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Abstract In the last decades, with the development of a number of nonlinear
elastic-plastic integration algorithms, the correctness or accuracy of the underlying
solution becomes the main concern, in both academia and industry. Correctness or
accuracy can be estimated (and improved) using verification. Verification is one of
the main procedures to build trust in the numerical modeling of any phenomena. A
full verification process comprises (a) solution verification (calculation verification)
and (b) code verification.

Presented in this paper are verification procedures for constitutive, elastic-
plastic integration algorithms, as used in computational nonlinear solid mechan-
ics. Both explicit and implicit integration algorithms for elastic-plastic constitutive
equations are verified using existing and developed new verification technique. Ver-
ification techniques used include prescribed solution forcing (PSF) and Richardson
extrapolation (RE). In addition, grid convergence index (GCI) is applied to esti-
mate the algorithmic uncertainty during the integration process.

Verification of elastic-plastic integration algorithms is applied to a number
of material models: from simple von-Mises perfectly plastic to sophisticated hy-
perbolic Drucker-Prager with nonlinear Armstrong-Frederick rotational kinematic
hardening. Besides, algorithmic uncertainty is estimated with both associative and
non-associative material model. In addition caveats and pitfalls to consider in the
code/solution verification processes are deeply discussed.

Keywords Elastoplastic Algorithms · Prescribed Solution Forcing · Richardson
Extrapolation · Grid Convergence Index (GCI)

1 Introduction

Modern computational modeling systems are very often used in engineering com-
munity for design and assessment. Given all the positive aspects of using compu-
tational modeling systems, a fundamental question is this: to what extent can we
trust model results (Oberkampf et al., 2002b; Roy and Oberkampf, 2011). There
are a number of engineering failures that can be tied to problems in the numer-
ical codes (Jazequel and Meyer, 1997; Grottke and Trivedi, 2007) or to misuse
of models. The set of activities and procedures that can be used to build trust in
numerical modeling results are called verification and validation (Wise et al., 2013;
Roy and Oberkampf, 2011). According to Roache’s definition (Roache, 1998b) ver-
ification is the response to the following question: ”Is the model solving mathemat-
ical equations correctly?”. On the other hand, validation can be defined through
this question: ”Is the model solving the correct equations?” (Oberkampf et al.,
2002b; Roy and Oberkampf, 2011). Focus of this paper is on verification of nu-
merical algorithms to integrate elastic-plastic constitutive equations. Validation of
elastic-plastic models is not within current scope of this paper and is left for future
publications.

A general elastic-plastic constitutive model usually consist of four components:

1. Elastic law, that controls elastic response before solid plastifies. Elastic model/law
response can be linear or nonlinear.

2. Yield criterion (function) that separates elastic from elastic-plastic region.
Yield function is a function of the state of stress and a set of internal vari-
ables. The common yield criteria can be pressure independent (such as von



4 Yuan Feng1 et al.

Mises and Tresca) or pressure dependent (Mohr-Coulomb or Drucker-Prager)
(Drucker and Prager, 1952). In addition to the common yield criterion, a hy-
perbolic yield surface is usually used to smooth the apex for higher order
derivation. Abbo and Sloan (1995) used this approach for Mohr-Coulomb.

3. Plastic flow directions, that prescribe direction of plastic deformation once ma-
terial plastifies. Plastic flow directions are a function of the state of stress and a
set of internal variables. Plastic flow direction can be associated with the yield
function (plastic flow is parallel to the normal to the yield function/surface
(usually for metals) or non-associated, when plastic flow directions are not
normal to yield function/surface (usually for geomaterials).

4. Hardening laws that controls evolution of internal variables. Hardening laws
can control evolution of scalar internal variables (isotropic hardening/softening
(Muir Wood, 1990)), second order tensors (kinematic hardening (Armstrong
and Frederick, 1966)) and fourth order tensor (distortional hardening (Baltov
and Sawczuk, 1965)).

The four components, using different elastic laws, yield functions, plastic flow
directions and hardening laws, can combined to develop a number of elastic-plastic
material models. In this paper two models are used for verification, namely, von
Mises and hyperbolic Drucker-Prager elastic-plastic material model, both with
linear and nonlinear hardening laws. Hyperbolic Drucker-Prager used here is de-
veloped based on the idea from Abbo and Sloan (1995).

General numerical integration algorithms for elastic-plastic constitutes equa-
tions are state-updating procedure. Commonly used are explicit (forward Euler)
and implicit (backward Euler) elastic-plastic integrations algorithms.

The paper is structured as follows. Section 2 introduces the history of verifi-
cation from computational fluid dynamics to nonlinear finite element analysis of
solid mechanics. Section 3 shortly introduces the elastic-plastic algorithms. Sec-
tion 4 presents the theoretical basis of the applied verification techniques. Section 5
briefly reviewed the verified elastic-plastic material model. Section 6 shows the ver-
ification examples of different elastic-plastic material models.

2 Background

Computer speed is increasing at a steady pace, following Moore’s observation, that
is sometimes called Moore’s law (Moore, 1965) that states that ”The number of
transistors in a dense integrated circuit doubles approximately every two years”,
leading to ever faster computers. In addition, software developments, in last num-
ber of decades, have made it possible to develop very sophisticated mechanics
designs for a large number (almost all) of recent civil engineering objects. Use of
computational modeling in the area of mechanics in other fields of engineering is
also noted, particularly in mechanical, aerospace and biomedical engineering. It is
also worth noting Wirth’s law (Wirth, 1995), that states that ”Software is getting
slower more rapidly than hardware is getting faster”, is almost balancing hard-
ware speed advancements. Nevertheless, sophistication in modeling capabilities in
computational mechanics (and other fields of computational modeling) is bringing
forward significant number of advantages, with economy and safety being the main
beneficiaries.



