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2 JEREMI�C ET AL.

SUMMARY

We present a novel technique for visualizing tensors in three dimensional (3D) space. Of particular

interest is the visualization of stress tensors resulting from 3D numerical simulations in computational

geomechanics. To this end we present three di�erent approaches to visualizing tensors in 3D space,

namely hedgehogs, hyperstreamlines and hyperstreamsurfaces. We also present a number of examples

related to stress distributions in 3D solids subjected to single and load couples. In addition, we present

stress visualizations resulting from single{pile and pile{group computations.

Copyright c
 2001 John Wiley & Sons, Ltd.

key words: Tensor Visualization, Computational Geomechanics

1. INTRODUCTION

Over the last couple of years, large{scale 3D �nite element models were developed in

computational geomechanics (cf. Jeremi�c et al. [10], Bao et al. [1, 2]) Despite signi�cant e�orts

to develop better models to computationally simulate a number of interesting problems in

geomechanics, post{processing and data analysis are still a big burden. As a consequence,

simulation results are usually presented in traditional 2D format with two axes representing

interaction of two scalar variables. Moreover, the scalar variables are usually picked up at

certain points in space (or time). The analyst needs to have considerable experience to pick up

spatial coordinate and two variables to be followed. This approach is suitable only for simple

1D and some 2D problems. In analyzing results of 3D computations, the analyst is faced with

a large number of output data points. Each data point can have multiple associated variables
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 3

(scalar or tensorial). In addition, post{processing of results from dynamic computations tends

to introduce new, derived data sets that can be even larger that the original simulations output

data sets. The major problem is to \sort out" the output data in an economical way and present

it intuitively to the analyst.

One possible approach is to use advanced computer graphics and visualizations tools for

the task of post{processing large geomechanics data sets. In addition to presenting output

results in a graphical way (in terms of stress hedgehogs, for example) we have developed

methods new methods to extract more information from a stress tensor �eld and present it in

an intuitive way. This new methods are based on the concepts of so called hyperstreamlines

and hyperstreamsurfaces (Delmarcelle and Hesselink [3, 4], Hagen et al. [8]).

In addition, new visualization hardware can be used to improve the quality and experience

of the visualization process. We mention the Immersive WorkBench from FakeSpace Inc. [6]

available at the Center for Image Processing and Integrating Computing (CIPIC) at UC Davis.

The Immersive WorkBench makes it possible to visualize objects in 3D space directly, using

stereoscopic rendering technology. Moreover, when combined with the data glove (part of

the WorkBench's set{up) it creates a complete virtual environment in which the analyst can

manipulate 3D objects with his/her own hands.

We note note that, although the visualization tools were designed for post{processing stress

data, the methods and implementations developed are highly general and can be used for any

3D tensor �eld.

The paper is organized as follows: In Section 2, we give brief introduction to tensor

�elds and then focus on the stress tensor. Section 3 describes various implementation

details, in particular, it discusses manipulations of the provided data sets in order to obtain
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4 JEREMI�C ET AL.

\optimal tensor �elds" for visualization. In Section 4, we present three methods (hedgehogs,

hyperstreamlines and hyperstreamsurfaces) for visualizing stress tensor �elds. We present a

number of illustrative examples. In section 5, we present conclusions and directions for future

work.

2. BASICS OF TENSOR FIELDS

We brie
y review de�nitions and basic properties of tensors. We follow notation of Green and

Zerna [7] and of Hjelmstad [9]. Let us consider three independent variables �i with di�erentials

d�i. The variables �i are transformed into a set of new variables ��i by an arbitrary single{valued

function of the form

��i = ��i(�1; �2; �3): (1)

We assume that the arbitrary function has derivatives up to the order required. We also assume

that the function is invertible, i.e.,

�i = �i(��1; ��2; ��3): (2)

where the functions �i are also single{valued.

