Published in :
International Journal for Numerical Methods in Engineering

Volume 41, 113-126 (1998)

Tensor Objects in

Finite Element Programming

3 4

Boris Jeremié Stein Sture

University of Colorado at Boulder, Colorado, U.S.A.

3Graduate research assistant,
Department of Civil, Environmental, and Architectural Engineering,
Campus Box 428,
University of Colorado at Boulder,
Colorado 80309-0428, U.S.A.
phone (303) 492-7112, fax (303) 492-7317
Email: Boris.Jeremic@Civil.Colorado.edu
Current adrress:
Assistant Professor,
Department of Civil and Environmental Engineering,
University of California,
Davis, CA 95616,
tel: (530) 754 9248, fax: (530) 752 7872

Email: Jeremic@ucdavis.edu

4professor and Chairman,
Department of Civil, Environmental, and Architectural Engineering,
University of Colorado, Boulder
Campus Box 428,
University of Colorado at Boulder,
Colorado 80309-0428, U.S.A.

Email: Stein.Sture@Civil.Colorado.edu

Abstract

This paper describes a novel programming tool, nDarray, which is designed
using an Object Oriented Paradigm (OOP) and implemented in the C++ pro-
gramming language. Finite element equations, represented in terms of multidimen-
sional tensors are easily manipulated and programmed. The usual matrix form of
the finite element equations are traditionally coded in FORTRAN, which makes
it difficult to build and maintain complex program systems. Multidimensional
data systems and their implementation details are seldom transparent and thus
not easily dealt with and usually avoided. On the other hand, OOP together with
efficient programming in C++ allows building new concrete data types, namely
tensors of any order, thus hiding the lower level implementation details. These
concrete data types prove to be quite useful in implementing complicated tensorial
formulae associated with the numerical solution of various elastic and elastoplas-
tic problems in solid mechanics. They permit implementing complex nonlinear
continuum mechanics theories in an orderly manner. Ease of use and the immedi-
acy of the nDarray programming tool in constitutive driver programming and in

building finite element classes will be shown.

Key Words: Object Oriented Programming, Tensor Analysis, Constitutive Driver

Programming, Finite Element Programming.

1 Introduction

In implementing complex programming systems for finite element computations, the
analyst is usually faced with the challenge of transforming complicated tensorial formulae
to a matrix form. Considerable amount of time in solving problems by the finite element
method is often devoted to the actual implementation process. If one decides to use
FORTRAN, a number of finite element and numerical libraries are readily available.
Although quick results can be produced in solving simpler problems, when implementing
complex small deformation elastoplastic or large deformation elastic and elastoplastic

algorithms, C++ provides clear benefits.

Some of the improvements C++ provides over C and FORTRAN are classes for
encapsulating abstractions, the possibility of building user—defined concrete data types
and operator overloading for expressing complex formulae in a natural way. In the
following we shall show that the nDarray tool will allow analysts to be a step closer to
the problem space and a step further away from the underlying machine.

As most analysts know, the intention(*®) behind C++ was not to replace C. Instead,
C was extended with far more freedom given to the program designer and implementor.
In C and FORTRAN, large applications become collections of programs and functions,
order and the structure are left to the programmer. The C++ programming language
embodies the OOP, which can be used to simplify and organize complex programs. One
can build a hierarchy of derived classes and nest classes inside other classes. A concern
in C and FORTRAN programming languages is handling data type conflicts and data
which are being operated on or passed. The C++ programming language extends the
definition of type to include abstract data types. With abstract data types, data can be
encapsulated with the methods that operate on it. The C++ programming language
offers structure and mechanisms to handle larger, more complex programming systems.
Object Oriented technology, with function and operator overloading, inheritance and
other features, provides means of attacking a problem in a natural way. Once basic classes
are implemented, one can concentrate on the physics of a problem. By building further
abstract data types one can describe the physics of a problem rather that spend time on
the lower level programming issues. One should keep in mind the adage, credited to the
original designer and implementor of C++ programming language, Bjarne Stroustrup:
“C makes it easy to shoot yourself in the foot, C++ makes it harder, but when you do,
it blows away your whole leg”.

