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1. ABSTRACT

In this paper, the novel concept of probabilistic yielding is used for 1–D cyclic simulation

of the constitutive behavior of geomaterials. Fokker–Planck–Kolmogorov (FPK) equation

based probabilistic elastic–plastic constitutive framework is applied for obtaining the complete

probabilistic (probability density function) material response. Both perfectly plastic and

hardening type material models are considered. It is shown that when uncertainties in material

parameters are taken in consideration, even the simple, elastic–perfectly plastic model captures

some of the important features of geomaterial behavior, for example, modulus reduction with

cyclic strain, which, deterministically, is only possible with more advanced constitutive models.

Further, it is also shown that the use of isotropic and kinematic hardening rules does not

significantly improve the probabilistic material response.
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2. INTRODUCTION

Modeling of geomaterials is inherently uncertain. This uncertainty stems from natural

variability of geomaterials (spatial uncertainty), and testing and transformation errors (point

uncertainty) (Lacasse and Nadim [17], Phoon and Kulhawy [20]). These uncertainties not only

affect the failure characteristics of geomaterials, but also the behavior of geostructures, made

with geomaterials. Traditionally, geotechnical engineering community deals with uncertainties

in geomaterial by applying (large) factor of safety. However, use of large factors of safety

results not only in over-expensive design, but also, sometimes, in unsafe structures (cf. Duncan

[4]). Hence, in recent years, the geotechnical community has seen an increasing emphasis on

probabilistic characterization of soil and subsequent reliability-based design.

One of the important aspects of probabilistic geomechanics simulation that has received less

attention is the probabilistic constitutive problem. Among the few published papers were those

by Fenton and Griffiths ([7], [8], [9]) on probabilistic simulation of spatially random c-φ soil

using Monte Carlo technique, and those by Anders and Hori ([1], [2]) on probabilistic simulation

of von Mises elastic-perfectly plastic material using perturbation technique. Both Monte

Carlo and perturbation techniques have their inherent drawbacks (Matthies et al. [19], Keese

[16]) and in dealing with those, recently, Jeremić et al. [13] proposed Eulerian–Lagrangian

form of Fokker–Planck–Kolmogorov equation (FPKE) approach (cf. Kavvas [15]) to modeling

and simulation for probabilistic elasto–plasticity. FPKE approach to probabilistic elasto–
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plasticity not only overcomes the drawbacks associated with other probabilistic simulation

techniques, but also is fully compatible with the incremental theory of elasto–plasticity, and

hence can easily be applied to probabilistic modeling and simulation of different elastic–plastic

constitutive models. Solution strategies for FPK partial differential equation, corresponding

to elastic–plastic constitutive rate equation and simulated probabilistic stress-strain responses

under monotonic loading, assuming mean stress yielding, were discussed by Sett et al. ([22],

[23]) for both linear and non-linear hardening models. The concept of probabilistic yielding was

introduced and its effect on constitutive simulation under monotonic loading was discussed by

Jeremić and Sett [12]. It was shown that due to uncertainty in yield function (stress), there is

always a possibility, depending upon the magnitude of uncertainty, that plastic behavior starts

at very very low strain and influence of elastic behavior continues far into plastic domain (at

large strains) and hence, the ensemble average (mean) of all the possibilities or the most

probable (mode) possibility differ from deterministic behavior. In addition to that, a very

realistic, smooth transition between elastic and plastic domains was observed even for elastic

perfectly plastic models. Further, nonlinear behavior was observed even for linear hardening

models.

In this paper, the concept of probabilistic yielding is extended to 1–D cyclic simulations of

geomaterials. Both elastic–perfectly plastic and hardening-type material model are considered.

The numerical technique of solving FPKE cyclically with probabilistic yielding is discussed.

Simulated responses were discussed in terms of probability density function (PDF) and its

statistical moments.
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3. FOKKER–PLANCK–KOLMOGOROV APPROACH TO PROBABILISTIC

ELASTO–PLASTICITY

The Eulerian–Lagrangian form Fokker–Planck–Kolmogorov equation (cf. Kavvas [15])

corresponding to generalized 1–D constitutive rate equation can be written as (Jeremić et

al. [13]):

∂P (σ(xt, t), t)

∂t
=

∂

∂σ

[{〈

η(σ,D, ǫ;xt, t)

〉

+

∫ t

0

dτCov0

[

∂η(σ,D, ǫ;xt, t)

