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Abstract

This paper describes the application of an Object Oriented Paradigm (OOP) to

the implementation of a hyperelastic constitutive driver. The C++ programming

language used in our implementation leads to an eÆcient and readable program.

It will be shown that Object Oriented implementation naturally follows from an-

alytical developments in isotropic hyperelasticity. Examples of developed classes

and results from a number of large deformation hyperelastic numerical test will be

presented.
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1 Introduction

A traditional approach to the development and implementation of an algorithm in com-

putational mechanics is to use tensorial notations for the theoretical development and

then transform developed formulae to matrix and vector notation for implementation

in FORTRAN or C programming languages. Needless to say, considerable amount of

time is often devoted to the actual implementation process. In this paper we show how

OOP can help alleviate painful implementation issues and yet produce an eÆcient, self{

explainable code. A set of class libraries called nDarray (c.f. [7]) are used to build an

object oriented framework for computations in large deformation hyperelasticity.

For readers who wish to explore the subject of Object Oriented Programming and

implementation strategies in greater depth we suggest the following references [2], [17],

[3] [4], C++ draft standard [1] and journal articles [8], [19].

2 Hyperelasticity

In this section we present the underlying theory and derivation of isotropic hyperelastic

material models. We �rst start with an overview of hyperelasticity, then focus our atten-
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tion on isotropic behavior. Then, we describe the volumetric{deviatoric decomposition

and present the Simo{Serrin formulation. Lagrangian and Eulerian stress measures and

tangent sti�ness operators are developed. Finally a number of commonly used isotropic

hyperelastic material models are presented as a specializations of general derivations.

2.1 Background

A material is called hyperelastic or Green elastic, if there exists an elastic potential

function W , also called the strain energy function per unit volume of the undeformed

con�guration, which represents a scalar function of strain or deformation tensors, whose

derivatives with respect to a strain component determines the corresponding stress com-

ponent. The most general form of the elastic potential function with restriction to pure

mechanical theory, by using the axiom of locality and the axiom of entropy production1

can be presented as:

W = W (XK; FkK) (1)

where FkK = @xk=@XK = xk;K is a deformation gradient. By using the axiom of

material frame indi�erence, we conclude that W depends only on XK and CIJ , that is:

W =W (XK; CIJ) or: W = W (XK; cij) (2)

Left and right Cauchy{Green tensors are de�ned as:

CIJ = (FkI)
tFkJ ; (c�1)ij = bij = FiK(FjK)

t (3)

By assuming hyperelastic response, the following are the constitutive equations for the

material stress tensors:

� 2. Piola{Kirchho� stress tensor SIJ = 2@W=@CIJ

� Mandel stress tensor TIJ = 2CIK@W=@CKJ

1See Marsden and Hughes [9] pp. 190.
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� 1. Piola{Kirchho� stress tensor PiJ = 2@W=@CIJ(FiI)
t

and the spatial, Kirchho� stress tensor is de�ned as:

� Kirchho� stress tensor �ij = 2 FiA(FjB)
t@W=@CAB

The material tangent sti�ness relation is de�ned as:

dSIJ =
1

2
LIJKL dCKL where LIJKL = 4

@2W

@CIJ @CKL

(4)

The spatial tangent sti�ness tensor Eijkl is obtained by the following push{forward

operation with the deformation gradient:

Eijkl = FiIFjJ(FkK)
t(FlL)

tLIJKL (5)

2.2 Isotropic Hyperelasticity

In the case of material isotropy, the strain energy function W (XK; CIJ) belongs to the

class of isotropic, invariant scalar functions. It satis�es the relation:

W (XK; CKL) = W
�
XK; QKICIJ (QJL)

t
�

(6)

where QKI is the proper orthogonal transformation. The polar decomposition theorem

permits the unique representation2:

Fij = RikUkj = vikRkj (7)

where Ukj, vik are positive de�nite symmetric tensors, called right stretch tensors and

left stretch tensors, respectively, and Rkj is an orthogonal tensor such that:

RikRjk = Æij and RkiRkj = Æij (8)

2referring xi and Xi to the same reference axes and using lower case indices for both.
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If we choose QKI = RKI, then:

W (XK; CKL) =W (XK ; UKL) =W (XK ; vkl) (9)

The right and left stretch tensors, UKL, vkl have the same principal values3 �i ; i = 1; 3

so the strain energy function W can be represented in terms of principal stretches, or

similarly in terms of principal invariants of the deformation tensor:

W =W (XK ; �1; �2; �3; ) = W (XK; I1; I2; I3) (10)

where:

I1
def
= CII

I2
def
=

1

2

�
I2
1
� CIJCJI

�

I3
def
= det (CIJ) =

1

6
eIJKePQRCIPCJQCKR = J2 (11)

and eIJK is the Levi{Civita permutation tensor.

The spectral4 decomposition theorem for symmetric positive de�nite tensors5 states that:

CIJ = �2A

�
N

(A)
I N

(A)
J

�
A

where A = 1; 3 (12)

and NI are the eigenvectors (so that kNIk = 1) of CIJ . Values �
2

A are the roots of the

characteristic polynomial

P (�2A)
def
= ��6A + I1 �

6

A � I2 �
4

A + I3 = 0 (13)

It should be noted that no summation is implied over indices in parenthesis. For

example, in the present case N
(A)
I is the Ath eigenvector with members N

(A)
1 , N

(A)
2

and N
(A)
3 , so that the actual equation CIJ = �2A

�
N

(A)
I N

(A)
J

�
A
can also be written as

3Principal stretches.

4We follow, to some extent, developments described by Simo and Taylor [16].

5Cauchy{Green tensor CIJ for example.
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CIJ =
PA=3

A=1 �
2

(A)N
(A)
I N

(A)
J . In order to follow the consistency of indicial notation in this

work, we shall make an e�ort to represent all the tensorial equations in indicial form.

The mapping of the eigenvectors can be deduced from equation dxk = FkKdXK =

@xk=@XKdXK = xk;KdXK and is given by

�(A) n
(A)
i = FiJ N

(A)
J (14)

where kn
(A)
i k � 1. The spectral decomposition of FiJ , RiJ and bij is then given by

FiJ = �A
�
n
(A)
i N

(A)
J

�
A

(15)

RiJ =
3X

A=1

n
(A)
i N

(A)
J (16)

bij = �2A

�
n
(A)
i n

(A)
j

�
A

(17)

Spectral decomposition from equation (12) is valid for the case of non{equal principal

stretches, i.e. �1 6= �2 6= �3. If two or all three principal stretches are equal, we shall

introduce a small perturbation to the numerical values for principal stretches in order to

make them distinct. The case of two or all three values of principal stretches being equal

is theoretically possible and may result for example from standard axisymmetric triaxial

or isotropic compression experiments. However, we are never certain about equivalence

of two real numbers, because of the �nite precision arithmetics involved in calculation of

these numbers. From a numerical point of view, two numbers are equal, if the di�erence

between them is smaller than the machine precision (macheps) speci�c to the computer

platform on which computations are performed. Our perturbation will be a function of

the macheps.

Recently, Ting [18] and Morman [11] have used Serrin's (c.f. [14]) representation

theorem in order to devise a useful representation for generalized strain tensors EIJ and

eij through Cm
IJ and bmij . General strain tensors can be de�ned by considering a scale

function (c.f. Hill [5]) for the stretch. A scale function is any smooth, monotonic function

of stretch f(�) such that:

f(�) ; � 2 [0;1) subject to f(1) = 0; f 0(1) = 1 (18)
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The scale function is often taken in the form (�2m�1)=2m, where m may have any value.