Rather than attempting here to give a summary of Object Oriented technology we will
suggest useful references for readers who wish to explore the subject in greater depth.(®
The current language definition is given in the Working Paper for Draft Proposed Inter-
national Standard for Information Systems—Programming Language C++.(Y Detailed

description of language evolution and main design decisions are given by Stroustrup.(*

Useful sets of techniques, explanations and directions for designing and implementing
robust C++ code are given in books®®(®) and journal articles(®).(16)
Increased interest in using Object Oriented techniques for finite element program-

NN (A919) of experimental developments and

ming has resulted in a number(*)(©®)(
implementations. Programming techniques used in some of the papers are influenced by
the FORTRAN programming style. Examples provided in some of the above mentioned
papers are readable by C++ experts only. It appears that none of the authors have

used Object Oriented techniques for complex elastoplasticity computations.

2 nDarray Programming Tool

2.1 Introduction to the nDarray Programming Tool

The nDarray programming tool is a set of classes written in the C++ programming
language. The main purpose of the package is to facilitate algebraic manipulations with
matrices, vectors and tensors that are often found in computer codes for solving engi-
neering problems. The package is designed and implemented using the Object Oriented
philosophy. Great care has been given to the problem of cross—platform and cross—
compiler portability. Currently, the nDarray set of classes has been tested and running

under the following C++ compilers:

e Sun CC on SunOS and Solaris platforms,

IBM xIC on AIX RISC/6000 platforms,

Borland C++ and Microsoft C++ on DOS/Windows platforms,

CodeWarrior C++ on Power Macintosh platform,

GNU g++ on SunOS, SOLARIS, LINUX, AIX, HPUX and AMIGA platforms.

2.2 Abstraction Levels

npDarray tool has the following simple class hierarchy:

nDarray_rep, nDarray
matrix

vector

tensor

Indentation of class names implies the inheritance level. For example, class vector is de-
rived from class matrix, which, in turn is derived from classes nDarray and nDarray_rep.
The idea is to subdivide classes into levels of abstraction, and hide the implementation
from end users. This means that the end user can use the nDarray tool on various

levels.

e At the highest level of abstraction, one can use tensor, matrix and vector objects
without knowing anything about the implementation and the inner workings. They
are all designed and implemented as concrete data types. In spite of the very pow-
erful code that can be built using Object Oriented technology, it would be unwise
to expect proficiency in Object Oriented techniques and the C++ programming
language from end users. It was our aim to provide power programming with

multidimensional data types to users with basic knowledge of C.

e At alower abstraction level, users can address the task of the actual implementation
of operators and functions for vector, matrix and tensor classes. A number of

improvements can be made, especially in optimizing some of the operators.

e The lowest level of abstraction is associated with nDarray and nDarray_rep classes.

Arithmetic operators® are implemented at this level.

Next, classes are described from the base and down the inheritance tree. Later

we focus our attention on nDarray usage examples. Our goal is to provide a useful

ITike addition and subtraction.

programming tool, rather than to teach OOP or to show C++ implementation. For
readers interested in actual implementation details, source code, examples and makefiles

are available at http://civil.colorado.edu/nDarray/

2.2.1 nDarray_rep class

The nDarray_rep class is a data holder and represents an n dimensional array object.
A simple memory manager, implemented with the reference counting idiom® is used.
The memory manager uses rather inefficient built—in C memory allocation functions.
Performance can be improved if one designs and implements specially tailored allocation
functions for fast heap manipulations. Another possible improvement is in using memory
resources other than heap memory. Sophisticated memory management introduced by
the reference counting is best explained by Coplien.®¥) The nDarray_rep class is not
intended for stand—alone use. It is closely associated with the nDarray class.

The data structure of nDarray_rep introduces a minimal amount of information about
a multidimensional array object. The actual data are stored as a one-dimensional array
of double numbers. Rank, total number of elements, and array of dimensions are all
that is needed to represent an multidimensional object. The data structure is allocated
dynamically from the heap, and memory is reclaimed by the system after the object has

gone out of scope.

