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1 INTRODUCTION

1 Introduction

Computational geomechanics is a discipline of computational mechanics that models and simulates static

and dynamic behavior of structures and solids made of geomaterials. Geomaterial is any pressure dependent,

dilative/compressive, porous material, and it consists of porous matrix/skeleton and fluid in pores.

Pores of geomaterial can be filled with various fluids, most commonly with air (dry geomaterial), water

(fully saturated geomaterial), oil (in petroleum engineering) or with mixtures of fluids (for example air and

water, for partially saturated geomaterial). Porous matrix/skeleton of geomaterial is usually modeled as

continuum material, using incremental theory of elasto–plasticity and a number of elastic–plastic material

models of various complexity.

Mechanical behavior of geomaterials is intrinsically connected to the full interaction, coupling between

porous matrix/skeleton and the pore fluid. Full coupling is modeled through the application of effective

stress principle. The effective stress is defined as σ′ij = σij + δijp where σij is total stress, δij is Kronecker

delta, and p is the pore fluid pressures. It is important to note that stress is defined positive in tension, while

pore fluid pressure is positive in compression. In some cases, when only air is present in pores and coupling

effects of pore fluid (air) and porous skeleton can be neglected, modeling and simulation can be done for

single phase, dry geomaterial.

Two main approaches to modeling solids and structures made of geomaterials are therefor possible.

In a single phase approach, neglected is the pore fluid (usually air) and simulations are done using total

stresses. On the other hand, two phase modeling and simulations are used when coupling and influence of

pore fluid on porous skeleton (and vice versa) cannot be neglected. Two phase modeling and simulation is

more general and can be used for single phase problems as well. It is noted that there are problems where

more than two phases (porous solid and pore fluid) are contributing to the behavior of solids and structures

made of geomaterials. For example, in addition to single fluid (water or air for example) there are problems

where two (water and air) or three (water, air and oil) fluid phases affect geomaterial response. In addition

to behavior of porous skeleton and pore fluid, other fields can have important interactions/influences and

affect behavior of geomaterials. Mentioned are temperature and electrical fields that in some cases need to

be properly modeled and simulated for proper prediction of behavior of geomaterials.

In this overview chapter, only single and two phase modeling and simulation approaches will be covered

(in sections

Computational Geomechanics uses computational models to simulate the state of a geomechanics system

upon application of generalized loads. Computational simulations can in general be used for verification,

validation and predictions. Confidence in predictions relies heavily on proper verification and validation

process. Verification is the process of determining that a model implementation accurately represents the

developer’s conceptual description and specification. It is a mathematics issue and it provides evidence
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2 THEORETICAL AND COMPUTATIONAL FORMULATION

that the model is solved correctly. Validation is the process of determining the degree to which a model

is accurate representation of the real world from the perspective of the intended uses of the model. It is

a physics issue and it provides evidence that the correct model is solved. Computational Prediction is the

process of foretelling the state of a geomechanics system under conditions for which the computational model

has not been validated. Verification and Validation procedures are the primary means of assessing accuracy

in modeling and computational simulations and are essential tools in building confidence and credibility in

computational Predictions.

2 Theoretical and Computational Formulation

Computational formulation for geomaterials is most commonly based on incremental theory of elasto-

plasticity and static equilibrium, for static problems, and dynamic equations of motions, for dynamic prob-

lems.

Consider the dynamic equilibrium (equation of motion) for a general three–dimensional solid made of

any (geo-)material. The external forces (surface tractions, body and inertial forces) are in equilibrium with

internal and inertial forces. The weak form of dynamic equilibrium equation for such a solid, assuming

general, large deformations, can be written as1.

∫

V0

δui,jPijdV =

∫

V0

ρ0δuibidV −
∫

S0

δuit̄idS (1)

where ui are (generalized) displacements (and ui,j = ∂ui/∂xj), PiJ is the first Piola-Kirchhoff stress ten-

sor, ρ0 is the initial material density, bi are body (including inertial) forces and t̄i surface tractions. It

is important to note that general, large deformations are assumed, using Lagrangian strain tensor EIJ =
1
2 (uI,J + uJ,I + uK,IuK,J) While it is very appropriate to perform the analysis using real deformations,

most of the time it proves beneficial to make simplifying assumption of small deformation, in which case the

last term in the above equation is neglected, yielding a small deformation strain εij = 1
2 (ui,j + uj,i). With

the assumption of small deformations, first Piola-Kirchhoff stress Pij can be replaced with Cauchy stress

σij . The above equation can be solved to determine displacements of a soil or structure loaded with general,

time varying forces.
1Assuming index summation rule .

4



2 THEORETICAL AND COMPUTATIONAL FORMULATION 2.1 Finite Element Formulation

2.1 Finite Element Formulation

Deterministic Approach Upon discretization into finite elements , and after some algebraic manipulations,

the discretized system of equations can be written as

MPQ ¨̄uP +KPQ ūP = FQ P,Q = 1, 2, . . . , (DOFperNode)N (2)

where MPQ is system mass matrix, KPQ is system stiffness matrix and FQ is the loading vector, while
¨̄uP and ūP are nodal accelerations and displacements respectively. It is important to note that damping

terms, representing velocity proportional energy dissipation, results from coupling of solid and fluid phases

of analyzed domain, or can be approximated by Rayleigh and Caughy damping . In addition to velocity

proportional, displacement proportional damping plays a major role in energy dissipation phenomena and is

introduced by elastic-plastic yielding of materials, introduced in a section 2.2.

Stochastic Approach Behavior of realistic solids and structures is in essence uncertain, stemming from

uncertain material behavior and uncertain loading. A simplification of probabilistic, realistic modeling is

the deterministic approach described briefly above. One of the more prominent approaches to modeling

stochastic (uncertain) behavior of elastic solids and structures is based on the Spectral Stochastic Finite

Element Method , while the probabilistic elastic problems are modeled using Stochastic Elastic-Plastic Finite

Element method .

2.2 Elasto-Plasticity

One of most prominent approaches to modeling material nonlinear response of solids and structures is based

on the incremental theory of elasto-plasticity. In general, large deformations modeling is needed, with

a commonly used multiplicative decomposition of the deformation gradient into elastic and plastic parts

Fij
def
= F e

kiF
p
kj where the deformation gradient is defined as FkK = xk,K . For isotropic and monotonic

loading problems, where principal directions of stress and strain remain colinear during loading, spectral

decomposition family of algorithms is applicable , while for general anisotropic and/or cyclic problems a

Taylor’s series expansion family of algorithms must be used .

