
Plastic Domain Decomposition Method for

Parallel Elastic–Plastic Finite Element

Computations in Geomechanics

Report UCD–CompGeoMech–03–07

by:

Boris Jeremić and Guanzhou Jie

Computational Geomechanics Group

Department of Civil and Environmental Engineering

University of California, Davis

Report version: 1. May, 2008, 15:22

The work presented in this short report was supported in part by the following grant sources: Civil and

Mechanical System program, Directorate of Engineering of the National Science Foundation, award

NSF–CMS–0201231 (cognizant program director Dr. Richard Fragaszy); award NSF–CMS–0337811

(cognizant program director Dr. Steve McCabe); Center for Information Technology Research in the

Interest of Society (CITRIS); and by the Department of Civil and Environmental Engineering at the

University of California at Davis.

Abstract

This report presents the development of the Plastic Domain Decomposition (PDD) algorithm, which fea-

tures adaptive dynamic load balancing operations for nonlinear finite element simulations. This algorithm

has been implemented using parts of OpenSees (Open System for Earthquake Engineering Simulation)

framework. Performance study on SFSI (Soil Foundation Structure Interaction) analysis indicates the effi-

ciency of the proposed algorithm. Large scale prototype SSI (Soil Structure Interaction) analysis have been

performed using the developed software package. Results are presented and discussed.

The first part of the report introduces the theoretical background of the proposed PDD algorithm.

Multi-objective and multi-constraint graph partitioning algorithms lay the foundation of the algorithm

building. Parametric study has been conducted to tune the partitioning kernel for our specific application

codes. The algorithm is implemented using Object-Oriented principle and using parts of the OpenSees

framework. Design details are presented. Major class abstraction and related member functions are sum-

marized. Interfaces to external libraries are also introduced. Comprehensive performance study on SFSI

models has been conducted. A novel application cost model is proposed to deal with implementation-

dependent overheads. Comparison of proposed PDD algorithm to classic Domain Decomposition (DD)

shows significant performance gains for inelastic finite element simulations.

The second part of the report is devoted to the issue of parallel equation solving in large scale finite

element simulations. The efficiency of projection-based iterative solvers and some popular direct solvers

is investigated using equation systems extracted from SFSI simulations. Complete parallel implementation

has been developed using a number of class and numerical libraries, and frameworks (ParMETIS, OpenSees,

PETSc, nDarray, FEMtools...)

For sources or installation help of the parallel simulation system, please contact the first Author. Parallel

simulation system is currently installed at our local parallel computer GeoWulf, as well as on SDSC, TACC

and CU Boulder parallel machines.

Contents

1 Introduction – Adaptive Parallel Inelastic Finite Element Simulations 10

1.1 Hypothesis . 10

1.2 Scope of Study . 12

1.3 Summary of Contents . 12

1.4 Development Platform CONSOLID8 . 14

I Theory and Implementation 15

2 Plastic Domain Decomposition Algorithm 16

2.1 Introduction . 16

2.2 Inelastic Parallel Finite Element . 18

2.2.1 Adaptive Computation . 20

2.2.2 Multiphase Computation . 20

2.2.3 Multiconstraint Graph Partitioning . 21

2.2.4 Adaptive PDD Algorithm . 23

2.3 Adaptive Multilevel Graph Partitioning Algorithm . 23

2.3.1 Unified Repartitioning Algorithm . 28

2.3.2 Study of ITR in ParMETIS . 29

3 Object-Oriented Design of PDD 30

3.1 Introduction . 30

3.2 Object-Oriented Parallel Finite Element Algorithm . 30

3.2.1 Modeling Classes . 33

3.2.2 Finite Element Model Class . 33

3.2.3 Analysis . 35

3.2.4 Object-Oriented Domain Decomposition . 45

3.2.5 Parallel Object-Oriented Finite Element Design 47

3.3 Dual-Phase Adaptive Load Balancing . 52

1

PDD Parallel FEM 2

3.3.1 Elemental Level Load Balancing . 52

3.3.2 Equation Solving Load Balancing . 52

3.4 Object-Oriented Design of PDD . 53

3.4.1 MPI Channel . 58

3.4.2 MPI ChannelAddress . 59

3.4.3 FEM ObjectBroker . 59

3.4.4 Domain . 60

3.4.5 PartitionedDomain . 60

3.4.6 Node & DOF Group . 60

3.4.7 DomainPartitioner . 61

3.4.8 Shadow/ActorSubdomain . 62

3.4.9 Send/RecvSelf . 64

3.5 Graph Partitioning . 64

3.5.1 Construction of Element Graph . 65

3.5.2 Interface to ParMETIS/METIS . 65

3.6 Data Redistribution . 67

4 Performance Studies on PDD Algorithm 71

4.1 Introduction . 71

4.2 Parallel Computers . 71

4.3 Soil-Foundation Interaction Model . 73

4.4 Numerical Study for ITR . 74

4.5 Parallel Performance Analysis . 83

4.5.1 Soil-Foundation Model with 4,035 DOFs . 85

4.5.2 Soil-Foundation Model with 4,938 Elements, 17,604 DOFs 88

4.5.3 Soil-Foundation Model with 9,297 Elements, 32,091 DOFs 93

4.6 Algorithm Fine-Tuning . 99

4.7 Fine Tuning on Load Imbalance Tolerance . 99

4.8 Globally Adaptive PDD Algorithm . 104

4.8.1 Implementations . 106

4.8.2 Performance Results . 107

4.9 Scalability Study on Prototype Model . 112

4.9.1 3 Bent SFSI Finite Element Models . 112

4.9.2 Scalability Runs . 114

4.10 Conclusions . 115

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 3

II Parallel Equation Solving in Finite Element Calculations 123

5 Application of Project-Based Iterative Methods in SFSI Problems 124

5.1 Introduction . 124

5.2 Projection-Based Iterative Methods . 125

5.2.1 Conjugate Gradient Algorithm . 125

5.2.2 GMRES . 127

5.2.3 BiCGStab and QMR . 128

5.3 Preconditioning Techniques . 128

5.4 Preconditioners . 130

5.4.1 Jacobi Preconditioner . 130

5.4.2 Incomplete Cholesky Preconditioner . 130

5.4.3 Robust Incomplete Factorization . 131

5.5 Numerical Experiments . 134

5.6 Conclusion and Future Work . 144

6 Performance Study on Parallel Direct/Iterative Solving in SFSI 146

6.1 Parallel Sparse Direct Equation Solvers . 147

6.1.1 General Techniques – SPOOLES . 147

6.1.2 Frontal and Multifrontal Methods – MUMPS . 147

6.1.3 Supernodal Algorithm – SuperLU . 150

6.2 Performance Study on SFSI Systems . 152

6.2.1 Equation System . 152

6.2.2 Performance Results . 154

6.3 Conclusion . 154

III Bibliography and Appendices 156

A Compilation of Parallel Program (PDD–based) on GNU/Linux Clusters 165

A.1 MPICH . 165

A.1.1 SMP On-Board Communication Effective Benchmark 165

A.1.2 Cluster Inter-Switch Communication Effective Benchmark 172

A.2 PETSc . 178

A.3 ParMETIS . 178

B Import New Element/Material/Load etc. to PDD–based Parallel Program 179

B.1 MovableObject . 179

B.2 Send/RecvSelf . 179

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 4

B.3 Default Constructor . 179

B.4 FEM ObjectBroker . 180

B.5 getObjectSize . 180

C Commands to Invoke Parallel Equation Solvers 181

C.1 Iterative Solvers . 181

C.1.1 Conjugate Gradient Method . 181

C.1.2 Precoditioned Conjugate Gradient . 181

C.1.3 GMRES Method . 181

C.1.4 Precoditioned GMRES . 182

C.2 Direct Solvers . 182

C.2.1 MUMPS . 182

C.2.2 SPOOLES . 182

C.2.3 SuperLU DIST . 182

Jeremić and Jie version: 1. May, 2008, 15:22

List of Figures

1.1 Nested Hierarchy in Nonlinear Solution Methods (Felippa, 2004) 11

2.1 Multilevel Graph Partitioning Scheme Karypis et al. (2003) 24

2.2 A diagram illustrating the execution of adaptive scientific simulations on high performance

parallel computers Schloegel et al. (1999) . 26

3.1 Rumbaugh Notation of-Object Oriented Design . 31

3.2 Class Diagram of Finite Element Model Classes . 32

3.3 Class Diagram of Analysis Aggregation . 37

3.4 Overall Algorithm Flow Chart for Nonlinear Finite Element Analysis 39

3.5 Detailed View: theIntegrator::newStep() - Incremental Solution Techniques for Nonlinear

Finite Element Analysis . 40

3.6 Detailed View: Assembly of Global Equation System in theIntegrator::newStep() 41

3.7 Detailed View: theAlgorithm::solveCurrentStep() - Newton-Raphson Iterative Schemes for

Nonlinear Finite Element Analysis . 42

3.8 Parallel Activity Flow Diagram of Nonlinear Finite Element Analysis 44

3.9 Class Diagram of Domain Decomposition Analysis . 46

3.10 Communication Pattern of Actor-Shadow Models McKenna (1997) 49

3.11 Class Diagram for Parallel Finite Element Analysis . 51

3.12 Parallel Data Organization of SFSI Equation System . 54

3.13 Master–Slave design used for PDD development. 55

3.14 An example of the parameters passed to PARMETIS in a three processor case Karypis et al.

(2003). 66

3.15 Class Diagram: Major Container Classes for Data Redistribution 69

4.1 System Configuration of DataStar http://www.sdsc.edu/user services/datastar/ 72

4.2 Example Finite Element Model of Soil-Foundation Interaction (Indication Only, Real Model

Shown in Each Individual Section) . 75

4.3 FE Models (1,968 Elements, 7,500 DOFs) for Studying Soil-Foundation Interaction Problems 76

5

PDD Parallel FEM 6

4.4 FE Models (4,938 Elements, 17,604 DOFs) for Studying Soil-Foundation Interaction Problems 76

4.5 Partition and Repartition on 2 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs) . 77

4.6 Partition and Repartition on 2 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Ele-

ments, 7,500 DOFs) . 78

4.7 Partition and Repartition on 4 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs) . 78

4.8 Partition and Repartition on 4 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Ele-

ments, 7,500 DOFs) . 79

4.9 Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968

Elements, 7,500 DOFs) . 79

4.10 Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Ele-

ments, 7,500 DOFs) . 80

4.11 Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (4,938

Elements, 17,604 DOFs) . 80

4.12 Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (4,938 Ele-

ments, 17,604 DOFs) . 81

4.13 Timing Data of ITR Parametric Studies (1,968 Elements, 7,500 DOFs, Imbal. Tol. 5%) . 81

4.14 Relative Speedup of ITR=1e-3 over ITR=1e6 (1,968 Elements, 7,500 DOFs, Imbal. Tol. 5%) 82

4.15 Timing Data of ITR Parametric Studies (4,938 Elements, 17,604 DOFs, Imbal. Tol. 5%) . 82

4.16 4,035 DOFs Model, 2 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition 85