2.2.2 nDarray class

The nDarray class together with the nDarray_rep class represents the abstract base for
derived multidimensional data types: matrices, vectors and tensors. Objects derived
from the nDarray class are generated dynamically by constructor functions at the first
appearance of an object and are destroyed at the end of the block in which the object is
referenced. The reference counting idiom provides for the object’s life continuation after
the end of the block where it was defined. To extend an object’s life, a standard C++
compiler would by default call constructor functions, thus making the entire process

of returning large objects from functions quite inefficient. By using reference counting

6

idiom, destructor and constructor functions manipulate reference counter which results
in a simple copying of a pointer to nDarray_rep object. By using this technique, copying

of large objects is made very efficient.

constructor function description
nDarray(int rank_of_nD=1, double initval=0.0) default
nDarray(int rank_of_nD, const int *pdim, double *val) from array
nDarray(int rank_of_nD, const int *pdim, double initval) from scalar value

nDarray(const char *flag, int rank_of_nD, const int *pdim) | unit nDarrays

nDarray(const nDarray & x) copy-initializer

nDarray (int rank_of_nD, int rows, int cols, double *val) special for matrix

nDarray (int rank_of_nD, int rows, int cols, double initval) | special for matrix

Table 1: nDarray constructor functions.

Objects can be created from an array of values, or from a single scalar value, as
shown in Table 1. Some of the frequently used multidimensional arrays are predefined
and can be constructed by sending the proper flag to the constructor function. For
example by sending the “I” flag one creates Kronecker delta d;; and by sending “e”
flag, one creates a rank 3 Levi-Civita permutation tensor e;;,. Functions and operators
common to multidimensional data types are defined in the nDarray class, as described
in Table 2. These common operators and functions are inherited by derived classes.
Occasionally, some of the functions will be redefined, overloaded in derived classes. In
tensor multiplications we need additional information about indices. For example C; =
(Aije+Biji) * Dk coded (= (A("ijk")+B("ijk"))*D("jk1"), the temporary in brackets
will receive 4jk indices, to be used for multiplication with Djj,. It is interesting to note(®
that operator += is defined as a member and + is defined as an inline function in terms

of += operator.

operator or function | left value | right value | description
= nDarray | nDarray nDarray assignment
+ nDarray | nDarray nDarray addition
+= nDarray | nDarray nDarray addition
- nDarray unary minus
- nDarray | nDarray nDarray subtraction
-= nDarray | nDarray nDarray subtraction
* double nDarray scalar multiplication (from left)
* nDarray | double scalar multiplication (from right)
== nDarray | nDarray nDarray comparison
val(...) nDarray reference to members of nDarray
cval(...) nDarray members of nDarray
trace() nDarray trace of square nDarray
eigenvalues () nDarray eigenvalues of rank 2 square nDarray
eigenvectors() nDarray eigenvectors of rank 2 square nDarray
General_norm() nDarray general p-th norm of nDarray
nDsqrt () nDarray square root of nDarray
print(...) nDarray generic print function

Table 2: Public functions and operators for nDarray class.

2.2.3 Matrix and Vector Classes

The matrix class is derived from the nDarray class through the public construct. It
inherits common operators and functions from the base nDarray class, but it also adds
its own set of functions and operators. Table (3) summarizes some of the more important
additional functions and operators for the matrix class. The vector class defines vector
objects and is derived and inherits most operators and data members from the matrix

class. Some functions, like copy constructor, are overloaded in order to handle specifics

operator or function | left value | right value || description
= matrix matrix matrix assignment
* matrix matrix matrix multiplication
transpose () matrix matrix transposition
determinant () matrix determinant of a matrix
inverse() matrix matrix inversion

Table 3: Matrix class functions and operators (added on nDarray class definitions).

of a vector object.

2.2.4 Tensor Class

The main goal of the tensor class development was to provide the implementing analyst

with the ability to write the following equation directly into a computer program:

dO’mn = —OId’I’Z' 'T~_1 —dA EZ ikl "+17nle-_1
J J 7

ijmn jmn
as:

dsigma = -(r("ij")*Tinv("ijmn")) - dlambda*((E("ijk1")*dQods("k1"))*Tinv("ijmn"));

Instead of developing theory in terms of indicial notation, then converting everything to
matrix notation and then implementing it, we were able to copy formulae directly from
their indicial form to the C++ source code.

