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Abstract

Presented is an energy dissipation analysis framework for granular mate-

rial that is based on thermodynamics. Theoretical formulations are derived

from the second law of thermodynamics, in conjunction with a few plausible

assumptions on energy transformation and dissipation. The role of plastic

free energy is emphasized by a conceptual experiment showing its physical

nature. Theoretical formulation is adapted in order to be applied in elastic-

plastic finite element method (FEM) simulations. Developed methodology

is verified through comparison of input work, stored energy, and energy dis-

sipation of the system. Separation of plastic work into plastic free energy

and energy dissipation removes a common mistake, made in a number of

publications, where energy dissipation can attain negative values (energy

production) which is impossible.
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1. Introduction

Energy dissipation in elastic plastic solids and structures is the result of

an irreversible dissipative process in which energy is transformed from one

form to another and entropy is produced. The transformation and dissipation

of energy is related to permanent deformation and damage within an elastic-

plastic material. Of particular interest here is the dissipation of mechanical

energy that is input into elastic-plastic solids by static or dynamic excitations.

Early work on plastic dissipation was done by Farren and Taylor [16] and

Taylor and Quinney [34]. They performed experiments on metals and proved

that a large part, but not all, of the input mechanical energy is converted

into heat. The remaining part of the non-recoverable plastic work is known

as the stored energy of cold work. The ratio of plastic work converted into

heating (Quinney–Taylor coefficient), usually denoted as β, has been used in

most later work on this topic. Based on large number of experiments, this

ratio was determined to be a constant between 0.6 to 1.0 [5, 2, 38, 13, 28, 26].

More recently Rittel [29, 30, 31] published several insightful papers on

the energy dissipation (heat generation) of polymers during cyclic loading,

presenting both experimental and theoretical works. Rosakis et al. [32]

presented a constitutive model for metals based on thermoplasticity that

is able to calculate the evolution of energy dissipation. Follow up papers

[19, 27] present assumptions to simply the problem. One direct application

of plastic dissipation to geotechnical engineering is presented by Veveakis

et al. [36, 37], using thermoporomechanics to model the heating and pore

pressure increase in large landslides, like the 1963 Vajont slide in Italy.

In the past few decades, extensive studies have been conducted on energy

dissipation in structures and foundations. Work by Uang and Bertero [35] has

been considered a source and a reference for many recent publications dealing
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with energy as a measure of structural demand. Uang and Bertero [35]

developed an energy analysis methodology based on absolute input energy (or

energy demand). Numerical analysis results were compared with experiments

on a multi-story building. In their work, Uang and Bertero [35], calculated

hysteretic energy indirectly by taking the difference of absorbed energy and

elastic strain energy. The term absorbed energy of each time step is simply

defined as restoring force times incremental displacement. It is also stated

that hysteretic energy is irrecoverable, which indicates that this parameter

was considered the same as hysteretic dissipation or plastic dissipation. An

equation for energy balance, is given by (Uang and Bertero [35]) as:

Ei = Ek + Eξ + Ea = Ek + Eξ + Es + Eh (1)

where Ei is the (absolute) input energy, Ek is the (absolute) kinetic energy, Eξ

is the viscous damping energy, Ea is the absorbed energy, which is composed

of elastic strain energy Es and hysteretic energy Eh.

The problem with this approach is the absence of plastic free energy,

which is necessary to correctly evaluate energy dissipation of elastic-plastic

materials and to uphold the second law of thermodynamics. While there is

no direct plot of plastic dissipation (hysteretic energy) in [35], since it was not

defined directly, there are plots of other energy components. Plastic dissipa-

tion can be easily calculated from these plots. After doing this, indications of

negative incremental energy dissipation, which violates the basic principles

of thermodynamics, were found in various sections of the paper.

This misconception could be clarified by renaming hysteretic energy as

plastic work, a sum of plastic dissipation and plastic free energy. Both plas-

tic work and plastic free energy can be incrementally negative, but plastic

dissipation (defined as the difference of plastic work and plastic free energy)
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must be incrementally non-negative during any time period. Unfortunately,

this misconception has been inherited (if not magnified) by many following

studies on energy analysis of earthquake soils and structures (hundreds of

papers).

The basic principles of thermodynamics are frequently used to derive

new constitutive models, for example by Dafalias and Popov [10], Ziegler

and Wehrli [40], Collins and Houlsby [9], Houlsby and Puzrin [20], Collins

[6], Collins and Kelly [8], Collins [7] and Feigenbaum and Dafalias [17]. The

concept of plastic free energy is introduced to enforce the second law of ther-

modynamics for developed constitutive models. It is important to distinguish

between energy dissipation due to plasticity and plastic work, which is often

a source of a confusion. The physical nature of plastic free energy is illus-

trated later in this paper through a conceptual example that is analyzed on

particle scale. Essentially, development of plastic free energy is caused by

particle rearrangement in granular assembly under external loading.