Focus will be shifted to small deformation problems where multiplicative decomposition of the deforma-

tion gradient can be approximated by the additive decomposition of strain into elastic and plastic components.

Some details are provided below.

Determistic Elasto-Plasticity A wide range of elasto–plastic materials can be characterized by means of

a set of constitutive relations of the general form:

dεij = dεeij + dεpij (3)
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2 THEORETICAL AND COMPUTATIONAL FORMULATION 2.2 Elasto-Plasticity

dσij = Eijkldε
e
kl (4)

dεpij = dλ
∂Q

∂σij
= dλ mij(σij , q∗) (5)

dq∗ = dλ h∗(τij , q∗) (6)

where, following standard notation εij , εeij and εpij denotes the total, elastic and plastic strain tensor, σij is

the Cauchy stress tensor, and q∗ signifies some suitable set of internal variables2. The asterisk in the place of

indices in q∗ replaces n indices3. Equation (3) expresses the commonly assumed additive decomposition of

the infinitesimal strain tensor into elastic and plastic parts. Equation (4) represents the generalized Hooke’s

law which linearly relates stresses and elastic strains through a stiffness modulus tensor Eijkl. Equation (5)

expresses a generally associated or non-associated flow rule for the plastic strain and (6) describes a suitable

set of hardening laws, which govern the evolution of the plastic variables. In these equations, mij is the

plastic flow direction, h∗ the plastic moduli and dλ is a plastic parameter to be determined with the aid of the

loading—unloading criterion, which can be expressed in terms of the Karush–Kuhn–Tucker condition as:

F (σij , q∗) ≤ 0 ; dλ ≥ 0 ; F dλ = 0 (7)

Explicit and Implicit Algorithms Elastic-Plastic differential equation are most commonly solved using

either explicit (aka forward Euler) or implicit (aka backward Euler) algorithms. It is noted that there exists

a range of generalized mid point integration algorithms, however they are rarely used for practical computa-

tions.

The explicit algorithm (Forward Euler) is based on using the starting point (the state stress σnij and

internal variable space qn∗ on the yield surface) for finding all the relevant derivatives and variables. After

some tensor tensor algebra and manipulations, the increments in stress tensor and internal variables can be

written as

dσmn = Emnpq dεpq − Emnpq

nnrs Erstu dεtu
nnab Eabcd

nmcd − ξAhA

nmpq (8)

dqA =

( nnmn Emnpq dεpq
crosnmn Emnpq

crosmpq − ξAhA

)
hA (9)

where n() denotes the starting elastic–plastic point for that increment. It should be noted that the explicit

algorithm performs only one step of the computation and does not check on the equilibrium of the obtained

solutions. This usually results in the slow drift of the stress-internal variable point from the yield surface

for monotonic loading. It also results in spurious plastic deformations during elastic unloading for cyclic

loading-unloading.
2In the simplest models of plasticity the internal variables are taken as either plastic strain components εpij or the hardening

variables κ defined, for example as a function of inelastic (plastic) work, i.e. κ = f (W p). See page 115.
3for example ij if the variable is εpij , or nothing if the variable is a scalar value, i.e. κ .
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2 THEORETICAL AND COMPUTATIONAL FORMULATION 2.2 Elasto-Plasticity

The continuum tangent stiffness tensor (contEep
pqmn) that is obtained for the explicit integration procedure

has the following form:

contEep
pqmn = Epqmn − Epqkl

nmkl
nnijEijmn

nnotEotrs
nmrs − nξA hA

(10)

It is important to note that continuum tangent stiffness (contEep
pqmn) posses minor symmetries (contEep

pqmn =

contEep
qpmn = contEep

pqnm), while major symmetry (contEep
pqmn = contEep

mnpq), is only retained for associated

elastic–plastic materials, when nij ≡ mij .

Implicit (backward Euler) algorithm, described briefly below, has the advantage of implicitly using the

plastic flow return at the final solution point in stress and internal variable space. Finding the final solution

point requires iterations, which adds to complexity and computational load. However, iterations allow for

equilibrium tolerance to be prescibed (small as required) and enforced during iterations. Formulation and

iterative procedure for the backward Euler constitutive integration are given in books and will not be repeated

here due to space constraints.

Probabilistic Elasto-Plasticity While elastic-plastic constitutive theory is fairly well developed, with ap-

propriate models for various geologic materials, when material parameters are treated as deterministic, spa-

cial variability and material behavior uncertainty have not been treated in any depth. Recent development of

Probabilistic Elasto-Plasticity (PEP) and Stochastic Elastic-Plastic Finite Element Method (SEPFEM) allows

for accurate solution of elastic-plastic problems with fully probabilistic material parameters that are spatially

variable. Solution to the PEP problem is based on the extension of constitutive rate Eq. (8) into probabil-

ity density space using Eulerian–Lagrangian Fokker–Planck–Kolmogorov approach. Resulting advection

diffusion equation

∂P (σij , t)

∂t
= − ∂

∂σab

[
N

(1)
ab P (σij , t) −

∂

∂σcd

{
N

(2)
abcdP (σij , t)

}]

can be solved for the probability density of stress tensor P (σij , t). Approach is applicable to any incremental

elastic-plastic model, and only coefficients N (1)
ab and N (2)

abcd need to be derived for different material models.

Solution provides a complete probabilistic description of response, and is second-order exact to covariance

of time (exact mean and variance).

While the above PEP approach takes into account point wise uncertain behavior, spatial variability is

modeled using SEPFEM. To this end, uncertain spatial variability of soil properties, generally modeled

as random fields, is discretized into random variables using Karhunen–Loève expansion. Those random

variables are then propagated through the PEP and spatial average constitutive response is assembled using

a stochastic finite element technique. Polynomial chaos expansion and Galerkin technique, are used to form

SEPFEM equations that are solved to obtain full probabilistic response for all degrees of freedom.
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2 THEORETICAL AND COMPUTATIONAL FORMULATION 2.3 Verification and Validation

2.3 Verification and Validation

Developing a strong assurance of accurate numerical predictions of the seismic response of Nuclear Power

Plant Soil Structure System (NPPSSS) rely heavily on Verification and Validation (V&V) procedures.

Verification and validation procedures are the primary means of assessing accuracy in modeling and com-

putational simulations. Verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description and specification. Verification provides evidence that the

model is solved correctly. It is essentially a mathematics issue. Validation is the process of determining the

degree to which a model is an accurate representation of the real world from the perspective of the intended

uses of the model. Validation provides evidence that the correct model is solved. It is essentially a physics

issue. V&V procedures are the tools with which we build confidence and credibility in numerical predictions

resulting from modeling and computational simulations. Figure 1 shows role of verification and validation

in modeling and simulating real world NPPSSSs.

