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SUMMARY

The computational significance of the case of two or three equal principal stretches in large

deformation analysis is investigated in this paper. A detailed analytical study shows that the previously

suggested solutions, based on numerical perturbations, are not adequate and might lead to erroneous

results. A number of examples are presented to illustrate the approach.
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2 JEREMIĆ AND CHENG

1. INTRODUCTION

An objective computational treatment of large deformation inelastic problems has been

developed recently by using multiplicative decomposition of the deformation gradient (eg.

Lee and Liu [6]). The techniques are based on the hyperelastic–plastic approach and most of

them stem from pioneering work by Simo et al. [16, 13, 14, 15]. A consistent hyperelastic

computational formulation forms a basis of all the developments for large deformation

hyperelasto–plasticity. Of particular importance is that the computational formulation can

be verified on a complete stress and strain space. This requirement fits well with a much wider

goal of computational validation of the developed simulations tools (eg. Oberkampf et al. [9]

and Roach [12]).

In this paper a peculiar (yet frequently present) case when two or all three principal stretches

are equal is explored. Of particular interest is the computational treatment of the consistent

tangent stiffness tensor and stress measures (second Piola–Kirchhoff for example) for this

case. The paper is organized around consistent and detailed derivations of large deformation

measures, large deformation stress measures and the resulting consistent tangent stiffness

tensor. The special cases of equal stretches are dealt with within the derivations, following

the general case of all non–equal stretches. The derivations are general as they apply to any

hyperelastic material model, including those that are deviatoric only (isochoric), volumetric

only and those that can produce both types of responses.

It should be noted that Simo and Taylor [18] did address the issue of two or three equal

principal stretches but it was specifically done for the Ogden (deviatoric only) hyperelastic

material model and in an Eulerian form. It will also be shown that the method of perturbations

suggested later (eg. Simo [15]) can only be applied in a limited number of cases. As it turns
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EQUAL PRINCIPAL STRETCHES 3

out, a solution for the treatment of equal principal stretches based on perturbations can lead

to erroneous results and is dependent on the numerical precision of computations. Results

for cases of two or three equal principal stretches, obtained using the present approach, are

shown. In order to provide a self–sufficient treatment of hyperelasticity, derivatives used to

obtain stress measures and consistent tangent stiffness tensors for a number of hyperelastic

models are given in the appendix.

2. HYPERELASTICITY

This section develops analytical forms for the deformation tensor, stress measures and the

stiffness tensor for general case (non–equal principal stretches) and for two special cases with

two and/or three equal principal stretches.

2.1. Deformation Tensor

The deformation tensor† in material (Lagrangian) description, given as Cm
IJ (m =

0,±1,±2, · · · ) can be expressed in terms of its eigenvalues and eigenvectors (eg. Ting [19]

and Morman [8]) which in case of three different principal stretches (λ1 6= λ2 6= λ3) can be

written as:

Cm
IJ = λ2m

1 N
(1)
I N

(1)
J + λ2m

2 N
(2)
I N

(2)
J + λ2m

3 N
(3)
I N

(3)
J (1)

†Indicial notation is used throughout this paper. Einstein tensor summation is assumed and applies to all pairs

of dummy indices. The upper case indices describe the undeformed while lower case indices describe deformed

configuration. It is also noted that no summation is implied over indices in parenthesis.
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4 JEREMIĆ AND CHENG

The explicit form for the cross product of deformation tensor’s unit eigenvectors N
(A)
I N

(A)
J

can then be expressed as:

N
(A)
I N

(A)
J = λ2

(A)M
(A)
IJ (2)

with

D(A) = (λ2
(A) − λ2

(B))(λ
2
(A) − λ2

(C)) = 2λ4
(A) − I1λ

2
(A) + I3λ

−2
(A) (3)

M
(A)
IJ =

CIJ −
(

I1 − λ2
(A)

)

δIJ + I3λ
−2
(A)C

−1
IJ

D(A)
(4)

Here, obviously, D(A) and M
(A)
IJ must satisfy:

3∑

A=1

1

D(A)
= 0 ;

3∑

A=1

λ2
(A)

D(A)
= 0 ;

3∑

A=1

λ4
(A)

D(A)
= 1

3∑

A=1

M
(A)
IJ = C−1

IJ ;
3∑

A=1

λ2
(A)M

(A)
IJ = δIJ ;

3∑

A=1

λ4
(A)M

(A)
IJ = CIJ (5)

In the case that two or three principal stretches are equal, the value of D(A) (from Equation

3) becomes zero. This necessitates closer inspection of equations which rely on D(A) in the

denominator.

