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Abstract

Presented here is a finite element framework for the solution of stochas-

tic elastoplastic boundary value problems. The elastic/linearized part is

based on a non-Gaussian stochastic Galerkin formulation, where the stiff-

ness random field is decomposed using Polynomial Chaos expansion. In the

constitutive level, a Fokker-Planck-Kolmogorov (FPK) plasticity framework

is utilized. A linearization procedure is developed that serves to update

the Polynomial Chaos coefficients of the expanded random stiffness in the

elastoplastic regime, leading to a nonlinear least-squares optimization prob-

lem. The proposed framework is illustrated in a static shear beam example

of elastic-perfectly plastic as well as isotropic hardening material.
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1. Introduction

So far, in constitutive modeling, material parameters have been defined

in a deterministic fashion by usually extracting the mean from a number of

experiments. However, the behavior of all engineering materials, let alone

geomaterials, is inherently uncertain, as portrayed by various researchers5

[1–3]. The uncertain response follows from inherent uncertainty of mate-

rial behavior or spatial non-uniformity of material distribution. In addition,

the nonlinear material behavior present in several engineering applications

is usually described using elastoplastic constitutive relations. The physical

or phenomenological components of such a model are ideally described by10

random fields, most of which are non-Gaussian. Modeling them as Gaus-

sian fields can induce both inaccuracy and instability to the solution of a

boundary value problem. For example, a Gaussian representation of the ma-

terial stiffness results in inaccurate higher order moments while physically

allowing negative realizations of the process to occur (softening). To realis-15

tically approximate such a physical quantity, a strictly positive definite field

is required.

It is generally accepted that intrusive uncertainty quantification (UQ)

frameworks, in which the uncertainty is propagated through the governing

differential equations, are more efficient than non-intrusive ones. However,20

most researchers have focused on non-intrusive methods, which are easier to

develop and utilize existing computational tools, or have limited their at-

tention to intrusive UQ for simpler problems. The simplest example of a

non-intrusive method is Monte Carlo Simulation (MCS) [4, 5], which may be

seen as a direct integration method in which the integration points are chosen25
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randomly over the probability space. Depending on the application, the latter

approach can prove so computationally demanding that any practical appli-

cation is hindered, at least for elasto-plastic models. Lately, more sophisti-

cated sampling-based approaches have been developed including stochastic

collocation [6, 7] and non-intrusive Galerkin techniques [8]. The applicability30

of those methods is not affected by the complexity of the problem since they

act as wrappers on a deterministic solver which in turn acts as a ”black box”.

Several researchers have dealt so far with intrusive uncertainty quan-

tification in computational mechanics with an emphasis in linear problems.

A comprehensive review of such methods may be found in Matthies et al.35

[5], Keese [9], Matthies [10], where the authors also provide insight to the

well-posedness and structure of a stochastic boundary value problem. So

far, the most popular method for the quantification of uncertainty has been

the Stochastic Finite Element Method (SFEM) [11], which relies on a spec-

tral decomposition of parametric uncertainties and a Polynomial Chaos [12]40

approximation of the output random field. It is one of the first develop-

ments of a stochastic Galerkin method, where the problem is formulated in

a variational form and holds in a weak sense. This class of methods allows

an explicit functional representation of the solution in terms of independent

random variables. An overview of stochastic Galerkin methods may be found45

in [10, 13, 14]. The curse of dimensionality associated with these methods

is one of the topics that researchers have attempted to address lately. Xiu

and Karniadakis [15] introduced the generalized Polynomial Chaos expan-

sion which guarantees optimum (exponential) convergence rates for different

classes of non-Gaussian processes. An optimum basis from the Askey family50
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of orthogonal polynomials was utilized which reduces the dimensionality of

the system. Other researchers have focused on developing sparse approxima-

tions by applying low-rank tensor product techniques [16], proper generalized

decompositions and separated representations [17].

