Real-ESSI Simulator

Model Development and Mesh Generation Manual

Sumeet Kumar Sinha, Yuan Feng,
Hexiang Wang, Han Yang
and
Boris Jeremic

University of California, Davis, CA

Version: 13Feb2026, 15:41

»

http://real-essi.us/

This document is an excerpt from: http://sokocalo.engr.ucdavis.edu/”jeremlc/LectureNotes/
please use google-chrome to view this PDF so that hyperlinks work‘ /

http://real-essi.us/
http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/

Contents

1 Pre Processing for Real-ESSI Simulator (2015-2016-2017...)

1.1 Introduction L

1.2 Model Development Using gmsh

1.21

1.2.2

1.2.3

1.2.4

Introduction to gmESSI
Getting Started

Translation Log Terminal
Element File (element.fei)
Node File (node.fei)
Load File (foad.fei)

Analysis File (main.fei)

0o N o o1 o1 B

Jeremi¢ et al. Real-ESSI Simulator 3 of 68

Updated ESSI Tags Terminal 27

1.2.5 gmESSI Commands 28

Singular Commands 29

Add Node Commands L 30

Nodal Commands : Operates On All Nodes of the defined Physical Group 31
General Elemental Commands : Operates On All Elements of the defined Physical

Group 35

Elemental Commands : Operates On All Elements of the defined Physical Group . . . 36
Elemental Compound Commands : Operates On All Surface Elements of the defined

Physical Group [Surface Loads] 44

Special Commands 46

Connect Command 47

Write Command 52

Write DRM HDF5 Command 53

1.2.6 Steps For Using gmESSI tool 54

Building geometry (.geo) filein Gmsh 54

Generate mesh (.msh) filein Gmsh oo 55

Writing all gmESSI Commands for the model 56

NOTE: 58

Executing gmESSI on Example_1.gmessi input file 58

Running Real-ESSI and visualization in paraview 60

1.2.7 lustrative Examples 61

Modeling of Cantilever Beam With Surface Load [Example2] 62

Modeling of a embedded shells and beam in Solids [Example 5] 63

1.2.8 Realistic Models Developed Using gmESSI 65

1.3 Introduction to SASSI-ESSI Translator 65

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Chapter 1

Pre Processing for Real-ESSI Simulator

Jeremi¢ et al. Real-ESSI Simulator 5 of 68

1.1 Introduction

1.2 Model Development Using gmsh

1.2.1 Introduction to gmESSI

The gmESSI, pronounced as [gm-ESSI], is a translator that converts mesh file from gmsh (a three-dimensional
finite element mesh generator with built-in pre- and post-processing facilities) to Real-ESSI DSL format. The
primary aim of this program is to provide an efficient pre-processing tool to develop Finite Element (FE)
models in gmsh and make them interface with various Real-ESSI functionalities. The gmESSI translator
package contains the translator, sublime plugin and the manual.

The gmESSI package is available at http://sokocalo.engr.ucdavis.edu/~ jeremic/lecture_notes_
online_material/_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz.

The text editor sublime plugin [gmESSI-Tools] can be downloaded here: http://sokocalo.engr.
ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/

fei-syntax-n-snippets.tar.gz.

Getting Started

The translator utilizes the physical and entity group concept of Gmsh (http://geuz.org/gmsh/doc/texinfo/
gmsh.html) (Geuzaine and Remacle, 2009), which gets imprinted in the mesh ".msh"” file. The translator
then manipulates these groups to convert the whole mesh to ESSI commands. Thus, making physical groups
is the essential, key for conversion. The Translator basically provides some strict syntax for naming these
Physical Groups which provides gmESSI information about the elements or (nodes) on which the translation
operates. The translator is made so general that any other FEM program can use it with little tweaks to have

their own conversion tool. A quick look at some important features of the program are:

e It has a lot of predefined commands which do the conversion at the blink of an eye. These commands

make it easier to define elements, boundary conditions, contacts/interfaces, fixities, loads

e |t provides a python module "gmessi”. The users can import this modulue and can extend the functional

capability of gmESSI.

e The [gmESSI-Tools] sublime plugin makes it easy by providing syntax coloring and auto-text-completion
for gmESSI commands. [gmsh-Tools] sublime plugin can also be installed for gmsh syntax coloring and

auto-completion.

e The translator uses a mapping.fei file to check for its command syntax and conversion. A user can

easily add a command in mapping.fei and it would get reflected automatically in the translation.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/fei-syntax-n-snippets.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/fei-syntax-n-snippets.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_SoftwareHardware_Pre_Processing/fei-syntax-n-snippets.tar.gz
http://geuz.org/gmsh/doc/texinfo/gmsh.html
http://geuz.org/gmsh/doc/texinfo/gmsh.html
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/src/mapping.fei

S wN -

O NO O WN -

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34

Jeremié et al. Real-ESSI Simulator 6 of 68

e It automatically optimizes the Real-ESSI tags (node, element, load) for space and time efficiency while

running simulation.

Installation Process: The Translator have its dependencies on Octave (3.2 or higher), Boost(1.58 or higher),
(Python 2.7 or higher). One should make sure to have them before compiling it. On Linux Ubuntu distros

the dependencies can be installed as

sudo apt-get install liboctave-dev

Boost version should be higher than 1.48
sudo apt-get install libboost-all-dev

sudo apt-get install python-dev

Installation of the gmESSI translator is easy, just follow steps below.

go to folder where you want to store and build gmESSI application

download the package from main Real-ESSI repository
this line below should be all one line
HOWEVER it had to be broken in two lines to be readable
so please make a single command out of two lines below
##
#
using curly brackets to help in checking scripts, that rely on these
brackets being available around URL
#
wget <
{http://sokocalo.engr.ucdavis.edu/” jeremic/lecture_notes_online_materi
_Chapter_SoftwareHardware_Pre_Processing/Real-ESSI_gmESSI.tgz}
##
make directory, move files, expand archive
mkdir Real -ESSI-gmESST
mv _all_files_gmESSI_.tgz Real-ESSI-gmESSI
cd Real-ESSI-gmESSI
tar -xvzf _all_files_gmESSI_.tgz

build the package
make # builds the application in curr_dir/build

install the package

-- by default the pacakage is installed in /usr/local
make install # installs the package in /usr/local
-- to change the install directory

make install INSTALL_DIR=install_dir_specified_by_user

HHH#HEH#H#ARAH#ES For installation of gmESSI plugin in sublime <
HHHHERAHARAHHH

open sublime-text

make sure you have installed package control

if not then install it first from
{https://packagecontrol.io/installation}

H H HH

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

al/\

35
36
37
38
39

Jeremi¢ et al. Real-ESSI Simulator 7 of 68

go to Preferences->PackageControl->InstallPackage

search for [gmESSI-Tools] and install it

also install [gmsh-Tools] following the same steps

restart sublime
HARHHBRARBHHBRARBHBBRARHHHBRAR B R B BRARBHHBRA SRR HBR RSB H BB RAR R R R BRAR R R BB RRS

Running gmESSI

gmESSI can be invoked from the bash terminal by typing gmessy. It can take one or multiple xyz.gmessi files
as an argument and convert them to Real-ESSI files in their respective simulation directory defined by the
user. By default, the ‘gmessi’ python module is automatically imported and available as ‘gmESSI’ in ‘.gmeesi’
input file.

gmessy is a top level python script that parses the .gmessi file and categories commands in the following

order as

e gmESSI Command: gmESSI Commands are one line commands. They start and end with ‘[and ']’

respectively. Section 1.2.3 describes the syntax.

e gmESSI Comments: The lines that start with '//" are considered as gmESSI comments. It gets
translated and copied to the main file (See Section 1.2.4).

e Singular Commands: The lines that start with ‘!’ are directly copied to the main file (See Section 1.2.4
and Section 1.2.5). Real-ESSI domain specific language (DSL) are written following the exclamation

mark ‘!" sign.
e Python Comments: The lines that start with ‘#’ are considered as python comments.

e Python Commands: Whatever lines left are considered as python commands. This option is only for
the advanced user and is not documented to make the manual simple. Only some useful commands

required are explained in the manual.

The categorized commands then generates an equivalent python (.py) script, which gets finally run in
python interpretor. The generated equivalent python script can be seen by adding '-I' or ‘—logfile= LOG_FILE’
option during execution. It is important to note that nodes, coordinates, element no etc generated from the
translator have a precision associated with them. By default the precision is up-to ‘6’ significant digits. The

user can change the precision anywhere in the .gmessi file as

gmESSI.setPrecision (10);

This will set the precision to ‘10" significant digits. Lowering precision can be helpful in generating same

coordinates for contact/interface node pairs. See [Example_4.gmessi] for its usage.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

O NO O WN -

15
16
17

18

add WN -

g WN -

Jeremié et al. Real-ESSI Simulator 8 of 68

The full description of gmessy can be invoked from the terminal as

$gmessy --help
usage: gmessy [-h] [-1] [-nm] [-em] [-ne] [--logfile= LOG_FILE]
[--nodemap= NM_FILE] [--elemap= ELM_FILE]

gmessi_filename

positional arguments:
gmessi_filename filename containing semantics of conversion

optional arguments:

-h, --help show this help message and exit

-1 generate the log file at the current location

-nm generate the node map file at the current location

-em generate the element map file at the current <«
location

-ne don't carry out the conversion

--logfile= LOG_FILE @generate the log file at specified location

--nodemap= NM_FILE generate the node-map (gmsh-to-Real_ESSI) file ¢
at specified location

--elemap= ELM_FILE generate the element-map (gmsh-to-Real _ESSI) <
file at specified location

Since gmESSI optimizes the ‘node’ and ‘element’ tag for Real-ESSI, it provides an interface to retrieve the
node map and element map containing mapping from gmsh_tag to Real ESSI_Tag.

Running gmESSI requires, the .gmessi input file and the gmsh mesh (.msh) mesh file containing physical
groups. Let's go and run an example to see how gmESSI works. [Example_1] can be obtained here.

Alternatively in the gmESSI directory, navigate to the Examples directory and then to Example_1 directory.

$cd ./Examples/Example_1

$1s
Example_1.geo # geometry file [gmsh]
Example_1.msh # mesh file [gmsh]

Example_1.gmessi # gmessi input file [gmESSI]

Contents of Example_l.gmessi input file: As described above, the .gmessi input file contains gmESSI
commands, singular commands and python commands. Also, it can contain comments followed by // or
#. At the beginning of the input file, the simulation directory, main, node, element, load filenames must
be specified. Also, before adding any gmESSI command, mesh must be loaded using ‘gmESSI.loadGmshFile’

command.

$ cat Example_1.gmessi

loading the msh file
gmESSI.loadGmshFile ("Example_1.msh")

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_1/Example_1.tar.gz

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47
48
49
50
51
52

Jeremié et al. Real-ESSI Simulator 9 of 68

Physical Groups defined in the msh file.
#2 2 "Base_Surface"

#2 3 "Top_Surface"

#3 1 "Soil"

Defining the Simulation Directory
gmESSI.setSimulationDir("./Example_1_ESSI_Simulation")
gmESSI.setMainFile (gmESSI.SimulationDir+ "main.fei")
gmESSI .setNodeFile (gmESSI.SimulationDir+ "node.fei")
gmESSI.setElementFile (gmESSI.SimulationDir+ "element.fei")
gmESSI .setLoadFile (gmESSI.SimulationDir+ "load.fei")

// My new model
! model name "Soil_Block";

[Add_A11l_Nodeq{ unit:= m, nof_dofs:= 3}]

// Adding Material layer wise and also assigning it to elements

[Vary_Linear_Elastic_Isotropic_3D{Physical_Group#Soil, <«
ElementCommand := [Add_8NodeBrick{}], Density:= 1600+10%(10-z)\ 0 ¢
\kg/m~3, ElasticModulus:= 20e9+10e8*(10-z)\-8\Pa, PoissonRatio:= ¢«
0.3}]

! include "node.fei";
! include "element.fei";
! new loading stage "Stagel_Surface_Loading";

Applying Fixities
[Fix_Dofs{Physical_Group#Base_Surface, all}]

For applying Surface load on the Top Surface of the Soil Block
#[Add_8NodeBrick_SurfaceLoad{Physical_Group#1,Physical_Group#3,10*Pal}]

For applying Nodal loads to all the nodes of the top surface
[Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx, <
Mag:= 10xkN}]

For applying Self-Weight Load to the soil elements

! add acceleration field # 1 ax = Oxg ay = 0*xg az = -1lxg ;
! add load #18 to all elements type self_weight use acceleration <«
field # 1;

Updating the tag inside gmESSI as user entered by himself load tag
gmESSI.setESSITag("load" ,19)

include "load.fei";
NumStep = 10;

define algorithm With_no_convergence_check;
define solver UMFPack;

!
]
|
]
!
! define load factor increment 1/NumStep;

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

53
54

©O© 0O ~NO U WN -

11
12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

Jeremi¢ et al. Real-ESSI Simulator 10 of 68

! simulate NumStep steps using static algorithm;
! bye;

Running Example_1 in Terminal: -
$ gmessy Example_1.gmessi
Message:: newDirectory created as ./Example_1_ESSI_Simulation

Add_Al11_Nodeq{ unit:= m, nof_dofs:= 3}
Found!!
Successfully Converted

Vary_Linear_Elastic_Isotropic_3D{Physical_Group#Soil, ¢
ElementCommand:= [Add_8NodeBrick{}], Density:= 1600+10*x(10-z)\ 0 <
\kg/m~3, ElasticModulus:= 20e9+10e8%*(10-z)\-8\Pa, PoissonRatio:= 0.3}
Found!!