Title Suppressed Due to Excessive Length 5

Despite significant advances in modeling and simulations, there exists a num-
ber of cases where (problematic) results from nonlinear analysis contributed to
engineering incidents or even failures (Hatton and Roberts, 1994; Hatton, 1997;
Selby et al., 1997).

The main question that is frequently asked, particularly for nonlinear analysis
results, is this: ”how much can we trust results of the numerical analysis for use
in design and assessment of infrastructure objects?”. This question can be split in
two questions:

1. How much can (should) we trust model implementations?
2. How much can (should) we trust mathematical models?

Answer to both questions can be found out through a process of verification (ques-
tion #1) and validation (question #2). Field of the Verification and Validation
(V&V) has received significant interest in view of ever growing use of numerical
modeling in design and assessment (Roache, 1998a; Oberkampf et al., 2002b; Roy
and Oberkampf, 2011; Oden et al., 2005; Babuška and Oden, 2004; Oden et al.,
2010a,b).

V&V provide a rigorous framework to assessing the accuracy computational
simulations. Verification has two parts: code verification and solution verification.
Code verification (solver verification) is a procedure to ensure that a code is bug
free. Code verification is a one-time task and it should be only repeated when
the source code is modified. Solution verification is a procedure to check if the
simulation results are accurate.

The simulation verification techniques were developed primarily by the U.S.
Department of Energy (DOE) after adaptation of Comprehensive Nuclear-Test-
Ban Treaty (CTBT) in 1996 (Oberkampf and Roy, 2010). Both code verification
and calculation verification studies are based on mesh convergence test. In this
test, behavior of numerical error is studied as mesh size shrinks. There are a num-
ber of methods to perform mesh convergence test: and Richardson Extrapolation
(Roache and Knupp, 1993), Method of Manufactured Solution (MMS) (Roache,
2002) and Method of Exact solutions (MES) (Zamani et al., 2014). Other methods
of code/solution verification were suggested in the literature in order to overcome
practical difficulties or shortcomings of the above mentioned methods: Prescribed
Solution Forcing Method (Dee, 1991), Method of Nearby Solution (Roy et al.,
2007), and External Verification Analysis (Ingraham and Hixon, 2013). It is worth
mentioning that there is no consensus on the naming of verification methods in
the verification literature, so different names will be used, for, potentially similar
procedures, and full reference will be provided to original development.

Application of numerical verification techniques started in computational fluid
mechanics and eventually founds its way into computational solid mechanics (Kamo-
jjala et al., 2013). Although the fundamental concepts are similar, there are inher-
ent differences in implementation of the verification methods. To the best of the
authors’ knowledge, full implementation of numerical verification test in compu-
tational geomechanics is scarce (Sjögreen and Petersson, 2011). Described in this
paper are code and solution verification techniques for elastic-plastic constitutive
integration algorithms. Additionally, implemented and described is Roache Grid
Convergence Index (Roache, 1997) test to uncover numerical uncertainty in the
elastic-plastic simulations.
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3 Elastoplastic Constitutive Integration Algorithm

Elastoplastic integration algorithm is used to solve for the stress increment from a
strain increment. The elastic-plastic integration algorithm is a two-step algorithm
including the elastic predictor and plastic corrector (Crisfield, 1991). The elastic
predictor step is similar for different algorithms. Depending on the direction of the
plastic corrector, the elastic-plastic algorithms are generally divided into explicit,
forward Euler and implicit, backward Euler algorithms. Both explicit and implicit
algorithms are special cases of a general mid-point algorithm (Ortiz and Popov,
1985; Crisfield, 1991, 1997). These two constitutive algorithms represent the most
common constitutive integration algorithms. Explicit algorithm uses the starting
elastic-plastic point to define the direction of the plastic corrector. Implicit algo-
rithm uses the final stress state to define the direction of the plastic corrector.
Iterations are required for the implicit algorithm in order to find the final stress
state.

Small deformation, incremental elasto-plastic equations (1), given below:

dσij = Eijkl (dεkl − dεplkl)

dεplij = dλ mij(σ, q∗)

dq∗ = dλ h∗(σ, q∗)

F (σ, q∗) = 0 ∧ dF (σ, q∗) = 0

(1)

are used to solve for an increment of stress (dσij), an increment of internal variables

(dq∗) and for elastic-plastic stiffness tensor (Eel−plijkl ) at a material point (integra-
tion point, Gauss point) for a given increment in strain (dεkl). Small deformaton
assumption is used so that an increment of strain (dεij) can be defined from in-
crements in displacements (dui) as dεij = 1/2(dui,j + duj,i). Small deformation
assumption allows for additive split of strain increment into elastic and plastic
parts (dεkl = dεelkl + dεplkl). Internal variables (q∗) can be (a) scalars, for isotropic
hardening/softening, (b) second-order tensors, for kinematic hardening/softening
or (c) fourth order tensors, for distortional hardening/softening. The scalar dλ is
the plastic multiplier. Plastic flow directions are defined by the tensor mij , and
hardening/softening rule is defined by the tensor function h∗(σ, q∗). The yield
function F (σ, q∗) separates elastic response of material for (F (σ, q∗) < 0) from
elastic-plastic response of material (F (σ, q∗) = 0. It is important to note that
yield function F cannot be larger than zero F (σ, q∗) 6> 0, hence dF (σ, q∗) = 0.
Numerically, this requirement of non-positive yield function (dF (σ, q∗) 6> 0) can-
not be enforced for explicit integration algorithm, as there are no equilibrium
iterations, and the stress solution in general drifts away from the yield surface into
plastic region.

