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ABSTRACT9

Presented is a time domain intrusive framework for probabilistic seismic risk analysis. Seismic10

source characterization is mathematically formulated. Methodology for simulating non-stationary11

seismic motions for given source, path and site is proposed. Both uncertain motions and uncer-12

tain structural parameters are characterized as random process/field and represented with Hermite13

polynomial chaos. Intrusive modeling of Armstrong-Fredrick kinematic hardening based on Her-14

mite polynomial chaos is formulated and incorporated into Galerkin stochastic elastic-plastic FEM.15

Time-evolving probabilistic structural response is solved through developed stochastic elastic-16

plastic FEM. Following that, formulation for seismic risk analysis is derived.17

The framework is illustrated by seismic risk analysis of an eight-story shear frame structure.18

Uncertainties are propagated from earthquake source into uncertain structural system. Difficulties19

of choosing intensity measure in the conventional framework are avoided since all the uncertainties20

and important characteristics (e.g., spectrum acceleration Sa and peak ground acceleration PGA)21

of seismic motions are directly carried by the random process excitations in time domain. Stochas-22

tic dynamic equations are solved in an intrusive way, circumventing non-intrusive Monte Carlo23

simulations.24
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1 INTRODUCTION27

Performance-based Earthquake Engineering (PBEE) (Cornell 2000) has been a successful28

framework that allows for objective and quantitative decision-making through seismic risk analyses.29

Equation 1 demonstrates state of the art methodology of seismic risk analysis:30

λ(EDP > z) =
∫
|
dλ(IM > x)

dx
|︸ ︷︷ ︸

PSHA

G(EDP > z |IM = x)︸ ︷︷ ︸
fragility

dx (1)31

where λ(EDP > z) is the annual rate of engineering demand parameter (EDP, i.e., performance32

target) exceeding specific level z. EDP hazard is computed as convolution of probabilistic seismic33

hazard analysis (PSHA) results and structural fragility with respect to intensity measure (IM) of34

ground shaking. PSHA, usually done by engineering seismologist, estimates exceedance rate of35

intensity measure λ(IM > x) considering all possible faults and scenarios near the engineering36

site. Structural fragility G(EDP > z |IM = x) defines the exceeding probability of EDP given37

ground motion with particular IM level x. With properly defined damage measure (DM) as a38

function of EDP(s), seismic risk of damage state can be calculated.39

The choice of IM is crucial in seismic risk analysis, as it serves as proxy of damaging ground40

motions and all the uncertainties in ground motion are assumed could be represented by the41

variability of IM. Spectral acceleration Sa(T0) is commonly adopted as IM for building structures.42

Many ground motion predictions equations (GMPEs) are developed to quantify the median and43

aleatory variability of Sa(T0) (Gregor et al. 2014). However, the problem is that the scalar spectral44

acceleration cannot fully describe the influence of ground-motion variability upon engineering45

objects. Stafford and Bommer (2010) investigated different intensity measures and found that they46

are generally not strongly correlated, which indicates that knowledge of just one IM distribution is47

not sufficient to describe any of the other ground-motion characteristics.48

In addition, Sa(T0) as IM for surface building structures, is based on frequency domain, linear49
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dynamic analysis of single degree of freedom system. When nonlinear inelastic and/or higher50

mode response is expected, use of Sa(T0) is not appropriate. Nonlinear response history analysis51

(RHA) with spectrum-matched ground motion is found to give un-conservatively biased estimates52

(Iervolino et al. 2010; Huang et al. 2009). Grigoriu (2016) showed that generally Sa(T0) is weakly53

dependent with engineering demand parameters for realistic structures and fragilities defined as54

functions of Sa(T0) have large uncertainties and of limited practical use. Furthermore, for many55

other engineering objects (e.g., dams, deeply embedded structures, etc.), it is very difficult to find56

a proper IM in engineering practices. For example, choice of IM among peak ground acceleration57

(PGA), peak ground velocity (PGV), Arias intensity (AI) and cumulative absolute velocity (CAV)58

has been contentiously argued for deformation analysis of dam embankment (Davoodi et al. 2013).59

Though Vector-valued PSHA (Baker 2007) was put forward to mitigate this issue, it is rarely60

performed in practices. The difficulty lies in fragility computation. The fragility becomes a61

function of vector IMs (e.g., a fragility surface for two IMs), which requires a large number of62

structural analyses to be quantified. Properly choosing multiple IMs is also a problem. Many times,63

even if proper IMs, such as AI and CAV, are identified, additional efforts are still needed to develop64

GMPE for these IMs and their correlation.65

An effective solution to the aforementioned problems would be to remove intensity measure66

(IM) as an intermediate proxy from risk calculation. With this in mind, a time domain intrusive67

framework for probabilistic seismic risk analysis is developed and described here. The framework68

is based on the progress of Fourier amplitude spectrum (FAS) modeling of seismic motions over69

last several decades (Brune 1970; Boore 1983; Boore 2003b; Boore and Thompson 2015). Recent70

advances in inter-frequency correlation of FAS (Stafford 2017; Bayless and Abrahamson 2019) and71

Fourier phase derivative modeling (Baglio 2017) are also taken into account. Uncertain motions are72

simulated from stochastic FAS andFourier phase spectrum (FPS), and aremodeled as non-stationary73

random process in time domain. With the proposed framework, engineering seismologists do not74

need to interpret/simplify ground motion into IM(s). Correspondingly, structural engineers do75

not need to compute fragility curve based on IM. Instead, all the important characteristics and76
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uncertainties in seismic motions are captured through the random process and propagated into77

uncertain engineering system with direct “communication” between engineering seismologists and78

structural engineers.79

Another feature of the proposed framework is the circumvention of Monte Carlo (MC) simula-80

tion. MC approach is non-intrusive in the sense that nomodifications to the underlying deterministic81

solver are required. The state of probabilistic space is characterized by large, statistically significant82

number of deterministic samplings of system random parameters. In conventional seismic risk anal-83

ysis, structural fragility curve is developed by incremental dynamic analysis (IDA) (Vamvatsikos84

and Cornell 2002). IDA, though theoretically straightforward, is numerically demanding because85

of the slow convergence rate that is inherent in MC approach. Hundreds of structural analysis need86

to be performed with deterministic sampling of uncertain material properties and uncertain ground87

excitations at different IM levels. The same issue of MC approach also limits the application of88

physics-based seismic waveform modeling techniques (Graves and Pitarka 2010; Maechling et al.89

2007) into hazard/risk analysis. Millions of MC earthquake scenarios over regional geology have90

to be simulated using deterministic wave propagation programs, such as CyberShake (Graves et al.91

2011) considering uncertain kinematic sources, crustal geology and site conditions. (Maechling92

et al. 2007) estimated that “it would require 300 million CPU-hours and well over 100 years to93

complete all the simulations needed to calculate a PSHA hazard curve”.94

To avoid non-intrusive MC simulation, Galerkin stochastic elastic-plastic finite element method95

(SEPFEM) has been developed within the authors’ research group over the years (Jeremić et al.96

2007; Sett et al. 2007; Sett et al. 2011a; Karapiperis et al. 2016; Wang and Sett 2016; Wang and97

Sett 2019). Galerkin SEPFEM is an intrusive approach, requiring new developments based on98

variational formulation of the underlying stochastic partial differential equations (SPDE). Using99

appropriate choice of orthogonal polynomial chaos basis, intrusive Galerkin SEPFEM guarantees100

optimal convergence rates, and is more efficient than non-intrusive MC approach (Xiu 2010;101

