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ABSTRACT8

Presented is a thermodynamics-based energy analysis approach for pressure-dependent mate-9

rials. Formulation of plastic free energy and plastic dissipation for non-associated Drucker-Prager10

plasticity model is derived based on thermodynamics. It is proven that the proposed energy com-11

putation formulation always gives non-negative incremental plastic dissipation, as required by the12

second law of thermodynamics. Presented methodology is illustrated using numerical simulations13

of Toyoura sand and Sacramento river sand under different loading conditions. Multi-directional14

loading and pressure-dependency effects on plastic dissipation are investigated. The continuous,15

non-negative dissipation of mechanical energy in pressure-dependent frictional materials under16

complex 3D cyclic loading is properly modeled.17

INTRODUCTION18

Energy dissipation analysis has gained popularity in recent studies of response of dynamic/static19

inelastic systems. Plastic energy dissipation, if correctly modeled, can be used as an effective in-20

dicator of material damage. It is important to distinguish and properly model different energy21

dissipation mechanisms. These include plastic energy dissipation, viscous damping, and algo-22

rithmic (or numerical) damping for numerical modeling of inelastic material (Yang et al. 2018b).23
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Plastic energy dissipation is defined as the thermal energy irreversibly transformed from mechan-24

ical energy during a dissipative process. A thermodynamics-based framework is developed and25

illustrated to model the plastic energy dissipation for pressure-dependent inelastic materials.26

Although energy dissipation has been used to explain behavior of soil and structural systems,27

there exists a common misconception about plastic work and plastic energy dissipation, especially28

in the field of structural and geotechnical engineering. Plastic work is defined as the material work29

done due to plastic deformation. In the classic elastoplasticity theory, the increment of plastic work30

over a time step is calculated by multiplying the effective stress tensor with the increment of plastic31

strain tensor, dW pl = σi j dε
pl
i j . As pointed out by Collins and Hilder (2003), this misconception32

is originated from the decades-old view that, in granular materials, all permanent deformation33

contributes to the frictional slipping between particles, and thus all the plastic work is dissipated34

(Luong 1986; Okada andNemat-Nasser 1994). However, a closer examination of these publications35

reveals that plastic dissipation was not quantitatively measured in any of these studies. In other36

words, the assumption that plastic work equals to plastic dissipation for granular materials has never37

been validated.38

The difference between plastic work and plastic energy dissipation is defined as the plastic free39

energy, also known as stored plastic work or cold work. Plastic free energy developed in inelastic40

material during plastic loading has been observed in physical experiments (Farren and Taylor 1925;41

Taylor and Quinney 1934; Rittel 2000) and discussed in a number of modeling studies (Collins and42

Houlsby 1997; Dafalias and Popov 1975; Rosakis et al. 2000; Collins and Kelly 2002; Veveakis43

et al. 2007; Feigenbaum andDafalias 2007; Yang et al. 2018a). The physical interpretation of plastic44

free energy was explained in detail through a conceptual example by Yang et al. (2018a). In short,45

plastic free energy is the part of plastic work that results in the rearrangement of particles, or change46

in material fabric, rather than the frictional slipping between particles. It is a thermodynamically47

essential form of energy when a physically discontinuous material is modeled as a continuum. This48

point will be further pursued in this paper.49

In order to model the plastic energy dissipation in a thermodynamically appropriate fashion,50
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general theories of thermomechanics of inelastic materials were established by Ziegler and Wehrli51

(1987) and Lubliner (1990). Collins and Houlsby (1997) reiterated the theory and applied it52

to the modeling of geotechnical materials. Following studies by Collins et al. (Collins 2002;53

Collins and Kelly 2002; Collins and Hilder 2003; Collins 2003; Collins and Muhunthan 2003)54

presented detailed procedures for constructing critical state models that are popular for soils using55

the thermomechanical framework. One important discovery is that Drucker’s postulate, which was56

considered to be an equivalent condition to the second law of thermodynamics, cannot be used to57

check the thermodynamic validity of constitutive models. Particularly, the original Cam clay model58

(Schofield and Wroth 1968) was found to violate the second law of thermodynamics (Collins and59

