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ABSTRACT: Described here is the Plastic Domain Decomposition (PDD) Method for parallel elastic-
plastic finite element computations related to Soil–Foundation–Structure Interaction (SFSI) problems. The
PDD provides for efficient parallel elastic-plastic finite element computations steered by an adaptable, run-
time repartitioning of the finite element domain. The adaptable repartitioning aims at balancing computa-
tional load among processing nodes (CPUs), while minimizing inter–processor communications and data
redistribution during elasto-plastic computations. The PDD method is applied to large scale SFSI problem.
Presented examples show scalability and performance of the PDD computations.

A set of illustrative example is used to show efficiency of PDD computations and also to emphasize the
importance of coupling of the dynamic characteristics of earthquake, soil and structural (ESS) on overall
performance of the SFS system. Above mentioned ESS coupling can only be investigated using detailed
models, which dictates use of parallel simulations.

1 INTRODUCTION

Parallel finite element computations have been developed for a number of years mostly for elastic solids
and structures. The static domain decomposition (DD) methodology is currently used almost exclusively for
decomposing such elastic finite element domains in subdomains. This subdivision has two main purposes,
namely (a) to distribute element computations to CPUs in an even manner and (b) to distribute system of
equations evenly to CPUs for maximum efficiency in solution process.

However, in the case of inelastic (elastic–plastic) computations. the static DD is not the most efficient
method since some subdomains become computationally slow as the elastic–plastic zone propagates through
the domain. This propagation of the elastic–plastic zone (extent of which is not know a–priori) will in turn
slow down element level computations (constitutive level iterations) significantly, depending on the complex-
ity of the material model used. Propagation of elastic–plastic zone will eventually result in some subdomains



becoming significantly computationally slow while others, that are still mostly elastic, will be more compu-
tationally efficient. This discrepancy in computational efficiency between different subdomains will result in
inefficient parallel performance. In other words, subdomains (and their respective CPUs) with mostly elastic
elements will be finishing their local iterations much faster (and idle afterward) than subdomains (and their
respective CPUs) that have many elastic–plastic elements.

This computational imbalance motivated development of the Plastic Domain Decomposition (PDD)
method described in this paper. Developed PDD is applied to a large scale seismic soil–foundation–structure
(SFS) interaction problem for bridge systems. It is important to note that the detailed analysis of seismic
SFSI described in this paper is made possible with the development of PDD as the modeling requirements
(finite element mesh size) were such that sequential simulations were out of questions.

1.1 Soil–Structure Interaction Motivation

The main motivation for the development of PDD is the need for detailed analysis of realistic, large scale
SFSI models. This motivation is emphasized by noting that currently, for a vast majority of numerical
simulations of seismic response of bridge structures, the input excitations are defined either from a family
of damped response spectra or as one or more time histories of ground acceleration. These input excitations
are applied simultaneously along the base of a structural system, usually without taking into account its
dimensions and dynamic characteristics, the properties of the soil material in foundations, or the nature of
the ground motions themselves. Ground motions applied in such a way neglect the soil–structure interaction
(SSI) effects, that can significantly change used free field ground motions. A number of papers in recent
years have investigated the influence of the SSI on behavior of bridges (7; 9; 25; 31; 32; 34; 43). McCallen
and Romstadt (34) performed a remarkable full scale analysis of the soil–foundation–bridge system. The soil
material (cohesionless soil, sand) was modeled using equivalent elastic approach (using Ramberg–Osgood
material model through standard modulus reduction and damping curves developed by Seed et al. (40)).
The two studies by Chen and Penzien (7) and by Dendrou et al. (9) analyzed the bridge system including
the soil, however using coarse finite element meshes which might filter out certainly, significant higher
frequencies. Jeremić et al. (21) attempted a detailed, complete bridge system analysis. However, due to
computational limitations, the large scale pile group had to be modeled separately and its stiffness used with
the bridge structural model. In present work, with the development of PDD (described in some details),
such computational limitations are removed and high fidelity, detailed models of Earthquake–Soil–Structure
systems can be performed. It is very important to note that proper modeling of seismic wave propagation
in elastic–plastic soils dictates the size of finite element mesh. This requirement for proper seismic wave
propagation will in turn results in a large number of finite elements that need to be used.