∂σ
; η(σ,D, ǫ;xt−τ , t − τ

]}

P (σ(xt, t), t)

]

+
∂2

∂σ2

[{
∫ t

0

dτCov0

[

η(σ,D, ǫ;xt, t); η(σ,D, ǫ;xt−τ , t − τ)

] }

P (σ(xt, t), t)

]

(1)

where, P (σ(xt, t), t) is the probability density of stress (σ) at (pseudo) time t, and η is the

operator variable, obtained by collecting together all the operators and variables on the r.h.s

of the generalized constitutive rate equation:

dσ(xt, t)

dt
= η(σ,D, ǫ;xt, t) (2)

In Eq. (2), ǫ is the strain, and D is the tangent modulus, which could be elastic or elastic–

plastic:
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Int. J. Numer. Anal. Meth. Geomech. 2009; in peer–review:1–31

Prepared using nagauth.cls



PROBABILISTIC YIELDING AND CYCLIC BEHAVIOR OF GEOMATERIALS 5

where, Del, f , U , q∗, and r∗ are elastic modulus, yield surface, plastic potential surface, internal

variable(s), and rate(s) of evolution of internal variable(s) respectively.

Eq. (1) is the most general form of elastic–plastic constitutive rate equation, written in

probability density space. This equation (Eq. (1)) can be written in a more compact form:

∂P (σ(xt, t), t)

∂t
=

∂

∂σ

{

N(1)P (σ(xt, t), t)
}

+
∂2

∂σ2

{

N(2)P (σ(xt, t), t)
}

(4)

where, N(1) and N(2) are advection and diffusion coefficients respectively, and are material

model specific. By specializing Eq. (4) to (any) particular constitutive model, the resulting

FPKE can be solved to obtain the probability density function of stress response, given

uncertainties in material properties and driving strain. However, difference in material behavior

in elastic and elastic-plastic regions necessities solution of FPKE twice - one corresponding

to elastic constitutive equation (with Nel
(1) and Nel

(2), the advection and diffusion coefficients

corresponding to elastic constitutive equation) and the other corresponding to elastic–

plastic constitutive equation (with Nep

(1) and Nep

(2), the advection and diffusion coefficients

corresponding to elastic–plastic constitutive equation). The switch from elastic to elastic–

plastic region (solution) can be controlled using mean stress yielding:

if 〈f〉 < 0 ∨ (〈f〉 = 0 ∧ d 〈f〉 < 0) use elastic FPKE

or, if 〈f〉 = 0 ∨ d 〈f〉 = 0 use elastic–plastic FPKE

(5)

However, difficulty arises if the material yield parameter(s) are uncertain, as the mean yield

criteria then does not account for the complete probabilistic yielding of material. For example,

such mean yielding will neglect the possibilities of elastic–plastic behavior in the elastic region

and vice versa. The concept of probabilistic yielding overcomes this limitation, as it solves
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Eq. (4) once, with equivalent advection and diffusion coefficients, Neq

(1) and Neq

(2) (Jeremić and

Sett [12]):

Neq

(1)(σ) = (1 − P [Σy ≤ σ])Nel
(1) + P [Σy ≤ σ]Nep

(1)

Neq

(2)(σ) = (1 − P [Σy ≤ σ])Nel
(2) + P [Σy ≤ σ]Nep

(2)

(6)

where (1 − P [Σy ≤ σ]) represents the probability of material being elastic, while P [Σy ≤ σ]

represents the probability of material being elastic–plastic. The probabilities of material being

elastic and the probabilities of material being elastic–plastic can easily be calculated from the

cumulative density function of yield function (stress).

It is worth noting that the probabilistic yield criterion (Eq. (6)) represents probabilistic

restatement of the deterministic yield criteria. The probabilistic yield criteria is introduced

(or, the deterministic yield criteria is written in probability space) in order to properly model

uncertain (probabilistic) yield strength.

It is also very interesting to note that proposed approach for calculating equivalent advection

and diffusion coefficients is similar to the solution strategy of famous Black–Scholes [3] equation

in financial engineering modeling of European option, where probabilities of exercise of the

(European) option, obtained from cumulative density functions, are multiplied with stock price

and present value of option strike price to calculate the option price.

4. ELASTIC–PERFECTLY PLASTIC MATERIAL

In this section, the FPKE–approach, along with the concept of probabilistic yielding, is applied

to simulate 1–D (shear stress–shear strain) cyclic behavior of elastic–perfectly plastic material.