3.1 Explicit, Forward Euler Algorithm

An explicit, forward Euler algorithm uses plastic flow directions and harden-
ing/softening function at the initial elastic-plastic state, that is on the yield surface,
to calculate the increment in stress (dσij) and continuum, tangent elastic-plastic
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stiffness tensor contEepijkl (Crisfield, 1991, 1997; Chen, 1994). The plastic-multiplier
dλ is solved for as

dλ =
crossnijEijkldεkl

crossnabEabcdcrossmcd − crossξ∗h∗
(2)

where the tensor crossnij = ∂F/∂σij is the normal to the yield surface at the
starting point, while the parameter crossξ∗ = ∂F/∂q∗ is the derivative with respect
to the corresponding internal variables, both for a stress – internal variable state
on the yield surface, Continuum, tangent stiffness tensor is obtained as

contEepijkl = Eijkl −
Eijab

crossmab
crossncdEcdkl

crossnotEotrscrossmrs − ξ∗h∗
(3)

3.2 Implicit, Backward Euler Algorithm

An implicit, backward Euler algorithm uses state of stress and internal variables at
the final step (solution) of particular increment to develop the consistent, algorith-
mic stiffness tensor consEepijkl (Simo and Taylor, 1985; Runesson and Samuelsson,
1985). Since the state of stress σij and internal variables q∗ at the final, solution
state is not known before the calculation, the implicit algorithm requires iterations
to converge to the final results.

In the implicit algorithm, the plastic-multiplier dλ is iteratively solved for
(Jeremić, 1994) as

dλ =

nextF − nextnklrij
nextT−1

ijkl

nextnotEabcdnextHcdnextT
−1
abot − ξ∗h∗

(4)

where rij = σij−(predσij−λEijklmkl) is the stress residual from the last iteration,
and the tensors Tijkl and Hij are given as

Tijkl = δikδjl + λEijab
∂mab

∂σkl

Hij = mij + λ
∂mij

∂q∗
h∗

(5)

Iterations continue until predetermined tolerance for the stress residual (rij) and
the yield function (F ) are reached.

The consistent1, algorithmic elastic-plastic stiffness tensor is then obtained as

consEepijkl = Eijkl −
Rijab

nextHab
nextncdRcdkl

nextnotRotrs nextHrs − ξ∗h∗
(6)

where the tensors Rijab, Tijmn, and n+1Hkl are defined as

Rijab = T−1
ijklEklab

Tijmn = δimδnj + dλEijkl
∂mkl

∂σmn

∣∣∣∣
n+1

n+1Hkl = n+1mkl +
∂mkl

∂q∗

∣∣∣∣
n+1

h∗

1 Consistent with the Newton iterative algorithm on global, finite element level.
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4 Theoretical Basis for Verification

4.1 The Asymptotic Regime of Convergence

For numerical solutions that rely on discretization in space or in time, mesh size
or time step size choice is crucial for accuracy of the solution. When the mesh
size or step size 4x is large, the error oscillates since the discretization size is too
large to represent the actual continua (space or time) in the discretized domain.
As mesh size – step size (4x) is reduced to the middle size region, the error
starts to decrease asymptotically. This region is called the asymptotic regime of
convergence. However, as the mesh size – step size (4x) is reduced even further, the
round-off error contributes to a rapid increase in solution error. This is illustrated
in Figure 1.

Fig. 1: Behavior of solution error in mesh size – step size convergence study: I)
over resolved, II) appropriate size, and III) under resolved.

4.2 Richardson Extrapolation Technique as a Verification Tool

Richardson extrapolation technique was developed by Richardson (1911). Re-
cently, Richardson extrapolation was used for code/solution verification of PDEs
solvers (Karatekin, 1997; Xing and Stern, 2010) when the Method of Exact solu-
tions (MES) is not applicable (Roache and Knupp, 1993).

The accuracy of the elastic-plastic algorithm is controlled to a large extent by
the size of the strain increment. This is particularly true for the explicit algorithm,
while for the implicit algorithm, size of tolerance also plays important role.

Consider for example the following experiments. Assume an initial stress at
σ0. Assume also that the exact stress solution is σ∗. To achieve this exact stress
solution, a large number of small steps is applied to perform the integration. The
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accuracy of the final stress σ, thus achieved, is controlled by the size of strain
increment dε. Ideally, the final stress σ is accurate, that is σ → σ∗, when dε → 0
(Lax and Richtmyer, 1956). The Taylor series expansion of σ with respect to dε is

σ(dε) = σ∗ + Cdεβ +O(dεβ+1) (7)

where C is constant and O is the big-O notation, which represents the higher order
errors.

In Richardson Extrapolation technique, a new function is defined based on the
stress integration algorithm.

R(dε, k) =
kβσ(dε)− σ(kdε)

kβ − 1
(8)

Here k is a constant that defines a number of increments that are used to cre-
ate Richardson Extrapolation. For example, in the above equation, R(dε, k) is a
difference between a solution (σ(dε)) using single increment dε, multiplied by kβ

and a solution (σ(kdε)) obtained using kdε increment, and divided by kβ − 1. In
addition, parameter β is the accuracy order that is solved for from Richardson
Extrapolation tests.

Then, by substituting Eq 7 into Eq 8, we obtain

R(dε, k) =
kβ(σ∗ + Cdεβ +O(dεβ+1))

kβ − 1
− σ∗ + Ckβdεβ +O(dεβ+1)

kβ − 1

=σ∗ +O(dεn+1)

(9)

Function R(dε, k) is the Richardson Extrapolation of σ(dε). By comparing the
final Richardson equation in Eq 9 to the original Eq 7, it is noted that the dis-
cretization error Cdεβ is cancelled out. It is also noted that by repeating Richard-
son equation one more time, one is able to cancel out the next higher order dis-
cretization error. This can be continued any number of times to cancel higher order
discretization errors, however there is a tradeoff with efficiency.

