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Abstract

The paper presents derivation of a fully implicit Newton algorithm for direct

integration of constitutive equations, in extended stress { internal variable space,

involving hardening or softening of a general dilatant isotropic elasto{plastic geo-

material. All relevant derivatives are provided in tensor notation, thus facilitating

implementation. The consistent, algorithmic tangent sti�ness tensor is derived. The

relative accuracy of a template algorithm is assessed on a number of examples by

means of iso{error maps. We present a rather simple, one{increment example con-

cerning convergence properties of the Newton iterative scheme at the global, �nite

element level, associated with the consistent tangent sti�ness tensor for integrating

the weak form of the equilibrium equations.

Key Words: Elastoplasticity, Pressure sensitive materials, Constitutive modeling,

Dilatancy, Inplicit Integrations.

1 Introduction

In recent years the focus in numerical elasto{plasticity has been on developing accurate

and robust constitutive drivers. A number of schemes has been developed and their accu-

racy and stability have been tested. Fully implicit schemes, such as the Backward Euler

scheme, that are able to integrate the constitutive equations for rather large, �nite strain

increments, have been developed for simple materials. Many complex models relevant for

geomaterials have not bene�ted from this scheme, since they require formation of higher

derivatives of the potential function in general stress space, and inclusion of hardening or

softening behavior in the implicit scheme.

In this paper we derive the fully implicit Newton algorithm for a general hardening or

softening, three { stress invariant isotropic material. It should be mentioned that Cris�eld?

has developed a simple Newton implicit algorithm, but it is only valid for perfect plasticity

von Mises model. In this work we provide detailed derivation of all relevant derivatives in

tensor notation. A comprehensive set of programming tools, here named the nDarray,

was developed and used to facilitate the implementation of the derived tensor formulae

in a versatile constitutive driver. The underlying motivation for this work is to develop

a robust, and eÆcient template constitutive driver, which provides a solid base for a
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simple implementation of di�erent isotropic elasto{plastic material models. The driver is

tested on a rather comprehensive, pressure sensitive, three { stress invariant, hardening

or softening MRS{Lade elasto{plastic material model.?

The outline of this presentation is as follows. First we present a brief summary of

elasto{plastic incremental theory. Our focus is on the speci�c subset of midpoint algo-

rithms, the fully implicit, Backward Euler algorithm. We develop a fully implicit algo-

rithm for direct integration of elasto{plastic constitutive equations in extended stress {

internal variable space. Next, the derivation of the consistent tangent sti�ness tensor is

presented. A brief review of the MRS{Lade material model and a new accuracy measure

are also presented. Then we describe an exercise involving a one step increment along

the iterative stress path. The accuracy of the algorithm applied to the MRS{Lade model

is then assessed using iso{error maps on a number of stress regions. A brief overview

of convergence properties involving a consistent sti�ness tensor is given by following one

increment and the contained iterations for �nite element analysis of a loose sand. Finally,

in the Appendix, we present several useful formulae, namely the derivatives of general

isotropic yield and potential functions in closed form as well as in a �nite di�erence form.

2 Elasto{plasticity

2.1 Preliminaries

In selecting the appropriate integration scheme, a number of issues must be addressed. A

special concern in computational mechanics applied to soils, is the possibility of signi�cant

changes in magnitude and direction of stresses and strains. A reliable constitutive driver

should account for: (a) proper formulation of plastic loading { elastic unloading criteria,

(b) existence of the integrated solution, (c) satisfaction of one or more yield criteria

simultaneously, (d) stability and accuracy and (e) robustness and eÆciency. The approach

implemented most frequently in the early years was explicit, often resulting in unstable

and inaccurate solutions, yet, a large number of principles developed at that time are still

used.
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2.2 Constitutive Relations for In�nitesimal Plasticity

The constitutive equations which characterize an elasto{plastic material can brie
y be

stated as follows: equations:

d�ij = d�eij + d�
p
ij (1)

d�ij = Eijkld�
e
kl (2)

d�
p
ij = d�

@Q

@�ij
= d� mij(�ij; q�) (3)

dq� = d� h�(�ij; q�) (4)

where, d�ij; d�eij and d�
p
ij are increments of the total, elastic and plastic strain tensors

respectively, d�ij is the increment of Cauchy stress tensor, and dq� represents increment

for suitable set of internal variables. The asterisk in the place of indices in q� replaces n

indices1. Equation (1) expresses the assumed additive decomposition of the in�nitesimal

strain tensor into elastic and plastic parts. Equation (2) represents the generalized Hooke's

law which linearly relates stresses and elastic strains increments through the modulus

tensor Eijkl. Equation (3) expresses a generally non-associated 
ow rule for the plastic

strain, and equation (4) describes a set of hardening laws, that govern the evolution of

the plastic variables. Tensor mij is the plastic 
ow direction, h� the plastic moduli and d�

is a plastic parameter to be determined with the aid of the loading|unloading criterion,

which can be expressed in terms of the Karush{Kuhn{Tucker form as:

F (�ij; q�) � 0 (5)

d� � 0 (6)

F d� = 0 (7)

In the previous equations F (�ij; q�) denotes the yield function of the material and (5)

characterizes the corresponding elastic domain. During any process of loading, conditions

(5), (6) and (7) must hold simultaneously. For F < 0, equation (7) yields d� = 0, i.e.

elastic behavior, while plastic 
ow is characterized by d� > 0, which with (7) is possible

1for example (qij) if the variable is �
p
ij , or nothing (q) if the variable is a scalar value.
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only if the yield criterion is satis�ed, i.e. F = 0. From the latter constraint, and during

the process of plastic loading the consistency condition is obtained in the form:

dF =
@F

@�ij
d�ij +

@F

@q�
dq� = nijd�ij + ��dq� = 0 (8)

Equation (8) has the e�ect of con�ning the stress trajectory to the yield surface2. It is

worthwhile noting that nij and �� are normals to the yield surface in stress space and the

plastic variable space respectively.

