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SUMMARY

The main goal of this short paper is to bring forward and explore the issue of constitutive

integrations in large deformation regime for anisotropic hyperelasto-plastic material models. Of

particular interest is the appropriate treatment of cases with non–coaxiality of principal stress and its

conjugate hyperelastic strain. The non–coaxiality can result from hyperelastic anisotropy, anisotropic

flow directions or anisotropic yield function. In addition to discussing issues related to non–coaxiality,
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2 JEREMIĆ AND CHENG

a constitutive integration algorithm is presented in some detail that is designed to be applicable to

anisotropic non–coaxial (as well as to isotropic) hyperelastic–plastic solids. A numerical example is

used to illustrate the problem.

Copyright c© 2000 John Wiley & Sons, Ltd.

1. Introduction

The hyperelasto–plastic format mostly used today in large deformation computations is based

on work by Simo and Ortiz [23], [21], Bathe et al. [1], Simo [24], [25], Eterovic and Bathe

[5], Perić et al. [19] and Cuitino and Ortiz [4]. Earlier work on multiplicative split of the

deformation gradient (Hill [8], Bilby et al. [2] Kröner [11], Lee and Liu [14], Fox [6] and Lee

[13]) is incorporated in all the previous developments.

However, few researchers have addressed the issue of large-deformation hyperelastoplastic

computational formulations for anisotropic materials. We mention an algorithm by Eterovic

and Bathe [5] which is based on additive split of logarithmic stress and strain measures (elastic

and hyperelastoplastic). They have also explored the use of a more general approximation of

deformation tensors that can support both isotropic and anisotropic material models. More

recently, Papadopoulos and Lu [17] developed a general framework for finite deformation elasto-

plasticity that is based on the early work of Green and Naghdi [7]. Developments include

provisions for non-collinearity of principal stress and strain measures. The framework was

tested using Von-Mises type yield criteria with translational kinematic hardening, which retain

isotropy of yield and plastic potential functions. Somewhat similar developments were reported

by Miehe et al. [15] and [16] . They used initial anisotropy in hyperelastic models and initially

anisotropic criterion by Hill [8] to successfully simulate various problems. However, it was not
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ON LARGE DEFORMATION HYPERELASTO–PLASTICITY OF ANISOTROPIC MATERIALS 3

clear if, and how, the non–coaxiality of principal stress and its conjugate hyperelastic strain

measures evolve and how much it influences the results.

Addressed here is the issue of non–coaxiality of principal stresses and its conjugate

hyperelastic strains and its influence on large deformation hyperelastic–plastic integration

algorithms. This non–coaxiality can stem from a number of features present in general

hyperelastic–plastic material models. We list some of those features below:

Anisotropic Hyperelasticity: The non–coaxiality of principal stresses and its conjugate

hyperelastic strains can result if the hyperelastic strain energy function is not an isotropic

function of the elastic Euler-Green strain b̄e
ij (or the elastic Lagrange-Green strain C̄e

ij).

In the case that the yield function is an isotropic one as well, the assumption can be

made that the elastic Euler–Green strain b̄e
ij and the Kirchhoff stress τij commute. This

isotropic assumption makes basis for many previous developments (for example Simo

[21], Simo and Miehe [22]). However, use of this assumption in developing consistent

algorithms for large deformation hyperelastic–plastic response precludes them from being

applied to anisotropic hyperelastic–plastic models. Our presented algorithm removes such

limitation.

Non-isotropic Flow Rules: The non–coaxiality can result from the plastic flow rule that is

not isotropic function of the Kirchhoff stress tensor τij .

Kinematic Hardening: The non–coaxiality can develop if kinematic hardening is present.

In that case, the induced anisotropy may destroy the isotropy of the yield function. One

such simple example is that of von Mises model (yield function) with an initial back stress

that is non–coaxial with the developing conjugate strain. Prevost [20] noted this case in
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Prepared using cnmauth.cls



4 JEREMIĆ AND CHENG

which the existence of kinematic hardening destroys the isotropy of the yield function. On

the other hand, algorithms that assume that the yield function is an isotropic function

of the Kirchhoff stress tensor τij in order to satisfy the frame indifference cannot deal

with this type of anisotropy.

Reversal of Loading, Cyclic loading: The non–coaxial may also occur during reversal of

loading. That reversal of loading might change the ordering of three principal directions

for stress and its conjugate hyperelastic strain independently, thus destroying coaxiality.