In addition to the definitions in the base nDarray class, the tensor class adds some
specific functions and operators. Table 4 summarizes some of the main new functions
and operators. The most significant addition is the tensor multiplication operator. With
the help of a simple indicial parser, the multiplication operator contracts or expands
indices and yields a resulting tensor of the correct rank. The resulting tensor receives

proper indices, and can be used in further calculations on the same code statement.

operator or function | left value | right value || description
+ tensor tensor tensor addition
- tensor tensor tensor subtraction
* tensor tensor tensor multiplication
transpose0110() tensor Aijkr — Airji
transpose0101 () tensor Akt — Ak
transpose0111() tensor Aijir — Aitjk
transpose1100() | tensor Aijkt = Ajik
transpose0011() | tensor Aijit = Aijik
transposel1001() | tensor Aijii = Ajki
transposell() tensor Qij — Qj;
symmetrizel1 () tensor symmetrize second order tensor
determinant () tensor determinant of 2nd order tensor
inverse() tensor tensor inversion (2nd, 4th order)

Table 4: Additional and overloaded functions and operators for tensor class.

3 Finite Element Classes

3.1 Stress, Strain and Elastoplastic State Classes

The next step in our development was to use the nDarray tool classes for constitutive
level computations. The simple extension was design and implementation of infinitesimal
stress and strain tensor classes, namely stresstensor and straintensor. Both classes are
quite similar, they inherit all the functions from the tensor class and we add some tools
that are specific to them. Both stress and strain tensors are implemented as full second
order 3 x 3 tensors. Symmetry of stress and strain tensor was not used to save storage

space. Table 5 summarizes some of the main functions added on for the stresstensor

class.

10

operator or function

description

Iinvariant1()

first stress invariant I1

Iinvariant2()

second stress invariant 12

Iinvariant3()

third stress invariant 13

Jinvariant2()

second deviatoric stress invariant J2

Jinvariant3() third deviatoric stress invariant J3
deviator() stress deviator
principal() principal stresses on diagonal

sigma_octahedral ()

octahedral mean stress

tau_octahedral()

octahedral shear stress

xi(Q)

Haigh—Westergard coordinate &

rho ()

Haigh—Westergard coordinate p

p_hydrostatic()

hydrostatic stress invariant

g_deviatoric()

deviatoric stress invariant

theta()

f stress invariant (Lode’s angle)

Table 5: Additional methods for stress tensor class.

Further on, we defined an elastoplastic state, which according to incremental theory
of elastoplasticity with internal variables, is completely defined with the stress tensor
and a set of internal variables. This definition led us to define an elastoplastic state

termed class ep_state. Objects of type ep_state contain a stress tensor and a set of scalar

or tensorial internal variables?.

2Internal variables can be characterized as tensors of even order, where, for example, zero tensor is a

scalar internal variable associated with isotropic hardening and second order tensors can be associated

with kinematic hardening.

11

3.2 Material Model Classes

With all the previous developments, the design and implementation of various elasto-
plastic material models was not a difficult task. A generic class Material Model defines
techniques that form a framework for small deformation elastoplastic computations. Ta-
ble 6 summarizes some of the main methods defined for the Material Model class in

terms of yield (F') and potential (()) functions.

operator or function

description

F F Yield function value
dFods OF [0o;;
dQods 0Q/00;;
d2Qods2 0*Q/ 00,00
dpoverds Op/00;;
dgoverds 0q/00;;
dthetaoverds 00/00;;
d2poverds?2 0*p/00;;00k
d2qoverds?2 0%*q/00;;00
d2thetaoverds?2 0%0/00,;001

ForwardPredictorEPState

Explicit predictor elastoplastic state

BackwardEulerEPState

Implicit return elastoplastic state

ForwardEulerEPState

Explicit return elastoplastic state

BackwardEulerCTensor

Algorithmic tangent stiffness tensor

ForwardEulerCTensor

Continuum tangent stiffness tensor

Table 6: Some of the methods in material model class.

It is important to note that all the material model dependent functions are defined as
virtual functions. Integration algorithms are designed and implemented using template

algorithms, and each implemented material model appends its own yield and potential

12

functions and appropriate derivatives. Implementation of additional material models

requires coding of yield and potential functions and respective derivative functions.