The remaining problem is to determine the accuracy order parameter β for the
elastic-plastic algorithms in Eq 7.

4.3 Uncertainties in Numerical Simulation

The uncertainty of any computational simulation is defined as (ASME, 2009):

δsimulation = (δmodel + δnumerical + δinput)− δexperimental (10)

where δsimulation is the total uncertainty in the simulation. The terms in paren-
thesis in the right hand side Eq. 10 are the best effort of a numerical modeler and
include:

– Modeling uncertainty, δmodel,
– Errors/uncertainties due to numerical solution schemes (iterative error, round

off error, discretization error, etc) δnumerical,
– Parametric uncertainty, δinput is the errors that propagate into the results of

numerical simulation from uncertainty in input parameters, including geome-
try, initial/boundary conditions and material properties,
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Experimental uncertainty, δexperimental is the uncertainty in the experimental
measurement of the phenomena.

Reduction of each of the above-mentioned uncertainties will increase the quality
of the simulation results.

Experimental uncertainty δexperimental is the problem of interest in experi-
mental mechanics and is related to validation (Oberkampf et al., 2002b), modeling
uncertainty δmodel is a problem of model sophistication, and δinput is the prob-
lem of uncertain material parameters and uncertain loads, and their propagation
through the system Sett et al. (2011). Thus here we only discuss the procedure to
develop an upper and lower bound on the ”numerical” uncertainty δnumerical.

The numerical uncertainty has its roots in the truncation error, round-off error
and iterative error. First, truncation error represents the error due to solving
discretized equations instead of continuum counterpart. Second, round-off error
is an accumulation of errors due to finite precision calculations, machine epsilon.
This error is not that important in modern computational mechanics simulations
as it is usually overshadowed by other numerical errors. Finally, the iterative error
is due to the limited number of iterations for solving either an algebraic system of
equations or a system of discretized PDEs. The round-off errors and the iterative
errors are usually considered to be smaller by orders of magnitude compared to
truncation error (Oberkampf et al., 2002a; Saad, 2003).

4.4 Grid Convergence Index

Grid Convergence Index (GCI) is an uncertainty quantification technique firstly
used in the computational fluid dynamics (CFD) (ASME, 2009). At least three
groups of incremental sizes are required to compute the GCI. The procedures of
the uncertainty estimation are as follows.

– Choose three significantly different incremental sizes h and run the simulation.
The increment refinement factor, r = hcoarse/hfine, is usually greater than 1.3
based on experience (Roache, 1998b).

– Calculate the observed order β. Let h1 < h2 < h3 and r21 = h2/h1, r32 =
h3/h2.

β =
ln |d32d21

|+ ϕ(β)

ln(r21)

ϕ(β) = ln(
rβ21 − t
rβ32 − t

)

t = sign(
d32
d21

)

(11)

where d32 = ω3 − ω2, d21 = ω2 − ω1 and ωn denotes the component of the
stress result in the nth incremental size.
The relative error e, as a dimensionless form, is

e21 =

∣∣∣∣ω1 − ω2

ω1

∣∣∣∣ . (12)

– The GCI is

GCI21 =
Fs · e21
rβ21 − 1

(13)
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where Fs is the factor of safety, and GCI21 represents the numerical uncer-
tainty at the strain incremental size h2 with reference to the more accurate
results at the strain incremental size h1. Based on experience from computa-
tional fluid dynamics, a factor of safety Fs = 1.25 (ASME, 2009).

It follows that the uncertainty caused by the numerical error Unum is equivalent
to GCI21. The range of uncertainty ±Unum is bounding the exact mathematical
solution with a 95% confidence or, in other words, it is within two standard devi-
ations (±σ), It is noted that notation for two standard deviations ±2σ represent
the probability level (95.4%), and not the stress state.

4.5 Accuracy order of Elastoplastic Algorithm

Before the implementation of Richardson Extrapolation, the accuracy order (β) of
the elastic-plastic algorithm needs to be determined. Both the analytical determi-
nation and the numerical estimation of accuracy order for elastic-plastic algorithms
are discussed in this section. Analytical determination of accuracy order is possible
for simple material models. On the other hand, for more sophisticated material
models, it is only possible to develop numerical estimation of accuracy order.

4.5.1 Analytical Determination of Accuracy Order

An analytical study of accuracy order for elastic perfectly plastic constitutive in-
tegration algorithms was developed by Ortiz and Popov (1985). In their study,
Ortiz and Popov (1985) proved that all elastic plastic algorithms within general-
ized trapezoidal and generalized midpoint return mapping are at least first-order
accurate. In the case of Crank-Nicolson method, where plastic corrector direction
is chosen as an average of explicit (forward Euler) and implicit (backward Euler),
elastic perfectly plastic constitutive integration algorithm is second order accurate.

Remark: Conclusions on algorithm accuracy order made by Ortiz and Popov
(1985) do apply to elastic perfectly plastic material models. However, it is im-
portant to note that when material model features hardening and/or softening
response (isotropic or kinematic hardening and softening) the accuracy order is
unclear. In those cases, numerical estimation of the accuracy order (β) is needed.

4.5.2 Numerical Estimation of Accuracy Order

Another approach to determine the accuracy order is through an estimation using
numerical experiments on various sizes of increments. The idea is to apply the
Richardson Extrapolation on strain increment sizes. At least three different strain
increment sizes are required to estimate the observed order.