Special Case λ = λ1 = λ2 6= λ3. In this case, which applies, for example to a uniaxial

stretching of materials, one obtains for the deformation tensor

Cm
IJ = λ2m(δIJ −N

(3)
I N

(3)
J ) + λ2m

3 N
(3)
I N

(3)
J (6)

while the tensor M
(3)
IJ , used to calculate the product of deformation tensor’s eigenvectors

(N
(A)
I N

(A)
J = λ2

(A)M
(A)
IJ ), is now

M
(3)
IJ =

CIJ −
(
I1 − λ2

3

)
δIJ + I3λ

−2
3 C−1

IJ

D(3)
(7)
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EQUAL PRINCIPAL STRETCHES 5

Special Case λ = λ1 = λ2 = λ3. For this special case, as found in hydrostatic stretching of

materials, one obtains:

Cm
IJ = λ2mδIJ (8)

2.2. Stress Measures

The second Piola–Kirchhoff stress is physically defined as the force per undeformed area loaded

on a surface in the undeformed reference configuration:

SIJ = 2
∂W

∂CIJ
= wA(M

(A)
IJ )A

︸ ︷︷ ︸

isochoric

+
∂volW (J)

∂J
J C−1

IJ
︸ ︷︷ ︸

volumetric

(9)

where wA can be expressed as (for detailed derivation see Jeremić [5] and Holzapfel [3])

wA = −1

3

∂isoW

∂λ̃B
λ̃B +

∂isoW

∂λ̃(A)

λ̃(A) (10)

It should be noted that λ̃ = J−1/3λ is the isochoric component of the principal stretch. The

elastic potential function W is used to specify material models. The isochoric components of

stress tensor will be affected by special cases of two or three equal stretches.

Special Case λ = λ1 = λ2 6= λ3. In this special case, the isochoric components of the second

Piola Kirchhoff stress is

isoSIJ = w3M
(3)
IJ + w1(C

−1
IJ −M

(3)
IJ ) (11)

where M
(3)
IJ is given by the Equation (7).

Special Case λ = λ1 = λ2 = λ3. This is actually a trivial case as there is no isochoric stress

from volumetric deformation

isoSIJ = 0 (12)
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6 JEREMIĆ AND CHENG

It is worth noting that other stress measures are easily obtained once the Second Piola–

Kirchhoff stress is known. For example, the First Piola–Kirchhoff stress is simply obtained from

PiJ = FiKSKJ , Cauchy stress is σij = 1/J FiMSMNFjN , Mandel stress is TIJ = CIKSKJ ,

and the Kirchhoff stress is τij = FiA(FjB)
tSAB .

2.3. Constitutive Tangent Tensor

Material tangent stiffness relation is defined from:

dSIJ =
1

2
LIJKL dCKL ; LIJKL = 4

∂2
(
volW

)

∂CIJ ∂CKL
+ 4

∂2
(
isoW

)

∂CIJ ∂CKL
(13)

with the definition of volumetric component of the stiffness tensor

volLIJKL = (J2 ∂
2volW (J)

∂J∂J
+ J

∂volW (J)

∂J
)C−1

IJ C
−1
KL + 2J

∂volW (J)

∂J
IC

−1

IJKL (14)

General case λ1 6= λ2 6= λ3. In a general case, when the principal stretches are all different,

one can write the isochoric part of the stiffness tensor as:

LisoIJKL = YAB (M
(B)
KL )B (M

(A)
IJ )A + 2 wA (M(A)