3.3 Stiffness Matrix Class

Starting from the incremental equilibrium of the stationary body, the principle of virtual

displacements and with the finite element approximation of the displacement field u ~

i, = Hyfiz,, the weak form of equilibrium can be expressed as(?%)

U /Vm Hiy Egpea Hyg dV™ g, = U /Vm Jo Hr dV™ or (fra (@se))ims = A (f1a) eut

where Eg;.q is the constitutive tangent stiffness tensor®. The element stiffness tensor is

recognized as

e tan m
aleJ = /Vm Hl,b Eabcd HJ,d av

This generic form for the finite element stiffness tensor is easily programmed with the
help of the nDarray tool. A simple implementation example is provided later. It should
be noted that the element stiffness tensor in this case is a four-dimensional tensor. It is
the task of the assembly function to collect proper terms for addition in a global stiffness

matrix.

4 Examples

4.1 Tensor Examples

Some of the basic tensorial calculations with tensors are presented. Tensors have a

default constructor that creates a first order tensor with one element initialized to 0.0:
tensor ti;

Tensors can be constructed and initialized from a given set of numbers:

3Which may be continuum or algorithmic(® tangent stiffness tensor

13

static double t2values[] = { 1,2,3,
4,5,6,
7,8,9 };

tensor t2(2, DefDim2, t2values); // order 2; 3x3 tensor (like matrix)

Here, DefDim2, DefDim3 and DefDim4 are arrays of dimensions for the second, third and
fourth order tensor?. A fourth order tensor with 0.0 value assignment and dimension 3

in each order (3 x 3 x 3 x 3) is constructed in the following way:
tensor ZER0(4,DefDim4,0.0);

Tensors can be multiplied using indicial notation. The following example will do a tenso-
rial multiplication of previously defined tensors t2 and t4 so that tst1 = $2;;t4; kit 4kipet2pq-
Note that the memory is dynamically allocated to accept the proper tensor dimensions

that will result from the multiplication®
tensor tstl = t2("ij")*t4("ijk1")*t4("klpq")*t2("pq");

Inversion of tensors is possible. It is defined for 2 and 4 order tensors only. The fourth
order tensor inversion is done by converting it to matrix, inverting that matrix and finally

converting matrix back to tensor.
tensor t4inv_2 = t4.inverse();

There are two built-in tensor types, Levi-Civita permutation tensor e;j, and Kronecker

delta tensor d;;

tensor e("e",3,DefDim3); // Levi-Civita permutation tensor

tensor I2("I", 2, DefDim2); // Kronecker delta tensor
Trace and determinant functions for tensors are used as follows

double deltatrace = I2.trace();

double deltadet = I2.determinant();

Tensors can be compared to within a square root of machine epsilon® tolerance

4In this case dimensions are 3 in every order.

5In this case it will be zero dimensional tensor with one element.
6Machine epsilon (macheps) is defined as the smallest distinguishable positive number (in a given

precision, i.e. float (32 bits), double (64 bits) or long double (80 bits), such that 1.0 + macheps > 1.0
yields true on the given computer platform. For example, double precision arithmetics (64 bits), on the
Intel 80x86 platform yields macheps= 1.08E-19 while on the SUN SPARCstation and DEC platforms
macheps= 2.22E-16.

14

tensor I2again = I2;
if (I2again == I2)

printf ("I2again == I2 TRUE (0K)");
else

printf ("I2again == I2 NOTTRUE");

4.2 Fourth Order Isotropic Tensors

Some of the fourth order tensors used in continuum mechanics are built quite readily. The
most general representation of the fourth order isotropic tensor includes the following

fourth order unit isotropic tensors’

tensor I_ijkl = I2("ij")*I2("k1");

The resulting tensor I_ijkl will have the correct indices, I_tjkl;jp = 12;;12;. Note
that I_ijk1 is just a name for the tensor, and the _ijk1 part reminds the implementor
what that tensor is representing. The real indices, *;;; in this case, are stored in the
tensor object, and can be used further or changed appropriately. The next tensor that
is needed is a fourth order unit tensor obtained by transposing the previous one in the

minor indices,
tensor I_ikjl = I_ijkl.transpose01100);

while the third tensor needed for representation of general isotropic tensor is constructed

by using similar transpose function
tensor I_iljk = I_ijkl.transpose0111();
The inversion function can be checked for fourth order tensors:

tensor I_ikjl_inv_2 = I_ikjl.inverse();
if (I_ikjl == I_ikjl_inv_2)

printf(" I_ikjl == I_ikjl_inv_2 (O0K) !");
else

printf (" I_ikjl !'= I_ikjl_inv_2 !");

Creating a symmetric and skew symmetric unit fourth order tensors gets to be quite

simple by using tensor addition and scalar multiplication

"Remember that I2 was constructed as the Kronecker delta tensor &;;.