Specific formulation of free energy depends on whether the elastic and

plastic behavior of the material is coupled. According to Collins et al. [9],

[6], [7], material coupling behavior can be divided into modulus coupling,

where the instantaneous elastic stiffness (or compliance) moduli depend on

the plastic strain, and dissipative coupling, where the rate of dissipation

function depends not only on the plastic strains and their rates of change

but also on the stresses (or equivalently the elastic strains). The modulus

coupling describes the degradation of stiffness as in for rock and concrete, and

is usually modeled by employing a coupled elastic-plastic constitutive model

or by introducing damage variables. The dissipative coupling is considered

to be one of the main reasons for non-associative behavior in geomaterials

[9], [39].
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A number of stability postulates are commonly used to prevent violation

of principles of thermodynamics. Stability postulates include Drucker’s sta-

bility condition [14], [15], Hill’s stability condition [4], [18], and Il’Iushin’s

stability postulate [21], [24]. As summarized in a paper by Lade [23], the-

oretical considerations by Nemat–Nasser [25] and Runesson and Mrǒz [33]

have suggested that they are sufficient but not necessary conditions for sta-

bility. These stability postulates can indeed ensure the admissibility of the

constitutive models by assuming certain restrictions on incremental plastic

work. As demonstrated by Collins [6], if the plastic strain rate is replaced by

the irreversible stain rate in Drucker’s postulate, then all the standard inter-

pretations of the classical theory still apply for coupled materials. Dafalias

[12] also modified Il’Iushin’s postulate in a similar way and applied it to both

coupled and uncoupled materials.

It is important to note that development of inelastic deformation in geo-

materials involves large changes in entropy, and significant energy dissipation.

It is thus useful to perform energy dissipation (balance) analysis for all mod-

els with inelastic deformation. In this paper we focus on energy dissipation

on material level. Focus is on proper modeling that follows thermodynamics.

Comparison is made between accumulated plastic dissipation and accumu-

lated plastic work, since these quantities can be quite different in most cases.

As a way of verification, the input work, which is introduced by applying

external forces, is compared with the stored energy and dissipation in the

entire system. Finally, conclusions on plastic energy dissipation are drawn

from the verified results.
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2. Theoretical and Computational Formulations

2.1. Thermo-Mechanical Theory

For energy analysis of elastic-plastic materials undergoing isothermal pro-

cess, it is beneficial to start from the statement of the first and second laws

of thermodynamics:

Ŵ = Ψ̇ + Φ (2)

where Φ ≥ 0 and Ŵ ≡ σ : ε̇ = σij ε̇ij is the rate of work per unit volume. The

function Ψ is the Helmholtz free energy, and Φ is the rate of dissipation; both

defined per volume. The free energy Ψ is a function of the state variables (also

known as internal variables), but Φ and Ŵ are not the time derivatives of the

state functions. The choice of state variables depends on the complexity of

constitutive model that is being used, as cyclic loading with certain hardening

behaviors usually requires more state variables. This will be elaborated in

the following sections as we discuss specific elastic-plastic material models.

Note that in this paper all stresses are defined as effective stresses. In order

to avoid confusion, the common notation (σ
′
ij) will not be used. Standard

definition of stress from mechanics of materials, i.e. positive in tension, is

used.

For general elastic-plastic materials, the free energy depends on both the

elastic and plastic strains. In most material models, it can be assumed that

the free energy Ψ can be decomposed into elastic and plastic parts:

Ψ = Ψel + Ψpl (3)

The total rate of work associated with the effective stress can be written

as the sum of an elastic and plastic component:

Ŵ el ≡ σij ε̇
el
ij = Ψ̇el (4)
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and

Ŵ pl ≡ σij ε̇
pl
ij = Ψ̇pl + Φ (5)

In the case of a decoupled material, the elastic free energy Ψel depends

only on the elastic strains, and the plastic free energy Ψpl depends only on

the plastic strains, as shown by Collins and Houlsby [9]:

Ψ = Ψel(ε
el
ij) + Ψpl(ε

pl
ij) (6)

The effective stress can also be decomposed into two parts:

σij = αij + χij, where αij ≡
∂Ψpl

∂εplij
and χij ≡

∂Φ

∂ε̇plij
(7)

The stress tensors αij and χij are termed the shift (drag, back or quasi-

conservative) stress and dissipative stress respectively.

Ziegler’s orthogonal postulate [40] ensures the validity of Equation 7. It is

equivalent to the maximum entropy production criterion, which is necessary

to obtain unique formulation. Also, this is a weak assumption so that all the

major continuum models of thermo-mechanics are included. Equation 5 of

plastic work rate can hence be rewritten as:

Ŵ pl ≡ σij ε̇
pl
ij = Ψ̇pl + Φ = αij ε̇

pl
ij + χij ε̇

pl
ij (8)

The plastic work is the product of the true stress with the plastic strain

rate, while the dissipation rate is the product of the dissipative stress with

the plastic strain rate. They are only equal if the back stress is zero, or

equivalently, if the free energy depends only on the elastic strains.