Only von Mises material model has been considered. It may, however, be noted that presented
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development is general enough to be used with any material model and that von Mises is just

one such model we use for illustration purposes.

The von Mises yield criteria can be written as:

√

J2 − k = 0 (7)

where, k is a material parameter (yield strength like) and J2 = 3/2sijsij is the second invariant

of deviatoric stress tensor sij = σij − 1/3σkkδij . For 1–D shear, Eq. (7) becomes:

|σ| − σy = 0 or σ = ±σy (8)

The yielding occurs at a yield stress of ±σy. It, however, is important to note that both σy and

σ are uncertain and are described by their respective probability density functions. For elastic–

perfectly plastic material, the distribution of yield stress (σy) is given by its experimentally

measured initial distribution, and remains constant. The stress (σ), however, evolves according

to the governing FPKE (Eq. (4)) and its distribution is given by the solution of the governing

FPKE (Eq. (4)). For 1–D von Mises elastic–perfectly plastic shear constitutive model, the

elastic and the elastic–plastic advection and diffusion coefficients of the governing FPKE

(Eq. (4)), becomes:

Nel
(1) =

dǫxy

dt
〈G〉 ; Nel

(2) = t

(

dǫxy

dt

)2

V ar[G]

Nep

(1) = 0 ; Nep

(1) = 0

(9)

where, G is the shear modulus, dǫxy is the (deterministic) incremental shear strain, t is the

pseudo time, 〈·〉 represents expectation operation and V ar[·] represents variance operation. The

equivalent advection and diffusion coefficients (refer Eq. (6)) for von Mises elastic–perfectly

plastic material, then, becomes:
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Neq

(1)(σ) = (1 − P [Σy ≤ σ])
dǫxy

dt
〈G〉

Neq

(2)(σ) = (1 − P [Σy ≤ σ])t

(

dǫxy

dt

)2

V ar[G]

(10)

One may note that, in deriving the elastic and elastic–plastic advection and diffusion

coefficients (Eq. (9)), it was assumed that spatial random field material properties (G, and σy)

would be first discretized into random variables, for example at Gauss points, by appropriate

tools, for example Karhunen–Loève expansion (Karhunen [14], Loève [18], Ghanem and Spanos

[10]). In other words, the solution of FPKE, with advection and diffusion coefficients given by

Eq. (10), represents point–location scale von Mises elastic–perfectly plastic material behavior,

and not the local–average material behavior. The local–average material behavior, if sought for,

can then be assembled using polynomial chaos expansion (Wiener [27], Ghanem and Spanos

[10]).

Probability Density Function: The FPKE (Eq. (4)), with advection and diffusion

coefficients given by Eq. (10), was solved incrementally with pseudo time steps using method

of lines. The stress domain of the Fokker–Planck–Kolmogorov PDE was discretized first on a

uniform grid by central differences, and thereby obtaining a series of ODE. The series of ODEs

was then solved, after incorporating boundary conditions, simultaneously and incrementally,

with n pseudo time steps, using a standard open–source ODE solver, SUNDIALS [11], which

utilizes ADAMS method and functional iteration.

The yield shear strength (σy) of the material was assumed to have a mean value of 60

kPa with a COV of 30%, values typical for clay (Federal Highway Administration [6], Lacasse

and Nadim [17]). Also, the yield shear strength was assumed to be either normal or Weibull

(with shape parameter of 3.31 and scale parameter of 0.067) distribution as shown in Fig. 1.
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The shear modulus (G) was also assumed to be either normal or Weibull distribution, but

−0.2 −0.1 0.1 0.2

5

10

15

20

Yield Stress (MPa)

Compressive Tensile

Probability Density

Normal
Distribution

Weibull
Distribution

Figure 1. Elastic–perfectly plastic probabilistic model: PDF of yield stress

with a mean value of 100 MPa and a COV of 25%. The cyclic probabilistic von Mises,

elastic–perfectly plastic shear stress–shear strain response (evolutionary probability density

function (PDF) of shear stress), for the case where both yield shear strength (σy) and shear

modulus (G) are normally distributed, is shown in Fig. 2. Two different views of the loading–

unloading–reloading cycle are shown, focusing on the transition between loading and unloading,

and unloading and reloading branches. As can be seen from Fig. 2, PDF for initial stress