15

tensor I4s (1./2.)*(I_ikj1+I_iljk);

tensor I4sk = (1./2.)*(I_ikjl-I_iljk);

Another interesting example is a numerical check of the e — § identity!®) (e;jmerim =
ikt — 0adjk)

tensor id = e("ijm")*e("k1lm") - (I_ikjl - I_iljk);
if (id == ZERO)
printf (" e-delta identity HOLDS !! ");

4.3 Elastic Isotropic Stiffness and Compliance Tensors

The linear isotropic elasticity tensor E;j; can be built from Young’s modulus £ and

Poisson’s ratio v

double Ey = 20000; // Young’s modulus of elasticity
double nu = 0.2; // Poisson’s Ratio

tensor E = ((2.*Ey*nu)/(2.x(1.+nu)*(1-2.*nu)))*I_ijkl + (Ey/(1.+4nu))*I4s;
Similarly, the compliance tensor is
tensor D = (-nu/Ey)*I_ijkl + ((1.0+nu)/Ey)*I4s;

One can multiply the two and check if the result is equal to the symmetric fourth order

unit tensor

tensor test = E("ijk1")*D("klpq");
if (test == I4s)

printf(" test == I4s TRUE (0K up to sqrt(macheps)) ");
else

printf (" test == I4s NOTTRUE ");

The linear isotropic elasticity and compliance tensors can be obtained in a different way,

by using Lamé constants A and p

double lambda = nu * Ey / (1. + nuw) / (1. - 2. * nu);
double mu = Ey / (2. * (1. + nu));

tensor E = lambda*I_ijkl + (2.*mu)*I4s; // stiffness tensor

tensor D (-nu/Ey)*I_ijkl1 + (1./(2.*mu))*I4s; // compliance tensor

16

4.4 Second Derivative of 6 Stress Invariant

As an extended example of nDarray tool usage, the implementation for the second
derivative of the stress invariant § (Lode angle) is presented. The derivative is used for
implicit constitutive integration schemes applied to three invariant material models. The

original equation reads:

0
00,400 mn, N
cos 30 27 cos 30 n 81 1 -
S Smn — 3., 95 mn
24" sin (30) 4 ¢*sin®36) ™ 4 ¢5sin®30 ™
N 81 81 cos? 36 243 cos 360 o
e & .. 3aon Smn — 7 - 3an mn
4 ¢°sin 39 4 ¢®sin®30) 4 ¢bsin336 "
§ cos (30) 9 1 w
2 ¢?sin (36) Pramn = 5 ¢3sin (39) P
where:
3 3 i i 1
q = §3ij5ij 3 cos 30 = \2/_ S 1 57k Sk 3 Sij = 045 — gakkdi]‘
\[(38i557)°
2 2 1
wpqmn = Snpéqm + Sqménp - gsqunm - gépqsmn ; ppqmn = 6mp6nq - gépqémn

and the implementation follows:

tensor Yield Criteria::d2thetaoverds2(stresstensor & stress)
{
tensor ret(4, DefDim4, 0.0);
tensor I2("I", 2, DefDim2);
tensor I_pqmn = I2("pq")*I2("mn");
tensor I_pmgn = I_pgmn.transpose0110();
double J2D = stress.Jinvariant2();
tensor s = stress.deviator();

s("qk")*s("kp") - I2%(J2D*(2.0/3.0));

tensor t

double theta = stress.theta();

17

double q_dev = stress.q_deviatoric();

//setting up some constants

double c3t = cos(3*theta);

double s3t = sin(3*theta);

double s3t3 = s3t*xs3t*s3t;

double g3 = q_dev * gq_dev x qg_dev;
double q4 = g3 * g_dev;

double g5 = g4 * g_dev;

double g6 = qb * q_dev;

double tempss = -(9.0/2.0)*(c3t)/(qé4*s3t)-(27.0/4.0)*(c3t/(s3t3*qd));
double tempst = +(81.0/4.0)*(1.0)/(s3t3x*q5);

double tempts = +(81.0/4.0)*(1.0/(s3t*q5))+(81.0/4.0)*(c3t*c3t)/(s3t3*qg5);
double temptt = -(243.0/4.0)*(c3t/(s3t3*q6));

double tempp = +(3.0/2.0)*(c3t/(s3t*q_devxq_dev));

double tempw = -(9.0/2.0)*(1.0/(s3t*q3));

tensor s_pq_d_mn = s("pq")*I2("mn");

tensor s_pn_d_mq = s_pq_d_mn.transpose0101();

