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Abstract

A computational framework has been developed for simulations of the

behavior of solids and structures made of stochastic elastic–plastic materials.

Uncertain elastic–plastic material properties are modeled as random fields,

which appear as the coefficient term in the governing partial differential equa-

tion of mechanics. A spectral stochastic elastic–plastic finite element method

with Fokker–Planck–Kolmogorov equation based probabilistic constitutive

integrator is proposed for solution of this non–linear (elastic–plastic) partial

differential equation with stochastic coefficient. To this end, the random field

material properties are discretized, in both spatial and stochastic dimension,

into finite numbers of independent basic random variables, using Karhunen–

Loève expansion. Those random variables are then propagated through the

elastic–plastic constitutive rate equation using Fokker–Planck-Kolmogorov

equation approach, to obtain the evolutionary material properties, as the

material plastifies. The unknown displacement (solution) random field is
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then assembled, as a function of known basic random variables with un-

known deterministic coefficients, using polynomial chaos expansion. The un-

known deterministic coefficients of polynomial chaos expansion are obtained,

by minimizing the error of finite representation, by Galerkin technique.
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1. Introduction

In mechanics, simulations of static or dynamic behavior of solids and

structures involve solutions of boundary value problems, which are comprised

of the equilibrium equation, Aσ = φ(t), together with the strain compatibil-

ity equation, Bu = ǫ, and the constitutive equation, σ = Dǫ, along with a set

of additional restraints (boundary conditions). In the above, σ is generalized

stress, φ(t) is generalized force that can be time (t) dependent, u is gener-

alized displacements, ǫ is generalized strain and A, B, and D are operators

which could be linear or non-linear.

Rigorous mathematical theory has been developed for problems where the

only random parameter is the external force φ(t). In this case, the probabil-

ity distribution function (PDF) of the response variable satisfies a Fokker–

Planck-Kolmogorov (FPK) partial differential equation (cf. Soize [1]). With

appropriate initial and boundary conditions the FPK PDE can be solved for
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PDF of response variable. The numerical solution method of FPK equation

corresponding to structural dynamics problems was described by number of

researchers (e.g., Langtangen [2], Masud and Bergman [3]).

The other extreme case, which is of main interest of this paper, is when

the stochasticity of the system is purely due to operator uncertainty. Exact

solution of the problems with stochastic operator was attempted by Hopf [4],

using characteristic functional approach. Later, Lee [5] applied the methodol-

ogy to the problem of wave propagation in random elastic media and derived

an FPK equation, satisfied by the characteristic functional of the random

wave field. This characteristic functional approach is very complicated for

linear problems and becomes even more intractable (and possibly unsolvable)

for nonlinear problems with irregular geometries and boundary conditions.

Monte Carlo simulation technique is an alternative to analytical solution

of partial differential equation with stochastic coefficient. A thorough review

of different aspects of formulation of Monte Carlo technique for stochastic me-

chanics problem was presented in a state-of-the-art report edited by Schueller

[6]. Monte Carlo technique has been widely used for probabilistic solution

of uncertain boundary value problems (Paice et al. [7], Popescu et al. [8],

Mellah et al. [9], DeLima et al. [10], Koutsourelakis et al. [11], Griffiths et

al. [12], Nobahar [13], Fenton and Griffiths [14, 15]). It has the advantage

that accurate solution can be obtained for any problem whose determinis-

tic solution (either analytical or numerical) is known. However, the major

disadvantage of Monte Carlo analysis is the repetitive use of the determin-

istic model until the solution variable becomes statistically significant. The

computational cost associated with it could be very exorbitantly high (and
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probably intractable) for three-dimensional and/or non–linear problems with

multiple uncertain material properties.

The difficulties with analytical solution and the high computational cost

associated with Monte Carlo technique lead to the development of numerical

methods for the solution of stochastic differential equation with random co-

efficient. For stochastic boundary value problems, stochastic finite element

method (SFEM) is the most popular. There exist several formulations of

SFEM, among which perturbation (Kleiber and Hien [16], Der Kiureghian

and Ke [17]; Mellah et al. [9], Gutierrez and de Borst [18]) and spectral

(Ghanem and Spanos [19], Keese and Matthies [20], Xiu and Karniadakis

[21], Debusschere et al. [22], Anders and Hori [23]) methods are the most

common. Nice reviews on the advantages and the disadvantages of different

formulations of SFEM were provided by Matthies et al. [24] and recently, by

Stefanou [25]. Mathematical issues regarding different formulations of SFEM

were addressed by Deb et al. [26] and by Babuska and Chatzipantelidis [27].

Computational issues were discussed by Ghanem [28] and by Stefanou [25].

Recently, a hybrid treatment of various forms of epistemic uncertainties, in-

cluding modeling error, was proposed by Soize and Ghanem [29]. However,

most of the existing formulations are for linear elastic problems. Though

there has been some published works on geometric non–linear problems (Liu

and Der Kiureghian [30], Keese and Matthies [20], Keese [31]), there exist

only few published papers on material non–linear (elastic–plastic) problems

with uncertain material parameters.

The major difficulty in extending the available formulations of SFEM to

general elastic–plastic problem is the high non–linear coupling in the elastic–

4



plastic constitutive rate equation. First attempt to propagate uncertainties

through the elastic–plastic constitutive equation considering random Young’s

modulus was published only recently, by Anders and Hori [32, 23]. They took

perturbation expansion at the stochastic mean behavior and considered only

the first term of the expansion. In computing the mean behavior they took

advantage of bounding media approximation. Although this method doesn’t

suffer from computational difficulty associated with Monte Carlo method for

problems having no closed-form solution, it inherits “closure problem” and

the “small coefficient of variation” requirements for the material parameters.