In kinematic hardening models, where the back stress describes the trans-

lation (or rotation) of the yield surface, the decomposition of the true stress

(sum of back stress and dissipative stress) is a default assumption. Although
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such a shift stress is important for anisotropic material models, Collins and

Kelly [8] have pointed out that it is also necessary in isotropic models of

geomaterials with different strength in tension and compression.

2.2. Plastic Free Energy

A popular conceptual model, which focused on particulate materials and

demonstrated the physical occurrence of shift stresses, was described by

Besseling and Van Der Giessen [3] and Collins and Kelly [8]. On macro (con-

tinuum) scale, every point in a given element is at yield state and deforms

plastically. But on meso-scale, only part of this element is undergoing plas-

tic deformations, the remaining part is still within yield surface and respond

elastically. The elastic strain energy stored in the elastic part of a plasti-

cally deformed macro-continuum element is considered to be locked into the

macro-deformation, giving rise to the plastic free energy function Ψpl and its

associated back stress αij. This energy can be released only when the plastic

strains are reversed.

For better explanation, the nature of plastic free energy in particulate

materials is illustrated through a finite element simulation combined with

considerations of particle rearrangement on mesoscopic scale. Figure 1 shows

stress-strain response of Drucker-Prager with nonlinear Armstrong-Frederick

kinematic hardening, a typical elastic-plastic model for metals and geoma-

terials. Six states during shear are chosen to represent evolution of micro

fabric of the numerical sample. Correspondingly, Figure 2 shows the process

of particle rearrangement of the 2D granular assembly under cyclic shearing

from microscopic level. The square window can be roughly considered as a

representative volume (a constitutive level or a finite element) in FEM.

[Figure 1 about here.]
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[Figure 2 about here.]

By discussing movement and energy of particle A in Figure 2, the physical

nature of plastic free energy is illustrated. At state (a), which is the beginning

of deformation, particle A does not bear any load other than its self weight.

State (b) is in middle of loading, when particle B pushes downwards to

particle A until it makes contact with particle D and E. Load reaches peak

at state (c), and there’s no space for particle A to move. Then the sample

is unloaded to state (d). Particle A is now stuck between particles C, D,

and F, which means that certain amount of elastic energy is stored due to

particle elastic deformation. Compared with state (a), this part of elastic

energy is not released when the sample is unloaded, which indicates that

it’s not classic strain energy. This part of elastic energy on particle level

which can’t be released by unloading is defined as the plastic free energy

in granular materials. Reverse loading starts at state (e), where particle

D pushes particle A upwards, making it squeeze through particle C and F.

Elastic energy on particle level, which is now defined as plastic free energy,

is released during reverse loading.

By analyzing this example, an explanation on particle scale is provided

for the origin of plastic free energy in granular materials. It is important to

note that the concept of plastic free energy also exists in metals and other

materials, as studied by Dafalias et al. [11] and Feigenbaum and Dafalias [17].

The physical nature of plastic free energy in these materials can be different

and probably should be studied on molecular and/or crystalline level.

Collins [8], [7] suggested that in the case of granular materials, the particle-

level plastic energy dissipation during normal compaction, arises from the

plastic deformations occurring at the inter-granular contacts on the strong

force chains, that are bearing the bulk of the applied loads. Collins also
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suggested that the locked-in elastic energy is produced in the weak force

networks, where the local stresses are not large enough to produce plastic

deformation at the grain contacts. The plastic strains can be associated

with the irreversible rearrangement of the particles, whilst the elastic energy

arises from the elastic compression of the particle contacts. Part of this elas-

tic strain energy will be released during unloading, however other part of this

energy will be trapped as a result of the irreversible changes in the particle

configuration.

2.3. Plastic Dissipation

As pointed out, plastic work and energy dissipation are not the same

physical quantity. The confusion of these two concepts often leads to incor-

rect results and conclusions, especially in seismic energy dissipation analysis.

Of major concern in this paper is the computation of plastic dissipation, as

elaborated in this section.

With the decoupling assumption (Equation 6), the second law of ther-

modynamics (positive entropy production) directly leads to the dissipation

inequality, which states that the energy dissipated due to the difference of

the plastic work rate and the rate of the plastic part of the free energy must

be non-negative:

Φ = σij ε̇
pl
ij − Ψ̇pl = σij ε̇

pl
ij − ρψ̇pl ≥ 0 (9)

where ψ̇pl is the rate of plastic free energy, per unit volume, and ρ is the

density. In addition, ψpl denotes plastic free energy density, which is generally

not constant at different locations in a body. This expression is closer to

physics and makes it convenient for further derivations.