3 Backward Euler Integration Rule

In this section, we focus on the Backward Euler algorithm. The advantage of the Backward

Euler scheme over other midpoint schemes is that the solution is sought by using the 
ow

direction, mij = @Q=@�ij at the �nal stress state. By implicitly assuming that such a

stress state exists, the Backward Euler scheme is guaranteed to provide a solution, despite

the size of the strain step. Furthermore, we present a complete derivation of a consistent

tangent sti�ness tensor for a pressure sensitive three{stress invariant isotropic material

undergoing general hardening or softening.

3.1 Preliminaries

Fully implicit, Backward Euler schemes are given in the following form:

n+1�ij = Eijkl

�
n+1�kl �

n+1�
p
kl

�
(9)

n+1�
p
ij =

n�
p
ij + � n+1mij (10)

n+1q� =
nq� + � n+1h� (11)

Fn+1 = 0 (12)

where:

n+1mij = mij

�
n+1�ij;

n+1q�
�

(13)

2Since it only constitutes a linear expansion, the stress trajectory is con�ned to the tangential plane

only.
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n+1h� = h�
�
n+1�ij;

n+1q�
�

(14)

Equations (9), (10), (11) and (12), are the nonlinear algebraic equations to be solved for

the unknowns n+1�ij,
n+1�

p
ij,

n+1q� and �.

From Figure (1) it can be seen3 that the Backward Euler rule may be regarded as

a return mapping algorithm, where the elastic predictor stress pred�ij is projected on the

updated yield surface along the 
ow direction evaluated at the �nal point (n+1�ij;
n+1q�).

3.2 Backward Euler Algorithm

The Backward Euler algorithm is based on the elastic predictor { plastic corrector strategy:

n+1�ij =
pred�ij � � Eijkl

n+1mkl (15)

where pred�ij = Eijkl �kl is the elastic trial stress state and
n+1mkl = (@Q=@�kl)jn+1 is the

gradient to the plastic potential function in stress space at the �nal stress position.

If our predictor stress pred�ij is not located in a corner or apex gray region (for the

material models that have these features), a single vector return to the yield surface is

possible. It is advantageous to de�ne a tensor of residuals rij as:

rij = �ij �
�
pred�ij � � Eijkl

n+1mkl

�
(16)

This tensor represents the di�erence between the current stress state �ij and the Back-

ward Euler stress state pred�ij � � Eijkl
n+1mkl. An initial estimate for the current stress

n+1�ij can be obtained using various other methods, which will be discussed shortly. This

estimate generally does not satisfy the yield condition, thus an iterative scheme is neces-

sary to return the stress to the yield surface. The trial stress state pred�ij is maintained

�xed during the iteration process. The �rst order Taylor series expansion can be applied

to the equation (16) to obtain the iterative change, the new residual newrij from the old

oldrij:

newrij =
oldrij + d�ij + d�Eijkl

n+1mkl + �Eijkl

@mkl

@�mn

�����
n+1

d�mn + �Eijkl

@mkl

@q�

�����
n+1

dq�

(17)
3it should be pointed out that the vectors, as drawn on this �gure, are pointing in the right direction

only if we assume that Eijkl � Iijkl . For any general elasticity tensor Eijkl all vectors are de�ned in the

Eijkl metric, so the term \normal", as we are used to it, does not apply here.
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where d�ij is the change in �ij, d� is the change in �, and @mkl=@�mnd�mn+@mkl=@q�dq�

is the change in mkl. Upon setting newrij = 0, and after some algebraic manipulations we

are able to solve the previous equation for d�mn:

d�mn = �
�
oldrij + d� Eijkl

n+1Hkl

� �
n+1Tijmn

��1
(18)

where we have introduced the fourth order tensors Tijmn and Hijmn:

n+1Tijmn = ÆimÆnj + � Eijkl

@mkl

@�mn

�����
n+1

; n+1Hkl =
n+1mkl + �

@mkl

@q�

�����
n+1

h� (19)

A �rst order Taylor series expansion of the yield function F about the �nal stress

state n+1�ij is applied in order to obtain a linear approximation of the new value of yield

function n+1F new with regard to changes in �ij and q�:

n+1F new = n+1F old + n+1nmn d�mn +
n+1��dq� = 0 (20)

where nmn = @F=@�mn, �� = @F=@q� and dq� = d� h�(�ij; q�). We have the solution

for d�mn from equation (18), and by setting n+1F new = 0, the solution for d� is readily

found:

d� =
n+1F old � n+1nmn

oldrij
n+1T�1

ijmn

n+1nmnEijkl
n+1Hkl

n+1T�1
ijmn �

n+1�� h�
(21)

