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Abstract

Presented is a thermodynamics based methodology for computing energy

dissipation in inelastic beam-column elements. Theoretical formulation for

energy storage and dissipation in uniaxial steel fiber and concrete fiber models

is derived from the principles of thermodynamics, in conjunction with a few

assumptions on energy transformation and dissipation. Proposed methodol-

ogy is implemented in MS-ESSI Simulator and illustrated through a number

of numerical examples on beam-columns and frame models under various

loading conditions. It is shown that the consideration of plastic free energy

in addition to plastic work, is necessary to correctly evaluate energy dissipa-

tion in nonlinear beam-column elements. Results of energy analysis indicates

that the difference between plastic work and plastic dissipation could be sig-

nificant, and that the ratio between them evolves with time.
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1. Introduction

Mechanical energy in soil structure interaction (SSI) systems is dissipated

during the irreversible dissipative process of energy transformation in which

entropy of the system increases. Energy dissipation has been used, directly or

indirectly, as a key parameter to evaluate damage in elastic-plastic materials.

A common misconception about plastic work and energy dissipation due to

plasticity has been noticed in a number of recent publications [45, 23, 42,

39, 43, 48, 30] in which violations of the second law of thermodynamics is

observed. As presented in an earlier paper [49], the correct formulation for

energy analysis on elastic-plastic solids has been derived from the second

law of thermodynamics. The theoretical and computational framework has

been verified through system energy balance in a series of numerical studies

on elastic and elastic-plastic material models. The purpose of this paper

is to present a methodology for correctly evaluating energy dissipation in

nonlinear fiber beam-column structural elements.

Early work reported by Farren and Taylor [12] and Taylor and Quinney

[44] showed that plastic free energy could be significant in metals, thus should

not be neglected without reasoning. The ratio of plastic work converted into

heat, usually referred to as the Quinney–Taylor coefficient, was measured to

be between 0.6 to 1.0 [1, 52, 11, 33]. Mason et al. [26] pointed out that the

Quinney–Taylor coefficient is both strain and strain rate dependent but could

be assumed to be a constant in most cases. A constitutive model for metals

was presented by Rosakis et al. [36], Hodowany et al. [16], Ravichandran et al.

[35] based on thermoplasticity. Presented model can model the evolution of

energy dissipation and has been validated through experiments. Semnani

et al. [38] presented a thermoplastic framework that could predict strain

localization in transversely isotropic materials.
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Despite of the existence of sophisticated theories that are capable of mod-

eling the evolution of energy dissipation, including those mentioned earlier,

most constitutive relationships used to model structural elements do not

involve thermodynamics or thermoplasticity. One commonly used finite ele-

ment (FE) technique to model inelastic frame structures, is to use nonlinear

beam-column finite element, and nonlinear fiber sections. In this approach,

a beam-column element is analyzed using a number of cross sections, at lo-

cations of integration points. Such cross sections are divided into a number

of uniaxial fibers with various constitutive models, for steel and/or concrete

for example. This model have been proved to be able to capture nonlin-

ear stress–strain behaviors of structural elements under axial loading and/or

pure bending.

Problems arise when such elements are used to calculate energy dissipa-

tion. As observed in many publications [21, 53, 15, 46, 51, 32], energy dis-

sipation analysis was performed using hysteretic stress–strain and/or force–

displacement response of the elements. Hysteretic stress–strain and/or force–

displacement responses corresponds to plastic work. Plastic work is not the

same as plastic energy dissipation. It is also important to point out that var-

ious damage indices that are used to evaluate seismic performance of frame

structures are derived from energy dissipation. It is then noted that such

damage indices are not valid if the fundamental computation of energy dis-

sipation is incorrect.

It has been shown by Dafalias et al. [8], Feigenbaum and Dafalias [13],

Yang et al. [49] that the difference between plastic work and plastic dissipa-

tion is the plastic free energy, or cold work, which can be calculated from

material internal variables (or state variables). This computation can be per-

formed on solids modeled with elastic-plastic constitutive relations in which
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internal variables are updated at every increment. On the other hand, con-

stitutive relationships used to model nonlinear structural elements based on

fiber cross section are mainly based on empirical fitting of experimental re-

sults [40, 41, 22, 34, 25, 3, 47, 20]. The parameters used in these models are

different than internal variables that are used in elastic-plastic constitutive

models for solids. In order to apply rational mechanics for computing energy

dissipation, a new methodology is needed. This new methodology, based

on thermodynamics, should be able to correctly evaluate energy storage and

dissipation in structural elements, while using the same fiber material models

for steel and concrete.

During the recent few decades, a number of studies have been conducted

with focus on energy analysis of SSI systems [45, 23, 18, 43, 15, 29, 28, 10].

Despite different formulations used, the calculations of energy dissipation

due to hysteretic damping (material elasto-plasticity) in these publications

were all performed without consideration of plastic free energy, which leads

to the violation of the second principle of thermodynamics. In other words,

results show negative incremental energy dissipation, which is equivalent to

energy production. It is worth pointing out that such problem can be found

in many other publications in the last few decades.