Figure 1: Schematic representation of role of verification and validation in relation to real model

It is very important to note that a tight coupling exists between each of the phases of modeling and simulation

process shown in Figure 1. Figure 2 shows a more detailed view of relationship of verification and validation

to the developed computational solution.

Figure 2: Schematic representation of relationship between verification and validation

It is also important to note that verification procedures include software quality assurance practices, which

are based on an extensive (fully and semi–) automatic test suite (eg. regression testing, white and gray box

testing, static and dynamic testing, etc.).

The main motivation for performing verification stems from the simple question: “how much can you

trust model implementations?”. Validation, on the other hand can be motivated by the question: “how much

can your trust numerical simulations?”. Both questions can be summarized by the question: “how good are

our numerical predictions in simulating real world NPPSSSs?”. In relation to numerical prediction of seismic

performance of NPPSSSs, the question can also be rephrased: “can numerical simulation tools (NRC ESSI

Simulator for example) be used for assessing public safety?”.

Prediction Numerical prediction comprises use of computational model to foretell the state of an object

(NPPSSS in this case) under conditions for which the computational model has not been fully validated,
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2 THEORETICAL AND COMPUTATIONAL FORMULATION 2.4 Software and Hardware Platform

typically due to its complexity. It is important to note that validation does not directly make a claim about the

accuracy of a prediction since computational models can be easily misused (unintentionally or intentionally).

Accuracy of prediction is closely related to how closely related the conditions of the prediction and the

specific cases in the validation database are; and how well is physics of the problem understood. Validation

and application domains rarely have any significant overlap. Figure 3 shows two such cases, left side showing

partial overlap and the right side showing complete lack of overlap.

Figure 3: Schematic representation of partial or no overlap of verification and application domains

For seismic behavior of NPPSSSs, partial overlap is potentially available for small seismic events (somewhat

frequent) where the response of a complete NPPSSS can be recorded (depending on the extent of installed

instrumentation). In this case, numerical predictions could be validated against such recordings. However,

in the case of numerical simulations for predicting NPPSSS behavior during significant (rare, catastrophic)

seismic events, overlap with validation cases is non-existent and application domain behavior has to be

inferred through numerical simulations. Such inference needs to be based on rational mechanics of all

important phenomena that affect NPPSSS behavior. It must also account for uncertain nature of material

parameters, seismic loading and other components of NPPSSS. Ever present uncertainty needs to be properly

estimated and modeled for numerical predictions. It is important to identify all sources of uncertainty, create

mathematical representation of individual sources, and propagate those uncertainties through modeling and

simulation process.

2.4 Software and Hardware Platform

Formulations and algorithms described in previous sections are organized in numerical libraries following

the library centric design approach.

The finite element domain is managed using Modified OpenSees Services (MOSS) library . On a lower

functional level, a set of Template3Dep and NewTemplate3Dep numerical libraries are used for constitutive

level modeling, while nDarray numerical libraries are used to handle vector, matrix and tensor manipula-

tions, and FEMtools element libraries from UCD CompGeoMech toolset are used to supply other necessary

libraries and components. The solution of system of equations is provided by public domain solvers, PETSc,

or UMFPACK. A parallel processing simulation model (desirable for full 3D NPPSSS modeling) is based on

the Plastic Domain Decomposition (PDD) method , with graph partitioning based on ParMETIS libraries.

Numerical libraries organized in such way are then used to create application programs that are specifi-

cally tailored for particular application problems. One such application program is the NRC ESSI Simulator

9



3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS

Program, developed for dynamic/seismic analysis of Nuclear Power Plants under full 3D, inclined, incoher-

ent seismic motions including body and surface waves.

3 Application to Practical Engineering Problems

In this section, examples will be used to illustrate application of computational geomechanics tools to prac-

tical problems. Three such practical problems will be addressed. First example deals with the interaction

of earthquake with the soil-structure system (in section 3.1). Second examples investigates the behavior of

fully saturated soil under dynamic loading (in section 3.2), while the third example, in section 3.3, presents

results from a probabilistic elastic-plastic modeling in geomechanics.

3.1 Dynamics of Earthquake-Soil-Structure Systems

The dynamic interaction of earthquake, soil and structure represents the most significant seismic effect. Such

interaction can be beneficial or detrimental to the dynamic behavior of the soil-structure system.

As an example, a bridge soil-structure system, model of which is shown in Figure 4 was analyzed for a

two different soil conditions and for two different earthquakes. First model features soft soil (representing

soft mud, underlaid by dense sand) while second model featured stiff soil (dense sand). Both models were

used for seismic analysis of a soil bridge system under Northridge (predominant high frequency) and Kocaeli

(predominant low frequency) earthquakes. The bridge stucture (foundation piles, piers and superstructure

were the same in both soft and stiff soil models.

Figure 4: Detailed Three Bent Prototype SFSI Finite Element Model, 484,104 DOFs, 151,264 Elements

used for most simulation in this study

The finite element model(s) used in this study have combined both elastic–plastic solid elements, used for

soils, and elastic and elastic–plastic structural elements, used for concrete piles, piers, beams and superstruc-

ture. Of particular importance for accurate modeling was the size of soil element, which if chosen to large

will (artificially) filter seismic waves of certain frequencies. Such element size requirement created a need

for very large meshes, largest of which had over half a million elements and over 1.5 million degrees of

freedom. Seismic ground motions were applied to the SSI finite element model using the Domain Reduction

Method (DRM).

Staged Simulations Application of loads in stages is essential for nonlinear, elastic–plastic models. This

is especially true when modeling soil and concrete. Staged loading ensures appropriate initial conditions

10



3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS3.1 Dynamics of Earthquake-Soil-Structure Systems

for each loading stage. Modeling starts from a zero stress and deformation state, on level ground, with no

foundations or bridge structure. Three loading stages, described below, then follow.

Soil Self–Weight Stage. During this stage the finite element model for soil (no structure) is loaded with

soil self–weight. The finite element model for this stage excludes any structural elements, the opening (hole)

where the pile will be placed is full of soil. Displacement boundary conditions on the sides of the three soil

blocks are such that they allow vertical movements, and allow horizontal in boundary plane movement, while

they prohibit out of boundary plane movement of soils. All the displacements are suppressed at the bottom

of all three soil blocks. The soil self weight is applied in 10 incremental steps.