Now we proceed to consider how to calculate plastic free energy, which can

then be used to calculate dissipation. According to Feigenbaum and Dafalias
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[17], plastic free energy density ψpl is assumed to be additively decomposed

into parts which correspond to the isotropic, kinematic and distortional hard-

ening mechanisms as follows:

ψpl = ψisopl + ψanipl ; ψanipl = ψkinpl − ψdispl (10)

where ψisopl , ψanipl , ψkinpl , and ψdispl are the isotropic, anisotropic, kinematic, and

distortional parts of the plastic free energy, respectively. The anisotropic

part is assumed to decompose into kinematic and distortional parts, which

correspond to different hardening models. The subtraction, instead of ad-

dition, of ψdispl from ψkinpl , to obtain the overall anisotropic part ψanipl of the

plastic free energy, is a new concept proposed by Feigenbaum and Dafalias

[17]. This expression can better fit experimental data, as well as satisfy the

plausible expectations for a limitation of anisotropy development.

As pointed out by Dafalias et al. [11], the thermodynamic conjugates to

each of the internal variables exist and each part of the plastic free energy

can be assumed to be only a function of these conjugates. The explicit

expressions for the isotropic and kinematic components of the plastic free

energy are:

ψisopl = ψisopl (k̄) =
κ1
2ρ
k̄2; ψkinpl = ψkinpl (ᾱij) =

a1
2ρ
ᾱijᾱij (11)

where k̄ and ᾱij are the thermodynamic conjugates to k (size of the yield

surface) and αij (deviatoric back stress tensor representing the center of the

yield surface), respectively. Material constants κ1 and a1 are non-negative

material constants whose values depend on the choice of elastic-plastic ma-

terial models.

According to definition, the thermodynamic conjugates are related to the
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corresponding internal variables by:

k = ρ
∂ψisopl
∂k̄

= κ1k̄; αij = ρ
∂ψkinpl
∂ᾱij

= a1ᾱij (12)

By substituting Equation 12 back into Equation 11, the plastic free energy

can be expressed in terms of the internal variables:

ψisopl =
1

2ρκ1
k2; ψkinpl =

1

2ρa1
αijαij (13)

With Equation 13, the components of plastic free energy can be com-

puted, as long as the internal variables are provided. Combining Equation 9

with 13, the plastic dissipation in a given elastic-plastic material can be accu-

rately obtained at any location, at any time. This approach allows engineers

and designers to correctly identify energy dissipation in time and space and

make appropriate conclusions on material behavior.

2.4. Energy Computation in Finite Elements

Formulations from the previous section are applied to FEM analysis in

order to follow energy dissipation. Energy density is chosen as the physical

parameter for energy analysis. Energy density in this study is defined as the

amount of energy stored in a given region of space per unit volume.

For FEM simulations, both external forces and displacements can be pre-

scribed. The finite element program accepts either (or both) forces and/or

displacements as input and solves for the other. Either way, the rate of input

work can be calculated by simply multiplying force and displacement within

a time step. Therefor input work of a finite element model is:

WInput(t) =

∫ t

0

ẆInput(T )dT =

∫ t

0

∑
i

F ex
i (x, T )u̇i(x, T )dT (14)

where F ex
i is the external force and ui is the displacement computed at the

location of the applied load, at given time step, for a load controlled analysis.
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The external load can have many forms, including nodal loads, surface loads,

and body loads. All of them are ultimately transformed into nodal forces.

As shown in Equation 14, input work is computed incrementally at each time

step, in order to obtain the evolution of total input work at certain time.

As shown in Figure 3, when loads and/or displacements are introduced

into a finite element model, the input energy will be converted in a number

of different forms as it propagates through the system. Input energy will

be converted into kinetic energy, free energy, and dissipation. As mentioned

before, free energy can be further separated into elastic part, which is tra-

ditionally defined as strain energy, and plastic part, which is defined as the

plastic free energy. Kinetic energy and strain energy can be considered as

the recoverable portion of the total energy since they are transforming from

one to another. Plastic free energy is more complicated in the sense that it

is conditionally recoverable during reverse loading, as has been discussed in

detail in previous sections. Other than kinetic energy and free energy, the

rest of the input energy is dissipated, transformed into heat or other forms

of energy that are irrecoverable.

[Figure 3 about here.]

