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SUMMARY

We present a novel technique for visualizing tensors in three dimensional (3D) space. Of particular interest
is the visualization of stress tensors resulting from 3D numerical simulations in computational
geomechanics. To this end we present three different approaches to visualizing tensors in 3D space,
namely hedgehogs, hyperstreamlines and hyperstreamsurfaces. We also present a number of examples
related to stress distributions in 3D solids subjected to single and load couples. In addition, we present
stress visualizations resulting from single-pile and pile-group computations. The main objective of this
work is to investigate various techniques for visualizing general Cartesian tensors of rank 2 and it’s
application to geomechanics problems. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last couple of years, large-scale 3D finite element models were developed in
computational geomechanics (cf. References [1–3]) Despite significant efforts to develop better
models to computationally simulate a number of interesting problems in geomechanics, post-
processing and data analysis are still a big burden. As a consequence, simulation results are
usually presented in traditional 2D format with two axes representing interaction of two scalar
variables. Moreover, the scalar variables are usually picked up at certain points in space (or
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time). The analyst needs to have considerable experience to pick up spatial coordinate and two
variables to be followed. This approach is suitable only for simple 1D and some 2D problems.
In analysing results of 3D computations, the analyst is faced with a large number of output data
points. Each data point can have multiple associated variables (scalar or tensorial). In addition,
post-processing of results from dynamic computations tends to introduce new, derived data sets
that can be even larger that the original simulations output data sets. The major problem is to
‘sort out’ the output data in an economical way and present it intuitively to the analyst.

One possible approach is to use advanced computer graphics and visualizations tools for the
task of post-processing large geomechanics data sets. In addition to presenting output results in
a graphical way (in terms of stress hedgehogs, for example) we have developed methods new
methods to extract more information from a stress tensor field and present it in an intuitive way.
This new methods are based on the concepts of so called hyperstreamlines and hyperstream-
surfaces [4–6].

In addition, new visualization hardware can be used to improve the quality and experience of
the visualization process. We mention the Immersive Work Bench from Fake Space Inc. [7]
available at the Centre for Image Processing and Integrating Computing (CIPIC) at UC Davis.
The Immersive WorkBench makes it possible to visualize objects in 3D space directly, using
stereoscopic rendering technology. Moreover, when combined with the data glove (part of the
WorkBench’s set-up) it creates a complete virtual environment in which the analyst can
manipulate 3D objects with his/her own hands.

We note that, although the visualization tools were designed for post-processing stress data,
the methods and implementations developed are highly general and can be used for any 3D
tensor field.

The paper is organized as follows: In Section 2, we give brief introduction to tensor fields and
then focus on the stress tensor. Section 3 describes various implementation details, in particular,
it discusses manipulations of the provided data sets in order to obtain ‘optimal tensor fields’ for
visualization. In Section 4, we present three methods (hedgehogs, hyperstreamlines and
hyperstreamsurfaces) for visualizing stress tensor fields. We present a number of illustrative
examples. In Section 5, we present conclusions and directions for future work.

2. BASICS OF TENSOR FIELDS

We briefly review definitions and basic properties of tensors. We follow notation of Green and
Zerna [8] and of Hjelmstad [9]. Let us consider three independent variables yi with differentials
dyi: The variables yi are transformed into a set of new variables %yyi by an arbitrary single-valued
function of the form

%yyi ¼ %yyiðy1; y2; y3Þ ð1Þ

We assume that the arbitrary function has derivatives up to the order required. We also assume
that the function is invertible, i.e.,

yi ¼ yið%yy1; %yy2; %yy3Þ ð2Þ

where the functions yi are also single-valued.
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The transformation of differentials is given by the equations

d%yyi ¼ %ccij dy
j and dyi ¼ cij d%yy

j ð3Þ

where we define

%ccij ¼
@ %yiyi

@yj
and cij ¼

@yi

@%yyj
ð4Þ

The functions in Equation (4) are related by the equation

%ccikc
k
j ¼ cik %cc

k
j ¼ dij ð5Þ

where dij is the Kronecker delta. Equation (5) can be used to calculate the values of %ccij when the
values of cij are known. The opposite relationship also holds, provided that the
functional determinant c ¼ jj%ccijjj=0; which holds because of the assumption of invertibility
(Equation (2)).