Kelly 2002).60

The constitutive models developed in the previously mentioned studies are significant in the61

sense of their sound thermodynamics basis. The material response, for example the stress and strain62

parameters, is controlled by a predefined free energy function and a dissipation function. Compared63

to the classic elastoplasticity models, these thermomechanical models are more complicated, and64

thus difficult to be implemented and used in engineering designs. An effort to incorporate the65

thermomechanical formulation into the classic elastoplasticity theory was made by Feigenbaum66

and Dafalias (Feigenbaum and Dafalias 2007) for von Mises type material models, which is67

pressure-independent. Yang et al. (Yang et al. 2018a) extended the formulation to finite element68

method (FEM) for the energy analysis of inelastic solids. As a continued work, this study focuses69

on the plastic energy dissipation analysis of pressure-dependent inelastic materials.70

In the following section, the theoretical formulations of thermomechanics and classic elasto-71

plasticity are summarized and discussed. Equations of the plastic free energy and plastic energy72

dissipation for pressure-dependent material, modeled using Drucker-Prager plasticity, are derived.73

It is proven that the presented formulation upholds the first and second laws of thermodynamics, for74

both von Mises and Drucker-Prager plasticity with various hardening rules. Numerical examples75

on constitutive level and finite element level are used to illustrate the presented energy computation76

methodology.77
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PLASTIC WORK AND PLASTIC DISSIPATION78

Thermodynamics-based energy computation formulation for pressure-dependent material is79

presented and discussed in this section. Material parameters and internal variables from thermo-80

mechanical theory are very different than those from the classic elastoplasticity theory. The main81

challenge is to develop energy equations, in terms of the parameters from classic elastoplasticity,82

that are within the thermomechanical framework, so that the energy results follow the principles of83

thermodynamics.84

Thermomechanical Framework85

The local incremental form of the first law of thermodynamics for an isothermal process is86

given by (Collins and Houlsby 1997; Yang et al. 2018a)87

σi j dεi j = dψ + φ (1)88

where σi j is the effective stress tensor, εi j is the total small strain tensor, ψ is the (Helmholtz) free89

energy density function, and φ is the incremental plastic energy dissipation density function. The90

sign convention of stress and strain components follows the traditional mechanics of materials, i.e.91

positive in tension.92

The free energy density function is assumed to be decomposed into an elastic part, known as93

the elastic strain energy density ψel , and a plastic part, defined as the plastic free energy density ψpl
94

dψ = dψel + dψpl (2)95

This decomposition naturally rises when the material is assumed to be of the decoupled type96

(Collins and Houlsby 1997), which means that the strain tensor can also be additively decomposed97

into elastic and plastic components. Note that this assumption is also used in the classic small98

deformation elastoplasticity theory. The incremental elastic strain energy density can then be99

written as100

dψel = σi j dε el
i j (3)101
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The plastic free energy densityψpl is related to the evolution ofmaterialmodel internal variables,102

and thus further decomposed into parts that correspond to different hardening types (Feigenbaum103

and Dafalias 2007). In this study, isotropic and kinematic hardening rules of various types are104

considered. The material model internal variables used in this study are scalar parameter k, for105

isotropic hardening, defined as the size of yield surface in stress space, and back stress tensor αi j ,106

for kinematic hardening, defined as the center of yield surface in stress space. The incremental107

plastic free energy density then becomes108

dψpl = dψiso(σi j, dε
pl
i j , k) + dψkin(σi j, dε

pl
i j , αi j) (4)109

Next, the plastic energy dissipation density function is expressed in terms of the plastic free110

energy density:111

φ = σi j dεi j − dψ = σi j dε
pl
i j − (dψ

iso + dψkin) (5)112

According to the second law of thermodynamics, the incremental plastic dissipation must always113

be non-negative during any loading increment. When the plastic free energy function is defined, as114

will be shown in the next sections, the plastic energy dissipation can be calculated from Equation 5.115

Review of Energy Computation for von Mises Plasticity116

In this section, the equations of plastic free energy and plastic dissipation for pressure-117

independent von Mises material model (Yang et al. 2018a) are revisited. Note that von Mises118

plasticity always uses associated plastic flow rule. In other words, the plastic flow direction in the119

stress space is normal to the yield surface.120

The yield function of von Mises is expressed in the following form121

f =
√
(si j − αi j)(si j − αi j) −

√
2
3

k (6)122

where si j = σi j − (1/3)σkk is the deviatoric part of the stress tensor.123

Once the material yields, plastic strain starts to develop. The incremental plastic strain tensor124
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is calculated as:125

dε pl
i j = mi j dλ (7)126

where dλ is the scalar loading index that equals to the magnitude of incremental plastic strain.127