Specifically, using three different strain increment sizes (a) dε, (b) dε/a, and
(c) dε/b, where the scale factor b > a > 1.3, the expression of approximation of
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exact solution σ∗ is written as:

σ∗ =
aβσ(

dε

a
)− σ(dε)

aβ − 1
+O(dεn+1)

=
bβσ(

dε

b
)− σ(dε)

bβ − 1
+O(dεn+1)

(14)

Assuming the higher order errors [O(dεn+1)] are negligible we can rewrite
Eq. 14 as

σ(
dε

a
) +

σ(
dε

a
)− σ(dε)

aβ − 1
= σ(

dε

b
) +

σ(
dε

b
)− σ(dε)

bβ − 1
(15)

It is noted that in Eq. 15, stress solutions σ(dε), σ(dε/a), σ(dε/b) are measured,
observed from the three numerical experiments. The only unknown in Eq. 15 is
thus the accuracy order β, which can be easily solved for.

5 Elastoplastic Material Models

Elastoplastic material models used for numerical experiments are based on von
Mises and hyperbolic Drucker-Prager yield surfaces. Material models of von-Mises
type are used to simulate the pressure-independent material behavior. On the other
hand, hyperbolic Drucker-Prager family of models are used to simulate pressure-
dependent material behavior.

For modeling pressure independent behavior of material, plastic volume change
is usually negligible, which leads to plastic flow directions that are perpendicu-
lar/normal to the von-Mises yield surface. This is the so called associated plastic-
ity behavior. For modeling pressure dependent material response, plastic volume
change can be significant, however plastic flow directions are usually not perpen-
dicular/normal to the yield surface. This is the so called non-associated plasticity
behavior. In addition, different types of hardening and softening of yield surface
and plastic flow directions exist (Chen, 1994). For example perfectly plastic ma-
terial will not feature any evolution of yield surface. On the other hand isotropic
hardening and/or softening will change the yield surface size. For kinematic hard-
ening, yield surface will move (translate or rotate) in stress space. Distortional
hardening (Baltov and Sawczuk, 1965) where yield surface changes shape, is also
possible , but it is rarely used. Plastic flow directions are usually developed either
based on associated or non-associated, or, for more sophisticated model, directly
as functions of stress and internal variable space (Dafalis and Herrmann, 1982;
Lubliner, 1990; Manzari and Dafalias, 1997).

Presented below are common examples of yield surface functions for von-Mises
and Drucker-Prager models, and examples of non-associated plastic flow as well
as a nonlinear kinematic hardening rule.
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5.1 The von-Mises Yield Surface

The von Mises yield surface (Lubliner, 1990), a cylinder in stress space, is given
as

F (σij , k, αij) =

√
3

2
(sij − αij)(sij − αij)− k = 0 (16)

where sij is the deviatoric stress (sij = σij − 1/3σkkδij). The yield surface radius
k is the scalar internal variable describing the size of yield surface. The back stress
αij represents location of yield surface in the stress space. Both yield surface radius
k and the back stress αij represent internal variables (generally annotated as q∗)
that can harden and/or soften.

5.2 Hyperbolic Drucker-Prager Yield Surface

The Drucker-Prager yield criterion is a pressure-dependent material model, where
yielding of materials is controlled by the deviatoric stress, and also by the con-
fining pressure. The original Drucker-Prager yield surface (Lubliner, 1990) has a
singularity point at the location of zero deviatoric stress. Hyperbolic yield surface
(Abbo and Sloan, 1995) modifies the Drucker-Prager yield surface by removing
the singular point, The hyperbolic Drucker-Prager yield function is given as

F (σ, η, αij) =

√
1

2
(sij − pαij)(sij − pαij) + a2η2 − ηp− ξ (17)

where η is controls the friction angle, and ξ controls the cohesion, while pαij
controls rotation of the yield surface. Back stress αij is multiplied by mean stress
p = σii/3 in order to force the surface to rotate. Variable a represents the rounded
length between the cut-off on p − axis and the original apex points, as shown in
Figure 2.

a

𝝃/𝜼

p

q

𝟑� 𝜼

Fig. 2: The hyperbolic Drucker-Prager yield function.
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5.3 Non-associative Plastic Flow

In pressure-dependent materials, the dilative or contractive behavior is usually not
associated with the normal to the yield surface nij = ∂F/∂σij . The non-associative
plastic flow direction mij is expressed as

mij = nij −
1

3
Dδij (18)

where dilatancy parameter D is defined as

D = ζ

(√
2

3
kd −

√
smnsmn

p

)
(19)

The volumetric plastic strain rate ζ governs the amplitude of plastic volume
changes. The term

√
smnsmn/p represents the stress-ratio. The material constants

kd governs the critical stress-ratio, which controls the direction of the plastic flow.
The dilative or contractive behavior is controlled by the stress-ratio (

√
smnsmn/p)

(Muir Wood, 1990). When dilatancy parameter D < 0 plastic compaction takes
place, whereas when dilatancy parameter D > 0 plastic dilatancy takes place.

5.4 Armstrong-Frederick Hardening Law

Nonlinear kinematic hardening law developed by Armstrong and Frederick (1966)
simulates nonlinear behavior of materials through control of the back stress (αij)

dαij =
2

3
ha (dεpij)

dev − crαij
√

2

3
(dεprs)dev (dεprs)dev (20)

where dαij is increment of the back-stress, ha is the initial rate of change of back-
stress, ha/cr controls the limit, assymptote of the back-stress, and (dεpij)

dev is the
deviatoric component of increment of plastic strain.

6 Error Maps for Elastoplastic Constitutive Integration

Verification examples in Sections 6.1, 6.2, and 6.3 present error maps in octa-
hedral stress plane, for different stress step size, different constitutive integration
algorithms, for von-Mises elastic perfectly plastic material model. Next two exam-
ples, Sections 6.4, and 6.5 quantitatively evaluated the accuracy of forward and
backward Euler algorithms for linear kinematic hardening, associated and non-
associated hyperbolic Drucker-Prager material model.

