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Abstract In this paper, a solution is presented for evolution of Proba-

bility Density Function (PDF) of elastic–plastic stress–strain relationship

for material models with uncertain parameters. Developments in this paper

are based on already derived general formulation presented in the compan-

ion paper. The solution presented is then specialized to a specific Drucker

Prager elastic–plastic material model.

Three numerical problems are used to illustrate the developed solution.

The stress strain response (1D) is given as a PDF of stress as a function

of strain. The presentation of the stress strain response through the PDF
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differs significantly from the traditional presentation of such results, which

are represented by a single, unique curve in stress–strain space. In addition

to that the numerical solutions are verified against closed form solutions

where available (elastic). In cases where the closed form solution does not

exist (elastic–plastic), Monte–Carlo simulations are used for verification.

1 Introduction

An elastic-plastic constitutive law can be represented by a set of linear or

non-linear ordinary differential equations (ODEs), which relate rate (incre-

ments) of stress with the rate of strain through linear or nonlinear material

modulus:

dσij(t)

dt
= Dep

ijkl

dǫkl(t)

dt
(1)

where Dep
ijkl could be linear or a non-linear function of stresses, strains and

internal variables. If either the material modulus or the forcing term (strain

rate) becomes random, this set of linear or nonlinear ODEs becomes a set

of linear or non-linear stochastic differential equations (SDEs). The uncer-

tainty associated with the coefficient (stiffness) term is generally attributed

to the inherent variability of the material. Geomaterials are particularly

notorious for their variability, sampling and testing errors and in general,

uncertainty in their properties. The uncertainty in the forcing term arises

when the material is subjected to uncertain loads (usually dynamic) like

wind, waves or earthquakes. Due to randomness in the parameter and/or

forcing term the response variable of the elastic-plastic constitutive rate
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equation (stress) will then be a random process. There exist several meth-

ods to estimate the probabilistic characteristics of the response variable

(Gardiner, 2004).

For the case where the material modulus is linear and deterministic and

the forcing is uncertain (Gaussian), the response is known to be Gaussian

and can be estimated by standard methods (Gardiner, 2004). General lin-

ear SDE with random forcing can be solved by cumulant expansion method

(Van Kampen, 1976). One possible way to solve non-linear SDE with ran-

dom forcing is to write its equivalent Fokker–Planck–Kolmogorov (FPK)

form. The advantage of writing the FPK form is that it is linear and de-

terministic even–though the original equation is non-linear and stochastic.

The general solution method for FPK equation can be found in any stan-

dard textbook (Gardiner (2004), Risken (1989)). A solution scheme for FPK

equation with application to structural reliability was presented by Lang-

tangen (1991)

For the particular case where the forcing is deterministic and the ma-

terial linear elastic (but still uncertain), Eq. 1 simplifies to a linear set of

algebraic equations of the form,

σij = Del
ijklǫkl (2)

where Del
ijkl is the elastic stochastic moduli tensor and hence the statistics

of the response variable (stress) can be easily obtained by transformation

method of random variable. For general linear SDEs with random coef-

ficients cumulant expansion method could be used (Van Kampen, 1976).
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While the solution for the stochastic linear elastic stress–strain problem is

readily available, the nonlinear (elastic–plastic) stochastic problem presents

itself as much harder to solve. This problems involves finding the solution

for a non-linear SDEs with random coefficients. Fortunately such solution

recently developed by Kavvas (2003). The developed solution is presented

as a generic Eulerian–Lagrangian form of the Fokker–Planck–Kolmogorov

equation. That probabilistic solution is second order exact for any stochastic

nonlinear ODE or PDE with random coefficients and random forcing.

The probabilistic solution developed by Kavvas (2003) was used in the

companion paper Jeremić et al. (2006) to develop the probability density

function (PDF) of a general local-average form of elastic-plastic constitutive

rate equation. This Eulerian–Lagrangian FPK equation was then specialized

to the particular cases of point-location scale linear elastic and Drucker-

Prager associative linear hardening elastic-plastic constitutive rate equa-

tions to show the applicability of the general formulation. In this paper the

solution process of those particular FPK equations will be presented.

