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ABSTRACT: In this paper, recently developed probabilistic elasto–plasticity is applied in sim-

ulating cyclic behavior of clay. Simple von Mises elastic–perfectly plastic material model is used

for simulation. Probabilistic soil parameters, elastic shear modulus (Gmax) and undrained shear

strength (su), that are needed for the simulation are obtained from correlations with SPT N -value.

It has been shown that the probabilistic approach to geomaterial modeling captures some of the im-

portant aspects – modulus reduction, material damping ratio, and modulus degradation – of cyclic

behavior of clay reasonably well, even with the simple elastic–perfectly plastic material model.

INTRODUCTION

Behavior of geomaterials is inherently uncertain. This uncertainty stems from natural soil vari-

ability, testing and transformation errors (Lacasse and Nadim 1996; Phoon and Kulhawy 1999a).

Traditionally, geotechnical engineering community deals with uncertainties in geomaterial by ap-

plying factor of safety. However, use of (large) factors of safety not only result in over-expensive

design, but also, sometimes, in unsafe design (Duncan 2000). Hence, in recent years, geotechni-

cal engineering practice has seen an increasing emphasis on probabilistic treatment to data and

subsequent simulation/design.
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Quantification or mathematical description of uncertainty is usually done within the framework

of probability theory, although fuzzy sets (Zadeh 1983), convex models (Ben-Haim and Elishakoff

1990), and interval arithmetic (Moore 1979) have also been used in the past to describe uncertainty

mathematically. Under the framework of probability theory, uncertain spatial variability of soil

deposit is modeled as random field – a collection of random variables, indexed from space contin-

uum. For complete characterization (up to second order) of a random field, in addition to mean

and variance, information on autocovariance function and correlation length or scale of fluctuation

are also needed. Thorough descriptions of random field modeling techniques, with procedures for

estimating correlation length for geotechnical engineering applications, are given by DeGroot and

Baecher (1993) and Fenton (1999a). Testing and transformation uncertainties, on the other hand,

are point uncertainties and are usually modeled as random variables, which are completely char-

acterized (up to second order) by their respective means and variances. Over the years researchers

have quantified and collected typical variations of different soil properties, ranging from consolida-

tion parameters, laboratory measured strength properties to in-situ properties (Lumb 1966; Lacasse

and Nadim 1996; Baecher and Christian 2003; Phoon and Kulhawy 1999a), as well as testing un-

certainties, associated with the most commonly used test methods (Hammitt 1966; Phoon and

Kulhawy 1999a; Marosi and Hiltunen 2004), and transformation uncertainties, associated with the

most common transformation relationships (Phoon and Kulhawy 1999b). A fair amount of work

was also done on subsequent probabilistic geotechnical design guidelines (Harr 1987; Kulhawy and

Phoon 2002), although the existing geotechnical LRFD codes still do not explicitly consider the

soil properties uncertainties. The book by Baecher and Christian (2003) thoroughly describes the

current state-of-the-art of probabilistic geotechnical engineering design.

Modeling and simulation under uncertainty, on the other hand, have received much less atten-

tion, mainly due to the concern about the the necessity, usefulness, and tractability of probabilistic

modeling in geotechnical engineering, when geotechnical problems are difficult to model even de-

terministically, unless advanced modeling techniques are used. However, published works on this

subject (Paice et al. 1996; Rackwitz 2000; Manolis 2002; Griffiths et al. 2002; Fenton and Griffiths

2002; De Lima et al. 2001; Fenton and Griffiths 2003; Borja 2004; Fenton and Griffiths 2005;

Popescu et al. 2005) show very promising results, especially in quantifying our confidence in our
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simulation. Most of the above works are based on Monte Carlo technique (Metropolis and Ulam

1949) in tandem with (deterministic) finite element method. Monte Carlo technique relies on re-

peated random sampling (of, for example, soil properties) and because of this repeatability, the

computational cost associated with it could become extremely huge (and probably intractable), es-

pecially for large scale problems, like dynamic soil-structure interaction analysis. Due to the above

drawback of Monte Carlo technique, in other fields of science and engineering, stochastic differen-

tial equation approach (Gardiner 2004) or numerically, stochastic finite element method (Kleiber

and Hien 1992; Ghanem and Spanos 1991) is very popular. However, non-linearities in soil prop-

erties prevent direct application of those techniques for probabilistic simulations in geotechnical

engineering.