1.2 Parallel Computing Background

The idea of domain decomposition method can be found in an original paper from 1870 by H.A. Schwarz
(Rixena and Magoulès (38). Current state of the art in distributed computing in computational mechanics can
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be followed to early works on parallel simulation technology. For example, early endeavors using inelastic
finite elements focused on structural problems within tightly coupled, shared memory parallel architectures.
We mention work by Noor et al. (36), Utku et al. (44) and Storaasil and Bergan (42) in which they used
substructuring to achieve distributed parallelism. Fulton and Su (16) developed techniques to account for dif-
ferent types of elements used in the same computer model but used substructures made of same element types
which resulted in non–efficient use of compute resources. Hajjar and Abel (17) developed techniques for dy-
namic analysis of framed structures with the objective of minimizing communications for a high speed, local
grid of computer resource. Klaas et al. (27) developed parallel computational techniques for elastic–plastic
problems but tied the algorithm to the specific multiprocessor computers used (and specific network connec-
tivity architecture) thus rendering it less general and non-useful for other types of grid arrangements. Farhat
(11) developed the so–called Greedy domain partitioning algorithm, which proved to be quite efficient on a
number of parallel computer architectures available. However, most of the above approaches develop loss of
efficiency when used on a heterogeneous computational grid, which constitutive currently predominant par-
allel computer architecture. More recently Farhat et al. (12; 13; 14) proposed FETI (Finite Element Tearing
and Interconnecting) method for domain decomposition analysis. In FETI method, Lagrange multipliers are
introduced to enforce compatibility at the interface nodes.

Although much work has been presented on domain decomposition methods, the most popular meth-
ods such as FETI-type are based on subdomain interface constraints handling. It is also interesting to
note promising efforts on merging of iterative solving with domain decomposition-type preconditioning
(Pavarino (37) and Li and Widlund (30)). From the implementation point of view, for mesh-based scientific
computations, domain decomposition corresponds to the problem of mapping a mesh onto a set of proces-
sors, which is well defined as a graph partitioning problem (Schlegel et al. (39)). Graph based approach for
initial partitioning and subsequent repartitioning forms a basis for PDD method.

1.3 Simulation Platform

Developed parallel simulation program is developed using a a number of numerical libraries. Graph parti-
tioning and repartitioning is achieved using parts of the ParMETIS libraries (Karypis et al. (26)). Parts of
the OpenSees framework (McKenna (35)) were used to connect the finite element domain. In particular,
Finite Element Model Classes from OpenSees (namely, class abstractions Node, Element, Constraint, Load
and Domain) where used to describe the finite element model and to store the results of the analysis per-
formed on the model. In addition to that, an existing Analysis Classes were used as basis for development
of parallel PDD framework which is then used to drive the global level finite element analysis, i.e., to form
and solve the global system of equations in parallel. Actor model (1; 18) was used and with addition of
a Shadow, Chanel, MovableObject, ObjectBroker, MachineBroker classes within the OpenSees framework
(35) provided an excellent basis for our development. On a lower level, a set of Template3Dep numerical
libraries (Jeremić and Yang (24)) were used for constitutive level integrations, nDarray numerical libraries
(Jeremić and Sture (23)) were used to handle vector, matrix and tensor manipulations, while FEMtools el-

3



ement libraries from the UCD CompGeoMech toolset (Jeremić (20)) were used to supply other necessary
components. Parallel solution of the system of equations has been provided by PETSc set of numerical
libraries (Balay et al. (3; 4; 5)).

Most of the simulations were carried out on our local parallel computer GeoWulf. Only the largest
models (too big to fit in GeoWulf system) were simulated on TeraGrid machine (at SDSC and TACC). It
should be noted that program sources described here are available through Author’s web site.

2 PLASTIC DOMAIN DECOMPOSITION METHOD

Domain Decomposition (DD) approach is one of the most popular methods that is used to implement and
perform parallel finite element simulations. The underlying idea is to divide the problem domain into subdo-
mains so that finite element calculations will be performed on each individual subdomain in parallel. The DD
can be overlapping or non-overlapping. The overlapping domain decomposition method divides the problem
domain into several slightly overlapping subdomains. Non-overlapping domain decomposition is extensively
used in continuum finite element modeling due to the relative ease to program and organize computations
and is the one that will be examined in this work. In general, a good non-overlapping decomposition algo-
rithm should be able to (a) handle irregular mesh of arbitrarily shaped domain, and (b) minimize the interface
problem size by delivering minimum boundary conductivities, which will help reducing the communication
overheads. Elastic–plastic computations introduce a number of additional requirements for parallel comput-
ing. Those requirements are described below.