The transformation of di�erentials is given by the equations

d��i = �cij d�
j and d�i = cij d

��j , (3)

where we de�ne

�cij =
@ ��i

@�j
and cij =

@�i

@��j
. (4)

The functions in Eq. 4 are related by the equation

�cikc
k
j = cik�c

k
j = Æij , (5)

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 5

where Æij is the Kronecker delta. Eq. 5 can be used to calculate the values of �cij when the values

of cij are known. The opposite relationship also holds, provided that the functional determinant

c = k�cijk 6= 0, which holds because of the assumption of invertibility (Eq. 2).

Consider a system A of functions with components de�ned in the general set of variables �i

and being functions of (�1; �2; �3). We call the system of functions A a tensor if the variables �i

can be changed to ��i by Eq. 1 and if we can de�ne new components of T in the general variables

��i, being functions of (��1; ��2; ��3) and if the components of T in the two sets of variables are

related by certain rules.

A system of order two may be de�ned by nine components Aij in the variables �i and nine

components ��i in the variables ��i. If

�Aij = cmi cnj Amn , (6)

the functions Aij(�
1; �2; �3) and �Aij(��

1; ��2; ��3) are the components in their respective variables

of a covariant tensor of order two. Tensor Aij is said to be symmetric if

Aij = Aji . (7)

Consider a body B (Figure 1) subjected to surface forces, and an interior surface element of

area �A with normal n and resultant force �F , see Hjelmstad [9] and Sukumar and Rashid

[11]. The traction vector can then be de�ned as the limit of the ratio of the vectorial force to

the area

t = lim
�A!0

�F

�A
. (8)

The Cauchy stress tensor � (�ij) is de�ned as a tensorial quantity that, when acted on by

the unit normal n (ni), results in the traction vector t (tj):

t = n� , (9)

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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O

n

∆A

∆F

B

Figure 1. Strained body B with a planar cross section �A, unit normal n and a force �F .

ti = nj�ij . (10)

The components of the Cauchy stress tensor are shown in Figure 2. It can be shown that

σxz

σyz
yy

x

y

z

σ

σ

σ
σ

σ
σxx

xy
σxy

zz

xz

yz

Figure 2. Components of the Cauchy stress tensor �ij (components shown on three visible planes

only).

the Cauchy stress tensor is symmetric, i.e. �ij = �ji.

It is of interest to determine on which planes the traction vector ti and plane normal nj are

aligned as for that plane the shear stress is zero. In other words, we use Eq. 10 and seek to

determine planes with normals ni where ti = �ni is satis�ed. Using the above equations, we
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 7

have

nj�ji = �ni , (11)

leading to the equation

(�ij � �Æij)nj = 0 , (12)

and hence it follows that

det (�ij � �Æij) = 0 (13)

for the eigenvalue problem to have a non{trivial solution. The values � are the eigenvalues

(principal stresses) �I ; I = 1; 2; 3 having associated eigenvectors (principal directions) nI that

are normal to the principal planes.

3. DATA STRUCTURES AND CONVERSION

Finite element models used in geomechanics simulations can feature a number of di�erent

mesh arrangements. For simpler models, used in testing the quality of implementation or

error propagations, meshes are usually fairly regular in shape. For modeling complex realistic

problems, �nite element meshes become irregular. For example, Figures 3(a{c) show test

problems used in this work. In these examples, the domain is rectangular in shape with di�erent

loads applied on top face. On the other hand, Figures 3(d{e) show solid models of realistic pile

foundations. It should be noted that the piles shown in Figures 3(d{e) are embedded in soil,

and the complete models (for both a single pile and pile groups) include large volume of soils

surrounding the pile foundations.

A static and dynamic �nite element simulation of a 3D problem results in large output,

typically several very large data �les. For some of the examples shown later, the output �les

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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a) b) c)

d) e)

Figure 3. Rectangular domains with di�erent loads applied on top face, (a) point load, (b) double

point load, (c) load couple. Solid models of realistic pile foundations, (d) single pile, and (e) four pile

group.

contain only nodal (vertex) displacements and stress tensors associated with Gauss points

(used for numerical integration), �le size typically exceeds 1 Gigabyte of data.