2 Fokker–Planck–Kolmogorov Equation for Probabilistic

Elasticity and Elasto–Plasticity in 1-D

In the companion paper, Jeremić et al. (2006) applied the Eulerian–Lagrangian

form of Fokker–Planck–Kolmogorov (FPK) equation to the description of

the probabilistic behavior of elastic and elastic–plastic (Drucker-Prager as-
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sociative linear hardening) 1D constitutive equations with random material

parameters and random strain rate.

By focusing attention to the randomness of material properties only

(i.e. assuming the forcing function (strain rate) as deterministic), partial

differential equation (PDE) describing the evolution of probability density

function (PDF) of stress can be simplified. In particular, for 1D case, and

for linear elastic material (but still with probabilistic material properties,

in this case shear modulus G) one can write the following PDE

∂P (σ12(t))

∂t
= −

〈

G
dǫ12
dt

〉

∂P (σ12(t))

∂σ12

+

{∫ t

0

dτCov0

[

G
dǫ12
dt

;G
dǫ12
dt

]}

∂2P (σ12(t))

∂σ2
12

(3)

Similarly, for elastic–plastic state, again by neglecting the randomness

in strain rate, one can write the PDE for evolution of PDF of stress in 1D

as

∂P (σ12(t))

∂t
= −

〈

(Gep(t))
dǫ12
dt

〉

∂P (σ12(t))

∂σ12

+

{∫ t

0

dτCov0

[

Gep(t)
dǫ12
dt

;Gep(t − τ)
dǫ12
dt

]}

∂2P (σ12(t))

∂σ2
12

(4)

where Gep(a) is the probabilistic elastic–plastic tangent stiffness, (given in

Jeremić et al. (2006))

Gep(a) = G − G2

G + 9Kα2 +
1√
3
I1(a)α′

(5)
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where in the previous equation (5), a assumes values t or t−τ . With appro-

priate initial and boundary conditions as described in Jeremić et al. (2006),

one can solve Eqs. (3) and (4) for evolution of PDF of shear stress with

shear strain.

3 Example Problem statements

The applicability of proposed FPK equations (Eqs. (3) and (4)) in describ-

ing probabilistic elasto-plastic behavior, is verified using the following three

example problems.

Problem I. Assume the material is linear elastic, probabilistic, with

probabilistic shear modulus (G) given by a normal distribution at a point–

location scale with mean of 2.5 MPa and standard deviation of 0.707 MPa.

The aim is to calculated the evolution of PDF of shear stress (σ12) with

shear strain (ǫ12) for a displacement-controlled test with deterministic shear

strain increment. The other parameters are considered deterministic and are

as follows: Poisson’s ratio (ν = 0.2, and confining pressure I1 = 0.03 MPa.

Problem II. Assume elastic–plastic material model, composed of lin-

ear elastic component and Drucker–Prager associative isotropic linear hard-

ening elastic–plastic component. The probabilistic shear modulus (G) is

given through a normal distribution at a point–location scale with mean

of 2.5 MPa and standard deviation of 0.707 MPa. The aim is to calculate

the evolution of the PDF of shear stress (σ12) with shear strain (ǫ12) for

a displacement-controlled test with deterministic shear strain increment.
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The other parameters are considered deterministic and are as follows: Pois-

son’s ratio ν = 0.2, confining pressure I1 = 0.03 MPa, yield parameter1

α = 0.071, plastic slope2 α′ = 5.5.

Problem III. Assume elastic–plastic material model, with linear elas-

tic component and Drucker–Prager associative isotropic linear hardening

elastic–plastic component. The probabilistic yield parameter (α) is given

through a normal distribution at a point-location scale with mean of 0.52

and standard deviation of 0.1. The aim is to calculate the evolution of

the PDF of shear stress (σ12) with shear strain (ǫ12) for a displacement-

controlled test with deterministic shear strain increment. The other pa-

rameters are considered deterministic and are as follows: shear modulus

G = 2.5 MPa, Poisson’s ratio ν = 0.2, confining pressure I1 = 0.03 MPa,

and the plastic slope α′ = 5.5.