4.17 4,035 DOFs Model, 4 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition 85

4.18 4,035 DOFs Model, 8 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition 86

4.19 Timing Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5% 86

4.20 Absolute Speedup Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5% 87

4.21 Relative Speedup of PDD over Static DD on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5% 87

4.22 Finite Element Model of Soil-Foundation Interaction (4,938 Elements, 17,604 DOFs) . . . 88

4.23 Timing Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal

Tol 5% . 89

4.24 Absolute Speedup Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3,

Imbal Tol 5% . 90

4.25 Relative Speedup of PDD over Static DD on 4,938 Elements, 17,604 DOFs Model, ITR=1e-

3, Imbal Tol 5% . 91

4.26 4,938 Elements, 17,604 DOFs Model, 2 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 91

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 7

4.27 4,938 Elements, 17,604 DOFs Model, 4 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 92

4.28 4,938 Elements, 17,604 DOFs Model, 8 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 92

4.29 Finite Element Model of Soil-Foundation Interaction (9,297 Elements, 32,091 DOFs) . . . 93

4.30 Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal

Tol 5% . 94

4.31 Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5% . 95

4.32 Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-

3, Imbal Tol 5% . 96

4.33 9,297 Elements, 32,091 DOFs Model, 3 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 96

4.34 9,297 Elements, 32,091 DOFs Model, 5 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 97

4.35 9,297 Elements, 32,091 DOFs Model, 7 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5% . 97

4.36 9,297 Elements, 32,091 DOFs Model, 16 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5% . 98

4.37 9,297 Elements, 32,091 DOFs Model, 32 CPUs, PDD Partition/Repartition, ITR=1e-3,

Imbal Tol 5% . 98

4.38 Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal

Tol 20% . 100

4.39 Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 20% . 101

4.40 Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-

3, Imbal Tol 20% . 102

4.41 Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5% . 105

4.42 Performance of Globally Adaptive PDD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5% . 108

4.43 Performance of Globally Adaptive PDD on 20,476 Elements, 68,451 DOFs Model, ITR=1e-

3, Imbal Tol 5% . 109

4.44 Scalability Study on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal Tol 5% . . . 110

4.45 Scalability Study on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal Tol 5% . . . 111

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 8

4.46 Finite Element Model - 3 Bent SFSI, 56,481 DOFs, 13,220 Elements, Frequency Cutoff >

3Hz, Element Size 0.9m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1% 112

4.47 Finite Element Model - 3 Bent SFSI, 484,104 DOFs, 151,264 Elements, Frequency Cutoff

10Hz, Element Size 0.3m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1% 113

4.48 Finite Element Model - 3 Bent SFSI, 1,655,559 DOFs, 528,799 Elements, Frequency Cutoff

10Hz, Element Size 0.15m, Minimum G/Gmax 0.02, Maximum Shear Strain γ 5% 113

4.49 Scalability Study on 3 Bent SFSI Models, DRM Earthquake Loading, Transient Analysis,

ITR=1e-3, Imbal Tol 5%, Performance Downgrade Due to Increasing Network Overhead . 114

4.50 Relative Performance of PDD over DD, Shallow Foundation Model, Static Loading, ITR=1e-

3, Imbal Tol 5% . 115

4.51 Scalability of PDD, Static Loading, Shallow Foundation Model, ITR=1e-3, Imbal Tol 5% . 117

4.52 Relative Speedup of PDD over DD, Static Loading, Shallow Foundation Model, ITR=1e-3,

Imbal Tol 5% . 118

4.53 Full Range Scalability of PDD, Static Loading, Shallow Foundation Model, ITR=1e-3, Imbal

Tol 5%, Performance Downgrade Due to Increasing Network Overhead 120

5.1 Finite Element Mesh of Soil-Structure Interaction Model 135

5.2 Finite Element Mesh of Soil-Structure Interaction Model 136

5.3 Matrices N = 3336 (Continuum FEM) . 137

5.4 Matrices N = 5373 (Continuum FEM) . 137

5.5 Matrices N = 33081 (Continuum FEM) . 138

5.6 Matrices N = 8842 (Soil-Beam Static FEM) . 138

5.7 Matrices N = 8842 (Soil-Beam Dynamic FEM) . 139

5.8 Convergence of CG and PCG Method (3336 DOFs Model) 141

5.9 Convergence of CG and PCG Method (5373 DOFs Model) 141

5.10 Convergence of CG and PCG Method (33081 DOFs Model) 142

5.11 Convergence of CG and PCG Method (Soil-Beam Static Model) 143

5.12 Convergence of CG and PCG Method (Soil-Beam Dynamic Model) 143

6.1 Matrices N = 33081 (Continuum FEM) . 153

Jeremić and Jie version: 1. May, 2008, 15:22

List of Tables

4.1 Latency and Bandwidth Comparison (as of August 2004) 72

4.2 Technical Information of IA64 TeraGrid Cluster at SDSC 73

4.3 Material Constants for Soil-Foundation Interaction Model 74

4.4 Test Cases of Performance Studies . 84

4.5 Observation on Load Imbalance Tolerance %5 . 103

4.6 Best Performance Observed for ITR=0.001, Load Imbalance Tolerance %5 121

5.1 Matrices in FEM Models . 139

5.2 Performance of CG and PCG Method (Continuum FEM) 140

5.3 Performance of CG and PCG Method (Soil-Beam FEM) 144

6.1 Performance Study on SFSI Systems (N=33081) . 154

9

Chapter 1

Introduction – Adaptive Parallel Inelastic

Finite Element Simulations

1.1 Hypothesis

With the rapid development of computer software and hardware techniques, computing researchers nowa-

days have been exposed to a more demanding situation. More detailed and advanced models need to be

developed and extensive parametric studies have to be conducted by computation in order to meet applica-

tion requirements. Although the processing capability of the processor doubles every 18 months, perfectly

following Moore’s Law (Dongarra et al., 2003), unfortunately, the scaling of application performance has

not matched the scaling of hardware peak speed. How to bring scalable performance into our applications

has been addressed by many researchers in various fields.

Finite Element Method (FEM) is the most popular numerical method in computational mechanics.

It has been successfully used to simulate soil-pile interaction problems by many researchers. In order to

take advantage of advanced structural and geotechnical theories to simulate more realistic behaviors of

soil-structure system, complete 3D finite element models have been developed in this report .

Inherently, advanced nonlinear elastic-plastic constitutive models, which are capable of simulating com-

plicated system behaviors for either soil or structures, are computationally demanding. Sequential codes

on a single CPU machine are not capable of handling detailed models and parallelism becomes a necessity

to develop advanced realistic models which can meet the application requirements.

Many researchers have explored various approaches to parallelize sequential finite element codes. Gen-

erally speaking, these efforts can be regarded as follows: (Topping and Khan, 1996)

• The analysis domain may be physically divided into different subdomains and all subdomains will be

subject to same instructions during finite element computations. This is so-called explicit domain

decomposition approach, which is described as a Divide and Conquer algorithm.

• Alternatively, the system of equations for the whole analysis domain may be assembled and then

10

PDD Parallel FEM 11

solved in parallel without recourse to a physical partitioning of the problem.

There are numerous techniques for domain decomposition analysis (McKenna, 1997), either non-overlapping

or overlapping. Non-overlapping decomposition technique used in this research has naturally become more

popular in finite element analysis due to its straightforward formulation. Substructuring (Przemieniecki,

1986), iterative substructuring and FETI (Farhat and Roux, 1991a) (Finite Element Tearing and Intercon-

necting) are among those most popular methods based on non-overlapping domain decomposition.

The most important feature for nonlinear finite element calculations is the iterations required to achieve

equilibrium at both global and local computation levels. Elastic-plastic computation has been the most

expensive part in nonlinear finite element analysis. For FEM, all solution procedures of practical importance

are strongly rooted in the idea of advancing the solution by continuation. The basic idea is to follow the

equilibrium response of the structure as the control and state parameters vary by small amounts, which is so-

called loading stages for analysis. With each loading stage, iterative methods, such as Newton-Raphson, are

employed to get numerical results within specified tolerance. This is so-called global iterations. Increments

will be needed by iterative method to achieve convergence. In order to get material response compatible

with specific nonlinear constitutive models, we finally need to carry out local level integration for classic

incremental plasticity theory. Popular Backward Euler (Implicit) algorithm is always chosen, in which local

level iterations are required to return the stress state on the yield surface (Jeremić, 2004b).

Figure 1.1: Nested Hierarchy in Nonlinear Solution Methods (Felippa, 2004)

In order to achieve high performance, parallelism has to be discovered for both global and local level

iterations. Just one-step static domain decomposition on FE mesh graph at the very beginning of the

analysis does not suffice for inelastic FE computation. Local level iterations can consume more than 70%

of the total execution time and it imposes extra constraint on the graph partitioning algorithm.

A new Plastic Domain Decomposition (PDD) algorithm for inelastic finite element simulations is

proposed in this report . This PDD algorithm aims at an adaptive finite element domain partitioning-

repartitioning scheme to account for plasticity-induced local level load imbalance between processors.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 12

1.2 Scope of Study

The aim of this work is to develop an efficient parallel finite element algorithm for nonlinear simulations.

The proposed PDD algorithm is capable of detecting computational load imbalance as simulation advances.

Adaptive graph partitioning will be triggered to guarantee even computational load distribution amongst

processing units.

This report delivers a complete parallel implementation of OpenSees featuring the adaptive load bal-

ancing PDD algorithm. Object-Oriented principle has been strictly followed during software design and

coding phases. Parallel functionality has been introduced and Object-Oriented design enables convenient

future enhancement.

This report also includes the exploration of parallel equation solving in large scale SFSI problems.

Popular parallel solvers have been tested against equation system from real world simulations.

Finally, the software tool developed in this report is used to study the dynamic behavior of a prototype

SFSI system.

