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Abstract

Stiffness degradation and damping represent some of the most well-known aspects

of cyclic soil behavior. While standard equivalent linear approaches reproduce these

features by (separately) prescribing stiffness reduction and damping curves, in this

paper a multiaxial visco-elastic-plastic model is developed for the simultaneous simu-

lation of both cyclic curves over a wide cyclic shear strain range.

The proposed constitutive relationship is based on two parallel resisting/dissipative

mechanisms, purely frictional (elastic-plastic) and viscous. The frictional mechanism

is formulated as a bounding surface plasticity model with vanishing elastic domain,

including pressure-sensitive failure locus and non-associative plastic flow – which are

essential for effective stress analyses. At the same time, the use of the parallel viscous

mechanism is shown to be especially beneficial to improve the simulation of the overall

dissipative performance.

In order to enable model calibration on few standard experimental data, the con-

stitutive equations are purposely kept as simple as possible with a low number of

material parameters. Although the model performance is here explored with reference

to pure shear cyclic tests, the multiaxial formulation is appropriate for general loading

conditions.

Keywords stiffness degradation, damping, plasticity, bounding surface, viscosity, cyclic

loading
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1 Introduction

Modeling soil behavior under cyclic/dynamic loading is crucial in most Geotechnical Earth-

quake Engineering (GEE) applications, including e.g. site response analyses and soil struc-

ture interaction (SSI) problems. In the last decades, a number of experimental studies

(Ishihara, 1996; di Prisco and Wood, 2012) pointed out the complexity of such behavior

– especially in the presence of pore fluid(s) – characterized by non-linearity, irreversibility,

anisotropy, barotropy, picnotropy, rate-sensitivity, etc. In principle, a comprehensive soil

model should be capable of reproducing all the aspects of the mechanical response for any

loading condition, as well as predicting the occurrence of liquefaction and cyclic mobility,

distinguishing the conditions for shakedown or ratcheting under repeated loads and so forth.

However, such a perfect model is expected to require too many data for calibration, which

are hardly available in most practical situations.

Conversely, many GEE problems are traditionally solved in the frequency domain by

using 1D (equivalent) linear visco-elastic models, to be calibrated on standard stiffness

degradation (G/Gmax) and damping (ζ) curves. Owing to the availability of computer

programs for 1D site response analysis (SHAKE (Schnabel et al., 1972), EERA (Bardet

et al., 2000), DEEPSOIL (Hashash and Park, 2001)) and SSI problems (SASSI (Lysmer,

1988)), the visco-elastic approach has become more and more popular among practitioners,

regardless of the following drawbacks:

– most energy dissipation in soils comes from frictional inter-granular mechanisms,

rather than viscous flow;

– G/Gmax and ζ curves do not allow to evaluate irreversible deformations, nor the

influence of pore fluid(s);

– adopting 1D shear constitutive relationships has poor mechanical soundness, since soil

behavior exhibits a pronounced deviatoric-volumetric coupling under general multiax-

ial loading conditions;

– the meaning of cyclic shear strain amplitude for the choice of G/Gmax and ζ values is

not evident in the presence of irregular seismic loads.

From the above observations the need stems for more physically consistent soil models. In

the last decades, several approaches to cyclic modeling have been explored and gradually re-

fined in the framework of elasto-plasticity, including e.g. “multi-surface plasticity”, “bound-

ing surface plasticity”, “generalized plasticity” and “hypoplasticity”. A number of valuable

contributions are worth citing, such as – to mention only a few – Mróz et al. (1978); Prevost

(1985); Wang et al. (1990); Borja and Amies (1994); Manzari and Dafalias (1997); Gajo and
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Wood (1999); Papadimitriou and Bouckovalas (2002); Elgamal et al. (2003); Dafalias and

Manzari (2004); Taiebat and Dafalias (2008); Andrianopoulos et al. (2010); recently, it has

been also shown how a good simulation of dynamic properties can be achieved by means of

even elastic-perfectly plastic models, as long as formulated in a probabilistic elastic-plastic

framework (Sett et al., 2011). Comprehensive overviews on cyclic soil modeling are given

by Prevost and Popescu (1996), Zienkiewicz et al. (1999) and di Prisco and Wood (2012).

As is well-known, the major issues about the practical use of elastic-plastic models

concern the complexity of the mathematical formulations and the possible high number of

material parameters. For a model to appeal to practicing engineers, a tradeoff is needed

between the overall accuracy and the number of parameters to be calibrated, particularly

provided the frequent lack of detailed in situ or laboratory data. This observation led the

authors to set up a constitutive model with main following characteristics:

– multiaxial formulation to cope with any general stress loading condition;

– capability of reproducing the main features of soil behavior, such as stiffness reduc-

tion and damping over a wide strain range, as well as frictional failure, irreversible

deformation and dilatancy;

– low number of material parameters, to be calibrated on standard experimental data

and especially G/Gmax and ζ curves.

A constitutive relationship fulfilling the above requirements is hereafter presented as the

combination of two resisting/dissipative mechanism, purely frictional (elastic-plastic) and

viscous. The former mechanism has been formulated starting from the work by Borja and

Amies (1994), who proposed a kinematic-hardening bounding surface von Mises model for

the seismic total-stress analysis of the clayey deposits at Lotung site in Taiwan (Borja et al.,

1999, 2000). In particular, based on the former idea by Dafalias and Popov (1977) and

Dafalias (1979), the Borja and Amies’s multiaxial model is characterized by the assumption

of vanishing elastic domain, implying soil plastification at any load level and a redefinition

of the standard loading/unloading criterion. Recently, the vanishing elastic region approach

has been also employed by Andrianopoulos et al. (2010), in order to improve the previous

model by Papadimitriou and Bouckovalas (2002) with respect to numerical implementation

and integration.

In this paper, a similar bounding surface approach with vanishing elastic region is ex-

ploited to derive the frictional component of the overall model in the form of a Drucker-

Prager effective-stress relationship, incorporating pressure-sensitive failure and non-associative

plastic flow. In addition, the model is endowed with a further viscous mechanism, which

can be wisely exploited to improve the simulation of the experimental damping. Although
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numerical convenience often motivates the use of viscous dissipation into elastic-plastic com-

putations, it has a real physical origin, coming from the time-dependent processes taking

place at both inter-granular contacts and grain/pore fluid interfaces.