Closure problem refers to the need for higher order statistical moments in or-

der to calculate lower order statistical moments (cf. Kavvas [33]). The small

COV requirement claims that the perturbation method can be used (with rea-

sonable accuracy) for probabilistic simulations of solids and structures with

uncertain properties only if their COVs are less than 20% (cf. Sudret and

Der Kiureghian [34]). For soils and other natural materials, COVs are rarely

below 20% (cf. Baecher and Christian [35]). Furthermore, with bounding

media approximation, difficulty arises in computing the mean behavior when

one considers uncertainties in internal variable(s) and/or direction(s) of evo-

lution of internal variable(s). These difficulties, associated with probabilistic

simulation of the elastic–plastic constitutive equation, prevent application of

SFEM to general geomechanics problems.

Recently, a special nonlocal Eulerian-Lagrangian form of the Fokker-

Planck-Kolmogorov (FPK) equation was derived by Kavvas [33] in order

to model the probabilistic behavior of nonlinear/linear physical systems that

have uncertain parameters, uncertain forcing functions and uncertain initial
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conditions, and that are described by conservation equations in the form

of nonlinear/linear stochastic partial differential equations or stochastic or-

dinary differential equations. This Eulerian-Lagrangian form of the FPK

was later applied by Jeremic et al. [36] to the probabilistic description of

elasto-plasticity, by writing the generalized elastic-plastic constitutive rate

equation in the probability density space. The non–linear (in real space)

elastic–plastic constitutive rate equation becomes a linear partial differen-

tial equation in the probability density space, simplifying the solution pro-

cess. The resulting FPK partial differential equation is second-order exact

(analytical). Further, this FPK approach can very easily be specialized to

any particular constitutive model. The probabilistic monotonic behavior of

Drucker–Prager linear hardening and Cam Clay models were discussed by

Sett et al. [37, 38]. Jeremić and Sett [39] later extended the FPK equation

based probabilistic elasto–plasticity to include probabilistic yielding and in

another paper Sett and Jeremić [40] discussed its influence on cyclic con-

stitutive behavior of geomaterials. In the above publications, it was shown

that with probabilistic approach to geomaterial modeling, even the simplest

elastic–perfectly plastic model picks up some of the important features of

geomaterial behavior, which deterministically, could only be possible with

advanced constitutive models.

Encouraged by the probabilistic constitutive responses of geomaterials, in

this paper, the authors, with the broad goal of understanding the influence

of spatial uncertainties in probabilistic approach to geomaterial modeling,

have extended the spectral formulation of stochastic finite element method

(Ghanem and Spanos [19]) to general stochastic elastic–plastic problems.
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Fokker–Planck–Kolmogorov equation based probabilistic elasto–plasticity has

been used as probabilistic constitutive integrator in updating the material

properties as the material plastifies. Both the formulation and numerical

solution scheme are discussed.

2. FPK Equation based Probabilistic Elasto-Plasticity

2.1. General Form of Constitutive Rate Equation

The constitutive behavior of many materials can be modeled by elastic–

plastic constitutive rate equation, which, in most general form, can be written

as:
dσij
dt

= Dijkl

dǫkl
dt

(1)

where ǫ is the strain, t is the pseudo time, and D is the modulus, which could

be either elastic or elastic–plastic:

Dijkl =







































Del
ijkl when elastic

Del
ijkl −

Del
ijmn

∂U

∂σmn

∂f

∂σrs
Del

rskl

∂f

∂σab
Del

abcd

∂U

∂σcd
− ∂f

∂q∗
r∗

when elastic–plastic

where, Del, f , U , q∗, and r∗ are elastic modulus, yield function, plastic

potential function, internal variable(s), and rate(s) of evolution of internal

variable(s) respectively. However, due to various uncertainties associated

with our measurement of material properties, D in Eq. (1) becomes un-

certain. This is especially significant for geomaterials, where coefficients of

variation of measured properties are typically 50% or more. In traditional de-

terministic approach to material modeling, one typically applies engineering
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judgment (qualitative) in obtaining the ’most probable’ material parameters

and substitute in Eq. (1) to obtain the ’most probable’ material constitutive

behavior.

2.2. Constitutive Equation in Probability Density Space

In quantifying the uncertainties in soil constitutive behavior, Jeremić et

al. [36] proposed a probabilistic approach to material modeling by writing the

constitutive rate equation (Eq. (1)) in the probability density space using an

approach based on Eulerian–Lagrangian form of Fokker–Planck–Kolmogorov

equation (cf. Kavvas [33]). Eq. (1), when written in the probability density

space, takes the form (Sett et al. [37]):

∂P (σij(t), t)

∂t
= − ∂

∂σmn

[{〈

ηmn(σmn(t), Dmnrs, ǫrs(t))

〉

+

∫ t

0

dτCov0

[

∂ηmn(σmn(t), Dmnrs, ǫrs(t))

∂σab
;

ηab(σab(t− τ), Dabcd, ǫcd(t− τ)

]}

P (σij(t), t)

]

+
∂2

∂σmn∂σab

[
∫ t

0

dτCov0

[

ηmn(σmn(t), Dmnrs, ǫrs(t));

ηab(σab(t− τ), Dabcd, ǫcd(t− τ))

]

P (σij(t), t)

]

(2)

where, P (σ(t), t) is the probability density of stress, 〈·〉 is the expectation

operator, and Cov0 [·] is the time-ordered covariance operator. One may also

note that in Eq. (2), t is the pseudo-time of the constitutive rate equation

(Eq. (1)) and ηij is a random operator tensor, which is a function of stress

tensor (σij), material properties tensor (Dijkl), and strain tensor (ǫkl). Eq. (2)

can be written in a compact form as follows:
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∂P (σij, t)

∂t
= − ∂

∂σmn

[

N(1)
mn
P (σij, t)−

∂

∂σab

{

N(2)
mnab

P (σij, t)
}

]

(3)

where, N(1) and N(2) are advection and diffusion coefficients respectively.