IQ("pq") *s("mn") ;

tensor d_pq_s_mn
tensor d_pn_s_mq = d_pq_s_mn.transpose0101();
tensor p = I_pmgn - I_pgmn#*(1.0/3.0);
tensor w = s_pn_d_mq+d_pn_s_mq - s_pq_d_mn*(2.0/3.0)-d_pq_s_mn*(2.0/3.0);
// finally
ret = (s("pq")*s("mn")*tempss + s("pq")*t("mn")*tempst +
t("pq")*s ("mn")*tempts + t("pq")*t("mn")*temptt +
p*tempp + wxtempw);

return ret;

18

4.5 Application to Computations in Elastoplasticity

A useful application of the previously described classes is for elastoplastic computations.
If the Newton iterative scheme is used at the global equilibrium level, then in order to
preserve a quadratic rate, a consistent, algorithmic tangent stiffness (ATS) tensor should
be used. For a general class of three—invariant, non—associated, hardening or softening

material models, ATS is defined® as:

n+1 n+l,. ..
consyrep =R . qukl Hkl lnznggmn
pgmn — ~pgmn

where
oQ OF OF Omy
Mt Doy, ;o Tkl Do ;& e J it Jkl 00 m
0 -1
Hkl = n+17nkl + A)\Mh* ; Rmnkl = (n+lﬂjmn) Eijkl

0qy

A straightforward implementation of the above tensorial formula follows:

double Ey

Criterion.E(Q);

double nu = Criterion.nu();

tensor Eel = StiffnessTensorE(Ey,nu);

tensor I2("I", 2, DefDim2);

tensor I_ijkl = I2("ij")*I2("k1");

tensor I_ikjl = I_ijkl.transpose0110Q);

tensor m = Criterion.dQods(final_stress);

tensor n = Criterion.dFods(final_stress);

double lambda = current_lambda_get();

tensor d2Qoverds2 = Criterion.d2Qods2(final_stress);
tensor T = I_ikjl + Eel("ijk1")*d2Qoverds2("klmn")*lambda;
tensor Tinv = T.inverse();

tensor R = Tinv("ijmn")*Eel("ijk1");

double h_ = h(final_stress);

double xi_ = xi(final_stress);
double hardMod_ = h_ * xi_;
tensor d2Qodqast2 = d2Qoverdqast2(final_stress);

tensor H = m + d2Qodqast2 * lambda * h_;

19

//

tensor upper = R("pqkl")*H("k1")*n("ij")*R("ijmn");

double lower = (n("ot")*R("otpq"))*H("pq")).trace();

lower = lower + hardMod_;
tensor Ep = upper*(1l./lower);

tensor Eep = R - Ep; // elastoplastic ATS constitutive tensor

This ATS tensor can be used further in building finite element stiffness tensors, as

will be shown in our next example.

4.6 Stiffness Matrix Example

By applying a numerical integration technique to the stiffness matrix equation

e _ m
aleJ — ~/V'" HI,b Eabcd HJ,d av

individual contributions are summed into the element stiffness tensor. This process can

be implemented on a integration point level by using the npDarray tool as

K = K + H("Ib") * E("abcd") * H("Jd") * weight ;

It is interesting to note the lack of loops at this level of implementation. However, there

exists a loop over integration points which contributes stiffness to the element tensor.

5 Performance Issues

In the course of developing the nDarray tool, execution speed was not a priority or
issue that we tried to perfect. The benefit of being able to implement and test various
numerical algorithms in a straightforward manner was the main concern. The efficiency
of the nDarray tool when compared with FORTRAN or C was never assessed. In all
honesty, some of the formulae implemented in C++ with the help of the nDarray tool
would be difficult to implement in FORTRAN or C. The entire question of efficiency of
the nDarray as compared to FORTRAN or C codes might thus remain unanswered for

the time being.