Piles, Columns and Superstructure Self–Weight Stage. In this, second stage, number of changes to

the model happen. First, soil elements where piles will be placed are removed (excavated), then concrete

piles (beam–column elements) are placed in the holes (while appropriately connecting structural and solids

degrees of freedom), columns are placed on top of piles and finally the superstructure is placed on top of

columns. All of this construction is done at once. With all the components in place, the self weight analysis

of the piles–columns–superstructure system is performed.

Seismic Shaking Stage. The last stage in our analysis consists of applying seismic shaking, by means of

effective forces using DRM. It is important to note that seismic shaking is applied to the already deformed

model, with all the stresses, internal variables and deformation that resulted from first two stages of loading.

Bridge model described above was used to analyze a number of cases of different foundation soils and

earthquake excitations. Two sets of ground motions were used for the same bridge structure. Variation of

foundation soil, namely (a) all stiff sand and (b) all soft clay. Ground motions for Northridge and Kocaeli

earthquakes (free field measurement, see Figure 5) were used in determining appropriate wave field (using

DRM). Since the main aim of the exercise was to investigate SFS system a set of short period motions were

chosen among Northridge motions records, while long period motions from Kocaeli earthquakes were used

for long period example.

Figure 5: Input motions: short period (Northridge) and long period (Kocaeli)

A number ofvery interesting results were obtained and are discussed below.

Free Field vs. SSI Motions. A very important aspect of SFSI is the difference between free field motions

and the motions that are changed (affected) but the presence of the structure. Figure 6 shows comparison of

11



3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS3.1 Dynamics of Earthquake-Soil-Structure Systems

free field short period motions (obtained by vertical propagation of earthquake motions through the model

without the presence of bridge structure and piles) and the ones recorded at the base of column of the left

bent in stiff and soft soils.

Figure 6: Comparison of free field versus measured (prototype model) motions at the base of left bent for

the short period motions (Northridge) for all clay (CCC) and all sand (SSS) soils

It is immediately obvious that the free field motions in this case do not correspond to motions observed in

bridge SFS system with stiff or soft soils. In fact, both the amplitude and period are significantly altered for

both soft and stiff soil and the bridge structure. This quite different behavior can be explained by taking into

account the fact that the short period motions excite natural periods of stiff soil and can produce (significant)

amplifications. In addition to that, for soft soils, significant elongation of period is observed.

On the other hand, as shown in Figure 7, the same SFS system (same structure with stiff or soft soil

beneath) responds quite a bit different to long period motions.

Figure 7: Comparison of free field versus measured (prototype model) motions at the base of left bent for

the long period motions (Kocaeli) for all clay (CCC) and all sand (SSS) soils

The difference between free field motions and the motions measured (simulated) in stiff soils is smaller in

this case. This is understandable as the stiff soil virtually gets carried away as (almost) rigid block on such

long period motions. For the soft soil one of the predominant natural periods of the SFS system is excited

briefly (at 12-17 seconds) but other than that excursion, both stiff and soft soil show fair matching with free

field motions. In this case the SFS effects are not that pronounced, except during the above mentioned period

between 12 and 17 seconds.

Bending Moments Response. Influence of variable soil conditions and of dynamic characteristic of earth-

quake motions on structural response is followed by observing bending moment response. For this particular

purpose, a time history of bending moment at the top of one of the piers of bent # 1 (left most in Figure 4) is

chosen to illustrate differences in behavior.

Figure 8 shows time history of the bending moment at top of left most pier of bent # 1 for all sand (SSS)

and all clay (CCC) cases for short period motion (Northridge).

Figure 8: Simulated bending moment time series (top of left pier) for short period motion (Northridge), for

all clay (CCC) and all sand (SSS) soils

12



3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS 3.2 Dynamics of Saturated Soils

Similarly, Figure 9 shows time history of the bending moment for same pier, for same soil conditions,

but for long period motion (Kocaeli).

Figure 9: Simulated bending moment time series (top of left pier) for long period motion (Kocaeli), for all

clay (CCC) and all sand (SSS) soils

Time histories of bending moments are quite different for both types of soil conditions (SSS and CCC) and

for two earthquake motions. For example, it can be seen from Figure 8 that short period motion earthquake, in

stiff soil (SSS) produces (much) larger plastic deformation, which can be observed by noting flat plateaus on

moment – time diagrams, representing plastic hinge development. Those plastic hinge development regions

are developing symmetrically, meaning that both sides of the pier have yielded and full plastic hinge has

formed. On the other hand, the short period earthquake in soft soil (CCC) produces very little damage, one

side of a plastic hinge is (might be) forming between 14 and 15 seconds.

Contrasting those observation is time history of bending moments in Figure 9, where, for a long period

motion, stiff soil (SSS) induces small amount of plastic yielding (hinges) on top of piers. However, soft

soil (CCC) induces a (very) large plastic deformations. Development of plastic hinges for a structure in

soft soil also last very long (more than two seconds, see lower plateau for CCC case in Figure 9) resulting in

significant damage development in thus formed plastic hinges. Observed behavior also somewhat contradicts

common assumption that soft soils are much more detrimental to structural behavior. It is actually the

interaction of the dynamic characteristic of earthquake, soil and structure (ESS) that seem to control the

ultimate structural response and the potential damage that might develop.

3.2 Dynamics of Saturated Soils

Liquefaction of level and sloping ground represents a common situation during earthquakes. It is therefore

of interest to use the developed numerical tool for simulating the earthquake wave propagation is such cases.

This section presents results of numerical simulation for different cases of a 1D site response, using the

available 3D elements in the developed numerical simulation tool. Two general examples have been studied.

The first example presents results of a study on the isolating effect of a liquefied sand layer in propagation of

seismic waves. In the second example the seismic induced shear deformation of a gentle slope in presence

or absence of liquefiable layer has been studied.

It should be noted that the simulations are based on the small deformation assumption, which might

introduce large error in strain tensor (by neglecting quadratic portion of displacement derivatives) when soil

undergoes large deformations.
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Isolation of Ground Motions in Level Ground A 10m vertical column of saturated sand consisting of

twenty u− p− U eight-node brick elements was considered subjected to an earthquake shaking at the base.

Two particular cases have been studied in this example. In the first case, all 20 elements of the soil column

are assumed to be at medium dense state at the beginning of analysis (ein = 0.80). In the second case, the

deepest two meters of the soil column are assumed to be at looser initial states compared to the first case.

In particular two of the deepest elements are assumed to be at ein = 0.95 (loose) and the next two elements

at ein = 0.875 (medium loose), just to make a smoother transition between the loose and dense elements.

The rest of the soil column, i.e. the upper 16 elements (8 meters) are at the same density as the first case

(e = 0.80). A schematic illustration of these two cases is presented in Figure 10.