The difficulty in propagating uncertainties in soil properties through the elastic-plastic con-

stitutive equation lies in the high non-linear dependence of the elastic-plastic modulus on stress.

Very few published literature exist on this subject. In fact, the first attempt to propagate uncer-

tainties through elastic-plastic constitutive rate equation was published only recently (Anders and

Hori 1999). Anders and Hori (1999, 2000) used perturbation approach – a linearized Taylor series

expansion with respect to mean – in propagating uncertainties in modulus through the von Mises

elastic–perfectly material model. However, inherent to the Taylor series expansion, perturbation

technique suffers from small variance requirement (Matthies et al. 1997). A rule of thumb restricts

the coefficient of variance (COV) to 20% (Sudret and Der Kiureghian 2000) to minimize the er-

ror in perturbation approach. This severely limits the applicability of perturbation approach to

geotechnical problems, where soil COVs are rarely less than 20% (cf. Phoon and Kulhawy (1999a,

1999b)). Perturbation approach also suffers from closure problem (Kavvas 2003), which means that

information about higher-order statistical moments are necessary to calculate lower-order statis-

tical moments. Griffiths and Fenton (2002, 2003, 2005) used brute force Monte Carlo technique

in propagating uncertainties through elastic-perfectly plastic Mohr-Coulomb model. Recently, in

circumventing the above drawbacks of Monte Carlo and perturbation techniques, Jeremić et al.

(2007) proposed Eulerian–Lagrangian Fokker–Planck–Kolmogorov equation (FPKE; Kavvas 2003)

based probabilistic elasto–plasticity. Developed probabilistic elasto–plasticity is compatible with

the general theory of (deterministic) plasticity, and hence can be used for probabilistic simulation
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of a variety of elastic–plastic models. Solution strategies for probabilistic elasto–plasticity were

discussed by Sett et al. (2007a, 2007b) for both linear and non-linear hardening models. The con-

cept of probabilistic yielding was introduced by Jeremić and Sett (2009), while Sett and Jeremić

(2010) discussed its effect on constitutive simulation under cyclic loading. It was shown that due to

uncertainty in yield stress, there is always a possibility that plastic behavior starts at very very low

strain and influence of elastic behavior continues far into the plastic domain. Because of this, the

average (mean) constitutive response and the most probable (mode) constitutive response show

nonlinear behavior with a vanishing linear region, even for the simplest elastic–perfectly plastic

material model. This in turn is significant since, by expanding into probability space, one obtains

very realistic soil behavior with simple constitutive models, requiring very few soil parameters (and

their distributions) that could be obtained directly from in–situ tests (e.g. SPT, CPT etc.).

In this paper, FPKE based probabilistic approach to geomaterial modeling is applied in simulat-

ing G/Gmax and damping behavior of undrained clay. Elastic–perfectly plastic von Mises material

model, which requires only two soil parameters, the shear modulus (Gmax) and the undrained

shear strength (su), is used. Simulated responses are then compared with published experimental

measurements.
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PROBABILISTIC FRAMEWORK FOR CONSTITUTIVE SIMULATION