IJKL)A (15)

where tensor YAB can be expressed as (for detailed derivation see Jeremić [4])

YAB =
∂isoW

∂λ̃(A)

δ(A)(B) λ̃(B) +
∂2isoW

∂λ̃(A)∂λ̃(B)

λ̃(A) λ̃(B) −
1

3

(

∂isoW

∂λ̃(A)

λ̃(A) +
∂isoW

∂λ̃(B)

λ̃(B)

)

−1

3

(

∂2isoW

∂λ̃(A)∂λ̃D
λ̃(A)λ̃D +

∂2isoW

∂λ̃C∂λ̃(B)

λ̃C λ̃(B)

)

+
1

9

(
∂2isoW

∂λ̃C∂λ̃D
λ̃C λ̃D +

∂isoW

∂λ̃D
λ̃D

)

(16)

The Simo–Serrin fourth order tensor MIJKL = ∂M
(A)
IJ /∂CKL (eg. Morman [8] and Simo and

Taylor [18]) is defined as:

M(A)
IJKL =

1

D(A)
(IIJKL − δIJδKL + λ2

(A)(δIJM
(A)
KL +M

(A)
IJ δKL)

+ I3λ
−2
(A)(C

−1
IJ C

−1
KL + IC

−1

IJKL − C−1
IJ M

(A)
KL −M

(A)
IJ C−1

KL)− dAM
(A)
IJ M

(A)
KL ) (17)
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EQUAL PRINCIPAL STRETCHES 7

The associated fourth order tensors IC
−1

IJKL and IIJKL are defined as

IC
−1

IJKL = −1

2

(
C−1
IKC

−1
JL + C−1

ILC
−1
JK

)
; IIJKL =

1

2
(δIKδJL + δILδJK) (18)

By using equations (5), one observes that M(A)
IJKL satisfies

3∑

A=1

M(A)
IJKL = IC

−1

IJKL ;

3∑

A=1

λ2
(A)M

(A)
IJKL +

3∑

A=1

λ2
(A)M

(A)
IJ M

(A)
KL = 0

3∑

A=1

λ4
(A)M

(A)
IJKL + 2

3∑

A=1

λ4
(A)M

(A)
IJ M

(A)
KL = IIJKL (19)

Special case λ = λ1 = λ2 6= λ3. In this special case the stiffness tensor is obtained as:

LisoIJKL = Y33M
(3)
IJ M

(3)
KL + Y11

(

C−1
IJ −M

(1)
IJ

)(

C−1
KL −M

(1)
KL

)

+ Y13

(

C−1
IJ −M

(1)
IJ

)

M
(3)
KL + Y31M

(3)
IJ

(

C−1
KL −M

(1)
KL

)

+ 2w3M(3)
IJKL + 2w1(I

C−1

IJKL −M
(3)
IJKL) (20)

Special case λ = λ1 = λ2 = λ3. For this special case the stiffness tensor collapses to the

following form:

LisoIJKL = 2Gλ−4

(

IIJKL −
1

3
δIJδKL

)

(21)

Remark. For the small deformation case (where limλ→1 Cij = δij ; limλ→1 J = 1) the

stiffness tensor collapses to

LIJKL → Eijkl = (Kb − 2/3 G) δijδkl + (2G)Iijkl (22)

This is exactly the small deformation linear elastic stiffness tensor in terms of bulk modulus

Kb and shear modulus G.
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8 JEREMIĆ AND CHENG

2.4. Perturbation Technique.

One of the suggested techniques for resolving cases of two or three equal principal stretches is

based on perturbations (eg. Simo [15]). This technique should be carefully utilized as in some

cases inconsistent results are obtained. This is illustrated on a set of analytical experiments.

Let us assume an initial state of deformation given by

FiJ = CIJ = δij ⇒ λ1 = λ2 = λ3 = 1

Since this state represents total lack of deformation, the large deformation constitutive stiffness

tensor should be the same as that one for small deformations.