Calculation of kinetic energy and strain energy is rather straight forward:

UK(x, t) =
1

2
ρu̇ij(x, t)u̇ij(x, t) (15)

US(x, t) =

∫ t

0

U̇S(x, T )dT =

∫ t

0

σij(x, T )ε̇elij(x, T )dT (16)

where UK and US are the kinetic energy density and strain energy density,

respectively.
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Similar to the input energy, strain energy density and plastic free energy

are also computed incrementally. Integrating energy density over the entire

model, corresponding energy quantities are expressed as:

EK(t) =

∫
V

UK(x, t)dV (17)

ES(t) =

∫
V

US(x, t)dV (18)

EP (t) =

∫
V

Ψpl(x, t)dV (19)

where EK , ES, and EP are the kinetic energy, strain energy, and plastic

free energy of the entire model, respectively. Energy densities, defined in

Equations 15 and 16 are functions of both time and space, while energy

components, defined in the above equations (Equation 17, 18, and 19) are

only functions of time, since they are integrated over the whole model.

Although the plastic free energy is conditionally recoverable, it is still

considered to be stored in the system, rather than dissipated. Summing up

all the stored energy EStored, one obtains:

EStored = EK + ES + EP (20)

Rate of plastic dissipation, given by Equation 9, can be integrated over

time and space:

DP (t) =

∫
V

∫ t

0

Φ(x, T )dTdV (21)

where DP is the dissipation due to plasticity of the entire model at certain

time.

Finally the energy balance of a finite element model is given by:

WInput = EStored +DP = EK + ES + EP +DP (22)
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3. Numerical Studies

Numerical simulation results presented in this paper are performed using

the Real ESSI (Real Earthquake Soil Structure Interaction) Simulator [22].

Examples in this paper focus on constitutive behavior of elastic-plastic ma-

terial from the perspective of energy dissipation. All cases are modeled with

solid brick elements, using static, load control analysis.

3.1. Elastic Material

[Figure 4 about here.]

Initial investigation of energy dissipation is focused on linear elastic ma-

terial. It is noted that linear elastic material does not dissipate energy.

However, use of linear elastic material model is suitable for preliminary veri-

fication of the newly developed energy analysis methodology. In this section,

energy balance in a single brick element and a cantilever beam is studied, as

shown in Figure 4.

The simplest case is a single element model under uniform shear load.

The model is constrained appropriately to simulate simple shear test. In

order to show the influence of different material parameters and loads, a set

of simulations are performed and the results are presented in Table 1 and

Figure 5.

[Table 1 about here.]

[Figure 5 about here.]

Since linear elastic material is used with static algorithm, energy compo-

nents related to dynamics (kinetic energy) and plasticity (plastic free energy
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and plastic dissipation) are equal to zero. This means that all input work is

stored in the system, as observed in all cases.

Figure 5 shows that energy stored in the system is inversely proportional

to Young’s moduli and proportional to Poisson’s ratio. This is expected be-

cause of the following equations for strain energy under static shear loading:

ES =
1

2
τγ =

1

2G
τ 2 =

1 + ν

E
τ 2 (23)

Note that these relationships are only valid at constitutive level. For

models with more finite elements, stress and strain are generally not uniform.

The computation of energy depends on the distribution of energy density,

and nonuniform stress/strain distribution will result in nonuniform energy

density distribution.

In order to study the influence of simulation parameters in larger models,

another set of simulations with cantilever model (Figure 4b) are performed.

Vertical loads are applied to the nodes of the free end. In this case, both

shearing and bending occurs, which means that in general a full 3D state

of stress and strain is present. The results are presented in Table 2 and

Figure 5. As expected, energy behavior of cantilever is different than the

single-element/constitutive example.

[Table 2 about here.]

For all cases, the energy balance between input and storage is maintained,

which gives us confidence on the energy calculation methodology for elastic

material. According to results in Figure 5, energy stored in the system is

still inversely proportional to Young’s modulus. This is because the general

equation for elastic strain energy density is:

ES =
1

2E

(
σ2
xx + σ2

yy + σ2
zz + 2(1 + ν)(σ2

xy + σ2
yz + σ2

zx)
)

(24)
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So as long as all the elements have the same Young’s modulus, the relation-

ship between stored energy and Young’s modulus will remain valid.

3.2. Elastic-Perfectly Plastic Material

In this section, elastic-perfectly plastic material is used. Equations 9 and

13 indicate that in the case of no hardening the rate of plastic free energy

is zero. Then the incremental plastic work is equal to incremental plastic

dissipation. Note that this is one of the rare cases where plastic dissipation

equals to plastic work.

Figure 6 shows stress–strain curve (left) and energy calculated for elastic-

perfectly plastic constitutive model (right) used here.

[Figure 6 about here.]