The constitutive behavior of soil can be modeled by elastic–plastic constitutive rate equation,

which, in 1–D, can be written as:

dσ

dt
= D

dǫ

dt
(1)

where σ is the stress, ǫ is the strain, t is the pseudo time, and D is the stiffness modulus, that can

be either elastic or elastic–plastic:
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where, Del, f , U , q∗, and r∗ are elastic modulus, yield function, plastic potential function, internal

variable(s), and rate(s) of evolution of internal variable(s) respectively. However, due to various

uncertainties associated with soil properties, as discussed in the previous section, the modulus, D

in Eq. (1) becomes uncertain. In traditional deterministic approach to elastic–plastic geo-material

modeling, one typically applies engineering judgment (qualitative) in obtaining the ’most probable’

soil parameters and substitute them in Eq. (1) in obtaining the ’most probable’ soil constitutive

behavior. However, one may note that due to the non-linearity of soil behavior, ’most probable’

soil parameters do not necessarily result in ’most probable’ constitutive behavior.

Recently, Jeremić et al. (2007) developed a probabilistic approach for elastic–plastic modeling of

geomaterials. Proposed approach is based on the extension of constitutive rate equation (Eq. (1))

into probability density space using Eulerian–Lagrangian Fokker–Planck–Kolmogorov approach

(Kavvas 2003):

∂P (σ(t), t)

∂t
= −

∂

∂σ

{

N(1)P (σ(t), t)
}

+
∂2

∂σ2

{

N(2)P (σ(t), t)
}

(3)

where P (σ(t), t) is the probability density of stress, t is the pseudo-time, while N(1) and N(2) are

advection and diffusion coefficients, respectively. The advection and diffusion coefficients depend
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only on the material model used for modeling. It can be shown (see appendix of Jeremić et al.

2007), that the advection and diffusion coefficients for von Mises elastic-perfectly plastic constitutive

relationship (used here to model undrained behavior of clay) can be written as:

vMN el
(1) =

dǫ

dt
〈G〉 ; vMN el

(2) = t

(

dǫ

dt

)2

V ar[G]

vMN el−pl

(1) = 0 ; vMN el−pl

(2) = 0

(4)

In Eq. (4), G is the elastic shear modulus and ǫ is the shear strain. Furthermore, 〈·〉 represents the

expectation operator, while V ar [·] is the variance operator. The superscripts ·el and ·el−pl on the

advection and diffusion coefficients refer to pre–yield elastic region and post-yield, elastic–plastic

region.

However, for a heterogeneous material like soil, yield strength is quite uncertain. This is due to

the fact that in a representative volume element (RVE; Hashin 1983) of the heterogeneous material,

each of the large number of particle contacts has different yield strengths and orientations. Each of

these particle contacts will yield differently, depending upon its yield strength. Hence, for material

with uncertain yield strength (Σy), there exist possibilities that the material (RVE) starts yielding

inside the elastic regime and/or elastic behavior continues way into the plastic regime. Under the

framework of probability theory, these possibilities are governed by the probability density function

of yield strength (Σy), which can be quantified by statistically analyzing the test results. Hence,

to realistically simulate the probabilistic material behavior, Jeremić and Sett (2009) suggested

probability weights, based on probability density function of yield strength (Σy), to the elastic

and plastic advection and diffusion coefficients in obtaining equivalent advection and diffusion

coefficients. For von Mises elastic–perfectly plastic soil with uncertain yield strength (Σy), the

equivalent advection and diffusion coefficients (vMN eq

(1) and vMN eq

(2)) would become (cf. Sett and

Jeremić 2010):

vMN eq

(1)(σ) = (1 − P [Σy ≤ σ])vMN el
(1) + P [Σy ≤ σ]vMN el−pl

(1)

= (1 − P [Σy ≤ σ])
dǫ

dt
〈G〉 (5)
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vMN eq

(2)(σ) = (1 − P [Σy ≤ σ])vMN el
(2) + P [Σy ≤ σ]vMN el−pl

(2)

= (1 − P [Σy ≤ σ])t

(

dǫ

dt

)2

V ar[G] (6)

The probability weight (P [Σy ≤ σ]) in the above equations (Eqs. (5) and (6)), quantifies, at

any given stress level, the probability of the material RVE being elastic or elastic–plastic. Using

the above equivalent advection and diffusion coefficients (Eqs. (5) and (6)), one can solve the

constitutive rate equation, written in probability density space (Eq. (3)) to obtain the complete

probabilistic description, in terms of probability density function, of evolutionary stress response

with strain (pseudo-time).

