris
Jeremić. Time domain intrusive stochastic seismic risk analysis using ground motion prediction equations
of fourier amplitude spectra. Soil Dynamics and Earthquake Engineering, in Review, 2020.

[WWJ+11] Qiang Wang, Jin-Ting Wang, Feng Jin, Fu-Dong Chi, and Chu-Han Zhang. Real-time dynamic hybrid
testing for soil-structure interaction analysis. Soil Dynanics and Earthquake Engineering, 31:1690–1702,
2011.

[WWY+19] Hexiang Wang, Fangbo Wang, Han Yang, Yuan Feng, Jeff Bayless, Norman A. Abrahamson, and Boris
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ić
et

al
.,
R
ea
l-
E
S
S
I

[YEP03] Zhaohui Yang, Ahmed Elgamal, and Ender Parra. Computational model for cyclic mobility and associated
shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12):1119–1127,
2003.

[YF20] H.D. Young and R.A. Freedman. University Physics with Modern Physics. Pearson, 15th edition, 2020.

[YFLY23] Yong Yuan, Zexu Fan, Fang Liu, and Yusheng Yang. A drm-smm framework for wave propagation in
layered saturated ground under inclined P1-SV waves. Computers and Geotechnics, 162:105658, 2023.

[YFWJ19] Han Yang, Yuan Feng, Hexiang Wang, and Boris Jeremić. Energy dissipation analysis for inelastic
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due to material inelasticity, viscous coupling, and algorithmic damping. ASCE Journal of Engineering
Mechanics, 145(9), 2019.

[YWFJ19] Han Yang, Hexiang Wang, Yuan Feng, and Boris Jeremić. Plastic energy dissipation in pressure-dependent
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Jeremić et al. University of California, Davis version: 3Jul2025, 10:19



Je
re
m
ić
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[ZDPB92b] Thomas Zimmermann, Yves Dubois-Pèlerin, and Patricia Bomme. Object oriented finite element pro-
gramming: I. governing principles. Computer Methods in Applied Mechanics and Engineering, 98:291–
303, 1992.
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