1.3 Summary of Contents

This report is divided into three parts: (I) theory and implementation, (II) parallel equation solving in finite

element calculations and (III) parallel finite element modeling of SFSI. It consists of eight chapters and

three appendices:

• Chapter 1. Introduction – Adaptive Parallel Inelastic Finite Element Simulations includes

a brief discussion how inelastic parallel finite element calculations differ from linear cases. Graph

partitioning as a powerful tool for parallel mesh-based scientific computing, is introduced in this

chapter. The challenge of how to load balance inelastic finite element computations using graph

partitioning algorithm is identified and the approach used in this report is previewed.

• Chapter 2. Plastic Domain Decomposition Algorithm introduces in details the multi-level multi-

objective graph partitioning algorithm used in this report . The question of how to utilize graph

partitioning algorithm in high performance mesh-based scientific computations is answered elabo-

rately. This chapter also describes a unified graph-based algorithm to achieve load balance for

parallel computations. The ParMETIS library provides fundamental functionality required by PDD

algorithm. Implementation of this library is discussed and parametric studies have been performed

to extract optimal number for the specific applications in this report .

• Chapter 3. Object-Oriented Design of PDD presents the complete implementation details of

the proposed PDD algorithm. The Object-Oriented framework of OpenSees has been adopted as

the foundation of proposed PDD algorithm. In order to maximize software reusing, the old sequen-

tial implementation of OpenSees has been introduced at the beginning of this chapter, followed by

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 13

the detailed discussion how parallel finite element implementation can be extended through an sys-

tematic Object-Oriented approach. C++ is solely used as the development language. Major class

abstractions are discussed and the whole parallel finite element algorithm is pictured using activity

diagrams. Interface implementation of OpenSees to ParMETIS is introduced and the element graph

data structure is described in full details. The issue of how to properly design container class for data

migration during parallel processing is also tackled in this chapter.

• Chapter 4. Performance Studies on PDD Algorithm shows the results of performance studies on

the proposed PDD algorithm. The SFSI model used in performance studies is showed. IBM eServer

and IA64 intel-based clusters are used to test the performance of the proposed PDD algorithm. The

emphasis is to expose the advantage of PDD algorithm over the classic Domain Decomposition al-

gorithm. Different model sizes and various number of CPUs have also been used to fully investigate

scalability of the PDD algorithm. It has been shown that the naive implementation of PDD does

not exhibit good scalability up to large number of CPUs. This chapter investigates the cause of

deficiency and addresses several factors that contributed to the bad performance. A new globally

adaptive algorithm has been added to the naive PDD implementation by introducing network com-

munication costs and application-related overheads to the performance cost model. The performance

and scalability of the newly improved algorithm has been investigated to show effectiveness of the

improved algorithm.

• Chapter 5. Application of Project-Based Iterative Methods in SFSI Problems gives a brief

overview of project-based iterative solvers. The algorithm details of some popular iterative solvers

have been discussed. Preconditioning techniques are introduced to improve the convergence of CG

and GMRES methods. Equation systems extracted from SFSI problems have been used to test the

effectiveness of iterative solvers.

• Chapter 6. Performance Study on Parallel Direct/Iterative Solving in SFSI extends the iterative

solving techniques to parallel equation system. Through the PETSc interface, consistent parallel

equation solving is implemented as part of the proposed PDD parallel OpenSees package. As well as

iterative solvers introduced in Chapter 5, popular parallel direct solvers such as MUMPS, SPOOLES

and SuperLU DIST are implemented in order to deliver the optimal equation solver for our prototype

SFSI simulations.

• Appendix A. Compilation of Parallel PDD on SMP-Clusters describes some necessary steps to

successfully compile PDD version of OpenSees on Linux/Unix clusters.

• Appendix B. Import New Element/Material/Load etc. to PDD Version OpenSees identifies

the necessary functions for which users have to provide implementations in order to introduce new

materials/element types to the parallel-ready PDD version of OpenSees.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 14

• Appendix C. Tcl Commands to Invoke Parallel Equation Solvers shows example scripts to use

the implemented parallel solvers.

1.4 Development Platform CONSOLID8

Developed parallel simulation program uses a number of numerical libraries. Namely. Graph partitioning

is achieved using ParMETIS libraries (Karypis et al.). Parts of the OpenSees framework (McKenna, 1997)

were used to connect the finite element domain. In particular, Finite Element Model Classes from OpenSees

(namely, class abstractions Node, Element, Constraint, Load and Domain) where used to describe the finite

element model and to store the results of the analysis performed on the model. In addition to that, an

existing Analysis Classes were used as basis for development of parallel PDD framework which is then used

to drive the global level finite element analysis, i.e., to form and solve the global system of equations in

parallel. In addition to those, Actor, ShadowActor, Channel and other important constructs developed

by McKenna (1997) were used as well (full description is available in this report). On a lower level,

a set of Template3Dep numerical libraries (Jeremić and Yang Jeremić and Yang (2002)) were used for

constitutive level integrations, nDarray numerical libraries (Jeremić and Sture Jeremić and Sture (1998))

were used to handle vector, matrix and tensor manipulations, while FEMtools element libraries from the

UCD CompGeoMech toolset (Jeremić Jeremić (2004a)) were used to supply other necessary libraries and

components. Parallel solution of the system of equations has been provided by PETSc set of numerical

libraries (Balay et al. Balay et al. (2001, 2004, 1997)).

Jeremić and Jie version: 1. May, 2008, 15:22

Part I

Theory and Implementation

15

Chapter 2

Plastic Domain Decomposition Algorithm

2.1 Introduction

Domain Decomposition approach is the most popular and effective method to implement parallel finite

element method. The underlying idea is to physically divide the problem domain into subdomains and

finite element calculations will be performed on each individual domain in parallel. Domain Decomposition

can be overlapping or non-overlapping. The overlapping domain decomposition method divides the problem

domain into several slightly overlapping subdomains. Non-overlapping domain decomposition is extensively

used in continuum finite element modeling due to the relative ease to program and organize computations

and is the one that will be examined in this report .

In general, a good non-overlapping decomposition algorithm should be able to

• handle irregular mesh of arbitrarily shaped domain.

• minimize the interface problem size by delivering minimum boundary connectivity, which will help

reducing the communication overheads.

The well-known idea of domain decomposition method can be found in a 1870 paper by the father

of domain decomposition, H.A. Schwarz (Rixena and Magoulès, 2007). Domain decomposition method is

also the underlying paradigm of substructuring methods developed in the sixties, which aim at reducing the

dimension of models in structural analysis by applying static condensation-type techniques to subdomains.

Other than static condensation, Farhat and Roux (1991b); Farhat (1991); Farhat and Geradin (1992)

proposed FETI (Finite Element Tearing and Interconnecting) method for domain decomposition analysis.

In FETI method, Lagrange multipliers are introduced to enforce compatibility at the interface nodes. Rigid

body modes are eliminated in parallel from each local problem and a direct scheme is applied concurrently

to all subdomains in order to recover each partial local solution. The contributions of these modes are then

related to the Lagrange multipliers through an orthogonality condition. This FETI method has been shown

that it can deliver high efficiency for parallel implicit transient simulations in structural mechanics (Crivelli

and Farhat, 1993).

16

PDD Parallel FEM 17

Domain decomposition itself has become a active topic as parallel processing techniques receive much

more attention in mathematics and engineering world during recent years. Domain decomposition was

revived as a natural paradigm for parallel solvers (Rixena and Magoulès, 2007). Many papers have discussed

two algorithms that are currently receiving much research effort, namely the FETI-DP (or Dual Primal Finite

Element Tearing and Interconnecting) method and the even more recent BDDC (or Balancing Domain

Decomposition by Constraints).

FETI-DP is the third generation FETI method (Bavestrello et al., 2007) developed for the fast, scalable,

and domain-decomposition-based iterative solution of symmetric systems of equations arising from the finite

element (FE) discretization of static, dynamic, structural and acoustic problems (Farhat et al., 2001, 2000).

BDDC, on the other hand, derives its formulation from substructuring method by enforcing constraints

associated with disjoint sets of nodes on substructure boundaries using constrained energy minimization

concepts (Dohrmann, 2003; Mandel and Dohrmann, 2003).

An early endeavor on dynamic computational load balancing was presented by McKenna (1997). Limited

number of examples show that run time, dynamic computational load balancing can indeed improve parallel

program performance in some cases, particularly when nonlinearities are involved.

Although many works have been presented on domain decomposition methods, the most popular meth-

ods such as FETI-type and BDDC all stem from the root of subdomain interface constraints handling.

The merging of iterative solving with domain decomposition-type preconditioning is promising as shown

by many researchers (Pavarino, 2007; Li and Widlund, 2007). Schwartz-type preconditioners for parallel

domain decomposition system solving have also shared part of the spotlight (Hwang and Cai, 2007; Sarkis

and Szyld, 2007).

In solid finite element methods, it has been assumed that the equation solving is the most computational

expensive part so it is totally reasonable that all focus has been set on equation solver during the past

decades.

Work presented in this report , however, has originated from the observation that for highly nonlinear

materials, the constitutive level computation can be at least equally costly as equation solving, if not more

expensive. The novelty of this report is to break out of the existing substructuring or FETI frameworks

to further address the fundamental load balance issue of parallel computing. Namely, in order to achieve

better parallel performance, we want to keep all processors equally busy. Load imbalance issue resulted

from nonlinear constitutive level computations is too important to be neglected. This report proposes the

Plastic Domain Decomposition algorithm which focuses on adaptive load balancing operation for nonlinear

finite elements.

From the implementation point of view, for mesh-based scientific computations, domain decomposition

corresponds to the problem of mapping a mesh onto a set of processors, which is well defined as a graph

partitioning problem (Schloegel et al., 1999).

Formally, the graph partitioning problem is as follows. Given a weighted, undirected graph G = (V ;E)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 18

for which each vertex and edge has an associated weight, the k-way graph partitioning problem is to split

the vertices of V into k disjoint subsets (or subdomains) such that each subdomain has roughly an equal

amount of vertex weight (referred to as the balance constraint), while minimizing the sum of the weights

of the edges whose incident vertices belong to different subdomains (i. e., the edge-cut).

In computational solid mechanics, the element graph is naturally used in parallel finite element method

due to the fact that elemental operation forms the basis of finite element method. On the other hand, for

material nonlinearity simulations, the element calculations represent the most computationally expensive

part. In order to facilitate consistent interfaces for computational load measuring and data migration,

element graph has been utilized as fundamental graph structure in this report , although it has been shown

that the node-graph can be used as well for structure dynamics problem and the element-cut partitioning

can make certain algorithms simpler (Krysl and Bittnar, 2001).