With appropriate initial and boundary conditions, and given the second-

order statistics of material properties, Eq. (3) can be solved for evolution of

probability density of stress response with second-order accuracy, following

any particular constitutive law. The advection and diffusion coefficients are

function of statistical properties of material parameters and strain as well as

the type of constitutive model. For example, following the general derivation

in the Appendix of Jeremić et al. [36], it can be shown that the advection and

diffusion coefficients for 1–D von Mises elastic-perfectly plastic shear stress

(σ) versus shear strain (ǫ) constitutive relationship take the following form:

N vM
(1) =



















dǫ

dt
〈G〉 when elastic

0 when perfectly plastic

N vM
(2) =























t

(

dǫ

dt

)2

V ar[G] when elastic

0 when perfectly plastic

(4)

In Eq. (4), G is the elastic shear modulus, ǫ is the shear strain, 〈·〉 is the

expectation operator, and V ar [·] is the variance operator. The transition

from elastic to elastic–plastic can be controlled using mean yield criteria (Sett

[41]) – shifting from elastic advection and diffusion coefficients to elastic–

plastic advection and diffusion coefficients, when mean of elastic solution

exceeds mean of yield stress. In mathematical terms, this translates to:
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if 〈f〉 < 0 ∨ (〈f〉 = 0 ∧ d 〈f〉 < 0) then use elastic N(1) and N(2)

or, if 〈f〉 = 0 ∨ d 〈f〉 = 0 then use elastic–plastic N(1) and N(2)

(5)

2.3. Consideration for Probabilistic Yielding

If the yield strength of the material is uncertain, then there is always

a possibility of ”triggering” the elastic–plastic advection and diffusion coef-

ficients in the pre–yield elastic region and vice versa. Mean yield criteria

(Eq. (5)), however, fails to account for those possibilities. One possible so-

lution could be to assign probability weights, based on cumulative density

function (CDF) of yield strength (Σy), to the elastic and plastic advection

and diffusion coefficients and solve the Fokker–Planck–Kolmogorov equation

corresponding to that weighted average advection and diffusion coefficients to

obtain full probabilistic elastic-plastic response. Mathematically, the equiv-

alent (weighted) advection and diffusion coefficients (N eq

(1) and N
eq

(2)) can be

written as (Jeremić and Sett [39]):

N eq

(1)(σ) = (1− P [Σy ≤ σ])N el
(1) + P [Σy ≤ σ]Npl

(1)

N eq

(2)(σ) = (1− P [Σy ≤ σ])N el
(2) + P [Σy ≤ σ]Npl

(2)

(6)

where (1 − P [Σy ≤ σ]) represents the probability of material being elastic,

while P [Σy ≤ σ] represents the probability of material being elastic–plastic.

The superscripts ·el and ·pl on the advection and diffusion coefficients refer to

pre–yield elastic region and post-yield elastic-plastic region. As an example,

for von Mises elastic–perfectly plastic material (elastic and elastic–perfectly

plastic advection and diffusion coefficients are given by Eq. (4)) with uncer-

tain yield strength (Σy), the equivalent advection and diffusion coefficients
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(N eqvM

(1) and N eqvM

(2) ) would become:

N eqvM

(1) (σ) = (1− P [Σy ≤ σ])
dǫ

dt
〈G〉

N eqvM

(2) (σ) = (1− P [Σy ≤ σ])t

(

dǫ

dt

)2

V ar[G]
(7)

2.4. Probabilistic Constitutive Simulation

Following the above described framework, any plasticity theory based con-

stitutive model can be written in probability density space and the resulting

FPK partial differential equation (PDE) can be solved, using appropriate

initial and boundary conditions, to obtain the constitutive response proba-

bilistically. In this paper, the FPK PDE is solved numerically using method

of lines - by semidiscretizing the PDE in the stress domain using finite differ-

ence method and solving the resulting series of ordinary differential equations

incrementally.

A typical, 1–D shear stress versus shear strain constitutive behavior of

von Mises elastic–perfectly plastic material with uncertain shear modulus

and uncertain yield (shear) strength is shown in Figure 1. In particular, Fig-

ure 1 shows the contour of evolutionary probability density function (PDF)

of shear stress with shear strain, as the material is strained monotonically up

to 1.026%. The evolutionary PDF was obtained as the solution of FPK equa-

tion (Eq. (3)) with equivalent von Mises elastic–perfectly plastic advection

and diffusion coefficients (Eq. (7)). Shear modulus, with normal distribution,

having a mean value of 61.4 MPa and a coefficient of variation of 38.5% was

assumed in this simulation. Shear strength was also assumed to follow nor-

mal distribution with a mean of 0.2 MPa and a standard deviation of 0.14

MPa. Shear modulus and shear strength were assumed independent of each
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Figure 1: Contour of evolutionary probability density function (PDF) of shear stress,

when von Mises elastic–perfectly plastic material with uncertain shear modulus and un-

certain yield (shear) strength was monotonically strained; The mean, the mode, and the

mean±standard deviation of shear stress – obtained by integrating the evolutionary PDF

of shear stress – are also shown.
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other. The assumed values are typical for clay material under undrained con-

dition. In Figure 1, the mean and mean±standard deviation of shear stress,

obtained by integrating the PDF of shear stress by standard techniques, are

also shown. It is interesting to observe, in Figure 1, the non-Gaussian nature

of the evolutionary PDF of shear stress. In other words, the mean shear

stress differs from the most probable (mode) shear stress.

