Bibliography

Computational Mechanics

by:
Boris Jeremić
Department of Civil and Environmental Engineering
University of California, Davis
version: August 20, 2019; 12:44
Bibliography


[152] Милош Којић ; Miloš Kojić. Опши концепт имплицитне интеграције конститутивних релација при нееластичном деформисању материјала. Монографија Центра за научна истраживања Српске академије наука и уметности у Крагујевцу, 1993. (Miloš Kojić, A General Concept of Implicit Integration of Constitutive Relations for Inelastic Material Deformation, in Serbian).


D. M. Boore and G. M. Atkinson. Ground-motion prediction equations for the average horizontal component of pga, pgv, and 5 %-damped psa at spectral periods between 0.01 s and 10.0 s. *Earthquake Spectra*, March 2008.


[1594] Gregory Fenves and Mathew Dryden. Nees sfsi demonstration project. NEES project meeting, TX, Austin, August 2005.


Katerina Konakli and Armen Der Kiureghian. Simulation of spatially varying ground motions including incoherence, wave-passage and differential site-response effects. *Earthquake Engineering & Structural Dynamics*, pages n/a–n/a, 2011.


[1743] Klaus-G. Hinzen. Rotation of vertically oriented objects during earthquakes. published via email to rotation@lists.geophysik.uni-muenchen.de group, July 2011.


[1804] Bor-Shouh Huang. Ground rotational motions of the 1999 Chi-Chi, Taiwan earthquake as inferred from dense array observations. Geophysical Research Letters, 30(6), 2003.


[1807] Luigi Cucci, Andrea Tertulliani, and Corrado Castellano. The photographic dataset of the rotational effects produced by the 2009 L’aquila earthquake. Miscellanea INGV, 2011.


[1920] Qing He, Houle Gan, and Dan Jiao. An explicit time-domain finite-element method that is unconditionally stable. Purdue e-Pubs; ECE Technical Reports 421, Purdue University, 2011.


[2115] Lewis Fry Richardson. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, 210:307–357, 1911.


Xu Huang, Oh-Sung Kwon, Evan Bentz, and Julia Tchermer. Method for evaluation of concrete containment structure subjected to earthquake excitation and internal pressure increase. *Earthquake Engineering & Structural Dynamics*, pages n/a–n/a, 2017. EQE-17-0330.R3.


