Bibliography

Computational Mechanics

by:
Boris Jeremić
Department of Civil and Environmental Engineering
University of California, Davis
version: January 4, 2019; 7:18


[152] Милован Којић ; Miloš Kojić. Општи концепт имплицитне интеграције конститутивних релација при нееластичном деформисању материјала. Монографија Центра за научна истраживања Српске академије наука и уметности у Београду, 1993. (Miloš Kojić, A General Concept of Implicit Integration of Constitutive Relations for Inelastic Material Deformation, in Serbian).


Boris Jeremić: 4. Јануар, 2019, 7:18


Kayen, and Robert E. S. Moss. Standard penetration test-based probabilistic and deterministic assess-
ment of seismic soil liquefaction potential. ASCE Journal of Geotechnics and Geoenvironmental Engineering,

[1205] J. R. Booker, M. S. Rashman, and H. Bolton Seed. GADFLEA: A computer program for the analysis of
pore pressure generation and dissipation during cyclic or earthquake loading. Technical Report EERC 76-24,
University of California, Berkeley, October 1976.

May/June 2006.


[1209] M. Levent Kavvas. Nonlinear hydrologic processes: Conservation equations for determining their means and


solving nonlinear mechanical problems with uncertain parameters. Computer Methods in Applied Mechanics

\((\alpha_1A_1+\alpha_2A_2+\cdots+\alpha_mA_m)x=b\). Computer Methods in Applied Mechanics and Engineering, 195(44-47):6560–
6576, September 2006.


[1216] George Mylonakis, Costis Syngros, George Gazetas, and Takashi Tazoh. The role of soil in the collapse of
18 piers of Hanshin expressway in the Kobe eqarthquake. Earthquake Engineering and Structural Dynamics,


[1219] Ivo Babuška, Kang Man Liu, and Raúl Tempone. Solving stochastic partial differential equations based on the


[1221] Peter Helwein. Some remarks on the compressed matrix representation of symmetric second–order and fourth


[1594] Gregory Fenves and Mathew Dryden. Nees sfi demonstration project. NEES project meeting, TX, Austin, August 2005.


[1743] Klaus-G. Hinzen. Rotation of vertically oriented objects during earthquakes. published via email to rotation@lists.geophysik.uni-muenchen.de group, July 2011.


[1920] Qing He, Houle Gan, and Dan Jiao. An explicit time-domain finite-element method that is unconditionally stable. Purdue e-Pubs; ECE Technical Reports 421, Purdue University, 2011.


[2115] Lewis Fry Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, 210:307–357, 1911.


[2554] Kenneth W Campbell and Yousef Bozorgnia. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1):139–171. 2008.