The above three problems will be solved using the proposed FPK equa-

tion approach. In addition to that, the solution will verified using either

variable transformation method, for linear elastic case or repetitive Monte

Carlo type simulations for elastic-plastic case.

1 The yield parameter α is an internal variable and is a function of friction angle

φ given by (α = 2 sin(φ)/(
p

(3)(3− sinφ)) (e.g. (Chen and Han, 1988))
2 The plastic slope α′ is a rate of change of friction angle governing linear

hardening.
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4 Numerical Scheme for Solving Fokker–Planck–Kolmogorov

Equation

For probabilistic elastic and elastic–plastic constitutive rate equations, the

PDEs (Eqs. (3) and (4)) which describe the evolution of probability densities

of σ12 have the following general form:

∂P

∂t
= −N(1)

∂P

∂σ12
+ N(2)

∂2P

∂σ2
12

(6)

with an appropriate initial condition, which depends on the type of problem,

and boundary conditions in the form

ζ(−∞, t) = ζ(∞, t) = 0 (7)

where N(1) and N(2) are called advection and diffusion coefficients, respec-

tively. The above PDE system (Eqs. (6) and (7) with appropriate initial

condition) were solved numerically by Method of Lines Wolfram (1991) us-

ing commercially available software Mathematica Wolfram Research Inc.

(2003).

The stress (state) variable σ12 theoretically spans space from −∞ to

+∞. However, for simulation (and practical) purposes, this theoretical do-

main is reduced to between −0.1 MPa and +0.1 MPa. This reduction is

based on the material properties of the example problems and span the

practical range of shear stress, σ12. The Fokker–Planck–Kolmogorov PDE

was semi-discretized (Fig. 1) in stress (σ12) domain by finite difference tech-

nique to obtain a set of linear simultaneous ODE systems. This set of linear
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Fig. 1 Stress Domain Discretization of Fokker–Planck–Kolmogorov PDE

simultaneous ODEs is solved using central difference technique. By refer-

ring to Fig. 1 a semi-discretized form of Eq. (6) can be written at any

intermediate node i as,

∂Pi

∂t
= Pi−1

(

N(1)

2∆σ12
+

N(2)

∆σ2
12

)

− Pi

(

2N(2)

∆σ2
12

)

+ Pi+1

(

− N(1)

2∆σ12
+

N(2)

∆σ2
12

)

(8)

Previous discretized system of equations forms an initial value problem in

the time dimension. By using forward difference technique, one can intro-

duce the boundary condition at the left boundary (node 1 in Fig. 1) as,

N(1)P1 − N(2)
P2 − P1

∆σ12
= 0 (9)

or, after rearranging,

P1 = P2









N(2)

∆σ12

N(1) +
N(2)

∆σ12









= 0 (10)



10 Kallol Sett et al.

Similarly, using backward difference technique, one can introduce the bound-

ary condition at the right boundary (node n in Fig. 1) as,

N(1)Pn − N(2)
Pn − Pn−1

∆σ12
= 0 (11)

which, after rearranging becomes

Pn = Pn−1









N(2)

∆σ12

N(2)

∆σ12
− N(1)









= 0 (12)

The initial condition depends on the type of the problem and it could be

deterministic or random. For elastic constitutive rate equation with random

shear modulus (Problem I) and for pre-yield elastic-plastic linear harden-

ing constitutive rate equation with random shear modulus (elastic part of

Problem II) the initial condition is deterministic. It will, therefor, be best

represented as Dirac delta function of the form,

P (σ12) = δ(σ12) (13)