While most model features are in fact inherited from other previous works, the proposed

formulation should be considered as an attempt at reconciling traditional (linear equivalent)

and advanced (elastic-plastic) cyclic modeling within an effective-stress plasticity framework.

In particular, the model is shown to possess reasonable accuracy in reproducing standard

modulus reduction and damping curves over a wide strain range, and it is particularly

user-friendly because of the low number of material parameters. The preliminary literature

survey put evidence that these advantages are not easily found in most previous effective-

stress models.

In order to clearly illustrate the main modeling ingredients, the basic version of the

model is hereafter presented and tested under symmetric cyclic shear loading. Its conve-

nient mathematical structure will enable in the near future to easily remove the simplifying

assumptions that, depending on the specific application, may lead to excessive inaccuracies.

2 Frictional and viscous dissipative mechanisms

The time-domain finite element (FE) solution of dynamic problems is usually carried out

by solving an incremental discrete system of the following form (Bathe, 1982; Zienkiewicz

and Taylor, 1991):

M∆Ü + C∆U̇ + Kt∆U = ∆Fext (1)

where ∆ and dots stand respectively for step increment and time derivative, U is the gen-

eralized DOF vector (nodal displacement for example), Fext the nodal external force vector

and M, C, Kt are the mass, damping and (tangent) stiffness matrices, respectively.

In system (1) two dissipative sources are readily recognizable, namely the viscous (velocity-

proportional) and the frictional (displacement-proportional) terms (Argyris and Mlejnek,

1991). While the latter is given by the elastic-plastic tangent stiffness Kt, the viscous term

related to the damping matrix C can represent interaction of solid skeleton and pore fluid,

and constitutive rate-sensitiveness of the soil skeleton. The above combination of frictional

and viscous dissipation can be interpreted in terms of two distinct effective stress compo-

nents acting on the soil skeleton:

σij = σfij + σvij (2)

where the effective stress tensor σij has been split into frictional (elastic-plastic) and viscous

stresses1. From a rheological point of view, the resulting scheme can be defined as visco-

1Henceforth, effective stresses are exclusively accounted for
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elastic-plastic. In what follows, the frictional component is first specified via the formulation

of the bounding surface model with vanishing elastic domain; then, the role played by the

linear viscous term is discussed.

Index tensor notation is used, along with the standard Einstein convention for repeated

indices; the norm of any second-order tensor xij is defined as ‖xij‖ =
√
xijxij, whereas the

deviatoric component can be extracted as xdevij = xij − xkkδij/3 (δij is the Kronecker delta).

In accordance with usual Solid Mechanics conventions, positive tensile stresses/strains are

considered, whereas – as is done in Fluid Mechanics – only the isotropic mean pressure is

positive if compressive.

2.1 Bounding surface frictional model with vanishing elastic do-

main

The frictional component of the model being proposed is formulated by generalizing the

previous constitutive relationship by Borja and Amies (1994). In what follows, the super-

script f referring to the frictional component of the global effective stress (Equation (2)) is

avoided for the sake of brevity.

2.1.1 Elastic relationship

Provided the usual additive combination of (incremental) elastic and plastic strain compo-

nents dεij = dεeij + dεpij, the incremental linear elastic Hooke’s law is expressed as follows:

dσij = De
ijhk (dεhk − dεphk) =⇒


dsij = 2Gmax (dehk − dephk)

dp = −K (dεvol − dεpvol)
(3)

where d stands for a differentially small increments and De
ijhk is the fourth-order elastic

stiffness tensor. Equation (3) also points out the elastic deviatoric/volumetric decou-

pling, in which p = −σkk/3, εvol = εkk, sij = σdevij and eij = εdevij stand for mean stress,

volumetric strain, stress deviator and strain deviator, respectively. The shear modulus

Gmax = E/2 (1 + ν) and the bulk modulus K = E/3 (1− 2ν) are derived from the Young

modulus E and the Poisson’s ratio ν. Henceforth, Gmax will be always used for the elastic

small-strain shear modulus, whereas the secant cyclic shear stiffness will be referred to as

G.

Although soil elasticity is known to be non-linearly pressure-dependent, a classical lin-

ear formulation has been here maintained to simulate constant-pressure cyclic shear tests,

exclusively.
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2.1.2 Drucker-Prager yield and bounding loci

A conical Drucker-Prager yield locus is first introduced, similar to what used by Prevost

(1985) and Manzari and Dafalias (1997):

fy =
3

2
(sij − pαij) (sij − pαij)− k2p2 = 0 (4)

where αij is the so called deviatoric back-stress ratio (αkk = 0) governing the kinematic

hardening of the yield surface; k is a parameter determining the opening angle of the cone.

The variation of the back-stress ratio αij in (4) leads to a rigid rotation of the yield locus

and, therefore, a rotational kinematic hardening.

In the spirit of standard bounding surface plasticity, the yield locus must always reside

within an outer surface (the so-called bounding surface), here assumed in the form of a

further Drucker-Prager cone (non kinematically hardening, fixed in size):

fB =
3

2
sijsij −M2p2 = 0 (5)

where M provides the bounding cone opening and, as a consequence, the material shear

strength.

2.1.3 Plastic flow and translation rules

The plastic flow of soils is in general non-associative (Nova and Wood, 1979) and gives

rise to plastic contractancy or dilatancy depending on whether loose or dense materials are

considered. Here, the plastic flow rule is borrowed from Manzari and Dafalias (1997):

dεpij = dλ

(
ndevij −

1

3
Dδij

)
(6)

where dλ is the plastic multiplier, ndevij is a deviatoric unit tensor (‖ndevij ‖ = 1) and D is a

dilatancy coefficient defined as (Manzari and Dafalias, 1997):

D = ξ
(
αdij − αij

)
ndevij = ξ

(√
2

3
kdn

dev
ij − αij

)
ndevij (7)

in which ξ and kd are two positive constitutive parameters. While the former controls

the amount of volumetric plastic strain, the latter determines the position of the so called

“dilatancy surface” and rules the transition from contractive (D > 0) to dilative (D < 0)

behavior under undrained triaxial conditions2.