Elman et al. 2011). Both random field structural parameters and random process seismic motions102

are represented by Hermite polynomial chaos (PC) (Sakamoto and Ghanem 2002) with correlation103
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structure characterized by Karhunen-Loève (KL) expansion (Zheng and Dai 2017). Using Galerkin104

SEPFEM, probabilistic dynamic response of uncertain structural system driven by uncertain seismic105

motions is represented by unknown PC coefficients. Deterministic linear system equations of these106

unknown temporal-spatial PC coefficients, equivalent to the original stochastic PDE, are derived107

fromGalerkin projection technique in weak sense. Seismic risk is then computed from probabilistic108

dynamic structural response.109

The organization of this paper is as follows: The proposed time domain intrusive framework110

for probabilistic seismic risk analysis is formulated in section 2. Next, the proposed methodology111

is illustrated by a numerical example in section 3 with conclusions drawn in section 4.112

2 TIME DOMAIN INTRUSIVE FRAMEWORK FOR SEISMIC RISK ANALYSIS113

The proposed framework consists of four components, as shown in Figure 1: seismic source114

characterization (SSC), stochastic ground motion modeling, stochastic finite element analysis and115

seismic risk computation.116

Seismic Source 
Characterization

Rates

Scenarios

Stochastic Ground 
Motion Modeling

Fourier Amplitude Spectrum Fourier Phase Derivative

Seismic Risk

Galerkin Stochastic 
FEM

Structural 
Uncertainty 

1

2

3

4

PC-KL Expansion 

Failure Probability

Fig. 1. Time domain intrusive framework for seismic risk analysis.

In the first step, SSC quantifies the uncertainty in earthquake scenarios so that the probabilistic117

scenario space λ(M, R,Θ) for a given engineering site can be discretized into N mutually exclusive118

events as follows:119
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λ(M, R,Θ) =
N⋃

i=1
λi (Mi, Ri,Θi) (2)120

where λ(·) is the annual occurrence rate, M is the magnitude and R is the distance metric, which121

could be either rupture distance Rrup, hypocenter distance Rhyp, or Joyner-Boore distance Rjb. Θ122

denotes any other scenario metrics that are required for stochastic ground motion modeling, for123

example, style of fault, hanging wall identifier, etc. N is the total number of seismic scenarios124

considering all the active faults in the region. Basic relations for seismic source characterization125

are formulated in Section 2.1.126

For each scenario event Si (Mi, Ri,Θi), section 2.2 presents the procedure to simulate time127

domain uncertain motions from stochastic FAS and FPS using inverse Fourier transform. The128

simulated ground motion population for event Si is denoted as {Γi}.129

At the third step, both uncertain motions and uncertain structural parameters are represented130

by Hermite PC-KL expansion as formulated in section 2.3. Two choices are provided here: (1)131

Random process characterization (i.e., PC-KL expansion) is performed for each individual motion132

population {Γi} and conduct further Galerkin stochastic FEM analysis for each scenario Si. (2)133

Seismic motion population from different scenarios is first combined as an ensemble population134

{Γ} following Equation 3:135

{Γ} =
N⋃

i=1
{wi ⊗ Γi} (3)136

with137

wi =
λi∑N

i=1 λi
(4)138

where⋃N
i=1{wi ⊗ Γi} denotes the weighted combination of population {Γi} with weight wi defined139

as Equation 4. The annual occurrence rate of the ensemble population {Γ} is λ = ∑N
i=1 λi. The140

weighted combination can be performed by aggregating individual population {Γi} of different141

size ni, i = 1, 2, ..., N such that ni is proportional to wi, i.e., wi = ni/
∑N

i=1 ni. Clearly, size142
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ni for all i = 1, 2, ..., N should be large enough to represent the random process motions from143

individual seismic scenario. As a result, weighted ensemble population {Γ} with occurrence rate144

λ is statistically equivalent to the aggregation of motion population {Γi} from individual scenario145

with rate λi. Then the ensemble population {Γ} can be characterized as a single random process146

and single stochastic FEM analysis is performed with PC-represented random process motions.147

Compared with PC-KL representation for each individual population {Γi}, the consequence of148

PC-KL expansion for ensemble population {Γ} is that larger dimension of PC is required since149

underlying random process of population {Γ} is more uncertain and less correlated among different150

times. If both individual population {Γi} and ensemble population {Γ} are accurately characterized151

by PC-KL expansion and propagated into uncertain structure through SFEM, EDP hazard can be152

calculated by either Equation 5 or Equation 6:153

λ(EDP > z) =
N∑

i=1
λi (Mi, Ri,Θi)P(EDP > z |Γi) (5)154

155

λ(EDP > z) = λP(EDP > z |Γ) (6)156

where Pi (EDP > z |Γi) is the failure probability conditioned on individual population {Γi} and157

P(EDP > z |Γ) is the failure probability conditioned on ensemble population {Γ}. Both Equation158

5 and Equation 6 give consistent result for EDP hazard. The difference is that by using Equation159

5, many more less expensive SFEM analyses are performed while using Equation 6 requires a160

single, yet more expensive SFEM analysis. When the number of scenarios N is small, it is practical161

to perform stochastic FEM analysis for each scenario and compute EDP hazard by Equation 5.162

The advantage is that controlling scenario can be identified through EDP hazard de-aggregation.163

However, when there are many seismic scenarios, quantifying ensemble population as a single164

random process through PC-KL expansion and performing single stochastic FEM analysis can be165

computationally more efficient.166
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2.1 Seismic Source Characterization167

Seismic source characterization (SSC) and earthquake rupture forecast (ERF) are complex168

scientific issues. Earthquake occurrence rate tends to be comprehensively evaluated by multiple169

approaches, for example, using historical seismicity, geological information (e.g., long term slip170

rates and paleoseismic recurrence intervals) and geodetic information (Field et al. 2017). Assuming171

Poisson process of earthquake occurrence, annual occurrence rate λ f of earthquakes on a fault can172

be estimated based on seismic moment balance (McGuire 2004):173

λ f =
µAS∫Mmax

0 E (M) f (M) dM
(7)174

where S is annual slip rate, µ is shear modulus of crust and A is fault area, f (M) is the proba-175

bilistic model of magnitude distribution, which could be truncated exponential model, Young’s and176

Coppersmith characteristic model (Youngs and Coppersmith 1985), truncated Gaussian model, etc.177

The seismic moment of earthquake, E (M) with magnitude M is given as:178

E (M) = 101.5M+16.05 (8)179

In engineering practices, only earthquakes greater than certain magnitude Mmin are considered,180

whose annual occurrence rate λ f is:181

λ
f
= λ f

∫Mmax

Mmin

f (M)dM (9)182

Using probabilistic models of rupture area conditioned on magnitude f (A|M), rupture width183

conditioned on rupture area f (W |A) (Leonard 2010), rupture location along strike (AS) f (Y ) and184

down-dip (DD) f (Z ), distance metric R and other scenario metrics Θ, for example, depth to the185

top of rupture plane Ztor , can be geometrically characterized as g(R,Θ|M) for a given engineering186

site (Hale et al. 2018). The discretized mutually exclusive scenarios λi (Mi, Ri,Θi) in Equation 2 is187

then quantified as:188
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λi (Mi, Ri,Θi) =
m∑

j=1
λ j

f
∫
Λi

f j (M)g j (R,Θ|M) dM dR dΘ (10)189

where m is the total number of active faults, subscript j denotes the probabilistic models and190

quantities specific to the j th fault, Λi is the integral domain for the ith discretized scenario with191

magnitude step ∆M , distance step ∆R and ∆Θ for any other scenario metrics Θ if required:192