In order to correctly evaluate energy dissipation in nonlinear beam-column

elements modeled using fiber sections, the thermo-mechanics framework must

be applied to the uniaxial constitutive models used for fibers. Focus of this

paper is on proper modeling of different forms of energy storage and dissi-

pation in uniaxial material models. Presented is a theoretical and compu-

tational formulations for computing energy dissipation in uniaxial concrete

and steel fiber models. A series of FE simulations are carried out using the

MS-ESSI Simulator [17] to illustrate the energy behavior of structural frame
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systems. The method is verified by comparing the input work and the energy

storage and dissipation in the system. The difference between accumulated

plastic work and accumulated plastic dissipation, which can be significant in

many cases, is addressed. Finally, conclusions on plastic energy dissipation

in structural elements are drawn from the verified results.

2. Theoretical and Computational Formulations

2.1. Thermomechanical Framework

The theory of continuum thermo-mechanics has been discussed in a num-

ber of earlier publications by Lubliner [24] and Rosakis et al. [36], from

which the fundamental framework of this study is derived. General equa-

tions of elastoplasticity and thermodynamics are modified using few plausi-

ble assumptions to accommodate use of existing fiber material models. Small

deformation theory is assumed, so that the small strain tensor εij is used to

describe deformation of a material. It is noted that all equations in this

paper are expressed in index notation.

The general thermomechanical process is governed by momentum balance

and the first and second law of thermodynamics. The localized version of the

first law of thermodynamics (energy balance equation) is given in the form:

σij ε̇ij + qi,i + ρr = ρė (1)

where σij is Cauchy stress, the term σijεij is called the stress power, qi are the

components of the heat flux vector, ρ is the mass density of the material, r is

the heat supply per unit volume, and e is the internal energy per unit volume.

Standard definition of stress from mechanics of materials, i.e. positive in

tension, is used.
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The localized version of the second law of thermodynamics (Clausius–

Duhem inequality) is expressed as:

ρη̇ − (
qi
θ

),i −
1

θ
ρr ≥ 0 (2)

where η is the entropy per unit volume and θ is the absolute temperature.

Substituting the heat supply per unit volume r in Equation 2 with the

expression from Equation 1, and introducing the rate of change of internal

dissipation per unit volume Φ gives:

ρθη̇ − ρė+ σij ε̇ij +
1

θ
qiθ,i = Φ +

1

θ
qiθ,i ≥ 0 (3)

Note that the internal dissipation can have many sources, including material

plasticity, viscous coupling, and other forms of energy dissipation.

The Helmholtz free energy per unit volume ψ, which is referred to as free

energy in this paper, is defined as:

ψ = e− θη (4)

The second law of thermodynamics can be expressed in terms of free energy

ψ as:

Φ +
1

θ
qiθ,i = −ρψ̇ − ρθ̇η + σij ε̇ij +

1

θ
qiθ,i ≥ 0 (5)

The rate of internal dissipation per unit volume Φ can be written as:

Φ = σij ε̇ij − ρψ̇ − ρθ̇η (6)

At this point, a few assumptions are introduced to simplify the governing

equations. According to Feigenbaum and Dafalias [13], Collins and Houlsby

[6], Collins [4], Collins and Kelly [5], it can be assumed that the deformation

of beam-column elements under earthquake loading is approximately isother-

mal, which indicates that the temperature field θ is constant and uniform.
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This approximation is reasonable considering the fact that seismic energy is

mostly carried by the low-frequency components of earthquake ground mo-

tion, which allows the heat generated in the material to be largely dissipated.

With this assumption, the rate of internal dissipation Φ is simplified into the

form:

Φ = σij ε̇ij − ρψ̇ ≥ 0 (7)

Next, all material models studied in this paper are assumed to be decou-

pled, which means that the (small) strain tensor can be additively decom-

posed into elastic and plastic parts:

εij = εelij + εplij (8)

Lubliner [24] and Collins and Houlsby [6] showed that this assumption can

be deduced if the instantaneous elastic moduli of a material are independent

of the internal variables. Under the assumption of decoupled material, the

free energy ψ can also be decomposed into elastic and plastic parts:

ψ = ψel + ψpl (9)

where the elastic part of the free energy ψel is also known as the elastic strain

energy. Elastic strain energy is defined in incremental form as:

ψ̇el = σij ε̇
el
ij (10)

By substituting Equation 8, Equation 9, and Equation 10 into Equation 7,

the rate of internal dissipation Φ can be expressed in terms of the rate of

plastic free energy ψ̇pl:

Φ = σij ε̇ij − σij ε̇
el
ij − ρψ̇pl ≥ 0 (11)

Equation 11 represents two basic principles that should always be upheld

in any energy analysis for decoupled material undergoing isothermal process:
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• The stress power that is input into a material body by external loading

is transformed into elastic strain energy, plastic free energy, and ma-

terial internal dissipation. All forms of energy must be considered to

maintain energy balance of the material body. This principle ensures

that the first law of thermodynamics holds.