2Under different loading conditions this transition is not “exactly” governed only by the location of the

current stress state with respect to the dilatancy surface
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For the sake of simplicity (and regardless of some experimental evidences), the kinematic

hardening evolution of the yield locus and the direction of the deviatoric plastic strain

increment are related through the standard Prager’s rule (Borja and Amies, 1994):

dαij = ‖dαij‖ndevij (8)

2.1.4 Vanishing elastic region

As previously mentioned, the main feature of the frictional model concerns the vanishing

elastic domain, corresponding with the limit k → 0 in Equation (4). Accordingly, the

Drucker-Prager cone reduces to its axis, so that:

lim
k→0

fy = 0⇒ sij
p

= rij = αij ⇒ dαij = drij =
dsij
p
− sij
p2
dp (9)

where rij is the deviatoric stress ratio tensor (Manzari and Dafalias, 1997). After substitut-

ing the Prager’s rule (8) into (9) it results:

ndevij =
drij
‖drij‖

=
dsij − αijdp
‖dsij − αijdp‖

(10)

From Equation (10) it can be inferred that:

1. since the direction of the plastic strain increment overall depends on the stress in-

crement dσij, the resulting constitutive formulation is by definition “hypoplastic”

(Dafalias, 1986);

2. hydrostatic stress increments (dsij = 0) from initial hydrostatic states (αij = 0)

produce ndevij = 0→ εdevij = 0;

3. the deviatoric plastic strain increment is along the direction of the deviatoric stress

ratio increment. This directly comes from the use of the above Prager’s rule in combi-

nation with the vanishing elastic region. Although this finding is not in full agreement

with general experimental evidences, it will not prevent satisfactory cyclic G/Gmax

and ζ curves to be obtained.

Starting from Equation (9), the norm ‖dαij‖ = ‖drij‖ can be specified for the case of

radial loading paths in the deviatoric plane, which are characterized by dp = 0 and the

coaxiality of sij and dsij. Under these loading conditions, simple manipulations lead to

find:

‖dαij‖ =

√
2

3

dq

p
(11)

where q =
√

3/2‖sij‖ stands for the usual deviatoric stress invariant.
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2.1.5 Hardening relationship and plastic multiplier

An incremental hardening relationship is directly established (Borja and Amies, 1994):

dq =

√
2

3
H‖depij‖ (12)

where H is the hardening modulus. Then, the substitution of both the flow rule (6) and

the hardening relationship (12) into (11) leads to:

‖dαij‖ =
2

3

Hdλ

p
(13)

By equaling the two definitions of dsij arising from Equations (3)-deviatoric and (9), and

then using Equations (3)-volumetric and (13) the following relationship is obtained:

2Gmax

(
deij − dλndevij

)
= ‖dαij‖ndevij p+ αijdp =

2

3

Hdλ

p
ndevij p− αijK (dεvol + dλD) (14)

whence:

dλ =
2Gmaxdeijn

dev
ij +Kdεvolαijn

dev
ij

2G+
2

3
H −KDαijndevij

(15)

Equation (15) represents the consistent frictional generalization of Equation (18) in Borja

and Amies (1994), as well as the limit of Equation (12) in Manzari and Dafalias (1997)3 for

a vanishing size of the yield locus.

2.1.6 Projection rule, hardening modulus and unloading criterion

The theory of bounding surface plasticity relies on the basic concept that the plastic mod-

ulus explicitly depends on the distance between the current stress state and an ad hoc

stress projection onto the bounding surface. On this issue, benefits and pitfalls of different

projection rules have been thoroughly discussed by Andrianopoulos et al. (2005).

Here, the stress projection in the π-plane (deviatoric stress ratio plane) is assumed to

be along the direction of αij − α0
ij:

αbij = αij + β
(
αij − α0

ij

)
(16)

where β is a scalar distance coefficient, while α0
ij is the back-stress ratio at the last loading

reversal (Figure 1). As observed by Andrianopoulos et al. (2010), projection rules of the

3Different signs result because of the opposite sign conventions adopted by these authors
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type (16) are “stable”, in the sense that small perturbations of the loading direction do not

affect severely the location of the stress projection on the bounding surface.

The coefficient β is obtained by enforcing the projected stress σbij to lie on the bounding

surface (Equation (5)):

α
ij
b

α
ij

r
ij

α
ij
0

Figure 1: Representation of the projection rule (16)

3

2
sbijs

b
ij = M2

(
pb
)2 ⇐⇒ 3

2
αbijα

b
ij = M2 (17)

that is by substituting (16) into (17) and then deriving the positive root of the following

algebraic equation4:∥∥αij − α0
ij

∥∥2 β2 + 2αij
(
αij − α0

ij

)
β + ‖αij‖2 −

2

3
M2 = 0 (18)

The analytical relationship between H and β is chosen to fulfill the following requirements:

1. H (β = 0) = 0, that is full mobilization of the material strength when the stress image

point lies on the bounding surface;

2. H (β →∞) → ∞, that is (instantaneous) recover of the elastic stiffness at the onset

of load reversal (i.e. αij = α0
ij).

4The adoption of a simple Drucker-Prager-type bounding surface allows β to be analytically obtained.

This would not be the case in the presence of more complex π-sections
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In this case, the following H − β relationship has been introduced because of its simplicity:

H = phβm (19)

in which h and m are two additional constitutive parameters.