The graph partitioning problem is known to be NP-complete 1. Therefore, generally it is not possible

to compute optimal partitioning for graphs of interesting size in a reasonable amount of time. Various

heuristic approaches have been developed, which can be classified as either geometric, combinatorial,

spectral, combinatorial optimization techniques, or multilevel methods (Dongarra et al., 2003).

In finite element simulations involving nonlinear material response, static graph partitioning mentioned

above does not guarantee even load distribution among processors. Plastification introduces work load

that is much heavier than pure elastic computation. So for this kind of multiphase simulation, adaptive

computational load balancing scheme has to be considered to keep all processing units equally busy as

much as possible. Traditional static graph partitioning algorithm is not adequate to do multiphase parti-

tion/repartitioning. A parallel multilevel graph partitioner has been introduced in this research to achieve

dynamic load balancing for inelastic finite element simulations.

In this chapter, the algorithm of Plastic Domain Decomposition (PDD) is proposed. The adaptive

multi-level graph partitioning kernel of the PDD algorithm is implemented through the ParMETIS interface.

Studies are performed to extract optimal algorithmic parameters for our specific applications.

2.2 Inelastic Parallel Finite Element

The distinct feature of inelastic (elastic-plastic) finite element computations is the presence of two iteration

levels. In a standard displacement based finite element implementation, constitutive driver at each Gauss

point iterates in stress and internal variable space, computes the updated stress state, constitutive stiffness

tensor and delivers them to the finite element functions. Finite element functions then use the updated

stresses and stiffness tensors to integrate new (internal) nodal forces and element stiffness matrix. Then,

1The complexity class NP is the set of decision problems that can be solved by a non-deterministic Turing machine in

polynomial time. the NP-complete problems are the most difficult problems in NP (”non-deterministic polynomial time”) in

the sense that they are the smallest subclass of NP that could conceivably remain outside of P, the class of deterministic

polynomial-time problems. (http://en.wikipedia.org/wiki/NP-complete)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 19

on global level, nonlinear equations are iterated on until equilibrium between internal and external forces is

satisfied within some tolerance.

• Elastic Computations

In the case of elastic computations constitutive driver has a simple task of computing increment in

stresses (∆σij) for a given deformation increment (∆εkl), through a closed form equation (∆σij =

Eijkl∆εkl) It is important to note that in this case the amount of work per Gauss point is known in

advance. The amount of computational work is the same for every integration point. If we assume

the same number of integration points per element, it follows that the amount of computational

work is the same for each element and it is known in advance.

• Elastic-Plastic Computations

On the other hand, for elastic-plastic problems, for a given incremental deformation the constitutive

driver is iterating in stress and internal variable space until consistency condition is satisfied (F = 0).

The number of iterations is not known in advance. Initially, all Gauss points are in elastic range, but

as we incrementally apply loads, the plastic zones develop. For Gauss points still in elastic range,

there are no iterations, the constitutive driver just computes incremental stresses from closed form

solution. Computational load will increase significantly for integration of constitutive equations in

plastic range. In particular, constitutive level integration algorithms for soils, concrete, rocks, foams

and other granular materials are very computationally demanding. More than 70% of wall clock time

during an elastic-plastic finite element analysis is spent in constitutive level iterations. This is in

sharp contrast with elastic computations where the dominant part is solving the system of equations

which consumes about 80% of run time. The extent of additional, constitutive level iterations is not

known before the actual computations are over. In other words, the extent of elastic-plastic domain

is not known ahead of time.

The traditional preprocessing type of Domain Decomposition method (also known as topological DD)

splits domain based on the initial geometry and assigns roughly the same number of elements to every

computational node and minimizes the size of subdomain boundaries. This approach might result

in serious computational load imbalance for elastic-plastic problems. For example one domain might

be assigned all of the elastic-plastic elements and spend large amount of time in constitutive level

iterations. The other domains will have elements in elastic state and thus spend far less computational

time in computing stress increments. This results in program having to wait for the slowest domain

(the one with large number of elastic-plastic finite elements) to complete constitutive level iterations

and only proceed with global system iterations after that.

This illustrates a two-fold challenge with computational load balancing for inelastic simulations in

mechanics. These two challenges is described below in some more detail.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 20

2.2.1 Adaptive Computation

First, these computations are dynamic in nature. That is, the structure of elastic and elastic-plastic

domains changes dynamically and unpredictably during the course of the computation. For this reason,

a static decomposition computed as a pre-processing step is not sufficient to ensure the computational

load-balance of the entire computation. Instead, periodic computational load-balancing is required during

the course of the computation. The problem of computing a dynamic decomposition shares the same

requirements as that of computing the initial decomposition (i.e., balance the mesh elements and minimize

the inter-processor communications), while also requiring that the cost associated with redistributing the

data in order to balance the computational load is minimized. This last requirement prevents us from

simply computing a whole new static partitioning from scratch each time computational load-balancing is

required.

Often, the objective of minimizing the data redistribution cost is at odds with the objective of minimizing

the inter-processor communications. For applications in which the computational requirements of different

regions of the domain change rapidly, or the amount of state associated with each element is relatively

high, minimizing the data redistribution cost is preferred over minimizing the communications incurred

during parallel processing.

For applications in which computational load-balancing occurs very infrequently, the key objective of a

load-balancing algorithm is in obtaining the minimal inter-processor communications. For many application

domains, it is straightforward to select a primary objective to minimize (i.e., minimize whichever cost

dominates). However, one of the key issues concerning the elastic-plastic computation is that the number

of iterations between computational load-balancing phases is both unpredictable and dynamic. For example,

in the case of static problems, zones in the 3D solid may become plastic and then unload to elastic (during

increments of loading) so that the extent of plastic zone is changing. The change can be both slow

and rapid. Slow change usually occurs during initial loading phases, while the later deformation tends

to localize in narrow zones rapidly and the rest of the solid unloads rapidly (becomes elastic again).

The narrow, localized zone has heavy computational load on the constitutive level (in each integration

point within elements). Similar phenomena is observed in seismic soil-structure interaction computations

where stiff structure interacts with soft soil and elastic and elasto-plastic zones change significantly during

loading cycles. In this type of computation, it is extremely difficult to select the type of computational

load-balancing algorithm to employ. Furthermore, the preferred computational load-balancing algorithm is

liable to change during the course of the computation, and so the selection must be made dynamically.

2.2.2 Multiphase Computation

The second challenge associated with computational load-balancing elastic-plastic computations in geome-

chanics is that these are two-phase computations. That is, elastic-plastic computations follow up the

elastic computations. There is a synchronization phase between the computations, as only after the elastic

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 21

computation is finished is it possible to check if the elastic-plastic computation is required for a given

integration (Gauss) point within an element. For regions of the mesh in which this check indicates that

the elastic-plastic computation is necessary, lengthy elastic-plastic computations are then performed. The

existence of the synchronization step between the two phases of the computation requires that each phase

be individually load balanced. That is, it is not sufficient to simply sum up the relative times required for

each phase and to compute a decomposition based on this sum. Doing so may lead to some processors

having too much work during the elastic computation (and so, these may still be working after other pro-

cessors are idle), and not enough work during the elastic-plastic computation, (and so these may be idle

while other processors are still working), and vice versa. Instead, it is critical that every processor have an

equal amount of work from both of the phases of the computation.

2.2.3 Multiconstraint Graph Partitioning

Elastic-plastic FE computation can be understood as a two-phase calculation, which is also dynamic in

nature. Traditional graph partitioning formulations are not adequate to ensure its efficient execution on

high performance parallel computers. In this report very recent progresses from the graph partitioning

algorithm research will be investigated. We need new adaptive graph partitioning formulations, which can

compute adaptive partitioning-repartitionings that can satisfy an arbitrary number of balance constraints.

• Static Graph Partitioning

Given a weighted, undirected graph G = (V,E), for which each vertex and edge has an associated

weight, the k-way graph partitioning problem is to split the vertices of V into k disjoint subsets (or

subdomains) such that each subdomain has roughly an equal amount of vertex weight (referred to as

the balance constraint), while minimizing the sum of the weights of the edges whose incident vertices

belong to different subdomains (i.e., the edge-cut).

1. Geometric Techniques

Compute partitioning based solely on the coordinate information of the mesh nodes, without

considering edge-cut. Popular methods include, Coordinate Nested Dissection (CND or Recur-

sive Coordinate Bisection), Recursive Inertial Bisection (RIB), Space-Filling Curve techniques

and Sphere-Cutting approach.

2. Combinatorial Techniques

Attempt to group together highly connected vertices whether or not these are near each other

in space. That is combinatorial partitioning schemes compute a partitioning based only on the

adjacency information of the graph; they do not consider the coordinates of the vertices. They

tend to have lower edge-cuts but generally slower. Popular methods include, Levelized Nested

Dissection (LND) and Kernighan-Lin/Fiduccia-Mattheyses (KL/FM) partitioning refinement

algorithm, which needs an initial partition input to do swapping refinement.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 22

3. Multilevel Schemes

The multilevel paradigm consists of three phases: graph coarsening, initial partitioning, and

multilevel refinement. Firstly, we form coarse graph by collapsing together selected vertices of

the input graph. After rounds of coarsening, we get coarsest graph, on which an initial bisection

will be performed. Then the KL/FM algorithm can be used to refine the partition back to the

finest graph.

The multilevel paradigm works well for two reasons. First, a good coarsening scheme can hide

a large number of edges on the coarsest graph, which makes the task of computing high-quality

partitioning easier. Second reason, incremental refinement schemes such as KL/FM become

much more powerful in the multilevel context.

Popular algorithms include Multilevel Recursive Bisection and Multilevel k-Way Partitioning.

• Adaptive Graph Partitioning

For large scale elasto-plastic FE simulations, it is necessary to dynamically load-balance the compu-

tations as the analysis progresses due to unpredictable plastification inside the domain. This dynamic

load balancing can be achieved by using a graph partitioning algorithm.

Adaptive graph partitioning shares most of the requirements and characteristics of static graph

partitioning but also adds an additional objective. That is, the amount of data that needs to be

redistributed among the processors in order to balance the load should be minimized. If the vertex

weight represents the computational cost of the work carried by the vertex, another metric, size

of the vertex needs to be considered as well, which reflects distribution cost of the vertex. Thus,

the repartitioner should attempt to balance the partitioning with respect to vertex weight while

minimizing vertex migration with respect to vertex size.

Different approaches are available. One can simply compute a new graph from scratch, so called

Scratch-Remap Repartitioner, which expectedly introduces more data redistribution than necessary.