An important issue that must be resolved before the data can be visualized is the

location of data points. Standard{displacement{based �nite element methods usually provide

displacement data at nodal points (mesh vertices) while the constitutive data (e.g., the

dependent stress and strain tensors, and/or material model data) are provided at the Gauss

points within each �nite element. For example, Figure 4(a) is a top view of the single{pile

mesh used in our examples. It is obvious that the availability of displacement data at nodal

points and constitutive data at Gauss points can lead to potential problems for the creation

Copyright c
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 9

of a smooth �eld obtained by interpolation.

One of the �rst ideas we explored was to extrapolate Gauss point data to nodal points and

then perform averaging, see Zienkiewicz and Taylor [12]. Figure 4(b) shows how Gauss{point

data (pointed to by red arrows) was extrapolated to nodal points (indicated by green arrows).

However, since the stress �eld resulting from a �nite element simulation, is not continuous

across element boundaries, this extrapolation approach created, in some cases, non{physical

stress distributions. Moreover, it is quite diÆcult to implement this type of data conversion for

non{regular meshes. There does not seem to exist a simple method to extrapolate Gauss{point

data for a non{regular meshes.

Instead of extrapolating Gauss{point data to nodal points we can use the concepts of a

Delaunay triangulation, see Hagen et al. [8], to perform data conversion. The advantages of

performing a Delaunay{based conversion are numerous. We mention just a few advantages:

� The conversion results in tetrahedral cells only.

� The conversion is independent of the data set.

� The conversion is independent of the number of Gauss points in an element.

On the downside, this type of conversion results in a rather large increase in the number of

cells. Considering the simple test mesh used for the examples in Figure 4(a), with 600 elements

and 4800 Gauss points (eight Gauss points per element), the Delaunay conversion will yield

26820 tetrahedral cells. Figure 4(c) shows a top view of the tetrahedrazation of the initial

mesh for a single pile, while Figure 4(d) shows the tetrahedrazation for the Gauss points of

the four{pile group.

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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a) b)

c) d)

Figure 4. Meshes resulting from direct extrapolation and Delaunay tetrahedrazation of Gauss points.

4. TENSOR VISUALIZATION

4.1. Hedgehogs

Scienti�c visualization is to a large extent concerned with the post{processing of results from

simulations, where results are typically scalar and vector �elds. For example, Figure 5(a) is a

visualization of a rotating velocity �eld using simply arrows for visualization. Drawing of arrows

in tangent direction (to the resulting vector �eld) at each nodal point is one the simplest ways

to visualize a vector �eld in the 2D plane. When it comes to visualizing principal components

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 11

a) b)

Figure 5. (a) Visualization of a rotating vector �eld, (b) principal stress hedgehog, color{coded by sign

(red is tension, positive, and green is compression, negative); line length represents principal stress

magnitude.

of a 3D tensor, similar approaches can be used. Figure 5(b) presents one such approach, using

hedgehogs, in which three lines are used to present the three eigenvalues (along corresponding

eigenvectors) associated with a single 3D tensor. In this example, we use color for sign (red

is tension, positive, and green is compression, negative) and the length of a line to indicated

magnitude of the three eigenvalues of the tensor. Even with only one 3D tensor being visualized

the relative size of the lines is not quite clear, at least it is not clear by merely looking at a

single projection. The orientation of the lines plays a major role in perceiving visually the

actual magnitudes of the principal stress values.

Nevertheless, hedgehogs are a simple method to visualize principal stresses. Figure 6 shows

stress tensor hedgehogs for our three examples. Figures 6(a,b,c) present stress hedgehogs for

the single, dual and load couples on a half{space model. Despite a large number of stress

hedgehogs, the stress trajectories are evident. The analyst can use such visualizations to gain

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6

Prepared using nagauth.cls



B
or

is
 J

er
em

ic
: D

ra
ft

 P
ap

er
12 JEREMI�C ET AL.

understanding of the response within a solid. However, the examples shown in Figures 6(a,b,c)

are rather simple and for such simple examples we can intuitively predict orientations and

magnitudes of principal stresses.

a) b)

c)

Figure 6. Stress hedgehogs for a single (a), dual (b) and load couples (c) loads on a half space model.