Successfully Converted

Fix_Dofs{Physical_Group#Base_Surface, all}
Found!!
Successfully Converted

Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx, ¢
Mag:= 10*kN}
Found!!
Successfully Converted

%k 3k >k 3k 5k 3k >k 3k 5k >k 5k %k 5k %k 5k %k >k %k > %k >k %k k % Updated New Tag Numbering <o
%k 5k %k >k 5k %k %k 5k %k %k 5k %k %k 5k %k %k Xk %k %k Xk %k %k

damping =1
displacement =1
element = 28
field =1
load = 17
material = 4
motion = 19
node = 65
nodes = 65
Gmsh_Elements = 46
Gmsh_Nodes = 65

It must be noted that the terminal only displays information about gmESSI commands. The singu-
lar commands are directly copied to the main file. The translator creates a user defined directory Exam-

ple_1_ESSI_Simulation and places
1. node fei
2. element.fei

3. load.fei

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

O© 00N O WN -

Jeremi¢ et al. Real-ESSI Simulator 11 of 68

4. main.fei

5. Example_1.msh

The terminal displays the WARNING, ERROR messages and log of command conversions as shown above. At
the end, it displays the Available ESSITag’s numbering, which can be refereed and used for further conversion.
ESSITags are explained later in this manual in Section 1.2.4.
The Real-ESSI input files produced can be tweaked a little if required. Once all is set, the model can be
run through Real-ESSI Simulator

cd Example_1_ESSI_Simulation

To run ESSI in sequential
-- assuming sequential executable name is 'essi'
essi -f main.fei

To run ESSI in parallel
-- assuming parallel executable name is 'pessi'
mpirun -np 4 pessi -f main.fei

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

O ~NO O WN -

©

Jeremi¢ et al. Real-ESSI Simulator 12 of 68

1.2.2 Gmsh Physical Groups and Geometrical Entities
Geometrical Entities

Geometrical entities are the most elementary group in Gmsh. Each point, line, surface and volume is a
geometrical entity and possess a unique identification number. Elementary geometrical entities can then
be manipulated in various ways, for example using the Translate, Rotate, Scale or Symmetry commands.
They can be deleted with the Delete command, provided that no higher-dimension entity references them.
Example_2.geo shows description of a geometry (.geo) file in gmsh for creating a cantilever beam. The
files can be downloaded here. Alternatively, it can be located in the gmESSI directory by navigating to the

Examples/Example_2 directory.

$ cat Example_2.geo
// Creating a point
Point (1) = {0,0,03};

// Dividing the beam length in 5 parts
Extrude (4,0,0) {Point{1}; Layers{5};}

// Dividing the beam width in 2 parts
Extrude (0,1,0) {Line{1}; Layers{2};Recombine;}

// Dividing the beam depth in 2 parts
Extrude (0,0,1) {Surface{5}; Layers{2};Recombine;}

Figure 1.1 shows, the different unique identification number attached to each of the nodes, lines, surface
and volume of the geometry of cantilever beam. Physical groups can now be created of type {nodes, lines,

surface or volume} containing one or more geometrical entities of their respective type.

Physical Groups

Physical groups are groups of same type {nodes, lines, surface, volume} of elementary geometrical entities.
These Physical Groups cannot be modified by geometry commands. Their only purpose is to assemble ele-
mentary entities into larger groups, possibly modifying their orientation, so that they can be referred to by
the mesh module as single entities. As is the case with elementary entities, each physical point, physical line,

physical surface or physical volume are also assigned a unique identification number.

NOTE:- A geometrical entity has only one elementary entity number but can be a part of many physical

groups by sharing their unique identification number.

Below is the continuation of Example_2.geo in Gmsh for creating physical Groups of cantilever beam. Just

for the sake of example, 4 physical groups are created which consist of all points, lines, surface and volume

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_2/Example_2.tar.gz

N~

0 ~NO Ok Ww

Jeremié et al. Real-ESSI Simulator 13 of 68

g4

(a) All Points

(c) All Surface (d) All Volume

Figure 1.1: Showing Geometrical Entities. Every point, line, surface and volume has an unique identification

number assigned to it.

respectively of the cantilever beam model. Also physical groups of the surface where fixities and load is applied

is created.

$ cat Example_2.geo

Physical Point ("All_Points") ={1,2,3,4,5,6,10,14};
Physical Surface("All_Surfaces") = {5,14,22,27,18,26}%};
Physical Line("All_Lines") ={1,2,3,4,12,13,21,17,7,8,9,10};
Physical Volume ("All_Volumes") ={1};

Physical Surface("ApplySurfacelLoad") ={27};

Physical Surface("SurfaceToBeFixed") ={261};

In generated mesh (.msh) file, all the geometrical entities have a tag list which contains the ids of the physical
groups to which it belongs or is associated. In the above example shown in Figure 1.2, every point, line,
surface, volume belongs to only one physical group and thus are showing only one associative number against
themselves. Figure 1.3 shows geometrical entities which are part of many physical groups. For example:- the
volume shown in Figure 1.3 shows physical group of volumes having id 1 and 7.

The whole idea of creating a Physical Group of points, lines, surfaces and volumes and giving it a unique
string name is to allow quick identification and manipulation during gmESSI commands. In Gmsh the name
of these Physical Group along with their corresponding elements and nodes gets transferred to the mesh .msh

file as shown below. Figure 1.4 shows how Gmsh interprets these Physical groups in .msh file.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al.

Real-ESSI Simulator

14 of 68

(a) Physical group of Points

(c) Physical group of Surface

(d) Physical group of Volume

Figure 1.2: Showing all 4 Physical Groups with entities numbered by their physical group id's.

Figure 1.3: Showing geometrical entities associated with more than one physical group.

1 |$cat Example_1.msh

2 ey

3 |$PhysicalNames

416

5|10 1 "All_Points"

6|1 3 "All _Lines"

7|12 2 "All_Surfaces"
8|2 5 "ApplySurfacelLoad"
9 12 6 "SurfaceToBeFixed"
10 |13 4 "All_Volumes"

11 | $EndPhysicalNames

Real-ESSI Pre Processing Manual

version: 13Feb2026, 15:41

[ure

O OO NOOPd WN -

Jeremié et al. Real-ESSI Simulator 15 of 68

NOTE:- While creating a physical group in Gmsh, only the information (nodes and elements) of that physical
group gets written in the .msh file and rest are not written. So one must be careful to create physical groups
of all entities which is needed during post-processing or conversion. More information about Gmsh syntax,
physical groups, commands, .msh file, save options, is available at the main online documentation web site:

http://geuz.org/gmsh/doc/texinfo/gmsh.html

Physical Group Description
0 1 “All Points” —— Physical Group Unique Name

Physical Group Unique Identification Number

Figure 1.4: Description showing how gmsh interprets the Physical Groups.

e Physical Group Description :: Gmsh uses it to identify the type of physical group. 0,1,2 and 3

represents the physical group of geometric points, lines, surface and volume respectively.

e Physical Group Unique Identification Number :: It is an unique identification number automatically

assigned to each physical group by gmsh.

e Physical Group Unique Name :: It is also the same as Physical Group Unique Identification Number

but the difference is that it is not automatic but defined by the user and that too in the form of string.

The gmESSI Translator utilizes the property of naming the physical group as "string” to get gmESSI commands
from the user along with specific physical group on which it is operated. Below in shown [Example_2.gmessi]
input file for a Cantilever analysis. It shows how to write gmESSI commands with physical group information
on which it is operated. gmESSI utilizes the mesh (.msh) file to get the respective physical group and trans-

lated it to ESSI input (.fei) files.

$ cat Example_2.gmessi
gmESSI.loadGmshFile ("Example_2.msh")

####### Physical Groups Available in Example_2.msh file
#0 1 "All_Points"

#1 3 "All_Lines"

#2 2 "All_Surfaces"

#2 5 "ApplySurfaceload"
#2 6 "SurfaceToBeFixed"

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://geuz.org/gmsh/doc/texinfo/gmsh.html

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44
45

Jeremi¢ et al. Real-ESSI Simulator 16 of 68

#3 4 "All_Volumes"

############ Important!! to set the file names #HH#HH#AHHAHAHFHHHAHAHH
gmESSI.setSimulationDir ("./Example_2_ESSI_Simulation")
gmESSI.setMainFile (gmESSI.SimulationDir+ "main.fei")
gmESSI.setNodeFile (gmESSI.SimulationDir+ "node.fei")
gmESSI.setElementFile (gmESSI.SimulationDir+ "element.fei")
gmESSI.setlLoadFile (gmESSI.SimulationDir+ "load.fei")

// My new model
! model name "Cantilever_Analysis";

[Add_Al11l _Node{Unit:= m, NumDofs:= 3}]

// Adding Material
! add material 1 type linear_elastic_isotropic_3d mass_density = <
2000*%kg/m~3 elastic_modulus = 200*xMPa poisson_ratio = 0.2;

[Add_8NodeBrick{Physical _Group#All_Volumes, material_no:= 11}]
[Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}]

! include "node.fei";
! include "element.fei";

! new loading stage "Stagel_Uniform_Surface_Load";

Adding Surface Load

#[Add_8NodeBrick_SurfacelLoad{Physical_Group#All_Volumes, <
Physical_Group#ApplySurfaceLoad, -10xPal}]

[Add_Node_Load_Linear{Physical_Group#ApplySurfacelLoad, ForceType:=
Fz, Mag:= -10*kN}]

include "load.fei";
define algorithm With_no_convergence_check;
define solver UMFPack;
define load factor increment 1;
simulate 10 steps using static algorithm;
bye;

NOTE:- The first command in [.gmessi] file should be to load the mesh (.msh) file. The syntax to load the

gmsh generated mesh file is

gmESST .LoadGmshFile ("meshfile.msh")

The gmESSI translator reads the command [Add_All_Node{ Unit:= m, NumDofs:= 3}] and adds all the nodes

from mesh file to ESSI input files. Similarly it translates all the other commands as well.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 17 of 68

1.2.3 gmESSI Command Description

gmESSI Translator as said above utilizes the naming of the physical groups to get commands from the user

and then carry out the conversion by acting on the defined physical group.

gmESSI Syntax

gmESSI follows strict syntax. gmESSI parses the physical group name string in mesh (.msh) file. Let us have

a quick look at the syntax of physical group name.

Physical Group Names : Physical group names are created inside gmsh geometry file. gmESSI follows

special syntax as described below.

1. Physical group names used in gmsh should be unique for gmESSI to identify them during post processing.
2. Physical group names should not contain any space

3. Physical group tags can be any alphanumeric sequence but should not contain any of these []9 literals

in their names. Example " Physical_Group_1"

gmESSI Command Syntax : gmESSI translator commands are always enclosed between opening/closing

square brackets [and] respectively. A typical gmESSI command syntax is shown in Figure 1.5

[Add_Node Load_Linear{Physical Group#ApplyLoad, ForceType:= Fx, Load:= 10*kN}]

Command Name

Physical group name Argument Tags Argument

Figure 1.5: gmESSI command description.

e Command Name : Just as regular function gmESSI Commands have a name and take arguments. The

names are usually self explanatory of its function like Add_8NodeBrick{...}, Free_Dofs{...} .. etc

e Physical Group Argument : Usually the gmESSI commands have first argument as physical group . For
Example:- Add_8NodeBrick{ PhysicalGroup#y5,...}, Add_8NodeBrick{ PhysicalGroup#All_Volumes,...},
Free_Dofs{ PhysicalGroup#4,...},.. etc.

Physical Group Id can be the gmsh unique string or number representing that physical group (as shown

in .msh file).

e Arguments : Arguments as always are separated by comma ’,’.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 18 of 68

— Argument Tag The arguments of gmESSI commands can also have tags associated with them
so that it becomes easy for the user to interpret the argument and make changes in future. The
tag and the argument is separated by :=. Tag itself has no meaning but it serves as an important

information center for user. An example is shown below to show how tags are applied.