For simulation purpose the Dirac delta initial condition was approxi-

mated with a Gaussian function. That is, for Problem I, the initial condition

was approximated with a Gaussian function with mean of 0 and standard

deviation of 0.00001 MPa as shown in Fig. 2

For post-yield, probabilistic elastic-plastic behavior (plastic part of Prob-

lem II), the initial condition is random and it corresponds to the probability

density function of σ12 just prior to yielding, that is obtained from elastic

part of Problem II. For Problem-III, the pre-yield elastic part is determinis-

tic but initial condition for the post-yield elastic-plastic response is random

and corresponds to the assumed distribution in yield strength.
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Fig. 2 Approximation of Dirac delta function, used as an initial condition for

Problem I

5 Determination of Coefficients for Fokker–Planck–Kolmogorov

Equation

To solve Problems I, II, and III, the advection and diffusion coefficients N(1)

and N(2) must be determined for all three problems. For sake of simplicity,

a constant strain rate is assumed and hence, terms containing dǫ12/dt in

coefficients of Eqs. (3) and (4) can be substituted by a constant numerical

value for the entire simulation of the evolution of PDF. It should be noted

that the FPK equation (Eqs. (3) or (4)) describes the evolution of PDFs of

stress with time, while, similarly, strain rate describes the evolution of strain

with time. Combining the two, the evolution of PDF of stress with strain can

be obtained. Time has been brought in this simulation as an intermediate

dimension to help in solution process, and hence, the numerical value of
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strain rate could be any arbitrary value, which will cancel out once the

time evolution of PDF of stress is converted to strain evolution of PDF of

stress. For simulation of all the three example problems, an arbitrary value

of strain rate of dǫ12/dt = 0.0541/s is assumed.

It should also be noted that since the material properties are assumed as

random variables at a point-location scale, the covariance terms appearing

within the advection and diffusion coefficients become variances of random

variables. For estimations of means and variances of functions of random

variables (e.g. for Problems II and III) from basic random variables, com-

mercially available statistical software mathStatica Rose and Smith (2002)

was used.

Substituting the values of deterministic and random material properties

and the strain rate, coefficients N(1) and N(2) of the FPK equations can be

obtained for all problems:

Problem I

N(1) =

〈

G
dǫ12
dt

〉

= 2
dǫ12
dt

〈G〉

= 0.27 MPa/s

N(2) =

∫ t

0

dτV ar

[

G
dǫ12
dt

]

= 4t

(

dǫ12
dt

)2

V ar[G]

= 0.0058t (MPa/s)2
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Problem II

For pre-yield linear elastic case, the coefficients N(1) and N(2) will be

the same as those for Problem I. For post-yield elastic-plastic case the

coefficients are

N(1) =

〈









G − G2

G + 9Kα2 +
1√
3
I1α

′









dǫ12
dt

〉

=
dǫ12
dt

〈

G − G2

G + 9Kα2 +
1√
3
I1α

′

〉

= 0.147 MPa/s

N(2) = t

(

dǫ12
dt

)2

V ar









G − G2

G + 9Kα2 +
1√
3
I1α

′









= 0.00074t (MPa/s)2

Problem III

For post-yield elastic-plastic simulation the coefficients N(1) and N(2)

are

N(1) =

〈









G − G2

G + 9Kα2 +
1√
3
I1α

′









dǫ12
dt

〉

=
dǫ12
dt

〈

G − G2

G + 9Kα2 +
1√
3
I1α

′

〉

= 0.2365 MPa/s

N(2) = t

(

dǫ12
dt

)2

V ar









G − G2

G + 9Kα2 +
1√
3
I1α

′









= 0.0001t (MPa/s)2
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It should be noted that for Problem III, since the shear modulus is

deterministic, the pre-yield elastic case is deterministic.

6 Results and Verifications of Example Problems

In this section results are presented for elastic and elastic–plastic probabilis-

tic 1D problem. The results are obtained by using FPK equation approach

described in previous sections and in the companion paper (Jeremić et al.,

2006). In addition to that, the Monte Carlo based verification of developed

solutions (results) is presented. The effort to verify developed solutions (that

are based on FPK approach) plays a crucial role in presented development of

probabilistic elasto–plasticity as there are no previously published solutions

which could have been used for verification. In addition to that, verifica-

tion and validation efforts should always be included in any modeling and

simulations work (Oberkampf et al., 2002).