Finally, with the solutions for d� from equation (21) and the solution for d�mn from

equation (18) we can write the iterative solution for d�mn and dq�, i.e. the solution in the

extended stress { internal variable space, in the following form:

d�mn = �

 
oldrij +

n+1F old � n+1nmn
oldrij

n+1T�1
ijmn

n+1nmnEijkl
n+1Hkl

n+1T�1
ijmn �

n+1�� h�
Eijkl

n+1Hkl

!
n+1T�1

ijmn (22)

dq� =

 
n+1F old � n+1nmn

oldrij
n+1T�1

ijmn

n+1nmnEijkl
n+1Hkl

n+1T�1
ijmn �

n+1�� h�

!
h� (23)

This iterative procedure is continued until the yield criterion F = 0 is satis�ed given a

certain tolerance, at the �nal stress state. It should be noted that in the case when our

predictor point falls within the apex or corner gray area, we apply Koiter's rule. This is

particularly the case if we use Mohr{Coulomb or the MRS{Lade material models.
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3.3 Starting Points

It is well known that the rate of convergence, if there were to be convergence at all,

for the Newton Method, is closely tied to the starting point of the iterative procedure.

Less than favorable starting points might lead a Newton type algorithm to divergence or

oscillatory behavior. In what follows, starting points for the Newton iterative procedure

will be established for one{vector return algorithms. The case of two{vector returns, which

appears for example in a cone{cap type yield surfaces, is treated in detail by Jeremi�c and

Sture.?

3.3.1 Semi Backward Euler Starting Point

One of the proposed starting points,(?) uses the normal at the elastic trial point4 pred�ij.

A �rst order Taylor expansion about point pred�ij yields:

predF new = predF old + prednmn d�mn + ��h�d� = 0 (24)

It is assumed that the total incremental strain �kl is applied in order to reach the point

pred�ij, i.e.
pred�ij = Eijkl �kl so that any further stress "relaxation" toward the yield

surface takes place under a zero total strain condition, �kl = 0. From the di�erential form

of equation (9) and equation (24) the solution for d� is readily found:

d� =
predF old

prednmn Emnpq
predmpq � ��h�

(25)

With this solution for d� we can obtain the starting point for the Newton iterative

procedure as:

start�mn = Emnpq
pred�pq � Emnpq

predF old

prednmn Emnpq
predmpq � ��h�

predmpq (26)

startq� =
previousq� +

 
predF old

prednmn Emnpq
predmpq � ��h�

!
predh� (27)

This starting point in extended stress { internal variable space will in general not satisfy

the yield condition F = 0, but it will provide an initial estimate for the Newton iterative

procedure.

4We have named this scheme as semi Backward Euler scheme.
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It should be mentioned, that this scheme for returning to the yield surface is the well

known Radial Return Algorithm , if the yield criterion under consideration is of the von

Mises type. In this special case the normal at the elastic trial point pred�ij coincides

with the normal at the �nal stress state n+1�ij, and the return direction is exact. Similar

scheme was used by de-Borst? and Cris�eld? in conjunction with Mohr{Coulomb yield

surface.

3.3.2 Forward Euler Starting Point

Another readily available and possible starting point can be obtained by applying one

Forward Euler step. To be able to use the Forward Euler integration scheme, an inter-

section point has to be found.(?) Similarly to the previous derivation, a �rst order Taylor

expansion about intersection point cross�ij yields:

F new = crossnmn d�mn + ��h�d� = 0 (28)

From the di�erential form of equation (9) and from the equation (28) d� is readily found:

d� =
crossnmn Emnpq d�pq

crosnmn Emnpq
crosmpq � ��h�

(29)

With this solution for d� we can obtain the starting point for the Newton iterative

procedure:

start�mn = Emnpq d�pq � Emnpq

crossnrs Erstu d�tu
crossnab Eabcd

crossmcd � ��h�

crossmpq (30)

startq� =
previousq� +

 
crossnmn Emnpq d�pq

crosnmn Emnpq
crosmpq � ��h�

!
h� (31)

This starting point will, again, not satisfy the yield condition F = 0 (except for yield

criteria that have 
at yield surfaces (in the stress invariant space) so that the �rst order

Taylor linear expansion is exact), but will provide an initial estimate for the Newton

iterative procedure. If the Newton iterative scheme fails to converge within prescribed

number of steps, say 20, one has to provide continuation of the solution procedure by

means of, for example a subincrementation technique, or by applying one of the line

search techniques to the iterative algorithm.
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3.4 Consistent Tangent Sti�ness Tensor

The �nal goal in deriving the Backward Euler scheme for integration of elasto{plastic

constitutive equations is to use that scheme in �nite element computations. If the

Newton iterative scheme is used at the global equilibrium level, then the use of the

so called traditional, continuum tangent sti�ness tensor destroys the quadratic rate of

asymptotic convergence of the iterative scheme. In order to preserve such a quadratic

rate, a consistent, algorithmic, tangent sti�ness tensor should be derived. The consis-

tent tangent sti�ness tensor makes use of derivatives of direction (mij = @Q=@�ij , i.e.

@mij=@�kl = @2Q=@�ij@�kl) normal to the potential function, derived at the �nal stress

point. The traditional tangent sti�ness tensor has a constant derivative, mij that is

evaluated at the intersection point.