— gmESSI command having arguments without tags
1. [Add_Node_Load_Linear{Physical_Group#ApplySurfacelLoad, Fz, -10*kN}]
— gmESSI command having arguments with tags
1. [Add_Node_Load_Linear{Physical_Group#ApplySurfaceLoad, ForceType:= Fz, Mag:=-10*kN}]

2. [Add_Node_Load_Linear{Physical Group#ApplySurfaceLoad, ForceType:= Fz, -10*kN}]

3. [Add_Node_Load_Linear{Physical_Group#ApplySurfacelLoad, Force_Direction:= Fz, Strength:=
-10*kN}]

It can be seen from above examples that the tags are optional and also the user can put their own tag
names. The sublime plugin [gmESSI-Tools| comes with elaborative tags for the parameters and a lot more
with syntax coloring and text-completion for gmESSI commands. It is encouraged to use the plugin and take

its advantage.

[Add_Node Load_Linear{Physical_Group#ApplyLoad, ForceType:= Fx, Load:= 10*kN}]

Command Name 1 Physical group name Argument Tags Argument
gmESSI Translator
P d \ ~ ~ ~ ~
” ~ ~
- N\ S o ~So

~ 4 ~a 'S
Add load #{1} to node #{32} type linear {Fx} = {10*kN}
Add load #{2} to node #{34} type linear {Fx} = {10*kN}

Add load #{100} to node #{100} type linear {Fx} = {10*kN}

Figure 1.6: gmESSI conversion description.

Figure 1.6 shows the illustration how gmESSI works. Load gets added to all the nodes of the physical
group ‘ApplyLoad’. gmESSI translator automatically assigns the unique load tag sequentially. It retrieves the
node tag from the physical group. Rest of the information like ‘ForceType' and ‘Magnitude’ is obtained from

the arguments.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 19 of 68

Most of the time these arguments are dummy which means that they just get copied to their equivalent
ESSI command at their respective places. These arguments thus have a "string” data-type. For example:
the command Add_Node_Load_Linear{Physical_Group#ApplySurfaceLoad, Fz, -10*kN} is equivalent to the
Real-ESSI command add load #{} to node #{} type linear {} = {}. Fz and -10*kN goes to their respective
position directly through the translator as shown in the Figure 1.6 load number 1 and node number 32 are

computed by the translator and then inserted in the ESSI command.

NOTE:- The gmESSI Translator does not provide syntax checking for those dummy arguments. It
means that, whatever is written gets copied at the respective position in the equivalent ESSI command,
so the one must be careful with what they are writing in these arguments. For Example the command
Add_Node_Load_Linear{Physical_Group#Id, ForceDirection, Magnitude} based on the arguments can get con-

verted as

1. [Add_Node_Load_Linear{Physical_Group#ApplySurfacelLoad, ForceType:= Fz, Mag:= -10*kN}]
—— > add load #1 to node #32 type linear Fz = -10*kN
—— > add load #2 to node #33 type linear Fz = -10*kN

—— > add load #100 to node #100 type linear Fz = -10*kN

2. [Add_Node_Load_Linear{Physical_Group#ApplySurfacelLoad, ForceType:= Fz, Mag:= -10}]
—— > add load #1 to node #32 type linear Fz = -10
—— > add load #2 to node #33 type linear Fz = -10

—— > add load #100 to node #100 type linear Fz = -10

3. [Add_Node_Load_Linear{Physical Group#ApplySurfaceLoad, ForceType:= Ft, Mag:= -10*kN}]
—— > add load #1 to node #32 type linear Ft = -10*kN
—— > add load #2 to node #33 type linear Ft = -10*kN

—— > add load #100 to node #100 type linear Ft = -10*kN

All the above conversions are correct. But only conversion (1.) is correct as an input for Real-ESSI Simu-
lator because force direction is one of Fx,Fy,Fz and magnitude 10*kN has proper units. So one must be very

careful while writing the arguments.

Note: Some of the arguments are not string but represents numerical quantities, which are manipulated by

the translator during conversion. Thus, the one must supply only numbers without any alphabets else it would

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 20 of 68

lead an unexpected termination of program. These arguments corresponds to Special Commands such as

Connect Command and Variational Commands. The manual talks about them later in Section 1.2.5.

gmESSI Command’s Physical Group

As iterated earlier, gmESSI commands operates on physical groups. The gmESSI command usually have their
first argument as physical on which it operates. The gmESSI syntax allows the users to operates it's command
on specific physical groups. The user specifies the group by including an argument Physical_Group#Tag in
front of the gmESSI commands describing the command. The tag can be either Physical_Group_Id, Physi-

cal_Group_Name. Let's look at some of them

e [Add_Node_Load_Linear{Physical_Group#?5,Fz,-10*kN}] operates on physical group 5

e [Add_8NodeBrick{Physical_Group#All_Volumes, 1}] operates on physical group which has string_tag as
All_Volumes

For example in reference to [Example_2.gmessi] Physical_Group#All_Volumes or Physical_Group#4 refers the
same physical group.
A physical group is a group of point, line, surface or volume defined by the user which contains all the

geometrical entities that falls under that domain/group. Figure 1.2 shows physical groups.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 21 of 68

1.2.4 gmESSI Output

gmESSI Translator translates the gmESSI commands operated on mesh (.msh) file to different ESSI input
(node, element, load and main) (.fei) files and put them in user-defined directory. It also updates the mesh
(.msh) file and puts it in the same directory. The log of translation, errors and warnings are displayed on the
terminal. Below is the demonstration of log messages one by one using [Example_2.gmessi] with mesh-file
name Example_2.msh. The folders and Reall ESSI input (.fei) files that are created by the translator for

Example_2.gmessi input file are.

Directory Example_2_ESSI_Simulation

gmESSI Translator creates simulation directory as specified by the user. The user is expected to create the
necessary node (Section 1.2.4), element (Section 1.2.4) , load (Section 1.2.4) and main (Section 1.2.4) file
to that directory. The user is expected to provide the directory and filenames before executing any gmESSI
command. In case the directory already exists a warning messages is shown on the terminal and a new
directory following the original name with ‘_n’ (n is number) is created. A new Real-ESSI simulation directory

is assigned by the following command

gmESSI.setSimulationDir ("./Example_2_ESSI_Simulation", overwrite_mode)

where, ‘overwrite_mode=0" means that in case of already existing folder, a new directory following the original
name with ‘_n’ (n is number) is created. ‘overwrite_mode=1" would not check for any conflicts and use the
same directory as specified by user. For example:- running [Example_.gmessi] file would produce the following

message.

$ gmessy Example_2.gmessi
Files converted to Examples/Example_2_ESSI_Simulation

Again, running the same example would produce the following message as shown below. In [Exam-
ple_2.gmessi| overwrite is turned off and thats why it creates new-non conflicting directory by appending ; to

end.

$ gmessy Example_2.gmessi
Message:: newDirectory created as ./Example_2_ESSI_Simulation_1

The execution of gmessy XYZ.gmessi produces warnings/errors in the following situations.

e ERROR:: Please Enter the gmessi File :: It occurs if the user does not give a filename. The possible

situation for getting this error is

1|$ gmessy

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremié et al. Real-ESSI Simulator 22 of 68

e ERROR:: The program failed to open the file XYZ.msh It occurs if the given file or one of the

files in the argument does not exist or fails to open because of some reason.

e WARNING::Directory Already Present.The contents of the Folder may get changed :: It oc-
curs when users translates the mesh file file XYZ.msh in overwrite mode and the corresponding folder

XYZ_ESSI_Simulation already exists at the execution location.

e Files converted to Examples/Example_2_ESSI _Simulation :: The message refers to the location

of the folder where the translations have been saved.

Translation Log Terminal

gmESSI Translator displays the log of translation of gmESSI commands to corresponding Real-ESSI commands
on the terminal. Proper Errors Messages and Warnings are echoed to the user. The execution of the commands
are sequential which means the commands written first are executed first and similarly their success and failure

is also echoed first. Let us look at this aspect with Example_2.gmessi.

= O O 00N O O

o

$cat Example_2.gmessi

! add material 1 type linear_elastic_isotropic_3d mass_density = <«
2000*xkg/m~3 elastic_modulus = 200*MPa poisson_ratio = 0.2;

[Add_8NodeBrick{Physical _Group#All_Volumes, material_no:= 1}]
[Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}]

! include "node.fei'";
! include "element.fei";

Here, the sequence of execution of commands is ‘! add material # 1 type linear_elastic_isotropic_3d
mass_density = 2000 * kg/m? elastic. modulus = 200 x M Pa poisson_ratio = 0.2; ', [Add_8NodeBrick{
Physical_Group#All_Volumes, material_no:= 1}], [Fix_Dofs{ Physical_Group#?SurfaceToBeFixed, all}] and ‘!
include “node.fei”;’. Notice that the same order gets reflected in the translation log on the terminal as shown
below. Also, it must be noted that the commands followed by '!" or *//" or ‘'#' or python commands do not
have any log messages corresponding to them.

It must be noted that the lines following ‘!" are directly copied to the main (Section 1.2.4). Usually Real-
ESSI domain specific language that does not operate/require any physical group should be written following

exclamation ‘! sign.

$ gmessy ./Example_2.gmessi

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

O © 00N O

O ~NO O WN -

S wN -

o O

10
11
12
13

14

Jeremi¢ et al. Real-ESSI Simulator 23 of 68

Add_8NodeBrick{Physical_Group#All_Volumes, material_no:= 1}
Found!!
Successfully Converted

Fix_Dofs{Physical_Group#SurfaceToBeFixed, all}
Found!!
Successfully Converted

Apart from displaying the log details on the terminal, similar log is added for each translation of gmESSI
commands in their respective files in which they are translated. In these files, each successful translation is
enclosed between corresponding RespectiveGmESSICommand Begins and RespectiveGmESSICommand Ends.
The same is shown below through the contents of node.fei. Notice that all the translations are enclosed

between Begins and Ends Tag.

$ cat Examples/Example_2_ESSI_Simulation/node.fei

//**

// Add_Al1l1 _Node{Unit:= m, NumDofs:= 3}Starts
/7% % ok sk ok ok sk ok sk ok sk ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR Rk Rk kR R Rk Rk Rk Rk ok Rk ok ok ok ok ok ok ok ok K

add node # 1 at (0.000000%m,0.000000%m,0.000000*m) with 3 dofs;
add node # 2 at (4.000000%m,0.000000%m,0.000000*m) with 3 dofs;
add node # 3 at (0.000000*%m,1.000000*m,0.000000*m) with 3 dofs;

//**

// Add_All1_Node{Unit:= m, NumDofs:= 3}Ends
/ /% % % ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok k ok ok ok k K ok ok ok

$ cat Examples/Example_2_ESSI_Simulation/element.fei

[/ % % %Kok ok ok ok ok ok ok ok ok ok ok ok Kk sk ok Kk ok ok K ok ok K Kk ok K Kk sk ok K ok ok K ok ok K Kk ok K Kk ok ok Kk ok ok K Kk ok K Kk ok
// Add_8NodeBrick{Physical_Group#All_Volumes, <

material_no:= 1}Starts
//***

add element #1 type 8NodeBrick with nodes (51,46,29,37,33,17,1,9) —
use material #1;

add element #2 type 8NodeBrick with nodes (47,28,5,19,51,46,29,37) <
use material #1;

add element #3 type 8NodeBrick with nodes (42,32,46,51,13,3,17,33) «
use material #1;

//***

// Add_8NodeBrick{Physical_Group#All_Volumes, <
material_no:= 1}Ends

[/ % K K ok ok ok ok ok ok ok ok K ok ok K ok ok K oK oK ok K oK ok o oK ok ok K oK oK ok K ok ok K oK oK ok K ok ok K oK oK ok K oK oK ok K oK oK K K oK ok K ok oK K K oK ok K K

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 24 of 68

NOTE:- The ordering/sequence of commands in ESSI analysis file is important and so the user must
make sure that the translations are made in the same order or if not the user should change it manually by
(cut/copy/paste) in node.fei, load.fei and main.fei files before execution.

Having given a short description of the other translation log/error messages. Let us look more closely one

by one and understand the messages,errors and warnings prompted on the terminal.

e Found!! : This message in front of the gmESSI command as shown above on translation log in the

terminal means that, the corresponding command was found in the gmESSI Command Library.

e Successfully Converted : As the message itself describes, it occurs if the command has been success-

fully translated.

e Not Found!! : It occurs if the gmESSI Translator could not find the arbitrary command XYZ in the
gmESSI Command library. Example:- Loading{Fx,10*kN} NotFound!!

e WARNING:: Execution of the command escaped. The Gmessi command XYZ could not be
found : The gmESSI Translator does not terminate the translation if a command is not found, instead

gives this warning message following the Not Found!! Error.

e Error:: The command XYZ has a syntax error in Physical_Group# tag : It occurs if there is
a syntax error in Physical_Group# argument. The correct represent ion for Physical group Tags is
Physical_Group#n, where n is the group id as 1,2,3.. etc. Examples of improper representation are

Phy#2, Physical#Node, ..

e Warning:: The command XYZ failed to convert as there is no such Physical Group :: It occurs
if one of the arguments in the command is Physical_Group# and the specified physical group by the

user does not exists in the .msh file.

e Warning:: The command XYZ could not find any nodes/elements on which it operates : It
occurs if for a specified command, the required element types for translation could not be found in
the specified Physical group. For Examples:- [Add_8NodeBrick{Physical_Group#1,1}] would give this
warning as the Physical_Group#1 being a Physical line group does not contain any 8-Noded Brick

elements on which this command operates.

e ERROR:: Gmsh File has invalid symbols in Node Section. Unable to convert string to integer

in Gmsh File : It occurs if there is perhaps a string inside the Nodes section of .msh file.

e ERROR:: The command XYZ has a syntax errors :: It occurs if the specified command by the

user contain any syntax errors caught while parsing the command.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 25 of 68

e ERROR:: Gmsh File has invalid symbols in Element Section. Unable to convert string to

integer in Gmsh File : It occurs if there is perhaps a string inside the Element section of .msh file.