Λi = [Mi −
∆M
2
, Mi +

∆M
2

] × [Ri −
∆R
2
, Ri +

∆R
2

] × [Θi −
∆Θ

2
,Θi +

∆Θ

2
] (11)193

Many PSHA programs could perform SSC, e.g., HAZ45 (Hale et al. 2018). It is noted194

that presented above are fundamental relations for seismic characterization of fault sources. For195

regions with unknown fault locations or having background seismicity, areal source should also196

be considered and characterized. See references (Coppersmith et al. 2012; Moschetti et al. 2015)197

for more details on seismic source characterization of areal source. Epistemic uncertainties in slip198

rate, magnitude distribution models and other parameters, which are typically considered with logic199

tree approach (Musson 2012), are not considered here for simplicity. In addition, for some sites,200

authoritative estimates of magnitude, location and rate of earthquake ruptures could be determined201

from established regional earthquake rupture forecast (ERF) models, for example, UCERF3 (Field202

et al. 2017) for California region.203

2.2 Time Domain Stochastic Ground Motion Modeling204

Time domain uncertain motions can be simulated from stochastic FAS and Fourier phase205

derivative (Boore 2003a; Boore 2003b). Specifically, uncertain FAS of seismic motions is modeled206

as Log-normal distributed random field (Bora et al. 2015; Stafford 2017) in frequency space, whose207

marginal median behavior is simulated by the stochastic method of Boore (2003b). It is referred208

to as Boore03 approach hereafter. Boore03 approach simulates FAS using w2 radiated source209

spectrum (Brune 1970) with modification for path and site effects, as shown in Equation 12:210

F AS( f ) = A0(M0, f )Z (R)exp(−π f R/Qβ)S( f )exp(−πκ0 f ) (12)211
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where M0 is the seismic moment; β is the source shear wave velocity; Z (R) and exp(−π f R/Qβ)212

represent the contribution from path effects: Z (R) is the geometrical spreading term as a function of213

distance R. Term exp(−π f R/Qβ) quantifies the anelastic attenuation as the inverse of the regional214

quality factor, Q. The site effects including site amplification through crustal velocity gradient215

and near surface attenuation are demonstrated by S( f ) and κ0 filter exp(−πκ0 f ), respectively.216

Term A0 represents the radiated acceleration source spectrum, which could be characterized by217

single-corner-frequency model:218

A0(M0, f ) = CM0

[ (2π f )2

1 + ( f / f0)2

]
(13)219

where f0 is the corner frequency, which in Brune’s model (Brune 1970) is related to source stress220

drop ∆σ as follows:221

f0 = 4.9 × 106β(∆σ/M0)1/3 (14)222

Boore03 approach is well-recognized for its simplicity and effectiveness to capture the marginal223

mean behavior of stochastic FAS. Bayless and Abrahamson (2018) pointed out that the inter-224

frequency correlation structure of FAS random field is also important for seismic risk analysis.225

Misrepresenting-representing the correlation structure, e.g., assuming inter-frequency indepen-226

dence, would lead to underestimation of seismic risk. Therefore, inter-frequency correlation model227

for stochastic FAS developed recently (Stafford 2017; Bayless and Abrahamson 2019) is adopted228

here.229

Though the behavior of FASwaswell studied, modeling Fourier phase angles is still challenging.230

Conventionally random phase info is simulated using stationary Gaussian white noise modulated231

by an envelope function. However, Montaldo et al. (2003) stated that conventional Gaussian white232

noise approach could not reliably reproduce the non-stationarity of groundmotions. For this reason,233

the use of phase difference ∆Φ was suggested by Ohsaki (1979). Using California strong ground234

motion data, Thráinsson and Kiremidjian (2002) modeled phase differences as Beta distribution.235
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However, the established phase difference models are affected by the signal length of each record.236

It is more stable to normalize phase difference by signal length and study the probabilistic model237

of phase derivative Φ̇ defined as (Boore 2003a) :238

Φ̇ =
∆Φ

∆ f
(15)239

Based on 3551 ground motion records from PEER NGA-West 1 database, Baglio (2017) found240

that the distribution of phase derivative is leptokurtic and fits well to Logistic model:241

f (Φ̇; µ, σ) =
1

4σ
sech2(

Φ̇ − u
2σ

) (16)242

where µ and σ are the mean and scale parameter of the Logistic distribution f (Φ̇; µ, σ), sech(·) is243

the hyperbolic secant function. Following Baglio (2017), the mean value µ is a fixed parameter to244

position the distribution along the signal length. For example, setting mean parameter µ equal to245

π/df would align the peak of uncertain seismic motions to the center of simulated signal length.246

The prediction equation of scale parameter σ is correlated to earthquake magnitude M , rupture247

distance Rrup, Vs30 and directivity index DDir = Rhyp − Rrup with coefficients α1, α2, β1 ∼ β4, γ1248

and γ2 determined from maximum likelihood estimation:249

log(σ/π) = α1 + α2log[β1 + 10β2M + β3Rrup + β4log(Vs30) + γ1 + γ2DDir] (17)250

Phase derivatives Φ̇( f ) among frequency coordinates is modeled as Logistic distributed random251

field following exponential correlation with correlation length l f = 0.05Hz:252

Cov(Φ̇( f1), Φ̇( f2)) = e
−
| f1 − f2 |

l f (18)253

The methodology of time domain stochastic ground motion modeling is summarized below:254

1. Compute marginal median of Log-normal distributed random field F AS( f ) following255

Boore03 approach.256
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2. Generate realizations of Log-normal distributed random field F AS( f ) according to the257

marginal estimation in step 1 and inter-frequency correlation model by Bayless and Abra-258

hamson (2019).259

3. Determine the scale parameter σ of marginal Logistic model for phase derivative random260

field with Equation 17. Set mean value µ to π/df for central peak (Baglio 2017).261

4. Generate realizations of Logistic distributed random field Φ̇( f ) with marginal distribution262

from step 3 and exponential correlation structure.263

5. Multiply realization of phase derivative in step 4 by frequency interval df to get realizations264

of phase difference ∆Φ( f ). Compute realizations of phase angles from ∆Φ( f ). First phase265

angle can be randomly set and would not affect the synthesis.266

6. Inverse Fourier transformation to time domain with realizations of FAS and FPS.267

Time domain stochastic ground motion for a single scenario with magnitude M = 7, distance268

Rrup = 15km has been simulated following the above methodology. The detailed modeling269

parameters for source, path and site effects of this scenario are given in Table 1. The marginal270

median FAS is computed using program SMSIM developed by Boore (2005). With reference to271

recent GMPE studies of FAS (Bora et al. 2015; Bora et al. 2018), marginal lognormal standard272

deviation of FAS has been adopted as total σ = 0.8 ln units. The maximum modeling frequency273

fmax is 20Hz. It is noted that ergodic assumption was used in developing these GMPEs of FAS. A274

smaller value of marginal standard deviation can be used for non-ergodic probabilistic seismic risk275

analysis if additional source, path or site specific information is available.276

Combining stochastic FAS with uncertain Fourier phase info, 500 realizations of time domain277

stochastic motions are synthesized. Figure 2 shows three different synthesized accelerations. Large278

variability is observed, for example, peak ground acceleration could vary from 1.8m/s2 to 5.5m/s2.279

Spectral acceleration (Sa) of 500 synthesized realizations are calculated and compared with280

weighted average prediction of five NGAWest-2 GMPEs (Gregor et al. 2014) with weights 0.22 for281

ASK14, 0.22 for BSSA14, 0.22 for CB14, 0.22 for CY14 and 0.12 for I14. From figure 3(a), median282

spectral acceleration Sa from simulated stochastic ground motion is in very good agreement with283
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TABLE 1. Source, path and site parameters for stochastic ground motion modeling of seismic
scenario M = 7, Rrup = 15km.