If we choose m to be an integer, the corresponding strain tensor is:

EIJ =
(U2m

IJ � ÆIJ)

2m
and eij =

�
Æij � v2mij

�
2m

(19)

in Lagrangian and Eulerian settings, respectively. Morman [11] has shown that bmij can

be stated as

bmij = �2mA

0
@(b2)ij �

�
(I1 � �2

(A)

�
bij + I3�

�2

(A)Æij

2�4
(A) � I1�

2

(A) + I3�
�2

(A)

1
A
A

(20)

By comparing equations (20) and (17) it follows that the Eulerian eigen{triad n
(A)
i n

(A)
j

can be written as

n
(A)
i n

(A)
j =

(b2)ij �
�
I1 � �2

(A)

�
bij + I3�

�2

(A)Æij

2�4
(A) � I1�

2

(A) + I3�
�2

(A)

(21)

The Lagrangian eigendyad N
(A)
I N

(A)
J , from equation (12), can be derived, if one substi-

tutes the mapping of the eigenvectors, (14), into equation (21) to get:

N
(A)
I N

(A)
J = �2

(A)

CIJ �
�
I1 � �2

(A)

�
ÆIJ + I3�

�2

(A)(C
�1)IJ

2�4
(A) � I1�

2

(A) + I3�
�2

(A)

(22)

where it was used that:

CIJ = (FiI)
�1(b2)ij(FjJ)

�t ; ÆIJ = (FiI)
�1bij(FjJ)

�t ; (C�1)IJ = (FiI)
�1Æij(FjJ)

�t

It should be noted that the denominator in equations (21) and (22) can be written as:

2�4
(A) � I1�

2

(A) + I3�
�2

(A) =
�
�2
(A) � �2

(B)

� �
�2
(A) � �2

(C)

�
def
= D(A) (23)

where indices A;B;C are cyclic permutations of 1; 2; 3. It follows directly from the

de�nition of D(A) in equation (23) that �1 6= �2 6= �3 ) D(A) 6= 0 for equations (21) and

(22) to be valid.
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2.3 Volumetric{Deviatoric Decomposition of Deformation

It proves useful to separate deformation in volumetric and deviatoric parts by a multi-

plicative split of a deformation gradient as

FiI = ~Fi�
volF�I where ~Fi� = Fi�J

�
1

3 ; volF�I = J
1

3 Æ�I (24)

where x� represents an intermediate con�guration such that deformation XI ! x� is

purely volumetric and x� ! xi is purely deviatoric. It also follows from equation (24)

that ~F�I and FiI have the same eigenvectors.

FiI

FβI

vol

xβ

xi

XI

Fiβ

Figure 1: Volumetric deviatoric decomposition of deformation.

The deviatoric part of the Green deformation tensor CIJ , de�ned in equation (12)

can be de�ned as

~CIJ = J�
2

3CIJ = ~�2A

�
N

(A)
I N

(A)
J

�
A

(25)

while the deviatoric part of the Finger deformation tensor bij can be de�ned similarly as

~bij = J�
2

3 bij = ~�2A

�
n
(A)
i n

(A)
j

�
A

(26)

where the deviatoric principal stretches are de�ned as

~�A = J�
1

3�A = (�1�2�3)
�

1

3�A (27)
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The free energy W is then decomposed additively as:

W
�
XK; �(A)

�
= devW

�
XK; ~�(A)

�
+ volW (XK; J) (28)

2.4 Simo{Serrin's Formulation

In Sections (2.1) and (2.2) we have presented the most general form of the isotropic

strain energy function W in terms of of principal stretches:

W = W (XK; �1; �2; �3; ) (29)

It was also shown that it is necessary to calculate the gradient @W=@CIJ in order to

obtain the 2. Piola{Kirchho� stress tensor SIJ and accordingly other stress measures.