2.1 The Elastic–Plastic Parallel Finite Element Computational Problem

The distinct feature of elastic-plastic finite element computations is the presence of two iteration levels. In
a standard displacement based finite element implementation, constitutive driver at each integration (Gauss)
point iterates in stress and internal variable space, computes the updated stress state, constitutive stiffness
tensor and delivers them to the finite element functions. Finite element functions then use the updated stresses
and stiffness tensors to integrate new (internal) nodal forces and element stiffness matrix. Then, on global
level, nonlinear equations are iterated on until equilibrium between internal and external forces is satisfied
within some tolerance.

Elastic Computations. In the case of elastic computations, constitutive driver has a simple task of comput-
ing increment in stresses (∆σij) for a given deformation increment (∆εkl), through a closed form equation
(∆σij = Eijkl∆εkl). It is important to note that in this case the amount of work per Gauss point is known
in advance and is the same for every integration point. If we assume the same number of integration points
per element, it follows that the amount of computational work is the same for each element and it is known
in advance.
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Elastic-Plastic Computations. For elastic-plastic problems, for a given incremental deformation the con-
stitutive driver iterate in stress and internal variable space until consistency condition is satisfied. Number
of implicit constitutive iterations is not known in advance. Similarly, if explicit constitutive computations
are done, the amount of work at each Gauss point is much higher that it was for elastic step. Initially, all
Gauss points are in elastic state, but as the incremental loads are applied, the elastic–plastic zones develops.
For integration points still in elastic range, computational load is light. However, for Gauss points that are
elastic–plastic, the computational load increases significantly (more so for implicit computations than for
explicit ones). This computational load increase depends on the complexity of material model. For example,
constitutive level integration algorithms for soils, concrete, rocks, foams and other granular materials can be
very computationally demanding. More than 70% of wall clock time during an elastic-plastic finite element
analysis might be spent in constitutive level iterations. This is in sharp contrast with elastic computations
where the dominant part is solving the system of equations which consumes about 90% of run time. The
extent of additional, constitutive level computations is not known before the actual computations are over. In
other words, the extent of elastic-plastic domain is not known ahead of time.

The traditional pre–processing type of Domain Decomposition method (also known as topological DD)
splits domain based on the initial geometry and mesh connectivity and assigns roughly the same number of
elements to every computational node while minimizing the size of subdomain boundaries. This approach
might result in serious computational load imbalance for elastic–plastic problems. For example, one subdo-
main might be assigned all of the elastic–plastic elements and spend large amount of time in constitutive level
computations. The other subdomain might have elements in elastic state and thus spend far less computa-
tional time in computing stress increments. This results in program having to wait for the slowest subdomain
(the one with large number of elastic-plastic finite elements) to complete constitutive level iterations and
only proceed with global system iterations after that.

The two main challenges with computational load balancing for elastic–plastic computations are that
they need to be:

• Adaptive, dynamically load balancing computations, as the extent of elastic and elastic-plastic domains
changes dynamically and unpredictably during the course of the computation.

• Multiphase computations, as elastic-plastic computations follow up the elastic computations and there
is a synchronization phase between those two. The existence of the synchronization step between the
two phases of the computation requires that each phase be individually load balanced.

2.2 PDD Algorithm

The Plastic Domain Decomposition algorithm (PDD) provides for computational load balanced subdomains,
minimizes subdomain boundaries and minimizes the cost of data redistribution during dynamic load balanc-
ing. The PDD optimization algorithm is based on dynamically monitoring both data redistribution and
analysis model regeneration costs during program execution in addition to collecting information about the
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cost of constitutive level iterations within each finite element. A static domain decomposition is used to
create initial partitioning, which is used for the first load increment. Computational load (re–)balancing will
(might) be triggered if, during elastic–plastic computations in parallel, one computations on one of compute
nodes (one of subdomains) becomes slower than the others compute nodes (other subdomains). Algorithm
for computational load balancing (CLB) is triggered if the performance gain resulting from CLB offsets the
extra cost associated with the repartitioning. The decision on whether to trigger repartitioning or not is based
on an algorithm described in some details below.

We define the global overhead associated with load balancing operation to consist of two parts, data
communication cost Tcomm and finite element model regeneration cost Tregen,

Toverhead := Tcomm + Tregen (1)

Performance counters are setup within the program to follow both. Data communication patterns character-
izing the network configuration can be readily measured (Tcomm) as the program runs the initial partitioning.
Initial (static) domain decomposition is performed for the first load step. The cost of networking is inher-
ently changing as the network condition might vary as simulation progresses, so whenever data redistribution
happens, the metric is automatically updated to reflect the most current network conditions. Model regen-
eration cost (Tregen ) is a result of a need to regenerate the analysis model whenever elements (and nodes)
are moved between computational nodes (CPUs). It is important to note that model (re–) generation also
happens initially when the fist data distribution is done (from the static DD). Such initial DD phase provides
excellent initial estimate of the model regeneration cost on any specific hardware configurations. This abil-
ity to measure realistic compute costs allows developed algorithm (PDD) to be used on multiple generation
parallel computers.