Parameter type Name Value

Source

Magnitude M=7
Source density ρs = 2.8g/cm3

Source velocity β = 3.6km/s
w2 source spectrum Single corner frequency with ∆σ = 8.0MPa

Fault type Reverse fault Frv = 1
Dip angle 45◦

Path

Distance metrics Rrup = 15km, Rhyp = 18km
Rjb = 12km, Rx = −12km

Finite faults effects Equivalent point source model (Boore and Thompson 2015)
with RPS = 22.18km

Geometrical spreading Hinged line segments model (Atkinson and Boore 1995)
Anelastic attenuation Q Three line segments model by (Boore 2003b)

Site Site amplification Vs30 = 620m/s
Table 4 of (Boore and Thompson 2015)

κ0 attenuation κ0 = 0.03s
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Fig. 2. Realizations of uncertain acceleration time series population.

GMPE predictions for all period ordinates. No systematic bias is observed. Figure 3(b) shows that284

the standard deviation of simulated response spectra is around 0.65 ln units, which is consistent with285

aleatory variability of Sa given by GMPEs. In other words, time domain stochastic ground motions286

simulated with aforementioned methodology could not only characterize the median behavior of287

Sa very well, but also carry desired amount of uncertainty that is consistent with empirical GMPEs.288

The marginal distribution of simulated accelerations at all the time instances is observed to289

be Gaussian. Similar observation is also made by Wang and Sett (2016) from statistical analysis290

of seismic records. Therefore, time domain stochastic ground motions is modeled as a Gaussian291

distributed non-stationary random process. The random process would be representedwith Hermite292

polynomial chaos as formulated in the next section.293
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(a) GMPE verification of Sa
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(b) Bias check

Fig. 3. Verification of simulated stochastic motions: (a) Check median spectral acceleration Sa
with NGA West-2 GMPE (b) Check aleatory variability of simulation spectral acceleration Sa.

It is worthwhile to mention that the random process incorporates much more information294

about uncertain ground motions than GMPE used in conventional PBEE. GMPE only quantifies295

the variability of selected IM, such as Sa, while the random process carries not only consistent296

variability of Sa but also any other important characteristics, e.g., PGA, CAV, etc. Realistic inter-297

frequency correlation of FAS (Bayless and Abrahamson 2019) is captured. Non-stationarity of298

seismic motions is quantified through phase derivative modeling without using any modulation299

function. Compared with existing ground motion modeling techniques commonly adopted by300

reliability community, e.g., evolutionary power spectrum and white noise random phase spectrum,301

presented methodology is directly compatible with state-of-the-art seismic source characterization.302

It could explicitly account for specific source, path and site condition in both stochastic modeling303

of FAS and FPS. Many reliability analysis methods, such as probabilistic density evolution method304

(Xu and Feng 2019) can be readily combined with the presented methodology and incorporated305

into the proposed risk analysis framework for PBEE.306

2.3 Hermite Polynomial Chaos Karhunen-Loève expansion307

This section formulates Hermite polynomial chaos Karhunen-Loève (PC-KL) expansion for308

general heterogeneous random field D(x, θ) of arbitrary marginal distribution. Both uncertain309
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motions and uncertain structure parameters can be represented with PC-KL expansion. To achieve310

this, we first represent heterogeneous randomfield D(x, θ) of arbitrarymarginal distribution through311

Hermite polynomial chaos of underlying Gaussian heterogeneous random field γ(x, θ) up to order312

P (Sakamoto and Ghanem 2002; Wang and Sett 2016):313

D(x, θ) =
P∑

i=0
Di (x)Ωi (γ(x, θ)) (19)314

where θ denotes the uncertainties. Functions {Ωi} = {1, γ, γ2 − 1, γ3 − 3γ, ...} are orthogonal, zero315

mean (i ≥ 1) Hermite PC bases constructed from zero mean, unit variance kernel Gaussian random316

field γ(x, θ). Then at the second step, Gaussian random field γ(x, θ) can be further decomposed317

by Karhunen-Loève (KL) theorem (Zheng and Dai 2017).318

The deterministic PC coefficient field Di (x) can be calculated through marginal distribution of319

D(x, θ), as shown in Equation 20, where 〈·〉 is the expectation operator.320

Di =
〈DΩi〉

〈Ω2
i 〉

(20)321

The covariance structure of the original random field CovD(x1, x2) is mapped to the Gaussian322

covariance kernel Covγ (x1, x2) as:323

CovD(x1, x2) =
P∑

i=1
Di (x1) Di (x2) i ! Covγ (x1, x2) (21)324

The Gaussian covariance kernel Covγ (x1, x2) can be eigen-decomposed into probabilistic spaces325

up to dimension M , according to Karhunen-Loève (KL) theorem (Zheng and Dai 2017):326

γ(x, θ) =
M∑

i=1

√
λi fi (x)ξi (θ) (22)327

where {ξi (θ)} are the multidimensional, orthogonal, zero mean and unit variance Gaussian ran-328

dom variables, and λi and fi (x) are the eigen-values and eigen-vectors of the covariance kernel329

Covγ (x1, x2) that satisfy Fredholm’s integral equation of the second kind (Sakamoto and Ghanem330
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2002).331

Combining Equations 19 and 22, the resultant PC-KL representation of general random field332

D(x, θ) is obtained as,333

D(x, θ) =
K∑

i=0
di (x)Ψi ({ξ j (θ)}) (23)334

where {Ψi} are multi-dimensional orthogonal Hermite PC bases of order P constructed from M di-335

mensional probabilistic space (i.e., {ξ j (θ)}, j = 1, 2, ..., M). The total number of multidimensional336

Hermite PC bases K is related to order P and dimension M as K = 1 +∑P
s=1

1
s!
∏s−1

j=0(M + j).337

By equating two representations of D(x, θ) in Equations 19 and 23, the coefficients of multi-338

dimensional Hermite PC are derived as:339

di (x) =
p!
〈Ψ2

i 〉
Dp(x)

p∏
j=1

√
λk ( j) fk ( j) (x)√∑M

m=1(
√
λm fm(x))2

(24)340

where p is the order of the polynomial Ψi. From Equation 23, PC synthesized marginal mean and341

variance of the original heterogeneous random field can be calculated as:342

〈D(x, θ)〉 = d0(x) (25)343

344

Var (D(x, θ)) =
K∑

i=1
d2

i (x) 〈Ψ2
i 〉 (26)345

PC-synthesized correlation structure can also be computed as:346

CovD(x1, x2) =
∑K

i=1 di (x1)di (x2) 〈Ψ2
i 〉

√
Var (D(x1))Var (D(x2))

(27)347

Equations 25, 26 and 27 can be used to compare the PC-synthesized statistics with statistics of348

original random field D(x, θ) and check the goodness of PC-KL expansion.349

2.4 Galerkin Stochastic Finite Element Method350

Stochastic Galerkin approach intrusively solves the stochastic partial differential equations351

(PDE) with optimal convergence (Sett et al. 2011a; Wang and Sett 2016). Compared to determin-352
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istic finite element method (FEM), Galerkin stochastic FEM introduces spectral discretization of353

probabilistic domain in addition to the spatial and temporal discretization. Using standard spatial354