One may note that the probabilistic framework presented above is a pure constitutive level

(point-location scale) framework and assumes the input soil properties to be random variables.

The spatial average (local-average) probabilistic constitutive response, if sought for, for example,

in dealing with uncertain spatial variability of soil properties, usually modeled as random fields,

would necessitate discretization of random fields into random variables using appropriate technique,

for example, Karhunen–Loève expansion (Karhunen 1947; Loève 1948; Ghanem and Spanos 1991).

Those random variables could then be propagated through the point-location scale constitutive

framework presented above and spatial average constitutive response could be assembled using

a stochastic finite element technique. Using polynomial chaos expansion (Wiener 1938; Ghanem

and Spanos 1991) and Galerkin technique, Sett and Jeremić (2009) proposed one such stochastic

finite element framework and applied the framework in seismic wave propagation through spatially

uncertain stochastic soil.

SIMULATION RESULTS AND DISCUSSION

In this section, the constitutive behavior of normally consolidated, high plasticity clay is simu-

lated probabilistically using the FPKE approach described in the previous section. Elastic–perfectly

plastic von Mises material model is used for clay. The model requires shear modulus (Gmax) and

undrained shear strength (su) as input soil parameters. Both the soil parameters are easily obtain-

able through transformation from commonly used in-situ tests. In this paper, the above properties

are obtained from SPT N -value. In this context, it is important to mention that the authors un-

derstand the limitations of using SPT N -value for (deterministic) estimation of su and Gmax for
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clay. However, the authors’ intent here is to demonstrate the power of a simple constitutive model,

but with uncertain soil parameters, to simulate the actual response of soil.

Quantification of Uncertainties in Input Soil Parameters

Transformation from measured in-situ properties to mechanical properties usually introduces

uncertainty, which is currently (in traditional deterministic analysis) accounted for by applying

engineering judgment. Alternatively, under the framework of probability theory, one could quantify

the transformation uncertainty by modeling it as a random variable. For example, for alluvial clays

in Japan, Phoon and Kulhawy (1999b) proposed the following relationship between SPT N -value

and undrained shear strength (su):

su = 0.29 pa N0.72 (7)

where pa = 101, 325 Pa is the atmospheric pressure. The above relationship (Eq. (7)), along with

the data (Hara et al. 1974) from which the relationship is developed, is plotted in FIG. 1. The data-
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FIG. 1. Transformation relationship between SPT N-value and undrained shear
strength, su

scatter in FIG. 1 represents knowledge uncertainty in the above transformation equation (Eq. (7)),

and under probability theory, can be modeled as a random variable. To this end, Eq. (7) can be

written as:

su = 0.29 pa N0.72 + χ (8)
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where, χ is a zero-mean random variable and represent the data-residual with respect to the deter-

ministic transformation equation. The histogram of the residual is plotted in FIG. 2. Regarding

the model for the best-fit probability density function (PDF), a Gaussian distribution can be ruled

out as the histogram is skewed. After trying few distributions, a Pearson IV type distribution, with

Pearson parameters of 0, 2400, −2.75 × 105, and 9 × 108, was found to best fit the residual. The

fitted PDF is shown in FIG. 2.
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FIG. 2. Histogram of the residual (w.r.t the deterministic transformation equation)
undrained strength, along with fitted probability density function

Similarly, for transformation between SPT N -value and Young’s modulus (E) for alluvial clays

in Japan, Phoon and Kulhawy (1999b) proposed a transformation equation, which can be written

in probabilistic form as

E = 19.3 pa N0.63 + χ (9)