In what follows, a brief description of a generic version of hyperelastic–plastic material model

is presented. Following that, the implicit algorithm is developed that resolves all the above

mentioned issues with anisotropy. In addition to the fully implicit algorithm, presented is also

the consistent tangent operator that is used in conjunction with global (finite element) level

Newton iterations. A simple example which features a von Mises material model with initial

back–stress is used to illustrate our approach.

2. General Anisotropic Hyperelasto–Plastic Models

In this section, an overview is made of a generic material model formulation that incorporates

anisotropic feature described in the introduction. Material models incorporating described

features are mostly found in dealing with continuum representation of particular materials

(soils, rock, concrete, powders, bone material, foams...). A quite general description of any

incremental material model can be done by separating the model into its components, namely

(a) hyperelastic relations, (b) yield function, (c) flow rules and (d) hardening/softening laws.

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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ON LARGE DEFORMATION HYPERELASTO–PLASTICITY OF ANISOTROPIC MATERIALS 5

Hyperelastic Relations The hyperelastic material derives from a general function Ψ which

can be anisotropic, and relates the second Piola-Kirchhoff stress S̄ij in the intermediate

configuration and its conjugate elastic Green strain Ēe
ij :

˙̄Sij = L̄ijkl
˙̄Ee
kl ; L̄ijkl =

∂S̄ij

∂Ēe
ij

=
∂2Ψ

∂Ēe
ij∂Ēe

kl

(1)

where L̄ijkl is the Lagrange-Green stiffness tensor in the intermediate configuration, and

Ēe
ij := 1/2(C̄e

ij − δij) is the elastic Lagrange–Green strain tensor, while C̄e
ij := F e

kiF
e
kj is

the elastic Lagrange deformation tensor.

It proves convenient to define this relationship (Eq. 1) using Mandel stress T̄ij(= C̄e
ikS̄kj)

and the elastic Green strain Ēij , both in the intermediate configuration ˙̄Tij = L̄M
ijmn

˙̄Ee
mn

where L̄M
ijmn = δimS̄jn + δinS̄jm + C̄e

ikL̄kjmn is the stiffness tensor connecting Mandel stress

and Lagrange–Green strain tensors.

Yield Conditions The yield function can be expressed in terms of the Mandel stress in

the intermediate configuration T̄ij , the scalar stress-like internal variable q, and the kinematic

stress-like internal variable aij as

F = F (T̄ij , q, aij) = 0 (2)

Since T̄ij is invariant under any rigid translations or rotations, this yield function can represent

any type of anisotropy.

Flow Rules The non–associated (or associated), anisotropic flow rule is defined in terms of

the plastic deformation gradient as

L̄p
ij = Ḟ p

ik(F p)−1

kj = λ̇M̄ij(T̄ij , q, aij) (3)
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6 JEREMIĆ AND CHENG

where M̄ij is the direction of plastic deformation. By using the definition for the plastic

deformation rate (l̄pij = C̄e
ikL̄p

kj) and the symmetric part of the plastic deformation rate

(d̄p
ij = Sym(C̄e

ikL̄p
kj)), we obtain

d̄p
ij = λ̇M̄C

ij ; M̄C
ij = Sym(C̄e

ikM̄kj) (4)

For scalar (ξ) and kinematic (ηij) internal variables, flow rules can be written as,

ξ̇ = −λ̇ nscalar(T̄ij , q, aij) ; η̇ij = −λ̇ nkinematic
ij (T̄ij , q, aij) (5)

Hardening Laws The scalar and kinematic hardening laws are defined as

q̇ = Kξ̇ ; ȧij = Hijklη̇kl (6)

where hardening/softening function Hijkl can be any anisotropic function while K remains

isotropic function.

3. Algorithmic Constitutive Formulation

In this section, a constitutive integration algorithm is developed that does not suffer from

restrictions to isotropic material models (as described in the introductory section). It should

be noted that in developments that follow, the Karush–Kuhn–Tucker (KKT) conditions λ̇ ≥ 0,

F (T̄ij , q, aij) ≤ 0 and λ̇F (T̄ij , q, aij) = 0 (Karush [10], Kuhn and Tucker [12]) which should

be satisfied simultaneously, are used. In addition to KKT condition, consistency condition

Ḟ (T̄ij , q, aij) = 0 is also enforced.