Since associated plasticity is used, the normalized plastic flow direction tensor mi j is calculated by128

taking the gradient of the yield function in the stress space:129

mi j =
∂ f
∂σi j

=
(si j − αi j)√

(smn − αmn)(smn − αmn)
(8)130

Armstrong-Frederick kinematic hardening (Armstrong and Frederick 1966) is a nonlinear strain131

hardening rule commonly used to model the cyclic inelastic behavior of various types of materials,132

including metals, alloys, soils, and other structural/geotechnical materials. The evolution of the133

incremental back stress tensor dαi j is defined134

dαi j =

[
2
3

hami j − crαi j

√
2
3

mrsmrs

]
dλ (9)135

where ha and cr are the non-negative hardening constants. When ha > 0 and cr = 0, the nonlinear136

Armstrong-Frederick hardening becomes linear hardening rule. If ha = 0 and cr = 0, the material137

model becomes perfectly plastic with no internal variable hardening. Note that isotropic hardening138

can be defined in a similar form. To avoid repetition, the remaining part of this paper will focus on139

kinematic hardening.140

The plastic free energy density function thatwas given byFeigenbaumandDafalias (Feigenbaum141

and Dafalias 2007) and modified by Yang et al. (Yang et al. 2018a) is142

dψkin =
3

2ha
αi j dαi j (10)143

The plastic dissipation density function can be expressed in terms of the material parameters144
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and internal variables. Substituting Equations (10) and (9) into Equation (5):145

φ = σi j dε
pl
i j −

3
2ha

αi j dαi j

= si jmi j dλ − αi jmi j dλ +
3cr

2ha

√
2
3

mrsmrsαi jαi j dλ
(11)146

Note that the last term on the right hand side of Equation (11) is non-negative. Substituting the147

expression of plastic flow mi j , Equation (8), into Equation (11):148

φ ≥ (si j − αi j)mi j dλ

=
(si j − αi j)(si j − αi j)√
(smn − αmn)(smn − αmn)

dλ

=

√
(si j − αi j)(si j − αi j)dλ

=

√
2
3

kdλ ≥ 0

(12)149

According to Equation (12), the plastic energy dissipation density in the case of (associated) von150

Mises plasticity is always non-negative, which means that the energy dissipation computation does151

follow the second law of thermodynamics.152

Energy Computation for Associated and Non-Associated Drucker-Prager Plasticity153

Drucker-Prager type plasticity is commonly used to model pressure-dependent material behav-154

ior. In this section, the plastic free energy and plastic dissipation are derived for both associated155

and non-associated Drucker-Prager plasticity models. It will be shown that the plastic free energy156

function needs an additional pressure-related term, so that the plastic dissipation calculated for157

pressure dependent materials is thermodynamically correct.158

Associated Drucker-Prager Plasticity159

The Drucker-Prager yield function is160

f =
√
(si j − pαi j)(si j − pαi j) −

√
2
3

kp (13)161
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where p = −(1/3)σkk is the mean stress, or hydrostatic pressure, applied on the material. The162

negative sign ensures that the pressure p is positive when the material is under compression. Note163

that in Drucker-Prager plasticity, the internal variables k and αi j are dimensionless, while they have164

the dimension of stress in von Mises plasticity.165

The associated plastic flow is:166

mi j =
∂ f
∂σi j

=
(si j − pαi j) +

1
3δi jαpq(spq − pαpq)√

(srs − pαrs)(srs − pαrs)
+

√
2
27

kδi j (14)167

where δi j is the Kronecker delta. Due to the pressure term in yield function, the plastic flow has168

both deviatoric and volumetric components:169

mdev
i j =

si j − pαi j√
(srs − pαrs)(srs − pαrs)

mvol
i j =

δi jαpq(spq − pαpq)

3
√
(srs − pαrs)(srs − pαrs)

+

√
2
27

kδi j

(15)170

Equations (13) and (14) show that the kinematic hardening for associated/non-associated171