In the absence of a finite-sized elastic region, the occurrence of unloading cannot be

checked by comparing the loading direction and the local normal to the yield locus. This

requires the difinition of an alternative unloading criterion, coinciding here with providing

a rule for updating α0
ij. Borja and Amies (1994) proposed a criterion based on the ob-

servation that the hardening modulus H increases at the onset of unloading, so that – as

long as H (β) is a monotonically increasing function – instantaneous unloading is assumed

whenever dH > 0, i.e. dβ > 0. However, the authors experienced that such an unload-

ing criterion lacks robustness in numerical computations under complex/irregular loading

paths, because the small values assumed by β (especially close to the bounding surface)

can be easily corrupted even by numerical inaccuracies; as a result, unrealistic unloading is

often likely to arise. While different proposals are available in literature to overcome this

problem (Andrianopoulos et al., 2005, 2010), the following unloading criterion has been here

preferred: (
αij − α0

ij

)
drij < 0⇐⇒

(
αij − α0

ij

)
ndevij < 0 (20)

in which the coaxiality of dαij = drij and ndevij (Prager’s rule (8)) has been exploited.

It should be also borne in mind that this kind of updating criterion is likely to give rise

to “overshooting” phenomena under general loading paths (Dafalias, 1986). Overshooting

takes place when, after loading along a given direction, a very small unloading implies

an updated α0
ij before reloading along the original direction. The updated small distance

between the current and the reversal stresses determines an unrealistically high reloading

stiffness, so that “the corresponding stress-strain curve will overshoot the continuation of

the previous curve which would have occurred if no unloading/reverse loading/reloading

had taken place” (Dafalias, 1986). While this shortcoming can be usually observed under

irregular seismic loading, it will not be detected in the results being presented, exclusively

concerning symmetric sinusoidal cyclic loading. A recent discussion on the remediation of

overshooting is provided by E-Kan and Taiebat (2014).

2.1.7 Possible refinements

The frictional model has been developed trying to keep the number of material parameters as

low as possible, even with a non-associated flow rule. However, it is worth mentioning which

kind of improvements might be introduced if required by the problem under examination.

It should be first noted that, as a Drucker-Prager type bounding surface has been

adopted, the material shear strength is unaffected by the Lode angle, so that for instance the
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same failure obliquity is predicted for triaxial compression and extension. This drawback

could be easily remedied by modifying the deviatoric cross-section of the bounding surface

itself, e.g. by adopting the well known Mohr-Coulomb deviatoric locus or other smooth loci

(Matsuoka and Nakai, 1974; Willam and Warnke, 1974; Lade, 1977). A change in the devi-

atoric cross-section would negligibly influence the overall formulation, as just the evaluation

of the projection distance β (Equation (17)).

Secondly, the present version of the model cannot predict a possible softening behavior

of the soil, usually taking place in the case of dense materials. Softening could be accounted

for by incorporating a further isotropic hardening mechanism at the bounding surface level,

allowing for a gradual shrinkage of the outer surface during plastifications.

Another relevant point concerns the fact that different parameters must be calibrated

for different void ratios of the same granular material, as if distinct materials were indeed

considered. As a matter of fact, continuous transitions from loose to dense states (and

vice versa) spontaneously take place during straining: this aspect has been successfully

addressed and reproduced via the concept of “state parameter” (Been and Jefferies, 1985;

Wood et al., 1994; Manzari and Dafalias, 1997), which could be also introduced into a

critical-state version of the proposed model. Also, the state parameter concept represents a

natural way to reproduce softening as an effect of the material evolution from peak strength

to critical state conditions.

While the above aspects concern both monotonic and cyclic loading conditions, further

issues could be addressed with more specific reference to cyclic/dynamic loading, as for

instance fabric effects (Papadimitriou and Bouckovalas, 2002; Dafalias and Manzari, 2004)

and anisotropy, the evolution toward shakedown or ratcheting under a large number of

loading cycles (di Prisco and Wood, 2012), the occurrence of cyclic mobility (Elgamal et al.,

2003), rate-sensitiveness and related frequency effects.

Apparently, refining the model formulation in the light of the above observations would

result in more accurate predictions/simulations, implying though higher difficulties in terms

of calibration, implementation and, as a consequence, practical employment. Conceiving a

model reasonably accurate but still “user-friendly” is the main goal of the present study, in

order to provide engineers with a tool fitting standard cyclic modeling concepts (modulus

reduction and damping curves) in a 3D elastic-plastic fashion. Accordingly, while looking

for a compromise between accuracy and simplicity, some experimental evidences have been

purposely disregarded on the modeling side.

2.2 The role of linear viscous damping

An additional viscous mechanism (Equation (2)) is usually available exploited in most finite

element (FE) codes, even though it is not directly included in the constitutive model. Indeed,
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many numerical programs solve discrete systems with a viscous damping term (Equation

(1)), usually assembled as a linear combination of the mass and the (elastic) stiffness matrices

(Rayleigh formulation (Argyris and Mlejnek, 1991; Chopra, 2000)):

C = a0M + a1K
e (21)

where a0 and a1 are two constant parameters, related to the nth modal damping ratio ζn of

the discrete structural system.

It could be easily shown that a constitutive viscosity in the form:

σvij = Dv
ijhkε̇hk (22)

gives rise to a stiffness-proportional damping matrix, which can be equivalently reproduced

through the following calibration of the Rayleigh damping parameters (Borja et al., 2000;

Hashash and Park, 2002):

a0 = 0 a1 =
2ζ0
ω

(23)

The calibration (23) establishes the same ratio between tangential/bulk elastic and the

viscous moduli, that is Ge
max/G

v
max = Ke/Kv. More importantly, a damping ratio ζ0 is

ensured for a given circular frequency ω, as long as the parallel resisting mechanism (σfij)

is purely elastic; as a consequence, provided the a1 value at the beginning of the analysis,

modal frequencies and the corresponding damping ratios are linearly related.

It is also worth remarking some further points about the implications of linear viscous

damping in conjunction with non-linear soil models. If a soil element undergoes an imposed

shear strain history, the overall shear stress/strain cycles τ−γ differ from the purely frictional

component τ f−γ, this difference being due to the viscous shear stress τ v. As will be shown in

next section, the viscous component implies smoother cycles and avoid the sharp transitions

at stress reversal usually exhibited by purely elastic-plastic responses (Borja et al., 2000).

However, the overall G/Gmax ratio between the average cyclic stiffness and the elastic shear

modulus is unaffected by viscosity.