The derivation of the consistent tangent sti�ness tensor can be traced back to the works

of Runesson and Samuelsson? and Simo and Taylor.? As a consequence of consistency,

the use of the consistent tangent sti�ness tensor signi�cantly improves the convergence

characteristics of the overall equilibrium iterations, if a Newton scheme is used for the

latter. Use of the consistent tangent sti�ness tensor yields a quadratic convergence rate

of the Newton equilibrium iterations. In what follows, we derive the consistent tangent

sti�ness tensor for single{vector return algorithms. A straightforward derivation of the

two{vector return consistent tangent sti�ness tensor is treated in detail by Jeremi�c and

Sture,(?) as described earlier.

We start from the Backward Euler stress equation:

n+1�ij =
pred�ij � � Eijkl

n+1mkl (32)

Di�erentiation of equation (32) and solving for d�mn yields:

d�mn = Rmnkl

�
d�kl � d� n+1Hkl

�
(33)

where we have used de�nitions for n+1Tijmn and n+1Hkl from equation (19) and have

de�ned the reduced sti�ness tensor as:

Rmnkl =
�
n+1Tijmn

��1
Eijkl (34)

It turns out that the form of equation (33) is similar to the old non consistent form

except for the change in Emnkl to Rmnkl = (n+1Tijmn)
�1
Eijkl and the fact that the normal

10 Jeremi�c & Sture



to the potential surface is evaluated at the �nal stress position, and includes the change

on 
ow direction due to hardening or softening, i.e. it is presented in form of n+1Hkl =

n+1mkl + � (@mkl=@q�)jn+1h�.

We are assuming that the full consistency condition should hold at the �nal stress

position n+1F = 0 so that the consistency condition is:

dn+1F = n+1nijd�ij +
n+1��dq� = 0 (35)

The solution for the stress increment is available from equation (33), and the solution

for d� is readily found:

d� =
n+1nijRijkld�kl

n+1nijRijkl
n+1Hkl + n+1�� h�

(36)

By substituting equation (36) in equation (33) and solving for d�pq, we obtain:

d�pq = Rpqkl

 
d�kl �

n+1nrsRrsmnd�mn

n+1notRotpq
n+1Hpq + n+1�� h�

n+1Hkl

!
=

Rpqkld�kl �Rpqkl

n+1nrsRrsmn
n+1Hkl

n+1notRotpq
n+1Hpq + n+1�� h�

d�mn =

 
Rpqmn �

Rpqkl
n+1Hkl

n+1nijRijmn

n+1notRotpq
n+1Hpq + n+1�� h�

!
d�mn =

consEep
pqmnd�mn (37)

where the Elastic Plastic Consistent Tangent Sti�ness Tensor is given by:

consEep
pqmn = Rpqmn �

Rpqkl
n+1Hkl

n+1nijRijmn

n+1notRotpq
n+1Hpq + n+1�� h�

(38)

It is worthwhile noting that the traditional, continuum tangent sti�ness tensor Eep
pqmn

is recovered in the limit as �! 0:

lim
�!0

consEep
pqmn = Eep

pqmn = Epqmn �
EpqklmklnijEijmn

notEotpqmpq + ��h�
(39)

since:

lim
�!0

Tijmn = lim
�!0

 
ÆimÆnj + � Eijkl

@mkl

@�mn

�����
n+1

!
= ÆimÆnj

lim
�!0

Rmnkl = lim
�!0

(Tijmn)
�1
Eijkl = (ÆimÆnj)

�1
Eijkl = Emnkl
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lim
�!0

Hkl = lim
�!0

 
n+1mkl + �

@mkl

@q�

�����
n+1

h�

!
= mkl

An interesting observation is that the consistent tangent remains non symmetric, i.e.

major symmetry is not restored, consEep
pqmn 6=

consEep
mnpq, even in the case of associated 
ow

rule, for which mkl = nkl, since:

(Hkl)jmkl=nkl
=

 
n+1nkl + �

@nkl

@q�

�����
n+1

h�

!

and since, generally, �@nkl=@q� 6= 0 the major symmetry is lost. It should be mentioned

that for radial return 
ow rules5 the symmetry is recovered. Major symmetry is also

recovered in the limit as �! 0.

4 Implementation and Results

We have presented the Backward Euler algorithm and now we brie
y present the material

model used in the error assessments, namely the isotropic hardening or softening elasto{

plastic MRS{Lade model.(?) We, then introduce a novel error measure, that proved more

intuitive in assessing the overall algorithm accuracy. Then we illustrate one incremental

step on the constitutive level and provide error estimates in terms of iso{error maps

for various stress regions. Finally, we give a brief assessment of overall, �nite element

convergence rates obtained by using the consistent tangent sti�ness tensor.

4.1 MRS-Lade Elasto{Plastic Model

The MRS-Lade elastic-plastic model for granular materials(?) is a further development of

Lade's three-invariant model for cohesionless soils.? The model has been used to simulate

the behavior under both high and low e�ective stresses levels. In order to better simulate

the complex behavior of these materials, the MRS-Lade model features:

� a two{surface formulation, comprising of a smooth cone surface and a smooth cap

surface intersecting in plane curve (ellipse segment) in the deviatoric plane,?

5Associated for example with von Mises criterion and isotropic hardening only.
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Q=0
n

n
F=0 n+1

F=0

n+1

Q=0

σij

cross

Elastic
region

n+1
mij

ijmcross

n+1σij

σn ij

σpredictor

ij

Figure 1: Pictorial representation of integration algorithms in computational elasto{

plasticity: Backward schemes.