In addition to quantifying the uncertainties in predicted constitutive be-

havior, the probabilistic approach to elasto–plasticity could significantly in-

fluence material modeling in general. As can be observed from Figure 2,

with probabilistic approach to material modeling, even the simplest elastic–

perfectly plastic material model captures some of the features of (geo-)materials’

behavior, for example, modulus reduction and modulus degradation as ma-

terial undergoes cyclic loading. In particular, Figures 2(a) and (b) show

the mean shear stress behaviors that are obtained from evolutionary PDF

of shear stress when von Mises, elastic-perfectly plastic material (same as

used for monotonic simulation) is strained cyclically. Figure 2(a) shows an

unsymmetric loading–unloading–reloading cycle while Figure 2(b) shows a

symmetric loading–unloading–reloading cycle. Deterministic simulation of

modulus reduction and modulus degradation would require (far more) ad-

vanced constitutive models than the (probabilistic) elastic–perfectly plastic

model used here. The influence of hardening rules on probabilistic approach

to material modeling was discussed by Sett and Jeremić [40].
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Figure 2: Mean shear stress, obtained by integrating the evolutionary probability density

function (solution of FPK equation (Eq. (3))), when von Mises elastic–perfectly plastic

material with uncertain shear modulus and uncertain yield (shear) strength was cycli-

cally strained: (a) loading–partial unloading–reloading cycle and (b) loading–complete

unloading–reloading cycle; Two complete cycles are shown for the later

3. Formulation of Stochastic Elastic–Plastic Finite Element

3.1. Governing Equation

The governing partial differential equation in mechanics can be mathe-

matically written, combining equilibrium, strain compatibility, and constitu-

tive equations, as:

Ξ(x)u(x) = φ(x) (8)

where Ξ(x) is a linear/non-linear differential operator, φ(x) is the external

force and u(x) is the response. If the material properties are uncertain (and

modeled as random field), Ξ in Eq. (8) becomes a stochastic linear/non-linear

differential operator and as a result, the response, u becomes a random field.

Splitting the stochastic operator (Ξ) into a deterministic part (L) and a
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random part (Π), whose coefficients are zero-mean random fields, one can

write Eq. (8) as:

[L(x) + Π(x, θ)] u(x, θ) = φ(x) (9)

In the above equation (Eq. (9)), θ is introduced to denote randomness in the

variables. For example, the response u(x, θ) is a spatial random function,

where the probability distribution of u changes as a function of the location,

x, in the space continuum. Further, if one splits the input material properties

random field into a deterministic trend and zero-mean random (uncertain)

residual about trend, D(x, θ) = D̂(x) + R(x, θ), one can re-write Eq. (9) as:

[

L1(x)D̂(x) + L2(x)R(x, θ)
]

u(x, θ) = φ(x) (10)

where L1(x) and L2(x) are deterministic differential operators.

3.2. Spatial and Stochastic Discretization

Spectral approach to stochastic finite element formulation necessities dis-

cretization of Eq. (10) in both stochastic and spatial dimensions, as follows:

1. Karhunen–Loève (KL) expansion (Karhunen [42]; Loève [43]; Ghanem

and Spanos [19]) is used to discretize the zero-mean fluctuating part of

the input material properties random field (R(x, θ)) into finite number

of independent basic random variables,

R(x, θ) =
L
∑

n=1

√
λnξn(θ)fn(x) (11)

where, λn and fn(x) are the eigenvalues and eigenvector, respectively

of the covariance kernel of the zero-mean random field (R(x, θ)). The
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zero-mean random variables, ξn(θ) are mutually independent and have

unit variances.

2. Polynomial chaos (PC) expansion (Wiener [44]; Ghanem and Spanos

[19]) is used to represent any unknown random variable in terms of

known random variables. For example, any unknown random variable,

χ(θ) can be expanded, truncating after P terms, in functional (poly-

nomial chaos, ψi [{ξr}]) of known random variables, ξr and unknown

deterministic coefficients, γi, as:

χj(θ) =
P
∑

i=0

γ
(j)
i ψi [{ξr}] (12)

Using PC expansion, the unknown partially-discretized – in spatial

dimension, using KL expansion – displacement random field (u(x, θ))

in Eq. (10) can be further discretized in the stochastic dimension,

u(x, θ) =
L
∑

j=1

ejχj(θ)bj(x)

=
L
∑

j=1

P
∑

i=0

γ
(j)
i ψi[{ξr}]cj(x)

=
P
∑

i=0

ψi[{ξr}]
L
∑

j=1

γ
(j)
i cj(x)

=
P
∑

i=0

ψi[{ξr}]di(x) (13)

where cj(x) = ejbj(x) and di(x) =
∑L

j=1 γ
(j)
i cj(x)

3. Shape function expansion (Zienkiewicz and Taylor [45], Bathe [46],

Ghanem and Spanos [19]) is used to discretize the spatial component
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– di(x), in the above polynomial chaos expansion, Eq. (13) – of the

unknown random field:

di(x) =
N
∑

n=1

dniln(x) (14)

where lm(x) are the shape functions.

3.3. Stochastic Finite Elements

Discretizing Eq. (10) in both spatial and stochastic dimensions using KL,

PC, and shape function expansions, one can write Eq. (10) as,

P
∑

i=0

N
∑

n=1

[

ψi[{ξr}]L1(x)D̂(x)ln(x) +

M
∑

m=1

ξm(θ)ψi[{ξr}] L2(x)
√
λmfm(x)ln(x)

]

dni = φ(x) (15)

Galerkin type procedure may be applied to Eq. (15) to solve for the unknown

coefficients (dmi) of the PC-expansion of the displacement random field and

after some algebra, one may write Eq. (15) as (cf. Ghanem and Spanos [19]),

N
∑

n=1

K ′

mndni +
N
∑

n=1

P
∑

j=0

dnj

M
∑

k=1

cijkK
′′

mnk = Φm 〈ψi[{ξr}]〉 (16)

where, Φk =
∫

D
φ(x)lk(x)dx and cijk = 〈ξk(θ)ψi[{ξr}]ψj[{ξr}]〉. In the above

equation (Eq. (16)), one may note that the expected values of the polyno-

mial chaoses (ψi[{ξr}]) and the products of orthonormal random variables

and polynomial chaoses (ξk(θ)ψi[{ξr}]ψj[{ξr}]) can easily be pre-calculated

in closed form (symbolically, for example using Mathematica [47]). Eq. (16)

can be written in more familiar matrix form as,
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K̄ū = F̄ (17)

where, ū is the generalized displacement vector, F̄ is the generalized force

vector, and K̄ is the generalized stiffness matrix, which is composed of two

components, namely the deterministic stiffness matrix, K ′, defined as:

K ′

nk =

∫

D

L1(x)ln(x) D̂ lk(x)dx (18)

and, the stochastic stiffness matrix, K ′′, defined as:

K ′′

mnk =

∫

D

L2(x)ln(x)
{√

λmfm(x)
}

lk(x)dx (19)

3.4. Force-Residual Form

For non-linear problems (as attempted in this paper), Eq. (17) can be

written in force-residual form and solved incrementally. One can write Eq. (17)

in force-residual form as:

r̄(ū, λ) = 0 (20)

where, ū are the generalized degrees of freedom and λ is the load control

parameter. Differentiating Eq. (20), one can write the rate form of the force-

residual equation (Eq. (20)) as,

˙̄r = K̄ ˙̄u− q̄λ̇ = 0 (21)

where, K̄ (=∂ri/∂uj) is the tangent stiffness matrix and q̄ (= −∂ri/∂λ) is the
load vector. At regular points in the ū−λ space, the tangent stiffness matrix
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is non–singular and hence one can solve the force-residual rate equation for

˙̄u as,

˙̄u =
(

K̄−1q̄
)

λ̇ with ū
′

=
dū

dλ
= K̄−1q̄ (22)

The resulting set of nonlinear ODEs (Eq. (22)) can be solved numerically

for ū with a set of initial conditions (at λ = 0, ū = ū0) using either pure

incremental method (forward Euler method) or incremental–iterative method

(Newton method). This paper only considers the forward Euler method by

which knowing the solution of ū at the nth step (ūn), the solution at (n+1)th

step (ūn+1) can be obtained as (using load control),

ūn+1 = ūn +∆λnū
′

n (23)

Hence, the incremental solution (∆ūn) can be written as,

∆ūn = ūn+1 − ūn =
(

K̄−1
n q̄n

)

∆λn (24)

3.5. Evaluation of Generalized Tangent Stiffness Matrix

In Eq. (24), the generalized tangent stiffness matrix (K̄) needs to be re-

evaluated at each step because the constitutive properties (D̂ in Eq. (18)

and
√
λm in Eq. (19)) of the material change as the material plastifies. The

evolution of these material properties, as the material plastifies, are gov-

erned by the constitutive rate equation (Eq. (1)). At each integration point

(Gauss point), the constitutive equation, written in probability density space

(the FPKE, refer Eq. (3)), can be solved once for each KL-space1 to obtain

1Note that KL-spaces are orthogonal to each other
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updated D̂ (refer Eq. (18)) and
√
λm (refer Eq. (19)), and thereby the gen-

eralized tangent stiffness matrix (K̄; refer Eq. (24)) at each load step. For

example, for 1–D problem, the (known, random) strain increment at the

(k − 1)th global step can be written as,

∆ǫk−1(x, θ) =
P
∑

i=0

ψi[{ξr}](θ)
N
∑

n=1

∆dk−1
ni Bn(x) (25)

Hence, the advection and diffusion coefficients for the FPKE, assuming 1–D

von Mises elastic–perfectly plastic material behavior, at the kth global step

can be calculated using Eq. (7) as follows:

For the zeroth KL-space (mean space):

N eqvM

(1)

k

(σ) = (1/∆t) D̂ (1− P [Σy ≤ σ])
∑P

i=0

〈

ψi[{ξr}]
〉

∑N

n=1 ∆d
k−1
ni Bn

N eqvM

(2)

k

(σ) = t (1/∆t)2 D̂
2 (1− P [Σy ≤ σ])

∑P

i=0 V ar
[

ψi[{ξr}]
] (

∑N

n=1 ∆d
k−1
ni Bn

)2

(26)

For any other KL-spaces:

N eqvM

(1)

k

(σ) = (1/∆t)
√
λ f (1− P [Σy ≤ σ])

∑P

i=0

〈

ξ ψi[{ξr}]
〉

∑N

n=1 ∆d
k−1
ni Bn

N eqvM

(2)

k

(σ) = t (1/∆t)2 λ f 2 (1− P [Σy ≤ σ])
∑P

i=0 V ar
[

ξ ψi[{ξr}]
] (

∑N

n=1 ∆d
k−1
ni Bn

)2

(27)

In Eqs. (25)-(27), B is the derivative of shape function. One may note

that the means and the variances of the polynomial chaoses (ψi[{ξr}]) and

the means and the variances of the products of the orthonormal Gaussian

random variables (ξm, where the subscript m denotes the KL-space) and the
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polynomial chaoses (ψi[{ξr}]) can easily be pre-calculated symbolically using

Mathematica [47].

Assuming any value of pseudo-time increment ∆t, the FPKEs correspond-

ing to each KL-space (including the mean space) can be solved at t = ∆t to

obtain the corresponding probability density function of stress for the strain

increment given by Eq. (25). The explicit incremental solution scheme used

here needs information on the new tangent material properties at each KL-

space (for example, D̂ in Eq. (18) and
√
λm in Eq. (19)) to increment forward.