As far as the damping ratio is concerned, its standard definition (Kramer, 1996) can be

easily adapted to point out the frictional/viscous splitting of the energy ∆W dissipated in

a loading cycle:

ζ =
∆W

2πGγ2max
=

∆W f + ∆W v

2πGγ2max
= ζf + ζv (24)

where γmax is the imposed cyclic shear strain amplitude and G the corresponding (secant)

cyclic shear stiffness. As γmax approaches zero, the plastic dissipation tends to zero as

well, so that ζ = ζv; therefore, the Rayleigh parameter a1 can be calibrated to obtain

ζ (γmax → 0) = ζ0 for a given circular frequency ω (see Equation (23)). This is a desirable
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feature of the model, as natural soils are well known to dissipate energy at even very small

strain amplitudes.

At progressively larger strains, both the frictional and viscous components contribute to

the global damping, although the relative quantitative significance is hard to assess a priori.

In addition, the viscous component of the ζ − γmax curve is not constant, since ζv depends

on the strain-dependent secant modulus G (γmax) and, implicitly, on the strain rate. This

is different to what has been argued by Borja et al. (2000).

As an example, consider the response of an elastic-perfectly plastic model with additional

viscosity under a sinusoidal shear excitation γ (t) = γmax sin (ωt). The simplicity of the

elastic-perfectly plastic response allows derivation of instructive analytical formulas for the

G/Gmax and the damping ratios, even in the presence of viscous dissipation. While γmax < γy

(yielding shear strain), the material behavior is linear elastic, so that G/Gmax = 1 and ζ

equals the purely viscous contribution at γmax = 0, i.e. ζ = ζ0; γy depends on the elastic

stiffness and the shear strength of the material, γy = τlim/Gmax, where τlim is the limit

(frictional) shear stress for a given confining pressure. For γmax > γy plastifications take

place with a flat elastic-perfectly plastic τ f − γ branch, and the following expressions can

be easily derived:

G

Gmax

=
τlim

Gmaxγmax
(25)

ζ =
∆W f + ∆W v

2πGγ2max
=

2

π

(
1− τlim

Gmaxγmax

)
︸ ︷︷ ︸

ζf

+ ζ0
Gmaxγmax

τlim︸ ︷︷ ︸
ζv

(26)

In Figure 2 the G/Gmax and ζ ratios are plotted for increasing ζ0 values. As γmax increases,

the frictional damping tends to 2/π ≈ 0.63, while the viscous one keeps increasing because

of the reduction in the secant stiffness and the increase in the shear strain rate (depending

on the strain amplitude). Hence, the value of ζ0 is to be carefully chosen, in order to avoid

excessive dissipation when medium/large strains are induced by the loading process.

The fact that the viscous mechanism can modify the purely frictional ζ − γmax curve

without altering the cyclic stiffness degradation can be fruitfully exploited to improve

experimental-numerical agreement in terms of energy dissipation.

3 Model performance and calibration

The frictional mechanism of the above model is characterized by a very low number of

material parameters, namely the following seven:
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Figure 2: G/Gmax and damping curves for a elastic-perfectly plastic model with linear

viscous damping at varying ζ0 (τlim=100 kPa, Gmax=100 MPa)

• two elastic parameters, the Young modulus E (or the shear modulus Gmax) and the

Poisson’s ratio ν;

• the shear strength parameter M for the definition of the bounding surface (Equation

(5));

• the flow rule parameters, ξ and kd, governing the increment of the volumetric plastic

strain under shearing and the size of the dilatancy surface, respectively (Equation (6));

• the hardening parameters h and m for the dependence of the hardening modulus on the

distance coefficient β (Equation (19)), affecting the pre-failure deformational behavior

and, in overall, the resulting dynamic properties (G/Gmax and damping curves).

Provided a reasonable value for the Poisson’s ratio (usually in the range 0.25− 0.4), the

small-strain elastic stiffness can be evaluated from dynamic laboratory (RC tests) or in situ

(seismic geophysical surveys) tests. As far as the shear strength is concerned, the parameter

M can be related to the friction angle φ as follows:

M =
6 sinφ

3± sinφ
(27)

to reproduce triaxial compression (sign − in (27)) or extension (sign + in (27)) failure con-

ditions. While different bounding deviatoric sections would easily capture both compressive

and extensive limits (Manzari and Dafalias, 1997), the calibration of a circular deviatoric

locus can be tackled – as usual – by setting a trade-off M in between the bounding values
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in Equation (27) (this is appropriate, for instance, for plane strain problems). Also, since

no strain-softening is reproduced, the peak strength or the residual φ is to be considered

on the basis of the specific purpose of the analysis, i.e. depending on whether optimistic or

safe assessments are needed. In any case, the present version of the model is not well suited

for problems where simulating failure is particularly relevant (e.g. slope stability analyses).

The calibration of the flow rule parameters, ξ and kd, requires at least a triaxial test

to be performed, in order to obtain some information about the volumetric behavior. In

particular, under undrained triaxial conditions, kd coincides with the stress ratio (η =

q/p′) characterizing the so-called “phase transformation line” (Ishihara et al., 1975) and

determining the compactive/dilative transition. In the case of loose (compactive) materials,

since fixed bounding and dilatancy surfaces are considered in this version of the model,

kd = M is set to ensure a compactive behavior vanishing as the limit external locus is

achieved. Figure 3 shows the predicted triaxial response for three different values of kd

(and fixed ξ), that is by varying the opening angle of the dilatancy surface (the employed

parameters are reported in the figure caption, where p0 stands for the initial mean pressure).

While the limit stress deviator q is exclusively given by M , the pre-failure behavior is

influenced by the plastic deformability and therefore by kd. The model possesses sufficient

flexibility to reproduce contractive, dilative or contractive/dilative behavior; also, such a

feature is necessary to reproduce undrained conditions (liquefying and non-liquefying re-

sponses), this being a further motivation for non-associativeness when dealing with sandy

materials.