When it comes to visualizing results from numerical geomechanics simulations for realistic

objects, hedgehogs are no longer e�ective. Figures 7(a,b) present principal stress hedgehogs

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 13

for our examples involving pile foundations. Figure 7(a) presents a view of principal stress

hedgehogs for one layer of the four{pile group close to the surface. The results shown here

are taken from one time step of a seismic simulation involving a four{pile group embedded in

soil. This presentation of principal stress hedgehogs does not reveal the mechanical behavior

of the system. The �nite element model used for this four{pile group was rather coarse

and, consequently, stress results are not of high quality. With such a de�cient stress �eld

resulting from a coarse mesh, the visualization using principal{stress hedgehogs does not

convey appropriately the underlying distribution of stresses. Figure 7(b) presents principal

a) b)

Figure 7. (a) Principal stress hedgehogs for one layer of four{pile group close to the surface, (b)

principal stress hedgehogs for a layer just beneath the pile cap for a single pile.

stress hedgehogs for a layer just beneath the pile cap for a single pile. This �gure shows a

stress �eld taken from one time step of dynamic simulation. While it is obvious that the four

projections (one perspective and three orthogonal views) improve the visualization quite a bit,

the stress �eld is too complicated to be understood using just hedgehogs.

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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4.2. Hyperstreamlines

A better representation of the stress �eld in the solid can be obtained by using

hyperstreamlines. Dickenson [5] introduced the concept of tensor lines into visualization. These

are curves that are everywhere tangent to one of the principal components of the tensor.

Delmarcelle and Hesselink [3, 4] extended this idea to hyperstreamlines. A hyperstreamline is a

tensor line with a tube or helix structure de�ned by the other two eigenvalues and eigenvectors.

Figures 8(a,b,c) show hyperstreamlines for major, intermediate and minor principal stresses

for a point{load example. In this case, hyperstreamlines quite e�ectively describe the stress

tensor �eld. It is particularly interesting to observe the \
ows" of the minor principal stress

(compressive principal stress) in Figure 8(a) and the major principal stress (tensile principal

stress) in Figure 8(c). Color clearly presents the magnitudes of principal stresses. Here, blue

depicts high values and red low values. It is also interesting that for the intermediate principal

stress tensor hyperstreamlines the color code is alternating cyclically. This is explained by the

small variations (due to numerical errors) of the constant principal stress value. The same can

be observed for the major principal stress tensor �eld close to the point{load application point

in Figure 8(c).

a) b) c)

Figure 8. Hyperstreamlines for minor, intermediate and major principal stress for a point{load.
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 15

Figures 9(a,b) show hyperstreamlines for the minor principal stress tensor for a two point{

load data set and in a load couple data set.

a) b)

Figure 9. Minor hyperstreamlines for two{point load and load couple data sets.

The presentation of hyperstreamlines in form of trajectories can be augmented by helices and

tubes. There exist three principal stresses at each point inside the solid under consideration.

The hyperstreamlines present only one of the principal stresses (the minor, intermediate or

major one). At each point in space we do have available the two other principal stresses.

The addition of helices and tubes serves the purpose of showing all three principal stresses

of a tensor on a single visualization. The two orthogonal dimensions of a helix (a cross) or a

tube (ellipsoid) are used to represent the two principal stresses while color is used to show

the main component of the principal stress along the hyperstreamline. In other words, a

helix or tube hyperstreamline is a tensor line with a helix or tube de�ned by the other two

principal components and principal directions of a tensor. Figures 10(a,b) shows the variations

of hyperstreamlines presentation for a single point load example: (a) hyperstreamlines drawn

as helix just beneath the point load, (b) hyperstreamlines drawn as tube just beneath the

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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point load. For the single point load, the �ve helix and tube hyperstreamlines are shown in

Figures 10(a,b) respectively.

a) b)

c) d)

Figure 10. Helix (a,c) and tube (b,d) hyperstreamlines for a single{point load example.