The first attempt to extend SFEM to nonlinear material behavior was55

by Anders and Hori [18], who used a perturbation expansion at the stochas-

tic mean behavior. In computing the mean behavior they took advantage

of bounding media approximation by introducing two fictitious bounding

bodies providing an upper and a lower bound for the mean. This method,

however, inherits the ”closure problem” (essentially the need for higher or-60

der statistical moments in order to calculate lower order statistical moments)

and suffers from the ”small coefficient of variation” requirement for the ma-

terial parameters. Later, Jeremić et al. [19] derived a second-order exact

expression for the evolution of the probability density function of stress for

elastoplastic constitutive rate equations with uncertain material parameters.65

Utilizing an Eulerian-Lagrangian form of the Fokker-Planck equation [20],

the aforementioned ”closure problem” associated with regular perturbation

methods is resolved. Afterwards, Jeremić [21] modified their approach to ac-

count for probabilistic rather than expected yielding and incorporated their

developed FPK-based elastoplastic model in a Gaussian spectral stochastic70

finite element framework [22]. Finally, Rosić [23] presented in detail the

variational theory behind the mixed-hardening stochastic plasticity problem

along with stochastic versions of relevant established computational plastic-

ity algorithms.

In this paper, we utilize a Fokker-Planck-Kolmogorov plasticity frame-75
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work at the constitutive level and a stochastic Galerkin framework at the fi-

nite element level. Non-Gaussian parametric uncertainty is considered through

a combined Karhunen-Lo ‘eve/Polynomial Chaos (KL/PC) expansion. The

above are coupled through an FPK linearization scheme that updates the

coefficients of the polynomial chaos (PC) approximation of the random stiff-80

ness. This method may be tailored to provide varying order of accuracy

counterbalanced by computational efficiency by appropriately choosing the

KL/PC spaces in which the constitutive integration procedure is performed.

First, the stochastic approximation schemes are discussed followed by the

finite element formulation. Next, the underlying Fokker-Planck-Kolmogorov85

framework is introduced along with the proposed linearization procedure and

the complete framework illustrated in a simple static shear beam example.

2. Stochastic discretization

2.1. Elastic stiffness

Any arbitrary non-stationary stiffness random field may be approximated90

using a combined Karhunen-Lo ‘eve/Polynomial Chaos methodology. This

technique involves evaluation of an arbitrary stochastic process as a polyno-

mial of a suitable underlying Gaussian field, whose covariance structure is

characterized by means of the Karhunen-Lo ‘eve expansion (KLE). Following

Sakamoto and Ghanem [24], we represent the uncertain elastic constitutive95

tensor field with the help of the polynomial chaos expansion (PCE):

D(x, θ) =
M∑
i=0

ri(x)Φi[{ξr(θ)}] (1)
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where Φi[{ξr(θ)}] is a set of Hermite polynomials of an underlying Gaussian

set ξr(θ). It can be shown that the PCE is convergent in L2(Ω) where Ω

denotes the space of the random variables. A relevant convergence rate study

can be found in [25].100

The spatially dependent coefficients ri may be computed via simple pro-

jection but this kind of expansion is defined without any reference to the

random field D(x, θ) and the expected accuracy is low. Therefore, a correla-

tion structure is endowed to the underlying field by considering the following

representation:105

D(x, θ) =
M∑
i=0

Di(x)Γi[x, θ)] (2)

where Γi[x, θ] is now a set of Hermite polynomials of an underlying correlated

Gaussian field γ(x, θ). The orthogonality of the polynomials is employed to

calculate the coefficients Di(x) as:

Di(x) =
〈DΓi〉
〈Γ2

i 〉
(3)

where the numerator can be evaluated using some type of numerical quadra-

ture, for example Monte Carlo (MC) or Quasi Monte Carlo (QMC) tech-110

niques. The correlation function of γ(x, θ) induced on D(x, θ) is given as the

solution to the following polynomial equation [24]:

ρD(x1,x2) =
M∑
i=1

Di(x1)Di(x2)i! 〈γ(x1)γ(x2)〉i (4)

This equation is solved by discretizing the domain into a number of nodes and

solving the resulting system of equations. Knowing the above, the correlated

random field γ(x, θ) may be expanded in the following Karhunen-Lo ‘eve115
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form:

γ(x, θ) =

Q∑
i=1

√
λifi(x)ξi(θ) (5)

subject to the following constraint deriving from the unit variance condition

imposed on γ(x):
Q∑
i=1

(
√
λifi(x))2 = 1 (6)

Thus, it is required that we re-normalize to a unit variance as follows:

γ(x, θ) =

Q∑
i=1

√
λifi(x)√

Q∑
m=1

(
√
λmfm(x))2

ξi(θ) (7)

By equating the two representations of D(x, θ) in Eq. (1), (2) we can find120

the coefficients ri(x) as

ri(x) =
p!