Figure 4 exemplifies the response predicted under pure shear (PS) cyclic loading, applied

as a sinusoidal shear strain history (γmax = 0.2%, 20% , period T=2π s) at constant normal

stresses (and thus constant mean pressure p0 as well). This corresponds with a radial loading

path on the deviatoric plane); for the sake of clarity, the volumetric plastic response has

been inhibited (ξ=0), in order to evaluate the deviatoric mechanism exclusively. Both purely

frictional (solid line) and frictional/viscous (dashed line) responses are plotted.

Owing to the kinematic hardening of the vanished yield locus, the model can reproduce

both the Bauschinger and the Masing effects, the latter implying the stabilization of the

cyclic response to take place after more than one loading cycle. As expected, the additional

viscous damping increases the area of the cyclic loop and therefore the overall dissipated

energy; however, the effect of the viscous dissipation becomes significant only at medium-

high shear strains, corresponding – for a given loading frequency – with higher strain rates.

Further, viscosity causes the aforementioned “smoothing” of stress reversals, as it can be

noticed in Figure 5 by comparing the purely frictional and the frictional/viscous responses.

Given the elastic stiffness and the strength of the soil, the shape of the resulting loading

cycles is totally governed by the hardening properties, by h and m in Equation (19): this
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Figure 3: Predicted triaxial responses for different dilatancy surfaces ( p0=100 kPa, Gmax

= 4 MPa, ν=0.25, M=1.2, ξ=1, h=G/(1.5p0), m=1)

directly affects the simulation of experimental G/Gmax and damping curves, which can be

therefore exploited for the calibration of both h and m. As is proven in Appendix A, the

following equality holds under PS loading conditions:

1 =
G

Gmax

[
1 +

6Gmax

hp0γmax

∫ γmax

0

(
γ

τlim/G− 2γ + γmax

)m
dγ

]
(28)

where τlim = Mp0/
√

3. Relationship (28) has been obtained by integrating the constitutive

equations over the first loading cycle, and represents the frictional counterpart of Equation

(6) in Borja et al. (2000) – as is testified by the explicit influence of the confining pressure

p0. The proper use of Equation (28) requires first the choice of two meaningful points on the

G/Gmax experimental curve, i.e. two (γmax, G/Gmax) couples; then, the unknowns h and m

are obtained by solving the integral system arising from the specification of Equation (28)
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Figure 4: Predicted pure shear response at two different shear strain amplitudes (p0=100

kPa, T=2π s, ζ0 = 0.006, Gmax= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(1.5p0), m=1)

for both selected (γmax, G/Gmax) couples.

Figure 6 illustrates the result of the above calibration procedure, applied on the G/Gmax

and ζ curves for sands implemented into the code EERA (Bardet et al., 2000) and formerly

obtained by Seed and Idriss (1970).

Since Equation (28) exclusively accounts for the G/Gmax curve, the very satisfactory

agreement in terms of stiffness degradation (viscosity has no effect on it) should not surprise.

On the other hand, once h and m are set, the predicted damping curve may or may not

match the experimental outcome irrespective of the calibration procedure. In this respect,

Figure 6 also presents the comparison between the damping curve by Seed and Idriss and the

model prediction. The frictional ζ curve lies in the same experimental range, even though

the accuracy at γmax = 0.03− 1% is not as good as for the G/Gmax ratio. In this case, the

17



19.6 19.8 20
50

55

60

65

70

γ [%]

τ 
[k

P
a]

 

 

frictional
frictional+viscous

Figure 5: Detail of stress reversals for the pure shear response in Figure 4 (γmax = 20%)
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(p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(112p0),

m=1.38)

contribution of the viscous mechanism is practically non-existent, as it only increases the

total ζ ratio for γmax > 0.1%.

Depending on the specific application, a “trial and error” calibration might be preferable,

sacrificing some of the accuracy in terms of G/Gmax ratio to improve the damping perfor-

mance. A possible outcome of a manual calibration is plotted in Figure 7: apparently, while

the simulation of the stiffness curve is still acceptable, the damping curve appears to be

much better than the previous one. The use of the viscous mechanism seems to be highly
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beneficial, since it remedies the lack of accuracy in the frictional curve at medium/large

cyclic strains.
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Figure 7: Comparison between experimental and simulated G/Gmax and damping curves

(p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax/(15p0),

m=1)

It is also worth noting that the experimental/numerical agreement is satisfactory up to

even γmax = 10%, where substantial plasticity occurs and, in any case, the extrapolation of

cyclic curves from experimental data is – to say the least – questionable.

Besides, if the experimental data under examination are unsatisfactorily reproduced for

any h and m combination, the user still has the chance of substituting the interpolation

function (19) with no further changes in the model formulation. In particular, the present

model is as flexible as the one by Borja and Amies (1994) in reproducing, for a given initial

mean pressure, usual 1D non-linear laws for soils, such as the exponential, the hyperbolic,

the Davidenkov and the Ramberg-Osgood models (for this latter a hardening bounding

surface would be needed as well). Matching the aforementioned 1D laws ensures sufficient

capability of reproducing experimental curves of usual shape.

4 Parametric analysis

In this section the influence of some relevant input parameters on the model predictions is

parametrically investigated.
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4.1 Influence of the confining pressure

Figure 8 illustrates the sensitivity, under PS loading, of both G/Gmax and damping frictional

curves to the initial confining pressure. As can be noticed, increasing p0 does enlarge the

“pseudo-elastic” range, that is the strain interval within which the deviation by the elastic

behavior is negligible even with a vanishing yield locus. It is also noted that the variations

in the confining pressure do not imply appreciable changes in the shape of the curves.
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Figure 8: Simulated G/Gmax and damping curves at varying confining pressure (T=2π s,

Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=G/(15p0), m=1)

Although the present version of the model is apparently pressure-dependent, it cannot

quantitatively reproduce the pressure-sensitiveness of G/Gmax and ξ curves arising from real

experiments and incorporated into some analytical formulas (Ishibashi and Zhang, 1993;

Darendeli, 2001). This stems from the fact that the influence of the mean pressure only

concerns the plastic component of the model, while constant elastic (and viscous) moduli

have been adopted for the initial simulation of only PS loading tests. From this point of

view, two easy improvements are possible and mutually compatible:

1. use of hyper- or hypo-elastic laws with variable moduli (Papadimitriou and Boucko-

valas, 2002; Andrianopoulos et al., 2010);

2. adoption of p-dependent hardening parameters (i.e. h and m).