Likewise, it was shown that the material tangent sti�ness tensor LIJKL (as well as the

spatial tangent sti�ness tensor Eijkl) requires second order derivatives of the strain energy

function @2W=(@CIJ @CKL). In order to obtain these quantities we introduce a second

order tensor M
(A)
IJ

M
(A)
IJ

def
= ��2

(A) N
(A)
I N

(A)
J (30)

= (FiI)
�1

�
n
(A)
i n

(A)
j

�
(FjJ)

�t

=
1

D(A)

�
CIJ �

�
I1 � �2

(A)

�
ÆIJ + I3�

�2

(A)(C
�1)IJ

�
from eq. (22)

where D(A) was de�ned by equation (23). It then follows from equation (12):

CIJ = �4A

�
M

(A)
IJ

�
A

(31)

We are now in a position to de�ne the Simo{Serrin fourth order tensor MIJKL as (c.f.

[16]):

M
(A)
IJKL

def
=

@M
(A)
IJ

@CKL

=
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1

D(A)

�
IIJKL � ÆKLÆIJ + �2

(A)

�
ÆIJ M

(A)
KL +M

(A)
IJ ÆKL

�
+

+ I3�
�2

(A)

�
(C�1)IJ(C

�1)KL +
1

2

�
(C�1)IK(C

�1)JL + (C�1)IL(C
�1)JK

��
�

� ��2
(A) I3

�
(C�1)IJ M

(A)
KL +M

(A)
IJ (C�1)KL

�
�D0

(A) M
(A)
IJ M

(A)
KL

�
(32)

For a detailed derivation ofMIJKL interested readers are refered to [6].

2.5 Stress Measures

In Section (2.1) we have de�ned various stress measures in terms of derivatives of the free

energy function W . With the free energy function decomposition, as de�ned in equation

(28) we can appropriately decompose all the previously de�ned stress measures:

� 2. Piola{Kirchho� stress tensor SIJ = 2@devW=@CIJ + 2@volW=@CIJ

� Mandel stress tensor TIJ = 2CIK@
devW=@CKJ + 2CIK@

volW=@CKJ

� 1. Piola{Kirchho� stress tensor PiJ = 2@devW=@CIJ(FiI)
t + 2@volW=@CIJ(FiI)

t

� Kirchho� stress tensor �ab = 2FaI(FbJ)
t@devW=@CIJ + 2FaI(FbJ)

t@volW=@CIJ

The derivative of the volumetric part of the free energy function is

@volW (J)

@CIJ

=
@volW (J)

@J

@J

@CIJ

=
1

2

@volW (J)

@J
J (C�1)IJ (33)

while the derivative of the deviatoric part of the free energy function yields

@devW (~�(A))

@CIJ

=
@devW (~�(A))

@�(A)

@�(A)

@CIJ

=
1

2

@devW (�(A))

@�(A)
�(A)(M

(A)
IJ )A =

1

2
wA(M

(A)
IJ )A

(34)

and wA can be written as (for a detailed derivation see [6]):

wA =
@devW (�(A))

@~�B

@~�B

@�(A)
~�(A) = �

1

3

@devW (~�(A))

@~�B

~�B +
@devW (~�(A))

@~�(A)

~�(A) (35)
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The decomposed 2. Piola{Kirchho� stress tensor is

SIJ =
volSIJ +

devSIJ =
@volW (J)

@J
J (C�1)IJ + wA (M

(A)
IJ )A (36)

It is obvious that the only material dependent parts are derivatives in the form

@volW=@J and wA, while the rest is independent of the chosen hyperelastic material

model.