Element File (element.fei)

Element file element.fei is one of four parts of Real-ESSI input file that contains the translation of commands
related to only initialization of elements of the FEM mesh. Generally, all the conversions from Elemental
Command (Section 1.2.5) are written to element file.

A new analysis element file is assigned by the following python command

gmESST .setElementFile (gmESSI.SimulationDir+ "element.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see sec-

tion 1.2.4).

Node File (node.fei)

Node file node.fei is one of four parts of Real-ESSI input file that contains the translation of commands related
to only initialization of nodes of the FEM mesh. All the conversions from Add Node Command (Section 1.2.5)
are written to node file.

A new analysis node file is assigned by the following python command

gmESSI.setNodeFile (gmESSI.SimulationDir+ "node.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see sec-

tion 1.2.4).

Load File (load.fei)

Load file load.fei contains the translation of commands related to the load and boundary conditions on the
structure, for example declaration of fixities, boundary conditions, tied/connected nodes, nodal loads, surface
loads etc....

A new load file is assigned by the following python command

gmESSI.setlLoadFile (gmESSI.SimulationDir+ "load.fei")

where, ‘gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see sec-

tion 1.2.4).

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

~NOoO Ok W -

10
11
12
13
14
15
16
17
18
19

Jeremi¢ et al. Real-ESSI Simulator 26 of 68

Analysis File (main.fei)

Analysis file main.fei is the main file which is run on Real-ESSI Simulator. The main file must include load,
node and element file through include ‘filename.fei’ command.

A new analysis main file is assigned by the following python command

gmESSI.setMainFile (gmESSI.SimulationDir+ "main.fei")

where, 'gmESSI.SimulationDir’ returns the Real-ESSI Simulation directory specified by the user (see sec-

tion 1.2.4). A typical analysis file after conversion looks like the following.

$ cat Examples/Example_2_ESSI_Simulation/Example_2_analysis.fei

// My new model
model name "Cantilever_Amnalysis";

// Adding Material
add material 1 type linear_elastic_isotropic_3d mass_density = <«
2000*%kg/m~3 elastic_modulus = 200*xMPa poisson_ratio = 0.2;

include "node.fei";
include "element.fei";

new loading stage "Stagel_Uniform_Surface_Load";

include "load.fei";

define algorithm With_no_convergence_check;
define solver UMFPack;

define load factor increment 1;

simulate 10 steps using static algorithm;
bye;

The user can now add solver, time steps and even rearrange the file structure accordingly to Real-ESSI

syntax.

NOTE: Real-ESSI Interpreter is sequential and follows certain ordering in commands like materials should be
declared before assigning to elements, main-follower nodes can be assigned only when both nodes are declared
. etc.. One should be careful with the order in which conversions are made and if necessary should change it
manually by (cut/copy/paste) later in the files geometry.fei, load.fei and analysis.fei or use the python module
discussed later before running in ESSI.

Please refer to the Real-ESSI manual for more details on the ordering of the commands.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 27 of 68

Mesh File (XYZ.msh)

Mesh file XYZ.msh is the input required by the translator. The translator updates the mesh file with users ad-
dition. For example:- if Connect-Command (Section 1.2.5) is used, the file contains additional physical group,

nodes and 2-noded elements. The Connect Command is discussed in the more detail later in Section 1.2.5.

Updated ESSI Tags Terminal

Updated ESSI Tags refers to the new tag numbering reference associated with ESSI Tags. ESSI has tag
numberings associated for damping, displacement, element, field, load, material, and node/nodes. For example
in Real-ESSI Command add node # 1 at (x,y,z) with 3 dofs, node is a tag and requires a new number like 1 to
be associated with that node. The translator displays the new numberings available for each ESSI Tag so that
the user is made aware of new numberings for manually specifying an ESSI command after the translation.

gmESSI also provides a python command to set the ESSI Tag. The command is

gmESSI .setESSITag(ESSI_Tag_Name ,Tag)

where,

e ESSI_Tag Name : It refers to a string representing to the Real-ESSI tag such as ‘node’, ‘element’,
‘field’...etc

e Tag : It refers to an integer representing the next available tag.

NOTE : If user is writing its own Real-ESSI domain specific language (DSL), it is expected that the user
will update the corresponding Real-ESSI tag used in that DSL. Otherwise, gmESSI would not be able to know

the updated available tags. See Example_1.gmessi for its usage.

$ gmessy Example_2.gmessi
xxxxx*x Updated New Tag Numbering **xkkx*xx*
Damping = il
displacement =1
element = 21
field =1

load = 19
material = 2
motion =1

node = bb
nodes = bb
Gmsh_Elements = 127
Gmsh_Nodes = b5

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 28 of 68

1.2.5 gmESSI Commands

Having the knowledge about the syntax, output files, errors and warnings, its time to move on to different
types of commands that gmESSI offers. it provide commands operated on physical group to allow conversion
for to equivalent Real-ESSI commands. There are also some special command that gmESSI supports. For
simplicity, the commands are categorized on the basis of their operation on nodes/elements. As stated earlier,
the commands are translated to one of the four files node.fei, element.fei, load.fei and main.fei. Let us look

at them closely one by one along with all its supported commands.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 29 of 68

Singular Commands

Singular Commands does not require any physical group to operate. All the text following exclamation mark
‘I' are copied directly to the main.fei (Section 1.2.4). For Example:- * | include ‘load.fei'; * is translated as
‘include "load.fei” " in main.fei analysis file. See [Example_1.gmessi| for its usage.

Note:- Real-ESSI DSL/commands must be followed by the exclamation mark ‘!".

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 30 of 68

Add Node Commands

Add Node Commands have only two commands. [Add_All_Node{unit,nof_dofs}] adds all the nodes generated
in mesh (.msh) file to ‘node.fei’ file. Whereas, [Add_Node{ Unit, NumDofs}] add all the nodes of only specified
physical group by the user. These commands operates on all the nodes of the physical group and generate an

equivalent Real-ESSI DSL for each of them.

NOTE:- Every Add Node commands get translated into the node.fei (Section 1.2.4).

e gmESSI : [Add_Node{PhysicalGroup , Unit , NumDofs}]
translates to series of
Real-ESSI DSL : add node # <. > at (< L >,< L >,< L >) with <. > dofs;

operated over all the nodes defined in the gmsh “.msh’ file.

e gmESSI : [Add_All_Node{Unit , NumDofs}]
translates to series of
Real-ESSI DSL : add node # < .> at (< L >,< L >,< L >) with <. > dofs;

operated over all the nodes of the defined physical group

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 31 of 68

Nodal Commands : Operates On All Nodes of the defined Physical Group

Nodal commands operates on all the nodes of the physical group defined by the user. For example:-
[Fix_Dofs{Physical_Group#Lateral_Surface,ux}] would fix ux degree of freedom of all the nodes of physi-
cal group ‘Lateral_Surface’. It will generate equivalent Real-ESSI DSL ‘fix node # < . > dof < . >" and apply
to all the nodes of that physical group. Figure 1.6 shows how gmESSI operated on physical groups.

As earlier stated, that the arguments of gmESSI commands are dummy and gets copied directly to the
ESSI equivalent command, so one must be very much aware while writing the arguments to the commands.
The arguments should be filled with values of the corresponding ESSI command along with required units if

any. For more details about the values to the arguments, please refer to ESSI Manual.
NOTE:- Every Nodal command gets translated to the load.fei file (Section 1.2.4).

The different commands under this category and their corresponding Real-ESSI commands are listed below

1. gmESSI : [Add_Nodes_To_Physical_Group{PhysicalGroup , Physical_Node_Group_String}|
translates to series of
Real-ESSI DSL : add nodes (< . >) to [physical_node_group] " string”;

operated over all the nodes of the defined physical group

2. gmESSI : [Add_Self_Weight_To_Node{PhysicalGroup , field#1}]
translates to series of
Real-ESSI DSL : add load # < . > to node # < . > type [self_weight] use acceleration field # < . >;

operated over all the nodes of the defined physical group

3. gmESSI : [Add_Node_Load_Linear{PhysicalGroup , Force_Type , Magnitude}]
translates to series of
Real-ESSI DSL : add load # < . > to node # < . > type [linear] [FORCETYPE] = < forceormoment >;
//I[FORCETYPE] = [FX] [Fy] [Fz] [Mx] [My] [Mz] [F_fluid_x] [F_fluid_y] [F_fluid_z]

operated over all the nodes of the defined physical group

4. gmESSI : [Add_Node_Load_Path_Time_Series{PhysicalGroup , Force_Type , Magnitude , Series_File}]
translates to series of
Real-ESSI DSL : add load # < . > to node # < . > type [path_time_series] [FORCETYPE] =
< forceormoment > series_file = " string”;

operated over all the nodes of the defined physical group

5. gmESSI : [Add_Node_Load_Path_Series{PhysicalGroup , Force_Type , Magnitude , Time_Step , Se-
ries_File}]

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 32 of 68

translates to series of
Real-ESSI DSL : add load # < . > to node # < . > type [path_series] [FORCETYPE| =
< forceormoment > time_step = < T > series_file = " string"”;

operated over all the nodes of the defined physical group

6. gmESSI : [Add_Node_Load_From_Reaction{PhysicalGroup}]
translates to series of
Real-ESSI DSL : add load # < . > to node # < . > type [from_reactions];

operated over all the nodes of the defined physical group

7. gmESSI : [Add_Node_Load_Imposed_Motion_Time_Series{ PhysicalGroup , Dof_Type , Time_Step |,
Disp_Scale , Disp_File , Vel_Scale , Vel_File , Acc_Scale , Acc_File}]
translates to series of
Real-ESSI DSL : add imposed motion # < . > to node # < . > dof < DOFTY PE > time_step =
< T > displacement_scale_unit = < L > displacement_file = " string” velocity_scale_unit = < L/T >
velocity_file = "string” acceleration_scale_unit = < L/T? > acceleration_file = "string”;

operated over all the nodes of the defined physical group

8. gmESSI : [Add_Node_Load_Imposed_Motion_Time_Series{PhysicalGroup , Dof Type , Time_Step |,
Disp_Scale , Disp_File , Vel Scale , Vel File , Acc_Scale , Acc_File}]
translates to series of
Real-ESSI DSL : add load # < . > type imposed motion to node # < . > dof < DOFTY PE >
time_step = < T > displacement_scale_unit = < L > displacement_file = " string” velocity_scale_unit
= < L/T > velocity_file = " string" acceleration_scale_unit = < L/T? > acceleration_file = " string";

operated over all the nodes of the defined physical group

9. gmESSI : [Add_Node_Load_Imposed_Motion_Series{ PhysicalGroup , Dof_Type , Disp_Scale , Disp_File
, Vel Scale , Vel_File , Acc_Scale , Acc_File}]
translates to series of
Real-ESSI DSL : add imposed motion # < . > to node # < . > dof < DOFTY PE > displace-
ment_scale_unit = < L > displacement_file = "string" velocity_scale_unit = < L/T > velocity_file =
"string” acceleration scale_unit = < L/T? > acceleration_file = " string”;

operated over all the nodes of the defined physical group

10. gmESSI : [Add_Node_Load_Imposed_Motion_Time_Series{PhysicalGroup , Dof_Type , Time_Step |,
Disp_Scale , Disp_File , Vel_Scale , Vel_File , Acc_Scl , Acc_File}]
translates to series of

Real-ESSI DSL : add load # < . > type imposed motion to node # < . > dof < DOFTY PE >

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 33 of 68

11.

12.

13.

14.

15.

16.