θ = π 3/

θ=0

p
0

p
capp

capα

elastic
region

q

p

cone cap

σ

σ σ
2

1

3

θ
π/3

Figure 2: Trace of the MRS-Lade model in p� q and deviatoric space. The de�nition of

p� q can be found in appendix.
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� Hardening and softening variables for both surfaces are based on dissipated plastic

work,

� a non-associated 
ow rule in the meridian plane and an associated 
ow rule in the

deviatoric plane of the cone region, and a associated 
ow rule in the cap region,

� ability to model cohesive strength and a curved meridian in the cone region.

Here, we only brie
y illustrate the shape of MRS{Lade yield surface F = 0 in Figures

2 and 3. Detailed discussion is presented by Sture, Runesson Macari-Pasqualino.(?) The

shape of potential surface Q is very similar to the yield surface, i.e. traces in deviatoric

plane are the same, and the di�erence accounting for dilatancy e�ects is re
ected in a

di�erent trace in the meridian plane.

4.2 Error Measurement

The error measure for the Backward Euler algorithm was chosen to be the relative error

in the energy norm between a single load step to the �nal stress point position, and an

\exact" �nal position. The term \exact" is somewhat misleading, since the exact or closed

form solution for the general elasto{plastic problem remains to be found. The \exact"

return point is simply the point obtained by subincrementing the given strain increment

in a certain number of subincrements, say 50, using the same integration scheme, in this

case the Backward Euler method.

Di�erent methods were used to asses the accuracy of integration algorithms in com-

putational plasticity. Early works?,?,?,? related to the von Mises criterion were simply

using the di�erence between the single step return angle � and the \exact" angle. This

is advantageous in the case of the von Mises yield surface, since the only error developed

in integrating the elasto{plastic di�erential equations in the deviatoric plane, is in the

value of the angle �. Later works?,? have measured errors in terms of vector norms of

di�erences between a single step solution and the \exact" solution. The need to devise a

new error measure stems from the many types of yield criteria that are dependent on all

three stress invariants ( de�ned in Appendix A ), i.e. p, q and �, or, alternatively I1, J2D

and J3D.
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In this work we will use the normalized distance between \exact" and single step

solution de�ned in the Dklpq metric6. This distance is determined by taking the energy

norm of the di�erence of the stress tensors between the two stress points. The energy

norm is de�ned as:

k�ijk
2 = �ijDijkl�kl (40)

It was assumed that the unit length, measured in the energy norm, is from the origin to

the stress state represented by p = 1:0 kN=m2, q = 0:0 kN=m2 and � = 0. All errors,

i.e. di�erences between the single step solution and the \exact" solution are compared to

that unit length. The normalized distance7 is then de�ned as:

Ænormalized =
kn+1�

50steps
ij � n+1�

singlestep
ij k

kpunitk
(41)

This error measure is more intuitive, since it actually represents the normalized distance

between two stress points.

4.3 Algorithm illustration

Figure (4) depicts the convergence of the Backward Euler integration scheme in stress

space. Table (1) summarizes three stress paths, i.e. the points in the p, q and � space

for the three elastic{predictor plastic corrector returns. The Forward Euler return is

actually the tangent path from the intersection point. The point is somewhat further

away than the other two return points, since the Forward Euler scheme uses the return

direction at the intersection point, thus yielding a more inclined return direction. The

semi Backward Euler return uses the normal at the trial or elastic predictor point, so the

return direction is somewhat less inclined than, for example the Backward Euler direction,

and a return point is closer to the starting point compared to the other two methods.

Neither method satis�es the yield condition at the �nal stress point. The Backward Euler

6Dklpq is the elastic compliance fourth order tensor, de�ned in terms of Lam�e coeÆcients � and � as:

Dklpq =
��

2� (3�+ 2�)
ÆklÆpq +

1

4�
(ÆkpÆlq + ÆkqÆlp)

7according to the de�nition p = �1=3 �kk , the normalized distance is the same as the unit distance

along any of three principal stress axis.
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Figure 3: MRS-Lade cone/cap yield surface. Only the �rst sextant ( where �1 � �2 � �3)

is shown.

(a) (b)

Figure 4: (a) Actual paths of the Backward Euler, semi Backward Euler and Forward

Euler schemes, and the last two iterations. (b) Magni�ed picture in the region of the

solution. In the triaxial meridian plane. Units: kN=m2.
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return is performed at two levels, where the �rst level comprises the predictor phase by

using either a Forward Euler step or semi Backward step. The second, iterative level

brings the stress point to the yield surface. In the present example, only two iterations

are needed after the predictor step to obtain the solution. Figure (4)(b) depicts two stress

points, the �rst located a small distance away from the surface and the second and �nal

point, very close to the surface.

4.4 Error Assessment

The accuracy analysis of the derived algorithm is assessed in a number of examples. We

describe stress regions, where the accuracy of the algorithm was assessed in Figure (5) :

� Region 1 is close to the zero stress state, and is de�ned on the cone portion of the

MRS-Lade yield surface in the meridian p� q plane . The region extends into the

tension stress state, and the apex gray region.

� Region 2 is in the deviatoric plane of the MRS-Lade cone part de�ned by p =

1:0 kN=m2, while � 2 [0:0� �=3].

� Region 3 is in the meridian plane � = �=3, and covers the cap yield surface.