In particular, the latter point does not introduce any further difficulty in terms of analyti-

cal/numerical treatment, since it only affects the interpolation rule (19). Appropriate h (p)
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and m (p) relationships could be easily obtained by first calibrating h and m on experimen-

tal or analytical cyclic curves for different p values, and then analytically interpolating the

parameters values over a meaningful pressure range.

4.2 Influence of the hardening parameters

Figures 9 and 10 show the influence of the hardening parameters h and m on the predicted

cyclic curves. In particular, a decrease in either h or m implies a faster development of plastic

strains, so that the closely-elastic range tends to disappear and G/Gmax < 1 and ζ > 0 at

even γmax = 10−4%; conversely, an extended pseudo-elastic behavior can be obtained over a

large strain range by increasing the hardening parameters. Apparently, the model ensures

high flexibility in terms of cyclic curve shapes, so that the response of standard elastic-plastic

models (i.e. with non-vanishing elastic region) can be smoothly approximated (compare for

instance the m = 3 curves in Figure 10 and the analytical elastic-perfectly plastic frictional

curves in Figure 2).
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Figure 9: Simulated G/Gmax and damping curves at varying h (p0=100 kPa, T=2π s, Gmax

= 4 MPa, ν=0.25, M=1.2, kd=ξ=0, m=1)

4.3 Influence of the viscous mechanism

The influence of the viscous parameter ζ0 on the resulting frictional/viscous damping curve

is illustrated in Figure 11 (the G/Gmax is not affected by the parallel viscous mechanism).

As was expected, an increase in ζ0 induce larger values of ζ (γmax → 0), as well as a faster

increase of the ζ curve at medium/high cyclic strains. Figure 11 confirms the usefulness
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of the viscous mechanism, which can be exploited as an additional degree of freedom for

reproducing the cyclic dissipative soil behavior.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

γ [%]

G
/G

m
ax

 [−
]

10
−4

10
−3

10
−2

10
−1

10
0

10
10

0.1

0.2

0.3

0.4

γ
max

 [%]

ζ 
[−

]

 

 

ζ
0
=0

ζ
0
=0.003

ζ
0
=0.005

ζ
0
=0.001

Figure 11: Damping curves simulated at varying ζ0 (p0=100 kPa, T=2π s, Gmax = 4 MPa,
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4.4 Interaction between volumetric behavior and kinematic con-

straints

All the above simulations have been performed by inhibiting the elastic-plastic soil dilatancy

(ξ = 0), which in most cases cannot be done to represent real soil behavior. As previously

shown for triaxial loading conditions (Figure 3), in the absence of kinematic boundary con-

straints, a variation in the volumetric behavior slightly affects only the hardening evolution

of the stress-strain response toward the limit shear strength; a similar consideration ap-

plies to PS loading conditions, since even in this case the normal confinement is statically

determined.

However, computational (FE) models often contain kinematic constraints arising from

certain symmetries (consider e.g. plane strain or one-dimensional schemes) (Prevost, 1989;

Borja et al., 1999; di Prisco et al., 2012). In addition, for SSI problems, where soil interacts

with a (stiff) structural foundations and wall, the soil volume change plays an important

role. The presence of kinematic constraints implies that the value of some stress components

directly derives from compatibility requirements (e.g. prevented lateral expansion). That

means that the local mean confinement is affected by the tendency of the material to dilate

or contract. In particular, dilative frictional materials will increase the limit shear stress

(with respect to unconfined conditions), while compactive frictional materials will decrease

the limit shear stress. Further, not only the limit shear stress, but also the whole pre-

failure response depends on the plastic flow rule whenever kinematic constraints are imposed

(di Prisco and Pisanò, 2011; di Prisco et al., 2012).

The above considerations suggest that both experimental and numerical results are cer-

tainly affected by the kinematics of the system, even though this effect is not easy to be

a priori quantified in terms of G/Gmax and ζ curves. The kinematic conditions of an infi-

nite soil layer during 1D shear wave propagation are experimentally approximated through

the well known “simple shear (SS) apparatus” (Wood, 2004), in which the soil specimen is

cyclically sheared with no lateral expansion allowed. In order to assess how the kinematic

confinement influences the cyclic response, stiffness degradation and damping curves are

hereafter simulated under SS conditions by varying the volumetric response of the soil; in

particular, three different calibrations of the plastic flow rule (6) are considered, namely (i)

isochoric (kd = ξ = 0), (ii) compactive (kd = M , ξ = 1) and (iii) dilative (kd = 0.4, ξ = 1)

The results reported in Figure 12 provide an insight into the possible effect of the volu-

metric response in combination with constrained loading conditions. In the isochoric case,

the PS and the SS curves perfectly match (compare e.g. with the p0 =100 kPa curves in

Figure 8), as, with no plastic expansion (or contraction), the lateral constraints do not af-

fect the mean pressure during the shear loading; conversely, non-negligible SS-PS differences
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arise when dilative or contractive materials are considered. As is evident in Figure 12, the

discrepancy between isochoric and non-isochoric curves becomes evident at medium/high

cyclic strains, i.e. when significant plastifications take place. Indeed, while the mechani-

cal response is barely inelastic, the deviatoric and the volumetric responses are practically

decoupled, so that no variation of the normal confinement takes place.