Consider a system A of functions with components defined in the general set of variables yi

and being functions of ðy1; y2; y3Þ: We call the system of functions A a tensor if the variables yi

can be changed to %yyi by Equation (1) and if we can define new components of T in the general
variables %yyi; being functions of ð%yy1; %yy2; %yy3Þ and if the components of T in the two sets of variables
are related by certain rules.

A system of order two may be defined by nine components Aij in the variables yi and nine
components %yyi in the variables %yyi: If

%AAij ¼ cmi c
n
j Amn ð6Þ

the functions Aijðy
1; y2; y3Þ and %AAijð%yy1; %yy2; %yy3Þ are the components in their respective variables of a

covariant tensor of order two. Tensor Aij is said to be symmetric if

Aij ¼ Aji ð7Þ

Consider a body B (Figure 1) subjected to surface forces, and an interior surface element of
area DA with normal n and resultant force DF; see Reference [9] and Reference [10]. The traction
vector can then be defined as the limit of the ratio of the vectorial force to the area

t ¼ lim
DA!0

DF
DA

ð8Þ

O

n

∆A

∆F

B

Figure 1. Strained body B with a planar cross section DA; unit normal n and a force DF:
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The Cauchy stress tensor rðsijÞ is defined as a tensorial quantity that, when acted on by the
unit normal n ðniÞ; results in the traction vector t ðtj):

t ¼ nr ð9Þ

ti ¼ njsij ð10Þ

The components of the Cauchy stress tensor are shown in Figure 2. It can be shown that the
Cauchy stress tensor is symmetric, i.e. sij ¼ sji:

It is of interest to determine on which planes the traction vector ti and plane normal nj are
aligned as for that plane the shear stress is zero. In other words, we use Equation (10) and seek
to determine planes with normals ni where ti ¼ sni is satisfied. Using the above equations, we
have

njsji ¼ sni ð11Þ

leading to the equation

ðsij � sdijÞnj ¼ 0 ð12Þ

and hence it follows that

detðsij � sdijÞ ¼ 0 ð13Þ

for the eigenvalue problem to have a non-trivial solution. The values s are the eigenvalues
(principal stresses) sI ; I ¼ 1; 2; 3 having associated eigenvectors (principal directions) nI that are
normal to the principal planes.

3. DATA STRUCTURES AND CONVERSION

Finite element models used in geomechanics simulations can feature a number of different mesh
arrangements. For simpler models, used in testing the quality of implementation or error
propagations, meshes are usually fairly regular in shape. For modeling complex realistic
problems, finite element meshes become irregular. For example, Figures 3(a)–3(c) show test
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Figure 2. Components of the Cauchy stress tensor sij (components shown on three visible planes only).
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problems used in this work. In these examples, the domain is rectangular in shape with different
loads applied on top face. On the other hand, Figures 3(d)–3(e) show solid models of realistic
pile foundations. It should be noted that the piles shown in Figures 3(d)–3(e) are embedded in
soil, and the complete models (for both a single pile and pile groups) include large volume of
soils surrounding the pile foundations.

A static and dynamic finite element simulation of a 3D problem results in large output,
typically several very large data files. For some of the examples shown later, the output files
contain only nodal (vertex) displacements and stress tensors associated with Gauss points (used
for numerical integration), file size typically exceeds 1 Gigabyte of data.

An important issue that must be resolved before the data can be visualized is the location
of data points. Standard-displacement-based finite element methods usually provide displace-
ment data at nodal points (mesh vertices) while the constitutive data (e.g. the dependent stress
and strain tensors, and/or material model data) are provided at the Gauss points within each
finite element. For example, Figure 4(a) is a top view of the single-pile mesh used in our
examples. The availability of displacement data at nodal points and constitutive data at Gauss
points can lead to potential problems for the creation of a smooth field obtained by
interpolation.