We start by integrating the flow rule (Equation (3)) from time step t to t + 1 as

n+1F p
ij = exp

(

∆λn+1M̄ik

)

nF p
kj (7)
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ON LARGE DEFORMATION HYPERELASTO–PLASTICITY OF ANISOTROPIC MATERIALS 7

By using the multiplicative decomposition of the deformation gradient and Equation (7) we

obtain

n+1F e
ij = n+1Fim (nF p

mk)
−1

exp
(

−∆λn+1M̄kj

)

= n+1F̄ e,trial
ik exp

(

−∆λn+1M̄kj

)

(8)

where it was used that n+1F e,trial
ik = n+1Fim (nF p

km)
−1

. The elastic deformation is then

n+1C̄e
ij =

(

n+1F e
im

)T n+1F̄ e
mj

= exp
(

−∆λn+1M̄T
ir

)

n+1C̄e,trial
rl exp

(

−∆λn+1M̄lj

)

(9)

By recognizing that the exponent of a tensor can be expanded in Taylor series (Pearson [18]),

exp
(

−∆λn+1M̄lj

)

= δlj − ∆λn+1M̄lj + Sym(∆λn+1M̄ls) + · · · (10)

and by applying first order expansion to Equation (9), and by neglecting the higher order

terms (Jeremić et al. [9]) the solution for the right elastic deformation tensor n+1C̄e
ij can be

written as

n+1C̄e
ij = n+1C̄e,trial

ij − ∆λ
(

n+1C̄e,trial
ik

n+1M̄kj + n+1M̄ik
n+1C̄e,trial

kj

)

(11)

It is important to note that the Taylor’s series expansion from Equation 10 is a proper

approximation for the general non-symmetric tensor M̄lj . That is, the approximate solution

given by Equation 11 is valid for a general anisotropic solid.

The predictor–corrector relation for elastic Green strain can then be written as

n+1Ēe
ij = n+1Ēe,trial

ij − ∆λ M̄C,trial
ij ; M̄C,trial

ij = Sym(n+1C̄e,trial
ik

n+1M̄kj) (12)

Similar predictor–corrector relations can be obtain for internal variables,

n+1ξ = n+1ξtrial − ∆λ n+1nscalar (13)

n+1ηij = n+1ηtrial
ij − ∆λ n+1nkinematic

ij (14)
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8 JEREMIĆ AND CHENG

The iterative algorithm is then developed using a residual n+1r̃A (using idea from Crisfield

[3]) at step n + 1

n+1r̃A = n+1s̃A − r̃trial
A + ∆λ n+1m̃A (15)

where r̃A, s̃A, and m̃A are generalized vectors or matrices in which the element components

are tensors and scalar:

r̃A =































R̄ij

rscalar

rkinematic
ij































, s̃A =































Ēe
ij

ξ

ηij































, m̃A =































M̄C
ij

ni

nk
ij































(16)

Linearization of residual relation (Eq. (15)) while noting that trial variables are fixed during

the iteration process and omitting the superscript n + 1, yields

r̃old
A + ∆2λ m̃A + C

−1

AB
∆s̃B = 0 (17)

where

CAB =



















Iijkl + ∆λ
∂M̄C

ij

∂T̄mn

L̄M
mnkl ∆λ

∂M̄C
ij

∂q
K ∆λ

∂M̄C
ij

∂amn

Hmnkl

∆λ
∂nscalar

∂T̄ij

L̄M
ijkl 1 + ∆λ

∂nscalar

∂q
K ∆λ

∂nscalar

∂aij

Hijkl

∆λ
∂nkinematic

ij

∂T̄mn

L̄M
mnkl ∆λ

∂nkinematic
ij

∂q
K Iijkl + ∆λ

∂nkinematic
ij

∂amn

Hmnkl



















−1

(18)

and Iijkl is the unit fourth order tensor.