For linear elastic constitutive rate equations (Problem-I and pre-yield

case of Problem-II) the verification is performed by comparing solutions

obtained through the use of FPK equation approach with high accuracy

(exact) solution, using a transformation method of random variables (Mont-

gomery and Runger, 2003). This method is applicable as for rate-independent

linear elastic case the 1D shear constitutive equation simplify to a linear al-

gebraic equation of the form,

σ12 = Gǫ12 = u(G, ǫ12) (14)
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Using the definition of strain rate, the above equation can be written in

terms of time t as,

σ12 = G(0.054t) = v(G, t) (15)

where, 0.054 1/s is the arbitrary strain-rate assumed for this example prob-

lem. According to the transformation method of random variables (Mont-

gomery and Runger, 2003), and, given the continuous random variable

(shear modulus) G, with PDF g(G) and Eqs. (14) or (15) as one-to-one

transformations between the values of random variables of G and σ12, one

can obtain the PDF of shear stress (σ12), P (σ12) as,

P (σ12) = g(u−1(σ12, ǫ12)) |J | (16)

which will allow for predicting the evolution of PDF of σ12 with ǫ12 or,

P (σ12) = g(v−1(σ12, t)) |J | (17)

Eq. (17) will predict the evolution of PDF of σ12 with t. In Eqs. (16)

and (17), functions G = u−1(σ12, ǫ12) or G = u−1(σ12, t) are the in-

verse of functions σ12 = u(G, ǫ12) or σ12 = v(G, t) respectively and J =

du−1(σ12, ǫ12)/dσ12 and J = dv−1(σ12, t)/dσ12 are their respective Jaco-

bians of transformations.

For non-linear elastic-plastic constitutive rate equations (post-yield cases

of Problems II and III) the verification is done using Monte-Carlo simu-

lation technique by generating sample data for material properties from

standard normal distribution and by repeating solution of the determinis-

tic elastic-plastic constitutive rate equation for each data generated above.
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The probabilistic characteristics of resulting random stress variable for each

time (or strain) step are then easily computed. A relatively large number of

data points (1,000,000) were generated for each material constant random

variable for this simulation purpose.

6.1 Problem I

The evolution of PDF of shear stress with time and shear strain is shown

in Figures 3 and 4. Presented PDFs are for linear elastic material with

random shear modulus, and were obtained using FPE approach (Fig. ref-

figure:ElasticPDF) and transformation method (Fig. 4).
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Fig. 3 Evolution of PDF of shear stress versus strain (or time) for linear elastic

material model with random shear modulus (Problem I) obtained using FPK

equation approach.
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Fig. 4 Evolution of PDF of shear stress versus strain (or time) for linear elastic

material model with random shear modulus (Problem I) obtained using transfor-

mation method.

The contours of evolution of PDFs are compared in Fig. 5. Similarly,

comparison of the evolution of mean and standard deviations are shown in

Fig. 6. It can be seen from the comparison figure that even-though the FPK

approach predicted the mean behavior exactly, it slightly over-predicted the

standard deviation. This is because of the approximation used to represent

the Dirac delta function, which was used as the initial condition for the

FPK. One may note that at ǫ12 = 0, the probability of shear stress σ12

should theoretically be 1 i.e. all the probability mass should theoretically

be concentrated at σ12 = 0. As such, it would be best described by the

Dirac delta function. However, for numerical simulation of FPK, Dirac delta
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Fig. 5 Comparison of Contours of Time (or Strain) Evolution of Probability