In this case, the plastic dissipation is equal to the plastic work. This

means that the plastic free energy does not develop at all during loading and

unloading. Zero plastic free energy points out the absence of fabric evolution

of a particulate, elastic-plastic material, as all the input work is dissipated

through particle to particle friction. Since there is no plastic free energy

EP in this case, the stored energy equals to mechanical energy, which is the

combination of strain energy ES and kinetic energy EK . Total stored energy

EStored develops nonlinearly and always has the same value at the beginning

of every loop after the first one. Plastic dissipation DP increases linearly

when the material yields. This can be explained by rewriting Equation 9

with Ψpl = 0:

Φ = σij ε̇
pl
ij (25)
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where stress σij is constant after elastic perfectly plastic material yields, and

rate plastic deformation ε̇plij is also constant. Then the rate of plastic dissi-

pation is constant which makes the plastic dissipation DP increase linearly.

3.3. Elastic-Plastic Material with Isotropic Hardening

Next material model used is elastic-plastic with linear isotropic hardening.

First used to model monotonic behavior of elastic-plastic materials, isotropic

hardening assumes that the yield surface maintains shape, while isotropi-

cally (proportionally) changing its size. Figure 7 illustrates the stress-strain

response as well as energy balance for elastic-plastic material with isotropic

hardening.

[Figure 7 about here.]

As can be observed from Figure 7, plastic free energy is equal to the

plastic work, which means that the plastic dissipation is zero during cycles of

loading. Even though this might sound surprising, it can be explained using

basic thermodynamics. Linear isotropic hardening, used in this case, can be

described through a rate of the internal variable (size of the yield surface) k̇

as:

k̇ = κ1|ε̇plij | (26)

where |ε̇plij | is the magnitude of the rate of plastic strain while κ1 is a hardening

constant. Substituting previous equation into Equation 13 yields:

ψpl = ψisopl =
κ1
2ρ
εplijε

pl
ij (27)

Take the time derivative of the above equation:

ψ̇pl =
κ1
ρ
εplij ε̇

pl
ij (28)
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Then the rate of dissipation due to plasticity can be expressed as:

Φ = σijε
pl
ij − ρψ̇pl = (σij − κ1εplij)ε̇

pl
ij = (σij − kmij)ε̇

pl
ij (29)

where mij is the plastic flow direction. The plastic flow direction defines

the direction of incremental plastic strain, which can be different from the

direction of total plastic strain. But in the case of von Mises type elastic-

plastic material with only isotropic hardening, whose yield surface is always

a circle with center at the origin, the plastic flow direction mij is the same

as the direction of the total plastic strain εplij . Thus we have κ1ε
pl
ij = kmij in

the above equation.

If we assume, for simplicity sake, that plastic flow direction is associated

with the yield function, that is there is only deviatoric plastic flow, as yield

function is of von Mises type, the gradient of the yield surface nij(= ∂F/∂σij)

is equal to the plastic flow direction mij(= nij). Noting that σij ε̇
pl
ij = sij ε̇

pl
ij ,

where sij(= σij − 1/3σkk) is the deviatoric part of the stress tensor, the rate

of plastic dissipation can be rewritten as:

Φ = (sij − knij)ε̇plij = αij ε̇
pl
ij (30)

Realizing that the back stress αij is always zero since we assume no kine-

matic hardening, then the rate of plastic dissipation becomes zero, which

means there is no energy dissipation during cycles of loading for isotropically

hardening material. Obviously, the observed response is not physical from

the perspective of energy dissipation. Therefore, isotropic hardening mate-

rial models cannot properly model energy dissipation, even for monotonic

loading.

3.4. Elastic-Plastic Material with Kinematic Hardening

Compared with isotropic hardening, kinematic hardening can better de-

scribe the constitutive, stress-strain behavior of elastic-plastic materials, par-
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ticularly for cyclic loading. Elastic-plastic material that relies on kinematic

hardening is used to analyze energy dissipation. Both linear and nonlinear

kinematic hardening rules are investigated in relation to energy dissipation.

3.4.1. Prager Linear Kinematic Hardening

Prager’s linear kinematic hardening rule is given as:

α̇ij = a1ε̇
pl
ij (31)

where a1 is a hardening constant. If only linear kinematic hardening (Equa-

tion 31) is assumed, the back stress αij is expressed explicitly, and can be

substituted into Equation 13 yielding:

ψpl = ψkinpl =
a1
2ρ
εplijε

pl
ij (32)

Take the time derivative of the above equation:

ψ̇pl =
a1
ρ
εplij ε̇

pl
ij (33)

If we again assume that the gradient of the yield surface nij is equal to

the plastic flow direction mij, as in the case of linear isotropic hardening,

then the rate of dissipation due to plasticity can be rewritten as:

Φ = σij ε̇
pl
ij − ρψ̇pl = (sij − αij)ε̇plij = kmij ε̇

pl
ij (34)

Notice that the term mij ε̇
pl
ij denotes the magnitude of the rate of plastic

strain. Since only linear kinematic hardening is assumed, the internal vari-

able k will remain constant. So if loads are applied in such a way that the

rate of plastic strain is constant, then the rate of dissipation will also re-

main constant. In other words, the accumulated dissipation will be linearly

increasing under the assumption of linear kinematic hardening.