2.6 Tangent Sti�ness Operator

The free energy function decomposition (28) is used together with the appropriate de�-

nitions made in section (2.1) toward the tangent sti�ness operator decomposition:

LIJKL = volLIJKL +
devLIJKL = 4

@2
�
volW

�
@CIJ @CKL

+ 4
@2
�
devW

�
@CIJ @CKL

(37)

The volumetric part @2
�
volW

�
=(@CIJ @CKL) can be written as:

@2volW

@CIJ@CKL

=
1

4

0
@J2

@2
�
volW

�
@J@J

+ J
@
�
volW

�
@J

1
A (C�1)KL(C

�1)IJ +
1

2
J
@
�
volW

�
@J

I
(C�1)
IJKL (38)

and the deviatoric part @2
�
devW

�
=(@CIJ @CKL) can be written in the following form:

@2devW (�(A))

@CIJ@CKL

=
1

4
YAB (M

(B)
KL )B (M

(A)
IJ )A +

1

2
wA (M

(A)
IJKL)A (39)
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Detailed derivation are given in [6]. Finally, one can write the volumetric and devia-

toric parts of the tangent sti�ness tensors as:

volLIJKL = J2
@2volW (J)

@J@J
(C�1)KL(C

�1)IJ +
@volW (J)

@J

�
J(C�1)KL(C

�1)IJ + 2JI
(C�1)
IJKL

�
devLIJKL = YAB (M

(B)
KL )B (M

(A)
IJ )A + 2 wA (M

(A)
IJKL)A

where YAB is given as:

YAB =
@devW

@~�(A)
Æ(A)(B) ~�(B) +

@2devW

@~�(A)@~�(B)

~�(A) ~�(B)

�
1

3

 
@2devW

@~�C@~�(B)

~�C ~�(B) +
@devW

@~�(B)

~�(B) +
@2devW

@~�(A)@~�D

~�(A)~�D +
@devW

@~�(A)

~�(A)

!

+
1

9

 
@2devW

@~�C@~�D

~�C ~�D +
@devW

@~�D

~�D

!
(40)

In a similar manner to the stress de�nitions it is clear that the only material{model

dependent parts are YAB, wA, @W=@J and @2W=@J2 . The remaining second and fourth

order tensors M
(A)
IJ , M

(A)
IJKL and I

(C�1)
IJKL are independent of the choice of the material

model. This observation has a practical consequence in that it is possible to create a

template derivations for various hyperelastic isotropic material models. Only the �rst

and second derivatives of the strain energy function with respect to deviatoric principal

stretches (~�A) and Jacobian (J) are needed in addition to the independent tensors, for

the determination of various stress and tangent sti�ness tensors. Tangent sti�ness tensor

LIJKL is used on the �nite element level for building sti�ness matrix.

2.7 Isotropic Hyperelastic Models

In what follows, we will brie
y overview a number of commonly used strain energy

functions for isotropic hyperelastic solids. Moreover, we provide derivatives of the strain

energy function, which are used in the de�nitions of the stress measures and tangent

sti�ness operators.
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2.7.1 Ogden Model

A very general set of hyperelastic models was de�ned by Ogden [12]. The deviatoric

strain energy is expressed as a function of principal stretches as:

devW =
N!1X
r=1

cr

�r

�
~��r1 + ~��r2 + ~��r3 � 1

�

where cr and �r are material constants and it was used that ~�i = J�
1

3�i.

Derivatives needed for building tensors wA and YAB are given by the following for-

mulae:

@devW

@~�A
=

N!1X
r=1

cr
�
~�A
��r�1

;
@2
�
devW

�
@~�2A

=
N!1X
r=1

cr (�r � 1)
�
~�A
��r�2

;
@2
�
devW

�
@~�A@~�B

= 0

2.7.2 Neo{Hookean Model

The deviatoric part of the Neo{Hookean isotropic elastic model (c.f. [12]) can be written

as:

devW =
G

2

�
~�2
1
+ ~�2

2
+ ~�2

3
� 3

�
(41)

while the volumetric part is:

volW =
Kb

2

�
J2 � 1

�2
(42)

where G and Kb are the shear and bulk moduli respectively. Derivatives needed for

building tensors wA and YAB are given by the following formulae:

@devW

@~�A
= G ~�A ;

@2
�
devW

�
@~�2A

= G ;
@2
�
devW

�
@~�A@~�B

= 0

@volW

@J
= 2KbJ(J

2 � 1) ;
@2
�
volW

�
@J2

= 2Kb(3J
2 � 1)
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2.7.3 Mooney{Rivlin Model

