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Abstract

In this paper we discuss the use of the p—version of the finite element method
applied to elasto—plastic problems that exhibit sharp (but continuous) deforma-
tion gradients. The deformation theory of deviatoric, linearly hardening elasto-
plasticity with an iterative, displacement based finite element framework is used.
The focus of this work is on assessing the applicability of the p—version to the anal-
ysis of localized deformation with continuous strain and displacement fields. Pre-
sented examples demonstrate that the method can be used reliably with a proper

finite element mesh design. Possible extensions of the work are also discussed.
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1 Introduction

A phenomenon that accompanies elasto—plastic deformation of solids is the formation
of localized bands of considerable straining. The phenomenon of localization can be
observed in a wide variety of engineering solids such as metals, sands, clays and soft
rocks. One possible approach to capture the localization is to enhance the low order
finite elements with suitably defined shape functions which mimic localized deformation
[8]. Another possibility is to use discontinuous shape functions to enhance the non-
smooth plastic solution [5], [1]. Current work on finite element solid modeling of the
localization of deformation is mostly focused on the discontinuous bifurcation of the
strain-rate field [10], [9], [1], [8]. There exist, however, cases where the localization is
characterized by sharp, but continuous deformation gradients. Such cases include, but
are not limited to, the modeling of ductile geomaterials (sands, clays, etc), which is a
major motivation for this work. Large shear deformations in sand, for example, tend to
be localized in narrow bands with approximately 3-20 grain diameters in size [14], [7].
Deformation is continuous, with sharp gradients across the localized material.

The standard Finite Element Method (FEM), and in particular the p—version of the
FEM that includes a rather rich displacement field, can be used reliably for these types
of problems. Unlike the traditional h—version, the p—version uses piecewise polynomials
of warying degree over a fized mesh to approximate the solution to a boundary value
problem. One main advantage of the p—version is that for linear problems whose solu-
tion is analytic, the rate of convergence is exponential. This is true even if the solution
is analytic with the exception of a finite number of (singular) points, provided the mesh
is designed accordingly. Thus, by examining the given data (loads, boundary conditions

and shape of the domain) one can design the mesh and degree distribution for the p-



version accordingly, and achieve exponential rates of convergence. For certain types of
non-linear problems, e.g., problems with material non-linearities arising in non-linear
elasticity and elasto—plasticity, the smoothness of the solution is not significantly per-
turbed. Hence, the p—version can be effectively applied, as can be seen by the results
of Szabé et al. [12] and Holzer and Yosibash [3]. We should mention that in [12] the
deformation theory of plasticity is used while the results in [3] rely on the incremental
theory of plasticity.

The purpose of this paper is to assess the applicability of the p—version to elasto—
plastic problems exhibiting localization of deformation. We follow the approach described
in [12], in which the deformation theory of plasticity is used in conjunction with an
iterative scheme to solve the non-linear problem. We consider two model problems
arising from engineering applications, whose solution exhibits such localization effects.
The paper is organized as follows: in Section 2 we briefly review the deformation theory of
plasticity and the specific numerical algorithm used for this study. The model problems

are described in Section 3 and our numerical results appear in Section 4.

2 Deformation Theory of Plasticity

The deformation theory of plasticity assumes that stresses determine strains uniquely
as long as the plastic deformation continues. The additive decomposition of the total

strain field is written as
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where ¢}; is the plastic component of the strain tensor, ¢; is the elastic component and
€;; is the total strain tensor. The deformation theory of plasticity is valid only for the
case of proportional or radial loading, in which ratios among the stress components
remain constant. The basic assumptions (cf. [2], [6]) for the deformation theory of
plasticity are the following: the material is isotropic, only deviatoric plastic strains
occur, elastic strains obey generalized Hooke’s law, principal axes of the plastic stress

and strain coincide, ratios of principal values of the plastic strain have same values as

ratios of principal values of stress deviator.