Density Function for Shear Stress for Elastic Constitutive Rate Equation with

Random Shear Modulus (Problem–I) for FPE Solution and Variable Transforma-

tion Method Solution.
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Solution and Variable Transformation Method Solution.
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function as initial condition was approximated with a Gaussian function of

mean zero and standard deviation of 0.00001 MPa, as shown in Fig. 2. This

error in the initial condition advected and diffused into the domain with the

simulation of the evolution process. This error could be minimized by better

approximating the Dirac delta initial condition (but at higher computational

cost). The effect of approximating the initial condition of the PDF of shear

stress at ǫ12 = 0.0426 % is shown in Fig. 7. In this figure the actual PDF

−0.01 −0.005 0.005 0.01 0.015
Stress (MPa)

100

200

300

400

500

600

ProbDensity

With Crude Approximation

With Finer Approximation

Actual (Variable Transformation)

With Fine Approximation

Fig. 7 Effect of Approximating Function of Dirac Delta Initial Condition : PDF

of Stress at Yield for Different Approximation of Initial Condition with Actual

(Variable Transformation Method) Solution).

at ǫ12 = 0.0426 % obtained using the transformation method was compared

with the PDFs at ǫ12 = 0.0426 % obtained using the FPK approach with
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three different approximate initial conditions - all having zero mean but

standard deviations of 0.01 MPa, 0.005 MPa and 0.00001 MPa.

One may also note that finer approximation of initial condition neces-

sitates finer discretization of stress domain close to (or at) σ12 =0. The

finite difference discretization scheme adopted here uses the same fine dis-

cretization uniformly all throughout the entire domain. It is noted that that

fine, uniform discretization is not needed (and is quite expensive) in later

stages of calculation of evolution of PDF, but is kept the same for simplic-

ity sake. In presented examples, to properly capture the approximate initial

condition (as shown in Fig. 2), the stress domain between −0.1 MPa and

+0.1 MPa was discretized with a uniform step size of 0.000005 MPa and

hence there is a total of 40, 000 nodes. This not only requires large compu-

tational effort but is also very memory sensitive. An adaptive discretization

technique will be a much better approach to solving this problem. Current

work is going on in formulating an adaptive algorithm for the solution of

this type of problem.

6.2 Problem II

The solution to this problem involves the solving two FPK equations, one

corresponding to the pre-yield elastic part and the other corresponding to

the post-yield elastic-plastic part. The elastic part of this problem is identi-

cal to Problem–I. The initial condition for the post-yield elastic-plastic part

of the problem is random and is shown in Fig. 8. It may be noted that this
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Fig. 8 Initial condition for FPK equation for elastic–plastic zone (Problem–II).

initial condition corresponds to the PDF of shear stress (P (σ12)) at yield

obtained from the solution of FPK equation of the pre-yield elastic part.

A view of the surface of evolution of the PDF of shear stress versus shear

strain (time) is shown in Fig. 9. Another view to the PDF of stress–strain

surface is shown in Fig. 10. It is noted that the yielding of this material

occurred at t=0.00789 second (which is equivalent to ǫ12= 0.0426 %). The

evolution contours for PDF of shear stress versus strain (time) along with

the mean and standard deviations are shown in Fig. 11. It can be seen

from that figure that, as expected, the evolution of mean of shear stress

changes slope after the material yielded. Another interesting aspect to note

is the relative slope of the evolution of standard deviation with respect to

the evolution of mean. The relative slope in the pre-yield elastic zone in-
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Fig. 11 Contour of evolution of PDF for shear stress versus strain (time) for

elastic-plastic material with random shear modulus (Problem–II).

creases at a higher rate during the evolution process when compared with

that in the post-yield elastic-plastic zone. In other words, in the evolution

process the post-yield elastic–plastic constitutive rate equation did not am-

plify the initial uncertainty as much as the pre-yield elastic constitutive rate

equation did. This can be easily viewed from Fig. 12 where the post-yield

elastic-plastic evolution of PDF of shear stress was compared with fictitious

extension of elastic evolution of PDF. Comparing the PDF of shear stress

at ǫ12 = 0.0804% (which is equivalent to t = 0.01489s), one can conclude
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Fig. 12 Comparison of evolution of PDF for elastic-plastic material and extended

elastic material cases for random shear modulus.

that the variance of predicted elastic-plastic shear stress is much smaller

(i.e. prediction is less uncertain) as compared to the same if the material

were modeled as completely elastic.