〈Φ2
i 〉
Dp(x)

p∏
j=1

√
λk(j)fk(j)(x)√

Q∑
m=1

(
√
λmfm(x))2

(8)

where p is the order of the polynomial Φi and k is an index on at least

one of the ξk making up Φi. Note that the accuracy of the synthesized

marginal probability density function depends mainly on the order M of the

PC expansion, while the correlation accuracy depends on the dimension Q of125

ξ(θ). Finally a similar methodology may be applied in the case of generalized

Polynomial Chaos (gPC) expansion [15].

This study assumes a strictly positive definite lognormal random stiffness

field in conjunction with classical PCE, which admit the analytical compu-

tation of the respective coefficients. Assuming an underlying Gaussian field130

g(x), the actual stiffness field is given by:

D(x) = eg(x) (9)
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with the following mean and variance relations:

D̄ = eḡ (10)

σD = eσg (11)

The process g(x) is expanded in the Karhunen-Lo ‘eve sense as:

g(x) = ḡ +
N∑
i=1

giξi = ḡ +
N∑
i=1

√
λifi(x)ξi (12)

and projection into polynomial chaos yields analytical coefficients ri(x):

ri(x) =
〈egΦi〉
〈Φ2

i 〉
=

p∏
j=1

√
λk(j)fk(j)(x)

〈Φ2
i 〉

e

ḡ +
1

2

N∑
j=1

g2
j

(13)

Fig. 1 shows how the synthesized marginal probability density function using135

this methodology converges to the target lognormal distribution for a case

of COV = 30% for an increasing order of polynomial chaos approximation.

Finally, Fig. 2 compares the target and approximated correlation structure

for varying KL dimensionality.

2.2. Shear strength140

In the case of a non-Gaussian shear strength random field Su(x, θ), the

above methodology may be applied considering the two fields to be indepen-

dent of each other. Alternatively, for computational efficiency and since the

stability of the simulation remains unaffected, one may choose to approxi-

mate the shear strength field simply by KLE as follows:145

Su(x, θ) = S̄u(x) +
N∑
i=1

√
λifi(x)ξi(θ) (14)
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Figure 1: Convergence of the PC approximation (blue) to the target (red) lognormal

distribution.
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Figure 2: Comparing the approximated (blue) to the target (red) correlation structure.
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by considering the following Fredholm integral equation of the second kind

[26] with the covariance function CSu as a kernel:∫
D

CSu(x1,x2)fk(x1)dx1 = λkfk(x2) (15)

This expansion is optimal in the sense that it is the best approximation that

may be achieved in the L2(D)⊗ L2(Ω) norm.

In some cases (e.g. triangular, exponential kernel) the above eigenprob-150

lem may be solved analytically, but in the general case a numerical approx-

imation scheme is required. In that sense, a number of methods have been

applied including FEM [11], wavelet-Galerkin [27],H-matrices [28] and mesh-

less methods [29].

In a standard finite element setting, each eigenfunction fk of the kernel155

is approximated as:

fk(x) =
N∑
i=1

dikhi(x) (16)

Utilizing the above representation and requiring the error to be orthogonal

to the approximating space, transforms Eq. 15 to the following weak form:

N∑
i=1

dik

[∫
D

∫
D

CSu(x1,x2)hi(x2)hj(x1)dx1dx2 − λk
∫
D

hi(x)hj(x)dx

]
= 0 (17)

The required discretization (mesh size) depends on the correlation length

describing the rate of fluctuation of the random field. It has been shown160

[30, 31] that 2-4 elements per correlation length are usually enough to capture

the structure of the random field. In cases where the correlation structure

is approximated by long-tailed kernels (e.g Gaussian), the resulting general-

ized ”stiffness” matrix in the eigenproblem looses its sparsity resulting in an

inefficient numerical solution. It is therefore common to modify (truncate)165
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the kernels so as to increase the sparsity of the representation. Melink and

Korelc [32] studied this problem in terms of numerical integration and loss

of positive definiteness of the covariance matrix.