• The rate of change of material internal dissipation (plastic dissipation)

is nonnegative at any time. In other words, accumulated internal dissi-

pation can not decrease during any time period. This principle ensures

that the second law of thermodynamics holds.

2.2. Plastic Free Energy

The physical nature of plastic free energy is associated with the mate-

rial micro-structure. For particulate materials, plastic free energy will be

accumulated or released if there is evolution of particle arrangement (micro-

fabric). Evolution of particle arrangement happens as soon as the material

is loaded. For other materials, for example metals, micro-structures is rep-

resented by the shape and arrangement of the crystals, whose evolution will

result in change in plastic free energy. Detailed explanations of the evolu-

tion of plastic free energy can be found in publications by Besseling and Van

Der Giessen [2], Collins and Kelly [5], and Yang et al. [49].

Using Equation 11, the energy dissipation of any elastic-plastic material

under isothermal loading process can be calculated, provided that all the

terms on the right hand side of the equation are known. For most elastic-

plastic constitutive models, the stress tensor σij and the elastic strain tensor

εelij are being calculated as simulation progresses. The challenging task is to

evaluate the plastic free energy term ψpl, whose formulation depends on the

internal variables used in the constitutive model.
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For a decoupled elastic-plastic material model that exhibits both isotropic

and kinematic hardening, the plastic free energy is decomposed into isotropic

and kinematic parts, that are calculated separately and then summed up.

The formulation of plastic free energy for this type of material was given by

Feigenbaum and Dafalias [13]:

ψpl = ψiso
pl + ψkin

pl =
1

2ρκ1
k2 +

1

2ρa1
αijαij (12)

where ψiso
pl and ψkin

pl are the isotropic and kinematic parts of the plastic free

energy, respectively, k is the radius of yield surface, α is the back stress,

κ1 and a1 are non-negative material constants. Note that Equation 12 can

be used for a wide range of constitutive models with various yield functions,

including von Mises and Drucker-Prager yield criteria whose energy behavior

has been studied and presented by Yang et al. [49]. Such materials are usually

used to model solids (soil and mass concrete).

On the other hand, frame structures are usually modeled using beam-

column elements in combination with fiber sections and uniaxial material

models. In this case, Equation 12 does not apply. It is noted that most

uniaxial constitutive models that are used for concrete and steel modeling

[27, 14, 50], were not developed with thermodynamics based energy dissipa-

tion in mind. Therefore, material model definitions for concrete and steel

were appraised using thermodynamics framework [49] in order to correctly

evaluate energy storage and dissipation in these materials.

2.3. Energy Dissipation in Beam-Column Element

Beams and columns are modeled with nonlinear, displacement-based beam-

column element, that is available within the MS-ESSI Simulator. In or-

der to incorporate confined/unconfined concrete and steel reinforcement in
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beam-column element, fiber sections are assigned with corresponding mate-

rial model uniaxial fibers. An example model is shown in Figure 1. Model
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Figure 1: Schematic of a bottom-fixed column modeled with concrete and steel fibers.

represents a bottom-fixed, cantilever reinforced concrete column Figure 1 also

shows constant beam-column cross section, as well as constitutive response

of concrete and steel fibers. This model is analyzed later, it is presented here

in order to illustrate nonlinear model for a beam-column element with fiber

cross section, and individual fiber constitutive response.

2.3.1. Uniaxial Steel Fiber

The uniaxial steel material model examined in this study was developed

by Menegotto and Pinto [27] and extended by Filippou et al. [14]. This

uniaxial steel model is capable of capturing the nonlinear hysteretic behav-

ior and isotropic strain-hardening effect of steel. The uniaxial stress–strain

response of steel material is shown in Figure 2, along with explanation of

material parameters. The model, as presented by Menegotto and Pinto [27],
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Figure 2: Constitutive model for uniaxial steel fiber (after Menegotto and Pinto [27]).

takes on the form:

σ∗ = bε∗ +
(1 − b)ε∗

(1 + ε∗R)1/R
(13)

with

ε∗ =
ε− εr
ε0 − εr

; σ∗ =
σ − σr
σ0 − σr

(14)

where b is the strain-hardening ratio, εr and σr are the strain and stress at

the point of strain reversal, ε0 and σ0 are the strain and stress at the point

of intersection of the two asymptotes, R is the curvature parameter that

governs the shape of the transition curve between the two asymptotes. Note

that this model is defined for uniaxial material, in which the stresses and

strains are scalars instead of tensors. Therefore, beam-column finite element

that uses this model for section modeling is defined for pure bending and

pure compression, tension.