A perturbation χ = α
√
M is introduced to the principal stretches λ1, λ2 and λ3 to distinctly

separate their values. Here M is the machine precision‡ and α is a factor. On our computer

platform (Intel Pentium CPU), the square root of machine precision is
√
M = 3.293× 10−10.

A perturbation of equal principal stretches of the form

λ1 = 1 + χ ; λ2 = 1 ; λ3 = 1− χ

is assumed and used for calculation of the constitutive tensor. This state of principal stretches

is essentially a small deformation configuration and both large and small deformation theories

‡ Machine precision or machine epsilon (macheps) is the smallest distinguishable positive number (in a given

precision, i.e. float (32 bits), double (64 bits) or long double (80 bits), such that 1.0 + macheps > 1.0 yields

true on the given computer platform. The ANSI/IEEE Standard 754-1985, defines macheps for a number

of floating point precisions. For example, double precision macheps = 2.22 × 10−16, while the long double

macheps = 1.08 × 10−19. Curiously enough, Intel 80x86 platform promotes all the float, double and long

double precision numbers to long number inside the floating point unit (FPU) and all the computations are

performed using 80 bits of precision. Results are then truncated to predefined predefined precision upon exiting

the FPU. Consequence is that one is forced to use the highest precision macheps on Intel 80x86 even if it might

not be portable.
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EQUAL PRINCIPAL STRETCHES 9

should give the same result. Given bulk modulus Kb = 1.9717 MPa and shear modulus

G = 0.4225 MPa, and using the definition for small deformation linear elastic stiffness tensor

in equation (22), a few illustrative stiffness values are given in Table (I).

Table I. Selected small deformation (SD) and large deformation (LD) stiffness components for different

perturbation numbers. Units are Pascals [Pa].

SD Stiffness component (Eq. (22)) E1111 E1122 E1212

(reference values) 2.530× 106 1.690× 106 4.225× 105

Perturbation / LD Stiffness component L1111 L1122 L1212

α = 100, 101 NaN NaN NaN

α = 102 2.710× 106 2.031× 106 3.396× 105

α = 103, 104, 105 2.711× 106 2.035× 106 3.396× 105

The reason for the differences and in some cases lack of results§ can be attributed to the

fact that CIJ , C
−1
IJ and IC

−1

IJKL remain unperturbed, while λ1, λ2, and λ3 are perturbed. This

inconsistency produces a difference, and may result in erroneous results. A simple check why the

perturbation method does not work is obtained by verifying that identities given by equations

(5) and (19) are not satisfied after perturbation.

3. NUMERICAL EXAMPLES

A set of two representative examples is provided to illustrate closed form solutions derived

above. The examples are related to uniaxial tension and volumetric deformation, since those

§The NaN means Not a Number and is essentially a result of a numerical value overflowing the largest accurate

representation of any number in given accuracy
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10 JEREMIĆ AND CHENG

cases are usually found in formulation verifications and model validations. It is noted that

the examples described and analyzed below will fail to yield results (numerical overflow) or

will yield wrong results (see Table I) if the perturbation technique is used. The assumed

material properties (for small deformation model) are Young’s modulus E = 1.183 × 106 Pa

and Poisson’s Ratio ν = 0.4 (which gives bulk modulus Kb = 1.9717 MPa and shear modulus

G = 0.4225 MPa). Related material constants for the Ogden material model (using the

parameters from Ogden [10]) are: N = 3, µ1 = 1.3, µ2 = 5.0, µ3 = −2.0, c1 = 6.3 × 105 Pa,

c2 = 1.2×103 Pa, c1 = −1.0×104 Pa . The parameters for the Mooney–Rivlin material model

(as suggested by Anand [1]) are: C1 = (7/16)G, C2 = (1/16)G.

Uniaxial tension. The case of uniaxial tension (or compression, as in soil mechanics tests)

has two equal principal stretches, λ1 > λ2 = λ3 = λ. Since the material is compressible

(µ = 0.4) and the constraint is uniaxial, λ1 > 1, λ < 1, the only nonzero stress component is

σ11.