3. Spatial and Stochastic discretization of the solution

The unknown displacement random field is semi-discretized in the stochas-170

tic dimension using PCE:

u(x, θ) =
P∑
i=0

di(x)Ψi[ξr(θ)] (18)

with the component di(x) being further discretized in the spatial sense using

finite element shape functions:

di(x) =
N∑
j=1

dijNj(x) (19)

This results in a final expression for the random displacement field:

u(x, θ) =
P∑
i=0

N∑
j=1

dijNj(x)Ψi[ξr(θ)] (20)

4. Finite Element Formulation175

Employing the Galerkin weak formulation of linearized static FEM [33],

we have the following simplified form :∑
e

[ ∫
De

∇Nm(x)D(x, θ)∇Nn(x)dΩum −
∫
De

fm(x, θ)dΩ

]
= 0 (21)

where
∑
e

denotes the assembly procedure over all finite elements of the dis-

cretized domain Ω and fm(x) incorporates the various elemental contribu-

tions to the global force vector.180
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Combining Equations 1, 20 and 21 and denoting the shape function gra-

dients as:

∇Nn(x) := Bn(x) (22)

yields:∑
e

[ ∫
De

Bm(x)
M∑
i=0

ri(x)Φi[{ξr(θ)}]Bn(x)
P∑
j=0

dnjΨj[ξr(θ)] dΩ

−
∫
De

fm(x, θ)dΩ

]
= 0 (23)

Taking now the Galerkin projection of the discretized equation onto each

arbitrary polynomial basis of the displacement approximation Ψk[ξr(θ)]:185 ∑
e

[ ∫
De

Bm(x)
M∑
i=0

ri(x)Φi[{ξr(θ)}]Bn(x)
P∑
j=0

P∑
k=0

dnjΨj[ξr(θ)]Ψk[ξr(θ)] dΩ

−
∫
De

P∑
k=0

fm(x, θ)Ψk[ξr(θ)] dΩ

]
= 0 (24)

results in the following system of equations:

N∑
n=1

P∑
j=0

dnj

M∑
k=1

bijkKmni = Fm〈Ψk[{ξr}]〉 (25)

where

Kmni =

∫
D

Bm(x)ri(x)Bn(x)dΩ (26)

and

Fm =

∫
D

fm(x, θ)dΩ (27)

Symbolic manipulations are carried out using Mathematica [34] in order to

tabulate the coefficients of the tensor:190

bijk = 〈Φi[{ξr}]Ψj[{ξr}]Ψk[{ξr}]〉 (28)
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The form of the latter induces a special block sparsity in the resulting stiffness

matrix that may be exploited to develop an efficient solution scheme. Several

researchers have dealt with such systems of equations arising in the context

of the the spectral stochastic finite element formulation. One of the first

attempts was made by Ghanem and Kruger [35] who proposed two solution195

procedures, a preconditioned CG method as well as a hierarchical formula-

tion. Another iterative scheme of the family of Krylov-subspace methods

that has been applied is the preconditioned MINRES [36]. In addition, re-

searchers have developed multi-grid approaches [37] as well as incomplete

block-diagonal preconditioning schemes based on the FETI-PD solver [38].200

A more complete review of the methods may be found in [23].

5. Elastoplasticity

In this study, the elastoplastic behavior is treated in a spectral fashion

by updating the coefficients of the stochastic approximation of the stiffness

according to an underlying Fokker-Planck-Kolmogorov framework. At each205

integration point and orthogonal KL/PC space, the nonlinear FPK equation

is solved incrementally, and an optimization procedure yields the equivalent

linearized advection and diffusion terms. The updated PC coefficients are

then computed based on these terms. We investigate varying approxima-

tion accuracy by restricting the number of spaces in which the integration210

procedure is carried out.
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5.1. Formulation of FPK-based probabilistic elastoplasticity

The incremental form of spatial-average elastoplastic constitutive equa-

tion may be written as

dσij(xt, t)

dt
= Dijkl(xt, t)

dεkl(xt, t)

dt
(29)

where Dijkl is the continuum stiffness tensor which can be either elastic or215

elasto-plastic:

Dijkl =


Del
ijkl ;f < 0 ∨ (f = 0 ∧ df < 0)

Del
ijkl −

Del
ijmn

∂U
∂σmn

∂f
∂σpq

Del
pqkl

∂f
∂σrs

Del
rstu

∂U
∂σtu
− ∂f

∂q∗
r∗

;f = 0 ∧ df < 0

(30)

according to the established Karush-Kuhn-Tucker conditions.