17.

displacement_scale_unit = < L > displacement_file = "string” velocity_scale_unit = < L/T > veloc-
ity file = " string" acceleration_scale_unit = < L/T? > acceleration_file = " string";

operated over all the nodes of the defined physical group

gmESSI : [Add_Damping_-To_Node{PhysicalGroup , damping#1}]
translates to series of
Real-ESSI DSL : add damping # < . > to node # < . >;

operated over all the nodes of the defined physical group

gmESSI : [Add_Mass_To_Node{PhysicalGroup , MassX , MassY , MassZ}|
translates to series of
Real-ESSI DSL :add masstonode # <.>mx=< M >my=<M > mz=< M >;

operated over all the nodes of the defined physical group

gmESSI : [Add_Beam_Mass_To_Node{PhysicalGroup , MassX , MassY , MassZ , ImassX , ImassY ,
ImassZ}]

translates to series of

Real-ESSI DSL :add masstonode # <. >mx=< M >my=< M >mz=< M > Imx =
<ML?>1Imy=< ML?>Imz =< ML? >;

operated over all the nodes of the defined physical group

gmESSI : [Fix_Dofs{PhysicalGroup , Dof_Types}]
translates to series of
Real-ESSI DSL : fix node # < . > dofs < DofTypes >;

operated over all the nodes of the defined physical group

gmESSI : [Free_Dofs{PhysicalGroup , Dof _Types}]|
translates to series of
Real-ESSI DSL : free node # < . > dofs < . >;

operated over all the nodes of the defined physical group

gmESSI : [Remove_Node{PhysicalGroup}]
translates to series of
Real-ESSI DSL : remove node # < . >;

operated over all the nodes of the defined physical group

gmESSI : [Remove_Equal_Dof_Constrain{PhysicalGroup}]

translates to series of

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 34 of 68

Real-ESSI DSL : remove constraint [equal_dof] node # < . >;

operated over all the nodes of the defined physical group

18. gmESSI : [Remove_Displacement_From_Node{PhysicalGroup}]

translates to series of
Real-ESSI DSL : remove displacement from node # < . >;

operated over all the nodes of the defined physical group

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 35 of 68

General Elemental Commands : Operates On All Elements of the defined Physical Group

General Elemental Commands operates on all the elements of a physical group. The translations are written
in load.fei file. For example:- [Add_SelfWeight_To_Element{Physical_Group#Soil,Field:= 1}] would add self-
weight to all the elements of the physical group ‘Soil’ along the field#1 direction using series of equivalent
Real-ESSI DSL ‘add load # < . > to element # < . > type [self_weight] use acceleration field # < . >}

The different commands under this category and their corresponding ESSI commands are listed below

1. gmESSI : [Add_Elements_To_Physical_Group{PhysicalGroup , Physical_Element_Group_String}]
translates to series of
Real-ESSI DSL : add elements (< . >) to [physical_element_group] " string”;

operated over all the nodes of the defined physical group

2. gmESSI : [Add_Self_Weight_To_Element{PhysicalGroup , field#1}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [self_weight| use acceleration field #
<. >,

operated over all the nodes of the defined physical group

3. gmESSI : [Add_Damping_To_Element{PhysicalGroup , damping#1}]
translates to series of
Real-ESSI DSL : add damping # < . > to element # <. >;

operated over all the nodes of the defined physical group

4. gmESSI : [Remove_Element{PhysicalGroup}]
translates to series of
Real-ESSI DSL : remove element # < . >;

operated over all the nodes of the defined physical group

5. gmESSI : [Remove_Strain_From_Element{PhysicalGroup}]
translates to series of
Real-ESSI DSL : remove strain from element # < . >;

operated over all the nodes of the defined physical group

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 36 of 68

Elemental Commands : Operates On All Elements of the defined Physical Group

Elemental Commands operates only to specific elements of a physical group. The translations are written in
element.fei file. For example:- [Add_8NodeBrick{Physical_Group#Soil,1}] would initialize all the hexahedron
elements of physical group ‘Soil' to equivalent Real-ESSI commands for defining 8-noded bricks elements ‘add
element # < . > type [8NodeBrick] with nodes (<. >, <. >, <. >, <. > <. >, <. >, <. > <. >)
use material # < . >;". Figure 1.6 shows how gmESSI operated on physical groups. The different commands

under this category and their corresponding ESSI commands are listed below

1. gmESSI : [Add_20NodeBrick{PhysicalGroup , Num_Gauss_Points , material#1}]
translates to series of
Real-ESSI DSL : add element # < . > type [20NodeBrick] with nodes (<. >, <. >, <.>, <. >,
<2, <>, <>, <. 2>, <>, <L 2> L <L <L K<L 2, <L,
<. >, <.>) use material # <. >;

operated over all the elements of the defined physical group

2. gmESSI : [Add_20NodeBrick_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , material#1}]
translates to series of
Real-ESSI DSL : add element # < . > type [20NodeBrick| using < . > Gauss points each direction
withnodes(<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,
<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>)usemateria|#<.>;

operated over all the elements of the defined physical group

3. gmESSI : [Add_20NodeBrick_upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density ,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_-Modulus}]
translates to series of
Real-ESSI DSL : add element # < . > type [20NodeBrick_upU] with nodes (< . >, <. >, <. >,
<>, <>, <>, <>, <L > L > o< o L Koy Ko, <Ly
<.>, <.>, <.>)use material # <. > and porosity = < . > alpha = < . > rhos = < M/L3 >
thof = < M/L3 > kx =< L3T/M > ky = < L3T/M > kz = < L3T/M > Ks = < stress >
K_f = < stress >;

operated over all the elements of the defined physical group

4. gmESSI : [Add_20NodeBrick_upU_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , mate-
rial#1 , Porosity , Alpha , Solid_Density , Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus
, Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 37 of 68

Real-ESSI DSL : add element # < . > type [20NodeBrick_upU] using < . > Gauss points each
directionwithnodes(<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,
< > <>, <L >, <L > <>, < >, <L >, <>, <L >) use material # <. > and porosity =
<.>alpha=<.>rhos=< M/L3>rhof=< M/L?>kx=<L3T/M > ky=<LT/M >
kz =< L3T/M > K.s = < stress > K_f = < stress >;

operated over all the elements of the defined physical group

5. gmESSI : [Add_20NodeBrick_up{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density |,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_Modulus}]
translates to series of
Real-ESSI DSL : add element # < . > type [20NodeBrick_up] with nodes (< . >, < . >, <. >,
<>, <>, <>, <>, <>, <L <L <o <L LK<, <L, <Ly,
<.>,<.>, <.>)use material # < .> and porosity = < . > alpha = < . > rhos = < M/L> >
thof =< M/L? > kx =< L3T/M > ky = < L3T/M > kz = < L3T/M > Ks = < stress >
K_f = < stress >:

operated over all the elements of the defined physical group

6. gmESSI : [Add_20NodeBrick_up_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , mate-
rial#1 , Porosity , Alpha, Solid_Density , Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus
, Fluid_Bulk_Modulus}]
translates to series of
Real-ESSI DSL : add element # < . > type [20NodeBrick_up] using < . > Gauss points each direction
with nodes (<. >, <. >, <. >, <. > <.>, <.>, <.><.>, <.> <. .> <>, <. >,
< > <>, <> < >, <>, <>, <>, <L >) use material # < . > and porosity = < . >
alpha = <. >rhos =< M/L? > rhof=< M/L? > kx=< L3T/M > ky = < L3T/M > kz =
< L3T/M > Ks = < stress > Kf = < stress >;

operated over all the elements of the defined physical group

7. gmESSI : [Add_27NodeBrick{PhysicalGroup , material#1}]
translates to series of
Real-ESSI DSL : add element # < . > type [27NodeBrick] with nodes (<. >, <. >, <.>, <. >,
<>, <. >, <. >, <. >, <. >, <. >, < > > < o< << Ko <L,
<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>)usemateria|#<.>;

operated over all the elements of the defined physical group

8. gmESSI : [Add_27NodeBrick_upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density ,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_Modulus}]

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 38 of 68

10.

11.

translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick_upU] with nodes (< . >, <. >, <. >,
<>, <>, <. 2>, < 2>, < 2>, <2< 2> < <2< 2K, <Ly
<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>,<.>)usemateria|#<.>and
porosity = < . > alpha = < . > rhos = < M/L3 > rhof = < M/L? > kx = < L3T/M > ky =
<I3T/M > kz=< L3T/M > Ks = < stress > Kf = < stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_27NodeBrick_upU_Variable_GaussPoints{PhysicalGroup , NumGaussPoints , mate-
rial#1 , Porosity , Alpha, Solid_Density , Fluid_Density , Perm_X, Perm_Y , Perm_Z , Solid_Bulk_Modulus
, Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick_upU] using < . > Gauss points each
direction with nodes (<. >, <. >, <. > <. >, <.>, <. > <. > <.>, <.>, <. > <. >,
<>, <>, <>, < 2>, <>, 2> <L o< o< <LK, <Ly
< .>, <.>) use material # < . > and porosity = < . > alpha = <. > rhos = < M/L? > rho f
=< M/L?>kx=<L3T/M >ky=<L3T/M >kz=<LT/M > Ks = < stress > Kf =
< stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_27NodeBrick_up{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density ,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick_up] with nodes (< . >, <. >, <. >,
<>, <>, <L 2>, < 2>, <L 2>, <L <L <o <L <Ko, <L, <Ly,
< >, < >, <> <>, <>, < >, <>, <>, <>, <L >) use material # <. > and
porosity = < . > alpha = < . > rho.s = < M/L3 > rhof = < M/L? > kx = < L3T/M > ky =
<I3T/M > kz =< L3T/M > Ks = < stress > Kf = < stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_27NodeBrick_up_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , mate-
rial#1 , Porosity , Alpha, Solid_Density , Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus
, Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [27NodeBrick_up] using < . > Gauss points each direction

with nodes (<. >, <. >, <.>, <.>, <.>,<.>,<.>,<.>,<.>,<.>, <.> <. >,

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 39 of 68

12.

13.

14.

15.

16.

LG G N YN G G I G N G N G I G G N G N D T G
<. >, <.>) use material # < . > and porosity = < . > alpha = < . > rho.s = < M/L? > rho_f
=< M/L?>kx=<LT/M>ky=<LT/M>kz=<LT/M > Ks = < stress > Kf =
< stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_Equal_Dof{PhysicalGroup , Dof_Type}]

translates to series of

Real-ESSI DSL : add constraint [equal_dof] with master node # < . > and slave node # < . > dof
to constrain < . >;

operated over all the elements of the defined physical group

gmESSI : [Add_Equal_Dof{PhysicalGroup , Master_Dof , |

translates to series of

Real-ESSI DSL : add constraint [equal_dof] with node # < . > dof <. > master and node # < . >
dof < . > slave;

operated over all the elements of the defined physical group

gmESSI : [Add_ShearBeam{PhysicalGroup , CrossSection , material#1}]

translates to series of

Real-ESSI DSL : add element # < . > type [ShearBeam] with nodes (< . >, <. >) cross_section =
< 1? > use material # < .>;

operated over all the elements of the defined physical group

gmESSI : [Add_DispBeamColumn3D{PhysicalGroup , Num_Integr_Points , Section_Number , Density
, XZ_Plane_Vect x , XZ_Plane_Vect.y , XZ_Plane_Vect_z , Jointl_Offset x , Jointl_Offset.y , J1 z ,
Joint2_Offsetx , J2_y , J2_Offset_z}]

translates to series of

Real-ESSI DSL : add element # < . > type [BeamColumnDispFiber3d] with nodes (< . >,
. >) number_of_integration_points = < . > section_number = < . > mass_density = < M/L3
xz_plane_vector = (< . >, <.>, <.>) joint_.loffset = (< L >, < L >, < L >) joint_2_offset =
(<L> <L> <L>)

operated over all the elements of the defined physical group

gmESSI : [Add_Beam_Elastic{PhysicalGroup , Cross_Section , Elastic_Modulus , Shear_Modulus , Jx
, ly , 1z, Density , XZ_PlaneVect x , XZ_PlaneVect_.y , XZ_Plane_Vect_z , Jointl_Offset x , Jointl.y ,
Jointl_Offset_z , Joint2_Offset x , Joint2_Offset_y , J2_Offset_z}]

translates to series of

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 40 of 68

Real-ESSI DSL : add element # < . > type [beam_elastic] with nodes (< . >, < . >) cross_section
= < area > elastic. modulus = < F/L? > shear_modulus = < F/L? > torsion_Jx = < length* >
bending_ly = < length* > bending_Iz = < length* > mass_density = < M/L? > xz_plane_vector =
(<.> <.> <.>)joint.loffset = (< L > <L > <L >) joint2offset = (< L >, <L >,
<L>)

operated over all the elements of the defined physical group

17. gmESSI : [Add_Beam_Elastic_LumpedMass{PhysicalGroup , Cross_Section , Elastic_ Modulus , Shear_Modulus
, Jx , ly, Iz, Density , XZ_Plane_Vectx , XZ_Plane_Vect_y , XZ_Plane_Vect_z , Jointl_Offsetx ,
Jointl _Offset_y , Jointl Offset z , Joint2 Offset x , Joint2_Offset_y , Joint2_Offset z}]
translates to series of
Real-ESSI DSL : add element # < . > type [beam_elastic_lumped_mass| with nodes (< . >, <. >)
cross_section = < area > elastic.modulus = < F/L? > shear.modulus = < F/L? > torsion_Jx =
< length* > bending_ly = < length* > bending_lz = < length* > mass_density = < M/L? >
xz_plane_vector = (< . >, <. >, <.>) joint_1loffset = (< L >, < L >, < L >) joint_2 offset =
(<L> <L><L>)

operated over all the elements of the defined physical group

18. gmESSI : [Add_Beam_DisplacementBased{PhysicalGroup , Num_Integration_Points , Section_Number
, Density}]
translates to series of
Real-ESSI DSL : add element # < . > type [beam_displacement_based] with nodes (< . >, <. >)
with # < . > integration_points use section # < . > mass_density = < M/L? > IntegrationRule = ""
xz_plane_vector = (< . >, <. >, <.>) joint_loffset = (< L >, < L >, < L >) joint_2_offset =
(<L> <L> <L>)

operated over all the elements of the defined physical group

19. gmESSI : [Add_HardContact{PhysicalGroup , Normal_Stiffness , Tangential _Stiffness , Normal_Damping
, Tangential_Damping , Friction_Ratio , Norm_Vect x , Norm_Vect_y , Norm_Vect_z}]
translates to series of
Real-ESSI DSL : add element # < . > type [HardContact] with nodes (< . >, <. >) normal_stiffness
= < F/L > tangential stiffness = < F/L > normal_damping = < F/L > tangential_damping =
< F/L > friction_ratio = < . > contact_plane_vector = (<. >, <.>, <.>);

operated over all the elements of the defined physical group

20. gmESSI : [Add_CoupledHardContact{PhysicalGroup , Normal Stiffness , Tangential Stiffness , Nor-

mal_Damping , Tangential_ Damping , Friction_Ratio , Norm_Vect x , Norm_Vect_y , Norm_Vect z}|