(a deterministic Dirac delta function at stress–strain origin) advected and diffused into the

domain, governed by the advection and diffusion coefficients (Eq. (10)). It is very important to

also note that, even–though the deterministic response for von Mises elastic–perfectly plastic

material is bi–linear, due to introduced uncertainties in yielding, the probabilistic response is

non–linear from the beginning. That is, due to uncertainty in yield strength, there is a (small)

possibility that the material becomes elasto–plastic from the very beginning of loading. This
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Figure 2. Elastic–perfectly plastic probabilistic model under cyclic loading: evolutionary PDF of shear

stress (a) view from the junction of loading and unloading branches (probability densities of shear

stress are truncated at a value 1500 for clarity of the plot) and (b) view from the junction of unloading

and reloading branches (probability densities of shear stress are truncated at a value of 150 for clarity

of the plot)

possibility has been quantified from the PDF of the yield strength and taken into consideration

implicitly during simulation using the equivalent advection and diffusion coefficients (Neq

(1) and

Neq

(2), refer Eq. (10)). Those coefficients assigns probability weights to the realizations of stress

response based on the probability of material being elastic or elastic–plastic. Initially, in the

loading branch, at small strains, the probability of material being elastic–plastic is very small

and hence, the initial probabilistic stress response (ensemble of all realizations) is closer (but
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not fully) to linear, elastic response. However, as strain increases, the probability of elastic–

plastic material behaving increases and the probabilistic stress response gradually becomes

more elastic–plastic (Fig. 2(a)).

Upon unloading, the material behaves as (mostly) elastic since elastic–plastic probability

weights from the governing PDF of mirror image (negative) of shear strength (Fig. 1) are

initially very small. During later stages of unloading (loading in the opposite direction), and

similar to the loading branch, the elastic–plastic probability weights increase and gradually

transition the response toward elasto–plasticity (Fig. 2(b)). Similar to this, in the subsequent

reloading branch, the probability weights are again governed the PDF of (positive, loading

branch of) shear strength (Fig. 1), and hence the probabilistic response is again initially more

linear, elastic, while gradually it transitions to full elasto–plasticity.

Case of Increasing Strain Loops: In Fig. 3, the evolutionary PDF of shear stress for

von Mises elastic–perfectly plastic material (refer Fig. 2) is plotted in terms of its statistical

moments – the evolutionary mean (Fig. 3(a)), and standard deviation (Fig. 3(b)) of shear stress

– for the first couple of cycles with increasing strain loops. The mean response, when both the

yield shear strength (σy) and the shear modulus (G) are modeled as Weibull distribution, is

also shown in Fig. 3(a). The oscillations in the evolution of standard deviation of shear stress

with shear strain are due to step size issue, inherent to the forward Euler method that has

been used in solving the FPKE. Work is underway to implement linearly implicit mid-point

rule for solving the FPKE corresponding to elastic-plastic constitutive rate equation.

The very important observation that can be made using Fig. 3(a) is that, if one consider

uncertainties in geomaterial properties, even the simplest elastic–perfectly model, captures

some of the very important features of geomaterial behaviors. For example, reduction of
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Figure 3. Elastic–perfectly plastic probabilistic model under cyclic loading with increasing strain loops:

evolution of (a) mean and (b) standard deviation of shear stress

(secant) modulus with cyclic strain, commonly observed in soil (cf. Vucetic and Dobry [26]),

is fairly nicely captured. If using deterministic models, this feature can only be somewhat

successfully modeled with fairly complex models, which require many more parameters. It

is important to remark that for our probabilistic modeling, (only) statistical distributions

(probability density functions) of shear modulus (G) and shear strength (σy), are needed.

Expansion of elastic–plastic modeling into probability space seems to have added significant

new capabilities to modeling.

Case of Constant Strain Loops: This von Mises elastic–plastic material, however, didn’t

exhibit (secant) modulus degradation, commonly observed in clay (cf. Vucetic and Dobry [25]),

when the material is cycled repeatedly at the same strain. Fig. 4(a) shows such probabilistic

response (mean of shear stress). The material was cycled repeatedly up to 0.2% strain. Only

first three cycles are shown. It is important to note that the von Mises mean elastic–plastic

material behavior is function of both the mean and standard deviation of both shear modulus
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Figure 4. Elastic–perfectly plastic probabilistic model under cyclic loading with all equal loops:

evolution of (a) mean and (b) standard deviation of shear stress

(G) and yield shear strength (σy). The same von Mises elastic–perfectly plastic model with

a different set of material properties could, however, be able to capture the degradation of

mean (secant) shear modulus. For example, Japanese stiff clay, when modeled as von Mises

elastic–perfectly plastic material, exhibited modulus degradation with number of cycles (Sett

et al. [24])

Monotonic Loading: For completeness of comparison, the monotonic behavior of this

probabilistic von Mises perfectly plastic material is also shown (refer Fig. 5). As can be observed

from Fig. 5(a), the mean shear stress non–linearly increases with shear strain before reaching

the perfectly plastic state.