For the load balancing operations to be effective, the Toverhead has to be offset by the performance
gain Tgain. Finite element mesh for the given model is represented by a graph, where each finite element is
represented by a graph vertex. The computational load imposed by each finite element (FE) is represented by
the associated vertex weight vwgt[i]. If the summation SUM operation is applied on every single processing
node, the exact computational distribution among processors can be obtained as total wall clock time for each
CPU

Tj :=
n∑

i=1

vwgt[i], j = 1, 2, . . . , np (2)

where n is the number of elements on each processing domain and np is the number of CPUs. The wall
clock time is controlled by Tmax, defined as

Tsum := sum(Tj), Tmax := max(Tj), and Tmin := min(Tj), j = 1, 2, . . . , np (3)

Minimizing Tmax becomes here the main objective. Computational load balancing operations comprises
delivering evenly distributed computational loads among processors. Theoretically, the best execution time
is,

Tbest := Tsum/np, and Tj ≡ Tbest, j = 1, 2, . . . , np (4)
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if the perfect load balance is to be achieved.
Based on definitions above, the best performance gain Tgain that can be obtained from computational

load balancing operation as,
Tgain := Tmax − Tbest (5)

Finally, the load balancing operation will be beneficial iff

Tgain ≥ Toverhead = Tcomm + Tregen (6)

Previous equation is used in deciding if the re–partitioning is triggered in current incremental step. It is
important to note that PDD will always outperform static DD as static DD represents the first decomposition
of the computational domain. If such decomposition becomes computationally unbalanced and efficiency
can be gained by repartitioning, PDD be triggered and the Tmax will be minimized.

2.3 Solution of the System of Equations

A number of different algorithms and implementations exists for solving unsymmetric1 systems of equations
in parallel. In presented work, use was made of both iterative and direct solvers as available through the
PETSc interface (Balay et al. (3; 4; 5)). Direct solvers, including MUMPS, SPOOLES, SuperLU, PLA-
PACK have been tested and used for performance assessment. In addition to that, iterative solvers, including
GMRES, as well as preconditioning techniques (Jacobi, inconsistency LU decomposition and approximate
inverse preconditioners) for Krylov methods have been also used and their performance assessed.

Some of the conclusions drawn are that, for our specific finite element models (non–symmetric, using
penalty method for some connections, possible softening behavior), direct solvers outperform the iterative
solver significantly. As expected direct solver were not as scalable as iterative solvers, however, specifics
of our finite element models (dealing with soil–structure interaction) resulted in poor initial performance
of iterative solvers, that, even with excellent performance scaling, could not catch up with the efficiency
of direct solvers. IT is also important to note that parallel direct solvers, such as MUMPS and SPOOLES
provided the best performance and would be recommended for use with finite element models that, as ours
did, feature non–symmetry, are poorly conditioned (they are ill–posed due to use of penalty method) and can
be negative definite (for softening materials).

2.4 PDD Scalability Study

The developed PDD method was tested on a number of static and dynamic examples. Presented here are
scalability (speed–up) results for a series of soil–foundation–structure model runs. A hierarchy of models,

1Non-associated elasto–plasticity results in a non-symmetric stiffness tensors, which result in non–symmetric system of finite
element equations. Non–symmetry can also result from the use of consistent stiffness operators as described by Jeremić and Sture
(22).
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described later in section 3, was used in scaling study for dynamic runs. Finite element models were sub-
jected to recorded earthquakes (two of them, described in section 4), using DRM for seismic load application
(Bielak et al. (6) and Yoshimura et al (45)).

Total wall clock time has been recorded and used to analyze the parallel scalability of PDD, presented in
Figure 1.
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Figure 1: Scalability Study on 3 Bent SFSI Models, DRM Earthquake Loading, Transient Analysis, ITR=1e-
3, Imbal Tol 5%.