In the error maps, the relative stress norm δnorm is defined as

δnorm =
‖σij − σexactij ‖
‖σexactij ‖ (21)

where stress σij is the calculated stress result, and stress σexactij is the exact
stress from either analytical solutions or Richardson extrapolation.
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6.1 Error Map for von-Mises Perfectly Plastic Material Model

In this section, the von-Mises perfectly plastic material model is verified by the
prescribed solutions forcing (PSF) method. This type of material uses the radial
return algorithm, (Krieg and Krieg, 1977; Lubarda and Benson, 2002).

At the beginning of the verification test, the current stress state is set on the
yield surface at the Lode angle θ = −30◦. Different elastic predictors are applied
to this initial stress state. The explicit, forward Euler constitutive integration
algorithm solve the problem exactly for radial stress predictors as solution consists
of an exact radial return. This is observed in zero error Figure 3, However, when
the direction of the elastic predictors deviates far from the normal to the yield
surface, radial direction, explicit, forward Euler constitutive integration algorithm
creates an error. That error increases as the predictor stress increases, as observed
in Figure 3.

-30°
-15°0°15°

30°

2
4

6
8

10
Relative Stress Norm0.00×100

1.50×100

3.00×100

4.50×100

6.00×100

7.50×100

Fig. 3: Relative stress norm of von-Mises perfectly plastic material model with
the forward Euler algorithm.

The explicit, forward Euler constitutive integration algorithm together with
sub-incrementation technique, using 100 sub-incrementation, is able to reduce the
numerical errors and return the stress states more accurately to the yield surface,
as shown in Figure 4. However, sub-incrementation does require much more time,
so benefits of accuracy increase have to be balanced with more time required for
simulation.

For implicit, backward Euler constitutive integration algorithm, accuracy is
prescribed by the analyst as a yield function and/or residual stress tolerance.
The numerical errors for the of implicit, backward Euler constitutive integration
algorithm are shown in Figure 5.

By comparing error maps shown in Figs. 3, 4, and 5, it is obvious that
backward Euler algorithm achieves the highest accuracy, by far. However, back-
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Fig. 4: Relative stress norm of von-Mises perfectly plastic material model with
sub-increment technique, which reduces the relative stress error.
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Fig. 5: Relative stress norm of von-Mises perfectly plastic material model with
backward Euler algorithm, which achieves accurate stress results.

ward Euler constitutive integration algorithm incurs high computational costs, as
higher order derivatives of plastic flow directions and equilibrium iterations are
needed. Forward Euler algorithm is rather simple and fast algorithm that can be
alternatively used, perhaps with the sub-incrementation option to solve problems.
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6.2 Error Map for Hyperbolic Drucker-Prager Linear Kinematic Hardening
Material Model

For linear hardening, modified hyperbolic Drucker-Prager material model, exact
solution does not exist. Linear kinematic hardening simplifies solution, however the
nonlinear part of the modified Drucker-Prager yield surface adds additional non-
linearities that introduce error in constitutive integrations. In this case Richardson
extrapolation is used to verify the constitutive integration algorithms. Richardson
extrapolation provides means to obtain accurate results that are then used for
error calculations. Accurate results are developed using Richardson extrapolation
and three groups of tests, in order to determine accuracy order.

– Test 1. The elastic predictor is applied in 1 increment.
– Test 2. The elastic predictor is applied in 10 sub-incrementation, where the

total magnitude of 10 sub-incrementation is the same as the 1 elastic predictor
in Test 1.

– Test 3. The elastic predictor is applied in 100 sub-incrementation, where the
total magnitude of 100 sub-incrementation is the same as the 1 elastic predictor
in Test 1.

Results from these numerical experiments are then used to calculate the accu-
racy order using Equation (15). With calculated accuracy order, accurate solution
can be developed, and then used in calculating errors for different algorithms, as
shown below.

Figure (6) shows results for explicit, forward Euler constitutive integration al-
gorithm, applied to linear hardening, modified hyperbolic Drucker-Prager material
model.
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Fig. 6: Error map of explicit algorithms for hyperbolic Drucker-Prager linear
kinematic hardening material model.
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It is noted that error maps, as show in Figure (6), are presented in deviatoric
stress plane, where horizontal axes represents mean stress (p = −(1/3)σii), and
vertical axes represents shear stress invariant (q =

√
(3/2)sijsji) and stress devi-

ator sij is defined as sij = σij − (1/3)δijσkk, and δij is the Kronecker delta. It
is noted that starting point is at the location of p = 8kPa and q = 8kPa, and is
marked with a red dot. Error map for explicit constitutive integration algorithm,
shown in Figure 6 reveals a potentially problematic stress region on the tensile
side of the yield surface. However, it is noted that regular Drucker-Prager yield
surface would not be even able to produce results for this side of stress space, as
yield surface derivatives are not even defined in that region.