Figures 11(a,b) show tube hyperstreamlines for the minor principal stress for two point

load and the couple. It is interesting to note that the tube hyperstreamlines perform quite

nicely if all the principal stress values are of the same sign. If, on the other hand, one of

the principal stresses changes sign, the tube hyperstreamline will cease to exist. In this case,

the ellipsoid part of the tube hyperstreamline will be converted to a paraboloid. Before that

Copyright c
 2001 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2001; 01:1{6
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TENSOR VISUALIZATIONS IN COMPUTATIONAL GEOMECHANICS 17

happens, the tube hyperstreamline will, when one of the two other principal stresses becomes

zero, degenerate. This behavior is shown in Figures 11(a,b).

a) b)

Figure 11. Tube hyperstreamlines for minor principal stress for (a) two{point loads and (b) load couple

examples.

Figure 12 shows helix hyperstreamlines for the intermediate principal stress for a two{point

load and a load couple examples. Considering Figure 12(a), the two{point load example, the

variation of the intermediate principal stress is presented using color along the hyperstreamline.

The variation of the other two components of the principal stress, given by the helix dimensions

at the speci�c point, shows that one of the values (minor principal stress) has a �nite value

while the other one (major principal stress) is close to zero. When comparing Figures 12(a)

and 6(b), it becomes obvious that the major principal stress components are small or close to

zero. In some instances they even become negative. As for the tube hyperstreamlines, negative

values for one (or both) of the other principal stress values makes this visualization approach

unusable.

Figure 13 shows hyperstreamlines for the single{pile data set. The �rst three �gures

Figures 13(a,b,c), show the minor principal stress hyperstreamlines in terms of (a) line

Copyright c
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a) b)

Figure 12. Helix hyperstreamlines for the intermediate principal stress for (a) two{point load and the

(b) load couple examples.

hyperstreamlines, (b) tube hyperstreamlines, and (c) helix hyperstreamlines. The starting

point for these hyperstreamlines is just outside the pile, in the soil, and the end points are

on the other side of the pile, again in the soil. Figure 13(d) shows major principal stress

hyperstreamlines starting in soil, extending through the solid pile, and ending in the soil on

the other side.

There are a number of details worth mentioning. In Figures 13(a,b,c), minor principal stress

hyperstreamlines are shown, which means that we follow the compressive stress in tangent

direction and then, in the case of helix and tube hyperstreamlines, plot the other two principal

stresses. We consider the shape of hyperstreamlines: The upper four hyperstreamlines are

\bending upward" while the lower ones are mainly horizontal. This means that, in the upper

part of the pile, compressive stresses are inclined (almost vertical), which is expected for the

bending deformation of a pile. Beginning at some depth, however, the pile is not subjected to

bending any longer. The horizontal traces of minor principal stresses at the left (front) side in

the upper portion of the pile are also expected, as this side should have large tensile stresses.

Copyright c
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a) b)

c) d)

Figure 13. Minor principal stress hyperstreamlines for one{pile model: (a) hyperstreamlines; (b) tube

hyperstreamlines, (c) helix hyperstreamlines; and (d) major hyperstreamlines extending through the

soil and concrete.

Those tensile stresses are best seen in helix hyperstreamlines in Figure 13(c).

Figure 13(d) shows the change of the major principal stress (tensile) along its own trajectory.