Figure 10: Illustration of the problem in terms of the soil layering, the finite element mesh, and the input

base acceleration

The elements are labeled from E01 (bottom) to E20 (surface) in Figure 10. The boundary conditions are

such that the vertical displacement degrees of freedom (DOF) of the soil and water at the base (z = 0) are

fixed, while the pore pressure DOFs are free. The soil and water vertical displacement DOFs at the surface

(z = 10m) are free to simulate the upward drainage. The pore pressure DOFs are fixed at the surface. On

the sides, soil skeleton and water are prevented from moving in the y direction while movements in x and

z directions are free. It is emphasized that the displacements of soil skeleton and pore fluid are different.

In order to simulate the 1D behavior, all of the related DOFs of the nodes at each depth are connected in a

master–slave fashion, i.e. the nodes at the same level have the same ui (i=x,y,z). Same thing is true for p and

Ui. The values of ui and Ui however may be different at a node, allowing for relative movement of soil and

fluid. The soil is assumed to be Toyoura sand and is characterized by the validated SANISAND model . The

permeability is assumed to be isotropic and equal to k = 5.0×10−4 m/s.

A self-weight analysis was performed before the base excitation. The resulting fluid hydrostatic pressures

and soil stress states along the soil column serve as initial conditions for the subsequent dynamic analysis.

An input acceleration time history (Figure 10), taken from the recorded horizontal acceleration of Model

No.1 of VELACS project at RPI , was considered in which amax = 0.2g and main shaking lasts for about

12 seconds.

In addition to the [physical] velocity and displacement proportional damping from the element and the

material model, respectively, a small amount of numerical damping has been introduced through constants

of the HHT algorithm in order to stabilize the dynamic time stepping. No Rayleigh damping has been used.

Results of the analysis during and after the shaking phase for both cases (i.e. the uniform and the layered

soil profiles) are presented in Figures 11 and 12.
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3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS 3.2 Dynamics of Saturated Soils

Figure 11: (left)Variation of shear stress σxz vs vertical effective stress σz for Elements E01 – E19 during

and after shaking; (right) Variation of shear stress σxz vs shear strain γ for Elements E01 – E19 during and

after shaking

Figure 12: (left) Variation with time of void ratio e for Elements E01 – E19 during and after shaking ; (right)

Time history of horizontal component of acceleration in solid part of the mixture au,x for nodes at different

elevations during shaking

In all these figures the plots on the left and right correspond to the cases of uniform and layered soil

profiles, respectively. In particular, Figure 11 show variations of the shear stress σxz vs vertical effective

stress σz and shear strain γ, respectively. Figure 12 show time histories of void ratio e (left) and horizontal

(x) component of acceleration in solid part of the mixture au,x (right), respectively. Note that different rows

of plots in Figures 11 and 12 correspond to different elements. Similarly, different rows in Figure 12(right)

correspond to different elevations of the nodes.

Figure 11a shows the typical mechanism of cyclic decrease in vertical effective stress for the case of

the uniform soil column. Signs of the so–called butterfly loops in the effective stress path can be observed

partially from early stages of shaking at the upper layer as these layers are in lower confining pressures

compared to the deeper layers and thus are more dense than critical in the critical state soil mechanics

terminology, i.e. with less contractive tendency. In later stages of shaking, when the confining pressures

are reduced to smaller values, the butterfly shapes of the stress paths are more pronounced and almost all

depths of the soil column experience the cyclic mobility mechanism of liquefaction. In this stage the soil

layers momentarily experience small values of effective stress followed by a dilative response in which the

elements recover their strength in cycles of loading due to the their denser than critical state. As a result,

the seismic-induced shear waves propagate all the way to the surface of the soil column. The response can

be observed as an average degradation of stiffness and accumulation of shear strains in all levels of the soil

column as shown in Figure 11(right).

In case of the layered soil profile, however, Figure 11b shows that the first cycle of shaking degrades

the vertical effective stress in the loose layer of element 1, E01, to very small values in a flow liquefaction

mechanism. The shear wave in this first cycle of shaking propagates to the surface and causes some reduction

in vertical effective stress in upper soil layers. Because element 1, E01, is in loose states and has a strong

contractive tendency it does not recover its strength in cyclic loading and therefore it remains in this liquefied

state after the first cycle with negligible shear resistance. Therefore this layer acts as an isolating layer and no

shear stress can be transmitted to the upper layers after the first cycle. This mechanism can also be observed

in the shear stress – shear strain plot of Figure 11(right) as the first cycle completely liquefies the E01 and
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3 APPLICATION TO PRACTICAL ENGINEERING PROBLEMS 3.2 Dynamics of Saturated Soils

after this cycle no shear stress is propagated to the upper layers. Of course the very loose element E01 shows

considerable amount of shear strain due to liquefaction. As it is shown in Figure 11b in upper layers after

the first cycle of shaking no reduction in vertical effective stress occurs due to shearing (induced by shaking)

in these layers, however, one can observe that the vertical effective stress keeps decreasing in upper layers

during (and even for a while after) shaking. This is because the dissipated pore pressure in deeper layers

travels upward and reduces the effective stress in upper layers. The effective stress will then start to recover

as the excess pore pressure dissipates from these layers.

Figure 12 shows the redistribution of void ratio during and long after the shaking. The horizontal dashed

line in each plot shows ein,shaking that is the value of void ratio for the corresponding layer at the beginning

of shaking (at the end of self-weight analysis). For the uniform soil column Figure 12a shows a general trend

of consolidation in all of the soil layers. This consolidation starts later in upper layers because of the water

pumped from the lower layers, which is to be dissipated by time. In the layered soil column (Figure 12b) the

loose layer in element 1, E01, shows considerable consolidation due to shaking. The dissipated volume of

water from this layer is pumped to the upper layers and result is some dilation (increase in void ratio) in the

these layers for some time after the end of shaking. By the time this pumped volume of water in the upper

layers dissipates all the layers show a consolidation response. In other words in the layered soil column

pumping of water causes initial loosening of soil in the upper layers, which is then followed by densification.