Diffusion-Based Repartitioner attempt to minimize the difference between the original partitioning

and the final repartitioning by making incremental changes in the partitioning to restore balance. This

method has been an very active topic during recent years, Dongarra et al. (2003) gives up-to-date

review.

• Multiconstraint Graph Partitioning

We can see traditional graph partitioning typically balances only a single constraint (i.e., the vertex

weight) and minimizes only a single objective (i.e., the edge-cut). If we replace the vertex weight,

which is a single number, with a weight vector of size m, then the problem becomes that of finding

a partitioning that minimizes the edge-cuts subject to the constraints that each of the m weights is

balanced across subdomains.

Multilevel graph partitioning algorithms for solving multiconstraint/multiobjective problems have

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 23

been very successful Schloegel et al. (1999). The software libraries METIS and ParMETIS are widely

used in computational mechanics research.

2.2.4 Adaptive PDD Algorithm

In this report , the Plastic Domain Decomposition (PDD) has been developed using multi-level, multi-

objective graph partitioning algorithm. This algorithm automatically monitors load balancing condition

and updates element graph structure accordingly as the simulation progresses. Element redistribution will

be triggered to achieve load balance when nonlinearity of materials brings down the parallel performance.

2.3 Adaptive Multilevel Graph Partitioning Algorithm

Kaypis and Kumar (1998) present a k-way multilevel partitioning algorithm whose run time is linear in

the number of edges |E| (i.e., O(|E|)); whereas the run time of multilevel recursive bisection schemes is

O(|E|logk) for k-way partitioning. Kaypis and Kumar (1998) show that the proposed multilevel partitioning

scheme produces partitioning that are of comparable or better quality than those produced by multilevel

recursive bisection, while requiring substantially less time. This paradigm consists of three phases: graph

coarsening, initial partitioning, and multilevel refinement. In the graph coarsening phase, a series of graphs

is constructed by collapsing together selected vertices of the input graph in order to form a related coarser

graph. This newly constructed graph then acts as the input graph for another round of graph coarsening,

and so on, until a sufficiently small graph is obtained. Computation of the initial bisection is performed

on the coarsest (and hence smallest) of these graphs, and so is very fast. Finally, partition refinement is

performed on each level graph, from the coarsest to the nest (i.e., original graph) using a KL/FM-type

algorithm Dongarra et al. (2003). Figure 2.1 illustrates the multilevel paradigm. This algorithm is available

in METIS Karypis and Kumar (1998b) which is used in this research to provide initial static partitioning.

Adaptive graph repartitioning algorithm can be used to achieve dynamic load balancing of multiphase

elastic-plastic finite element simulations. Adaptive graph partitioning differs from static graph partitioning

algorithm in the sense that one additional objective has to be targeted. That is, the amount of data the

needs to be redistributed among the processors in order to balance the load should be minimized. In order to

measure this redistribution cost, not only does the weight of a vertex, but also its size have to be considered.

In our implementation for the purpose of this research, the vertex weight represents the computational load

of each finite element, while the size reflects its redistribution cost. Thus, the application of adaptive graph

partitioning algorithm aims at balancing the partitioning with respect to vertex weight while minimizing

vertex migration with respect to vertex size.

A repartitioning of a graph can be obtained simply by partitioning a new graph from a scratch, which

tends to bring much more unnecessary communications because the old distribution has not been taken

into account. Diffusion-based Repartitioner is more popular in which one attempts to minimize the dif-

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 24

Figure 2.1: Multilevel Graph Partitioning Scheme Karypis et al. (2003)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 25

ference between the original partitioning and the final repartitioning by making incremental changes in

the partitioning to restore balance. Dongarra et al. (2003) gives a comprehensive review on this subject.

Adaptive repartitioning is available in ParMETIS Karypis et al. (2003) and Jostle Warshaw (1998). The

former is chosen in this research considering the fact that ParMETIS provides seamless interface for METIS

4.0 which makes the comparison between static and adaptive partitioning schemes more consistent.

PARMETIS is an MPI-based parallel library that implements a variety of algorithms for partitioning

and repartitioning unstructured graphs and for computing fill-reducing orderings of sparse matrices Karypis

et al. (2003). PARMETIS is particularly suited for parallel numerical simulations involving large unstructured

meshes. In this type of computation, PARMETIS dramatically reduces the time spent in communication

by computing mesh decompositions such that the numbers of interface elements are minimized. The

algorithms in PARMETIS are based on the multilevel partitioning and fill-reducing ordering algorithms

that are implemented in the widely-used serial package METIS Karypis and Kumar (1998a). However,

PARMETIS extends the functionality provided by METIS and includes routines that are especially suited

for parallel computations and large-scale numerical simulations. In particular, PARMETIS provides the

following functionality Karypis et al. (2003):

• Partition unstructured graphs and meshes.

• Repartition graphs that correspond to adaptively refined meshes.

• Partition graphs for multi-phase and multi-physics simulations.

• Improve the quality of existing partitioning.

• Compute fill-reducing orderings for sparse direct factorization.

• Construct the dual graphs of meshes.

Both METIS and PARMETIS are used in this research. METIS routines are called to construct static

partitioning for commonly used one-step static domain decomposition, while adaptive load-balancing is

achieved by calling PARMETIS routines regularly during the progress of nonlinear finite element simulations.

Adaptive load-balancing through domain repartitioning is a multi-objective optimization problem, in

which repartitionings should minimize both the inter-processor communications incurred in the iterative

mesh-based computation and the data redistribution costs required to balance the load. PARMETIS pro-

vides the routine ParMETIS V3 AdaptiveRepart for repartitioning the previous unbalanced computational

domain. This routine assumes that the existing decomposition is well distributed among the processors,

but that (due to plastification of certain nonlinear elements) this distribution is poorly load balanced.

Figure 2.2 Schloegel et al. (2000) shows common steps involved in the execution of adaptive mesh-

based simulations on parallel computers. Initially, the mesh is equally distributed on different processors.

As all elements are elastic at the very beginning (carrying the same amount of elemental calculation

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 26

Figure 2.2: A diagram illustrating the execution of adaptive scientific simulations on high performance

parallel computers Schloegel et al. (1999)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 27

work), computation load balance can be guaranteed with a even distribution. A number of iterations of

the simulation are performed in parallel, after which plasticity occurs in certain nonlinear elements thus

introducing some amount of load imbalance. A new partitioning based on the unbalanced domain is

computed to re-balance the load, and then the mesh is redistributed among the processors, respectively.

The simulation can then continue for another number of iterations until either more mesh adaptation is

required or the simulation terminates.

If we consider each round of executing a number of iterations of the simulation, mesh adaptation, and

load-balancing to be an epoch, then the run time of an epoch can be described by, Schloegel et al. (2000)

(tcomp + f(|Ecut|))n + trepart + g(|Vmove|) (2.1)

where n is the number of iterations executed, tcomp is the time to perform the computation for a

single iteration of the simulation, f(|Ecut|) is the time to perform the communications required for a single

iteration of the simulation, and trepart and g(|Vmove|) represent the times required to compute the new

partitioning and to redistribute the data. Here, the inter-processor communication time is described as a

function of the edge-cut of the partitioning and the data redistribution time is described as a function of

the total amount of data that is required to be moved in order to realize the new partitioning. Adaptive

repartitioning affects all of terms in Equation 2.1. How well the new partitioning is balanced influences

tcomp. The inter-processor communications time is dependent on the edge-cut of the new partitioning.

The data redistribution time is dependent on the total amount of data that is required to be moved in

order to realize the new partitioning. It is critical for adaptive partitioning schemes to minimize both the

edge-cut and the data redistribution when computing the new partitioning. Viewed in this way, adaptive

graph partitioning is a multi-objective optimization problem.

There are various approaches how to handle this dual-objective problem. In general, two approaches have

primarily been taken when designing adaptive partitioners. Schloegel et al. (2000) gives a comprehensive

review on this topic. The first approach is to attempt to focus on minimizing the edge-cut and to minimize

the data redistribution only as a secondary objective. This family of methods can be called scratch-remap

repartitioner. These use some type of state-of-the-art graph partitioner to compute a new partitioning from

scratch and then attempt to intelligently remap the subdomain labels to those of the original partitioning

in order to minimize the data redistribution costs. Since a state-of-the-art graph partitioner is used to

compute the partitioning, the resulting edge-cut tends to be extremely good. However, since there is no

guarantee as to how similar the new partitioning will be to the original partitioning, data redistribution costs

can be high, even after remapping. The second approach is to focus on minimizing the data redistribution

cost and to minimize the edge-cut as a secondary objective, or so-called diffusion-based repartitioner. These

schemes attempt to perturb the original partitioning just enough so as to balance it. This strategy usually

leads to low data redistribution costs, especially when the partitioning is only slightly imbalanced. However,

it can result in higher edge-cuts than scratch-remap methods because perturbing a partitioning in order to

balance it also tends to adversely affect its quality.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 28

These two types of repartitioner allow the user to compute partitioning that focus on minimizing

either the edge-cut or the data redistribution costs, but give the user only a limited ability to control the

tradeoffs among these objectives. This control of the tradeoffs is sufficient if the number of iterations that

a simulation performs between load-balancing phases (i.e. the value of n in Equation 2.1) is either very

high or very low. However, when n is neither very high nor very low, neither type of scheme precisely

minimizes the combined costs of f(Ecut|)n and g(|Vmove|). Another disadvantage exists for applications

in which n is difficult to predict or those in which n can change dynamically throughout the course of the

computation. As an example, one of the key issues concerning the elastic-plastic soil-structure interaction

computations required for earthquake simulation is that the number of iterations between load-balancing

phases is both unpredictable and dynamic. Here, zones in the 3D solid may become plastic and then unload

(during increments of loading) so that the extent of the plastic zone is changing. The change can be both

slow and rapid. Slow change usually occurs during initial loading phases, while the later deformation tends

to localize in narrow zones rapidly and the rest of the solid unloads rapidly (becomes elastic again) Jeremić

and Xenophontos (1999).

Schloegel et al. (2000) presents a parallel adaptive repartitioning scheme (called the Unified Repar-

titioning Algorithm) for the dynamic load-balancing of scientific simulations that attempts to solve the

precise multi-objective optimization problem. By directly minimizing the combined costs of f(Ecut|)n and

g(|Vmove|), the proposed scheme is able to gracefully tradeoff one objective for the other as required by the

specific application. The paper shows that when inter-processor communication costs are much greater in

scale than data redistribution costs, the proposed scheme obtains results that are similar to those obtained

by an optimized scratch-remap repartitioner and better than those obtained by an optimized diffusion-based

repartitioner. When these two costs are of similar scale, the scheme obtains results that are similar to the

diffusive repartitioner and better than the scratch-remap repartitioner. When the cost to perform data

redistribution is much greater than the cost to perform inter-processor communication, the scheme obtains

better results than the diffusive scheme and much better results than the scratch-remap scheme. They also

show in the paper that the Unified Repartitioning Algorithm is fast and scalable to very large problems.