We added tubes representing the other two principal stresses (intermediate and minor). First,

a signi�cant variation is observed for the major principal stress (depicted in changing color)

as it enters and leaves the region occupied by the concrete pile. Second, signi�cant rotation

of the principal stress triad is observed, particularly in the uppermost tube hyperstreamline,

Copyright c
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which indicates a quite di�erent stress state (magnitude and orientation) in the concrete pile

and the surrounding soil. Third, the variation of stress values is much smaller in the soil than

in concrete, and the variations become smaller the deeper a hyperstreamline is.

4.3. Hyperstreamsurfaces

Despite the fact that we can generate powerful visualizations with hyperstreamlines, this

method can only show stress lines that follow the tangent of one of the principal stresses.

Therefore, visualization results are highly dependent on the initial point where we start to

follow the tangent to one of the principal stresses. By increasing the number of hyperstreamlines

one can gain a better understanding of overall structure of the tensor space but this approach

has its limitations. Figures 14 shows visualizations based on relatively large number of

hyperstreamlines. Figures 14(a,b,c) show minor principal stress for a double{load data set

with (a) nine, (b) sixteen, and (c) twenty �ve hyperstreamlines. Figures 15(d,e,f) show minor

principal stress for a load couple data set with (a) nine, (b) sixteen, and (c) twenty �ve

hyperstreamlines.

This concept of hyperstreamlines can be extended to so{called hyperstreamsurfaces. The

hyperstreamsurface is a visualization that uses a set of points on an open (or closed)

curve to construct a number of hyperstreamlines, which are then connected using polygons.

Figure 15 shows hyperstreamsurfaces for a point{load data set. Figures 15(a,b,c) show

hyperstreamsurfaces for the minor, intermediate, and major principal stresses. Figures

16(a,b,c,d,e,f) show hyperstreamsurfaces for the minor, intermediate, and major principal

stresses, for the double{load and load{couple data sets.

Figures 17(a,b) shows hyperstreamsurfaces for minor principal stress (compression) for (a)
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a) b) c)

d) e) f)

Figure 14. Families of hyperstreamlines representing minor principal stresses for the double{point and

the load{couple data set.

a) b) c)

Figure 15. Hyperstreamsurfaces for (a) minor, (b) intermediate, and (c) major principal stresses for

point{load data set.

a single{pile and (b) a four{pile group example. In Figure 17(a), the hyperstreamsurface

starts at the center line of a pile and extends through the concrete (in both directions)

until it reaches surrounding soil. Figure 17(a) exhibits the same behavior as Figure 13(a).

Both �gures represent the minor principal stress for the same single{pile simulation. The

hyperstreamsurface shown in Figure 17(a) reveals the stress �eld in more details. We notice
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a) b) c)

d) e) f)

Figure 16. Hyperstreamsurfaces for (a,d) minor, (b,e) intermediate, and (c,f) major principal stresses

(for the double{load (a,b,c) and load{couple (d,e,f) data set).

the twisting and \discoloring" of the hyperstreamsurface toward the bottom of the pile. This

can be explained by the fact that the stress �eld in the concrete pile is far away from the

main bending e�ects close to the surface. The state of stress thus deviates just by a small

amount from the initial state induced by the self weight. Such small change in stresses leads

to a near{uniform green hue coloring. A \kink" in direction and color is noticed close to the

surface. This is a part of the hyperstreamsurface that ends in the soil and thus, by moving

from sti� (concrete) toward soft (soil) medium, has much smaller minor (compressive) stresses.

The reason for such behavior can be deduced from Figure 13(a), showing hyperstreamlines:

The minor principal stress is bend upward (due to large compressive stresses resulting from

bending), and the stress path extends into the concrete pile cap. If more hyperstreamlines

were used in constructing a hyperstreamsurface, smoother transition from soil interface to

concrete cap would result. However, with the current choice, there is a region inside the
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pile and the adjacent soil, toward the upper{end of a pile, that is not properly covered by

hyperstreamlines/hyperstreamsurfaces.

a) b)

Figure 17. Hyperstreamsurfaces for minor principal stress (compression) for (a) a single{pile and (b)

a four{pile group.