The expression for the curvature parameter R is suggested by Menegotto

11



and Pinto [27]:

R = R0 −
cR1ξ

cR2 + ξ
(15)

where R0 is the value of the curvature parameter R during initial loading,

cR1 and cR2 are degradation parameters that need to be experimentally de-

termined. The parameter ξ, that is updated after strain reversal, is defined

as:

ξ =

∣∣∣∣(εm − ε0)

εy

∣∣∣∣ (16)

where εm is the maximum (or minimum) strain at the previous strain rever-

sal point, depending on the loading direction of the material. If the current

incremental strain is positive, the parameter εm takes the value of the maxi-

mum reversal strain. Parameter εy is the monotonic yield strain.

In order to capture isotropic hardening behavior, Filippou et al. [14] in-

troduced stress shift mechanism into the original model by Menegotto and

Pinto [27]. Note that the hardening rate in compression and tension can

be different by choosing different hardening parameters for compression and

tension. The proposed relation takes the form:

σst
σy

= a1

(
εmax

εy
− a2

)
(17)

where σst is the shift stress that determines the shift of yield asymptote,

εmax is the absolute maximum strain at strain reversal, and a1 and a2 are

hardening parameters in compression that are experimentally determined. In

the case of tension, the hardening parameters a1 and a2 in Equation 17 are

replaced by a3 and a4, respectively. Parameters a3 and a4 are also determined

by experiment.

The energy computation procedure for this uniaxial steel model is shown

in Figure 3, and it follows the thermomechanical framework established ear-

lier in this paper.
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Figure 3: Energy computation of uniaxial steel fiber: (a) Monotonic loading branch; (b)

Cyclic loading branch.

Note that the only difference between the monotonic loading branch (Fig-

ure 3(a)) and the cyclic loading branch (Figure 3(b)) is that the strain reversal

point c is at the origin o in the monotonic case. The following explanation

of the proposed energy computation method applies to both monotonic and

cyclic loading scenarios.

Firstly, the elastic strain energy density ES is defined in accordance with

the classic assumption that it is only a function of current stress state of the

material:

ES = ES(σ) =
1

2E0

σ2 (18)

Graphically, the elastic strain energy density of the material shown in Fig-

ure 3 at states a and b are the triangular areas afd and bge, respectively.

Then the incremental form of Equation 18 is simply:

dES =
1

E0

σdσ (19)

Next, the incremental plastic dissipation density DP from state a to state
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b is assumed to be the triangular area abc:

dDP =
1

2
[(σ − σr)dε− (ε− εr)dσ] (20)

This assumption ensures that the incremental plastic dissipation is non-

negative, satisfying one of the two basic principles of thermodynamics.

One special case to consider is when the material exhibits no cyclic soft-

ening, in other words, material micro-structure is not evolving. In this case a

perfectly overlapping stress–strain loops will be observed. In this case only,

the energy dissipation calculated using Equation 20 for one cyclic will be

represented by the area of the hysteresis loop. In thermodynamics, the area

of hysteresis loop is equal to the plastic work, rather than plastic dissipation,

however in the case of non-evolving material structure, plastic work becomes

equal to plastic dissipation. It is important to stress that this is true only in

this case.

For a general case, where the material does exhibit cyclic softening, plastic

free energy density EP is graphically represented by the areas of polygon

adoca and polygon beocb at states a and b, respectively. The plastic free

energy calculated using this assumption is given by:

EP =
1

2

[
σ

(
ε− σ

E0

− εr

)
+ σrε

]
(21)

The incremental form of Equation 21 is given as:

dEP =
1

2

[
(σ + σr) dε+

(
ε− 1

E0

σ − εr

)
dσ

]
(22)

Adding Equations 19, 20, and 22, the incremental form of energy balance

is written as:

dES + dEP + dDP = σdε (23)

where the increment of three energy components add up to the increment of

stress power during any loading step.
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2.3.2. Uniaxial Concrete Fiber

The uniaxial concrete material model used in this study is based on the

model proposed by Yassin [50]. This model is capable of modeling the non-

linear hysteretic behavior and damage effects in concrete. The material pa-

rameters and stress–strain response of this material are shown in Figure 4.
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Figure 4: Constitutive model for uniaxial concrete fiber (after Yassin [50]).

The monotonic envelope curve of this model in compression is based on

the model of Kent and Park [19] and later generalized by Scott et al. [37].

For a given strain εc, the compressive stress σc and corresponding tangent

stiffness E are given as:

εc ≤ εcs ; σc = fcs

[
2

(
εc
εcs

)
−
(
εc
εcs

)2
]

; E = Ec

(
1 − εc

εcs

)
(24)

εcs < εc ≤ εcu ; σc =
εc − εcs
εcu − εcs

(fcu − fcs) + fcs ; E =
fcu − fcs
εcu − εcs

(25)

εc > εcu ; σc = fcu ; E = 0 (26)
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where fcs is the maximum compressive strength of the concrete material, εcs

is the concrete strain at compressive strength, fcu is the ultimate (crush-

ing) strength of the concrete material, εcu is the concrete strain at ultimate

strength, and Ec is the initial concrete tangent stiffness that can be calculated

using the equation:

Ec =
2fcs
εcs

(27)

All material parameters should be determined experimentally.