Physically, one may visualize the probabilistic soil constitutive response as an ensemble of

the behaviors of infinite number of soil particles in a representative volume element (RVE), for

example, a laboratory soil specimen. The behavior of an individual soil particle in a RVE is
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Figure 5. Elastic–perfectly plastic probabilistic model under monotonic loading: evolution of (a) mean,

(b) standard deviation, and (c) mean ± standard deviation of shear stress

governed, in case of elastic–perfectly plastic material, by its modulus and strength. However,

if the modulus and strength of each particle are different, for example, governed by their

respective PDF, then each particle would behave differently. The PDF of the response behavior

then represents the ensemble of all such behaviors, with their respective probability weights.

The mean, on the other hand, represents the ensemble average of all such behaviors. In this

context, it is important to note that the behaviors presented in this paper do not take into

account the correlation between soil particles (scale effect). The scale effect can be accounted

for, among others, using stochastic elastic–plastic finite element technique. Sett [21] proposed

one such finite element method by extending the spectral approach to stochastic finite element

(cf. Ghanem and Spanos [10]) to elastic–plastic problems by updating the material properties

at Gauss integration points using the FPKE approach, as the material plastifies.

Further to the promise of an alternate approach to geomaterial modeling, probabilistic

approach also quantifies our confidence in the simulated behavior of geomaterials. FPKE based

probabilistic elasto–plasticity solves for second-order accurate evolutionary PDF of shear stress

(Fig. 2). Ability to obtain the PDF of stress accurately is very important in failure simulation
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of geomaterials, as they often fail at low probabilities (tails of PDF). A full PDF contains

enormous amount of information. From the PDF, other than the statistical moments, other

useful engineering information, for example, the probability of exceedance, most probable

solution, as well as some derivative application like sensitivity analysis can be easily obtained

or derived. Figs. 3(b) and 4(b) show one of the important confidence measuring parameters,

the evolutionary standard deviation of shear stress (square-root of second moment of the

evolutionary PDF of shear stress (Fig. 2)), for cyclic responses with increasing loops and all

equal loops, respectively. As can be observed from the above figures (Figs. 3(b) and 4(b)), inside

any branch (loading, unloading, re–loading, re–unloading, ...), as well as in Fig. 5(b), where the

monotonic response is shown, the standard deviation, first increases and then decreases. This is

because, initially, when the material is mostly elastic, both the uncertainties in shear modulus

(G) and yield strength (σy) are governing. As material becomes mostly elastic–plastic, the

influence of uncertainty in shear modulus (G) decreases. However, it is important to note that

this type of standard deviation response is not generic to all von Mises elastic–perfectly plastic

material. The standard deviation response is very much dependent on the amount uncertainties

present in both shear modulus (G) and yield strength (σy). For example, Fig. 6(b), shows

probabilistic response of cyclic behavior of the same material model, except that COV of

yield strength (σy), is now assumed to be 300%. The standard deviation response shown here

is always increasing which is completely different from what was observed in previous case

(Figs. 3(b), 4(b) and 5(b))). This is because, for this material, the COV of shear modulus

(assumed 30%) is non–significant, compared to the COV of yield strength (assumed 300%),

and hence, the standard deviation response (Fig. 6(b)) is predominantly influenced by the

uncertainty in yield strength (σy). Similar standard deviation response can be observed in
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Fig. 7(b), where the material with large COV of yield strength was subjected to monotonic

loading.
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Figure 6. Elastic–perfectly plastic probabilistic model under cyclic loading with all equal loops

(probabilistic model parameters are exactly the same as used for simulation in Fig. 4, but with very

large yield uncertainty): evolution of (a) mean and (b) standard deviation of shear stress
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Figure 7. Elastic–perfectly plastic probabilistic model under monotonic loading (model parameters

are exactly the same as used for simulation in Fig. 5, but with very large yield uncertainty): evolution

of (a) mean, mode, (b) standard deviation, and (c) mean ± standard deviation of shear stress

It is also interesting to compare Figs. 4(a) and 6(a). Both are mean responses of von Mises
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elastic–perfectly plastic material model with same material parameters, except with different

COV of yield strength. COV of yield strength for simulation in Fig. 4(a) was 30% and that

for simulation in Fig. 6(a) was 300%. It is observed that a completely different responses were

obtained. The effect of COV of yield strength on monotonic mean behavior can, similarly, be

compared in Figs. 5(a) and 7(a).