There is a number of interesting observations about the performance scaling results shown in Figure 1:

• the scalability is quite linear for small number of DOFs (elements),

• there is a link, relation between number of DOFs (elements) and number of CPUs which governs the
parallel efficiency. In other words, there exists certain ratio of the number of DOFs to number of
CPUs after which the communication overhead starts to be significant. For example for a models with
484,104 DOFs in Figure 1, the computations with 256 CPUs are more efficient that those with 512
CPUs. This means that for the same number of DOFs (elements) doubling the number of CPUs does
not help, rather it is detrimental as there is far more communication between CPUs which destroys the
efficiency of the parallel computation. Similar trend is observable for the large model with 1,655,559
DOFs, where 1024 CPUs will still help (barely) increase the parallel efficiency.

• Another interesting observation has to do with the relative computational balance of local, element
level computations (local equilibrium iterations) and the system of equations solver. PDD scales very
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nicely as its main efficiency objective is to have equal computational load for element level compu-
tations. However, the efficiency of the system of equations solver becomes more prominent when
element level computations are less prominent (if they have been significantly optimized with a large
efficiency gain). For example, for the model with 56,481 DOFs it is observed that for sequential case
(1 CPU), elemental computation amount for approx. 70 % of wall clock time. For the same model, in
parallel with 8 CPUs, element level computation accounts for approx. 40% of wall clock time, while
for 32 CPUs the element level computation account for only 10% of total wall clock time. In other
words, as the number of CPUs increase, the element level computations are becoming very efficient
and the main efficiency gain can then be made with the system of equations solver. However, it is
important to note that parallel direct solver are not scalable up to large number of CPUs (Demmel et
al. (8)) while parallel iterative solver are much more scalable but difficult to guarantee convergence.
This observation can be used in fine tuning of parallel computing efficiency, even if it clearly points to
a number of possible problems.

3 FINITE ELEMENT SFSI MODEL DEVELOPMENT

The finite element models used in this study have combined both elastic–plastic solid elements, used for soils,
and elastic and elastic–plastic structural elements, used for concrete piles, piers, beams and superstructure.
In this section described are material and finite element models used for both soil and structural components.
In addition to that, described is the methodology used for seismic force application and staged construction
of the model,

3.1 Soil and Structural Model

Soil Models. Two types of soil were used in modeling. First type of soil was based on stiff, sandy soil, with
limited calibration data (Kurtulus et al. (28)) available from capitol Aggregates site (south–east of Austin,
Texas).

Based on the stress-strain curve obtained from a triaxial test, a nonlinear elastic-plastic soil model has
been developed using Template Elastic plastic framework (24). Developed model consists of a Drucker-
Prager yield surface, Drucker–Prager plastic flow directions (potential surface) and a nonlinear Armstrong-
Frederick (rotational) kinematic hardening rule (2). Initial opening of a Drucker–Prager cone was set at
5o only while the actual deviatoric hardening is produced using Armstrong–Frederick nonlinear kinematic
hardening with hardening constants a = 116.0 and b = 80.0.

Second type of soil used in modeling was soft clay (Bay Mud). This type of soil was modeled using a
total stress approach with an elastic perfectly plastic von Mises yield surface and plastic potential function.
The shear strength for such Bay Mud material was set at Cu = 5.0 kPa. Since this soil is treated as fully
saturated and there is not enough time during shaking for any dissipation to occur, the elastic–perfectly
plastic model provides enough modeling accuracy.
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Soil Element Size Determination. The accuracy of a numerical simulation of seismic wave propagation in
a dynamic SFSI problem is mainly controlled the spacing of the nodes of the finite element model. In order
to represent a traveling wave of a given frequency accurately, about 10 nodes per wavelength are required.
In order to determine the appropriate maximum grid spacing the highest relevant frequency fmax that is
to be simulated in the model needs to be decided upon. Typically, for seismic analysis one can assume
fmax = 10Hz. By choosing the wavelength λmin = v/fmax, where v is the (shear) wave velocity, to be
represented by 10 nodes the smallest wavelength that can still be captured with any confidence is λ = 2∆h,
corresponding to a frequency of 5fmax. The maximum grid spacing ∆h should therefore not be larger than

∆h ≤ λmin

10
=

v

10fmax
(7)

where v is the smallest wave velocity that is of interest in the simulation (usually the wave velocity of the
softest soil layer). In addition to that, mechanical properties of soil will change with (cyclic) loadings as
plastification develops. Moduli reduction curve (G/Gmax) can then used to determine soil element size
while taking into account soil stiffness degradation (plastification). Using shear wave velocity relation to
shear modulus

vshear =

√
G

ρ
(8)

one can readily obtain the dynamic degradation of wave velocities. This leads to smaller element size re-
quired for detailed simulation of wave propagation in soils which have stiffness degradation (plastification).