One of the first ideas we explored was to extrapolate Gauss point data to nodal points and
then perform averaging, see Reference [11]. Figure 4(b) shows how Gauss-point data (pointed to
by red arrows) was extrapolated to nodal points (indicated by green arrows). However, since the
stress field resulting from a finite element simulation, is not continuous across element
boundaries, this extrapolation approach created, in some cases, non-physical stress distribu-
tions. Moreover, it is quite difficult to implement this type of data conversion for non-regular

(a) (b) (c)

(d) (e)

Figure 3. Rectangular domains with different loads applied on top face, (a) point-load, (b) double-point-
load, (c) load couple. Solid models of realistic pile foundations, (d) single-pile, and (e) four-pile group.
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meshes. There does not seem to exist a simple method to extrapolate Gauss-point data for a
non-regular meshes.

Instead of extrapolating Gauss-point data to nodal points we can use the concepts of a
Delaunay triangulation, see Reference [6], to perform data conversion. The Delaunay
triangulation of a data set is a collection of edges satisfying an empty circle property: for
each edge we can find a circle containing the edge’s endpoints but not containing any other
points. The advantages of performing a Delaunay-based conversion are numerous. We mention
just a few advantages:

* The conversion results in tetrahedral cells only.
* The conversion is independent of the data set.
* The conversion is independent of the number of Gauss points in an element.

On the downside, this type of conversion results in a rather large increase in the number of cells.
Considering the simple test mesh used for the examples in Figure 4(a), with 600 elements and
4800 Gauss points (eight Gauss points per element), the Delaunay conversion will yield 26 820
tetrahedral cells. Figure 4(c) shows a top view of the tetrahedrazation of the initial mesh for a
single pile, while Figure 4(d) shows the tetrahedrazation for the Gauss points of the four-pile
group.

(a) (b)

(c) (d)

Figure 4. Meshes resulting from direct extrapolation and Delaunay tetrahedrazation of Gauss points.
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4. TENSOR VISUALIZATION

4.1. Hedgehogs

Scientific visualization is to a large extent concerned with the post-processing of results from
simulations, where results are typically scalar and vector fields. For example, Figure 5(a) is a
visualization of a rotating velocity field using simply arrows for visualization. Drawing of
arrows in tangent direction (to the resulting vector field) at each nodal point is one the simplest
ways to visualize a vector field in the 2D plane. When it comes to visualizing principal
components of a 3D tensor, similar approaches can be used. Figure 5(b) presents one such
approach, using hedgehogs, in which three lines are used to present the three eigenvalues (along
corresponding eigenvectors) associated with a single 3D tensor. In this example, we use colour
for sign (red is tension, positive, and green is compression, negative) and the length of a line to
indicated magnitude of the three eigenvalues of the tensor. Even with only one 3D tensor being
visualized the relative size of the lines is not quite clear, at least it is not clear by merely looking
at a single projection. The orientation of the lines plays a major role in perceiving visually the
actual magnitudes of the principal stress values.

Nevertheless, hedgehogs are a simple method to visualize principal stresses. Figure 6 shows
stress tensor hedgehogs for our three examples. Figures 6(a)–6(c) present stress hedgehogs for
the single, dual and load couples on a half-space model. Despite a large number of stress
hedgehogs, the stress trajectories are evident. The analyst can use such visualizations to gain
understanding of the response within a solid. However, the examples shown in Figures 6(a)–6(c)
are rather simple and for such simple examples we can intuitively predict orientations and
magnitudes of principal stresses.