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 41 of 68

translates to series of

Real-ESSI DSL : add element # < . > type [CoupledHardContact] with nodes (< . >, < . >)
normal_stiffness = < F'/L > normal_penalty_stiffness = < F'/L > tangential_stiffness = < F//L > nor-
mal_damping = < F//L > tangential_damping = < F'/L > friction_ratio = < . > contact_plane_vector
=(<.> <. > <. >);

operated over all the elements of the defined physical group

21. gmESSI : [Add_SoftContact{PhysicalGroup , Initial_Normal Stiffness, Stiffning_Rate , Maximum_Normal_Stiffness
, Tangential_Stiffness , Normal_Damping , Tangential_ Damping , Friction_Ratio , Norm_Vect_x , Norm_Vect_y
, Norm_Vect_z}]
translates to series of
Real-ESSI DSL : add element # < . > type [SoftContact] with nodes (< . >, < . >) ini-
tial_normal_stiffness = < F'/L > stiffening_rate = < 1/L > max_normal_stiffness = < F'/L > tangen-
tial_stiffness = < F'/L > normal_damping = < F/L > tangential_ damping = < F'/L > friction_ratio
= <. > contact_plane_vector = (<. >, <. >, <.>);

operated over all the elements of the defined physical group

22. gmESSI : [Add_CoupledSoftContact{PhysicalGroup , Initial_Normal_Stiffness , Stiffning_rate , Maxi-
mum_Normal_Stiffness , Tangential _Stiffness , Normal_Damping , Tangential_Damping , Friction_Ratio
, Norm_Vect_x , Norm_Vect_y , Norm_Vect_z}]
translates to series of
Real-ESSI DSL : add element # < . > type [CoupledSoftContact] with nodes (< . >, < . >)
initial_normal_stiffness = < F/L > stiffening_rate = < 1/L > max_normal_stiffness = < F/L >
tangential_stiffness = < F'/L > normal_-damping = < F/L > tangential_damping = < F/L > fric-
tion_ratio = < . > contact_plane_vector = (<. >, <.>, <.>),

operated over all the elements of the defined physical group

23. gmESSI : [Add_Truss{PhysicalGroup , material#1 , Cross_Sectin , Density}]
translates to series of
Real-ESSI DSL : add element # < . > type [truss| with nodes (< . >, <. >) use material # < . >
cross_section = < length? > mass_density = < M/L3 > ;

operated over all the elements of the defined physical group

24. gmESSI : [Add_8NodeBrick{PhysicalGroup , material#1}]
translates to series of
Real-ESSI DSL : add element # < . > type [8NodeBrick] with nodes (< . >, <. >, <.>, <. >,
<. >, <.>, <.>, <.>)use material # < .>;

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 42 of 68

25.

26.

27.

28.

29.

operated over all the elements of the defined physical group

gmESSI : [Add_Cosserat8NodeBrick{PhysicalGroup , material#1}]

translates to series of

Real-ESSI DSL : add element # < . > type [Cosserat8NodeBrick] with nodes (< . >, <. >, <. >,
< >, <>, <L >, < >, <L >) use material # <L >y

operated over all the elements of the defined physical group

gmESSI : [Add_8NodeBrick_Variable_GaussPoints{ PhysicalGroup , NumGaussPoints , material#1}]
translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick] using < . > Gauss points each direction
with nodes (<. >, <. >, <. >, <.>, <.>, <.> <.> <.>) use material # <.>;

operated over all the elements of the defined physical group

gmESSI : [Add_8NodeBrick_upU{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density |,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick_upU] with nodes (< . >, <. >, <. >,
<. >, <.> <.> <.> <.>)use material # <. > porosity = < . > alpha = <. > rhos =
< MJL3 > rhof=< M/L? > kx =< L3T/M > ky =< L3T/M > kz =< L3T/M > Ks =
< stress > K_f = < stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_8NodeBrick_upU_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , mate-
rial#1 , Porosity , Alpha, Solid_Density , Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus
, Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick_upU] using < . > Gauss points each direction
with nodes (<. >, <. >, <. >, <.>, <.>, <.>, <.>, <.>) use material # <. > porosity =
<.>alpha=<.>rhos=< M/L?>rhof=< M/L?> kx=<L3T/M > ky =< L3T/M >
kz=<L3T/M > Ks = < stress > Kf = < stress >;

operated over all the elements of the defined physical group

gmESSI : [Add_8NodeBrick_up{PhysicalGroup , material#1 , Porosity , Alpha , Solid_Density ,
Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus , Fluid_Bulk_Modulus}]

translates to series of

Real-ESSI DSL : add element # < . > type [8NodeBrick_up] with nodes (< . >, <. >, <. >,
<. >, <>, <.>, <.> <.>)use material # < . > porosity = < . > alpha = <. > rhos =

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 43 of 68

< MJL3 > rhof=< M/L? > kx =< L3T/M > ky =< L3T/M > kz =< L3T/M > Ks =
< stress > Kf = < stress >

operated over all the elements of the defined physical group

30. gmESSI : [Add_8NodeBrick_up_Variable_GaussPoints{PhysicalGroup , Num_Gauss_Points , material#1
, Porosity , Alpha , Solid_Density , Fluid_Density , Perm_X , Perm_Y , Perm_Z , Solid_Bulk_Modulus ,
Fluid_Bulk_Modulus}]
translates to series of
Real-ESSI DSL : add element # < . > type [8NodeBrick_up] using < . > Gauss points each direction
with nodes (<. >, <. >, <.>, <.>, <.>, <.>, <.>, <.>) use material # < . > porosity =
<.>alpha=<.>rhos=< M/L3>rhof=< M/L?>kx=<L3T/M > ky=<LT/M >
kz=<L3T/M > Ks = < stress > Kf = < stress >;

operated over all the elements of the defined physical group

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 44 of 68

Elemental Compound Commands : Operates On All Surface Elements of the defined Physical Group

[Surface Loads]

Elemental Compound Commands operates on two physical groups, one for surface and another for the element
on which surface is present. It is used mainly for adding surface loads, which require surface number as
well as element no in Real-ESSI DSL. For example:- [Add_8NodeBrick_SurfaceLoad{Physical_Group#Volume,
Physical_Group#Surface, 10¥Pa}] would initialize surface load of 10Pa on surfaces defined by physical_group
‘Surface’ on elements defined by physical_group ‘Volume'.

The different commands under this category and their corresponding ESSI commands are listed below

NOTE:- Every Elemental commands get translated into the load.fei (Section 1.2.4).

1. gmESSI : [Add_20NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pres-
sure}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
< >, <>, <>, <>, <>, <L >) with magnitude < Pa >

operated over all the elements of the defined physical group

2. gmESSI : [Add_20NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pressl
, Press2 | Press3 , Press4 , Press5 , Press6 , Press7 , Press8}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
< >, < >, < >, <L >, <>, < L>) with magnitudes (< Pa >, < Pa >, < Pa >, < Pa >,
< Pa >, < Pa >, < Pa >, < Pa>);

operated over all the elements of the defined physical group

3. gmESSI : [Add_27NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pres-
sure}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
<. >, <>, <>, <>, <>, <. >, <. >) with magnitude < Pa >;

operated over all the elements of the defined physical group

4. gmESSI : [Add_27NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pressl
, Press2 | Press3 , Press4 , Press5 , Press6 , Press7 , Press8 , Press9}]

translates to series of

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 45 of 68

Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
< >, <>, <>, < >, <>, <>, <L >) with magnitudes (< Pa >, < Pa >, < Pa >,
< Pa>, < Pa>, < Pa>, < Pa>, < Pa>, <Pa>),

operated over all the elements of the defined physical group

5. gmESSI : [Add_8NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pres-
sure}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
<.>, <.>) with magnitude < Pa >;

operated over all the elements of the defined physical group

6. gmESSI : [Add_8NodeBrick_SurfaceLoad{PhysicalGroup#Volume , PhysicalGroup#Surface , Pressl ,
Press2 , Press3 , Press4}]
translates to series of
Real-ESSI DSL : add load # < . > to element # < . > type [surface] at nodes (< . >, <. >,
<.>, <.>) with magnitudes (< Pa >, < Pa>, < Pa>, < Pa>);

operated over all the elements of the defined physical group

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 46 of 68

Special Commands

The translator supports some special commands to perform some special functions that are regularly required
in simulations. It supports the Connect Command (Section 1.2.5) allows to join or create nodes between two

physical groups.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 47 of 68

Connect Command

Connect Commands creates/find layers of 2-noded elements between any two parallel geometrical physical
entities like two lines, two surface or two volumes and creates a physical group of those elements and updates
this information in the XYZ.msh file. Since gmsh does not include the feature of defining or creating 2-noded
elements after the mesh creation, this command can be very useful in that case. For example;- defining
contacts/interfaces, embedded piles, boundary conditions, connections etc. The command syntax for connect
command is

gmESSI :: [Connect{Physical_Group#tag_From , Physical_Group#tag_To, Physical_Group#tag_Between, dir_vect,

mag, no_times, algo_(find|create), tolerance,New_Physical _Group_Name}]

¢ Physical_Group#tag_From :: It defines the starting nodes
e Physical_Group#tag_To :: It defines the set of end nodes

e Physical_Group#tag_Between:: It defines the set of nodes where the intermediary nodes can be

found, while searching. While creating nodes, it does not play any role.

e dir_vect :: It defines the direction in which the user wants to create or find the nodes. The direction

vector argument is given as {x_.comp \y_comp \z_comp}. Example:- {0 \0 \-1} , {1 \1 \0} .. etc.
e mag :: It defines the length of each 2-noded line elements
e no_times :: It defines number of layers of 2-noded elements, the user want to create/find

e algo_(find/create) :: It defines the algo which is either 0 or 1 meaning whether to find or create the

intermediary node

e tolerance :: It defines the tolerance is required to finding the nodes. It should be less than the minimum

of the distance of neighboring nodes.

e New_Physical_Group_Name :: This argument enables the user to give a name to the 2-noded new-

physical group formed

Figure 1.7 graphically describes arguments of connect command.
This command updates and creates additional nodes and 2-noded elements and also assigns a physical group
name " $New_Physical Group_Name$”. gmESSI automatically adds the next id available to the new physical
group. The user can then manipulate this newly created physical group with any other gmESSI commands.
The working of this command would be more clear through examples. [Example_3] can be downloaded
here. [Example_4] can be downloaded here. These examples describes two situation one where new nodes are

to be created and the other where already present nodes needs to be found respectively. In both the cases

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_3/Example_3.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_4/Example_4.tar.gz

O ~NO O WN -

Jeremié et al. Real-ESSI Simulator 48 of 68

Tolerance

Figure 1.7: Pictorial representation of working of connect command.

2-noded line elements are always created. The examples can also be alternatively located in Examples folder

of gmESSI directory

[Example_3] is a simple example where a tower of certain height above ground surface and also its base
embedded in soil is modeled. It starts with a mesh file that creates a node for tower at a certain height and
then using algorithm -'create’ new nodes are created at certain intervals to generate the beam elements. On

the other hand, the embedded beam is created by "-find”" algorithm. Let us look at the [Example_3.geo] file.