Figure 7 show results for the implicit, backward Euler constitutive integration
algorithm, applied to linear hardening, modified hyperbolic Drucker-Prager mate-
rial model. It is noted that errors are much smaller than for explicit algorithm. It
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1. 00× 10−3
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Fig. 7: Error map of implicit algorithms for hyperbolic Drucker-Prager linear
kinematic hardening material model.

is also noted that tensile region still tends to introduce more error, however errors
are still much smaller than with the explicit algorithm.
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6.3 Error Map for Hyperbolic Drucker-Prager Armstrong-Frederick Nonlinear
Kinematic Hardening Material Model

More advanced material models used in elastoplastic modeling of cyclic behavior
feature nonlinear kinematic hardening. It is thus important to verify constitutive
integration for the nonlinear kinematic hardening material models. In this section,
Richardson Extrapolation technique is used to verify constitutive integration of
nonlinear kinematic hardening material model. Material model used here is based
on the Armstrong-Frederick nonlinear kinematic hardening function (Armstrong
and Frederick, 1966). Using similar approach for estimating accuracy order as in
Section 6.2, and the Richardson Extrapolation algorithm, the error map for con-
stitutive integration of elastoplastic material with Armstrong-Frederick nonlinear
kinematic hardening law is shown in Figures. 8 and 9
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1. 00× 10−1

Fig. 8: Error map of explicit algorithms for hyperbolic Drucker-Prager nonlinear
kinematic hardening material model.

A number of observations can be made.

– The errors using implicit constitutive integration is much smaller than that
using explicit constitutive integration. It is noted that the error in implicit
algorithm is at least two orders of magnitude smaller than the error in explicit
algorithm, as seen in Figures 8 and 9.

– Comparison of errors for explicit constitutive algorithm for linear and nonlinear
kinematic hardening models, Figures 6 and 8 , reveals that nonlinearity in
hardening did introduce additional error, as expected.

– However, comparison of errors for implicit constitutive algorithm for linear and
nonlinear kinematic hardening models, Figures 7 and 9 reveals very similar er-
ror distribution. This is also expected as for the implicit algorithm convergence
tolerance is prescribed and it holds for any material model used.
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Fig. 9: Error map of implicit algorithms for hyperbolic Drucker-Prager nonlinear
kinematic hardening material model.

– Constitutive integration error for both implicit and explicit algorithms in-
creases as the mean pressure is decreases, that is, as the stress states is closer
to the nonlinear part of the yield surface.
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6.4 Numerical Accuracy Estimation for Associated Drucker-Prager Linear
Kinematic Hardening Material Model

Presented in this section are estimates of numerical accuracy of constitutive in-
tegration for a Drucker-Prager material model with linear kinematic hardening.
Three groups of tests are conducted using Drucker-Prager associative material
model. For each of numerical experiments, the total strain increment is the same,
however, the number of increments to reach this strain are different. This means
that the size of strain sub-increments for each test differs. Table 1 presents re-
sults of Richardson extrapolation for three different starting stress point on the
Drucker-Prager yield surface, and corresponds to three confining pressures (p =
104Pa; 105Pa; 106Pa).

Table 1: Richardson extrapolation results for shear stress q for Drucker-Prager
linear kinematic hardening material with different confinements.

Confinement 104Pa 105Pa 106Pa

Accuracy order β 1.0003 1.0017 0.9954
GCI 0.01% 0.01% 0.00%
Resulting q 32207.705Pa 41866.802Pa 127602.165Pa
Richardson exact result for q 32205.934Pa 41864.904Pa 127600.876Pa

Range of error in q ±2.213Pa ±2.373Pa ±1.611Pa

Figure 10, shows results for asymptotic convergence of Drucker-Prager asso-
ciative linear kinematic hardening material model with different starting points
(different confinment levels).
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Fig. 10: Asymptotic convergence of Drucker-Prager linear kinematic hardening
material with different confinements using implicit, backward Euler algorithm.



22 Yuan Feng1 et al.

Based on Figure 10, A number of observations can be made:

– When the strain increment size is greater than 1e−3, the relative error oscillates
since the discretization size is too large to represent the actual continua space
in the discretized domain.

– When the strain increment size is between 1e − 13 and 1e − 3, the relative
error decreases asymptotically. This region is called the asymptotic regime of
convergence.

– When the strain increment size is smaller than 1e−13, the relative error cannot
decrease anymore since round-off error contributes to the solution error.

– When the strain increment is 1e−16 (less than the machine epsilon 2.22e−16),
the stress result oscillates significantly since the round-off error dominates the
solution error.

Besides, the relative error decreases when the confining pressure increases. This
is due to the fact that high pressure states of stress are far from the nonlinearities in
the modified hyperbolic function. This nonlinearity leads to increase in integration
error, while moving away from such nonlinearity decreases of the relative error.

6.5 Numerical Accuracy Estimation for Non-Associated Drucker-Prager
Nonlinear Kinematic Hardening Material Model

In this section, a non-associated Drucker-Prager material model with nonlinear,
Armstrong-Frederick kinematic hardening is investigated. Both explicit, forward
Euler and implicit, backward Euler algorithms are tested with various strain incre-
mental sizes. Stress solution, in terms of deviatoric stress (q =

√
3/2sijsji, sij =

σij − σmδij) is used to illustrate change of accuracy of algorithms for various in-
cremental step sizes. Figure 11 shows the comparison of deviatoric stress solution
for a variation in incremental strain size for implicit and explicit algorithms.

It is noted that implicit algorithm behaves as expected, that is stress solution
is very accurate even for large strain increments, while explicit algorithm does
produce significant error for larger step sizes. For explicit algorithm, error is sig-
nificantly reduced when the step size becomes small. This argument is used for
advocating sub-stepping approach in order to improve explicit algorithm accuracy.

In addition to stress result, yield surface values of the stress results are also used
to illustrate numerical accuracy of the algorithms. Ideally, constitutive integration
algorithm should return the stress state to the yield surface, yielding yield surface
values to (almost) zero. If stress is not returned to the yield surface, equilibrium of
internal stress and external forces might not be achievable. In addition, calibration
of the elastic-plastic material model is done assuming that stress state is on the
yield surface during plastification. If stress state is not on the yield surface, then
the calibrated parameters for material model will not be able to replicate real
response.

Figure 12, shows yield surface values for both implicit and explicit algorithms
for different incremental step sizes.