Table 1 presents an overview of model size (number of elements and element size) as function of cut-
off frequencies represented in the model, material (soil) stiffness (given in terms of G/Gmax) and amount
of shear deformation for given stiffness reduction. It is important to note that 3D nonlinear elastic–plastic

Table 1: Variation in model size (number of elements and element size) as function of frequency, stiffness
and shear deformation.

model size (# of elements) element size fcutoff min. G/Gmax shear def. γ

12K 1.0 m 10 Hz 1.0 <0.5 %
15K 0.9 m 3 Hz 0.08 1.0 %

150K 0.3 m 10 Hz 0.08 1.0 %
500K 0.15 m 10 Hz 0.02 5.0 %

finite element simulations were performed, while stiffness reduction curves were used for calibration of the
material model and for determining (minimal) finite element size. It should also be noted that the largest
FEM model had over 0.5 million elements and over 1.6 million DOFs. However, most of simulations were
performed with smaller model (with 150K elements) as it represented mechanics of the problem with appro-
priate level of accuracy. Working FEM model mesh is shown in Figure 2. The model used, features 484,104
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Figure 2: Detailed Three Bent Prototype SFSI Finite Element Model, 484,104 DOFs, 151,264 Elements used
for most simulation in this study.

DOFs, 151,264 soil and beam–column elements, and is intended to model appropriately seismic waves of up
to 10Hz, for minimal stiffness degradation of G/Gmax = 0.08, maximum shear strain of γ = 1% and with
the maximal element size ∆h = 0.3 m. The largest model (1.6 million DOFs) was able to capture 10 Hz
motions, for G/Gmax = 0.02, and maximum shear strain of γ = 5% (see Table 1).

Structural Models. The nonlinear structure model (the piers and the superstructure) used in this study were
initially developed by Fenves and Dryden (15). This original structural (only) model was subsequently up-
dated to include piles and surrounding soil, and zero length elements (modeling concentrated plastic hinges)
were removed from the bottom of piers at the connection to piles. Concrete material was modeled using
Concrete01 uniaxial material as available in OpenSees framework (Fenves and Dryden (10; 15). Material
model parameters used for unconfined concrete in the simulation models were f ′

co = 5.9 ksi, εco = 0.002,
f ′

cu = 0.0 ksi, and εcu = 0.006. Material parameters for confined concrete used were f ′
co = 7.5 ksi,

εco = 0.0048, f ′
cu = 4.8 ksi, and εcu = 0.022 .

Hysteretic uniaxial material model available within OpenSees framework was selected to model the
response of the steel reinforcement. The parameters included in this model are F1 = 67 ksi, ε1 = 0.0023,
F2 = 92 ksi, ε2 = 0.028, F3 = 97 ksi, and ε3 = 0.12. No allowance for pinching or damage under cyclic
loading has been made (pinchX = pinchY = 1.0, damage1 = damage2 = 0.0, beta = 0).

The finite element model for piers and piles features a nonlinear fiber beam–column element Spacone et
al. (41). In addition to that, a zero-length elements is introduced at the top of the piers in order to capture
the effect of the rigid body rotation at the joints due to elongation of the anchored reinforcement. Cross
section of both piers and piles was discretized using 4× 16 subdivisions of core and 2× 16 subdivisions of
cover for radial and tangential direction respectively. Additional deformation that can develop at the upper
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pier end results from elongation of the steel reinforcement at beam–column joint with the superstructure and
is modeled using a simplified hinge model (Mazzoni (33)). Parameters used for steel–concrete bond stress
distribution were ue = 12

√
f ′

c and ue = 6
√

f ′
c (Lehman and Moehle (29)).

The bent cap beams were modeled as linear elastic beam-column elements with geometric properties
developed using effective width of the cap beam and reduction of its stiffness due to cracking. The su-
perstructure consists of prismatic prestressed concrete members. and was also modeled as linear elastic
beam–column element.

Coupling of Structural and Soil Models. In order to create a model of a complete soil–structure system,
it was necessary to couple structural and soil (solid) finite elements. Figure 3 shows schematics of coupling
between structural (piles) and solid (soil) finite elements The volume that would be physically occupied by

Pile

Solids

Beam

Figure 3: Schematic description of coupling of structural elements (piles) with solid elements (soil).

the pile is left open within the solid mesh that models the foundation soil. This opening (hole) is exca-
vated during a staged construction process (described later). Beam–column elements (representing piles) are
then placed in the middle of this opening. Beam–column elements representing pile are connected to the
surrounding solid (soil) elements be means of stiff short elastic beam–column elements. These short ”con-
nection” beam–column elements extend from each pile beam–column node to surrounding nodes of solids
(soil) elements. The connectivity of short, connection beam–column element nodes to nodes of soil (solids)
is done only for translational degrees of freedom (three of them for each node), while the rotational degrees
of freedom (three of them) from the beam–column element are left unconnected.