When it comes to visualizing results from numerical geomechanics simulations for realistic
objects, hedgehogs are no longer effective. Figures 7(a) and 7(b) present principal stress
hedgehogs for our examples involving pile foundations. Figure 7(a) presents a view of principal
stress hedgehogs for one layer of the four-pile group close to the surface. The results shown here
are taken from one time step of a seismic simulation involving a four-pile group embedded in
soil. This presentation of principal stress hedgehogs does not reveal the mechanical behaviour of

(a) (b)

Figure 5. (a) Visualization of a rotating vector field, (b) principal stress hedgehog, colour-
coded by sign (red is tension, positive, and green is compression, negative); line length

represents principal stress magnitude.
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the system. The finite element model used for this four-pile group was rather coarse and,
consequently, stress results are not of high quality. With such a deficient stress field resulting
from a coarse mesh, the visualization using principal-stress hedgehogs does not convey
appropriately the underlying distribution of stresses. Figure 7(b) presents principal stress
hedgehogs for a layer just beneath the pile cap for a single pile. This figure shows a stress field
taken from one time step of dynamic simulation. While it is obvious that the four projections
(one perspective and three orthogonal views) improve the visualization quite a bit, the stress
field is too complicated to be understood using just hedgehogs.

4.2. Hyperstreamlines

A better representation of the stress field in the solid can be obtained by using hyperstreamlines.
Dickenson [12] introduced the concept of tensor lines into visualization. These are curves that

(a) (b)

(c)

Figure 6. Stress hedgehogs for a single (a), dual (b) and load couples (c) loads on a half-space model.
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are everywhere tangent to one of the principal components of the tensor. Delmarcelle and
Hesselink [4,5] extended this idea to hyperstreamlines. A hyperstreamline is a tensor line with a
tube or helix structure defined by the other two eigenvalues and eigenvectors.

Figures 8(a)–8(c) show hyperstreamlines for major, intermediate and minor principal stresses
for a point-load example. In this case, hyperstreamlines quite effectively describe the stress
tensor field. It is particularly interesting to observe the ‘flows’ of the minor principal stress
(compressive principal stress) in Figure 8(a) and the major principal stress (tensile principal
stress) in Figure 8(c). Colour clearly presents the magnitudes of principal stresses. Here, blue
depicts high values and red low values. It is also interesting that for the intermediate principal
stress tensor hyperstreamlines the colour code is alternating cyclically. This is explained by the
small variations (due to numerical errors) of the constant principal stress value. The same can be
observed for the major principal stress tensor field close to the point-load application point in
Figure 8(c). It should be noted that there exists a singular point in stress space (stresses tend to
infinity), just beneath the applied concentrated load.

Figures 9(a) and 9(b) show hyperstreamlines for the minor principal stress tensor for a two-
point-load data set and in a load couple data set.

The presentation of hyperstreamlines in form of trajectories can be augmented by helices and
tubes. There exist three principal stresses at each point inside the solid under consideration. The
hyperstreamlines present only one of the principal stresses (the minor, intermediate or major

(a) (b)

Figure 7. (a) Principal stress hedgehogs for one layer of four-pile group close to the surface, (b) principal
stress hedgehogs for a layer just beneath the pile cap for a single pile.

(a) (b) (c)

Figure 8. Hyperstreamlines for minor, intermediate and major principal stress for a point-load.
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one). At each point in space we do have available the two other principal stresses. The addition
of helices and tubes serves the purpose of showing all three principal stresses of a tensor on a
single visualization. The two orthogonal dimensions of a helix (a cross) or a tube (ellipsoid) are
used to represent the two principal stresses while colour is used to show the main component of
the principal stress along the hyperstreamline. In other words, the use of cross based
hyperstreamlines can be thought of as an extension of the stress cross in two dimensions.
Similarly the use of an ellipsoid based hyperstreamlines is an extension of the stress ellipsoid in
two dimensions. In other words, a helix or tube hyperstreamline is a tensor line with a helix or
tube defined by the other two principal components and principal directions of a tensor. Figures
10(a) and 10(b) shows the variations of hyperstreamlines presentation for a single point-load
example: (a) hyperstreamlines drawn as helix just beneath the point-load, (b) hyperstreamlines
drawn as tube just beneath the point-load. It should be noted that the direction or the
hyperstreamline is controlled by the stress field, while the user only chooses the starting point.