$ cat Example_3.geo

// Size of the soil block in meter
Size = 10;

// Height of the Tower in meter
Height = 6;

// Mesh Size of the soil block
Mesh_Size = 1;

// Adding Points and extruding

Point (1)={-Size/2,-Size/2,-Size/2};

Extrude{Size ,0,0}{Point{1};Layers{Size/Mesh_Size};Recombine;}
Extrude{0,Size ,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
Extrude{0,0,Size}{Surface{b};Layers{Size/Mesh_Size};Recombine;}

// Make the tower located at height 6 m from the ground surface
Tower = newp;

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

20
21
22
23
24
25
26
27
28

N

Jeremi¢ et al. Real-ESSI Simulator 49 of 68

Point (Tower) = {0,0,Size/2+Height};

//// Create Physical Groups

Physical Volume ("Soil") = {1};

Physical Surface ("Soil_Base_Surface") ={5};
Physical Surface ("Soil_Top_Surface") ={27};
Physical Point ("Tower") = {Tower};

Running [Example_3.gmessi] with the .msh output of geometry file would produces additional nodes and
elements as shown in Figure 1.8. An excerpt showing use of connect command with create algo in [Exam-

ple_3.gmessi] is shown below. The effect of the command is shown in Figure 1.8.

$ cat Example_3.gmessi

[Connect{Physical_Group#Tower, Physical_Group#Soil_Top_Surface, ¢
Physical_Group#Soil_Top_Surface, dvi:= 0 \ 0 \ -1, mag:= 2, ¢«
Tolerance:= 0, algo:= create, noT:= 3, PhysicalGroupName:= <
Tower_Beam_Above_Groundl}]

(a) Initial mesh file Example_3.msh generated by (b) Final mesh after gmESSI
gmsh. The dir vector is in Z axis 0,0,-1

Figure 1.8: Example 3 Contact Problem. (b) shows the nodes and elements generated by gmESSI Translator.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

0 ~NO O WN -

Jeremié et al. Real-ESSI Simulator 50 of 68

The terminal displays the information about number of elements and nodes created and also displays the
information about the new physical group information i.e id and name. The new physical group creation can
be seen in the [Example_3.gmsh| in Example_3_ESSI_Simulation folder. The terminal message and mesh file

is shown below. It also displays error message if more than one node is found in the tolerance provided.

$ gmessy Example_3.gmessi
New Physical Group "Tower_Beam_Above_Ground" having id 5 consisting <
of 4 Nodes and 3 2-noded elements created

$ cat Example_3_ESSI_Simulation\Example_3.msh

$PhysicalNames

7

0 4 "Tower"

2 2 "Soil_Base_Surface"

2 3 "Soil_Top_Surface"

3 1 "Soil"

1 5 "Tower_Beam_Above_Ground"
3 6 "TowerBaseNode"

1 7 "Tower_Embedded_Beam"
$EndPhysicalNames

[Example_4] describes a foundation on soil problem with contact/interface between them. The contact element

is created with the help of comment command using algo "-find”. Let us look at the [Example_4.geo] file.

$ cat Example_4.geo

// Size of the soil block
Size = 1;

// Thickness of Foundation
Thick = 0.1;
Foundation_Layers = 2;

//// Mesh Size of the block
Mesh_Size = 0.2;

// Adding Points anl extruding

Point (1)={-Size/2,-Size/2,-Size/27};

Extrude{Size ,0,0}{Point{1};Layers{Size/Mesh_Sizel};Recombine;}
Extrude{0,Size ,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
Extrude{0,0,Size}{Surface{5};Layers{Size/Mesh_Sizel};Recombine;}

// Make sure in Tools -> Geometry -> General
// Geometry tolerance is set smaller than Epsilon

// such as Geometry tolerance = le-14

Epsilon = 1e-8;

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

[E

OO WN -

Jeremié et al. Real-ESSI Simulator 51 of 68

Translate {0, O, Epsilon} {Duplicata{Surface{27};3}}
Transfinite Line {29,30,31,32} = Size/Mesh_Size +1;
Transfinite Surface {28};

Recombine Surface {28};

//// Extruding the surface to foundation thickness
Extrude{0,0,Thick}{Surface{28};Layers{Foundation_Layers};Recombine;}

//// Create Physical Groups

Physical Volume ("Soil") = {13};

Physical Surface ("Soil_Base_Surface") ={5};
Physical Surface ("Soil_Top_Surface") ={27};
Physical Surface ("Foundation_Base_Surface")={28};
Physical Surface ("Foundation_Top_Surface") ={54};
Physical Volume ("Foundation") = {2};

Physical Surface("Fix_X") {26, 53, 45, 18};
Physical Surface("Fix_Y") = {22, 49, 14, 41};
Physical Volume ("3_Dofs") = {1,2};

The above geometry file is then meshed with gmsh to get the .msh file. In this file, the connect command
is applied between physical group Foundation_Base_Surface and Soil_Top_Surface to create contact/interface

elements. The corresponding connect command would be as

$ gmessy Example_4.gmessi

[Connect{Physical_Group#Soil_Top_Surface,
Physical_Group#Foundation_Base_Surface, <
Physical_Group#Foundation_Base_Surface, dvi:= 0\0\1l, mag:= 0, ¢
Tolerance:= 0.001, algo:= find, noT:= 1, PhysicalGroupName:= <
Contact_Elementsl]

Similarly the updated [Example_4.msh| contains the new physical group and terminal shows the new
physical group of 2-noded elements created. Figure 1.9 shows the new nodes found and creation of 2-noded

elements.

$ gmessy Example_3.gmessi
New Physical Group "Contact_Elements" having id 10 consisting of 72 <
Nodes and 36 2-noded elements created

$ cat Example_4_ESSI_Simulation\Example_4.msh

10

2 2 "Soil_Base_Surface"

2 3 "Soil_Top_Surface"

2 4 "Foundation_Base_Surface"
2 5 "Foundation_Top_Surface"

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

10
11
12
13

Jeremié et al. Real-ESSI Simulator 52 of 68

(a) Initial mesh file Example4.msh generated by (b) New physical group Contact_Element

gmsh. The dir vector is in Z axis {0,0,1}

Figure 1.9: Example 4 finding nodes problem.(b) shows the nodes and elements generated by gmESSI Trans-

lator.

2 7 "Fix_X"

2 8 "Fix_Y"

3 1 "Soil"

3 6 "Foundation"

3 9 "3_Dofs"

1 10 "Contact_Elements"

NOTE : Since the algo is to only find the nodes, so no new nodes are created, but only elements are created.
The same message can be seen on the terminal.
Write Command

Write command takes filename as an argument and writes the content of a physical group in two separate
files one containing all the nodes info and other containing all the elements info and places in the same

XYZ_ESSI_Simulation folder. The command syntax is

gmESSI:: [Write_Data{PhyEntyTag,filename}]

o Creates files XYZ_filename_Nodes.txt and XYZ_filename_Elements.txt

e XYZ filename_Nodes.txt :: Contains data for all nodes in a physical group. Each node data is repre-

sented in one line as

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 53 of 68

Node_no x_coord y_cord z_cord

with meanings as usual.

o XYZ filename_Elements.txt :: Contains data for all elements in a physical group.Each element data
is represented in one line as
Element_no Element_type nodel node2 node3 ..

with meanings as usual. Element_type refers to the same as in Gmsh Manual.

[Example_4.gmessi] shows the usage of write command.

Write DRM HDF5 Command

Domain reduction method (DRM) is a very useful method to input 3D seismic excitations into earthquake soil
structure interacting system. With a defined physical group as DRM layer, a HDF5 file containing geometric
information of the DRM layer, can be generated with the following commands for 1D, 2D and 3D mesh,

respectively:

e gmESSI::[Generate_ DRM_HDF5_1D{Physical_Group# <PhyEnty Name or Tag>, Surface_Normal:= <X
| Y | Z>, Node_Coordinate_Tol:=<tolerance>, FileName:=<HDF?5 file name>}]

e gmESSI::[Generate_ DRM_HDF5_2D{Physical_Group#<PhyEnty Name or Tag>, Surface_Plane:=<XY|XZ|YZ>,
Surface_Normal:= <X | Y | Z>, Node_Coordinate_Tol:=<tolerance>, FileName:=<HDF?5 file name>}]

e gmESSI::[Generate DRM_HDF5_3D{Physical_Group#<PhyEnty Name or Tag>, Surface_Normal:= <X
| Y | Z>, Node_Coordinate_Tol:=<tolerance>, FileName:=<HDF5 file name>}]

Where:

e Physical_Group# defines the physical group name or tag for the DRM layer.

Surface_Normal:= defines the surface normal direction of the DRM layer. It can be X or Y or Z.

Surface_Plane:= defines the surface plane of the 2D DRM layer. It can be XY or YZ or XZ.

Node_Coordinate_Tol:= defines the tolerance to distinguish two different DRM nodes. The tolerance

should be much smaller than the FEM mesh size!

FileName:= defines the file name of the HDF5 file to be generated.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

©O© 00N UL WN -

Jeremié et al. Real-ESSI Simulator 54 of 68

1.2.6 Steps For Using gmESSI tool

Using gmESSI it is very easy to convert a .msh file to ESSI (.fei) file. This section guides the user through
a simple [Example_1.geo], to show the steps necessary for generating Real-ESSI files directly from .msh file
through gmESSI. Lets define a problem as shown in Figure 1.10. The [Example_1.geo| can be located in the

gmESSI ""Examples’ directory. Alternatively, it can be downloaded here.

P = 10kPa

Figure 1.10: Example_1 description of a block of soil with surface load.

It is a block of dimension 10m x 10m x 10m of soil mass whose all 4 lateral faces are fixed in ux, uy dofs.
The bottom face is fixed in ux, uy, uz dofs. A uniform pressure surface load of 10Pa is applied. The density
and elastic modulus of the soil increases from 2000 * kg/m? and Young's modulus is taken as 200M Pa as

shown in Figure 1.10.

Building geometry (.geo) file in Gmsh

The first step is to make the geometry file in Gmsh. While creating the geometry the user should also define
all the physical groups on which they intend to either apply boundary condition, define elements, loads etc.
In [Example_1.geo], 3 physical groups are needed : one for applying surface load, one for fixities, and one for

defining the soil volume and assigning material. The content of [Example_1.geo] file is shown below

$cat Example_1.geo

// Size of the block
Size = 10;

//// Mesh Size of the block
Mesh_Size = 2;

// Adding Points and extruding

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_1/Example_1.tar.gz

10
11
12
13
14
15
16
17
18
19

N~

O © 00 NO O bW

[

Jeremié et al. Real-ESSI Simulator b5 of 68

Point (1)={-Size/2,-Size/2,-Size/2};

Extrude{Size ,0,0}{Point{1};Layers{Size/Mesh_Size};Recombine;}
Extrude{0,Size ,0}{Line{1};Layers{Size/Mesh_Size};Recombine;}
Extrude{0,0,Size}{Surface{b5};Layers{Size/Mesh_Sizel};Recombine;}

//// Create Physical Groups

Physical Volume ("Soil") = {1};

Physical Surface ("Base_Surface") = {5};

Physical Surface ("Lateral_Surface") = {18,22,14,26%};
Physical Surface ("Top_Surface") ={27};

Generate mesh (.msh) file in Gmsh

Once .geo file is ready with all the physical groups, next step is to mesh the model. The mesh operation will
generate the mesh file (.msh) that contains all the mesh information.

The model can be meshed from the terminal directly by running:

gmsh Example_1.geo -3

Here -3 means we are meshing a 3D object, which will automatically mesh all the 3D volumes, 2D surfaces
and 1D lines object defined in the geometry model. If there are only 2D surfaces and/or 1D lines object
defined in the geometry (.geo) file, use -2 instead. If there are only 1D lines object defined in the geometry
(.geo) file, use -1 instead.

A quick look at the generated [Example_1.msh] file containing physical groups is shown below:

$cat Example_5.geo

$PhysicalNames

4

2 2 "Base_Surface"

2 3 "Lateral_Surface"
2 4 "Top_Surface"

3 1 "Soil"
$EndPhysicalNames

Figure 1.11 shows the geometry and mesh visualization in Gmsh. It is noted that Gmsh performs meshing
for linear interpolation elements by default. In other words, the above cubic block geometry object is meshed
into eight-node bricks, that have linear isoparametric interpolation, 8NodeBrick. For higher order interpolation
meshing options, that is for meshing twenty-seven node brick elements mesh, 27NodeBrick for example,
additional -order int should be used. int here is the integer specifying the order of meshing. For example,
the following terminal command with -order 2, i.e., 2"¢ order meshing, generates twenty-seven node brick

meshes (27NodeBrick):

T

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

1

0 ~NO Ok WN -

©

Jeremié et al. Real-ESSI Simulator

56 of 68

(a) Geometry File

(b) Mesh File

Figure 1.11: Gmsh geometry and mesh file for Example_1

gmsh Example_1.geo -3 -order 2

Writing all gmESSI Commands for the model

Using gmESSI for mesh conversion is very easy. To achieve this, a [Example_1.gmessi] file is created containing

all the required gmESSI commands to be executed sequentially. Let us look at each of them

Since physical group names and ids are required for referring the gmESSI commands, its always best to

copy all the physical group data from the .msh file (in this case [Example_1.msh] file) in the header of .gmessi

file, so that its easier for th user to refer to the physical groups while writing commands in .gmessi file. The

contents of the .gmessi file are shown below.