2.3.1 Unified Repartitioning Algorithm

A key parameter used in Unified Repartitioning Algorithm (URA) is the Relative Cost Factor (RCF). This

parameter describes the relative times required for performing the inter-processor communications incurred

during parallel processing and to perform the data redistribution associated with balancing the load. Using

this parameter, it is possible to unify the two minimization objectives of the adaptive graph partitioning

problem into the unified cost function

|Ecut|+ α|Vmove| (2.2)

where α is the Relative Cost Factor, |Ecut| is the edge-cut of the partitioning, and |Vmove| is the total

amount of data redistribution. The Unified Repartitioning Algorithm attempts to compute a repartitioning

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 29

while directly minimizing this cost function.

The Unified Repartitioning Algorithm is based upon the multilevel paradigm that is illustrated in Fig-

ure 2.1, which can be described as three phases: graph coarsening, initial partitioning, and uncoarsen-

ing/refinement Schloegel et al. (2000). In the graph coarsening phase, coarsening is performed using a

purely local variant of heavy-edge matching. That is, vertices may be matched together only if they are

in the same subdomain on the original partitioning. This matching scheme has been shown to be very

effective at helping to minimize both the edge-cut and data redistribution costs and is also inherently more

scalable than global matching schemes.

2.3.2 Study of ITR in ParMETIS

The RCF in the URA implementation controls the tradeoff between two objectives, minimizing data re-

distribution cost or edge-cut. In our application, ParMETIS library has been linked to updated OpenSees

analysis model to facilitate the partitioning/adaptive repartitioning scheme. The RCF is defined as a single

parameter ITR in ParMETIS Karypis et al. (2003). This parameter describes the ratio between the time

required for performing the inter-processor communications incurred during parallel processing compared

to the time to perform the data redistribution associated with balancing the load. As such, it allows us to

compute a single metric that describes the quality of the repartitioning, even though adaptive repartitioning

is a multi-objective optimization problem. As recommended by Karypis et al. (2003), appropriate values to

pass for the ITR Factor parameter can be determined depending on the times required to perform

1. all inter-processor communications that have occurred since the last repartitioning, and

2. the data redistribution associated with the last repartitioning/load balancing phase.

Simply divide the first time measurement by the second time measurement. The result is the correct

ITR Factor. In case these times cannot be ascertained (e.g., for the first repartitioning/load balancing

phase), Karypis et al. (2003) suggests that values between 100 and 1000 work well for a variety of situations.

By default ITR is between 0.001 and 1000000. If ITR is set high, a repartitioning with a low edge-cut will

be computed. If it is set low, a repartitioning that requires little data redistribution will be computed.

Jeremić and Jie version: 1. May, 2008, 15:22

Chapter 3

Object-Oriented Design of PDD

3.1 Introduction

In this report , proposed PDD algorithm has been implemented by reworking (improving, updating) an exist-

ing sequential OpenSees framework (?). At the beginning of this chapter, the Object-Oriented approach to

programming the Finite Element Method is reviewed based on the existing (as of 2005) implementation of

OpenSees. Object-Oriented parallel design is then extended from the existing framework. Parallel algorithm

adopts Master-Slave paradigm and the new design of data structures have strictly followed the Object-

Oriented principle using C++ language. External utility libraries such as ParMETIS and PETSc have been

incorporated to provide seamless parallel numerical manipulations including partitioning/repartitioning and

equation solving.

In this chapter, the algorithm overview will be presented first. Then the implementation details in C++

will follow. The challenges of achieving load balancing in parallel Finite Element simulation have been

divided into two parts, global level equation solving and constitutive level iterations. This research presents

the PDD algorithm to demonstrate how to balance each stage systematically in applications.

3.2 Object-Oriented Parallel Finite Element Algorithm

Parts of OpenSees software framework has been used in this report . Object-Oriented design of OpenSees

enables software reuse that greatly shortens the development life cycle of application codes.

OpenSees is comprised of a set of classes and objects that represent models perform computations for

solving the governing equations, and provide access to processing results. There are four types of class

objects in OpenSees McKenna (1997).

• Modeling Classes are used to create the Finite Element Model Classes for a given problem.

• Finite Element Model Classes are used to describe the finite element model and to store the results of

the analysis performed on the model. Main class abstractions used in OpenSees are Node, Element,

30

PDD Parallel FEM 31

Constraint, Load and Domain. The relationship amongst these classes can be shown using the class

diagram Figure 3.2 using the Rumbaugh notation as shown in Figure 3.1 Rumbaugh et al. (1991).

• Analysis Classes are used to perform the finite element analysis, i.e., to form and solve the global

system of equations

• Numerical Classes are used to handle numerical operations in the solution procedure. Also included

in this category are data structure classes such as Vector, Matrix and Tensor.

Association (knows−a):

Class 1 Class 2

Multiplicity of Association:

exactly 1

many

Class:

Class Name Super Class

KEY

Inheritance (is−a):

Subclass1 Subclass2

Aggregation (has−a):

Assembly Class

Part 1 Class Part 2 Class

Figure 3.1: Rumbaugh Notation of-Object Oriented Design

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 32

Lo
ad

C
as

e
M

P
_C

on
st

ra
in

t
S

P
_C

on
st

ra
in

t
N

od
e

E
le

m
en

t

po
pu

la
te

s

cr
ea

te
s

is
 a

na
ly

ze
d

by
A

na
ly

si
s

M
od

el
B

ui
ld

er
D

om
ai

n

3D
 B

ric
ks

up
U

 C
ou

pl
ed

N
D

M
at

er
ia

l

N
ew

T
em

pl
at

e3
D

ep
T

em
pl

at
e3

D
ep

La
rg

e
D

ef
or

m
at

io
n

F
ig

u
re

3.
2:

C
la

ss
D

ia
gr

am
of

F
in

it
e

E
le

m
en

t
M

o
d
el

C
la

ss
es

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 33

3.2.1 Modeling Classes

The modeling classes are responsible of creating the necessary components of the finite element model,

such as nodes, elements, loads and constraints. There are a number of approaches proposed by various

researchers. In some works, the user has the responsibility to create the finite element model in a single

driver-type file Ross et al. (1992); Zeglinski et al. (1994); Cardona et al. (1994). In other works, an input

file containing the model data is used to be read by the main program to create the model Forde et al.

(1990); Dubois-Pelerin et al. (1992); Dubois-Pelerin and Zimmermann (1993); Menéntrey and Zimmermann

(1993). Graphical interface for building models visually has also been proposed Ostermann et al. (1995);

Mackie (1995).

In this research, the existing ModelBuilder interface class is reused to facilitate the finite element

model construction. As shown in Figure 3.2, the ModelBuilder is associated with a single finite element

Domain object. The interface (pure virtual function) buildFE Model() must be redefined depending on

the specific type of finite element model users want to build.

In parallel processing, PartitionedModelBuilder is used instead, in which the building process includes

higher level control of building Subdomains from the PartitionedDomain. For each Subdomain, the

PlaneFrameModelBuilder-type is invoked to build the finite element model on each Subdomain.

The Object-Oriented interface design of ModelBuilder through pure virtual function provides a con-

sistent framework from which all kinds of engineering model can be readily extended.

3.2.2 Finite Element Model Class

In most of the works presented, main class abstractions used to describe a finite element model are: Node,

Element, Constraint, Load and Domain Forde et al. (1990); Zimmermann et al. (1992); Dubois-Pelerin

et al. (1992); Dubois-Pelerin and Zimmermann (1993); Menéntrey and Zimmermann (1993); Pidaparti and

Hudli (1993); Cardona et al. (1994); Chudoba and Bittnar (1995); Zahlten et al. (1995); Rucki and Miller

(1996).

Node

The most important feature of the Node class is the associativity with DOF class which contains the degree

of freedoms of any specific instance of the Node class. The response quantities such as displacements

of each DOF object will be stored in the Node class. Routines are available to set/get those solution

quantities.

Element

The functionality of an Element object is to provide the tangent stiffness, mass and the residual force

corresponding to current loadings. Element class contains reference to its associated Node objects.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 34

Element class is one of the most fundamental abstractions in Object-Oriented finite element software

design. In this research, Element also acts as a container for material models, which is critical for

simulations with nonlinear materials. Chudoba and Bittnar (1995) proposed a MaterialPoint object which

is associated with GaussPoint object. In Zahlten et al. (1995), class abstractions such as cross section,

material point, material law, yield surface, hardening rule and flow rule are introduced to model complicated

materials within the Element class in an Object-Oriented flavor.

Jeremić and Yang (2002) present the complete formulation of Template3Dep material class, which

is wrapped inside the Element class to enable a consistent interface for complex elastic-plastic material

modeling.

Constraint

There are two types of constraints in finite element simulations,

1. Single-Point constraints, which are applied to a specific DOF object;

2. Multi-Point constraints, which describe the relationship between more than one DOF objects.

In current implementation of OpenSees, the two classes SP Constraint and MP Contraint are designed

but they do not handle the constraints. These two classes are responsible of setting up relations between

Nodes and the constrained DOF Groups. This will be covered shortly in Analysis class design.

Load

There are also two types of loads that are commonly seen in finite element analysis:

1. node loads that act on specific Nodes;

2. element loads that act on specific Elements, which can be due to body forces, surface tractions,

initial stresses and temperature gradients.

In the current implementation of OpenSees, three extra classes are introduced to handle loading condi-

tions, LoadPattern, NodalLoad and ElementLoad. The LoadPattern is a container class that provides

methods in its interface to allow NodalLoad and ElementalLoad objects to be created, traversed and

removed. As shown in Figure 3.2, each NodalLoad or ElementalLoad object is associated with a Node

or Element object and is responsible of applying nodal or elemental loads to that object.

Domain

The Domain class is the most important container class that is responsible of holding all components of

the finite element model, i.e. all the Nodes, Elements, Constraints and Loads. Domain class acts as

the interface between Analysis class and all the individual components of the finite element model. The

interface of Domain enables component creation, information access and component removal.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 35

3.2.3 Analysis

The Analysis class (McKenna, 1997) is responsible for forming and solving the governing equations for the

finite element model. As for nonlinear problems, incremental solution techniques are required and iterative

schemes such as Newton-Raphson needed to solver the nonlinear system of equations.