Apparently, the quantitative relevance of this effect strictly relates to the actual dila-

tional properties of the material: soils undergoing significant volume changes under uncon-

fined shear will exhibit a high sensitiveness to boundary constraints. The cyclic interaction

between volumetric behavior and kinematic constraints seems to be poorly investigated in

literature and is worth remarking for both theoretical and practical motivations. Indeed,

the cyclic behavior measured through certain experimental devices (triaxial, biaxial, simple

shear, torsional shear, etc) can differ from the mechanical response characterizing other kine-

matic conditions in boundary value problems, so that the employment of volume-insensitive

models (such as the linear equivalent) may lead to inaccurate predictions. In particular,

Equation (19) clearly shows that if any relevant p variation arises from the interaction be-

tween dilatancy and boundary constraints, a variation in the hardening modulus H and,

therefore, the resulting stiffness will also take place. As a consequence, an influence on the

global (non-linear) dynamic response is expected in terms of both amplitude amplification

and frequency content (Roten et al., 2013). While this aspect is totally disregarded by most

modeling approaches in GEE, further work is currently ongoing to quantitatively investigate

the role of soil dilatancy in affecting the outcomes of seismic site response (elastic-plastic)

analyses.

5 Concluding remarks

An incremental 3D visco-elastic-plastic constitutive model was developed to simulate stiff-

ness degradation and damping in soils under cyclic/dynamic loading. The model is based

on an effective-stress formulation with two parallel dissipative mechanisms, purely frictional

(elastic-plastic) and viscous.

As far as the frictional mechanism is concerned, a bounding surface formulation with

vanishing elastic region was adopted, extending to pressure-sensitive non-associative soils

the previous cohesive model by Borja and Amies (1994) for total-stress analyses, but main-

taining higher simplicity than later works, such as that e.g. by Andrianopoulos et al.

(2010). The main features of the frictional model are: (i) the vanishing yield locus implies

an elastic-plastic response at any load levels, as is observed in real experiments; (ii) a min-

imum number of physically meaningful parameters, which can be easily calibrated on few

experimental data; (iii) excellent performance and flexibility in reproducing in the elastic-
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Figure 12: G/Gmax and damping curves simulated under SS conditions and different vol-

umetric responses ( p0=100 kPa, T=2π s, Gmax = 4 MPa, ν=0.25, M=1.2, kd=[1.2, 0.4],

ξ=[0,1], h=Gmax/(15p0), m=1)

plastic framework the standard stiffness degradation and damping curves. With reference

to these latter, the parallel viscous mechanism – easy to be introduced in FE computations

– was shown to provide an additional degree of freedom to improve the simulation of the

cyclic energy dissipation, as long as the viscous parameter is properly calibrated. As a mat-

ter of fact, the viscous mechanism, used here, does physically exist in the form of viscous

interaction between the soil solid skeleton and the pore fluid(s), and needs to be taken into

account (as for example done here).

Future work will concern the investigation of the model performance under undrained

conditions and/or in the presence of non-symmetric loading. Further improvements will be

possibly introduced, still with purpose of keeping the model simple and with few material

parameters – to be all calibrated on standard experimental data.

Acknowledgment

Funding from and collaboration with the US NRC and funding from US DOE for this

research is greatly appreciated.

25



References

Andrianopoulos, K., A. Papadimitriou, and G. Bouckovalas (2005). Bounding surface models

of sands: Pitfalls of mapping rules for cyclic loading. In Proceedings, 11 th International

Conference on Computer Methods and Advances in Geomechanics, pp. 241–248.

Andrianopoulos, K. I., A. G. Papadimitriou, and G. D. Bouckovalas (2010). Bounding sur-

face plasticity model for the seismic liquefaction analysis of geostructures. Soil Dynamics

and Earthquake Engineering 30 (10), 895–911.

Argyris, J. and H.-P. Mlejnek (1991). Dynamics of Structures. North Holland in USA

Elsevier.

Bardet, J. P., K. Ichii, and C. H. Lin (2000). EERA, a computer program for equivalent-

linear earthquake site response analyses of layered soil deposits. Technical report, Uni-

versity of Southern California.

Bathe, K.-J. (1982). Finite Element Procedures in Engineering Analysis. Prentice Hall Inc.

Been, K. and M. Jefferies (1985). A state parameter for sands. Geotechnique 35 (2), 99–112.

Borja, R. and A. Amies (1994). Multiaxial cyclic plasticity model for clays. Journal of

Geotechnical Engineering 120 (6), 1051–1070.

Borja, R., C. Lin, K. Sama, and G. Masada (2000). Modelling non–linear ground response

of non–liquiefiable soils. Earthquake Engineering and Structural Dynamics 29, 63–83.
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A Derivation of Equation (28)

Under PS loading conditions (pure shear at constant mean pressure), Equation (16) produces

the following simple expression for β:

β =
τlim − τ
τ − τ0

(29)

29



where τlim = Mp0/
√

3 and p0 is the initial (and constant) mean pressure. Equation (12)

can be easily specified for PS loading:

dq =
√

3dτ =

√
2

3
H‖depij‖ =

√
2

3
H
dγp√

2
=⇒ dτ =

H

3
dγp (30)

so that the following form of the PS elastic-plastic response results:

dγ = dγe + dγp =
dτ

Gmax

+
3dτ

H
(31)

and, after substituting (29) into (19):

dγ =
dτ

Gmax

+
3dτ

p0hβm
=

dτ

Gmax

+

(
τ − τ0
τlim − τ

)m
3dτ

p0h
(32)

Integration over a strain interval between two stress reversals (γ ∈ [−γmax; γmax]) yields:

2γmax =
2τ

Gmax

+
3

hp0

∫ τ

−τ

(
τ ′ + τ

τlim − τ ′

)m
dτ ′ (33)

where τ0 = −τ has been set. Straightforward variable changes lead to:

1 =
G

Gmax

+
3

2hp0γmax

∫ 2Gγmax

0

(
τ ′′

τlim − τ ′′ +Gγmax

)m
dτ ′′ (34)

1 =
G

Gmax

[
1 +

6Gmax

hp0γmax

∫ γmax

0

(
γ

τlim/G− 2γ + γmax

)m
dγ

]
(35)

It is worth highlighting that two approximations are implicitly contained in Equation

(35): (i) the integration over the first loading cycle does not exactly reproduce the stabilized

cyclic response (because of the aforementioned Masing effect); (ii) a symmetric loading cycle

in terms of shear strain does not in general ensure the symmetry of the corresponding shear

stress range (as it is assumed in Equation (33)). However, such approximations do not

prevent reasonable values for the hardening parameters h and m to be obtained.
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