20

The efficiency of C++ for numerical computations has been under consideration?)

for some time now. Poor efficiency and possible remedies for improving efficiency of C++

13)(17) (18)

computations has been reported in the literature! Novel techniques, such as

17)

Template Expressions™™ can be used to achieve and sometimes surpass the performance

of hand-tuned FORTRAN or C codes.

6 Summary and Future Directions

A novel programming tool, named nDarray, has been presented which facilitates im-
plementation of tensorial formulae. It was shown how OOP and efficient programming
in CH++ allows building of new concrete data types, in this case tensors of any order.
In a number of examples these new data types were shown to be useful in implementing
tensorial formulae associated with the numerical solution of various elastic and elasto-
plastic problems with the finite element method. The npDarray tool is been used in
developing of the FEMtools tools library. The FEMtools tools library includes a set of
finite elements, various solvers, solution procedures for non-linear finite element system

of equations and other useful functions.

Acknowledgment

The authors gratefully acknowledge support by NASA Grant NAS8-38779 from Mar-
shall Space Flight Center. The authors wish to thank Professor Carlos Felippa of Uni-
versity of Colorado at Boulder for introducing us to the subject of Object Oriented
Programming with finite elements and Professor Egidio Rizzi of Politecnico di Milano
for initially describing the benefits of such a programming tool. The authors also wish

to thank reviewers for helpful comments and suggestions.

References

[1] ANSI/ISO, Washington DC. Working Paper for Draft Proposed International Stan-
dard for Information Systems—Programming Language C++, April 1995. Doc. No.

21

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

ANSI X3J16/95-0087 ISO WG21/N0687.

Grady Booch. Object Oriented Analysis and Design with Applications. Series in

Object—Oriented Software Engineering. Benjamin Cummings, second edition, 1994.

James O. Coplien. Advanced C++, Programming Styles and Idioms. Addison —
Wesley Publishing Company, 1992.

Pompiliu Donescu and Tod A. Laursen. A generalized object—oriented approach
to solving ordinary and partial differential equations using finite elements. Finite

Elements in Analysis and Design, 22:93-107, 1996.
Bruce Eckel. Using C++. Osborne McGraw — Hill, 1989.

D. Eyheramendy and Th. Zimmermann. Object—oriented finite elements II. a sym-
bolic envornment for automatic programming. Computer Methods in Applied Me-

chanics and Engineering, 132:277-304, 1996.

Bruce W. R. Forde, Ricardo O Foschi, and Siegfried F. Steimer. Object — oriented
finite element analysis. Computers and Structures, 34(3):355-374, 1990.

Boris Jeremié¢ and Stein Sture. Implicit integrations in elasto—plastic geotechnics.
International Journal of Mechanics of Cohesive—Frictional Materials, 2:165—183,
1997.

Andrew Koenig. C++ columns. Journal of Object Oriented Programming, 1989 -
1993.

Jacob Lubliner. Plasticity Theory. Macmillan Publishing Company, New York.,
1990. QA 931 . L939 1990 ISBN 0-02-372161-8.

G. R. Miller. An object — oriented approach to structural analysis and design.

Computers and Structures, 40(1):75-82, 1991.

R. M. V. Pidaparti and A. V. Hudli. Dynamic analysis of structures using object—
oriented techniques. Computers and Structures, 49(1):149-156, 1993.

22

[13] Arch D. Robison. C++ gets faster for scientific computing. Computers in Physics,
10(5):458-462, Sept/Oct 1996.

[14] S.-P. Scholz. Elements of an object — oriented FEM++ program in C++. Computers
and Structures, 43(3):517-529, 1992.

[15] Bjarne Stroustrup. The Design and Evolution of C++. Addison—-Wesley Publishing
Company, 1994.

[16] Various Authors. The C++ report: Columns on C++, 1991-.
[17] Todd Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June 1995.
[18] Todd Veldhuizen. Rapid linear algebra in C++. Dr. Dobb’s Journal, August 1996.

[19] Gordon W. Zeglinski, Ray S. Han, and Peter Aitchison. Object oriented matrix
classes for use in a finite element code using C++. International Journal for Nu-

merical Methods in Engineering, 37:3921-3937, 1994.

[20] Olgierd Cecil Zienkiewicz and Robert L. Taylor. The Finite Element Method, vol-
ume 1. McGraw - Hill Book Company, fourth edition, 1991.

23