In the above equation, Del
ijkl is the elastic stiffness tensor, f is the yield

function, which is a function of stress σij and internal variables q∗, while U

is the plastic potential function. In its most general form, the incremental220

constitutive equation takes the form

dσij(xt, t)

dt
= βijkl(σij, Dijkl, q∗, r∗;xt, t)

dεkl(xt, t)

dt
(31)

or

dσij(xt, t)

dt
= ηijkl(σij, Dijkl, εkl(xt, t)q∗, r∗;xt, t) (32)

where the stochasticity of the operator β is induced by the stochasticity of

Dijkl, q∗, r∗. This renders the above equation a linear/non-linear ordinary dif-

ferential equation with stochastic coefficients. Similarly randomness in the225

forcing term (εkl) results in a linear/non-linear ordinary differential equation

15



D
ra
ft
re
v.

2

with stochastic forcing. Combining the two cases yields a linear/non-linear

ordinary differential equation with stochastic coefficients and stochastic forc-

ing. Using the Eulerian-Lagrangian form of the FPE equation [20] the above

equation takes the following form in the probability density space230

∂P (σij, t)

∂t
= − ∂

∂σmn
[{〈ηmn(σmn(t), Dmnrs, εrs(t))〉

+

∫ t

0

dτCov0

[
∂ηmn(σmn(t), Dmnrs, εrs(t))

∂σab
;

ηab(σab(t− τ), Dabcd, εcd(t− τ))]}P (σij(t), t)]

+
∂2

∂σmn∂σab

[∫ t

0

dτCov0 [ηmn(σmn(t), Dmnrs, εrs(t));

ηab(σab(t− τ), Dabcd, εcd(t− τ))]P (σij(t), t)] (33)

where P (σij, t) is the probability density of stress, 〈·〉 is the expectation oper-

ator, Cov0[·] is the time-ordered covariance operator and ηij is a generalized

random tensor operator. Details of this derivation can be found in [39]. The

above equation is equivalent to the following generalized form:

∂P (σij, t)

∂t
= − ∂

∂σmn

[
Nσeq

(1)mn
P (σij, t)−

∂

∂σab

{
Nσeq

(2)mnab
P (σij, t)

}]
(34)

where N(1) and N(2) are advection and diffusion coefficients respectively that235

are particular to the constitutive model. Given the initial and boundary

conditions as well as the second-order statistics of material properties,the

equation may be solved with second-order accuracy.

To account for the uncertainty in the probabilistic yielding, Jeremić and

Sett [40] introduced the following equivalent advection and diffusion coeffi-240

cients:

Nσeq

(1)mn
(σij) = (1− P [f > 0])N el

(1)mn
+ P [f > 0]N ep

(1)mn
(35)

Nσeq

(2)mnab
(σij) = (1− P [f > 0])N el

(2)mnab
+ P [f > 0]N ep

(2)mnab
(36)
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where (1−P [f > 0]) represents the probability of the material being elastic,

while P [f > 0] represents the probability of the material being elastoplastic.

P [f > 0] is obtained from the cumulative density function, rendering it an

explicit function of the stress σij as well as the internal variables q∗.245

Utilizing Eq. 33, one may compute the elastic and elastoplastic coefficients

addressed in Eq. 34 as:

N el
(1)mn

= 〈Del
mnrsε̇rs〉 (37)

N el
(2)mnab

= t Cov0

[
Del
mnrsε̇rs;D

el
abcdε̇cd

]
(38)

and

N ep
(1)mn

= 〈Dep
mnrsε̇rs〉+

∫ t

0

dτCov0

[
∂

∂σab
{Dep

mnrsε̇rs};D
ep
abcdε̇cd

]
(39)

N ep
(2)mnab

=

∫ t

0

dτCov0 [Dep
mnrs(t)ε̇rs;D

ep
abcd(t− τ)ε̇cd] (40)

The evolution of an internal variable q of the model is handled through

a coupled FPK equation of the form:250

∂P̃ (qi, t)

∂t
= − ∂

∂qm

[
N qeq

(1)m
(σmn, qm)P̃ (qi, t)−

∂

∂qn

{
N qeq

(2)mn
(σmn, qm)P̃ (qi, t)