Drucker-Prager plasticity is of the rotational type, which means that the cone representing the172

yield function in stress space rotates around the origin, as the back stress pαi j evolves. Figure 1173

illustrates the Drucker-Prager yield surface with associated plastic flow and rotational kinematic174

hardening in stress space. Note that the stress tensor σi j and the plastic flow mi j , or incremental175

plastic strain tensor ε pl
i j , are always orthogonal.176

Using Equations (7) and (15), the incremental plastic work for associated Drucker-Prager177
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plasticity becomes178

σi j dε
pl
i j = (si j − pδi j)(mdev

i j + mvol
i j )dλ

= (si jmdev
i j − pmvol

ii )dλ

=

[
si j(si j − pαi j)√

(srs − pαrs)(srs − pαrs)
−

pαpq(spq − pαpq)√
(srs − pαrs)(srs − pαrs)

−

√
2
3

kp

]
dλ

=

[√
(si j − pαi j)(si j − pαi j) −

√
2
3

kp

]
dλ = 0

(16)179

Equation 16 proves that the incremental plastic work for associated Drucker-Prager plasticity is180

always zero. This conclusion is consistent with the orthogonality between the stress tensor σi j and181

the incremental plastic strain tensor ε pl
i j , as shown in Figure 1. However, plastic work is expected to182

evolve as plastic strain develops in an inelastic material. Thus, associated Drucker-Prager plasticity183

is thermodynamically inappropriate to be used to model pressure-dependent inelastic materials.184

Non-Associated Drucker-Prager Plasticity185

As stated by (Collins and Houlsby 1997), non-associated plastic flow rule comes naturally for186

a pressure-dependent frictional material. In this section, non-associated Drucker-Prager plasticity,187

expressed in the classic elastoplasticity form, is discussed from the perspective of energy dissipation.188

One form of the non-associated plastic flow for pressure-dependent sand material was given by189

(Manzari and Dafalias 1997):190

mi j =
si j − pαi j√

(srs − pαrs)(srs − pαrs)
−

1
3

Dδi j (17)191

with192

D = ξ

(√
2
3

kd −

√
smnsmn

p

)
(18)193

where ξ and kd are material model constants that controls the volumetric part of the plastic flow.194

Note that the plastic flow becomes purely deviatoric when the constant ξ = 0.195

During loading, both the deviatoric and volumetric components of the plastic flow will con-196
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tribute to the evolution of plastic work. It has been discussed by (Palmer 1967; Jefferies 1997;197

Collins and Muhunthan 2003) that the plastic strain due to isotropic compression leads to the198

change of fabric in granular materials. This means that the volumetric part of the plastic strain199

should be related to the rise of plastic free energy. Thus, the incremental plastic free energy for200

Drucker-Prager plasticity can be calculated from201

dψpl =

(
3

2ha
αi j dαi j − mvol

ii dλ
)

p (19)202

Note that the main differences between Equation 19, for Drucker-Prager plasticity, and Equation 10,203

for von Mises plasticity, are the pressure dependency and an additional term for volumetric plastic204

flow.205

Armstrong-Frederick nonlinear kinematic hardening is considered again:206

dαi j =

(
2
3

hamdev
i j − crαi j

√
2
3

mdev
rs mdev

rs

)
dλ (20)207

Note that the evolution of the internal variable αi j is only related to the deviatoric part of the plastic208

flow. As a result, the internal variable αi j is a deviatoric tensor.209

Combining Equations (5), (19), and (20), the incremental plastic dissipation density for non-210

associated Drucker-Prager plasticity with Armstrong-Frederick kinematic hardening can be calcu-211

lated as the following:212

φ = (si jmdev
i j − pmvol

ii )dλ −
(

3
2ha

αi j dαi j − mvol
ii dλ

)
p

= (si j − pαi j)mdev
i j dλ +

3cr

2ha

√
2
3

mdev
rs mdev

rs αi jαi j pdλ

≥

√
(si j − pαi j)(si j − pαi j)dλ

=

√
2
3

kpdλ ≥ 0

(21)213

According to Equation (21), the plastic energy dissipation density in the case of non-associated214
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Drucker-Prager plasticity is always non-negative. This is important because Equation (21) shows215

that the presented energy calculationmethodology for pressure-dependent inelastic material follows216

the second law of thermodynamics.217

NUMERICAL EXAMPLES218

Constitutive level numerical examples are used to illustrate the presented energy analysis219

methodology. Simulations presented in this paper were conducted using the Real-ESSI Simulator220