Finally Figure 12(right) shows propagation of the horizontal acceleration through the soil column during

shaking. In the uniform soil column First of Figures 12(right) shows that the base acceleration is transmitted

to the surface of the soil column. It shows some spikes of acceleration with large amplitude at the surface

of the soil resulting from the dilative phases of soil response during the shaking phase. In the layered soil

column, however, Second Figure 12(right) shows that only the first cycle of shaking is transmitted to the

surface (although with reduced amplitude) and subsequently the upper layers are isolated because of the

fully liquefied state of the loose layer in element 1, E01. The transmitted accelerations to the surface of the

soil column after the first cycle of shaking have very small amplitudes.
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3.3 Probabilistic Geomaterial Response

In this section, the constitutive behavior of normally consolidated, high plasticity clay is simulated proba-

bilistically using the FPKE approach described in the previous section. Elastic–perfectly plastic von Mises

material model is used for clay. The model requires shear modulus (Gmax) and the undrained shear strength

(su) as input soil parameters. Both the soil parameters are easily obtainable through transformation from

commonly used in-situ measured properties, for example SPT N -value4, used in this paper.

Quantification of Uncertainties in Input Soil Parameters Transformation from measured in-situ prop-

erties to mechanical properties usually introduces uncertainty, which is currently (in traditional deterministic

analysis) accounted for by applying engineering judgment. Alternatively, under the framework of probability

theory, one could quantify the transformation uncertainty by modeling it as a random variable. For example,

for alluvial clays in Japan, proposed the following relationship between SPT N -value and undrained shear

strength (su):

su = 0.29 pa N
0.72 (11)

where pa = 101, 325Pa is the atmospheric pressure. The above relationship (Eq. (11)), along with the data

from which the relationship is developed, is plotted in Figure 13.

Figure 13: Transformation relationship between SPT N -value and undrained shear strength, su

The data-scatter in Figure 13 represents knowledge uncertainty in the above transformation equation (Eq. (11)),

and under probability theory, can be modeled as a random variable. To this end, Eq. (11), can be written as:

su = 0.29 pa N
0.72 + χ (12)

where, χ is a zero-mean random variable and represent the data-residual with respect to the deterministic

transformation equation. The histogram of the residual is plotted in Figure 14. Regarding the model for the

best-fit probability density function, a Normal distribution can be ruled out as the histogram is skewed. After

trying few distributions, a Pearson IV type distribution, with Pearson parameters of 0, 2400, −2.75 × 105,

and 9 × 108, was found to best fit the residual. The fitted pdf is shown in Figure 14.

Figure 14: Histogram of the residual (w.r.t the deterministic transformation equation) undrained strength,

along with fitted probability density function

4We understand the limitations of using SPT N -value for the (deterministic) estimation of su and Gmax for clay. However,

our intent is to demonstrate the power of a simple constitutive model, that is extended into probabilistic space (stochastic material

parameters), to simulate the actual response of soil
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Similarly, for transformation between SPTN -value and Young’s modulus (E) for alluvial clays in Japan,

proposed a transformation equation, which can be written in probabilistic form as

E = 19.3 pa N
0.63 + χ (13)

Figure 15 shows experimental data along with the deterministic transformation equation that in this case

represents the mean trend.

Figure 15: Transformation relationship between SPT N -value and pressure-meter Young’s modulus, E

The scatter with respect to the mean trend (deterministic transformation equation), plotted as histogram, is

shown in Figure 16.

Figure 16: Histogram of the residual (w.r.t the deterministic transformation equation) Young’s modulus,

along with fitted probability density function

A zero-mean random variable with Normal distribution and standard deviation of 4041.8 kPa was found to

best fit (Figure 16) the scatter with respect to the deterministic equation. The above standard deviation was

obtained using maximum likelihood technique.

In this context, one may note that the penetration test is a high strain test (to the order of 10%, refer Figure

65 in ) and, the corresponding estimated modulus (Eq. 13) is a high-strain modulus. Hence, to estimate the

corresponding low-strain modulus (needed as the input to the von Mises material model, used in this paper),

a multiplying factor (low strain correction factor) of 17.25 5 is used. For example, at N = 15, a mean

high-strain Young’s modulus of 10.735 MPa is predicted by Eq. (13). The corresponding mean low-strain

Young’s modulus used in this paper is 10.735 MPa ×17.25 = 185 MPa. The multiplying factor (low strain

correction factor) for standard deviation should, physically, be less than that of the mean. This is because,

as the soil is sheared (or, in other words, as soil plastifies), the micro-structure of soil and as a result, our

knowledge uncertainty on it increases. This was experimentally observed by . Our probabilistic simulation

(refer to ) also shows such increase in uncertainty with strain. However, in absence of experimental data for

clay, following the probabilistic G/Gmax versus shear strain curve, suggested by , a multiplying factor (low

strain correction factor) of [1 − (0.2375 − 0.05)/0.05] × 17.25 = 10.7 is used for standard deviation. At

N=15, a standard deviation of 4.04 MPa was estimated using maximum likelihood technique, for high-strain

Young’s modulus. The corresponding standard deviation of low-strain Young’s modulus, then, becomes
5assuming (17.25 − 1)/17.25 = 94 % reduction in modulus at 10% strain, following and presuming that the reduction pattern

of Young’s modulus follows the same that of shear modulus
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4.04× 10.7 = 43.2 MPa. By assuming undrained condition, one could assume Poisson’s ratio to be equal to

0.5 (deterministic) and could transform the Young’s modulus to shear modulus as

Gmax =
Emax

2(1 + ν)
(14)

Elastic shear modulusGmax would also be a random variable with Normal distribution, as the above equation

(Eq. (14)) that relates elastic shear modulus and elastic Young’s modulus is a linear equation and hence, the

statistical properties of the elastic shear modulus (Gmax) can easily be obtained using standard techniques.

For example, atN = 15, the mean and the standard deviation ofGmax are 185MPa/(2(1+0.5)) = 61.6 MPa

and 43.2MPa/(2(1 + 0.5)) = 14.4 MPa respectively. In this context, it is important to emphasize that the

above estimation of the low-strain correction factors would become unnecessary if small-strain shear modu-

lus (Gmax) is measured directly from geophysical tests or estimated through direct correlation of geophysical

test-measured properties (for example shear wave velocity, with SPT N -value). The transformation equa-

tions between SPT N -value and shear wave velocity, reported in the literature have not been used in this

paper due to lack of reported data points for a meaningful statistical analysis.

In addition to the transformation uncertainty, discussed above, uncertain soil properties will also include

significant testing uncertainties. For example, in SPT, the testing uncertainty arises from equipment, proce-

dure and operator errors. proposed typical range of COV for SPT as 15-45%. In this paper, an equivalent

of 45% COV is added to undrained shear strength (su) and 15% COV is added to elastic shear modulus

(Gmax) to account for SPT testing uncertainties. Larger uncertainty was used for undrained shear strength

(su) as such strength is not unique but depends on more factors (direction of loading, strain rate, boundary

conditions, stress level, and sample disturbance effects, and other factors ) than elastic shear modulus Gmax.