5. HARDENING MATERIAL

In this section, the influence of probabilistic yielding is evaluated on cyclic responses of isotropic

and kinematic hardening materials. To this end, the same example, as discussed in the previous

section (Section 4) is used but with appropriate hardening rule – isotropic or kinematic.

The main difference between the simulations shown in Section 4 for elastic–perfectly plastic

material is that for a hardening material the internal variables (q∗, refer Eq. (3)) will evolve

as the material plastifies. Such evolution (change) of internal variables is here assumed to

be a function of plastic strain. The FPKE that govern the probabilistic evolution of internal

variable (q) can be written, in most the general form, as:

∂P (q(xt, t), t)

∂t
=

∂

∂q

{

Neq

(1)IV

P (q(xt, t), t)
}

+
∂2

∂q2

{

Neq

(2)IV

P (q(xt, t), t)
}

(11)

where, Neq

(1)IV

and Neq

(2)IV

are the equivalent advection and diffusion coefficients, respectively,

for the internal variable. As explained for the case of probabilistic stress response for elastic–

perfectly plastic material (refer Section 4), since point–location scale FPKE will be solved, the

equivalent advection and diffusion coefficients for the internal variable, Neq

(1)IV

and Neq

(2)IV

, can
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18 SETT AND JEREMIĆ

be written as:

Neq

(1)IV

(q) = P [Σy ≤ σ(q)]
dǫxy

dt

〈

Gr

G +
1√
3
r

〉

Neq

(2)IV

(q) = P [Σy ≤ σ(q)]t

(

dǫxy

dt

)2

V ar









Gr

G +
1√
3
r









(12)

where, r is the rate of evolution of internal variable (q) with plastic strain. One may note that

in the above equivalent advection and diffusion coefficients (Eq. (12)), the contributions of

probability weights that the material being elastic are absent. This is because the evolution

rule of internal variable is governed by the plastic component of strain only. The equivalent

advection and diffusion coefficients for shear stress (Neq

(1) and Neq

(2)) for hardening–type

materials, will have contributions from both elastic and plastic components, just like the

elastic–perfectly plastic case. However, unlike the elastic–perfectly plastic case, those (Neq

(1)

and Neq

(2)) will contain the hardening terms:

Neq

(1)(σ) =
dǫxy

dt









(1 − P [Σy ≤ σ]) 〈G〉 + P [Σy ≤ σ]

〈

G − G2

G +
1√
3
r

〉









Neq

(2)(σ) = t

(

dǫxy

dt

)2









(1 − P [Σy ≤ σ])V ar[G] + P [Σy ≤ σ]V ar









G − G2

G +
1√
3
r

















(13)

To obtain the probabilistic response of von Mises hardening material, the FPKE for

probabilistic evolution of internal variable (Eq. (11), with advection and diffusion coefficients

given by Eq. (12)) needs to be solved incrementally. This solution needs to be done

simultaneously with the FPKE for probabilistic evolution of shear stress (Eq. (4), with

advection and diffusion coefficients given by Eq. (13)). Those, in turn, need also to be solved

incrementally, with the yield strength random variable (Σy) in Eqs. (12) and (13) being updated

after each incremental step.
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5.1. Isotropic Hardening

For von Mises isotropic hardening material, the yield strength (σy) is the internal variable.

Yield strength will evolve probabilistically with plastic strain, following Eq. (11), with

advection and diffusion coefficients given by Eq. (12). The shear stress, on the other hand,

evolves in accordance with Eq. (4), with advection and diffusion coefficients given by Eq. (13).