FEM discretization, unknown displacement random field u(x, t, θ) can be expressed with shape355

function Ni (x) and uncertain displacement ui (t, θ) at nodes:356

u(x, t, θ) =
N∑

i=1
Ni (x)ui (t, θ) (28)357

Uncertain displacement at nodes ui (t, θ), can be further represented with aforementioned multidi-358

mensional Hermite PC basis φ j ({ξr (θ)}) of dimension Mu, order Pu:359

ui (t, θ) =
Ku∑
j=0

ui j (t)φ j ({ξr (θ)}) (29)360

Combining Equations 28 and 29, spatial-probabilistic discretized expression of u(x, t, θ) is given:361

u(x, t, θ) =
N∑

i=1

Ku∑
j=0

Ni (x)ui j (t)φ j ({ξr (θ)}) (30)362

Galerkin weak formulation of stochastic partial differential equations of motion can then be written363

in the following form:364

∑
e

[ ∫
De

Nm(x)ρ(x)Nn(x)d V ün(t, θ) +365

+

∫
De

Bm(x)E (x, θ)Bn(x)d V un(t, θ) − fm(t, θ)
]
= 0 (31)366

where
∑

e
denotes the assembly procedure over all finite elements, while ρ(x) is deterministic367

material density field. The shape function gradient function Bn(x) is given as:368

Bn(x) = ∇Nn(x) (32)369

In Equation 31, E (x, θ) is uncertain tangential stiffness matrix, while fm(t, θ) is uncertain global370
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force vector that incorporates various elemental contributions.371

Expansion of uncertain stiffness matrix E (x, θ), and uncertain force vector fm(t, θ) into Hermite372

PC bases Ψk ({ξr (θ)}) and ψl ({ξr (θ)}) of dimension ME , order PE and dimension M f , order P f ,373

respectively, yields:374

E (x, θ) =
KE∑
k=0

Ek (x)Ψk ({ξr (θ)}) (33)375

376

fm(t, θ) =
K f∑
l=0

fml (t)ψl ({ξr (θ)}) (34)377

By combining equations 29, 33 and 34 and equation 31, one obtains:378

∑
e

[ ∫
De

Nm(x)ρ(x)Nn(x)d V
Ku∑
j=0

ünjφ j ({ξr (θ)} −
K f∑
l=0

fmlψl ({ξr (θ)})

+

∫
De

Bm(x)
KE∑
k=0

Ek (x)Ψk ({ξr (θ)})Bn(x)d V
Ku∑
j=0

unjφ j ({ξr (θ)}
]
= 0

(35)379

By performing Galerkin projection of Equation 35 onto PC bases φi ({ξr (θ)}), to minimize380

the residual, system of deterministic ordinary differential equations (ODE) involving temporal381

derivative of unknown PC coefficients unj , is developed:382

Mminj ünj + Kminjunj = Fmi (36)383

where mass tensor/matrix Mminj is given by equation 37:384

Mminj =
∑

e

∫
De

Nm(x)ρ(x)Nn(x)d V 〈φiφ j〉 (37)385

stochastic stiffness tensor/matrix Kminj is given by equation 38:386

Kminj =
KE∑
k=0

∑
e

∫
De

Bm(x)Ek (x)Bn(x)d V 〈Ψkφiφ j〉 (38)387

and stochastic force tensor/vector Fmi is given by equation 39388
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Fmi =
K f∑
l=0

fml 〈ψlφi〉 (39)389

In Equations 37, 38 and 39, terms 〈φiφ j〉, 〈ψlφi〉 and 〈Ψkφiφ j〉 are the ensemble average tensors390

of double-product and tri-product of different PC bases. These ensemble average tensors could391

be pre-computed and used to construct the stochastic mass matrix Mminj and stochastic stiffness392

matrixKminj . It is noted that Einstein’s notation for tensor indices summation is assumed throughout393

(Lubliner 1990).394

The deterministic system of ordinary differential equations (ODE) from Equation 36, can be395

integrated in time using dynamic integrator algorithms, for example Newmark method (Newmark396

1959), or Hilber-Hughes-Taylor α-method (Hilber et al. 1977). Result of such time marching397

solution will be time histories of displacement PC coefficients unj . Those time evolving displace-398

ment PC coefficients unj can then be used to develop complete probabilistic dynamic finite element399

response. With resulting complete probabilistic dynamic finite element response, any damage mea-400

sure, in fact all damage measures related to EDP(s) can be applied to trace the failure probability401

Pi (EDP > z |Γi) or P(EDP > z |Γ). EDP hazard can then be computed according to Equations 5402

and 6.403

The above formulation of Galerkin stochastic FEM is complete for linear elastic problem with404

constant uncertain elastic stiffness matrix E (x, θ). For nonlinear, inelastic problems, additional for-405

mulation of stochastic elastic-plastic FEM (SEPFEM) is required and relies on recent developments406

(Jeremić et al. 2007; Sett et al. 2007; Sett et al. 2011b; Sett et al. 2011a; Arnst and Ghanem 2012;407

Rosić andMatthies 2014; Karapiperis et al. 2016). One of the challenges of the SEPFEM lies in the408

development of the probabilistic elastic-plastic stiffness at the constitutive level that is to be used409

for finite element level computations. Eulerian-Lagrangian form of the Fokker-Planck-Kolmogorov410

(FPK) equation has been successfully used to obtain probabilistic stress solutions (Jeremić et al.411

2007; Sett et al. 2007; Sett et al. 2011a). It is noted in order to produce uncertain stiffness, least412

square optimization and linearizion techniques (Sett et al. 2011a; Karapiperis et al. 2016) are used.413

To this end, in one dimension (1D), elastic plastic material model with vanishing elastic region414
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is used in conjunction with Armstrong-Fredrick nonlinear kinematic hardening (Armstrong and415

Frederick 1966; Dettmer and Reese 2004). This approach simplifies modeling, as elastic plastic416

response directly follows Armstrong-Frederick nonlinear equation. For the approach proposed417

here, probabilistic nonlinear response between inter-story restoring force FR and inter-story drift418

η is formulated through direct PC-based Galerkin intrusive probabilistic modeling of Armstrong-419

Fredrick hysteretic behavior.420

In incremental form, Armstrong-Fredrick kinematic hardening relation (Armstrong and Fred-421

erick 1966) between inter-story restoring force FR and inter-story drift η can be written as:422

dFR = Ha dη − Cr FR |dη | (40)423

where Ha and Cr are model parameters. By setting dFR = 0, the ultimate inter-story restoring force424

becomes FR
max = Ha/Cr . The tangential stiffness E (FR) is a function of restoring force FR:425

E (FR) =
dFR

dη
= Ha − Cr FR sgn(dη) (41)426

where sgn(·) is the sign function. Equation 41 can be written as:427

E (FR) = Ha ± Cr FR (42)428

where + sign is taken for negative inter-story drift dη and − sign is taken for positive inter-story429

drift dη. In the general probabilistic setting, model parameters Ha and Cr can be uncertain and430

modeled as random fields Ha(x, θ) andCr (x, θ). By applying PC expansion with Hermite PC bases431

ϕi ({ξr (θ)}) to those two model parameters, the following equations are obtained:432

Ha(x, θ) =
P∑

i=0
Hai (x)ϕi ({ξr (θ)}) (43)433

434

Cr (x, θ) =
P∑

i=0
Cri (x)ϕi ({ξr (θ)}) (44)435
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The inter-story drift increments dη(x, θ), that represent input to the to constitutive driver (Equation436

40) are also uncertain due to the probabilistic structural response u(x, t, θ):437

dη(x, θ) =
P∑

i=0
dηi (x)ϕi ({ξr (θ)}) (45)438

As a result, probabilistic incremental restoring force dFR(x, θ) and probabilistic tangential stiffness439