Uncertain spatial variability represents the other important source of uncertainty in soil property. This

uncertainty is present because soil properties are measured at few locations then extrapolated/interpolated to

all (some) other points of the soil continuum. In other words, in ’estimating’ soil properties between two

adjacent boreholes, uncertain spatial variability is incurred. This uncertain spatial variability is traditionally

accounted for by applying engineering judgment. Probability theory, on the other hand, deals with uncertain

spatial variability through random field modeling . Random field modeling characterizes the uncertain spatial

variability in terms of standard deviation and correlation length. The standard deviation is added to the

uncertainties coming from transformation and testing, while the correlation length can be accounted for,

among others, through stochastic elastic-plastic finite element method . In this paper, the uncertain spatial

variability has not been explicitly accounted for as the focus of this paper is on point-location (constitutive)

behavior. However, one may note that, data of SPT N -value versus undrained shear strength (Figure 14) and

SPT N -value versus Young’s modulus (Figure 15) contain some spatial variability as SPT is performed at

approximately every 30 cm (1 foot) and the blow counts obtained in such way represents average values over

that length.
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Simulation of G/Gmax and Damping Behavior Probabilistic elasto–plastic formulation and implemen-

tation was used, together with uncertain data sets described in section 3.3, to analyze cyclic behavior of

clays. Of particular interest was analysis of material model performance, a simple, elastic–perfectly plastic

von Mises, extended into probabilistic space, for a practical problem of undrained cyclic (shear) behavior of

clays.

Probabilistic elastic–plastic stress–strain response. Figure 17(a) shows the mean shear stress versus

shear strain hysteresis loop for undrained clay modeled using probabilistic von Mises material elastic-

perfectly plastic model. Probabilistic elastic–plastic properties (shear modulus G and shear strength su)

were defined in subsection 3.3 above. Probability distributions for both shear modulus, G and undrained

shear strength, su were obtained from corresponding SPT N -value of 15. Uncertain clay material was nu-

merically cyclically sheared to ±1.026% shear strain. The cyclic evolution of standard deviation of shear

stress is shown in Figure 17(b).

Figure 17: Simulated hysteresis shear stress versus shear strain loop at ± 1.026% shear strain: (a) mean and

(b) standard deviation behavior

Results shown in Figures 17(a) and (b) were obtained by solving the Fokker–Planck–Kolmogorov equation,

with advection and diffusion coefficients numerically, with appropriate initial and boundary conditions. So-

lution obtained in such a way (in the form of cyclic evolution of probability density function (PDF) of shear

stress with shear strain) was then integrated by standard techniques to obtain the evolutionary mean and stan-

dard deviation behavior. The details of the solution technique for governing Fokker–Planck–Kolmogorov

equation can be found in .

It is important to note that simulation results shown in Figure 17 are obtained using elastic – perfectly

plastic von Mises material model and require only two probabilistic soil parameters (their probability dis-

tribution) – elastic shear modulus (Gmax) and undrained shear strength (su). If probability distribution of

material parameters were neglected and only mean values were used (thus simplifying to deterministic von

Mises elastic–perfectly plastic model) simple bi-linear response would results. Such bi-linear response is

also shown in Figure 17(a).

Mean response (of the full probability response described by the stress PDF) is non–linear even at very

small strain, although, the deterministic model assumes linearity till yielding occurs and then behaves as

perfectly plastic material. This is clearly observed from Figure 17(a). Such nonlinear mean response is due

to the uncertainty in yield stress, as there is always probability (however small) that elastic–plastic response

starts at a very small strain. In addition to that, there also exist a probability that material is elastic at

strains past (mean) yielding point, and since the mean solution is an ensemble average of all the possibilities,
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such probable elastic influence is extended into plastic range as well. One can visualize this probabilistic

yielding effect by observing that within a laboratory specimen (considered generally as a representative

volume element, each of large (infinite) number of particle contacts has different and unknown yield strength.

Those shear strengths are governed by the PDF of yield strength. At a given strain, some of those particle

contacts might be elastic while others might be fully yielding. What is observed in the laboratory experiments

is the ensemble average (mean) behavior of all the particle contacts. Similar conclusion was developed by

, using probabilistic micro-mechanical simulation. It may be noted that the point-location scale constitutive

simulation presented in this paper doesn’t account for the scale effect. Such scale effects could be accounted

for by quantifying the uncertain spatial variability (for example, through random field modeling) of soil and

accounting for it in our simulation. This can be done, for example, through stochastic elastic–plastic finite

element method in obtaining local-average constitutive behavior.

Evolution of secant shear modulus. Probabilistic elastic–plastic simulations, described above, were used

to obtain evolution of secant shear modulus with shear strain. Figure 18(a) shows mean and mean±standard

deviation of the (probabilistic) evolutionary secant shear modulus.

Figure 18: Simulated (a) probabilistic reduction and (b) evolution of coefficient of variation (COV) of secant

shear modulus with cyclic shear strain

Compared with the deterministic evolution of secant shear modulus6 (also shown in Figure 18(a)), the mean

solution predicts a realistic reduction with cyclic shear strain. The region between mean and mean±standard

deviation contains the most likely values of evolutionary shear modulus. Coefficient of Variation (COV),

which can also be used to visualize uncertainty, is shown in Figure 18(b). The initial COV of secant shear

modulus was [(14.4 MPa + 0.15 × 61.6 MPa)/61.6 MPa]×100% = 38.3%. It was calculated from the mean

and standard deviation values for Gmax, obtained earlier, as 61.6 MPa and 14.4 MPa, respectively. The

second term in the numerator (0.15 × 61.6 MPa) represents the contribution of the testing uncertainty, which

was assumed to have a COV of 15% (refer subsection 3.3). It is interesting to observe that COV of secant

shear modulus increases with cyclic shear strain. This increase in uncertainty comes from the fact that as the

material plastifies, this simple two parameter model becomes less and less accurate. In other words, more

detailed investigation of soil structure and more advanced modeling technique need to be used if one wishes

to reduce such uncertainty.