Fig. 8 shows the evolutionary mean and standard deviation of shear stress during first

couple of loading–unloading cycles for von Mises isotropic hardening material with a non–

dimensional rate of evolution of internal variable (yield strength, in this case) of 10. All other

material parameters are assumed to be the same as used for simulation of elastic–perfectly

plastic material in the previous section (Section 4).
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Figure 8. Isotropic hardening probabilistic model under cyclic loading with increasing loops: evolution

of (a) mean and (b) standard deviation of shear stress

The evolved PDFs of yield strength after each branch (loading, unloading, re–loading, and

re–unloading) are shown in Fig. 9. The initial PDFs of yield strength (positive for loading
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Figure 9. Isotropic hardening probabilistic model under cyclic loading with increasing loops: evolved

PDF of yield stress after (a) loading branch, (b) unloading branch, (c) re–loading branch, and (d)

re–unloading branch

branch and negative for unloading branch) are the same as assumed for elastic–perfectly

plastic material in Section 4 (refer Fig. 1). As expected (and prescribed by the isotropic

hardening model), the yield strength evolved (grew) isotropically. However, it is interesting

to note the change in probability distributions of yield strength. The normally distributed

initial PDFs of yield strength (Fig. 1) evolved into much dispersed non-Gaussian distributions

having low kurtosis. In other words, when the material is cycled through loading–unloading

cycles, the uncertainty in yield strength increases. Mathematically, increase in uncertainty of

shear strength is due to the nonlinearity in formulation of probabilistic yielding , that is, the

state variable q appears in both advection and diffusion equations (refer Eq. (12)), and in the

evolution equation for internal variable (Eq. (11)).

When comparison is made between Figs. 8 and 3, one can clearly see that, in simulating
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cyclic behaviors of geomaterials, isotropic hardening model (Fig. 8) performed, as expected,

poorly. That is, the elastic–perfectly plastic probabilistic model (Fig. 3) captures (PDF of)

stress–strain loops in a much more realistic way. However, for completeness of comparison, the

behavior of isotropic hardening material, when it was cycled to same level (Fig. 10) and when

loaded monotonically (Fig. 11) are also shown.
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Figure 10. Isotropic hardening probabilistic model under cyclic loading with equal loops: evolution of

(a) mean and (b) standard deviation of shear stress

It is noted that monotonic loading curves for both perfectly plastic probabilistic model

(Fig. 5) and linear isotropic hardening probabilistic model (Fig. 11) do look similar (with a

noted difference of more pronounced hardening for a hardening model), but the real difference

in stress–strain predictions with both probabilistic models becomes obvious in the case of cyclic

loading.
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Figure 11. Isotropic hardening probabilistic model under monotonic loading: evolution of (a) mean,

(b) standard deviation, and (c) mean ± standard deviation of shear stress

5.2. Kinematic Hardening

Expanding on elastic–plastic hardening probabilistic models, we now focus on a simple linear

kinematic hardening rule based on evolution of back stress (α). By introducing back stress (α)

to von Mises yield criteria, one can write:

√

Jα − k = 0 (14)

where, k is again material parameter (yield strength like) and Jα = 3/2(sij − αij)(sij − αij)

is the α–modified second invariant of deviatoric stress tensor (sij). For 1–D shear, Eq. (14)

becomes:

|σ − α| − σy = 0 or σ = α ± σy (15)

Hence, for kinematic hardening material, the yielding occurs at a stress of α ± σy, termed

in the following as the equivalent yield stress. Initially, α is zero, and σy is assumed to have

a mean value of 60 kPa with a standard deviation of 20 kPa, resulting in equivalent yield
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stress of 60 kPa with a COV of 30%, same as the assumed yield stress for the elastic–perfectly

plastic material in Section 4 and isotropic hardening material in Section 5.1. However, the same

distribution of equivalent yield stress will be obtained, if one transfers the initial uncertainty

from σy to α. In other words, a deterministic σy of 60 kPa, and an uncertain α of zero mean and

a standard deviation of 20 kPa will result in the same equivalent yield stress. The advantage

of keeping σy deterministic is that it will simplify the probabilistic addition/subtraction in

Eq. (15), while estimating the equivalent yield stress after each incremental step of the

governing FPKEs, once the back stress (α), the internal variable for kinematic hardening

material, starts evolving.