For incremental solution algorithm, the computational tasks are more involved for the finite element

analysis.

• Assign equation numbers and map these to the nodal DOFs. This step can be of significant influence

on the bandwidth of the coefficient matrix, which is inherently sparse due to the compact support of

finite element formulation.

• Form the matrix equations using contributions from elements and nodes.

• Apply the constraints, which may involve transforming the element and nodal contributions or adding

additional terms and unknowns to the matrix equations depending the method employed to handle

constraints.

• Solve the matrix equations for the incremental nodal displacements.

• Determine the internal state and stresses in the elements.

The Object-Oriented design of the Analysis class is done by firstly breaking down the main tasks

performed in a finite element analysis, abstracting them into separate classes, and then specifying the

interface for these classes. The Analysis class is an aggregation of all the sub-functionality classes of

following types:

1. SolutionAlgorithm class describes the complete computation procedure (steps) in the analysis.

2. AnalysisModel is a container class that stores and provides access to the following types of classes:

(a) DOF Group class represents the DOF at the Nodes or new DOF introduced into the analysis

to enforce the constraints;

(b) FE Element class represents the real Elements in the Domain or they are introduced to add

stiffness and/or load to the system of equations in order to enforce the constraints.

It is worthwhile to mention that the FE Elements and DOF Groups have very important

design implications although they might seem redundant at the first sight. The significance

comes from the facts that

i. they record the mapping between DOFs and equation numbers in the global system which

greatly simplifies the interfaces of Node and Element class;

ii. they also provide the interfaces for forming tangent and residual vectors which are used to

form the global system of equations;

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 36

iii. they are major utility classes of handling constraints.

3. Integrator defines how the FE Elements and DOF Groups contribute to the system of equations

and how the response quantities should be updated given the solution to the global system of

equations.

4. ConstraintHandler handles the constraint by creating adequate FE Elements and DOF Groups.

5. DOF Numberer maps the equation number to the DOFs in the DOF Groups.

6. SystemOfEqn encapsulates the global system of equations.

The aggregation of the Analysis object is shown in Figure 3.3.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 37

S
ys

te
m

O
fE

qn
D

om
ai

n
A

na
ly

si
s

S
ta

tic
A

na
ly

si
s

T
ra

ns
ie

nt
A

na
ly

si
s

D
O

F
_N

um
be

re
r

C
on

st
ra

in
tH

an
dl

er
A

na
ly

si
sM

od
el

S
ol

ut
io

nA
lg

or
ith

m
In

te
gr

at
or

M
in

iD
eg

re
e

R
C

M

P
en

al
ty

La
gr

an
ge

T
ra

ns
fo

rm
at

io
n

E
qn

S
ol

nA
lg

or
ith

m

N
ew

to
nR

ap
hs

on
Li

ne
ar

In
cr

em
en

ta
lIn

te
gr

at
or

T
ra

ns
ie

nt
In

te
gr

at
or

S
ta

tic
In

te
gr

at
or

N
ew

m
ar

k
D

O
F

_G
ro

up
F

E
_E

le
m

en
t

S
ol

ve
r

Li
ne

ar
S

O
E

P
et

sc
S

O
E

P
et

sc
S

ol
ve

r

Li
ne

ar
S

ol
ve

r

F
ig

u
re

3.
3:

C
la

ss
D

ia
gr

am
of

A
n
al

ys
is

A
gg

re
ga

ti
on

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 38

Traditional program flow diagrams are used to describe how is the nonlinear finite element algorithm

control flow implemented in OpenSees. These flow charts are organized as following:

Figure 3.4 shows the overall analysis algorithm flow for nonlinear finite elements.

Then this overall analysis flow is broken down into detailed subroutines, such as theIntegrator::newStep()

and theAlgorithm::solveCurrentStep().

• Figure 3.5 explains in detail the function flow of theIntegrator::newStep(), which illustrates the (fairly

standard) incremental finite element solution techniques implemented in OpenSees.

• Figure 3.6 shows the function flow of forming the tangent stiffness matrix, which is a loop assembling

the global equation system involved in function theIntegrator::newStep().

• Figure 3.7 further describes the Newton-Raphson type iterative solution schemes involved in function

theAlgorithm::solveCurrentStep().

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 39

F
ig

u
re

3.
4:

O
ve

ra
ll

A
lg

or
it
h
m

F
lo

w
C
h
ar

t
fo

r
N

on
lin

ea
r

F
in

it
e

E
le

m
en

t
A

n
al

ys
is

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 40

Figure 3.5: Detailed View: theIntegrator::newStep() - Incremental Solution Techniques for Nonlinear Finite

Element Analysis

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 41

Figure 3.6: Detailed View: Assembly of Global Equation System in theIntegrator::newStep()

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 42

Figure 3.7: Detailed View: theAlgorithm::solveCurrentStep() - Newton-Raphson Iterative Schemes for

Nonlinear Finite Element Analysis

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 43

Finite element simulations inherently are element-based operations, so little modification is needed to

parallelize the algorithms described above, although special attention has to be paid to synchronize the

computation among different processors. Figure 3.8 shows the activity flow for parallel nonlinear finite

element simulations.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 44

Figure 3.8: Parallel Activity Flow Diagram of Nonlinear Finite Element Analysis

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 45

3.2.4 Object-Oriented Domain Decomposition

There are three most notable designs of Domain Decomposition method in literature McKenna (1997).

1. Sause and Song (1994) presents an Object-Oriented design for linear static analysis using substruc-

turing. The interface is restricted to substructuring or FETI Farhat and Roux (1991a) only, and

repeated geometry limits the applicability of this design to large problems.

2. Archer (1996) proposes a SuperElement class that is a subclass of Element and has a Domain

class aggregated. This design is conceptually inappropriate and it results excessive method calls as

methods that are for the SuperElement must be called by the SuperElement on the associated

Domain McKenna (1997).

3. Miller and Rucki (1993) introduces the Partition class which is associated with an Algorithm class.

The Algorithm class is responsible for updating the state of a Partition so that it will be in equilib-

rium. Again, this design is good for substructuring type Domain Decomposition analysis. If we want

to solve a problem before the interface solution can be determined, the design fails.

The current design of OpenSees McKenna (1997) proposes many new classes to facilitate flexible

Object-Oriented Domain Decomposition. The main abstractions include PartitionedDomain, DomainDe-

compAnalysis, DomainDecompSolver Subdomain, DomainPartitioner and GraphPartitioner. The

class diagram is shown in Figure 3.9.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 46

S
ys

te
m

O
fE

qn

D
om

ai
nP

ar
tit

io
ne

r

D
O

F
_N

um
be

re
r

C
on

st
ra

in
tH

an
dl

er
A

na
ly

si
sM

od
el

S
ol

ut
io

nA
lg

or
ith

m
In

te
gr

at
or

M
in

iD
eg

re
e

R
C

M

P
en

al
ty

La
gr

an
ge

T
ra

ns
fo

rm
at

io
n

E
qn

S
ol

nA
lg

or
ith

m

N
ew

to
nR

ap
hs

on
Li

ne
ar

In
cr

em
en

ta
lIn

te
gr

at
or

T
ra

ns
ie

nt
In

te
gr

at
or

S
ta

tic
In

te
gr

at
or

N
ew

m
ar

k
D

O
F

_G
ro

up
F

E
_E

le
m

en
t

S
ol

ve
r

Li
ne

ar
S

O
E

P
et

sc
S

O
E

P
et

sc
S

ol
ve

r

Li
ne

ar
S

ol
ve

r

S
ub

do
m

ai
n

E
le

m
en

t
D

om
ai

n

P
ar

tit
io

ne
dD

om
ai

n

G
ra

ph
P

ar
tit

io
ne

r

D
om

ai
nD

ec
om

pA
na

ly
si

s

T
ra

ns
ie

nt
D

D
A

na
ly

si
s

S
ta

tic
D

D
A

na
ly

si
s

A
na

ly
si

s

F
ig

u
re

3.
9:

C
la

ss
D

ia
gr

am
of

D
om

ai
n

D
ec

om
p
os

it
io

n
A

n
al

ys
is

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 47

PartitionedDomain

The PartitionedDomain class is a subclass of Domain whose objects can be partitioned into Subdomain

objects. Aside from common functionality inherited from Domain, PartitionedDomain class provides

methods for partitioning the Domain and retrieving information from Subdomains. PartitionedDomain

the aggregation of Subdomains and is the major containing class in master process.

DomainPartitioner

The DomainPartitioner class is responsible for performing the actual operation to split the Partitioned-

Domain. The DomainPartitioner will call its associated GraphPartitioner to partition the Partitioned-

Domain. It also provides the methods to migrate Elements, Nodes, Constraints, Loads amongst Sub-

domains.

DomainPartitioner is one of the most important utility class in OpenSees in the sense that all parti-

tioning routine and data migration operations will be rooted from this class.

GraphPartitioner

This class utilizes external graph partitioner to color the finite element connectivity graph, which will be

constructed from the PartitionedDomain. The result will be fed back to DomainPartitioner to facilitate

subsequent data distribution.

GraphPartitioner introduces graph partitioning into OpenSees and the main functionality of this class

is to call API and provide necessary data structures from the specific application.

Subdomain

The Subdomain class inherits from both Element and Domain. This has a dual-level design implication:

1. for the top PartitionedDomain, superclass Element is a proxy class of subclass Subdomain, in the

sense that all the relevant operations on Elements invoked by PartitionedDomain will be redirected

to the specific Subdomain;

2. for any specific Subdomain, it inherits all the interfaces of Domain to do all the computations

required by PartitionedDomain.

3.2.5 Parallel Object-Oriented Finite Element Design

There has been much effort by researchers on parallel implementation of finite element computations, which

can be categorized into either domain decomposition methods or parallel equation solving.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 48

Domain decomposition is favored by many researchers due to its nice “divide and conquer” approach.

The subdomains in the domain decomposition method are each assigned to a processing node, which will

perform all the computations on that subdomain.

Of the domain decomposition methods, the substructuring method has been the most popular choice

although other methods such as iterative substructuring Carter et al. (1989) and FETI (Finite Element

Tearing and Interconnecting) Farhat and Roux (1991a); Farhat and Crivelli (1994) have also been used. In

the substructuring method presented, static condensation is typically performed on the assembled system

of equations.