The strain energy function for the Mooney-Rivlin material model (deviatoric behavior)

is of the form (c.f. [12]):

devW =
�
C1

�
~I1 � 3

�
+ C2

�
~I2 � 3

��
~I1 = ~�2

1
+ ~�2

2
+ ~�2

3

~I1 = ~��2
1

+ ~��2
2

+ ~��2
3

Derivatives needed for building tensors wA and YAB are given by the following formulae:

@devW

@~�A
= 2 C1

~�A � 2 C2
~��3A ;

@2
�
devW

�
@~�2A

= 2 C1 + 6 C2
~��4A ;

@2
�
devW

�
@~�A@~�B

= 0

2.7.4 Logarithmic Model

A simple deviatoric strain energy function for the logarithmic hyperelastic material model

can be presented in the form (c.f. [10]):

devW = G

��
ln ~�1

�2
+
�
ln ~�2

�2
+
�
ln ~�3

�2�
(43)

while the volumetric part is suggested in the form (c.f. [15]):

volW =
Kb

2
(lnJ)

2
(44)

Derivatives needed for building tensors wA and YAB are given by the following formulae:

@devW

@~�A
= 2 G

�
~�A
�
�1

;
@2
�
devW

�
@~�2A

= �2 G
�
~�A
�
�2

;
@2
�
devW

�
@~�A@~�B

= 0

d
�
volW

�
dJ

= Kb J
�1 lnJ ;

d2
�
volW

�
dJ2

= Kb J
�2 �Kb J

�2 lnJ

3 Implementation Strategy

The formulation for the general isotropic hyperelastic material model presented in the

previous section has been implemented in a constitutive driver. In developments de-

scribed in the next few sections we make use of a previously developed nDarray set of
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classes (c.f. Jeremi�c and Sture [7]). In particular we make frequent use of a class tensor

which can be understood as a new concrete data type. We �rst brie
y describe nDarray

and and basic hyperelastic classes and then proceed to more speci�c issues for di�erent

hyperelastic material models. Finally, we comment on the portability and eÆciency of

the implementation.

3.1 nDarray Classes

The main purpose of the nDarray set of classes is to facilitate algebraic manipulations

with matrices, vectors and tensors that are often found in computer codes for solving

engineering problems. nDarray class library consists of nDarray_rep, nDarray, matrix,

vector and tensor classes. Particularly interesting for this work is intuitive program-

ming of tensorial formulae. For example, tensorial formula: Cil = (Aijk +Bijk) �Djkl is

programmed as C=(A("ijk")+B("ijk"))*D("jkl"). Index notation is used by the pro-

gram for proper tensor multiplications. Detailed description of nDarray class libraries

is given in [7]. For readers interested in actual implementation details, source code, ex-

amples and make�les are available at http://sokocalo.cee.edu/~jeremic/nDarray/

3.2 Basic Hyperelastic Classes

The basic class lde_model is de�ned as a container for common functions and operators

for derived models. We de�ne a set of virtual functions for the strain energy density

W , then we devise both the deviatoric and volumetric components of the strain energy

density function and their respective derivatives with respect to the deformation tensor.

Each of these functions will be overloaded in each material model class.

virtual double W(tensor & ) const ; // strain energy function (W)

virtual double Wdev(tensor & ) const ; // W_dev deviatoric W

virtual double Wvol(tensor & ) const ; // W_vol volumetric W

virtual tensor dWodC(tensor & F) const; // \partial W / \partial C

virtual tensor dWdevodC(tensor & F) const; // \partial W_dev / \partial C

virtual tensor dWvolodC(tensor & F) const; // \partial W_vol / \partial C
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virtual tensor d2WodC2(tensor & F) const; // \partial^2 W / \partial C^2

virtual tensor d2WdevodC2(tensor & F) const; // \partial^2 W_dev / \partial C^2

virtual tensor d2WvolodC2(tensor & F) const; // \partial^2 W_vol / \partial C^2

We also de�ne a set of virtual functions that will return the second Piola{Kirchho�

stress tensors Sij and sti�ness tensor Lijkl for a given deformation tensor Cij. Both

deviatoric and volumetric as well as the full component of stress and sti�ness tensors

can be obtained.