The generalized Hooke’s law can be written as
Oi5 = @.E.m@ ) va

where the elastic tangent stiffness tensor Ej;j; can be written in terms of Lamé’s constants

A and p as
Eijri = M0ijor + 1 (66t + 6udje) - (3)

The plastic strain €}; has deviatoric components only, hence €, = 0. The deviatoric

plastic strains can be related to the deviatoric stress %%;; as
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The function ®, which controls the response, can be calibrated from experimental stress

strain curves by using effective stresses ¢ and effective plastic strains €?, defined as

One of the simplest effective stress — effective strain curves follows a bilinear law. For

the elastic (€ < €yeq) and plastic (€ > €;c1q) Tegion we can write the secant relation
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where Ej is the secant modulus (see Figure 1).
[FIGURE 1 ABOUT HERE]

The p—version of the FEM can be applied to elasto—plastic problems based on the

deformation theory of plasticity, in the following sequence of steps.

e Obtain a solution for the linear elastic problem. Perform p extension from p = 1
(linear elements) to, say p = 8. Note the p level for which the (estimated) relative

error in the energy norm is less than 5 % (preferably less than 1%).



e Using the solution obtained for the accepted p level perform an iterative analysis
for the elasto—plastic computations. The actual algorithm, called direct iteration,

is described in more detail below (cf. [12]).

1. Compute € in each Gauss point (from the elastic solution) and set the first

—€

:”Hm.

iterative effective strain e

2. Using é*! compute the secant modulus E* for each Gauss point from the
effective stress — effective strain curve (Figure 1).

(k]

3. In each Gauss point for which € > €,.4, determine the elastic-plastic mate-

rial stiffness matrix. Obtain a new finite element solution :Wm:.

4. Using F¥ and :WMF compute the stress tensor components o in each

ij
Wm: and the elastic-plastic

material stiffness matrix. Determine the elastic strains from Qmﬁ:v the elastic

Gauss point, using the total strain computed from u

part of the material stiffness matrix, and compute the plastic strain from (1).

5. Calculate the effective elastic strain e ¥+ effective plastic strain & *+11 and

total effective strain €. The iterations stop when at each Gauss point

glk+1] _ glk]

=rny < tol (8)

where tol is a user prescribed tolerance. If, on the other hand, the tolerance
criterion is not met, using €+ compute mwﬁ increment k£ to £+ 1 and return

to step 2.

It is important to note that in this algorithm there are no load increments, but load is
rather applied in one step. This simplification is possible for proportional loading paths,
which is the case in the examples we will be examining. A more general approach would
be to use the incremental, flow theory of plasticity, which will enable computations with
general load paths. For the purpose of this study we use a simple elastic—plastic deviatoric
model with linear isotropic hardening in effective stress — effective strain space. The
numerical examples presented in Section 4 were based on the direct iteration algorithm

described above.



It should be noted that large strains occur in continuous shear bands. Theoretically
sound approach would be to use large deformation postulates. We are indeed working
on incorporating recently developed large deformation theory for geomaterials ([4]) in

our p-version FEM code.

3 The model problems

3.1 Rigid indentation of a plane strain solid

We consider a square plane strain solid of unit area with the bilinear material charac-
teristics £ = 3 x 10" kN/m?, v = 0.3, E; = 2 x 10 kN/m?, 0,00 = 3 x 10* kN/m?,
and boundary conditions as shown in Figure 2(a). For the computations in Section 4,
A =1 x 1072, except for the results shown in Figure 6. This kind of deviatoric plastic-
ity problems is usually found in failure mechanics of metals and locally undrained soils
(clays), among others.

[FIGURE 2 ABOUT HERE]

We expect (c.f. [11]) a shear band to form at a —45° angle, emanating from the
point (1/3, 1). Schreyer and Neilsen [11] used an elastic—plastic softening material in
order to enhance the shear band formation. With a softening branch in equivalent stress
— equivalent strain space, the localized zone is narrower since the material outside the
localized zone is elastically unloading. In this study, we use an elastic—plastic hardening
material which yields a narrow shear zone exactly positioned as expected.

The design of the mesh for this model problem is shown in Figure 2(b). Since we
expect the (linear) solution to have a singularity at the point where the displacement
load is imposed, we use a non-uniform but fixed mesh with 25 elements. The effect of
having more elements near the point of singularity can be seen (and justified) through

the numerical results in the next section.

3.2 Slope stability problem

Next, we consider a slope stability problem, as seen in Figure 3(a).