The above probabilistic evolution of secant shear modulus (Figure 18) is shown in Figure 19 in a more

common form, in terms of variation of G/Gmax versus shear strain.
6Deterministic shear modulus remains constant, equal to Gmax = 61.6 MPa until ≈ 0.3% strain, representing deterministic

yield point, before suddenly dropping after yield point.
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Figure 19: Simulated probabilistic G/Gmax behavior

It is important to note that in Figure 19, the normalization of evolutionary mean and mean±standard deviation

is done by dividing each of those by mean of elastic shear modulus (Mean[Gmax]). In other words, the up-

per and lower limits of normalized secant shear modulus, shown in Figure 19 represent (Mean[G]±Standard

Deviation[G])/Mean[Gmax], rather than G/Gmax±standard deviation. The probabilistic evolution of mate-

rial damping ratio versus shear strain is shown in Figure 20. It is important to note that the upper and lower

bounds of damping ratio in Figure 20, were obtained from the hysteresis loops of mean±standard devia-

tion of shear stress and shear strain. The mean damping ratio, shown in Figure 20 was obtained from the

hysteresis loop of mean shear stress and shear strain.

Figure 20: Simulated probabilistic material damping behavior

In both Figures 19 and 20, the deterministic solutions are also plotted. Though the deterministic solu-

tions fail to predict the realistic soil behavior, probabilistic results, even with the simplest elastic–perfectly

plastic model, are comparable to the experimental observations reported in the literature. For example, the

probabilistic G/Gmax and damping ratio results7, presented in Figures 19 and 20, compared well with the

experimental behavior reported by and for high plasticity clay.

In addition to modulus reduction, the probabilistic approach also captured modulus degradation when the

clay material was cyclically sheared repeatedly to a fixed strain level. The hysteresis loops, for clay material

sheared repeatedly to ±0.1026% strain, is shown in Figure 21.

Figure 21: Simulated hysteresis shear stress versus shear strain loop, when sheared repeatedly at ± 0.1026%

strain: (a) mean and (b) standard deviation behavior; First four cycles are shown

Only, first four loops are shown in Figure 21 for clarity. The absolute values of mean and standard deviation

of secant shear modulus after each cycle are plotted in Figures 22(a) and (b) respectively.

Figure 22: Simulated probabilistic degradation of shear modulus, when sheared repeatedly at ± 0.1026%

strain: (a) mean and (b) standard deviation behavior

7Their respective mean ± standard deviation.
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4 SUMMARY

The mean shear modulus degraded 8% after 10 cycles at 0.1026% strain. The rate of degradation of mean

secant shear modulus was higher initially, but stabilized as the number of cycles increased. The standard

deviation of secant shear modulus, on the other hand increased (275% increase after 10 cycles at 0.1026%

strain) with number of cycles. It, however, also stabilized after number of cycles increased.

The explanation for increased uncertainty in the secant shear modulus is based on mechanics. With

repeated shearing, soil structure is continuously disturbed and hence, our knowledge uncertainty increases.

In other words, after repeated shearing, simplistic two-parameter elastic-perfectly plastic model used here

cannot model such changes properly. The elastic-plastic probabilistic solution (advection-diffusion equa-

tion) aptly captures that fact. The diffusion component, which controls the spread of the response (stress)

probability density function, keeps evolving continuously with strain, irrespective of the direction of loading

(shearing) until plasticity is fully mobilized with 100% probability, when the diffusion coefficient becomes

zero. The advection component, on the other hand, controls the translation of the response (stress) probabil-

ity density function in the stress-strain domain. This component is a function of loading (shearing) direction,

advection coefficient and initial condition at the beginning of each loading direction, which in turn, is a func-

tion of the uncertainty present in the system at that state of strain/shearing. The advection component hence

gives rise to the degraded modulus after each cycle, until plasticity is fully mobilized with 100% probabil-

ity. The modulus degradation is, therefore, appearing as a direct consequence of probabilistic yielding of

material (clay).

4 Summary

Glossary

Bridge:
Cauchy Stress:
Confining Pressure:
Deterministic:
Dilative:
Dynamic:
Earthquake:
Effective Stress:
Elastic Modulus:
Elasto-Plasticity:
Explicit Algorithm:
Finite Element Method:
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Fluid Pressure:
Foundation Piles:
Free Field:
Frequency:
Geomaterial:
Hardware:
Implicit Algorithm:
Liquefaction:
Mass Matrix:
Mud:
Porous Material:
Prediction:
Pressure dependent:
Probabilistic:
Rayleigh Damping:
Sand:
Saturated Soil:
Self-Wight:
Shear Modulus:
Software:
Solid:
Standard Penetration Testing (SPT):
Static:
Stiffness Matrix:
Strain:
Stress:
Structure:
Total Stress:
Validation:
Verification:
Wave Propagation:
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Figure 4: Detailed Three Bent Prototype SFSI Finite Element Model, 484,104 DOFs, 151,264 Elements used
for most simulation in this study

4



0 10 20 30 40 50 60

−2

0

2

Time (s)
A

cc
el

er
at

io
n 

(m
/s

2 ) Acceleration Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

0 10 20 30 40 50 60
−0.2

0

0.2

Time (s)

D
is

pl
ac

em
en

t (
m

) Displacement Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

0 5 10 15 20 25 30 35

−2

0

2

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 ) Acceleration Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

Time (s)

D
is

pl
ac

em
en

t (
m

) Displacement Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

Figure 5: Input motions: short period (Northridge) and long period (Kocaeli)
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Figure 6: Comparison of free field versus measured (prototype model) motions at the base of left bent for
the short period motions (Northridge) for all clay (CCC) and all sand (SSS) soils
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Figure 7: Comparison of free field versus measured (prototype model) motions at the base of left bent for
the long period motions (Kocaeli) for all clay (CCC) and all sand (SSS) soils
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Figure 8: Simulated bending moment time series (top of left pier) for short period motion (Northridge), for
all clay (CCC) and all sand (SSS) soils
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Figure 9: Simulated bending moment time series (top of left pier) for long period motion (Kocaeli), for all
clay (CCC) and all sand (SSS) soils
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Figure 11: (left)Variation of shear stress σxz vs vertical effective stress σz for Elements E01 – E19 during
and after shaking; (right) Variation of shear stress σxz vs shear strain γ for Elements E01 – E19 during and
after shaking
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Figure 12: (left) Variation with time of void ratio e for Elements E01 – E19 during and after shaking ; (right)
Time history of horizontal component of acceleration in solid part of the mixture au,x for nodes at different
elevations during shaking
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Figure 19: Simulated probabilistic G/Gmax behavior
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Figure 20: Simulated probabilistic material damping behavior
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Figure 21: Simulated hysteresis shear stress versus shear strain loop, when sheared repeatedly at ± 0.1026%
strain: (a) mean and (b) standard deviation behavior; First four cycles are shown
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Figure 22: Simulated probabilistic degradation of shear modulus, when sheared repeatedly at ± 0.1026%
strain: (a) mean and (b) standard deviation behavior
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