Figure 8 shows stress–strain response (left) and energy computation re-

sults (right) of an elastic-plastic material with linear kinematic hardening.
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[Figure 8 about here.]

As expected, the plastic dissipation increases linearly once the material

yields. In contrast to the isotropic hardening case, a significant amount of

the input work is dissipated due to material plasticity. The ratio of dissipated

energy to input work is largely influenced by the material parameters. How-

ever, in general, energy dissipation will be observed if kinematic hardening

model is used.

Another important observation is that the plastic work decreases during

certain phases of reverse loading, while the actual rate of energy dissipation

is always nonnegative. It is important not to confuses the definitions of

plastic work to plastic dissipation, as plastic work can increase and decrease

which can lead to a (impossible) conclusion, violating the second law of

thermodynamics.

3.4.2. Armstrong-Frederick Kinematic Hardening

Armstrong-Frederick kinematic hardening model [1] is often used to simu-

late elastic-plastic material behavior under cyclic loading. Material parame-

ters of the Armstrong Frederic kinematic hardening rule can be derived from

basic thermodynamics.

Feigenbaum and Dafalias [17] gave the sufficient (but not necessary) con-

ditions of the inequality in Equation 9. These conditions are more restrictive

but satisfy the frameworks of most classical elastic-plastic models. One of

the sufficient conditions corresponds to kinematic hardening is expressed as:

αij(ε̇
pl
ij −

1

a1
α̇ij) ≥ 0 (35)

The following relation is a sufficient condition to satisfy Equation 35:

α̇ij = a1ε̇
pl
ij − a2λ̇αij (36)
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where λ̇ is a non-negative scalar plastic multiplier and a2 is a non-negative

material hardening constant. It can be proven that a1/a2 is related to the

limit of back stress magnitude |αij|. Equation 36 should be recognized as the

classical Armstrong-Frederick nonlinear kinematic hardening.

Taking the time derivative of the kinematic part of plastic free energy

(Equation 33), and substituting the expression of back stress αij (Equa-

tion 36) gives:

ψ̇kinpl =
1

ρa1
αijα̇ij =

1

ρ
αij(ε̇

pl
ij −

a2
a1
λ̇αij) (37)

If the gradient of the yield surface nij is assumed to be equal to the

plastic flow direction mij, as was done in previous sections, then the rate

of plastic energy dissipation of an Armstrong-Frederick kinematic hardening

elastic-plastic material is given by:

Φ = σij ε̇
pl
ij − ρψ̇pl = sij ε̇

pl
ij − αij ε̇

pl
ij +

a2
a1
λ̇αijαij = kmij ε̇

pl
ij +

a2
a1
λ̇αijαij (38)

Compared with Equation 34, the above expression has an additional term

which makes the rate of plastic dissipation non-constant even if the rate

of plastic strain is constant. As the back stress αij becomes larger when

load increases, the rate of plastic dissipation also increases. This indicates

a nonlinear result of total plastic dissipation, which is exactly what we have

observed in our computations.

[Figure 9 about here.]

Figure 9 shows the energy computation results of an elastic-plastic mate-

rial with Armstrong-Frederick kinematic hardening. Compared to all previ-

ous cases, the material response of this model is more sophisticated and more

realistic. Decrease of plastic work is observed, again, while the plastic dis-

sipation is always nonnegative during the entire simulation. For both linear
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and nonlinear kinematic hardening cases, the plastic free energy is relatively

small compared to the plastic dissipation.

4. Conclusions

Presented was a methodology for (correct) computation of energy dissipa-

tion in elastic-plastic materials based on the second law of thermodynamics.

A very important role of plastic free energy was analyzed, with highlights on

its physical nature and theoretical formulations. The proposed methodology

has been illustrated using a number of elasto-plastic material models.

An analysis of a common misconception that equates plastic work and

dissipation, which leads to the violation of the basic principles of thermody-

namics, was addressed. A conceptual example, for granular materials, was

used to explain the physical meaning of plastic free energy. It was also shown

that plastic free energy is responsible for the evolution of internal variables.

It was shown that energy balance is ensured by taking into consideration

all energy components, including kinetic and strain energy. Input work was

balanced with the stored and dissipated energy, expressed as the summation

of all possible components.

Presented approach was illustrated and tested using several elastic-plastic

constitutive models with various hardening rules. Elastic materials showed

no energy dissipation (as expected), leading to the input work being equal to

the stored energy. Elastic-perfectly plastic materials had no change in plastic

free energy, which led to the equality of plastic work and plastic dissipation

and indicated no evolution of particle arrangements. The plastic dissipation,

in that case, was observed to be increasing linearly. Isotropic hardening

materials experienced zero dissipation even after yielding. This observation

was surprising, but verified by further derivation of energy equations. This
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observation also serves as a reminder that the isotropic hardening rules can

be used, but only with observed lack of energy dissipation. Prager’s linear

and Armstrong-Frederick nonlinear kinematic hardening materials both gave

significant dissipations, with large fluctuation of plastic free energy as well.