FIG. 3 shows experimental data (Ohya et al. 1982) along with the deterministic transformation

equation that in this case represents the mean trend. The scatter with respect to the mean trend

(deterministic transformation equation), plotted as histogram, is shown in FIG. 4. A zero-mean

Gaussian random variable with a standard deviation of 4041.8 kPa is found to best fit (FIG. 4) the

scatter with respect to the deterministic equation. The above standard deviation is obtained using

maximum likelihood technique.
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FIG. 4. Histogram of the residual (w.r.t the deterministic transformation equation)
Young’s modulus, along with fitted probability density function

In this context, one may note that the penetration test is a high strain test (to the order of

10%; refer to Figure 65 in FHWA Geotechnical Engineering Circular No. 5 (Federal Highway Ad-

ministration, U.S. Department of Transportation 2002)) and, the corresponding estimated modulus

(Eq. 9) is a high-strain modulus. Hence, to estimate the corresponding low-strain modulus (needed

as the input to the von Mises material model, used in this paper), it is multiplied by 17.25, as-

suming (17.25 − 1)/17.25 = 94 % reduction in modulus at 10% strain, following Idriss (1990) and

presuming that the reduction pattern of Young’s modulus follows the same that of shear modu-
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lus. For example, at N = 15, a mean high-strain Young’s modulus of 10.735 MPa is predicted by

Eq. (9). The corresponding mean low-strain Young’s modulus used in this paper is 10.735 MPa

×17.25 = 185 MPa. The multiplying factor (low strain correction factor) for standard deviation

should, physically, be less than that of the mean. This is because, as the soil is sheared (or, in

other words, as soil plastifies), the micro-structure of soil changes and as a result, our knowledge

uncertainty on it increases. This was experimentally observed by Stokoe II et al. (2004). Prob-

abilistic simulations, published elsewhere by the authors (Sett and Jeremić 2010), also show such

increase in uncertainty with strain. Hence, in absence of experimental data for clay, following the

probabilistic G/Gmax versus shear strain curve, suggested by Stokoe II et al. (2004), a multiplying

factor (low strain correction factor) of [1− (0.2375− 0.05)/0.05]× 17.25 = 10.7 is used for standard

deviation. At N=15, a standard deviation of 4.04 MPa was estimated, using maximum likelihood

technique, for high-strain Young’s modulus. The corresponding standard deviation of low-strain

Young’s modulus, then, becomes 4.04 × 10.7 = 43.2 MPa. By assuming undrained condition, one

could assume Poisson’s ratio to be equal to 0.5 (deterministic) and could transform the Young’s

modulus to shear modulus as

Gmax =
Emax

2(1 + ν)
(10)

One may note that, as the above equation (Eq. (10)) that relates elastic shear modulus and elastic

Young’s modulus is linear, the elastic shear modulus (Gmax) would also be a Gaussian distribution.

Hence, the statistical properties of the elastic shear modulus (Gmax) can easily be obtained using

standard techniques. For example, at N = 15, the mean and the standard deviation of Gmax

are 185MPa/(2(1 + 0.5)) = 61.6 MPa and 43.2MPa/(2(1 + 0.5)) = 14.4 MPa respectively. In

this context, it is important to emphasize that the above estimation of the low-strain correction

factors would become unnecessary if small-strain shear modulus (Gmax) is measured directly from

geophysical tests or estimated through direct correlation of geophysical test-measured properties

(for example shear wave velocity, with SPT N -value). The transformation equations between SPT

N -value and shear wave velocity, reported in the literature (Hasancebi and Ulusay 2007; Jafari

et al. 2002; Pitilakis et al. 1999; Imai 1977) have not been used in this paper due to lack of

reported data points for a meaningful statistical analysis.
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In addition to the transformation uncertainty, discussed above, soil properties also include sig-

nificant testing uncertainties. For example, in SPT, the testing uncertainty arises from equipment,

procedure and operator errors. Phoon and Kulhawy (1999a) proposed typical range of COV for

SPT as 15-45%. In this paper, an equivalent of 45% COV is added to the undrained shear strength

(su) and 15% COV is added to the elastic shear modulus (Gmax) to account for SPT testing uncer-

tainties. Larger uncertainty is used for undrained shear strength (su) because the shear strength is

not unique but depends on many factors, e.g. direction of loading, strain rate, boundary conditions,

stress level, and sample disturbance effects (Ladd 1991; Mayne 2007).