Fig. 13 compares the evolution of means and standard deviations of

predicted shear stress obtained using FPK equation approach and trans-

formation method (pre-yield behavior)/Monte-Carlo approach (post-yield

behavior). Although in the pre–yield response the FPK equation approach

over-predicted the evolution of standard deviations because of reasons dis-

cussed earlier, in the post-yield response it matched closely at regions fur-

ther from the yielding region. The somewhat larger difference between FPK

equation solution and the verification one (Monte Carlo solution) close to

the yielding region is attributed to the fact that the initial condition for
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Fig. 13 Comparison of mean and standard deviation of shear stress for plas-

tic constitutive rate equation with random shear modulus (problem-ii) for FPK

equation solution and Monte Carlo simulation solution.

solution of post-yield elastic-plastic FPK equation was obtained from the

solution of pre-yield elastic FPK equation. One way to better predict the

overall probabilistic elastic-plastic behavior, would probably be to obtain

the pre-yield elastic behavior through the transformation method and then

use the FPK approach to predict post-yield elastic-plastic behavior.

6.3 Problem III

In this problem, the pre–yield linear elastic part is deterministic, however,

at yield there is a distribution (with very small standard deviation) in shear

stress due to assumed distribution in yield parameter α. The distribution

in shear stress corresponds to the PDF of the random variable αI1 (first

invariant of the stress tensor or mean confining stress) and is assumed to
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be deterministic. This PDF of shear stress at yield was assumed to be the

initial condition for the solution of post-yield elastic-plastic FPK equation

and is shown in Fig. 14.
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Fig. 14 Initial condition for FPK equation for elastic–plastic material with ran-

dom yield strength (Problem–III).

The evolution of PDF for shear stress versus strain (time) is shown in

Fig. 15. In addition to that the contours (including mean and standard

deviation) of the evolution of PDF for shear stress versus strain (time) are

shown in Fig. 16.

Looking at Fig. 16 and comparing the slopes of evolution of mean and

standard deviation, one can conclude that the elastic-plastic evolution pro-

cess didn’t amplify the initial uncertainty in yield strength significantly. The
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Fig. 15 Evolution of PDF for shear stress for elastic–plastic material with random

yield strength (Problem–III) (only plastic zone is shown).

initial (at yield) probability density function of shear stress just advected

into the domain during the elastic–plastic evolution process without diffus-

ing much. Fig. 15 clearly shows this advection process. The evolution of

mean and standard deviations of shear stress obtained from the FPK equa-

tion approach was compared with those obtained from the Monte Carlo

simulation and is shown in Fig. 17.

7 Conclusions

In this paper a solution was presented for the evolution of the Probability

Density Function (PDF) of elastic–plastic stress–strain relationship, in 1D.

The solution was based on expressions developed in a companion paper and
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Fig. 16 Contour PDF for shear stress versus strain (time) for elastic–plastic

material with random yield strength (Problem–III).

specialized to the Drucker Prager elasto–plastic material model with linear

isotropic hardening.

Three numerical problems were used to illustrate the developed solution

and discuss the general behavior of elastic–plastic materials which exhibit

uncertainty in material parameters. The solutions to numerical problems

were verified against closed, analytical forms, where available, while Monte–

Carlo simulations were used for all other verifications.
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Fig. 17 Comparison of Mean and Standard Deviation of Shear Stress for Elastic-

Plastic Constitutive Rate Equation with Random Yield Strength (Problem-III)

for FPE Solution and Monte Carlo Simulation Solution

The approach to solving probabilistic elastic-plastic problems presented

here is quite unique and shows great promise in dealing with general 3D

probabilistic constitutive problems. Subsequently, the developed methodol-

ogy is to be used in solving general, probabilistic elastic–plastic boundary

value problems using the finite element method. Current work is progressing

in that direction.
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