The generalized matrix C has the following structure

C =

















C
〈11〉

C
〈12〉

C
〈13〉

C
〈21〉

C
〈22〉

C
〈23〉

C
〈31〉

C
〈32〉

C
〈33〉

















(19)

where C
〈11〉, C

〈13〉, C
〈31〉, C

〈33〉 are fourth order tensors, C
〈12〉, C

〈21〉, C
〈23〉, C

〈32〉 are second

order tensors, and C
〈22〉 is a scalar.
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ON LARGE DEFORMATION HYPERELASTO–PLASTICITY OF ANISOTROPIC MATERIALS 9

Linearized form of the consistency condition n+1F
(

n+1T̄ij ,
n+1q, n+1aij

)

= 0 at time t + 1

yields

f̃T
A∆s̃A + F

old = 0 (20)

where ∆s̃A is the differential form of a generalized vector s̃A from Equation (16) and

(generalized) vector f̃A is defined as

f̃A =

{

∂F

∂T̄ij

L̄M
ijkl

∂F

∂q
K

∂F

∂aij

Hijkl

}T

(21)

By using Equations (17) and (20) one can solve for ∆λ

∆2λ =
F old − f̃T

A
CABr̃B

f̃T
C

CCDm̃D

(22)

which can be used in conjunction with Equation 17 to solve for an increment in (quasi) vector

s̃A

∆s̃A =































∆Ēe
kl

∆ξ

∆ηkl































= −CAB

(

r̃B + ∆2λ m̃B

)

(23)

that contains increments of elastic Green strain tensor (∆Ēe
ij , used to find Second Piola–

Kirchhoff stress), scalar (∆ξ) and kinematic (∆ηij) internal variables. Iterations continue until

both consistency condition (n+1F
(

n+1T̄ij ,
n+1q, n+1aij

)

= 0) and minimization of the norm of

the residual (r̃A = 0) are satisfied (within some tolerance).

In addition to the fully implicit algorithm, described above, the algorithmic, consistent

stiffness tensor in intermediate configuration L̄AS
ijmn is derived similarly as

L̄AS
ijmn = L̄ijklĈ

〈11〉
klmn from dS̄ij = L̄ijkldĒe

kl = L̄ijklĈ
〈11〉
klmndĒe,trial

mn (24)

where Ĉ
〈11〉 is the upper-left (1, 1) block of the generalized matrix of Ĉ,

ĈAB := CAB −
(CAMm̃M)(f̃T

N
CNB)

f̃T
C

CCDm̃D

(25)
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10 JEREMIĆ AND CHENG

and m̃M, CAM and f̃T
N

were defined by equations (16), (18) and (21).

The algorithmic stiffness tensor is used on the finite element level to provide for fast

(quadratic once within Newton trust region) convergence.

4. Numerical Example

A numerical example with non-coaxial anisotropic model is used to demonstrated described

developments. Material model is an extension of von Mises yield and potential surfaces

with kinematic hardening. The kinematic hardening features initial back stress (which might

have developed from previous (cyclic) loading stage) that is not coaxial with the developing

conjugate hyperelastic strain. This non–coaxiality will in this case prevent use of any

constitutive integration algorithms that is relying on assumption of coaxiality of stress and its

conjugate hyperelastic strain.

The material model yield function is defined as

F (τij , aij) =
3

2
(Dev(τij) − xij − aij)(Dev(τij) − xij − aij) − Y 2

0 = 0 (26)

where Dev(τij) is the deviatoric part of Kirchhoff stress in the current configuration. The

material constant Y0 represents the yield strength, while xij represents constant back stress

tensor, and aij is the kinematic hardening (internal variable, stress-like) tensor. It is easy to

obtain the first derivative of the yield function with respect to Kirchhoff stress as

∂F

∂τij

= 3[Dev(τij) − xij − aij ] (27)

If xij is zero tensor, Kirchhoff stress τij and first derivatives of yield function ∂F/∂τij are co-

axial. However, if xij is any non–zero tensor (except for pure hydrostatic tensor, like Kronecker

delta δij), then the Kirchhoff stress τij and and derivatives of yield function ∂F/∂τij are not

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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ON LARGE DEFORMATION HYPERELASTO–PLASTICITY OF ANISOTROPIC MATERIALS 11

coaxial. It should be noted that the yield function given in Equation (26) is defined in terms

of Kirchhoff stress, while it will be redefined (in the same form) in terms of the Mandel stress

T̄ij in the intermediate configuration in order to use it in developed algorithms.

The hyperelasticity is of compressible Neo-Hookean type with the strain energy function

given as

Ψ =
1

2
λ0 (lnJ)

2
− G0(ln J) +

1

2
G0

(

tr(C̄e) − 3
)

(28)

where G0 is shear modulus and λ0 = K0−(2/3)G0 is Lamé constant while K0 is bulk modulus.