Uncertain spatial variability represents the other important source of uncertainty in soil prop-

erty. This uncertainty is present because soil properties are measured at few locations and then

extrapolated/interpolated to all (some) other points of the soil continuum. In other words, in ’es-

timating’ soil properties between two adjacent boreholes, uncertain spatial variability is incurred.

This uncertain spatial variability is traditionally accounted for by applying engineering judgment.

Probability theory, on the other hand, deals with uncertain spatial variability through random

field modeling (DeGroot and Baecher 1993; Fenton 1999a; Fenton 1999b). Random field model-

ing characterizes the uncertain spatial variability in terms of standard deviation and correlation

structure. The standard deviation is usually added to the uncertainties arising from transformation

equation and testing method, while the correlation structure can be accounted for, among others,

through stochastic elastic-plastic finite element method (Sett and Jeremić 2009; Sett et al. 2010).

In this paper, the uncertain spatial variability has not been explicitly accounted for as the focus

of this paper is on point-location (constitutive) behavior. However, one may note that the data of

SPT N -value versus undrained shear strength (FIG. 2) and SPT N -value versus Young’s modulus

(FIG. 3) contain some effects of spatial variability as SPT is performed at approximately every

30 cm (1 foot) and the blow counts obtained in such way represent average values over that length.

Simulation of G/Gmax and Damping Behavior

The above described uncertain data set is used to analyze, using the probabilistic elastic–plastic

constitutive framework (described in Section 2), the undrained cyclic (shear) behavior of clay. Of

particular interest is the performance evaluation of a simple, elastic–perfectly plastic von Mises

material model, but extended into probability space.
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Probabilistic elastic–plastic stress–strain response

FIG. 5(a) shows the mean shear stress versus shear strain hysteresis loop for an undrained

clay, simulated using probabilistic von Mises elastic-perfectly plastic material model. The input to

the model were the statistics of the soil properties – elastic shear modulus, Gmax and undrained

shear strength, su – corresponding to SPT N -value of 15. The uncertain clay material is cyclically

sheared to ±1.026% shear strain. The cyclic evolution of standard deviation of shear stress is

shown in FIG. 5(b). Results shown in Figures 5(a) and (b) are obtained by solving the Fokker–
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FIG. 5. Simulated hysteresis shear stress versus shear strain loop at ± 1.026% shear
strain: (a) mean and (b) standard deviation behavior

Planck–Kolmogorov equation (FPKE; Eq. (3), with advection and diffusion coefficients given by

Eqs. (5) and (6)) numerically, with appropriate initial and boundary conditions. The solution to

the FPKE, the evolutionary PDF of shear stress with shear strain, is then integrated by standard

techniques to obtain the evolutionary mean and standard deviation behavior. The details of the

solution technique for governing FPKE can be found in Sett and Jeremić (2010).

It is important to note that simulation results shown in FIG. 5 are obtained using elastic –

perfectly plastic von Mises material model and require only two probabilistic soil parameters (their

probability distribution) – elastic shear modulus (Gmax) and undrained shear strength (su). If

probability distribution of material parameters were neglected and only mean values were used (thus

simplifying to deterministic von Mises elastic–perfectly plastic model) simple bi-linear response

would result. Such (deterministic) bi-linear response is also shown in FIG. 5(a).