3.2 Application of Earthquake Motions

Seismic ground motions were applied to the SSI finite element model using Domain Reduction Method
(DRM, Bielak et al. (6) and Yoshimura et al (45)). The DRM is an excellent method that can consistently
apply ground motions to the finite element model. The method features a two-stage strategy for complex, re-
alistic three dimensional earthquake engineering simulations. The first is an auxiliary problem that simulates
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the earthquake source and propagation path effects with a model that encompasses the source and a free field
(from which the soil–structure system has been removed). The second problem models local, soil-structure
effects. Its input is a set of effective forces, that are derived from the first step. These forces act only within
a single layer of elements adjacent to the interface between the exterior region and the geological feature
of interest. While the DRM allows for application of arbitrary, 3D wave fields to the finite element model,
in this study a vertically propagating wave field was used. Using given surface, free field ground motions,
de-convolution was done for this motions to a depth of 100 m. Then, a vertically propagating wave field
was (re–) created and used to create the effective forces for DRM. Deconvolution and (back) propagation of
vertically propagating wave field was performed using closed form, 1D solution as implemented in Shake
program (Idriss and Sun (19)).

3.3 Staged Simulations

Application of loads in stages is essential for elastic–plastic models. This is especially true for models of soil
and concrete. Staged loading ensures appropriate initial conditions for each loading stage. Modeling starts
from a zero stress and deformation state. Three loading stages, described below, then follow.

Soil Self–Weight Stage. During this stage the finite element model for soil (only, no structure) is loaded
with soil self–weight. The finite element model for this stage excludes any structural elements, the opening
(hole) where the pile will be placed is full of soil. Displacement boundary conditions on the sides of the three
soil blocks are such that they allow vertical movements, and allow horizontal in boundary plane movement,
while they prohibit out of boundary plane movement of soils. All the displacements are suppressed at the
bottom of all three soil blocks. The soil self weight is applied in 10 incremental steps.

Piles, Columns and Superstructure Self–Weight Stage. In this, second stage, number of changes to
the model happen. First, soil elements where piles will be placed are removed (excavated), then concrete
piles (beam–column elements) are placed in the holes (while appropriately connecting structural and solids
degrees of freedom, as described above), columns are placed on top of piles and finally the superstructure is
placed on top of columns. All of this construction is done at once. With all the components in place, the self
weight analysis of the piles–columns–superstructure system is performed.

Seismic Shaking Stage. The last stage in our analysis consists of applying seismic shaking, by means of
effective forces using DRM. It is important to note that seismic shaking is applied to the already deformed
model, with all the stresses, internal variables and deformation that resulted from first two stages of loading.
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4 SIMULATION RESULTS

Bridge model described above was used to analyze a number of cases of different foundation soils and
earthquake excitations. Two sets of ground motions were used for the same bridge structure. Variation of
foundation soil, namely (a) all stiff sand and (b) all soft clay. One of the main goals was to investigate if
free field motions can be directly used for structural model input (as is almost exclusively done nowadays),
that is, to investigate how significant are the SFSI effects. In addition to that, investigated were differences
in structural response that result from varying soil conditions. Ground motions for Northridge and Kocaeli
earthquakes (free field measurement, see Figure 4) were used in determining appropriate wave field (using
DRM). Since the main aim of the exercise was to investigate SFS system a set of short period motions were
chosen among Northridge motions records, while long period motions from Kocaeli earthquakes were used
for long period example.
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Figure 4: Input motions: short period (Northridge) and long period (Kocaeli).

A number of very interesting results were obtained and are discussed below.

Free Field vs. SSI Motions. A very important aspect of SFSI is the difference between free field motions
and the motions that are changed (affected) but the presence of the structure. Figure 5 shows comparison of
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free field short period motions (obtained by vertical propagation of earthquake motions through the model
without the presence of bridge structure and piles) and the ones recorded at the base of column of the left
bent in stiff and soft soils. It is immediately obvious that the free field motions in this case do not correspond
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Figure 5: Comparison of free field versus measured (prototype model) motions at the base of left bent for
the short period motions (Northridge) for all clay (CCC) and all sand (SSS) soils.

to motions observed in bridge SFS system with stiff or soft soils. In fact, both the amplitude and period are
significantly altered for both soft and stiff soil and the bridge structure. This quite different behavior can be
explained by taking into account the fact that the short period motions excite natural periods of stiff soil and
can produce (significant) amplifications. In addition to that, for soft soils, significant elongation of period is
observed.