In this study, the back stress (α) is assumed to evolve with plastic strain and hence, it would

evolve probabilistically similar to probabilistic evolution of the yield strength for isotropic

hardening material. Probabilistic evolution of the back stress will occur according to Eq. (11),

with advection and diffusion coefficients given by Eq. (12). Shear stress evolves according to

Eq. (4), with advection and diffusion coefficients given by Eq. (13). One may note that the

yield strength random variable (Σy), appearing in Eqs. (12) and (13), is the equivalent yield

strength and is given by Eq. (15). Fig. 12 shows the probabilistic evolution of shear stress

in terms of mean, mode, and standard deviation, when a kinematic hardening material†, was

cycled couple of times with increasing strain loops. All other material parameters are assumed

to be the same as for the elastic–perfectly plastic material in Section 4. The evolved PDFs of the

back stress (α) at the beginning and end of each branch (loading, unloading, re–loading, and

re–unloading) are shown in Fig. 13. The evolved PDFs of equivalent yield stress (refer Eq. (15))

†with non–dimensional rate of evolution of back stress with plastic strain of 10.
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Figure 12. Kinematic hardening probabilistic model under cyclic loading with increasing loops:

evolution of (a) mean, mode and (b) standard deviation of shear stress
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Figure 13. Kinematic hardening probabilistic model under cyclic loading with increasing loops: evolved

PDF of back stress at the beginning and end of (a) loading branch, (b) unloading Branch, (c) re–

loading branch, and (d) re–unloading branch
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after each loading branch are shown in Fig. 14. Similar to the isotropic hardening case the
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Figure 14. Kinematic hardening probabilistic model under cyclic loading with increasing loops: evolved

PDF of equivalent yield stress after (a) loading branch, (b) unloading branch, (c) re–loading branch,

and (d) re–unloading branch

uncertainty in (equivalent) yield strength increased as the material was cycled through, but

unlike the isotropic hardening model, kinematic hardening model resulted in high kurtosis

PDFs of (equivalent) yield strength. It is noted that the cyclic shear stress response of

kinematic hardening material (Fig. 12), was more realistic than isotropic hardening material

(Fig. 8), however, it didn’t differ much from elastic–perfectly plastic material response (Fig. 3).

Qualitatively, those, the elastic–perfectly plastic and the kinematic hardening responses, are

similar. Like the elastic–perfectly plastic material, for kinematic hardening material, the mean

and mode of the evolutionary shear stress (refer Fig. 12) are different, although not significantly.

Similarly, when one compares response (mean and standard deviation of shear stress) for

loading cycles to the same strain level, for (i) elastic–perfectly plastic, (Fig. 4), (ii) isotropic
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linear hardening (Fig. 10), and (iii) linear kinematic hardening (Fig. 15), probabilistic material

models, one can easily observe the qualitative similarity between elastic–perfectly plastic (i)

and kinematic hardening responses (iii).
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Figure 15. Kinematic hardening probabilistic model under cyclic loading with equal loops: evolution

of (a) mean and (b) standard deviation of shear stress

Monotonic loading cases, however, for all probabilistic material models ((i) elastic–perfectly

plastic, (Fig. 5), (ii) isotropic linear hardening (Fig. 11), and (iii) linear kinematic hardening

(Fig. 16)), are qualitatively similar, with expected differences in rate of hardening.

6. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, a probabilistic framework for macroscopic simulation of geomaterials’ behavior

is presented, including novel probabilistic yielding concept. It has been shown that, if

uncertainties in material parameters are taken into account, a realistic cyclic material behavior

could be obtained even with the simple elastic–perfectly plastic probabilistic model. It is also
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Figure 16. Kinematic hardening probabilistic model under monotonic loading: evolution of (a) mean,

(b) standard deviation, and (c) mean ± standard deviation of shear stress

shown that isotropic or kinematic hardening rule did not significantly improve (if at all) the

qualitative nature of the simulated cyclic geomaterial response. These findings seem to nicely

support the probabilistic micromechanical simulation results by Einav and Collins [5].

In authors’ opinion, probabilistic approach to geomaterial modeling could be very significant

in geotechnical engineering. Other than providing a mathematical tool to quantify our

confidence in our simulation of geomaterials’ behavior, presented approach promises an

alternate avenue to geomaterial modeling. By expanding material modeling into probability

space, one could simulate realistic geomaterial behavior using simple constitutive models,

(elastic–perfectly plastic for example) requiring very few soil parameters that could be easily

obtained from in–situ tests, very common in geotechnical practice.
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12. Boris Jeremić and Kallol Sett. On probabilistic yielding of materials. Communications in Numerical

Methods in Engineering, 25(3):291–300, 2009.

Int. J. Numer. Anal. Meth. Geomech. 2009; in peer–review:1–31

Prepared using nagauth.cls



PROBABILISTIC YIELDING AND CYCLIC BEHAVIOR OF GEOMATERIALS 29
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