}]
(41)

The advection and diffusion coefficients in the above equation are given sim-

ilarly to Eq. 35 and 35 but with no contributions of any ’elastic’ state:

N qeq

(1)m
(σij, qi) = P [f > 0]N qep

(1)m
(42)

N qeq

(2)mn
(σij, qi) = P [f > 0]N qep

(2)mn
(43)

The elastoplastic components of the equivalent advection and diffusion terms

are functions of the so-called loading index or plastic multiplier L and the
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rates of evolution of the internal variables ri:255

N qep

(1)m
= 〈Lri〉+

t∫
0

dτCov0

[
∂

∂qj
Lri(t);Lrj(t− τ)

]
(44)

N qep

(2)mn
=

t∫
0

dτCov0

[
Lri(t);Lrj(t− τ)

]
(45)

where L may be expressed as:

L =

∂f

∂σot
Del
ijotε̇ij

∂U

∂σab
Del
abcd

∂f

∂σcd
− ∂f

∂qm
rm

(46)

5.2. Linearization for stiffness update

The constitutive integration of the FPK-based plasticity model cannot

directly provide the updated generalized stiffness at the finite element level.

Therefore, a numerical scheme is required in order to compute the stiffness260

in a PC expansion form as per Eq. 1. In this study we assume an equivalent

linear FPK equation involving the updated PC coefficients which are deduced

through a least-squares optimization procedure.

For each orthogonal KL/PC space s, Eq. 34 applies with the advection

and diffusion coefficients taking the form:265

N seq

(1)mn
(σsij,x) = (1− P [f > 0])N el

(1)mn
+ P [f > 0]N ep

(1)mn
(47)

N seq

(2)mnab
(σsij,x) = (1− P [f > 0])N el

(2)mnab
+ P [f > 0]N ep

(2)mnab
(48)

For the purposes of this study, let us consider an isotropic linear elastic

- Mises isotropic hardening model and derive the equivalent advection and

diffusion coefficients for this case. The isotropic linear elasticity tensor in
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Eq. 30 reads:

Del
ijkl = Gδikδjl +

(
K − 2

3
G

)
δijδkl (49)

where K and G denote the bulk and shear modulus respectively and are270

represented as random fields (see for example Eq. 1).

The elastoplastic continuum tangent tensor in Eq. 30 is given in the fol-

lowing general form:

Dep
ijkl = Gδikδjl +

(
K − 2

3
G

)
δijδkl −

AijA
∗
kl

B +KP

(50)

The Mises linear hardening yield function is written as:

f =
√
J2 − k =

√
1

2
sijsij − k (51)

Under the assumption of associated flow rule we have:275

∂f

∂σij
=

∂U

∂σij
(52)

which results in the following symmetry:

Aij = A∗ij = Del
ijkl

∂f

∂σkl
(53)

After some algebraic manipulations, one can easily derive:

Aij =
G√
J2

sij B = G (54)

The plastic modulus KP is computed here on the basis of a deterministic

hardening rule in terms of the equivalent plastic strain:

k = k(epeq) (55)

After imposing the consistency condition, we have:280

KP = −∂f
∂k
k̄ = − 1√

3

∂f

∂k

dk

depeq

∂f

∂
√
J2

=
1√
3

dk

depeq
(56)
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Combining Equations 35-40 and 49- 50, we can derive the final coefficients

of the FPK constitutive rate equation as:

N seq

(1)mn
= (1− P [f > 0])

〈[
Gδmrδns +

(
K − 2

3
G

)
δmnδrs

]
ε̇rs(t)

〉
+P [f > 0]

〈[
Gδmrδns +

(
K − 2

3
G

)
δmnδrs −

1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssij(t)s
s
kl(t)

]
ε̇rs(t)

〉
+

∫ t

0

dτCov0

[
∂

∂σsab

{[
Gδmrδns +

(
K − 2

3
G

)
δmnδrs

− 1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssij(t)s
s
kl(t)

]
ε̇rs(t)

}
;[

Gδacδbd +

(
K − 2

3
G

)
δabδcd −

1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssab(t− τ)sscd(t− τ)

]
ε̇cd(t− τ)