The cyclic behavior of concrete model in compression is shown in Figure 4.

One assumption of this model is that all reloading lines intersect at a common

point, where the stress σr and strain εr are given by the following expressions:

εr =
fcu − λEcεcu
Ec(1 − λ)

(28)

σr = Ecεr (29)

After unloading from a point on the compressive monotonic envelope, the

model response is bounded by two lines that are defined by:

σmax = σm + Er(εc − εm) (30)

σmin = 0.5Er(εc − εt) (31)

where

Er =
σm − σr
εm − εr

(32)

εt = εm − σm
Er

(33)

and σm and εm are the stress and strain at the unloading point on the com-

pressive monotonic envelope, respectively. If the unloading–reloading cycle

is incomplete, the material response will be a straight line with slope Ec, as

shown in Figure 4.
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The tensile behavior of concrete model takes into the account tension

stiffening and the effects of initial cracking. Details of monotonic and cyclic

behavior of concrete model under tensile stress are given by Yassin [50].

Since there are different loading/unloading branches in this model, the

energy computation needs to be considered separately for each branch. One

energy component that remains the same in all loading cases is the elastic

strain energy density ES, that is a function of current stress only:

ES = ES(σ) =
1

2Ec

σ2 (34)

The incremental form of Equation 34 is:

dES =
1

Ec

σdσ (35)

In order to calculate plastic dissipation, a few assumptions are made in

order to ensure that the energy behavior of concrete material follows ther-

modynamics, as illustrated in Figure 5:

• Majority of energy is dissipated during first loading in compression

and/or tension (Figures 5(a) and 5(d)).

• Subsequent cycles of loading, on an already damaged concrete, do not

dissipate much energy (Figures 5(b) and 5(c)).

• No energy is dissipated during unloading in both compressive and ten-

sile conditions.

• When the material is cyclically loaded under compression, energy dis-

sipation only happens when the stress reaches the upper bound σmax.

• No energy is dissipated during cyclic loading when the material is under

tension.
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For a single loading step from stress state a to b in each subplot of Figure 5,

the energy dissipation is represented by the shaded area.
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Figure 5: Energy computation of uniaxial concrete fiber: (a) First compression; (b) Single

compressive unloading-reloading cycle; (c) Unloading-reloading cycles within compression

envelope; (d) First tension.

If the material is under compression (Figures 5(a), 5(b), and 5(c)), the

amount of energy dissipated in the concrete fiber DP is calculated by using

the area of a polygon abcdef . This polygon is formed by the two unloading
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paths originating from stress states a and b:

dDP =
1

2
[(σ − σc)dε+ (εc − ε)dσ + (εc − εf )σ + (σf − σc)(ε− εt) + σcdεt]

(36)

where the stress and strain at point f can be computed based on equations

that define respective unloading paths, using the following expression:

εf =
σ + 0.5Erεt − Ecε

0.5Er − Ec

σf = 0.5Er(εf − εt) (37)

Point c can be calculated using the same approach, by using all stress and

strain variables evaluated at state b.

Note that the polygon becomes quadrilateral in the cases of cyclic loading

within the monotonic envelope, as can be observed in Figure 5 (b) and (c).

Nevertheless, Equations 36 and 37 remain valid.

Plastic free energy EP of concrete material is calculated by using the

triangular area fge at state a:

EP =
1

2

[(
ε− σ

Ec

− εt

)
σf

]
(38)

The incremental form of Equation 38 is obtained by taking the difference

between the plastic free energy at states a and b:

dEP =
1

2

[(
σc − σf −

1

Ec

σ

)
(ε− εt) − (dε− dεt)σc −

1

Ec

σcdσ

]
(39)

Adding Equation 35, 36, and 39 yields the incremental form of energy

balance:

dES + dEP + dDP = σdε (40)

where the increment of three energy components add up to the increment of

stress power during any loading step.
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3. Numerical Studies

Numerical examples presented in this paper are all simulated using the

MS-ESSI Simulator [17], and are available on the MS-ESSI website http:

//ms-essi.info/. Energy dissipation is calculated for beam finite elements

made up from inelastic concrete and steel fiber sections

We begin by performing numerical simulation of steel and plain concrete

columns under various loading conditions. This is done to study the energy

behavior of uniaxial steel and concrete material models. Then, a model of

reinforced concrete column, consisting of concrete and steel fibers, is con-

structed and simulated to illustrate the energy dissipation in reinforced con-

crete structural elements. Finally, a steel frame structure is modeled with

fiber section elements and loaded with dynamic, seismic motion. Through

these examples, it will be shown that the difference between plastic work and

plastic energy dissipation can be significant.

External loads are applied incrementally using displacement-control scheme.

System of equations are solved using Newton-Raphson equilibrium iteration

algorithm [7] and UMFPACK solver [9], within MS-ESSI Simulator [17].