(Jeremić et al. 2019), a software, hardware and documentation system for high performance, time221

domain, linear or nonlinear/inelastic, deterministic or probabilistic, finite element modeling and222

simulation of soil, structure, and their interaction (http://real-essi.info/). Constitutive223

level integrations were performed using the backward Euler algorithm, ensuring the convergence224

of stress and yield function. Strain-controlled loading was used in all examples.225

Pressure-dependent materials modeled using non-associated Drucker-Prager plasticity under226

different loading conditions are investigated. The size of the yield cone is chosen to be small so that227

the material begins to yield, and dissipate energy, at a low shear strain level. Similar assumptions228

have been made in a number of constitutive models for pressure-dependent materials (Manzari229

and Dafalias 1997; Taiebat and Dafalias 2008; Pisanò and Jeremić 2014). Armstrong-Frederick230

kinematic hardening, defined by Equation 20, is used to model strain-hardening/softening behavior.231

Undrained and Drained Triaxial Tests232

The first set of numerical tests are conducted for the purpose of model parameter calibration.233

Two widely-accepted triaxial experiments on Toyoura sand by Verdugo and Ishihara (1996) and234

Sacramento river sand by Lee and Seed (1967), respectively, are used. The experimental data is235

obtained from a paper by Taiebat and Dafalias (2008). In this section, the strain-controlled triaxial236

loading scheme proposed by Bardet and Choucair (1991) is used for all simulation cases.237

Toyoura sand is a cohesionless soil consisting of sub-round to sub-angular quartzite particles.238

Verdugo and Ishihara (1996) reported a series of undrained and drained triaxial tests on isotropically239

consolidated Toyoura sand samples. In this study, the undrained test results of samples under240

100 kPa, 1000 kPa, and 2000 kPa confining pressure are used for model parameter calibration.241
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Figure 2 shows the comparison between experimental and numerical undrained triaxial test results242

on Toyoura sand. It can be seen that the calibrated numerical model can represent the material243

behavior quite well in p-q space, while not that good in q-εaxial space, due to simplicity of the244

used models. The transition from compressive behavior to dilative behavior, which is a key feature245

of granular materials, is properly modeled. It should be mentioned that the material model used246

here, non-associated Drucker-Prager plasticity with Armstrong-Frederick kinematic hardening, is247

simplistic and used to illustrate energy dissipation calculations and not to perfectly match material248

response.249

The experimental results of Sacramento river sand conducted by Lee and Seed (1967) have250

been used to calibrate and validate constitutive models in a number of studies (Bardet and Choucair251

1991; Taiebat and Dafalias 2008; Ching et al. 2016). In this paper, the drained triaxial test results252

of Sacramento river sand under 290 kPa, 590 kPa, and 1030 kPa confining pressure, respectively,253

are used to calibrate numerical model parameters. Figure 3 shows the experimental and numerical254

drained triaxial test results on Sacramento river sand. It is observed that the volumetric strain255

behavior and deviatoric stress response of the numerical tests correspond well with those from256

the physical experiments. For the calibrated parameters, the numerical model shows particularly257

good performance for the samples under low confining pressure. When the confining pressure is258

relatively high, the numerical results are still acceptable, especially for small strains.259

Table 1 shows the calibrated parameters for the material models, which are implemented in260

Real-ESSI, used in this study. Notice that the main differences between the two material models261

are the non-associated plastic flow parameters ξ and kd , as well as the hardening parameters ha262

and cr . This is because a small elastic region was chosen so that the post-yield behavior of the263

numerical model is dominated by plastic flow and hardening. These two sets of parameters are used264

in cases presented in the following sections with various loading conditions, in order to investigate265

the plastic energy dissipation for pressure-dependent materials.266
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Uniaxial Monotonic and Cyclic Shear Loading267