Figure (1) shows that the tensile tractions (undeformed reference) increases with the increase

of tensile stretch for the Neo–Hookean, Logarithmic, Mooney–Rivlin–Simo and Ogden–Simo

model. It is interesting to note that the logarithmic model response exhibits softening in

response (tractions vs. stretch) caused by the violation of Legendre–Hadamard condition (eg.

Bruhns et al. [2]).

Volumetric deformation. Volumetric deformation has three equal principal stretches,

λ1 = λ2 = λ3 = λ. Only volumetric stress pm = σ11 = σ22 = σ33 is nonzero. The volume

ratio J = λ1λ2λ3 is used to represent volumetric deformation. The absence of volumetric

deformation is implied by J = 1. Volumetric dilation applies when J > 1, while the volumetric
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Figure 1. Uniaxial tension: tensile traction t (undeformed reference) vs. tensile stretch λ1

contraction holds when 0 < J < 1.

Figure (2) shows the volumetric traction (undeformed reference) versus volume ratio,

respectively for the Neo–Hookean, Logarithmic, and Simo–Pister models. These curves have the

same slope when J = 1, which is expected as the deformations approach the small deformation

case.
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Figure 2. Volumetric deformation: hydrostatic pressure p (undeformed reference) vs. volume ratio J

4. CONCLUSIONS

A common deformation state with two or three equal principal stretches in computational

hyperelasticity was investigated. A closed form solutions for deformation measures, stress

measures and stiffness tensor were analytically presented in Lagrangian format. These solutions

are particularly important in view of possible problems with perturbation techniques that

are used to overcome computational difficulties. An example of illustrating problems with

perturbation technique shows that even when a solution is available, it might be the wrong

one. In addition to that, a set of numerical examples, employing presented analytical solutions
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EQUAL PRINCIPAL STRETCHES 13

was used as an illustration for cases with two or three equal principal stretches.

Of particular importance is a decisions on when to consider principal stretches equal.

This decisions has to be made within computational implementation of large deformation

hyperelasticity. A simple suggestion is that if the difference between two or three principal

stretches is within a value of χ? = 102
√
M , they can be treated as numerically equal and the

analytical formulae for two or three equal principal stretches (developed in this paper) should

be used.

We also note that the described theory is implemented into the public domain finite element

platform OpenSees (eg. [11]) with the source code and above examples available on-line.
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14 JEREMIĆ AND CHENG

REFERENCES

1. Anand, L. Moderate deformations in extension-torsion of incompressible isotropic elastic materials.

Journal of the mechanics and Physics of Solids 34 (1986), 293–304.

2. Bruhns, O., Xiao, H., and Meyers, A. Constitutive inequalities for an isortopic elastic strain–energy

function based on Hencky’s logarithmic strain tensor. Procedings of the Royal Society A, London 457

(2001), 2207–2226.

3. Holzapfel, G. A. Nonlinear Solid Mechanics: a continuum approach for engineering. John Wiley &

Sons, Ltd., New York, 2001.
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APPENDIX

II. Isotropic Hyperelastic Models

Derivatives needed to obtain stiffness tensors and stress measures for a set of hyperelastic models are

given in Table (II). Detail descriptions for these models can be found in Ogden [10], Miehe [7] and

Simo and Marsden [17].

Table II. Derivatives for stiffness tensors and stress measures of various hyperelastic material models.

Model ∂isoW

∂λ̃A

∂2(isoW)
∂λ̃2

A

dvolW (J)
dJ

d2volW (J)

dJ2

Ogden
∑N

r=1 crλ̃
µr−1
A

∑N
r=1 cr(µr − 1)λ̃µr−2

A

Neo-Hookean Gλ̃A G Kb(J − 1) Kb

Mooney–Rivlin 2C1λ̃A − 2C2λ̃
−3
A 2C1 + 6C2λ̃

−4
A

Logarithmic 2Gλ̃−1
A ln λ̃A 2Gλ̃−2

A (1− ln λ̃A) KbJ
−1 ln J KbJ

−2(1− ln J)

Simo–Pister (J − 1
J
)Kb

2
(1 + 1

J2 )
Kb

2
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