Figures 11(a) and 11(b) show tube hyperstreamlines for the minor principal stress for two
point load and the couple. It is interesting to note that the tube hyperstreamlines perform quite
nicely if all the principal stress values are of the same sign. If, on the other hand, one of the
principal stresses changes sign, the tube hyperstreamline will cease to exist. In this case, the
ellipsoid part of the tube hyperstreamline will be converted to a paraboloid. Before that
happens, the tube hyperstreamline will, when one of the two other principal stresses changes
sign, degenerate. Eventhough sign change for a principal stress is mechanically significant from
solids made of geomaterials (for example, switch from compression to tension creates possibility
for tensile cracks), in our case, most plasticity models do not allow tension to develop resulting
in all principal stresses being in compression.

Figure 12 shows helix hyperstreamlines for the intermediate principal stress for a two-point-
load and a load couple examples. Considering Figure 12(a), the two-point-load example, the
variation of the intermediate principal stress is presented using colour along the hyperstream-
line. The variation of the other two components of the principal stress, given by the helix
dimensions at the specific point, shows that one of the values (minor principal stress) has a finite
value while the other one (major principal stress) is close to zero. When comparing Figures 12(a)
and 6(b), it becomes obvious that the major principal stress components are small or close to

(a) (b)

Figure 9. Minor hyperstreamlines for two-point load and load couple data sets.
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zero. In some instances they even become negative. As for the tube hyperstreamlines, negative
values for one (or both) of the other principal stress values makes this visualization approach
unusable.

Figure 13 shows hyperstreamlines for the single-pile data set. The first three figures Figures
13(a)–13(c), show the minor principal stress hyperstreamlines in terms of (a) line hyperstream-
lines, (b) tube hyperstreamlines, and (c) helix hyperstreamlines. The starting point for these
hyperstreamlines is just outside the pile, in the soil, and the end points are on the other side of
the pile, again in the soil. Figure 13(d) shows major principal stress hyperstreamlines starting in
soil, extending through the solid pile, and ending in the soil on the other side.

There are a number of details worth mentioning. In Figures 13(a)–13(c), minor principal
stress hyperstreamlines are shown, which means that we follow the compressive stress in tangent
direction and then, in the case of helix and tube hyperstreamlines, plot the other two principal
stresses. We consider the shape of hyperstreamlines: The upper four hyperstreamlines are
‘bending upward’ while the lower ones are mainly horizontal. This means that, in the upper part
of the pile, compressive stresses are inclined (almost vertical), which is expected for the bending
deformation of a pile. Beginning at some depth, however, the pile is not subjected to bending
any longer. The horizontal traces of minor principal stresses at the left (front) side in the upper

(a) (b)

(c) (d)

Figure 10. Helix, (a,c) and tube (b,d) hyperstreamlines for a single-point-load example.
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portion of the pile are also expected, as this side should have large tensile stresses. Those tensile
stresses are best seen in helix hyperstreamlines in Figure 13(c).

Figure 13(d) shows the change of the major principal stress (tensile) along its own trajectory.
We added tubes representing the other two principal stresses (intermediate and minor). First, a
significant variation is observed for the major principal stress (depicted in changing colour) as it
enters and leaves the region occupied by the concrete pile. Second, significant rotation of the
principal stress triad is observed, particularly in the uppermost tube hyperstreamline, which
indicates a quite different stress state (magnitude and orientation) in the concrete pile and the
surrounding soil. Third, the variation of stress values is much smaller in the soil than in
concrete, and the variations become smaller the deeper a hyperstreamline is.

4.3. Hyperstreamsurfaces

Despite the fact that we can generate powerful visualizations with hyperstreamlines, this method
can only show stress lines that follow the tangent of one of the principal stresses. Therefore,

(a) (b)

Figure 12. Helix hyperstreamlines for the intermediate principal stress for (a) two-point-load
and the (b) load couple examples.

(a) (b)

Figure 11. Tube hyperstreamlines for minor principal stress for (a) two-point-loads and (b)
load couple examples.
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visualization results are highly dependent on the initial point where we start to follow the
tangent to one of the principal stresses. By increasing the number of hyperstreamlines one can
gain a better understanding of overall structure of the tensor space but this approach has its
limitations. One of the main limitations is that by increasing the number of hyperstreamlines
over some limit, the visualization loses quality and becomes too intrusive. In addition to that,
only one of the principal stress components is visualized. Figures 14 shows visualizations based
on relatively large number of hyperstreamlines. Figures 14(a)–14(c) show minor principal stress
for a double-load data set with (a) nine, (b) 16, and (c) 25 hyperstreamlines. Figures 15(d)–15(f)
show minor principal stress for a load-couple data set with (a) nine, (b) 16, and (c) 25
hyperstreamlines.