In FIG. 5(a), it is also interesting to observe that the mean response (of the full probability
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response described by the stress PDF) is non–linear even at very small strain, although, the de-

terministic model assumes linearity till yielding and then behaves as perfectly plastic material.

Such nonlinear mean response is due to the uncertainty in the yield stress, as there is always a

probability (however small) that elastic–plastic response starts at a very small strain. In addition

to that, there also exist a probability that material is elastic at strains past the (mean) yield point,

and since the mean solution is an ensemble average of all the possibilities, such probable elastic

influence is extended into plastic range as well. One can visualize this probabilistic yielding effect

by observing that within a laboratory specimen (considered generally as a representative volume

element (RVE; Hashin 1983)), each of large (infinite) number of particle contacts has different and

unknown yield strengths. At a given strain, some of those particle contacts might be elastic while

others might be fully yielding. What is observed in any laboratory experiment is the ensemble

average (mean) behavior of all the particle contacts. Similar conclusion was developed by Einav

and Collins (2008), using probabilistic micro-mechanical simulation. It may be noted that the

point-location scale constitutive simulation presented in this paper doesn’t account for the scale

effect. Such scale effects could be accounted for by quantifying the uncertain spatial variability

(for example, through random field modeling) of soil and accounting for it in our simulation. This

can be done, for example, through stochastic elastic–plastic finite element method in obtaining

local-average constitutive behavior.

Evolution of secant shear modulus

Elastic–plastic constitutive simulation, described above, is used to obtain the evolution of secant

shear modulus with shear strain. The deterministic evolution of the secant shear modulus is shown

in FIG. 6(a). The deterministic shear modulus remains constant, equal to Gmax = 61.6 MPa

until ≈ 0.3% strain, representing deterministic yield point, before suddenly dropping after yield

point. FIG. 6(a) also shows mean and mean±standard deviation of the evolutionary (probabilistic)

secant shear modulus. Compared with the deterministic evolution of secant shear modulus, the

mean solution predicts a realistic reduction with cyclic shear strain. The region between mean and

mean±standard deviation contains the most likely values of evolutionary shear modulus. Coefficient

of Variation (COV), which can also be used to visualize uncertainty, is shown in FIG. 6(b). The

initial COV of secant shear modulus was [(14.4 MPa + 0.15 × 61.6 MPa)/61.6 MPa]×100% =
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FIG. 6. Simulated (a) probabilistic reduction and (b) evolution of coefficient of varia-
tion (COV) of secant shear modulus with cyclic shear strain.

38.3%. It was calculated from the mean and standard deviation values for Gmax, obtained earlier

as 61.6 MPa and 14.4 MPa, respectively. The second term in the numerator (0.15 × 61.6 MPa)

represents the contribution of the testing uncertainty, which was assumed to have a COV of 15%.

It is interesting to observe that COV of secant shear modulus increases with cyclic shear strain.

This increase in uncertainty comes from the fact that as the material plastifies, this simple two

parameter model becomes less and less accurate. In other words, more detailed investigation of

the soil (micro) structure is needed and more advanced modeling technique needs to be used if one

wishes to reduce such uncertainty.

The above probabilistic evolution of secant shear modulus (FIG. 6) is shown in FIG. 7 in a more

common form, in terms of variation of G/Gmax versus shear strain. It is important to note that, in

FIG. 7, the normalizations of evolutionary mean and mean±standard deviation are done by dividing

each of those by the mean of elastic shear modulus (Mean[Gmax]). In other words, the upper and

lower limits of normalized secant shear modulus, shown in FIG. 7 represent (Mean[G]±Standard

Deviation[G])/Mean[Gmax], rather than G/Gmax±standard deviation. The probabilistic evolution

of material damping ratio versus shear strain is shown in FIG. 8. The mean damping ratio, shown

in FIG. 8 is obtained from the hysteresis loop of mean shear stress versus shear strain. Likewise,

the upper and lower bounds of damping ratio in FIG. 8, are obtained from the hysteresis loops of

mean±standard deviation of shear stress versus shear strain.