To this end, the constitutive rate equation (Eq. (1)), after taking expectation

on both sides, can be written as (Kavvas [33]; Sett et al. [37]):

d 〈σij(t)〉
dt

=

〈

Dijkl(σij , t)
dǫkl
dt

〉

+

∫ t

0

ds Cov0

[

∂

∂σmn

{Dijkl(σij(t), t)
dǫkl
dt

};Dmnpq(σmn(t−s), t− s)
dǫpq
dt

]

(28)

If one assumes σ(t) to be a δ-correlated function of (pseudo) time, then the

covariance term on the r.h.s of Eq. (28) becomes variance and hence, Eq. (28)

can be re-written in incremental form as:

∆ 〈σij(t)〉
∆t

=

〈

Dijkl(σij , t)
∆ǫkl
∆t

〉

+ V ar

[

Dijkl(σij, t)
∆ǫkl
∆t

]

(29)

It may be noted that if relatively large computational step size is used, then

δ-correlation is a fairly good assumption for processes with finite correlation

lengths as most of the information are in the variances of those processes.

Eq. (29) relates the statistics of the tangent stiffness with the rate of change

of mean stress, which is known, at each global load step increment, from the
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solution of FPKE. However, that itself doesn’t allow for direct solution of

the unknowns on the r.h.s., unless the l.h.s. (rate of change of mean stress)

is known at several intermediate steps within the global load step increment.

In such cases, the unknowns on the r.h.s. of Eq. (29) can be approximately

solved by using a least square procedure e.g., Levenberg-Marquardt tech-

nique (Levenberg [48], Marquardt [49]). Hence, in this paper, at each Gauss

integration point, the FPKE is solved in few sub-steps within each global

step increment. By knowing the l.h.s. of Eq. (29) at those sub-steps and

noting that the incremental strain is given by Eq. (25), the evolved tangent

material properties of each space are approximately calculated. For example,

for 1-D problem, for zeroth KL-space (mean space), Eq. (29) simplifies to:

∆ 〈σ(t)〉
∆t

∣

∣

∣

∣

zerothKL−space

= D̂(t)

〈

∆ǫ

∆t

〉

+ D̂
2(t)V ar

[

∆ǫ

∆t

]

(30)

Now, if one assumes that, within the global load step, the mean tangent

stiffness (D̂(t)) evolves quadratically 2 as D̂(t) = a1 + a2 t
2, where a1 and

a2 are unknown deterministic coefficients, then one can write Eq. (30) as,

∆ 〈σ(t)〉
∆t

∣

∣

∣

∣

zerothKL−space

=

(

a1

〈

∆ǫ

∆t

〉

+ a21V ar

[

∆ǫ

∆t

])

+

(

a2

〈

∆ǫ

∆t

〉

+ 2a1a2V ar

[

∆ǫ

∆t

])

t2 +

a22V ar

[

∆ǫ

∆t

]

t4 (31)

Using Eq. (25) and the same ∆t that was used for solving the FPKE, the

2Linear evolution was also tried. However, quadratic evolution was preferred due to

global step-size issue, especially at the transition region between elasticity and plasticity.
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mean and variance terms on the r.h.s. of Eq. (31) can be easily evaluated

and hence, knowing the l.h.s. of Eq. (31) over few sub-steps, the unknown

deterministic coefficients (a1 and a2) can be determined using Levenberg-

Marquardt technique. Hence, the evolved mean tangent material property

(D̂(t)) at the end of global load step can be evaluated as D̂(t) = a1 + a2 t
2

by substituting t = ∆t.

Similarly, for any other KL-spaces, for 1-D problem, Eq. (29) simplifies

to:

∆ 〈σ(t)〉
∆t

∣

∣

∣

∣

non−zeroKL−space

=
√
λ(t)f

〈

ξ
∆ǫ

∆t

〉

+ λ(t)f 2V ar

[

ξ
∆ǫ

∆t

]

(32)

Again, within the global load step, one may assume that the tangent ma-

terial property at the mth KL-space (
√
λm(t)) evolves quadratically3 as,

√
λ(t) = a3 + a4 t

2, where a3 and a4 are unknown deterministic coef-

ficients, and write Eq. (32) as,

∆ 〈σ(t)〉
∆t

∣

∣

∣

∣

non−zeroKL−space

=

(

fa3

〈

ξ
∆ǫ

∆t

〉

+ f 2a23V ar

[

ξ
∆ǫ

∆t

])

+

(

fa4

〈

ξ
∆ǫ

∆t

〉

+ 2f 2a3a4V ar

[

ξ
∆ǫ

∆t

])

t2 +

f 2a24V ar

[

ξ
∆ǫ

∆t

]

t4 (33)

Hence, following the same procedure, as described above for the zeroth KL-

space, the evolved tangent material property at the mth KL-space (
√
λm(t))

3As for the evolution of mean stiffness at the zeroth KL-space, here also, linear evolu-

tion was tried. However, quadratic evolution was preferred due to global step-size issue,

especially at the transition region between elasticity and plasticity.
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at the end of global load step can be estimated from Eq. (33) using Levenberg-

Marquardt technique.

3.6. A Remark on Non-Gaussian Material Properties

The formulation presented above utilizes the properties of Gaussian distri-

bution. However, the formulation can be generalized to include non-Gaussian

(random field) material properties too. To this end, the usual technique of

representing a non-Gaussian random variable in terms of Gaussian random

variables through non-linear transformation, e.g., Rosenblatt transformation

(Rosenblatt [50], Melchers [51], Grigoriu [52]) can be used. Alternately, as

recently used by several researchers, classical polynomial chaos expansion

(Ghanem [53], Sakamoto and Ghanem [54]) or generalized polynomial chaos

expansion (Xiu and Karniadakis [55, 56], Foo et al. [57], Lucor et al. [58])

may also be utilized to represent non-Gaussian random fields. It may be

noted that the FPK equation, used to integrate the constitutive equation

at integration points, is general enough to treat both Gaussian and non-

Gaussian random variables. See Sett and Jeremić [40], where FPK equation

was applied to probabilistically simulate cyclic constitutive behavior of a

von Mises material, whose shear strength was assumed to have a Weibull

distribution.