virtual stresstensor LDdevSPKstress(tensor & C) const ;

virtual stresstensor LDvolSPKstress(tensor & C) const ;

virtual stresstensor LDSPKstress(tensor & C) const ;

virtual tensor LDdevStiffnessTensorE(tensor & C) const ;

virtual tensor LDvolStiffnessTensorE(tensor & C) const ;

virtual tensor LDStiffnessTensorE(tensor & C) const ;

The previously de�ned functions are then used in all derived material model classes for

obtaining stress and sti�ness tensors.

As described in the previous sections, for various isotropic hyperelastic material mod-

els we can use general developments and implement tensorial variables that are com-

mon to isotropic hyperelastic models once, and then use them through the inheritance

paradigm. De�nitions for such common tensors follows:

tensor M1_ij(tensor & C) const;

tensor M2_ij(tensor & C) const;

tensor M3_ij(tensor & C) const;

//

tensor M1_ijkl(tensor & C) const;

tensor M2_ijkl(tensor & C) const;

tensor M3_ijkl(tensor & C) const;

//

tensor ICm1_ijkl(tensor & C) const;

The material model dependent classes are implemented as virtual functions. They are

later overloaded in class de�nitions for every material model. The transparent use of

tensor data type allows for an eÆcient and elegant development of the presented im-

plementation:
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virtual tensor wa(double lambda1, double lambda2, double lambda3) const;

virtual tensor Yab(double lambda1, double lambda2, double lambda3) const;

virtual double dWodJ(tensor &) const;

virtual double d2WodJ2(tensor &) const;

In the following we present as an example the implementation of tensorial formulae

for for I
(C�1)
IJKL where the closed form reads:

I
(C�1)
IJKL =

1

2

�
(C�1)IK(C

�1)JL + (C�1)IL(C
�1)JK

�

and for a given deformation tensor Cij, I
(C�1)
IJKL is implemented as:

tensor Cinv = C.inverse();

tensor Icm1 = ((Cinv("ij")*Cinv("kl")).transpose0110()

+ (Cinv("ij")*Cinv("kl")).transpose0111()

*0.5;

where transpose0110() and transpose0111() are functions that transpose the fourth

order tensor such that:

transpose0110() ijkl ! ikjl

transpose0111() ijkl ! iljk

3.3 Derived Classes

The isotropic hyperelastic material models described above are implemented through the

following classes:

class Logarit : public lde_model

class NeoHook : public lde_model

class Ogden : public lde_model

class MoonRiv : public lde_model

The isotropic hyperelastic material model classes inherit functions from basic class

lde_model (lde stands for large deformation elasticity) and overload number of ma-

terial model dependent functions:
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virtual tensor wa(double lambda1, double lambda2, double lambda3) const;

virtual tensor Yab(double lambda1, double lambda2, double lambda3) const;

virtual double dWodJ(tensor &) const;

virtual double d2WodJ2(tensor &) const;

With these de�nitions and theoretical developments from section 2 we can easily imple-

ment general tensors as well as speci�c, material{model dependent tensors. By combin-

ing them in tensorial formulae we implement tensorial functions for stresses and sti�ness

tensors.

As an example, for a given right deformation tensor Cij and for a Neo{Hookean

material model named NeoHook the following lines of code gives second Piola{Kirchho�

stress tensor Sij and then calculates the corresponding Kirchho� stress tensor �ij:

stresstensor S2 = NeoHook.LDSPKstress(C);

stresstensor tau = F("iA") * S2("AB") *F("jB");

3.4 Portability and EÆciency

The hyperelastic driver has been implemented using standard C++ language. Porta-

bility has been tested by compiling and computing example problems on a number of

hardware platforms and by using a wide variety of compilers.