$cat Example_1.gmessi

Physical Groups defined in the msh file.
#2 2 "Base_Surface"

#2 3 "Lateral_Surface"

#2 4 "Top_Surface"

#3 1 "Soil"

loading the gmsh file
gmESSI.loadGmshFile ("Example_1.msh")

Defining the Simulation Directory and node,

main file

element ,

load and <«

Real-ESSI Pre Processing Manual

version: 13Feb2026, 15:41

13

14

15
16
17
18
19
20
21

22

23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57

Jeremi¢ et al.

Real-ESSI Simulator

57 of 68

Its important to define the directory and these files at the <«

beginning of any gmESSI command conversion

1 refers as overwrite mode (will overwrite the directory if <«

present) --- 0 would not overwrite
gmESSI.setSimulationDir ("./Example_1_ESSI_Simulation",1)
gmESSI.setMainFile (gmESSI.SimulationDir+ "main.fei")
gmESSI.setNodeFile (gmESSI.SimulationDir+ "node.fei")
gmESSI.setElementFile (gmESSI.SimulationDir+ "element.fei")
gmESSI.setlLoadFile (gmESSI.SimulationDir+ "load.fei")

// is used to provide commands and gets translated in the

main.fei file

Also,

the commands followed by exclamation '!' get directly <«

copied to the main.fei file

Usually,

exclamation mark.

// My new

model

! model name "Soil_Block";

[Add_Al11_Nodeq{ unit:= m, nof_dofs:= 3}]

// Adding

! add material #1 type linear_elastic_isotropic_3d_LT

Material also assigning it to elements

2000*kg/m~3 elastic_modulus = 200*MPa poisson_ratio = 0.3;
[Add_8NodeBrick{Physical_Group#Soil, MaterialNo:= 1}]

I include
I include

"node.fei";
"element.fei";

! new loading stage "Stagel_Self_Weight";

Applying Fixities
[Fix_Dofs{Physical_Group#Base_Surface, all}]
[Fix_Dofs{Physical_Group#Lateral_Surface, ux uy}]

For applying Self-Weight Load to the soil elements
! add acceleration field # 1 ax = Ox*g ay = Oxg az = -1lxg ;
! add load #1 to all elements type self_weight use acceleration field <«

1;

#Updating the tag inside gmESSI as user entered by himself load tag

gmESSI.setESSITag("load" ,2)

include
NumStep

define
define
define

"load.fei";
= 10;

algorithm With_no_convergence_check;
solver UMFPack;
load factor increment 1/NumStep;

simulate NumStep steps using static algorithm;

the user would write Real-ESSI DSL against the <«

mass_density

=

Real-ESSI Pre Processing Manual

version: 13Feb2026, 15:41

58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78

O ~NO O WN -

Jeremié et al. Real-ESSI Simulator b8 of 68

updating the new load file before new loading stage
gmESSI .setlLoadFile (gmESSI.SimulationDir+ "Surface_Load.fei")
! new loading stage "Stage2_Surface_Loading";

For applying Surface load on the Top Surface of the Soil Block
[Add_8NodeBrick_SurfaceLoad{Physical_Group#Soil ,Physical_Group#Top_Surfag

For applying Nodal loads to all the nodes of the top surface
#[Add_Node_Load_Linear{Physical_Group#Top_Surface, ForceType:= Fx,
Mag:= 10*kN}]

include "Surface_Load.fei";
NumStep = 10;

define algorithm With_no_convergence_check;
define solver UMFPack;

define load factor increment 1/NumStep;
simulate NumStep steps using static algorithm;

! bye;

NOTE: The gmESSI commands are executed and written to the file sequentially, so the user should be
careful with the order of translation.
Executing gmESSI on Example_1.gmessi input file

Once .gmessi input file is ready, the next task is to run it using the ‘gmessy’ command in terminal. Running

would carryout the translation to all and produce the log of translation, displayed on the terminal

$ gmessy Example_1.gmessi
Message:: newDirectory created as ./Example_1_ESSI_Simulation

Add_Al1 _Nodeq{ unit:= m, nof_dofs:= 3%}
Found!!
Successfully Converted

Add_8NodeBrick{Physical_Group#Soil, MaterialNo:= 1}
Found!!
Successfully Converted

Fix_Dofs{Physical_Group#Base_Surface, alll}
Found!!
Successfully Converted

Fix_Dofs{Physical_Group#Lateral_Surface, ux uy}
Found!!

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

e ,10%P

19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37

OO WN -

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24

Jeremié et al. Real-ESSI Simulator 59 of 68

Successfully Converted

Add_8NodeBrick_SurfacelLoad{Physical_Group#Soil ,Physical_Group#Top_Surface
Found!!
Successfully Converted

%k 3k >k 3k >k 3k >k >k 5k >k 5k >k 5k %k 5k %k >k %k > %k >k %k k % Updated New Tag Numbering <o
%k 3k 3k >k 5k %k 3k 5k %k %k 5k %k %k 5k %k %k 5k %k %k Xk %k %k

damping =1
displacement =1
element = 126
field =1
load = 27
material =1
motion = 126
node = 217
nodes = 217
Gmsh_Elements = 276
Gmsh_Nodes = 217

It would create a folder [Example_1_ESSI_Simulation] and places load.fei, node.fei, element.fei and main.fei
files. The user at this point do not need to write anything in the Example_5_analysis.fei file as every command

was sequentially written down in .gmessi file and is converted. The content of the main.fei is shown below.

$cat Example_5_analysis.fei
// My new model
model name "Soil_Block";

// Adding Material also assigning it to elements
add material #1 type linear_elastic_isotropic_3d_LT mass_density = <«
2000*kg/m~3 elastic_modulus = 200*MPa poisson_ratio = 0.3;

include "node.fei";
include "element.fei";
new loading stage "Stagel_Self_Weight";

add acceleration field # 1 ax = O*g ay = 0O*xg az = -1lxg ;
add load #1 to all elements type self_weight use acceleration field <
1;

include "load.fei";
NumStep = 10;

define algorithm With_no_convergence_check;

define solver UMFPack;

define load factor increment 1/NumStep;

simulate NumStep steps using static algorithm;
new loading stage "Stage2_Surface_Loading";

include "Surface_Load.fei";

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

,10%xPa

25
26
27
28
29
30
31

Jeremi¢ et al.

Real-ESSI Simulator

60 of 68

NumStep

define
define
define

= 10;

algorithm With_no_convergence_check;
solver UMFPack;
load factor increment 1/NumStep;

simulate NumStep steps using static algorithm;

bye;

Running Real-ESSI and visualization in paraview

With all files ready in their place, the next step is to run the main.fei file directly in ESSI.

$essi -f main.fei

Running ESSI creates .feioutput file which can be visualized in paraview using PVESSIReader plugin.

Figure 1.12 shows the visualization of hdf5 output produced in paraview.

Generalized_Displacements Magnitude
0.000e+00 9.1e-6 1.8e-5 2.7e-5 3.644e-05
IHHHHWHHJHH[}

-

Figure 1.12: Visualizing output in Paraview.

Real-ESSI Pre Processing Manual

version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 61 of 68

1.2.7 lllustrative Examples

The Examples directory of gmESSI folder contains five examples as Example_1,Example_2.... and Example_5.

They are summarized as

1. [Example_1] : Modeling of Surface load on block of Soil. The geometry (.geo), mesh (.msh) and

.gmessi input files can be downloaded HERE.

2. [Example_2] : Modeling of Cantilever Beam. The geometry (.geo), mesh (.msh) and .gmessi input
files can be downloaded HERE.

3. [Example_3] : Modeling of Tower (beam) located above the ground and embedded in soil using
contact/interface elements. The geometry (.geo), mesh (.msh) and .gmessi input files can be downloaded
HERE.

4. [Example_4] : Modeling of a concrete foundation on Soil connected by contact elements. The geometry

(.geo), mesh (.msh) and .gmessi input files can be downloaded HERE.

5. [Example_5] : Modeling of a embedded shells and beam in Solids. The geometry (.geo), mesh (.msh)

and .gmessi input files can be downloaded HERE.

[Example_1] was discussed in the previous section. Examples 1 to 4 are discussed and refereed in the
manual at several instances. The user is encouraged to over these examples and learn to create geometry
‘.geo’ and .gmessi input files. Here, two examples Example_2 about cantilever beam analysis and Example_5

about beams and shell is discussed.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_1/Example_1.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_2/Example_2.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_3/Example_3.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_4/Example_4.tar.gz
http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_5/Example_5.tar.gz

Jeremi¢ et al. Real-ESSI Simulator 62 of 68

Modeling of Cantilever Beam With Surface Load [Example_2]

P

Length (L) x Width (W) x Thickness (T)

M~

Figure 1.13: lllustration of the cantilever problem.

The problem consist of a cantilever beam with its left end fixed. A uniform surface load of P is applied.
The geometry (.geo) and the gmessi input file for this problem can be downloaded here. Figure 1.14 shows

visualization of output after running the model in Real-ESSI.

Generalized_Displacements Magnitude

0.000e+00 0.00054 0.001 0.0016 2.173e-03

1
WHJHHH[HJHHH“M

Figure 1.14: lllustration of the cantilever problem.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_2/Example_2.tar.gz

Jeremié et al. Real-ESSI Simulator 63 of 68

Modeling of a embedded shells and beam in Solids [Example_5]

F,

Fi,

Figure 1.15: Illustration of the cantilever problem.

The problem consist of solid of 3 dofs in which beams and shells of 6dofs are embedded. The embedded
beams and shell elements are connected by contact/interface elements. A nodal load to the top of the beam
and shell is applied. The geometry (.geo) and the gmessi input file for this problem can be downloaded here.

Figure 1.16 shows visualization of output after running the model in Real-ESSI.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/Real-ESSI_gmESSI/Examples/Example_5/Example_5.tar.gz

Jeremi¢ et al.

Real-ESSI Simulator

64 of 68

Generalized_Displacements Magnitude
0.000e+00 0.0041 0.0083 0.012 1.656e-02
|| |

Figure 1.16: Visualizing displacement field in Paraview.

Real-ESSI Pre Processing Manual

version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 65 of 68

1.2.8 Realistic Models Developed Using gmESSI

Figure 1.17: Nuclear Power Plant model 1, half model shown, with vertical plane cut.

1.3 Introduction to SASSI-ESSI Translator

This section will cover a simple mesh translator that translates mesh from SASSI format into ESSI format.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 66 of 68

Figure 1.18: Nuclear Power Plant model 2, half model shown, with vertical plane cut.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Jeremi¢ et al. Real-ESSI Simulator 67 of 68

Figure 1.19: Shear Box.

Real-ESSI Pre Processing Manual version: 13Feb2026, 15:41

Bibliography

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-

processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309-1331, 2009.

68 1

	Pre Processing for Real-ESSI Simulator (2015-2016-2017...)
	Introduction
	Model Development Using gmsh
	Introduction to gmESSI
	Getting Started
	Installation Process:

	Running gmESSI
	Contents of Example_1.gmessi input file:
	Running Example_1 in Terminal:

	Gmsh Physical Groups and Geometrical Entities
	Geometrical Entities
	Physical Groups

	gmESSI Command Description
	gmESSI Syntax
	Physical Group Names :
	gmESSI Command Syntax :

	gmESSI Command's Physical Group

	gmESSI Output
	Directory Example_2_ESSI_Simulation
	Translation Log Terminal
	Element File (element.fei)
	Node File (node.fei)
	Load File (load.fei)
	Analysis File (main.fei)
	NOTE:

	Mesh File (XYZ.msh)
	Updated ESSI Tags Terminal

	gmESSI Commands
	Singular Commands
	Add Node Commands
	Nodal Commands : Operates On All Nodes of the defined Physical Group
	General Elemental Commands : Operates On All Elements of the defined Physical Group
	Elemental Commands : Operates On All Elements of the defined Physical Group
	Elemental Compound Commands : Operates On All Surface Elements of the defined Physical Group [Surface Loads]
	Special Commands
	Connect Command
	Write Command
	Write DRM HDF5 Command

	Steps For Using gmESSI tool
	Building geometry (.geo) file in Gmsh
	Generate mesh (.msh) file in Gmsh
	Writing all gmESSI Commands for the model
	NOTE:

	Executing gmESSI on Example_1.gmessi input file
	Running Real-ESSI and visualization in paraview

	Illustrative Examples
	Modeling of Cantilever Beam With Surface Load [Example_2]
	Modeling of a embedded shells and beam in Solids [Example_5]

	Realistic Models Developed Using gmESSI

	Introduction to SASSI-ESSI Translator