This concept of hyperstreamlines can be extended to the so-called hyperstreamsurfaces. The
hyperstreamsurface is a visualization that uses a set of points on an open (or closed) curve to
construct a number of hyperstreamlines, which are then connected using polygons. The
advantage of hyperstreamsurfaces (over hyperstreamlines) is that they are able to present more
information in a non-intrusive way. Figure 15 shows hyperstreamsurfaces for a point-load data
set. Figures 15(a)–15(c) show hyperstreamsurfaces for the minor, intermediate, and major

(a) (b)

(c) (d)

Figure 13. Minor principal stress hyperstreamlines for one-pile model: (a) hyperstreamlines;
(b) tube hyperstreamlines, (c) helix hyperstreamlines; and (d) major hyperstreamlines

extending through the soil and concrete.
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principal stresses. Figures 16(a)–16(f) show hyperstreamsurfaces for the minor, intermediate,
and major principal stresses, for the double-load and load-couple data sets.

Figures 17(a) and 17(b) shows hyperstreamsurfaces for minor principal stress (compression)
for (a) a single-pile and (b) a four-pile-group example. It is noted that the visualization for piles
corresponds to one time frame of a dynamic (seismic) loading. Predominant direction of loading
is horizontal, in x–z plane (vertical), which, for the two examples in Figures 17(a) and 17(b),
extends from left to right through the centre of the models. In Figure 17(a), the
hyperstreamsurface starts at the centre line of a pile and extends through the concrete (in
both directions) until it reaches surrounding soil. Figure 17(a) exhibits the same behaviour as
Figure 13(a). Both figures represent the minor principal stress for the same single-pile
simulation. The hyperstreamsurface shown in Figure 17(a) reveals the stress field in more
details. We notice the twisting and ‘discolouring’ of the hyperstreamsurface toward the bottom
of the pile. This can be explained by the fact that the stress field in the concrete pile is far away
from the main bending effects close to the surface. The state of stress thus deviates just by a
small amount from the initial state induced by the self-weight. Such small change in stresses

(a) (b) (c)

(d) (e) (f)

Figure 14. Families of hyperstreamlines representing minor principal stresses for the double-
point and the load-couple data set.

(a) (b) (c)

Figure 15. Hyperstreamsurfaces for (a) minor, (b) intermediate, and (c) major principal
stresses for point-load data set.
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leads to a near-uniform green hue colouring. A ‘kink’ in direction and colour is noticed close to
the surface. This is a part of the hyperstreamsurface that ends in the soil and thus, by moving
from stiff (concrete) toward soft (soil) medium, has much smaller minor (compressive) stresses.
The reason for such behaviour can be deduced from Figure 13(a), showing hyperstreamlines:
The minor principal stress is bend upward (due to large compressive stresses resulting from
bending), and the stress path extends into the concrete pile cap. If more hyperstreamlines were
used in constructing a hyperstreamsurface, smoother transition from soil interface to concrete
cap would result. However, with the current choice, there is a region inside the pile and the
adjacent soil, toward the upper-end of a pile, that is not properly covered by hyperstreamlines/
hyperstreamsurfaces.