]
(57)
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N seq

(2)mnab
= (1− P [f > 0]) t Cov0

[{
Gδmrδns +

(
K − 2

3
G

)
δmnδrs

− 1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssij(t)s
s
kl(t)

}
ε̇rs(t);[

Gδacδbd +

(
K − 2

3
G

)
δabδcd −

1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssab(t)s
s
cd(t)

]
ε̇cd(t)

]
+P [f > 0]

∫ t

0

dτCov0

[{
Gδmrδns +

(
K − 2

3
G

)
δmnδrs

− 1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssij(t)s
s
kl(t)

}
ε̇rs(t);{

Gδacδbd +

(
K − 2

3
G

)
δabδcd −

1

G+ 1√
3
dk
depeq

(
G√
J2

)2

ssab(t− τ)sscd(t− τ)

}
ε̇cd(t− τ)

]
(58)

Next let us consider a linearized FPK equation for the stress correspond-

ing to the orthogonal space s at the kth-step in the following form:

∂P lin(σsij, t)

∂t
= −N slin

(1)mn

∂P (σsij, t)

∂σsmn
+N slin

(2)mnab

∂2P (σsij, t)

∂σsmnσ
s
ab

(59)
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where the linearized advection and diffusion coefficients are given by:285

N slin

(1)mn
= rs

(k)

mnab

P∑
i=0

〈ΦiΨs〉

1

2∆t

N∑
j=1

[
Nj,b(x)∆dk−1

ija +Nj,a(x)∆dk−1
ijb

]
(60)

N slin

(2)mnab
= t (rs

(k)

mnab)
2

P∑
i=0

Var

[
ΦiΨs

]
1

4∆t2

[
Nj,b(x)∆dk−1

ija +Nj,a(x)∆dk−1
ijb

]2

(61)

In an explicit scheme, the strain increment at the (k-1)th step is uti-

lized, while the fourth-order tensor valued PC coefficient rs
(k)

mnab is unknown.

Depending on the specific constitutive model, the above equations may be

simplified to include scalar PC coefficients and deterministic bases in an ap-

propriate tensor format. Combining Equations 34 and 59, one ends up with290

an over-determined residual system of equations in terms of the unknown

coefficients at time step k:

Ri(r
s(k)

mnab) =
∂P lin(σs

i , t)

∂t
− ∂P (σs

i , t)

∂t
= 0, i = 1, . . . , N (62)

Each equation corresponds to a single point in the stress domain and the

system of equations may be solved in the least squares sense using for example

the Levenberg - Marquardt algorithm [41].295

5.3. Varying order of accuracy

The outlined linearization scheme is accurate to the order of the KL/PC

approximation of the stiffness. However, one can restrict the accuracy of

the method to second order with significant computational time savings, by
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considering the integration of a single FPK equation at any point in the300

discretized domain. This is achieved by considering the total stress σ rather

than each KL/PC stress component σs. The linearized equation becomes:

∂P lin(σij, t)

∂t
= −N lin

(1)

∂P (σij, t)

∂σmn
+N lin

(2)

∂2P (σij, t)

∂σmnσab
(63)

where:

N lin
(1) =

M∑
s=0

rs
(k)

mnab

P∑
i=0

〈ΦiΨs〉

1

2∆t

N∑
j=1

[
Nj,b(x)∆dk−1

ija +Nj,a(x)∆dk−1
ijb

]
(64)

N lin
(2) (rks ,x) = t

M∑
s=0

(rs
(k)

mnab)
2

P∑
i=0

Var

[
ΦiΨs

]
1

4∆t2

[
Nj,b(x)∆dk−1

ija +Nj,a(x)∆dk−1
ijb

]2

(65)

Again the resulting system of equations is generally over-determined and

may be solved using least-squares techniques. Due to the form of the FPK305

constitutive integrator, we do not expect higher order accuracy in the lin-

earized tangent stiffness. Indeed, studying the above system, it is evident

that only 2 coefficients may be determined, while the polynomial chaos coef-

ficients that correspond to third and higher order are dependent (negatively

correlated) variables. It is proposed that the higher order coefficients retain310

their elastic values in order to achieve higher order accuracy during elastic

loading or unloading.

In a more general sense, one can choose the number of orthogonal KL/PC

spaces in which the integration procedure is carried out based on a posteriori
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error estimation techniques. However, a study of the accuracy of such a315

technique is out of the scope of this study.