4. SIMULATION RESULTS AND DISCUSSIONS

In this section, the spectral stochastic elastic-plastic finite element method,

proposed in Section 3, is applied to simulate the probabilistic behavior of a

1–D soil column subjected to monotonic shear loading. The schematic of the

soil column is shown in Figure 3(a). The shear modulus (G) of soil is assumed
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Figure 3: (a) Schematic of the 1-D stochastic soil shear beam; (b) Soil profile, in terms

of means and standard deviations, of shear modulus and shear strength along the depth.

Note that the standard deviation profiles are approximately calculated from the first two

eigen modes of respective covariance kernels

to be a Gaussian random field with a mean of 61.4 MPa, a standard deviation

of 23.7 MPa, and a correlation length of 0.1 m (covariance function is as-

sumed to be exponential). The shear strength (cu) of the soil is also assumed

to be a Gaussian random field with a mean of 0.2 MPa, a standard deviation

of 0.14 MPa, and a correlation length of 0.1 m (again, covariance function

is assumed to be exponential). The shear modulus and shear strength are

assumed independent of each other. Although the above material parame-

ters are assumed, the statistical properties of the soil strength and stiffness

parameters can be easily estimated by statistically analyzing commonly used

in-situ test data e.g., standard penetration test (SPT) N -value or cone pen-

etration test (CPT) qT value (cf. Fenton [59, 60]). The soil profile, in terms

of means and standard deviations of the shear modulus and shear strength,
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based on the above assumed statistical properties are shown in Figure 3(b).

The standard deviations of shear modulus and shear strength, as shown in

Figure 3(b), are approximately calculated at Gauss integration points using

first two eigen modes of their respective covariance kernels. It is assumed

that the soil follows von Mises yield criteria, which is a common assumption

for simulation of undrained clay behavior. Further, it is assumed that after

yielding the soil behaves as a perfectly plastic material. Typical 1-D shear

stress versus shear strain constitutive behavior of von Mises elastic–perfectly

plastic material under uncertainty were shown in Figures 1 – 2.

The input soil properties random fields are first discretized in both spa-

tial and stochastic dimension using KL-expansion (Eq. (11)). To this end,

the eigenvalues and eigenvectors of their respective covariance kernels are

obtained numerically, using finite element technique. In this context, it may

be noted that for exponential covariance kernel, as assumed in this exam-

ple, the corresponding eigenvalue problem has a closed form solution and

hence, a numerical treatment may be avoided. However, except for very few

standard covariance kernels, numerical solution is necessary for any arbitrary

covariance function. For details of finite element formulation of KL eigen-

value problem, the readers may refer to the book by Ghanem and Spanos

[19]. In this study, open source FORTRAN library, LAPACK (Anderson

et al [61]), is used for KL eigen analysis. For the stochastic simulation of

the above soil column, only the first two eigenmodes for both shear modu-

lus and shear strength are considered. In each loading step, the stochastic

displacement (solution) of the soil column is assembled using PC-expansion

(Eq. (12)). In this study, Hermite polynomial chaoses up to second order
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are considered. The unknown deterministic coefficients of the PC-expansion

are then obtained by solving the spectral stochastic finite element system of

equations (Eq. (16)). UMFPACK (Davis [62]), a set of routines for solving a

sparse linear system using multifrontal method, is used for this purpose. At

the constitutive level, FPKE (Eq. (3)) corresponding to the von Mises elastic

perfectly plastic model (the advection and diffusion coefficients are given by

Eqs. (26)-(27)) is solved at each KL space (including the mean space) to ob-

tain the statistics of internal stresses as the soil evolves. To this end, the FPK

partial differential equation is first semi-discretized in the stress domain on a

uniform grid by central differences to obtain a series of ODE. These ODEs are

then solved simultaneously, after incorporating boundary conditions, using

a standard ODE solver SUNDIALS (Hindmarsh et al. [63]), which utilizes

ADAMS method and functional iteration. Readily available open source code

LMFIT (Moré et al. [64]) for Levenberg-Marquardt type least square regres-

sion analysis is used in estimating the evolution of statistical properties of

material parameters from the evolutionary statistical properties of internal

stress (refer to Eqs. (30)-(33)).

Figure 4 shows the evolutions of mean and mean±standard deviation of

the displacement at the top of the soil column when a shear force, applied

at the top of the soil column, is increased from 0 to 0.3 kN. It may be noted

that, even though the material model is assumed elastic–perfectly plastic,

due to the introduced uncertainties in yielding, the probabilistic response

is non-linear from the beginning. Depending on the uncertainty in yield

strength, there is always a possibility that the soil becomes elastic–plastic

from the very beginning of loading. This possibility has been quantified, at
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Figure 4: Evolution of mean and mean±standard deviation of displacement at the top

of the 12 m tall stochastic soil column, when a deterministic static shear force is applied

(varied from 0 to 0.3 kN) at top

the Gauss points, from the mean and variance of the yield strength of soil

and taken into consideration implicitly during constitutive simulation using

the equivalent advection and diffusion coefficients (N eqvM

(1) and N eqvM

(2) , refer to

Eq. (7)). These coefficients assign probability weights to the realizations of

stress response based on the probability of material being elastic or elastic-

plastic. As discussed in section 2.3, initially, at small strains, the probability

of material being elastic-plastic is very small and hence, the initial prob-

abilistic response (ensemble of all realizations) is closer (but not fully) to

linear, elastic response. However, as deformation increases, the probability

that the material yields increases and consequently, the probabilistic solution

gradually becomes more elastic-plastic (Figure 4).