Figure 17(b) represents the minor (compressive) principal stress hyperstreamsurface for the
four-pile group. In this figure, we have removed one pile from the model to simplify the view.
An interesting effect is ‘shading’, apparent behind the left pile in this figure. The
hyperstreamsurface starts, at the centre of that pile and extends outside, ending in soil. This
pile group is much stiffer than the one-pile example. The effects of bending are much smaller,
and the four-pile group behaves like a stiff frame embedded in soil. The observed deformation
pattern is thus closer to horizontal translation with a large horizontal resistance and small
bending. The hyperstreamsurface extends into the soil outside the pile group, with apparent
compressive stress. However, just behind the pile, but inside the pile group, the minor principal
stress changes significantly in value and then curves by almost 908: The twist of the minor
principal stress hyperstreamsurface clearly demonstrates the pile-group effect: Maximal
compressive stress (minor principal stress) is acting between two piles in direction perpendicular
to the pile loading direction. This findings is contrary to common belief about the state of
stresses in pile groups. More important, a large ‘shading’ effect is observed, which, when
combined with the twisting of the minor principal stress, leads us to conclude that the two back
piles are mostly loaded in direction perpendicular to the global loading direction.

(a) (b) (c)

(d) (e) (f)

Figure 16. Hyperstreamsurfaces for (a), (d) minor, (b), (e) intermediate, and (c), (f) major principal stresses
(for the double-load (a)–(c) and load-couple (d)–(f) data set).
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4.4. Isosurfaces

In order to gain better understanding of the state of stress in a solid, it is interesting to determine
the positions where one or two of the principal stresses change sign. Figures 18(a) and 18(b)
show an isosurface close to the pile foundation with one positive principal stress value,
Figure 18(a), and with two positive principal stress values, Figures 18(b). Figure 18(a)
clearly shows the zones with some tensile stresses. These zones are mostly concentrated
near the concrete–soil interface as expected and represent gap openings. The location of these
zones does not follow the concrete–soil interface exactly, most likely due to numerical errors
produced by the algorithm used for interpolating stresses. It is also interesting that a small
region where two principal stresses are positive, at the corner of the top of pile cap, becomes
evident.

4.5. Time-dependent tensor fields

The visualization methods we have described in the previous sections can be extended to
dynamic events, to time-dependent simulated data. Unfortunately, we cannot present

(a) (b)

Figure 18. Isosurface of regions with (a) one positive principal stress value and (b) two
positive principal stress values.

(a) (b)

Figure 17. Hyperstreamsurfaces for minor principal stress (compression) for (a) a single-pile
and (b) a four-pile group.
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visualization animation of the dynamic data in a paper. However, we will present image
sequences for dynamic data. It is our experience that very good results can be obtained by
animating hyperstreamlines and hyperstreamsurfaces.

Figure 19. Sequence of snapshots for two minor principal stress hyperstreamlines for 15 time steps of a
dynamic simulation using Kobe earthquake input motions.
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Figure 20. Sequence of minor principal stress hyperstreamsurface for the single-pile dynamic
simulation, 15 time steps shown.
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Figure 19 presents a sequence of hyperstreamline visualizations of the single-pile data set.
This series of snapshots is for time steps 147–161 of a dynamic simulation using Kobe
earthquake input motions. The motion of two minor principal stress hyperstreamlines is shown.
It seems that the animated visualization is not very intuitive; it requires experience to understand
the changes in the stress field.

Figure 20 presents a sequence of hyperstreamsurfaces for the same simulation. This animation
conveys the changes of the minor principal stress state in the pile and surrounding soil much
better than using plain hyperstreamlines for animation. It can be seen that the minor principal
stress follows cycles of compression. We can only observe cycles of compression while cycles of
tension (in the concrete pile) would have to be shown using a second hyperstreamsurface for the
major principal stress.

5. CONCLUSION

We have discussed different approaches to visualizing tensors for computational geomechanics.
We have focused on the visualization of the stress tensor and have presented visualization of the
principal stress tensor using hedgehogs, hyperstreamlines, hyperstreamsurface, and isosurfaces.
We have also presented extensions of some of these methods for the visualization of dynamic
data, using the behaviour of piles during an earthquake event as examples.

We have provided visualizations for simple and complicated boundary value problems. A
number of interesting findings could be made using the presented visualization methods
especially for the analysis of single-pile and pile-group behaviour. As shown in examples in this
paper, bending behaviour of piles in soil as well as state of stresses in soil, at the interface (soil–
concrete) and within the concrete piles can be explored using presented visualization tools.
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