Static, displacement control, integration algorithm is used for the column

loading cases, while Newmark integration is used for the dynamic steel frame

case. Note that viscous and numerical damping are excluded from all cases,

in order to accurately evaluate energy dissipation due to material elastoplas-

ticity. In other words, no viscous damping (Rayleigh or Caughey) is used,

and for Newmark time integration algorithm [31], β = 0.25 and γ = 0.5

parameters are used.
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3.1. Steel Column

In order to verify the proposed energy computation approach for uniaxial

steel material model, examples of steel columns are studied in this section.

As shown in Figure 6, the one meter long column model is fixed at the

bottom, and loads are applied at the top. The size of the cross section is

Section A - A

Concrete or

Steel Fibers

100 mm

A A

Axial Loading

Shear Loading Bending

1 m
100 mm

Figure 6: Schematic of the steel/plain-concrete column modeled with fiber sections and

uniaxial steel/concrete materials.

100mm × 100mm. The parameters for uniaxial steel material used in this

section are summarized in Table 1. Material model used for steel is based on

Menegotto and Pinto [27] and Filippou et al. [14], as noted in section 2.1.

Table 1: Material model parameters used in steel column examples.

σy [MPa] E [GPa] b R0 cR1 cR2 a1 a2 a3 a4

413.8 200.0 0.01 18.0 0.925 0.15 0.0 55.0 0.0 55.0
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3.1.1. Cyclic Axial Loading

The evolution of energy parameters for uniaxial steel material are com-

puted using Equations 19, 20, and 22. Figure 7 shows the stress–strain

response as well as the energy calculation results of the steel column under

cyclic axial loading.
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Figure 7: Energy analysis of steel column under cyclic axial loading: (a) Cyclic stress–

strain response; (b) Evolution of different forms of energy with cycles: Input work, plastic

dissipation, plastic work, plastic free energy, and strain energy.

As expected, the stress–strain response shown in Figure 7 follows the

constitutive model presented in Figure 2. Due to the choice of hardening pa-

rameters (a1, a2, a3, and a4), isotropic hardening after first loading reversal is

relatively small. The evolution of plastic free energy, which is related to the

hardening behavior of the constitutive model, is also observed to be insignif-

icant after the first loading reversal. Energy balance in the steel material

(Equation 23) is maintained during entire simulation.

In this particular case, the difference between plastic dissipation and plas-

tic work is significant during initial loading (or monotonic loading), but then
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becomes less significant during cyclic loading. It is important to point out

that such difference could be significant if different hardening parameters

are chosen or complex loading conditions (for example seismic loading) are

applied.

Another observation is that the ratio between plastic dissipation and plas-

tic work, the Quinney–Taylor coefficient [44], changes from 0.5 to 0.9 in just

a few loading cycles. Based on this, it is recommended that Quinney–Taylor

coefficient be variable, calculated directly, as was done here, and not pre-

scribed as a fixed number.

3.1.2. Cyclic Bending Loading

The same column used in section 3.1 is loaded with cyclic bending moment

on the top. Figure 8 shows the moment–rotation response as well as the

energy calculation results for the steel column under cyclic bending loading.
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Figure 8: Energy analysis of steel column under cyclic bending loading: (a) Moment–

rotation response; (b) Evolution of different forms of energy with cycles: Input work,

plastic dissipation, plastic work, plastic free energy, and strain energy.

When a beam element is loaded in pure bending, half of the fibers will
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be in tension while the other half in compression. The normal stress and

strain distribution on any cross section is symmetric. Since the fiber material

model used in this case has the same stress–strain response under tension

and compression, the energy results in for this bending case share the similar

pattern with those in the axial loading case.

Note that in both axial and bending cases, the strain energy accumulated

in the material body is much smaller than the plastic dissipation. This means

that most of the input work results in plastic deformation of the material,

and indicates possibility of large deformation and material damage.

3.2. Plain Concrete Column

In order to verify the proposed energy computation approach for uniaxial

concrete material model, examples of plain concrete columns are studied in

this section. The size and setup of the model are the same as those of the

steel column, which has been shown in Figure 6. The parameters for uniaxial

concrete material used in this section are summarized in Table 2.

Table 2: Material model parameters used in plain concrete column examples.

fcs [MPa] εcs fcu [MPa] εcu λ fts [MPa] Et [GPa]

-30.2 -0.00219 -6.0 -0.00696 0.5 3.02 5.0

3.2.1. Monotonic Axial Loading

As stated in the assumptions for energy dissipation in the uniaxial con-

crete model, the amount of energy dissipated during monotonic loading is

much larger than that during subsequent unloading/reloading. Such as-

sumption is made based on the brittle nature of concrete materials, in which

damage caused by fracture is the main source of energy dissipation. In this
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case, the stress–strain response as well as the energy results of the plain con-

crete column model under monotonic axial compression is investigated and

presented in Figure 9.
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Figure 9: Energy analysis of plain concrete column under monotonic axial loading: (a)

Stress–strain response; (b) Evolution of different forms of energy with cycles: Input work,

plastic dissipation, plastic work, plastic free energy, and strain energy.