� Region 4 is in the meridian plane � = �=3, close to the corner gray area. Both cone

and cap surfaces are covered as well as the corner gray region.

� Region 5 is de�ned in the meridian plane, � = �=3, on the cone portion of the

MRS-Lade yield surface, in vicinity of the con�ning pressure of p = 500:0 kN=m2.

Region 1. The starting point for the accuracy assessment of Region 1 is at p =

1:0 kN=m2. The lower inclined line in Figure (6)(region 1.), represents the trace of the

cone yield surface in the meridian plane, and the dashed line represents the border between

the cone region and the apex gray region. This iso{error map gives a good picture of the

general trend, i.e. the further away from the surface the stress point is, the errors become

more pronounced. Some areas of nonuniformity are found, especially just above the trace

line and about the vertical axis. After closer investigation of nonuniformities close to

the trace line it appears that the errors represent rather small values and the predictor

points that are closer to the surface needed fewer iterations to satisfy the consistency
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position points p kN=m2 q kN=m2 Fcone Error

starting 1:0 0:42389 �0:177 -

elastic predictor 1:0 2000:0 2669:185 -

forward Euler 453:491 266:321 54:403 84.368

semi Backward Euler 346:232 224:672 66:142 45.115

Backward Euler step 1 385:136 191:298 0:126 -

Backward Euler step 2 385:508 191:376 8:141 10�7 12.075

\exact" return 397:013 196:876 7:696 10�7 -

Table 1: Stress paths for the Backward Euler, semi Backward Euler and Forward Euler

schemes. In meridian plane � = �=3. Errors are normalized to unit length.

θ = π/3

θπ
3/

σ

σσ

1

2 3

q
q

1

5
4

3

2

p

Figure 5: Accuracy assessment regions in p, q and � invariant space.
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iso error map
region 4

region 1
iso error map

iso error map
region 3

iso error map
region 5

iso error map
region 2

Figure 6: Iso{error maps for the di�erent regions of MRS{Lade yield criterion. Errors

normalized to unit length. Figure units kN=m2.
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Figure 7: Large excursions (�dev � 3%) in deviatoric plane (region 2.). Slices of iso{error

surface at p = 0:0; 100:0; 200:0; 300:0kN=m2. Errors normalized to unit length. Figure

units kN=m2.
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condition, i.e. to decrease the value of the yield function below a prede�ned tolerance,

while those that have predictor points further away needed more iterations, thus resulting

in �nal stress states that satis�ed yield criteria with lower tolerance. However, for larger

excursions away from the yield surface, the error pattern increase smoothly. Another

region of nonuniform errors is located close to the border line. It appears that while the

one{step solution returns to the cone surface close to the apex point, the \exact" solution

is substepping toward the apex point, and since the \exact" solution tends to push the

return point further away, it ends up at the apex point. For the stress predictor points

located further away in the apex gray region the return is to the apex point in both cases.

Region 2. The starting point for accuracy assessment in Region 2 is located on the

yield surface at � = �=3 � 1:04, while p = 1:0 kN=m2 and q = 0:6 kN=m2, or at the

left end of the yield surface trace on Figure (6)(region 2.). It is evident that the errors

increase as the angular distance from the starting point increases. The error increase is

fast for large tangential steps, yet after a certain magnitude of q the algorithm is quite

insensitive to the values of q, while changes in � create most of the error. Yet another

non-uniform region is discovered near the value q = 10:0 kN=m2. This is attributed to

the highly curved yield surface in the vicinity of � = �=3.

Figures 7 depicts the behavior of the algorithm for large strain steps (� 3%) in the

deviatoric direction while the stress is varied from p = 0:0 kN=m2 to p = 300:0 kN=m2.

The non{uniform areas on the �rst iso{error map, at p = 0:0 kN=m2 are actually better

solution since the algorithm failed to converge for speci�c strain increments and the subin-

crementation cure was initiated. The low con�nement domain, around p = 0:0 kN=m2

is highly nonlinear, which places a great demand on a constitutive driver. Once the low

con�nement domain is cleared, errors are increasing in a relatively smooth manner. Un-

like the iso{error map on Figure 6(region 2.), which depicted errors for very small strain

increments, all the errors, for large deviatoric excursions are controlled by the deviatoric

component of strain.

Region 3. The iso{error map for Region 3 depicts the cap portion of the surface, and

it illustrates the behavior of the algorithm for a starting point located in the elastic region

at p = 1600:0 kN=m2 and q = 0:0 kN=m2. The trace of the cap surface is visible as the

curved line on the left in Figure 6(region 3.). It is interesting to note that the more curved
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region, toward the intersection with the cone yield surface, shows smaller errors than the

more leveled region located toward the p axis. This observation follows the conclusion

made by de-Borst and Feenstra(?) with regard to the Backward Euler algorithm applied

to Hill's criterion.

Region 4. The corner domain is especially trouble prone. DiÆculties encountered

are basically topological in nature. All the predictor stress states that fall in the corner

gray region are supposed to end up on the line in the deviatoric plane that connects the

two surfaces. The main problem with the present de�nition of the 
ow direction is that

for some stress paths, a single step starting from one region, a cone for example, returns

to the same region, while the \exact" solution will jump and return to the other region.