In both FIGs. 7 and 8, the deterministic solutions are also plotted. Though the deterministic
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solutions fail to predict realistic soil behavior, probabilistic solutions, even with the simplest elastic–

perfectly plastic model, are comparable to the experimental observations reported in the literature.

For example, the probabilistic G/Gmax and damping ratio curves, presented in FIGs.. 7 and 8,

compared well with the experimental data reported by Vucetic and Dobry (1991) and Stokoe II

et al. (2004) for high plasticity clay.

In addition to modulus reduction, the probabilistic approach also captures modulus degradation

when the clay material is cyclically sheared repeatedly. The simulated hysteresis loops when the

clay material is sheared repeatedly to ±0.1026% strain, is shown in FIG. 9. Only the first four
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FIG. 9. Simulated hysteresis shear stress versus shear strain loop, when sheared re-
peatedly at ± 0.1026% strain: (a) mean and (b) standard deviation behavior; First
four cycles are shown

loops are shown in FIG. 9 for clarity. The absolute values of mean and standard deviation of secant

shear modulus after each cycle are plotted in FIGs. 10(a) and (b), respectively. The mean shear

modulus degrades 8% after 10 cycles at 0.1026% strain. The rate of degradation of mean secant

shear modulus is higher initially, but stabilizes as the number of cycles increases. The standard

deviation of secant shear modulus, on the other hand, increases (275% increase after 10 cycles at

0.1026% strain) with number of cycles. It, however, also stabilizes as the number of cycles increases.

The explanation for increased uncertainty in the secant shear modulus is based on mechanics.

With repeated shearing, soil (micro) structure is continuously disturbed and hence, our knowledge

uncertainty on it increases. In other words, after repeated shearing, simplistic two-parameter

elastic-perfectly plastic model, used here, cannot model such changes accurately. The elastic-
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FIG. 10. Simulated probabilistic degradation of shear modulus, when sheared repeat-
edly at ± 0.1026% strain: (a) mean and (b) standard deviation behavior

plastic probabilistic solution (advection-diffusion equation) aptly captures that fact. The diffusion

component, which controls the spread of the response (stress) probability density function, keeps

evolving continuously with strain, irrespective of the direction of loading (shearing) until plasticity

is fully mobilized with 100% probability, when the diffusion coefficient becomes zero. The advection

component, on the other hand, controls the translation of the response (stress) PDF in the stress-

strain domain. This component is a function of loading (shearing) direction, advection coefficient

and initial condition at the beginning of each loading direction, which in turn, is a function of

the uncertainty present in the system at that state of strain/shearing. The advection component

hence gives rise to the degraded modulus after each cycle, until plasticity is fully mobilized with

100% probability. The modulus degradation is, therefore, appearing as a direct consequence of

probabilistic yielding of material (clay).

CONCLUSIONS

Presented in this paper was a probabilistic approach to constitutive simulation of undrained

clay behavior. It had been shown that probabilistic approach allowed for not only quantification of

our confidence in numerical prediction, but also modeling modulus reduction, modulus degradation

and damping behavior with simple elastic-perfectly plastic (two-parameter) material model. This

is particularly significant since in geotechnical engineering practice, due to various constraints,

advanced laboratory tests are rarely performed, while in–situ tests are usually preferred, data from
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which can be used to calibrate probabilistic material models, one of which was presented here. In

particular, shown here was (probabilistic) calibration of a simple, elastic–perfectly plastic model

but extended into probability space, by using number of in–situ tests. Such calibrated probabilistic

elastic–perfectly plastic model was then used to predict various aspects of undrained shear behavior

of clay. It was shown that simulation results compared well with published data (within mean ±

standard deviation). More importantly, as results contained full PDFs of the responses, they might

have many (other) uses in research and practice.
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