6. Numerical illustrations

In this last section, the proposed framework is applied to the static loading

of a shear beam representing a one-dimensional soil column under undrained

conditions. The simplified numerical model is shown in Fig. 3. Two different320

cases are considered to test the methodology against parameters that differ-

entiate the contribution of each orthogonal space, the evolution of the stress

PDF as well as the global response (Table 1).

Figure 3: Realization of the stiffness random field and simplified numerical model.

Case l
G,σy
c 〈G〉 COVG 〈σy〉 COVσy khard nKL mPCd

sPCk

1 0.2 50 0.4 0.8 0.1 0 2 2 2

2 1 50 0.1 0.8 0.4 10 2 2 2

Table 1: Parameters for the examples in this study
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Figure 4: Evolution of the PDF of shear stress at the first 4 orthogonal KL/PC spaces

(Case 1).

Fig. 4 shows the evolution of the PDF of stress at the first 4 orthogonal

Kl/PC spaces at the top of the shear beam for case 1. Due to the small325

correlation length and large coefficient of variation of the shear modulus, all

stress spaces are active. The evolution of the PDF in the mean shear stress

space is initially diffusive and then sharpens in a quick transition to the

elastoplastic regime. On the other hand, the remaining stress spaces exhibit
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Figure 5: Evolution of PC coefficients of the linearized random shear stiffness (Case 1).

mostly diffusion. At the same spatial point, Fig.5 shows the evolution of PC330

coefficients derived by means of the proposed linearization procedure. After

a few steps, the optimization procedure has converged and the values of the

coefficients remain almost constant until their sharp decline towards zero at

the end of loading. The evolution of the profile of coefficients (along the

depth of the shear beam) is given in Fig. 6, where the shape of the initial335

profile (light color) is determined by the underlying KL eigenvectors. It is

evident that the aforementioned profile values ultimately tend to zero due

to the elastic-perfectly plastic nature of the model. Finally, the global force-

(mean ± std.dev) displacement response at the top is shown in Fig. 7, where

we can identify a sharp transition to a perfectly plastic response.340

Case 2 involves a more uncertain initial yield strength along with a de-

terministic hardening modulus, which results in the characteristic evolution

of the PDF of shear strength at the top as shown in Fig. 8. Due to the large
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Figure 6: Evolution of the profile of PC coefficients of the linearized random shear stiffness

along the depth of the shear beam (Case 1).

correlation length and small coefficient of variation of the shear modulus, the

mean stress space is mostly active as well as the first stress space, which again345

is mostly diffusive. The associated values of the PC coefficients are shown

in Fig. 9, which shows a smooth decline of the governing coefficient due to

the wide range of the elastoplastic transition. Fig. 10 shows the evolution

of the profile of the PC coefficients of the linearized random stiffness similar
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Figure 7: Force- mean ± std. dev. of displacement plot at the top of the shear column

(Case 1).

to Case 1. Finally the global force-displacement response at the top of the350

shear beam is shown in Fig. 11, where we can identify a smooth transition

to a linear hardening response.

7. Conclusions

We have proposed a numerical technique to solve inelastic random bound-

ary value problems based on stochastic Galerkin techniques and a nonlocal355

Fokker-Planck-Kolmogorov plasticity framework. It relies on a general lin-

earization procedure that couples any functional representation of parametric

uncertainty with an underlying advection-diffusion model describing its evo-

lution. Being an intrusive framework it has the potential for higher conver-

gence rates than conventional non-intrusive techniques, especially when com-360

bined with sparse PC representations and efficient FPK solution methods.
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Figure 8: Evolution of the PDF of shear stress at the first 4 orthogonal KL/PC spaces

(Case 2).

An additional advantage of the method is its potential to balance accuracy

and computation based on error estimates.

365
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Figure 9: Evolution of PC coefficients of the linearized random shear stiffness (Case 2).
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along the depth of the shear beam (Case 2).
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[19] B. Jeremić, K. Sett, M. L. Kavvas, Probabilistic elasto-plasticity: for-

mulation in 1D, Acta Geotechnica 2 (2007) 197–210.

[20] M. L. Kavvas, Nonlinear hydrologic processes: Conservation equations

for determining their means and probability distributions, Journal of430

Hydrologic Engineering 8 (2003) 44–53.
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