Uncertain tangent shear modulus (stiffness) evolves as well at each Gauss

point – both in the mean and the probabilistic (KL) spaces – with the increase
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in shear loading. One such evolution (of mean of tangent shear modulus and

of tangent of λ at the first and the second KL space), at a Gauss point located

at a depth of 6.645 m from the top of the soil column, is shown in Figure 5.
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Figure 5: Evolution of the statistics of the tangent of the modulus at a depth of 6.645m

from the top of the soil column, shear force at the top increases from 0 to 0.3 kN: (a)

mean, (b) λ at the 1st and 2nd KL-space

It is also interesting to observe the pattern of evolutionary material be-

havior along the depth of the soil column. The evolution of mean of tangent

modulus along the depth of soil column is plotted in Figure 6(a). The mean

of tangent modulus at each Gauss point evolves differently, depending on

their respective advection and diffusion coefficient (refer to Eq. (26)). As

can be observed from Figure 6(a), the material around the middle of the soil

column has evolved more than that around the top and the bottom of the

soil column. In other words, middle of the soil column has gotten softer than

the top and bottom. It may, however, be noted that this stiffness reduction

pattern depends on the correlation lengths of the random field material prop-

erties. For example, Figure 6(b) shows the stiffness reduction pattern of the
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same soil column, but with a shear modulus correlation length of 1 m.
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Figure 6: Evolution of mean of tangent modulus along the depth of soil column with load:

(a) shear modulus correlation length 0.1m, and (b) shear modulus correlation length 1.0m

(all other parameters are kept the same).

The variabilities in the above evolved mean behaviors are captured in

terms of
√
λf , which is a measure of standard deviation, at the mutually

perpendicular KL spaces. Figures 7(a) and (b) show the evolutions of
√
λf of

the tangent modulus at the 1st KL-space for the soil column with correlation

length of shear modulus of 0.1m and 1.0 m, respectively. Figures 8(a) and (b)

show the same for the 2nd KL-space. As can be observed from Figures 7 and 8

that at each Gauss point, as in the mean space, the material properties at the

KL-spaces also evolved in different fashions, depending upon their respective

advection and diffusion coefficients (refer to Eq. (27)). The evolution of

standard deviation of the tangent modulus, which is the absolute value of the

sum of evolutionary
√
λf over all KL spaces, is shown in Figure 9. Comparing

Figures 6 and 9, it might be concluded that the pattern of stiffness reduction

along the depth of the soil column and its associated uncertainty depend on
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the correlation length of the soil modulus.
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Figure 7: Evolution of tangent
√
λ1 f1 along the depth of soil column with load: (a) shear

modulus correlation length 0.1m, and (b) shear modulus correlation length 1.0m (all other

parameters are kept the same).
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Figure 8: Evolution of tangent
√
λ2 f2 along the depth of soil column with load: (a) shear

modulus correlation length 0.1m, and (b) shear modulus correlation length 1.0m (all other

parameters are kept the same).

The influences of the variances of shear modulus and shear strength on the

displacement behavior at the top of the soil column have also been studied.
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Figure 9: Evolution of standard deviation of tangent modulus along the depth of soil

column with load: (a) shear modulus correlation length 0.1m, and (b) shear modulus

correlation length 1.0m (all other parameters are kept the same).

Figure 10(a) shows the mean and mean±standard deviation of displacement

at the top of the soil column when COV of shear strength is assumed to be

5%, keeping everything else the same as the original model. As expected, less

non-linear response is obtained in the domain of the simulation (compare with

Fig. 4). Low uncertainty (COV = 5%) in shear modulus, on the other hand,

yields a more non-linear response (Figure 10(b)) than the case where the

shear strength is less uncertain (Figure 10(a)), but less non-linear response

than the original model where both the shear strength and the shear modulus

are very uncertain (Figure 4).

5. CONCLUDING REMARKS

A computational formulation is developed for numerical solution of elastic–

plastic boundary value problems with stochastic coefficients. The framework

is based on spectral formulation of stochastic finite element method. At the
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Figure 10: Evolution of mean and mean±standard deviation of displacement at the top

of the 12 m tall stochastic soil column, assuming (a) low uncertainty (COV = 5%) in

shear strength and (b) low uncertainty (COV = 5%) in shear modulus. All other material

parameters are assumed to be the same as the original model, where both the shear

strength and the shear modulus are very uncertain

Gauss integration points, Fokker-Plank-Kolmogorov equation based proba-

bilistic constitutive integrator is used to update – as the material plastifies –

the statistical properties of the tangent modulus. The advantage of Fokker-

Plank-Kolmogorov equation based probabilistic elasto–plasticity is that it

transforms the nonlinear stochastic elastic-plastic constitutive rate equation

in the real space into a linear deterministic partial differential equation in

the probability density space. This deterministic linearity simplifies the nu-

merical solution process of the probabilistic constitutive equations. In ad-

dition, Fokker-Plank-Kolmogorov approach to probabilistic elasto-plasticity

yields second-order accurate (analytical) probabilistic constitutive solution

and doesn’t suffer from ’closure problem’ and ’small variance requirement’,

associated with perturbation technique and high computation cost, associ-

ated with Monte Carlo technique. Further, the presented formulation is gen-
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eral enough to be used with any elastic-plastic constitutive models with un-

certain material parameters. Different constitutive models will only yield dif-

ferent advection and diffusion coefficients for the constitutive Fokker-Planck-

Kolmogorov equation.

Developed stochastic framework is applied in simulating the behavior of

a 1-D stochastic soil shear column subjected to a deterministic shear force

at the top. The solution has been presented in terms of mean and standard

deviation of displacement. The evolutionary pattern of stiffness reduction

along the depth of the soil column is discussed. The influences of the cor-

relation length and the variance of the soil parameters on the response have

also been addressed.

On a closing note, while, in this paper, the application examples for the

developed framework deal with the uncertain soil, the formulation is generic

and can be applied to any elastic-plastic or elastic-damage material with

uncertain material properties.
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