E (x, θ) are then:440

dFR(x, θ) =
P∑

i=0
dFR

i (x)ϕi ({ξr (θ)}) (46)441

442

E (x, θ) =
P∑

i=0
Ei (x)ϕi ({ξr (θ)}) (47)443

Substituting Equations 43 ∼ 47 into Equations 40 and 42 and applying Galerkin projection on PC444

basis ϕi{ξr (θ)} yields:445

P∑
m=0

dFR
m 〈ϕmϕi〉 =

P∑
j=0

P∑
k=0

Ha j dηk 〈ϕ jϕkϕi〉 ±
P∑

l=0

P∑
n=0

P∑
s=0

Crl FR
n dηs 〈ϕlϕnϕsϕi〉 (48)446

447
P∑

i=0
Em 〈ϕmϕi〉 =

P∑
j=0

Ha j 〈ϕ jϕi〉 ±
P∑

l=0

P∑
n=0

Crl FR
n 〈ϕlϕnϕi〉 (49)448

By using the orthogonality of Hermite PC bases 〈ϕiϕ j〉 = 0 for i , j, solutions to the unknown449

PC coefficients of incremental inter-story force dFR(x, θ) and inter-story stiffness E (x, θ) can be450

written as:451

dFR
i =

1
Var[ϕi]

[
Ha j dηk 〈ϕ jϕkϕi〉 ± Crl FR

n dηs 〈ϕlϕnϕsϕi〉

]
(50)452

453

Ei = Hai ±
1

Var[ϕi]
Crl FR

n 〈ϕlϕnϕi〉 (51)454

where 〈·〉 is the expectation operator. Var[ϕi] is the scalar variance of PC basis ϕi{ξr (θ)},455

which equals to 〈ϕ2
i 〉. It is noted that in the above equations, Einstein’s tensor summation notation456

is used with index i as a free index. Terms 〈ϕ jϕkϕi〉, 〈ϕlϕnϕi〉 and 〈ϕlϕnϕsϕi〉 are the expectation457

of triple and quadruple product of PC basis ϕi{ξr (θ)}.458
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The above 1D formulation for SEPFEM is implemented in the context of explicit, forward Euler459

algorithm, The expanded stiffness matrix Kminj is constructed using stiffness PC coefficients (n)Ei at460

step n following Equation 38. Displacement PC coefficients (n+1)unj of step n+1 are then solved by461

applying force vector (n+1)Fmi and using stiffness matrix Kminj within Equation 36. Following that,462

incremental inter-story drift PC coefficients (n+1)dηi are calculated from displacement response463

(n+1)unj and incremental uncertain restoring force (n+1)dFR
i can be quantified as:464

(n+1)dFR
i =

1
Var[ϕi]

[
Ha j

(n+1)dηk 〈ϕ jϕkϕi〉 ± Crl
(n)FR

n
(n+1)dηs 〈ϕlϕnϕsϕi〉

]
(52)465

Updating the restoring force (n+1)FR
i is then:466

(n+1)FR
i =

(n)FR
i +

(n+1)dFR
i (53)467

while new stiffness PC coefficients (n+1)Ei at step n + 1 are then:468

(n+1)Ei = Hai ±
1

Var[ϕi]
Crl

(n+1)FR
n 〈ϕlϕnϕi〉 (54)469

3 ILLUSTRATIVE EXAMPLE470

To illustrate the proposed framework, seismic risk of a typical eight story shear frame structure471

that has been studied bymany researchers (Li andChen 2006;Mitseas et al. 2018; Papazafeiropoulos472

et al. 2017; Xu and Feng 2019) , is developed. The frame structure is shown in Figure 4.473

The hysteretic restoring force versus inter-story drift behavior is described by Armstrong-474

Fredrick model presented in section 2.4. Material parameter Ha of Armstrong-Fredrick model475

is assumed to be Gaussian distributed random field with 15% coefficient of variation. Means of476

material parameter Ha are given for different floors as: Ha1 ∼ Ha2 1.59 × 107N/m, Ha3 ∼ Ha6477

1.66 × 107N/m and Ha7 ∼ Ha8 1.76 × 107N/m. The correlation structure of parameter Ha is478

assumed to be exponential between different floors, with correlation length of lc = 10 floors.479

Material parameter Cr is assumed to be Cr = 17.6 1/m. The resultant mean hysteretic behavior480
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Fig. 4. Eight-story shear frame structure with uncertain floor stiffness under non-stationary seismic
motions.

of first floor is also shown in Figure 4. Floor masses are assumed to be deterministic. Rayleigh481

damping C = αM + βK is used with parameters α and β chosen to be α = 0.22Hz and β = 0.008s.482

Other structure modeling parameters are given in Table 2. Those parameters are determined from483

Xu and Feng (2019). Parameters Ha and Cr are calibrated to match the hysteretic behavior shown484

in Xu and Feng (2019).485

TABLE 2. Parameters of the eight-story shear frame structure.

h0[m] h[m] m1∼m2[kg] m3∼m4[kg] m5∼m6[kg] m7∼m8[kg]
4 3 2×105 2.2×105 2.4 ×105 2.5 ×105

3.1 Seismic Source Characterization486

The structure is located at coordinate (10km, 40km), 50km away from a strike slip fault with487

90◦ dip angle, as shown in Figure 5. The fault length is 250km with annual slip rate of 20mm/yr .488

Detailed geometry and model parameters for SSC of the strike slip fault are given in Table 3. Mean489

characteristic magnitude of the fault M is 7.6, and is related to fault area A (Leonard 2010) as:490

M = log(A) + 4 (55)491

Only earthquakes with magnitude greater than 5 (i.e. Mmin = 5) are considered. Following the492

procedure of SSC in section 2.1, annual rate of earthquakes occurring on the fault is λ = 0.0067/yr.493

Probabilistic scenario space λ(M, R, θ) is discretized into four mutually exclusive scenario events494
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Fig. 5. Seismic risk analysis of an eight-story shear frame structure (red triangle) with uncertain
stiffness K subjected to earthquakes from a strike slip fault (black line).

TABLE 3. Parameters for seismic source characterization (SSC) of the strike slip fault.

Parameter Value
Fault length 250km
Fault width 15km
Dip angle 90◦
Slip rate S 20mm/yr

Style of faulting Strike slip
f (M) Truncated normal with σ=0.2 nσmax=2 (Hale et al. 2018)

f (A|M) Delta function at log(A) = M − 4
f (W |A) Delta function at W =

√
1.5A, limited to fault width

f (Y ) Uniform distribution
f (Z ) Uniform distribution

Si (Mi, Ri,Θi) as shown in Table 4. The computation is performed with probabilistic seismic hazard495

analysis program HAZ45 (Hale et al. 2018) using 0.2 for magnitude step ∆M and 2km for distance496

step ∆R.

TABLE 4. Seismic scenarios for the strike slip fault.

Scenario ID M Rrup [km] Annual rate λ(M, Rrup)
1 7.3 56 9.54×10−4

2 7.5 56 2.40×10−3

3 7.7 56 2.40×10−3

4 7.9 56 9.54×10−4

497
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3.2 Time Domain Stochastic Ground Motion Modeling and Representation498

For each characterized seismic scenario Si (Mi, Ri,Θi), 500 realizations {Γi} of time domain499

uncertain motions are simulated using methodology described in section 2.2. Figure 6 shows the500

first 200 realizations of simulated motions for earthquake scenario 1 with M = 7.3, Rrup = 56km.501

Fig. 6. Realizations of uncertain seismic motions for scenario M = 7.3, Rrup = 56km.