[FIGURE 3 ABOUT HERE]

In this case a steep slope in overconsolidated clay is loaded in displacement control
by a rigid indentation. We expect a localized zone of shear deformation to propagate
from the end of the rigid vertical indentation load toward the slope surface. The bilinear
material characteristics used for this model are E = 3 x 10* kN/m?, v = 0.3, F; =
2 x 10" kN/m?, oyiq = 1 x 102 kN/m?, and the boundary conditions are as shown
in Figure 3(a). It is important to note that the material is saturated clay with low
permeability, which for a relatively fast loading, can be treated as totally undrained thus
allowing the use of deviatoric elasto—plastic material analysis.

As in the previous model, we again use a non-uniform mesh (with 24 elements) to

capture the singularity present in the solution (see Figure 3(b)).

4 Numerical Results

In this section we present the results of numerical computations for the problems de-
scribed in Section 3. The product polynomial space was used, with p varying uniformly
from 1 to 8 over all elements in the fixed mesh.

For both problems the estimated relative error for the linear solution, measured in
the energy norm, was less than 2.5% for p = 8. Using the solution of the linear problem
(with p = 8) as our initial FEM solution, we performed the nonlinear iterations with
allowable tolerance 1%. Figure 4 shows the contour plot of the equivalent strain € for
the first problem. As expected, see e.g. [11], a localized zone of deformation propagates
from the singular point to the side.

[FIGURE 4 ABOUT HERE]

It is also worth showing (see Figure 5) how the increase in the polynomial degree,
affects the final result. Note that as p increases, the results quickly become more accurate
and the localization zone becomes more pronounced. In particular, once p > 5 the shear
band is captured extremely well and the result does not change significantly.

[FIGURE 5 ABOUT HERE]

Moreover, the progression of the plastic, localized zone as the applied displacement



A changes is shown Figure 6. It should be mentioned that this progression analysis was
performed in a number of purely iterative steps.

[FIGURE 6 ABOUT HERE]

The issue of proper mesh design is illustrated by an example. In Figure 7 we show a
3 by 3 and a 12 by 12 uniform mesh for the same model problem. The first mesh lacks
refinement and the localized shear zone is artificially curved. The second mesh is finer
but is still not properly designed and the shear zone does not propagate as expected. We
should mention that this phenomenon can be eliminated through the use of a sufficiently
fine uniform mesh. This, however, would require the degrees of freedom to go beyond
“practical” limits. The non-uniform mesh proposed here allows us to correctly predict
the shear band without using a large number of elements.

[FIGURE 7 ABOUT HERE]

We now turn our attention to the second model problem, which was solved following
the same sequence of analysis steps as the previous one. Figure 8 shows the localized
shear zone developed from the rigid indentation on the soil slope, for p = 8 and A =
0.075. A roughly circular zone of intense shearing develops starting from the singular
point (end of rigid punch) and propagates toward the slope, as expected [13]. Similar
results were obtained by Armero and Garikipati [1]. It should be mentioned that in
our case the shear zone is continuous, unlike in the solutions obtained by Armero and

Garikipati [1] who used discontinuous shape functions enrichment in their analysis.

[FIGURE 8 ABOUT HERE]

5 Conclusions

In this paper we have investigated use of the p—version of the FEM in elasto—plasticity and
in particular the modeling of continuous, sharp displacement gradients in solid mechanics.
Our numerical experiments show that even the simple deformation theory of plasticity
gives very good results. Moreover, we note that the use of the p—version of the FEM in
conjunction with non-uniform but fixed meshes enabled us to accurately predict the shear

band formation, without the use of enhanced finite element spaces and/or special basis



functions. The method is very efficient computationally and it is available in standard

FEM commercial codes, based on the deformation theory of plasticity.

These observations suggest that it would beneficial to extend the use of the p—version

of the FEM to the incremental, large deformation elasto—plastic theories. The application

to problems in failure mechanics of engineering solids would be of great interest. Results

in this direction will be presented in forthcoming papers.
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Figure 1: Elastic plastic effective stress effective strain bilinear model
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Figure 2: (a) Geometry of model with load and boundary conditions. (b) The non-

uniform mesh for model 1.
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Figure 3: (a) Geometry of model with load and boundary conditions. (b) The non-

uniform mesh for model 2.
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Figure 4: Equivalent strain € for p = 8.
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Figure 5: Equivalent strain €.
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Figure 6: Progression of the localized plastic zone for p = 8.
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Figure 7: Equivalent strain € for 3 by 3 mesh and 12 by 12 mesh, p = 8.
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Figure 8: Equivalent strain € for the
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slope stability problem, p = 8.