On the other hand, as shown in Figure 6 the same SFS system (same structure with stiff or soft soil
beneath) responds quite a bit different to long period motions. The difference between free field motions
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Figure 6: Comparison of free field versus measured (prototype model) motions at the base of left bent for
the long period motions (Kocaeli) for all clay (CCC) and all sand (SSS) soils.

and the motions measured (simulated) in stiff soils is smaller in this case. This is understandable as the stiff
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soil virtually gets carried away as (almost) rigid block on such long period motions. For the soft soil one of
the predominant natural periods of the SFS system is excited briefly (at 12-17 seconds) but other than that
excursion, both stiff and soft soil show fair matching with free field motions. In this case the SFS effects are
not that pronounced, except during the above mentioned period between 12 and 17 seconds.

Bending Moments Response. Influence of variable soil conditions and of dynamic characteristic of earth-
quake motions on structural response is followed by observing bending moment response. For this particular
purpose, a time history of bending moment at the top of one of the piers of bent # 1 (left most in Figure 2) is
chosen to illustrate differences in behavior.

Figure 7 shows time history of the bending moment at top of left most pier of bent # 1 for all sand (SSS)
and all clay (CCC) cases for short period motion (Northridge).
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Figure 7: Simulated bending moment time series (top of left pier) for short period motion (Northridge), for
all clay (CCC) and all sand (SSS) soils.

Similarly, Figure 8 shows time history of the bending moment for same pier, for same soil conditions,
but for long period motion (Kocaeli). Time histories of bending moments are quite different for both types of
soil conditions (SSS and CCC) and for two earthquake motions. For example, it can be seen from Figure 7
that short period motion earthquake, in stiff soil (SSS) produces (much) larger plastic deformation, which
can be observed by noting flat plateaus on moment – time diagrams, representing plastic hinge development.
Those plastic hinge development regions are developing symmetrically, meaning that both sides of the pier
have yielded and full plastic hinge has formed. On the other hand, the short period earthquake in soft soil
(CCC) produces very little damage, one side of a plastic hinge is (might be) forming between 14 and 15
seconds.

Contrasting those observation is time history of bending moments in Figure 8, where, for a long period
motion, stiff soil (SSS) induces small amount of plastic yielding (hinges) on top of piers. However, soft
soil (CCC) induces a (very) large plastic deformations. Development of plastic hinges for a structure in
soft soil also last very long (more than two seconds, see lower plateau for CCC case in Figure 8) resulting in
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Figure 8: Simulated bending moment time series (top of left pier) for long period motion (Kocaeli), for all
clay (CCC) and all sand (SSS) soils.

significant damage development in thus formed plastic hinges. Observed behavior also somewhat contradicts
common assumption that soft soils are much more detrimental to structural behavior. It is actually the
interaction of the dynamic characteristic of earthquake, soil and structure (ESS) that seem to control the
ultimate structural response and the potential damage that might develop.

5 SUMMARY

In this paper, an algorithm, named the Plastic Domain Decomposition (PDD), for parallel elastic–plastic
finite element computations was presented. Presented was also a parallel scalability study, that shows how
PDD scales quite well with increase in a number of compute nodes. More importantly, presented details of
PDD reveal that scalability is assured for inhomogeneous, multiple generation parallel computer architecture,
which represents majority of currently available parallel computers.

Presented also was an application of PDD to soil–foundation–structure interaction problem for a bridge
system and Earthquake–Soil–Structure (ESS) interaction effects were emphasized. The importance of the
(miss–) matching of the ESS characteristics to the dynamic behavior of the bridge soil–structure system was
shown on an example using same structure, two different earthquakes (one with short and one with long
predominant periods) and two different subgrade soils (stiff sand and soft clay)

The main goal of this paper is to show that high fidelity, detailed modeling and simulations of geotechan-
ical and structural systems are available and quite effective. Results from such high fidelity modeling and
simulation shed light on new types of behavior that cannot be discovered using simplified models. These
high fidelity models tend to reduce modeling uncertainty, which (might) allow practicing engineers to use
simulations tools for effective design of soil–structure systems.
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