In this study, ground motion populations from four different scenarios are combined into a502

single population Γ using Equation 3 and modeled as a non-stationary random process. The503

random process is represented by multi-dimensional Hermite polynomial chaos (PC) following504

the technique formulated in section 2.3. Since marginal distribution of the random process is505

observed to be Gaussian (section 2.2), theoretically, PC representation with order 1 is sufficient.506

The dimension of PC basis needs to be carefully chosen to reconstruct the correlation structure507

of the original random process. To ensure the accuracy of PC-KL representation, following error508

measurements are defined and evaluated:509

• The absolute error on marginal mean of the random process:510

εm =
1
Nt

Nt∑
k=1
|µ(tk ) − µ̂(tk ) | (56)511

• The absolute error on marginal standard deviation of the random process:512
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εstd =
1
Nt

Nt∑
k=1
|σ(tk ) − σ̂(tk ) | (57)513

• The absolute error on correlation of the random process:514

εcorr =
1

N2
t

Nt∑
k=1

Nt∑
l=1
|Cov(tk, tl ) − ˆCov(tk, tl ) | (58)515

where µ(tk ), σ(tk ) and Cov(tk, tl ) are the marginal mean, marginal standard deviation and correla-516

tion field of simulated ground motion population Γ. Terms µ̂(tk ), σ̂(tk ) and ˆCov(tk, tl ) are statistics517

calculated from PC representation of the random process from Equations 25, 26 and 27. Term tk518

denotes the k th time instance and Nt is the total number of time instances.519

Hermite PC bases of order 1, dimension 20, 70, 150 and 300 are examined for PC-KL expansion520

of randomprocessmotions. The errors for different PC bases are given in Table 5. It can be observed

TABLE 5. Error in probabilistic characterization of non-stationary acceleration and displacement
random process using PC-KL expansion with different dimensions.

Dimension of PC Dim. 20 Dim. 70 Dim. 150 Dim. 300
Displacement mean error εm 8.63×10−9 8.63×10−9 8.63×10−9 8.63×10−9

Displacement S.D. error εstd 1.28×10−7 1.28×10−7 1.28×10−7 1.28×10−7

Displacement correlation error εcorr 0.059 2.26×10−4 8.27×10−6 3.06×10−7

Acceleration mean error εm 9.84×10−9 9.84×10−9 9.84×10−9 9.84×10−9

Acceleration S.D. error εstd 1.23×10−7 1.23×10−7 1.23×10−7 1.23×10−7

Acceleration correlation error εcorr 0.185 0.091 0.053 0.028

521

that in all the four cases marginal behavior of the random process motions is well captured with522

very small magnitudes of errors εm and εstd . As shown in Figure 7, synthesized marginal mean and523

marginal standard deviation from PC representation match very well with statistics of simulated524

motions.525

As the dimension of PC increases, the relative error of correlation structure decreases while the526

computational cost in stochastic FEM increases. It is noted that PC dimension 70 is already adequate527

to capture the relatively smooth random displacement correlation field. However, acceleration528

correlation field synthesized from PC dimension 70 is overestimated among many time steps. PC529

dimension 150 and 300 approximate acceleration correlation structure much better. Eventually,530
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Fig. 7. Comparison between PC-synthesized (black line) marginal mean and marginal standard
deviation (SD) and statistics of simulated ground motion realizations (red line).

considering both accuracy and efficiency, Hermite PC of order 1, dimension 150 is used to spectrally531

discretize the randomprocess seismicmotions in stochastic FEManalysis. The comparison between532

the exact correlation structure and the PC synthesized correlation structure is shown in Figure 8.533

3.3 Stochastic Galerkin FEM Analysis and Seismic Risk534

In order to perform stochastic Galerkin FEM analysis, it is also necessary to characterize the535

randomness of stiffness of the structural system. In order to do that, Hermite PCs of dimension 2, 4536

and 6 is used for capturing the exponential correlation structure of random field parameter Ha(x, θ).537

It can be observed fromFigure 9 that PC dimension 4 can reasonablywell reconstruct the correlation538

of Ha(x, θ). With PC characterized structural parameters, the probabilistic hysteretic behavior of539

restoring force versus inter-story drift can be intrusively modeled following the stochastic Galerkin540

technique formulated in section 2.4. Figure 10 shows the probabilistic response of restoring force541

of the first floor under cyclic loading. Verification of developed constitutive modeling is performed542

using 10,000Monte Carlo simulations and shown in Figure 10 as well. It can be seen that PC-based543

intrusive probabilistic hysteresis modeling produces almost the same response as Monte Carlo544
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(a) Exact displacement correlation field (b) Synthesized displacement correlation field

(c) Exact acceleration correlation field (d) Synthesized acceleration correlation field

Fig. 8. Verification of PC synthesized acceleration and displacement correlation field with PC
dimension 150.

simulations. It is noted that intrusive probabilistic approach is approximately 2000 times faster545

than corresponding Monte Carlo modeling.546

With both uncertain seismic motions (dimension 150) and uncertain structural parameters547

(dimension 4) represented by Hermite PCs, probabilistic structural displacement is described in 154548

dimensional probabilistic space of Hermite PCs. The unknown time varying PC coefficients, that549

contain all the information about the probabilistic evolution of structural response, are intrusively550

solved using developed Galerkin SEPFEM (section 2.4). With these solved PC coefficients, a551

polynomial chaos based surrogate model is analytically established (Sudret 2008). After that,552
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Fig. 10. Intrusive probabilistic modeling of Armstrong-Frederick hysteretic behavior and verifica-
tion with Monte Carlo simulation: (a) Gaussian distributed Ha with mean 1.76 ×107 N/m and 15%
coefficient of variation (COV), Cr = 17.6. (b) Gaussian distributed Ha with mean 1.76 ×107 N/m
and 15% coefficient of variation (COV), Gaussian distributed Cr with mean 17.6 and 15% COV.

any probabilistic structural dynamic response can be easily reconstructed. Time evolving mean,553

standard deviation (SD) and correlation field of any resulting field of interest can be directly554

evaluated through Equations 25, 26 and 27. By efficiently sampling the PC surrogate model,555

marginal or joint PDF of any structural response of interest can also be obtained through kernel556

density estimation.557
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For example, Figure 11 shows the time evolving mean and standard deviation (SD) of the first558

and top floor deformation relative to the ground. Due to inelastic, elastic-plastic response, uncertain
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Fig. 11. Time evolving mean and standard deviation (SD) of the first and top floor deformation
relative to the ground.

559

permanent deformation is observed in both mean and standard deviation of floor deformation. It is560

noted that the deformation of top floor presents much larger variability than that of the first floor.561

Two typical engineering demand parameters (EDPs) are selected for seismic risk analysis:562

Maximum inter-story drift ratio (MIDR) and Peak floor acceleration (PFA) (Miranda and Taghavi563

2005; Miranda and Akkar 2006). We define MIDR as a function of probabilistic dynamic floor564

displacement:565

MIDRi (θ) = max
t∈[0,T]

{
|ui (t, θ) − ui−1(t, θ) |

Hi

}
(59)566

567

MIDR(θ) = max
i∈[1,8]

max
t∈[0,T]

{
|ui (t, θ) − ui−1(t, θ) |

Hi

}
(60)568

where MIDRi (θ) and ui (t, θ) are the probabilistic MIDR and displacement of the ith floor, respec-569

tively, and Hi is the floor height, while probabilistic MIDR of the whole shear frame structure is570

given as MIDR(θ).571
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Probabilistic floor accelerations are defined as :572

PF Ai (θ) = max
t∈[0,T]

{|üi (t, θ) |} (61)573

574

PF A(θ) = max
i∈[1,8]

max
t∈[0,T]

{|üi (t, θ) |} (62)575

where PF Ai (θ) and üi (t, θ) are the probabilistic PFA and acceleration of the ith floor, respec-576

tively, while PF A(θ) is the probabilistic PFA of the whole structure. Since both probabilistic577

displacements ui (t, θ) and probabilistic accelerations üi (t, θ) are well defined through resulting PC578

coefficients, probabilistic response of MIDR and PFA are readily available through Equations 59579

to 62.580

For example problem, the probability density evolution of MIDR(θ) is shown in Figure 12. At

(a) PDF surface (b) PDF contour

Fig. 12. Time evolving probability density function (PDF) of MIDR for frame structure.