As for the eÆciency, it was believed until recently that C++ is inherently slower

than FORTRAN or the C programming languages (c.f. [13]). Work described in this

paper also su�ers from performance lower than that of FORTRAN code. However, it is

questionable if some of the implemented concepts and formulae could be implemented

in FORTRAN at all. We believe that the performance of our code should be measured

by having in mind both the raw execution speed as well as the development time.

Recently developed techniques for C++ (c.f. [20], [21]) called Expressions Template

and Template Metaprograms are showing performance on par with a hand tuned FOR-

TRAN code and in some cases even better. There is an e�ort underway to implement

template expressions in the nDarray class libraries.
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4 Hyperelastic Simulations

A simple shear example is tested using Neo{Hookean and Logarithmic hyperelastic ma-

terial models. The assumed material properties are E = 206GPa and � = 0:33. Figure

2 depicts the coordinate system and Kirchho� stresses �ij. It should be noted that the

Kirchho� stresses (�ij) are in this case equal to the Cauchy stresses �ij since the behav-

ior is purely deviatoric. It is important to note that the simple shear example involves

signi�cant rotations of Lagrangian and Eulerian triads.

τ11

τ12

τ22

τ22

τ11

τ12
x

x

1

2

Figure 2: Coordinate system and Kirchho� stresses on a simple shear specimen.

φ

γ = 10.0

= 1.0γ

γ = tan φ

x 1

2x

x 1
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Figure 3: Modes of deformation for the simple shear specimen.

Figure 3 depicts a deformation mode for simple shear. Shear deformation angle of
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45Æ yields 
 = 1. Deformations larger than 
 = 1 are usually not achieved6 but are

shown here for illustration purposes.
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Figure 4: Neo{Hookean and Logarithmic stress results for simply sheared hyperelastic

specimen. Shear deformation extends to 
 = 4.

Figure 4 depicts the shear behavior of the hyperelastic specimen. The shear defor-

mation is extending to 
 = 4.

A number of interesting observations regarding shear stress results can be made. The

solution using the Neo{Hookean model gives a linear response. The shear stress solution

resulting from hyperelastic logarithmic model has a limit point, and apparent softening

behavior for large shear deformation. Figure 5 shows an extended diagram of stress

results, up to a deformation level of 
 = 10.

Figures 6 and 7 are depicting combined hyperelastic stress results. It can be seen

that for relatively small shear deformation the di�erence between Neo{Hookean and

6For example in the case of elastomeric bearings 
 < 1 usually.
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Figure 5: Extended simple shearing of a hyperelastic specimen. Neo{Hookean and Log-

arithmic stress results. Shear deformation extends to 
 = 10.

Logarithmic models can be neglected. Normal stresses, �11 and �22 have a second order

in
uence. With the increase of shear deformation, both Neo{Hookean and Logarithmic

normal stress are increasing out of proportion, and they become much larger than the

shear stresses.

5 Summary

In this paper we have shown how theoretical developments in isotropic hyperelasticity

can lead to an object oriented implementation of the constitutive driver. After theo-

retical derivations for isotropic hyperelasticity in a general form, we have shown that

many of the commonly used material models can be de�ned by changing a small set

of material dependent scalar and tensorial functions. The implementation follows natu-

rally from theoretical developments and is transparent, if one uses tensor concrete data

types developed earlier by the authors (c.f. [7]). We have also shown numerical modeling
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Figure 6: Combined hyperelastic stress results. Shear deformation up to 
 = 1.

examples together with parts of the actual implementation. The described implemen-

tation is part of larger set of classes called FEMtools, in which we have included �nite

elements classes, solvers classes, solution procedures for non{linear �nite element system

of equations classes, elasto{plastic set of classes and other useful functions.
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