The stress–strain response shown in Figure 9 follows the compressive

constitutive response as presented in Figure 4. Energy balance of the model,

expressed by Equation 40, is maintained during entire simulation.

As observed in Figure 9, large amount of the input work is dissipated

during monotonic compression. It is important to point out that the differ-

ence between plastic dissipation and plastic work is significant. Plastic free

energy starts to accumulate after maximum compressive strength is reached

and continue to increase even after crushing. Such behavior can be explained

by considering that the micro-structure of concrete continues to evolve as ex-

ternal loads continues to be applied on the solid/structure.

The strain energy starts to decrease after maximum compressive strength
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is reached and gradually decreases to almost zero after crushing. This ob-

servation is consistent with the fact that the micro-fractures expand rapidly

after maximum strength is reached, which leads to the release of elastic strain

energy and energy dissipation caused by fracture and crushing.

3.2.2. Cyclic Axial Loading

Due to the complex unloading–reloading rules of the model, the cyclic

behavior of the uniaxial concrete material is much more complicated than

that of the steel model. Figure 10 presents the stress–strain response as well

as the energy calculation results for the plain concrete column under cyclic

axial loading.
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Figure 10: Energy analysis of plain concrete column under cyclic axial loading: (a) Stress–

strain response; (b) Evolution of different forms of energy with cycles: Input work, plastic

dissipation, plastic work, plastic free energy, and strain energy.

As shown in Figure 10, the majority of plastic dissipation occurs during

initial, monotonic loading branch. It is important to note that there are

negative increments in plastic work during unloading, for example at time

t = 5s, however plastic dissipation never shows any negative increments.
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This is consistent with the requirements of the second law of thermodynamics

(Equation 11).

It should be mentioned that there is a small amount of energy dissipation

when the material is in tension, for example between t = 6 − 9s. However,

this energy dissipation is much smaller than that when the material is in

compression. This can be explained by the low tensile strength of concrete

material in general.

3.3. Reinforced Concrete Column

To study the combined influence of concrete and steel fibers, energy cal-

culations for a reinforced concrete column are presented. The schematic of

the model is shown in Figure 10, and the material model parameters are

summarized in Table 3. The cross section of the column is modeled with un-

confined concrete, confined concrete, and steel fibers with uniaxial material

models discussed in earlier sections.

Section A - A

Unconfined
Concrete

Confined
Concrete

Steel Bar

300 mm

220 mm

A A

Axial Loading

Shear Loading Bending

1 m

Figure 11: Schematic of the reinforced concrete column modeled with fiber sections and

uniaxial steel/concrete materials.
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Table 3: Material model parameters used in reinforced concrete column examples.

Steel Fiber
Concrete Fiber

Confined Unconfined

σy (MPa) 413.8 fcs (MPa) -30.2 -24.16

E (GPa) 200.0 εcs -0.00219 -0.001752

b 0.01 fcu (MPa) -6.0 0.0

R0 18.0 εcu -0.00696 -0.005568

cR1 0.925 λ 0.5 0.5

cR2 0.15 fts (MPa) 3.02 0.0

a1, a3 0.0 Et (GPa) 5.0 0.0

a2, a4 55.0

3.3.1. Cyclic Axial Loading

Figure 12 shows the force–displacement response as well as the energy

calculation results for the reinforced concrete column under cyclic axial load-

ing.
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Figure 12: Energy analysis of reinforced concrete column under cyclic axial loading: (a)

Force–displacement response; (b) Evolution of different forms of energy with cycles: Input

work, plastic dissipation, plastic work, plastic free energy, and strain energy.
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Since concrete fibers have much higher compressive strength than tensile

strength, the stress–strain response of the column is controlled by the con-

crete part when it is under compression, and by the steel part when under

tension. In this case, the initial loading curve clearly resembles the stress–

strain response of concrete fiber under monotonic compression. Then the

unloading–reloading cycles have the same pattern as those of the steel fiber

under cyclic axial loading.

By comparing the energy results for reinforced concrete shown in Fig-

ure 12 and those for steel shown in Figure 7, it can be seen that the energy

dissipation patterns in both cases are similar after initial compression and

tension of concrete, after which steel takes over. This indicates that the

majority of input work is dissipated in the steel fibers once the maximum

strength of the concrete is exceeded. Again, it can be observed that the

difference between plastic work and plastic dissipation is significant in this

case.

3.3.2. Cyclic Bending Loading

Figure 13 shows the moment–rotation response as well as the energy cal-

culation results of the reinforced concrete column under cyclic pure bending

loading.

During initial loading, the concrete fibers on the compressive side of the

cross section take most of the compression, while during the first reverse

loading, the concrete fibers on the other side of the cross section are com-

pressed and damaged. This process is indicated in the moment–rotation

curve where two bumps, for positive and negative moments, are observed.