It is noted that, as expected, for explicit algorithm, stress solutions drifts away
from the yield surface for larger incremental step sizes, hence producing erroneous
stress solution with calibrated material parameters. On the other hand, implicit
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Fig. 11: Deviatoric Stress q results for a non-associative Drucker-Prager
nonlinear kinemastic hardening material using implicit, backward Euler and

explicit, forward Euler algorithms.
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Fig. 12: Yield surface values of returned stress of non-associative plastic material
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algorithm performs much better, since user controls stress solution drift from the
yield surface by prescribing drift tolerance.

While explicit integration algorithm is simpler to develop and implement than
the explicit integration algorithm, it does produce larger error for realistic incre-
mental strain steps. Use of sub-incrementation is possible at a cost of increasing
computational times. On the other hand, implicit integration algorithm is more
complicated and requires iterations, thus increasing computational time, however,
accuracy is superior.

7 Conclusion and Final Remarks

This paper deals with verification of constitutive integration algorithms as applied
to elastic-plastic materials models used in civil engineering. Both explicit, forward
Euler and implicit, backward Euler elastoplastic algorithms are verified on the
constitutive level. Three methods are used in the verification process, including
the prescribed solution forcing, Richardson extrapolation, and the extension grid
convergence index (GCI).

In the particular case of elastic-plastic constitutive integrations, verification
was performed using:

1. Prescribed solution forcing in terms of analytical solutions, to verify the per-
fectly plastic material with a hyperbolic Drucker-Prager yield surface.

2. Richardson extrapolation, to verify the nonlinear kinematic hardening material
models.

3. GCI method, to estimate the numerical accuracy in the elastoplastic algorithm,
especially for Drucker-Prager material models with non-associate plastic flow.

It was shown that constitutive algorithms that were subject to verification per-
form well and as expected, thus increasing confidence in elastic plastic modeling.

It is also important to note that use of numerical modeling for prediction of
behavior of solids and structures has to be done using verified numerical tools.
This is rarely demonstrated in project documentation and scientific publications,
which lowers confidence in presented results.
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B. Sjögreen and N. A. Petersson. A Fourth Order Accurate Finite Dif-
ference Scheme for the Elastic Wave Equation in Second Order For-
mulation. J. Sci. Comput., 52(1):17–48, 2011. ISSN 0885-7474. doi:
10.1007/s10915-011-9531-1. URL http://link.springer.com/10.1007/

s10915-011-9531-1$\delimiter"026E30F$nhttps://computation-rnd.

llnl.gov/serpentine/pubs/wpp4th2011.pdf$\delimiter"026E30F$nhttps:

//computation-rnd.llnl.gov/serpentine/publications.html.
N. Wirth. A plea for lean software. Computer, 28(2):64–68, 1995. ISSN 0018-9162.

doi: http://doi.ieeecomputersociety.org/10.1109/2.348001.
J. A. Wise, V. D. Hopkin, and P. Stager. Verification and validation of complex

systems: Human factors issues, volume 110. Springer Science & Business Media,
2013.

T. Xing and F. Stern. Factors of safety for Richardson extrapolation. Journal of
Fluids Engineering, 132(6):061403, 2010.

J. Zamani, B. Soltani, and M. Aghaei. Analytical investigation of elastic thin-
walled cylinder and truncated cone shell intersection under internal pressure.
Journal of pressure vessel technology, 136(5):051201, 2014.

http://www.sciencedirect.com/science/article/pii/S0045782511001290
http://www.sciencedirect.com/science/article/pii/S0045782511001290
http://www.sciencedirect.com/science/article/B6V29-51N7RNC-1/2/7d3ca12b0a9817a6ddc35f55f7b9df00
http://www.sciencedirect.com/science/article/B6V29-51N7RNC-1/2/7d3ca12b0a9817a6ddc35f55f7b9df00
http://link.springer.com/10.1007/s10915-011-9531-1$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/pubs/wpp4th2011.pdf$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/publications.html
http://link.springer.com/10.1007/s10915-011-9531-1$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/pubs/wpp4th2011.pdf$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/publications.html
http://link.springer.com/10.1007/s10915-011-9531-1$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/pubs/wpp4th2011.pdf$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/publications.html
http://link.springer.com/10.1007/s10915-011-9531-1$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/pubs/wpp4th2011.pdf$\delimiter "026E30F $nhttps://computation-rnd.llnl.gov/serpentine/publications.html

	Introduction
	Background
	Elastoplastic Constitutive Integration Algorithm
	Explicit, Forward Euler Algorithm
	Implicit, Backward Euler Algorithm

	Theoretical Basis for Verification
	The Asymptotic Regime of Convergence
	Richardson Extrapolation Technique as a Verification Tool
	Uncertainties in Numerical Simulation
	Grid Convergence Index
	Accuracy order of Elastoplastic Algorithm
	Analytical Determination of Accuracy Order
	Numerical Estimation of Accuracy Order


	Elastoplastic Material Models
	The von-Mises Yield Surface
	Hyperbolic Drucker-Prager Yield Surface
	Non-associative Plastic Flow
	Armstrong-Frederick Hardening Law

	Error Maps for Elastoplastic Constitutive Integration
	Error Map for von-Mises Perfectly Plastic Material Model
	Error Map for Hyperbolic Drucker-Prager Linear Kinematic Hardening Material Model
	Error Map for Hyperbolic Drucker-Prager Armstrong-Frederick Nonlinear Kinematic Hardening Material Model
	Numerical Accuracy Estimation for Associated Drucker-Prager Linear Kinematic Hardening Material Model
	Numerical Accuracy Estimation for Non-Associated Drucker-Prager Nonlinear Kinematic Hardening Material Model

	Conclusion and Final Remarks