Volume ration J is defined as J2 = det(C̄e
ij) while trace of the elastic Lagrange-Green strain is

tr(C̄e
ij) = C̄e

ii. The material constants are K0 = 1971.67 kPa, G0 = 4225.50 kPa, Y0 = 10 kPa,

while linear kinematic hardening law is adopted with hardening modulus H = 80 kPa.

A random non–zero tensor xij can be used to show non–coaxiality, but here, without losing

generality, xij is given as

xij =

















0.0 0.0 0.0

0.0 0.0 x

0.0 x 0.0

















(29)

where x is a given scalar controlling the size of the back stress and has units of stress. The

deformation is defined through a simple deformation gradient for simple shear given as

Fij =

















1.0 0.0 γ

0.0 1.0 0.0

0.0 0.0 1.0

















(30)

where γ is the shear ratio.

In this example, a total of 100 increments ∆γ = 0.05% are used. The eigenvectors of the left

Cauchy–Green deformation bij and the Cauchy stress σij (σij = Jτij , so that σij and τij are
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12 JEREMIĆ AND CHENG

always coaxial) are compared for collinearity. Table I list those eigenvectors at γ = 5% with

initial non–zero and zero back stress as expressed in Equation (29). It is obvious that for the

non–zero back stress (anisotropic case) that the eigenvectors of bij and σij are non-coaxial.

On the other hand, for zero back stress (isotropic case) the eigenvectors are equal, that is,

the stress and strain tensors are coaxial. It follows that with even simple non–coaxial material

Table I. Calculated eigenvectors (EV) at shear deformation of γ = 5% for non–coaxial (x = 5.0 kPa)

and coaxial (x = 0.0 kPa) cases.

non–coaxial, x = 5.0 kPa coaxial, x = 0.0 kPa

EV 1 EV 2 EV 3 EV 1 EV 2 EV 3

0.71589 0.00000 -0.69822 0.71589 0.00000 -0.69822

bij 0.00000 1.00000 0.00000 0.00000 1.00000 0.00000

0.69822 0.00000 0.71589 0.69822 0.00000 0.71589

0.64279 -0.43400 -0.63124 0.71589 0.00000 -0.69822

σij 0.31581 0.90088 -0.29780 0.00000 1.00000 0.00000

0.69792 -0.00794 0.71613 0.69822 0.00000 0.71589

model the constitutive integrations cannot use any of the algorithms that make coaxiality (of

stress and its conjugate hyperelastic strain, and/or stress and the gradient of yield function in

stress space) assumption. Rather, integration algorithms that take non–coaxiality into account,

like the one described above, need to be used.

It is also interesting to compare results for shearing of material models with back stress

that is (a) coaxial (using x = 0.0) and (b) non–coaxial (using x = 5.0). Such results, (σ13

versus γ) are presented in Figure 1(A). The response of the coaxial linear kinematic hardening

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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Figure 1. Simulation results (γ versus σ13) for material model with (a) coaxial (using x = 0.0) and

(b) non–coaxial (using x = 5.0) back stress.

material model (with x = 0.0 kPa) is represented by a bilinear response (as expected). On the

other hand, the response of the similar material model with initial back stress (x = 5.0 kPa),

is nonlinear from the moment it yields. This is also expected as the initial back stress is

applied to different component (x23 = x32 = 5.0 kPa) than the one which is loaded (F13).

The yielding also happens sooner as the yield surface is shifted toward stress origin by the

presence of the initial back stress. The nonlinearity of response follows from the fact that

the yield and potential surfaces harden according to Prager’s rule, following the increment of

plastic deformation, which now changes non–linearly as there was a shift (initial back stress)

in position of those two surfaces.
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14 JEREMIĆ AND CHENG

5. Summary

This short paper brings forward the issue of constitutive integration for large deformation

hyperelastic–plastic material models which develop non–coaxiality of principal stress and its

conjugate hyperelastic strain. In addition to discussion on non–coaxiality, briefly described was

a constitutive integration algorithm that resolve the limitations to hyperelastic isotropy, plastic

flow direction isotropy and yield function isotropy. A simple example was used to illustrate

discussed issues through an anisotropic model with initial back–stress and its constitutive

integration.
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