581

t = 0s, the structure is deterministically at rest, therefore, the PDF of MIDR tends to infinity, i.e.,582

a delta function centered at zero and as such is not shown in Figure 12. Figure 13 shows typical583

PDFs at three different times. It can be observed that PDF of MIDR is dispersing during first half584

of the seismic loading, while toward the end of the loading, it shows high kurtosis, due to reduced585
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Fig. 13. PDF of MIDR at different times: t = 15s, 21s and 29s.

variation in input excitations.586

The PDFs of MIDR of several different floors (1st, 3rd, 6th and top floor) and the whole frame587

structure are shown in Figure 14(a). It is observed that the mean of MIDR increases along with588

larger dispersion, from the top to the bottom floor. This is expected considering the increase of589

shear force from the top floor to the base. The MIDR PDF of the first floor almost overlaps with590

that of the whole structure, which indicates that the maximum inter-story drift happens at first591

floor. From the probabilistic distribution of MIDR, exceeding probability P(EDP > z |Γ) can be592

obtained. Combining exceeding probability and scenario rate, EDP hazard of MIDR is calculated593

using Equation 6 and is shown in Figure 14(b). It can be seen that the demand of MIDR is594

dominantly controlled by lower floors, e.g., the 1st and 3rd floor.595

In addition to PDFs of MIDR, PDFs of PFA for different floors and the whole frame structure596

are developed and shown in Figure 15(a). The distributions of PFA of the 1st, 3rd and 6th floor597

are close to each other, while the PFA of the top floor shows larger mean and variability. The PFA598

distribution of the top floor is very close to that of the whole structure, which indicates the top floor599

tends to experience the maximum acceleration. EDP hazard of PFA is shown in Figure 15 (b). The600

demand of PFA is dominantly controlled by the top floor.601
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Fig. 14. PDF and annual exceedance rate of MIDR between different story over the whole loading
history.
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Fig. 15. PDF and annual exceedance rate of PFA of different stories and the whole frame structure.

By assuming that damage measure (DM) is a step function of EDP, seismic risk for damage602

states using different levels of MIDR and PFA exceedance can be directly determined from the603

EDP hazard curve. As shown in Table 6, seismic risk for MIDR> 1% is 3.83 × 10−3 and the risk604

for PFA> 1m/s2 is 1.92 × 10−3.605

As noted earlier, complete probabilistic structural response, including bothmarginal distribution606
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TABLE 6. Seismic risk of damage state for different levels of MIDR and PFA exceedance.

MIDR>0.5% MIDR>1% MIDR>2% PFA>0.5m/s2 PFA>1m/s2 PFA>1.5m/s2

6.66×10−3 3.83×10−3 9.97×10−5 6.65×10−3 1.92×10−3 9.45×10−5

and correlation information, is contained in PC coefficients, any other EDP or other DM defined607

on multiple EDPs can also be developed with little additional effort. Figure 16 shows the 2D joint608

PDF, f (MIDR, PFA| Γ) of two EDPs, MIDR and PFA, evaluated from the PC-based surrogate609

model of probabilistic structure response. It can be observed that in this case MIDR and PFA are

(a) Joint PDF of MIDR and PFA (b) Contour of 2D joint PDF

Fig. 16. 2D joint PDF of MIDR and PFA of the whole shear frame structure.

610

positively correlated. The correlation coefficient is 0.64.611

For damagemeasure (DM) defined onmultiple EDPs, for example, DM : {MIDR > z1 ∨ PFA >612

z2}, seismic risk can be evaluated as:613

λ(MIDR > z1 ∨ PFA > z2) = λ
∫

D
f (MIDR, PFA| Γ) dD (63)614

where λ is the annual occurrence rate of seismic scenario that would induce ground motion615

population Γ, while D is the integral domain (MIDR, PFA) ∈ [z1,+∞]⋃[z2,+∞] according to the616

definition of damage measure.617
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Using such approach, seismic risk for damage state DM defined for either MIDR greater than618

1% or PFA greater than 1m/s2 (i.e., DM : {MIDR > 1% ∨ PFA > 1m/s2}), can be calculated619

as 4.20 × 10−3, while the risk for damage state defined for both MIDR greater than 1% and PFA620

greater than 1m/s2 (i.e., DM : {MIDR > 1% ∧ PFA > 1m/s2}) is 60% less, equal to 1.71× 10−3.621

Both of these risk values based on joint EDPs are rather different from the ones calculated using622

single EDP.623

4 CONCLUSIONS624

A time domain intrusive probabilistic seismic risk analysis framework for performance based625

earthquake engineering was described in some detail. Methodology to simulate non-stationary626

stochastic seismic motions was presented. The presented methodology is directly compatible627

with state-of-the-art seismic source characterization. Different source, path and site factors are628

explicitly accounted for in the stochastic modeling of Fourier amplitude spectrum and Fourier phase629

derivative. Both uncertain seismic motions and uncertain structural parameters are characterized630

as random process/field and represented with Hermite polynomial chaos (PC) Karhunen-Loève631

(KL) expansion. Direct polynomial chaos based Galerkin intrusive modeling of 1D elastic-plastic632

response was formulated and applied to simulate the uncertain hysteretic behavior of restoring force633

versus inter-story drift for shear frame structure. Formulations for random stiffness polynomial634

chaos coefficients were derived and incorporated into stochastic Galerkin elastic-plastic finite635

element method.636

Using developed stochastic elastic-plastic finite elementmethod, probabilistic dynamic response637

of uncertain structural system driven by uncertain motions is intrusively solved. Following that,638

seismic risk for damage measure defined on single or multiple engineering demand parameter(s)639

was calculated. The proposed framework is illustrated within seismic risk analysis of an eight-story640

shear frame structure excited by uncertain strike-slip fault earthquakes.641

Presented new framework avoids the drawbacks of choosing and using intensity measure(s).642

All the seismic motion characteristics and their uncertainties, for example, uncertain peak ground643

acceleration (PGA), spectrum acceleration (Sa) and others, are captured by random process mo-644
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tions and directly propagated into uncertain structural system. Development of ground motion645

prediction equations (GMPEs) for potentially new intensity measures (IMs) (e.g., Arias intensity646

or cumulative absolute velocity) and repetitive Monte Carlo fragility simulations are circumvented.647

Though most of current seismic risk analyses are performed for damage measure defined on single648

engineering demand parameter, presented framework can also handle joint engineering demand649

parameters/failure criteria without much additional effort. It is found that, for different damage650

measure defined on joint engineering demand parameters, corresponding seismic risk significantly651

varies and is rather different from the risk value for single engineering demand parameter. There-652

fore, considering damage measure based on joint engineering demand parameters can be of great653

interest in seismic risk analysis. Future work will focus on accuracy and efficiency comparison654

between the proposed framework and existing intensity measure based, non-intrusive seismic risk655

analysis and also applying the proposed framework to more realistic engineering structures.656
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