Figure 17(b) represents the minor (compressive) principal stress hyperstreamsurface for the

four{pile group. In this �gure, we have removed one pile from the model to simplify the

view. An interesting e�ect is \shading," apparent behind the left pile in this �gure. The

hyperstreamsurface starts, at the center of that pile and extends outside, ending in soil.

This pile group is much sti�er than the one{pile example. The e�ects of bending are much

smaller, and the four{pile group behaves like a sti� frame embedded in soil. The observed

deformation pattern is thus closer to horizontal translation with a large horizontal resistance

and small bending. The hyperstreamsurface extends into the soil outside the pile group, with

apparent compressive stress. However, just behind the pile, but inside the pile group, the

minor principal stress changes signi�cantly in value and then curves by almost 90Æ. The twist

of the minor principal stress hyperstreamsurface clearly demonstrates the pile{group e�ect:

Maximal compressive stress (minor principal stress) is acting between two piles in direction
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perpendicular to the pile loading direction. This �ndings is contrary to common belief about

the state of stresses in pile groups. More important, a large \shading" e�ect is observed, which,

when combined with the twisting of the minor principal stress, leads us to conclude that the

two back piles are mostly loaded in direction perpendicular to the global loading direction.

4.4. Isosurfaces

In order to gain better understanding of the state of stress in a solid, it is interesting to

determine the positions where one or two of the principal stresses change sign. Figures 18(a,b)

show an isosurface close to the pile foundation with one positive principal stress value, Figure

18(a), and with two positive principal stress values, Figures 18(b). Figure 18(a) clearly shows

a) b)

Figure 18. Isosurface of regions with (a) one positive principal stress value and (b) two positive

principal stress values.

the zones with some tensile stresses. These zones are mostly concentrated near the concrete{

soil interface as expected and represent gap openings. The location of these zones does not

follow the concrete{soil interface exactly, most likely due to numerical errors produced by the

algorithm used for interpolating stresses. It is also interesting that a small region where two

principal stresses are positive, at the corner of the top of pile cap, becomes evident.
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4.5. Time{dependent Tensor Fields

The visualization methods we have described in the previous sections can be extended

to dynamic events, to time{dependent simulated data. Unfortunately, we cannot present

visualization animation of the dynamic data in a paper. However, we will present image

sequences for dynamic data. It is our experience that very good results can be obtained by

animating hyperstreamlines and hyperstreamsurfaces.

Figure 19 presents a sequence of hyperstreamline visualizations of the single{pile data{

set. This series of snapshots is for time steps 147-161 of a dynamic simulation using Kobe

earthquake input motions. The motion of two minor principal stress hyperstreamlines is shown.

It seems that the animated visualization is not very; it requires experience to understand the

changes in the stress �eld.

Figure 20 presents a sequence of hyperstreamsurfaces for the same simulation. This

animation conveys the changes of the minor principal stress state in the pile and surrounding

soil much better than using plain hyperstreamlines for animation. It can be seen that the

minor principal stress follows cycles of compression. We can only observe cycles of compression

while cycles of tension (in the concrete pile) would have to be shown using a second

hyperstreamsurface for the major principal stress.
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Figure 19. Sequence of snapshots for two minor principal stress hyperstreamlines for 15 time steps of

a dynamic simulation using Kobe earthquake input motions.
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Figure 20. Sequence of minor principal stress hyperstreamsurface for the single{pile dynamic

simulation, 15 time steps shown.
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5. CONCLUSION

We have discussed di�erent approaches to visualizing tensors for computational geomechanics.

We have focused on the visualization of the stress tensor and have presented visualization of the

principal stress tensor using hedgehogs, hyperstreamlines, hyperstreamsurface, and isosurfaces.

We have also presented extensions of some of these methods for the visualization of dynamic

data, using the behavior of piles during an earthquake event as examples.

We have provided visualizations for simple and complicated boundary value problems.

A number of interesting �ndings could be made using the presented visualization methods

especially for the analysis of single{pile and pile{group behavior.
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