The energy computation results also show that the concrete fibers dissipate

large amount of energy and get damaged during the first loading cycle. After
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Figure 13: Energy analysis of reinforced concrete column under cyclic bending loading:

(a) Moment–rotation response; (b) Evolution of different forms of energy with cycles:

Input work, plastic dissipation, plastic work, plastic free energy, and strain energy.

that, the response of the reinforced concrete column is controlled by the steel

bars.

According to the two cases, axial and pure bending, of reinforced concrete

column under cyclic loading, the concrete part of the column can dissipate

the majority of the input work if the loading is mainly monotonic compres-

sion. For cyclic loading cases, if the loading does not exceed the maximum

compressive strength of the concrete, energy dissipation is observed in both

the concrete and steel. However, if the cyclic loading does exceed the max-

imum strength of the concrete, the majority of energy dissipation is in the

steel reinforcing bars after the concrete is damaged. This conclusion is con-

sistent with the engineering experience that reinforcement is crucial to the

performance of concrete structure during seismic events, when the beams

and columns suffer from cyclic loadings.
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3.4. Steel Frame

Previous examples were assumed to be static or quasi-static, cyclic. This

was done in order investigate the energy dissipation on material and simple

structure level without the influence of dynamics. In other words, kinetic

energy was not considered. This example features a full dynamic modeling

of a steel frame using fiber section elements with uniaxial steel material, as

shown in Figure 14. Model is comprised of three levels, floors. Each level of

this frame is comprised of two vertical columns (beam-column elements) and

one horizontal beam (beam-column element) on top of these columns. Steel

frame model is loaded dynamically at the base using 1D seismic motion. The

peak acceleration of the input motion is 0.76 g.
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Figure 14: Schematic of the steel frame modeled with fiber section elements and uniaxial

steel material.
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The energy computation results are shown in Figure 15. Input work is

computed from the input motion and reaction forces at the base of model.

Kinetic energy is computed from velocities of nodes. Strain energy, plastic

free energy, and plastic dissipation at each level are computed using Equa-

tion 19, 20, and 22.
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Figure 15: Energy analysis of steel frame model under imposed seismic motion.

It is noted that the energy balance if fully maintained at all times. It is

observed in Figure 15, that the sum of kinetic energy, strain energy, plastic

free energy, and plastic dissipation of the system equals to the total input

work. All of the above energies are calculated independently, and then used

to prove energy balance of the system.
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Close inspection of curve above plastic free energy (curve that represents

sum of plastic dissipation for all three levels, and plastic free energy, re-

veals small negative slope. This curve represents plastic work and not plastic

dissipation hence negative slope is allowed. On the other hand, curve repre-

senting sum of plastic dissipation for all three levels, does not, and cannot

have negative slope. Negative slope of this plastic dissipation curve would

mean energy production and that would violate second law of thermodynam-

ics [49]. At the end of simulation, more than 80% of the total input work

is dissipated due to material elasto-plasticity. Approximately 13% of input

work is transformed into plastic free energy that does not result in heating

or material damage.

4. Conclusions

Presented in this paper was a thermodynamic-based methodology for

computation of energy dissipation in nonlinear structural elements, modeled

using fiber section and uniaxial material models. Two popular material mod-

els for steel and concrete were examined, with focus on their nonlinear cyclic

behaviors. Formulation for the energy storage and dissipation in these two

material models were derived from the basic principles of thermodynamics,

in combination with a few reasonable assumptions. The proposed methodol-

ogy was illustrated using a series of numerical simulations on beam column

finite elements subjected to axial and bending loads. In addition, energy

calculations were performed for a three story steel frame, excited with a 1D

seismic motion at the base.

The misconception about plastic work and plastic dissipation, which leads

to the violation of principles of thermodynamics, and that is found in a num-

ber of papers on energy dissipation of structures, was addressed. Theoretical
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derivation and experimental observation have both proven that plastic free

energy is a basic form of energy that should not be neglected. Taking into

account kinetic energy, strain energy, plastic free energy, and plastic dis-

sipation, ensures that the first law of thermodynamics, energy balance, is

maintained.

Based on experimentally observed behavior of concrete and steel, few

assumptions were made within concrete and steel 1D fiber material mod-

els to enforce thermomechanics. Equations for energy computation were

derived and implemented in MS-ESSI [17]. In addition, numerical exam-

ples presented in this paper are available on the MS-ESSI website http:

//ms-essi.info/.

Presented approach was illustrated and tested using several concrete, steel

and reinforced concrete beam-column element and a steel frame with differ-

ent loading conditions. As expected, energy balance was maintained during

entire simulation in all tested cases. It was shown that plastic work could

drop, have negative increments, however plastic dissipation was always non

negative, as expressed by the second law of thermodynamics. It was also

observed that the difference between plastic work and plastic dissipation

could be significant. The ratio between plastic work and plastic dissipation,

Quinney–Taylor coefficient, did evolve in time. It is thus recommended not

to use a constant value for Quinney–Taylor coefficient, rather it should be

calculated on a case by case basis.
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