For Drucker-Prager plasticity, deviatoric loading will lead to yielding and plastic energy dis-268

sipation. Energy dissipation caused by uniaxial monotonic shear and cyclic shear loading are269

investigated in this section. Since the material model is pressure-dependent, the relationship be-270

tween initial confining pressure p0, shear stress evolution, and plastic energy dissipation is of271

particular interest. Note that the shear strain in the loading direction follows a linear monotonic or272

cyclic path, while all other strain components are fixed to simulate undrained shearing condition,273

as shown in Figure 4 (a). This means that the volumetric strain of the material remains constant,274

and dilative material behavior will lead to increase in confining pressure.275

Figure 5 shows the stress-strain responses and energy dissipation results for Toyoura sand and276

Sacramento river sand material models when uniaxial monotonic shearing is applied. The two277

materials share very similar shear stress evolution and energy dissipation patterns. Both materials278

are dilative at large shear strains, which means that the confining pressure keeps increasing as the279

shearing progresses. This leads to the observed continuous increase of shear stress even after the280

kinematic hardening internal variable αi j reaches saturation. Also, as expected, the sample under281

a higher level of confinement develops a larger shear stress.282

The plastic dissipation density plots in Figure 5 present an interesting relationship between283

plastic dissipation and confining pressure. When the initial confining pressure is increased from284

200 kPa to 1000 kPa, more energy dissipation is observed. However, when the confining pressure285

is raised to 2000 kPa, the plastic dissipation density at low strain level is observed to be smaller286

than those in the other two cases. This is because when a pressure-dependent material is under a287

larger confinement, it can resist a higher level of shear stress before significant yielding. Then, after288

the shear strain becomes large enough, the more-confined material yields and dissipates energy289

at a higher rate due to its larger shear stress. Such energy dissipation feature could be important290

when modeling pressure-dependent materials, including soils, mine tailings, and other granular291

materials.292

Figure 6 shows the stress-strain responses and energy dissipation results of the Toyoura sand293
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and Sacramento river sand under uniaxial cyclic shear loading. The responses of the two materials294

again have very similar patterns under cyclic shear loading. The magnitude of shear strain is295

increased for each loading cycle, and as a result, the shear stress keeps growing.296

The plastic dissipation density rate is always positive, which means that the presented energy297

analysis methodology follows the second law of thermodynamics, as proven in Equation 21. Notice298

that the strain energy density is not zero at the beginning due to initial confinement. For the first few299

cycles with small shear strain magnitudes, the accumulated plastic dissipation density is smaller300

than strain energy density. Then as the applied shear strain increases, plastic dissipation density301

rapidly increases and surpasses strain energy density. This means that the majority of input work302

will be dissipated due to material inelasticity when an inelastic material is loaded with a number303

of deviatoric loading cycles.304

Biaxial Shear Loading305

The next example focuses on the material response and plastic energy dissipation when biaxial306

shear loading is applied. The strain-controlled loading setup of biaxial shear is shown in Figure 4 (b).307

Compared to uniaxial loading, biaxial shearing condition is one step closer to the realistic, fully308

three-dimensional loading condition. In addition, biaxial shearing test is a common type of309

laboratory experiments on granular materials.310

The previous examples have shown that the two materials, Toyoura sand and Sacramento311

river sand, share similar mechanical and energy responses when loaded in shear. Therefore, only312

Toyoura sand is investigated in this section. Figure 7 shows the stress-strain responses and energy313

computation results for the material under biaxial shear loading. As shown in the shear strain path314

in Figure 7, the full loading cycle consists of four loading branches:315

1 Increase shear strain εxy from 0 to 5%;316

2 Increase shear strain εxz from 0 to 5%;317

3 Decrease shear strain εxy from 5% to 0;318

4 Decrease shear strain εxz from 5% to 0.319
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The initial confining stress is 1000 kPa. Due to material dilatancy and the constant volume320

loading condition, the confining pressure evolves as the shearing progresses. This is the reason321

why the stress state of the material at the end of a full loading cycle is different than its original322

hydrostatic state before loading, as can be observed in the stress path in the principal stress space.323