Figure (6)(region 4.) depicts the corner region iso{error map. Errors are accumulated

near the left boundary line of the corner region. The reason is that for the predictor

stresses near the border line but located in the cone region, the return is to the cone

surface, close to the corner point. The \exact" solution tends to push the return point

further away, thus returning to the cap region.

Region 5. The iso{error maps for Region 5, on Figure (6), represent the behavior of

the algorithm on the cone area of the yield surface. The pattern is similar to that already

observed. The more tangential the stress path is, the larger is the error. The predictor

stress path that follows the 
ow direction mij su�ers from the inexact integration of

hardening or softening rule only, while the stress subspace integration is exact.

4.5 Global Picture: FEM Convergence

The convergence properties of consistent tangent sti�ness tensor upon implementation

in a �nite element program FEI8 are brie
y depicted on one incremental step of a simple

drained triaxial numerical experiment on a loose sand from Figure 8.

In Figure (4.5) we follow one increment through three di�erent types of control:?

mixed, or full arc-length control (FU), �{control (F) and displacement control (U). Since

this was a displacement driven numerical experiment, �{control actually mimics a domi-

nant, vertical displacement control. Table (4.5) also shows that the use of the consistent

8Finite Element Interpreter, our testbed program, under development using nDarray and FEMtools class

libraries written in C++ programming language.

22 Jeremi�c & Sture



Figure 8: Non{linear response for the dry triaxial sand specimen.

#iter.,krk ! FU F U

prev.(1) 0:00e+ 0 0:00e+ 0 0:00e+ 0

pred.(2) 8:05e� 4 2:11e� 3 1:03e� 3

(3) 1:91e� 4 7:70e� 4 2:29e� 4

(4) 3:83e� 5 2:79e� 4 3:93e� 5

(5) 6:76e� 6 9:95e� 5 5:55e� 6

(6) � 3:39e� 5 �

(7) � 9:90e� 6 �

Table 2: Convergence results for one increment and di�erent types of control.
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Figure 9: Iterative paths for one increment and di�erent types of control.
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tangent sti�ness tensor in building the system sti�ness matrix together with a full New-

ton iterative solution scheme at the global level results in a fast convergence rate for the

residual norm krk. At the end, converged points are close9 to the actual equilibrium

path. As for all path dependent problems, actual di�erence in the step length introduces

additional error.

5 Concluding Remarks

In this paper we have presented a fully implicit, Backward Euler algorithm for integrating

directly, in the expanded stress { internal variable space, elasto{plastic constitutive equa-

tions for isotropic elasto{plastic hardening or softening geomaterial models. Derivation of

the algorithm and the resulting consistent sti�ness tensor were kept as general as possible,

thus making the implementation of other isotropic hardening or softening elasto{plastic

material models an relatively easy task.

The algorithm was applied to the pressure sensitive, three stress invariant, hardening

or softening MRS{Lade elasto{plastic material model. The algorithm performance was

assessed on a number of examples, and fast convergence at the global, �nite element level

was shown, if one uses the consistent tangent sti�ness tensor in building �nite element

matrices. A set of useful stress invariants derivatives was provided in both closed and

�nite di�erence form.
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6 Appendix

A Gradients to the Potential Function

In the derivation of the Backward Euler algorithm and the Consistent Tangent Sti�ness

Tensor it is necessary to derive the �rst and the second derivatives of the potential

function. The function Q is the function of the stress tensor �ij and the plastic variable

tensor q�. In this section we present derivatives with respect to the stress tensor �ij. It

is assumed that any stress state can be represented with the three stress invariants p, q

and � given in the following form:

p = �
1

3
I1 ; q =

q
3J2D ; cos 3� =

3
p
3

2

J3Dq
(J2D)3

(42)

I1 = �kk ; J2D =
1

2
sijsij ; J3D =

1

3
sijsjkski ; sij = �ij �

1

3
�kkÆij (43)

Stresses are here chosen as positive in tension. The de�nition of Lode's angle � in

equation (42) implies that � = 0 de�nes the meridian of conventional triaxial extension

(CTE), while � = �=3 denotes the meridian of conventional triaxial compression (CTC).

A.1 Analytical Gradients

The �rst derivative of the function Q in stress space is:

@Q (p; q; �)

@�ij
=

@Q

@p

@p

@�ij
+
@Q

@q

@q

@�ij
+
@Q

@�

@�

@�ij
(44)

and subsequently the �rst derivatives of the chosen stress invariants are

@p

@�ij
= �

1

3
Æij ;

@q

@�ij
=

3

2

1

q
sij (45)

@�

@�ij
=

3

2

cos 3�

q2 sin 3�
sij �

9

2

1

q3 sin 3�
tij where: tij =

@J3D

@�ij
(46)
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The second derivative of the function Q in stress space is

@2Q (p; q; �)

@�pq@�mn

=

 
@2Q

@p2
@p

@�mn

+
@2Q

@p@q

@q

@�mn

+
@2Q

@p@�

@�

@�mn

!
@p

@�pq
+
@Q

@p

@2p

@�pq@�mn

+

+

 
@2Q

@q@p

@p

@�mn

+
@2Q

@q2
@q

@�mn

+
@2Q

@q@�

@�

@�mn

!
@q

@�pq
+
@Q

@q

@2q

@�pq@�mn

+

+

 
@2Q

@�@p

@p

@�mn

+
@2Q

@�@q

@q

@�mn

+
@2Q

@�2
@�

@�mn

!
@�

@�pq
+
@Q

@�

@2�

@�pq@�mn

(47)

and the second derivatives of the stress invariants are

@2p

@�pq@�mn

= ; ;
@2q

@�pq@�mn

=
3

2

1

q

�
ÆpmÆnq �

1

3
ÆpqÆnm

�
�

9

4

1

q3
smnspq (48)