In the case with linear kinematic hardening, linear increase of dissipation

was derived and observed, while energy was dissipated nonlinearly in the

case of nonlinear kinematic hardening. Although the plastic free energy

was not significant for some materials, it is noted that it should always be

recognized and considered during energy analysis, so that the basic principles

of thermodynamics are maintained.
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(a) (b)

Figure 1: Elastic-plastic material modeled with Drucker-Prager yield function and
Armstrong-Frederick kinematic hardening under cyclic shear loading: (a) Stress-strain
curve; (b) stress and plastic strain versus time.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Particle rearrangement of a 2D granular assembly under cyclic shearing: (a)
Initial state; (b) Loading (accumulating plastic free energy); (c) End of loading (maximum
plastic free energy); (d) Unloading (plastic free energy unchanged); (e) Reverse loading
(releasing plastic free energy); (f) End of reverse loading (plastic free energy released).
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Figure 3: Different forms of energy in a dynamic soil-structure system.
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(a) (b)

Figure 4: Numerical models used in this paper: (a) Single brick element; (b) Cantilever
with 10 brick elements.
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(a) (b)

Figure 5: Relationships between energy storage and different simulation parameters (sin-
gle element model): (a) Young’s modulus; (b) Poisson’s ratio.
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(a) (b)

Figure 6: Energy analysis of elastic perfectly plastic material: (a) Stress–strain curve; (b)
Input work, plastic dissipation, strain energy and plastic work.
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(a) (b)

Figure 7: Energy analysis of elastic-plastic material with isotropic hardening: (a) Stress-
strain curve; (b) Input work, plastic dissipation, strain energy, and plastic work.
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(a) (b)

Figure 8: Energy analysis of elastic-plastic material with linear kinematic hardening: (a)
Stress–strain curve; (b) Input work, plastic dissipation strain energy and plastic work.
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(a) (b)

Figure 9: Energy analysis of elastic-plastic material with Armstrong-Frederick kinematic
hardening: (a) Stress-strain diagram; (b) Input work, plastic dissipation, strain energy,
and plastic work.
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Table 1: Energy analysis results for linear elastic materials (single element).

Case
Material Property Simulation Results
E (GPa) ν u (m) WInput (J) EK (J) ES (J) EP (J) EStored (J) DP (J)

1a 100 0.30 2.60E-5 13.00 0.00 13.00 0.00 13.00 0.00
1b 150 0.30 1.73E-5 8.67 0.00 8.67 0.00 8.67 0.00
1 200 0.30 1.30E-5 6.50 0.00 6.50 0.00 6.50 0.00
1c 250 0.30 1.04E-5 5.20 0.00 5.20 0.00 5.20 0.00
1d 300 0.30 8.67E-6 4.33 0.00 4.33 0.00 4.33 0.00
1e 200 0.20 1.20E-5 6.00 0.00 6.00 0.00 6.00 0.00
1f 200 0.25 1.25E-5 6.25 0.00 6.25 0.00 6.25 0.00
1 200 0.30 1.30E-5 6.50 0.00 6.50 0.00 6.50 0.00
1g 200 0.35 1.35E-5 6.75 0.00 6.75 0.00 6.75 0.00
1h 200 0.40 1.40E-5 7.00 0.00 7.00 0.00 7.00 0.00
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Table 2: Energy analysis results for linear elastic materials (cantilever model).

Case
Material Property Simulation Results
E (GPa) ν u (m) WInput (J) EK (J) ES (J) EP (J) EStored (J) DP (J)

2a 100 0.30 2.33E-3 116.57 0.00 116.57 0.00 116.57 0.00
2b 150 0.30 1.55E-3 77.71 0.00 77.71 0.00 77.71 0.00
2 200 0.30 1.17E-3 58.28 0.00 58.28 0.00 58.28 0.00
2c 250 0.30 9.33E-4 46.63 0.00 46.63 0.00 46.63 0.00
2d 300 0.30 7.77E-4 38.86 0.00 38.86 0.00 38.86 0.00
2e 200 0.20 1.20E-5 65.89 0.00 65.89 0.00 65.89 0.00
2f 200 0.25 1.26E-3 62.97 0.00 62.97 0.00 62.97 0.00
2 200 0.30 1.17E-3 58.28 0.00 58.28 0.00 58.28 0.00
2g 200 0.35 1.02E-3 51.17 0.00 51.17 0.00 51.17 0.00
2h 200 0.40 8.12E-4 40.60 0.00 40.60 0.00 40.60 0.00
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