From the shear stress-shear strain plots in the xy and xz directions shown in Figure 7, it is seen324

that shear loading in one direction does influence the stress response in the other direction. For325

example, during loading branch 2 , the increase of shear strain in the xz direction not only leads to326

an increase of shear stress in the same direction, but also caused the shear stress in the xy direction327

to drop.328

For pressure-dependent frictional material under deviatoric loading, evolution of fabric and329

dissipative slipping between particles are always occurring, even during unloading. According330

to the plastic dissipation density plot, positive dissipation rates are observed in all four loading331

branches.332

CONCLUSIONS333

This paper presented a thermodynamics-based energy analysis approach for pressure-dependent334

materials. Theoretical formulation of plastic energy dissipation in pressure-dependent, non-335

associated Drucker-Prager plasticity model was derived and discussed. The proposed energy336

computation method was implemented in the Real-ESSI simulator system, and illustrated on a337

series of numerical examples. It was also shown that the presented energy analysis approach can338

be used in large-scale finite element simulation of 3D dynamic inelastic system.339

The energy analysis equations were derived based on thermomechanics with proper assump-340

tions. The difference between plastic work and plastic dissipation, as well as the importance of341

plastic free energy, was highlighted. Pressure-independent vonMises plasticity was examined from342

the perspective of energy storage and dissipation. It was mathematically proven that the energy343

formulation from Yang et al. (2018a) does follow the first and second law of thermodynamics.344

Next, Drucker-Prager plasticity model with rotational kinematic hardening was discussed with345

focus on energy dissipation behavior. A close examination of associated Drucker-Prager plasticity346
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showed that zero plastic work is always obtained due to the orthogonality between stress tensor and347

incremental plastic strain tensor. Thus, it was concluded that associated Drucker-Prager plasticity348

is a thermodynamically inappropriate constitutive model.349

The plastic free energy function for von Mises plasticity was modified to incorporate the in-350

fluence of confinement on the energy behavior of non-associated Drucker-Prager material model.351

Based on experimental and theoretical works by a number of researchers, it was assumed that the352

volumetric part of the plastic strain is related to the rise of plastic free energy. The energy formu-353

lation derived based on this assumption was then proven to always give non-negative incremental354

plastic dissipation, as required by the second law of thermodynamics.355

Presented energy computation approach was illustrated using numerical examples of pressure-356

dependent material models under different loading conditions. Two sets of model parameters were357

calibrated using the triaxial test data on Toyoura sand (Verdugo and Ishihara 1996) and Sacramento358

river sand (Lee and Seed 1967). Uniaxial shearing examples showed that the proposed analysis359

method can properly account for the influence of pressure-dependency on the energy dissipation360

behavior of Drucker-Prager model. In general, it was observed that the majority of input work will361

be dissipated if significant cyclic deviatoric loading is applied.362

In the case of biaxial shear loading, it was observed that the evolution of shear stress in363

one direction influenced the shear stress response in the other direction, due to the pressure364

dependency of the material model. This also lead to different energy dissipation behaviors when365

loads were increased or decreased in different directions. More importantly, it was pointed out that366

the continuous dissipation of mechanical energy in pressure-dependent frictional materials was367

properly modeled by the proposed energy analysis methodology.368
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TABLE 1. Material model parameters of the pressure-dependent materials used in this study.

Parameter Unit Material
Toyoura Sacramento

mass_density (ρ) kg/m3 2000 2000
elastic_modulus (E) MPa 25.0 150.0
poisson_ratio (ν) 0.3 0.3
druckerprager_k 0.107 0.107
armstrong_frederick_ha (ha) MPa 17.5 45.0
armstrong_frederick_cr (cr ) 150 300
plastic_flow_xi (ξ) 1.9 0.7
plastic_flow_kd (kd) 0.92 0.90
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Fig. 2. Comparison between experimental and numerical undrained triaxial test results on Toyoura
sand. Experimental data after Verdugo and Ishihara (1996).
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Fig. 4. Constitutive level strain-controlled, undrained shear loading setup: (a) Uniaxial shear
loading; (b) Biaxial shear loading.
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Fig. 5. Stress-strain responses and plastic energy dissipation results of pressure-dependent mate-
rials under uniaxial monotonic shear loading: (a) Toyoura sand; (b) Sacramento river sand.
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Fig. 6. Stress-strain responses and energy computation results of pressure-dependent materials
under uniaxial cyclic shear loading: (a) Toyoura sand; (b) Sacramento river sand.
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Fig. 7. Stress-strain responses and energy computation results of the Toyoura sand material under
biaxial shear loading.
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