@2�

@�pq@�mn

=

�

 
9

2

cos 3�

q4 sin 3�
+

27

4

cos 3�

q4 sin3 3�

!
spq smn +

81

4

1

q5 sin3 3�
spq tmn +

+

 
81

4

1

q5 sin 3�
+

81

4

cos2 3�

q5 sin3 3�

!
tpq smn �

243

4

cos 3�

q6 sin3 3�
tpq tmn +

+
3

2

cos 3�

q2 sin 3�
ppqmn �

9

2

1

q3 sin 3�
wpqmn (49)

where:

wpqmn =
@tpq

@�mn

= snpÆqm + sqmÆnp �
2

3
sqpÆnm �

2

3
Æpqsmn

ppqmn =
@spq

@�mn

= ÆmpÆnq �
1

3
ÆpqÆmn

Alternatively, if one decides to work with I1, J2D and J3D stress invariants, the useful

set of derivatives is:

@I1

@�ij
= Æij ;

@J2D

@�ij
= sij ;

@J3D

@�pq
= sqkskp �

2

3
ÆpqJ2D = tpq (50)
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@2J2D

@�pq@�mn

=
@spq

@�mn

= ÆmpÆnq �
1

3
ÆpqÆmn = ppqmn (51)

@2J3D

@�pq@�mn

=
@tpq

@�mn

= snpÆqm + sqmÆnp �
2

3
sqpÆnm �

2

3
Æpqsmn = wpqmn (52)

A.2 Finite Di�erence Gradients

After having developed the closed form, analytical derivatives the authors asked them-

selves: \is there a simpler way of �nding these derivatives and how can we check our

derivations?". Dennis and Schnabel? propose the �nite di�erence method for approximat-

ing derivatives if these derivatives are not analytically available and as a tool to check your

analytical derivatives if they are derived. Another good reason for developing alternative

gradients is that for � = 0; �=3 gradients are not de�ned, i.e. inde�nite terms as 1=0

are appearing. One possible solution is the use of l'Hospital's rule. The solution to that

problem in this work went in a di�erent direction, i.e. instead of aiming for the analytical

form, numerical derivatives are derived.

We should recall that for a function f of a single variable, the �nite di�erence approx-

imation to f 0(x), by using forward �nite di�erence approach, is given by:

a =
f(x+ h)� f(x)

h
(53)

where h is a vanishingly small quantity. The �rst derivative of F ( or Q ) with respect to

the stress tensor �ij elements is10:

approxF;ij =
F (�ij + hij + hji)� F (�ij)

X hij
(54)

where X is an integer number that takes values of 1 or 2 depending on whether the element

being computed is on the diagonal11 or o�, respectively, and hij is the step size which,

10no sum convention implied throughout this section, just the position of the element.
11since the stress tensor �ij is symmetric, change in one non-diagonal element triggers the other to be

changed as well.
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because of �nite precision arithmetic, is a variable, a small number, h, that is multiplied

with the current stress value so that the relative order of magnitude is retained.

The accuracy of the �nite di�erence approximation to the analytical derivatives is

closely bound to the step size hij. It was suggested
(?) that for functions given by the simple

formula, the number h should be close to h =
p
macheps, while for more complicated

functions that number should be larger. Here macheps is the so calledmachine epsilon. It

is de�ned as the smallest distinguishable positive number12, such that 1:0+macheps > 1:0

yields true on the given computer platform.

For example, double precision arithmetics (64 bits), on the Intel 80x86 platform

yields macheps= 1.08E-19 while on the SUN SPARCstation and DEC platforms macheps=

2.22E-16.

It has been found that in the case of yield or potential functions the best approximation

of analytical gradients is obtained by using h =
p
macheps 103. The three order of

magnitude increase in the �nite di�erence step is due to a rather complicated formula for

yield and potential functions. The error in the approximation, approx:F;ij is found to be

after the N th decimal place, where N is the order of h.

Second derivative approximations for one variable function are given in the form:

a =
(f(x+ hiei + hjej)� f(x + hiei))� (f(x+ hjej)� f(x))

hihj
(55)

If the �rst derivatives are available in closed form, one could use equations (54) just by

replacing the function values with tensor values for analytical derivatives. However, if

the analytic derivatives are not available, one has to devise a formula that will create a

fourth order tensor from the changes in two stress tensors, �ij and �kl. Using the scheme

employed in equation (55) the following formula has been devised:

approxQ;ijkl =
(Q(�mn + hij + hkl)�Q(�mn + hij))� (Q(�mn + hkl)�Q(�mn))

Y hijhkl

(56)

and Y is an integer number that takes values of 1, 2 or 4 depending on whether the

element computed is on the major diagonal, minor diagonal or o�, respectively.

12in a given precision, i.e. 
oat (32 bits), double (64 bits) or long double (80 bits).

29 Jeremi�c & Sture



It should be pointed out that numerical derivatives are much slower to compute than

closed form derivatives. However, 
exibility gained by employing two di�erent schemes

for obtaining such important tensors is very important.
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