Earlier works on parallel processing for inelastic mechanics focused on structural problems. We mention

work by Noor et al. (1978); Utku et al. (1982); Storaasli and Bergan (1987) in which they used substruc-

turing to achieve partitions. Fulton and Su (1992) developed techniques to account for different types of

elements but used substructures of same element types (non–balanced computations). Hajjar and Abel

(1988) developed techniques for dynamic analysis of framed structures with the objective of minimizing

communications. Klaas et al. (1994) developed parallel computational techniques for elastic–plastic prob-

lems but tied the algorithm to the specific multiprocessor computers used (and specific network connectivity

architecture). Farhat (1987) developed the so–called Greedy domain partitioning algorithm but stayed short

of using redistribution of domains as a function of developed nonlinearities.

The major parallel programming model in OpenSees (McKenna, 1997) is the so-called Actor model,

which is a mathematical model of concurrent computation that has its origins in Hewitt et al. (1973) .

Actors Agha (1984) are autonomous and concurrently executing objects which execute asynchronously.

Actors can create new actors and can send messages to other actors. The Actor model is an Object-

Oriented version of message passing in which the Actors represent processes and the methods sent between

Actors represent communications.

The Actor model adopts the philosophy that everything is an Actor. This is similar to the ev-

erything is an Object philosophy used by object-oriented programming languages, but differs in that

object-oriented software is typically executed sequentially, while the Actor model is inherently concurrent

(http://en.wikipedia.org/wiki/Actor model).

An Actor is a computational entity with a behavior such that in response to each message received it

can concurrently:

• send a finite number of messages to (other) Actors;

• create a finite number of new Actors;

• designate the behavior to be used for the next message received.

Note that there is no assumed sequence to above actions and that they could in fact be carried out in

parallel.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 49

Communications with other Actors occur asynchronously (i.e. the sending Actor does not wait until

the message has been received before proceeding with computation), which is the unblocking behavior.

Messages are sent to specific Actors, identified by address (sometimes referred to as the Actor’s

“mailing address”). As a result, an Actor can only communicate with Actors for which it has an address

which it might obtain in the following ways:

• The address is in the message received;

• The address is one that the Actor already had, i.e. it was already an “acquaintance”;

• The address is for a just created Actor.

The Actor model is characterized by inherent concurrency of computation within and among Actors,

dynamic creation of Actors, inclusion of Actor addresses in messages, and interaction only through direct

asynchronous message passing with no restriction on message arrival order.

In order to minimize the changes to the sequential Domain Decomposition design presented in previous

sections, McKenna (1997) introduces the Shadow class. A Shadow object is an object in an Actor’s

local address space. Each Shadow is associated with one Actor or multiple Actors in the case of an

aggregation. The Shadow object represents the remote object to the objects in the local Actor’s space.

The Shadow object is responsible for sending an appropriate message to the remote Actor or Actors if

broadcasting. The remote Actor(s) will then, if required, return the result to the local Shadow object,

which in turn replies to the local object. The communication process is shown in Figure 3.10.

Figure 3.10: Communication Pattern of Actor-Shadow Models McKenna (1997)

Some other new classes of parallel finite element programming are:

• Channel is the bridge through which the Actors and Shadows can communicate.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 50

• Address represents the location of a Channel object in the machine space. Channel objects

send/receive information to/from other Channel objects, whose locations are given by the Address

objects.

• MovableObject is an object which can send its state from one actor process to another.

• ObjectBroker is an object in a local actor process for creating new objects.

• MachineBroker is an object in a local actor process that is responsible for creating remote actor

processes at the request of Shadow objects in the same local process.

The relation between these classes is shown in Figure 3.11.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 51

A
ct

or
S

ub
do

m
ai

n

A
ct

or
S

ha
do

w

O
bj

ec
tB

ro
ke

r

cr
ea

te
s

M
ac

hi
ne

B
ro

ke
r

S
ha

do
w

S
ub

do
m

ai
n

S
ub

do
m

ai
n

S
ub

do
m

ai
n

M
P

I_
C

ha
nn

el

C
ha

nn
el

A
dd

re
ss

C
ha

nn
el

M
ov

ab
le

O
bj

ec
t

se
nd

s

E
le

m
en

t
N

od
e

Lo
ad

C
on

st
ra

in
t

F
ig

u
re

3.
11

:
C
la

ss
D

ia
gr

am
fo

r
P
ar

al
le

l
F
in

it
e

E
le

m
en

t
A

n
al

ys
is

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 52

3.3 Dual-Phase Adaptive Load Balancing

From the Figure 3.7, one can easily identify two computational phases that are fundamental to nonlinear

elastic-plastic finite element simulations. One is well known as global level equation solving and the other is

local level elemental calculations during which the elemental update happens for each element. In nonlinear

elastic-plastic finite element simulations, the local computational phase can be much more expensive than

the global equation solving phase due to the presence of complex material models and nonlinearity.

In this report , the implementation of proposed PDD algorithm has considered load balancing issues on

both elemental level elastic-plastic computations and global level equation solving.

3.3.1 Elemental Level Load Balancing

The load balancing operation on constitutive level is built on the foundation of adaptive multilevel graph

partitioning algorithm available through ParMETIS.

In this report , element-based graph is constructed from the Finite Element mesh on which the graph

partitioning algorithm acts on to obtain partitions and/or repartitions. Each element will be assigned a

vertex tag for identification.

When two elements at least share a single node, we assign an edge to both vertices because the

element graph is deemed to be undirected, which means the edge is equally identified by two vertices

without ordering required.

We creatively specify vertex weight to represent elemental level computational load for each vertex

(element). In the implementation of this report , the vertex weight will be automatically updated as simu-

lation progresses to reflect element computation cost. Performance timing has been added for constitutive

update routines and the graph data structure will be refreshed every single iteration.

The last metric used is the vertex size of each vertex which basically contains the information that

how much memory each vertex (element) requires in order to reproduce itself to other processes during

data distribution. Adaptive load balancing is a multi-objective operation in the sense that both edge cut

and data migration cost must be minimized simultaneously. The vertex size exactly describes the size of

data that need to be shipped via communication. This metric must be correctly obtained for all available

element types in order for the multi-objective load balancing algorithm to ensure the best performance.

3.3.2 Equation Solving Load Balancing

Parallel equation solving algorithm falls into two major different categories, direct solver and iterative solver.

Direct solver stems from Gaussian-type elimination and effective elimination tree is determined by the

sparsity pattern of the stiffness matrix. Load balancing issue is addressed inherently when forming the

elimination tree. Various packages such as SPOOLES and SuperLU provide scalable direct solutions to

parallel equation systems. Chapter 5 discusses in further details about parallel direct solvers that are

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 53

available as part of the release of this report .

Iterative solver has been the focus of this report in the sense that special care has been paid to

achieve dynamic load balancing for each partition/repartition. The kernel of project-based iterative solvers

is matrix-vector multiply. The issues of how to evenly distribute the stiffness matrix in parallel among

different processors and how to reorder the sparse matrix to reduce data communications have been the

focus of this report .

In order to achieve load balancing for parallel iterative solvers, parallel matrix/vector storage scheme

and sparse matrix ordering are key factors. In the implementation of this report , even row-distribution of

stiffness matrix among processing units is assumed. As shown in Figure 3.12, each processing unit has equal

number of rows stored locally. The right hand side of the system is the force vector, which will be replicated

for each processing unit. In this way, one can expect fastest matrix-vector multiply with the least amount

of data needed to be communicated through network. As matrix-vector multiply is performed in parallel,

load balancing issue is related to the number of nonzero numbers of the sparse stiffness matrix, which

directly determines how many floating point multiplications are needed. In finite element computations,

this nonzero pattern is determined by DOF numbering. Bandwidth reducing numbering scheme, or matrix

ordering scheme, such as RCM Dongarra et al. (2003), can effectively lead to a sparse pattern that has

similar number of nonzero elements on majority of rows as shown in Figure 3.12.

Finite element method inherently possesses compact support. Off-diagonal data of the stiffness matrix

need to be synchronized among different processors. In order to reduce the extra overhead involved, in this

report , several implementation solutions have been considered.

• Graph Partitioning Phase. As stated in previous chapters, minimizing edge-cut is one of the main

objectives of the partitioning operation on the element graph. One extra benefit is that the bandwidth

of the stiffness matrix will be greatly reduced. The number of nodes that need to be synchronized

will be greatly reduced.

• DOF Numbering Phase. This phase is to renumber the DOFs of the finite element model after

data redistribution in order to make sure contributions from local elements will sit on rows that are

stored locally. This is done every time when the data migration is triggered. The idea is to start

numbering the DOFs from local elements in Processor 1 to local elements in Processor N. In this

way, when the global matrix is formed, local element stiffness matrix will always become clustered

along the diagonal.

3.4 Object-Oriented Design of PDD

The parallel design of PDD basically follows Master-Slave algorithm structure as shown in Figure 3.13 and

MPI has been adopted to facilitate inter-processor communications. The Actor/Shadow model described

in previous sections is the used in PDD implementation and does nicely interact with parts of OpenSees

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 54

Proc 0

Proc 1

Proc 2

Proc N

......

Communication P0 <−> P1

Communication P2 <−> P3

Communication P1 <−> P2

Figure 3.12: Parallel Data Organization of SFSI Equation System

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 55

PartitionedDomain

Domain

ActorSubdomain

Actor Subdomain

ActorSubdomain

Actor Subdomain

ShadowSubdomain ShadowSubdomain

MPI Master−Slave Communication MPI Master−Slave Communication

MPI Slave−Slave
Communication

Master Process

Slave ProcessSlave Process

Figure 3.13: Master–Slave design used for PDD development.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 56

framework, which uses Actor and Shadow classes to facilitate the inter-process communication between

master and slave processes.

• Master Process

Master process assumes the role to orchestrate the whole computation process. OpenSees uses tcl

as an interpreter (or any other interpreted language that can be embedded into c or C++) to read

input scripts from user. In parallel implementation of described here, master process is responsible

for establishing the whole model for analysis and then distributing data among sub-processors. An

important improvement in this report is that the master does not actually create all finite element

objects, whose memory space will only be allocated after they are sent to subdomains. This design

helps avoid the high memory requirement on the master side. Initial partitioning is done solely by

master process or in parallel by all working processes. Data movement is coordinated by the master

process, in which a complete element graph is kept intact.

As for repartitioning, the master process is still responsible for issuing commands to migrate data

from this subprocessor to another even though the data is not in master.

• Slave Process

The actor model has been used and modifications have been added to avoid unnecessary data com-

munications. Basically speaking, actors in slave processes will be waiting for orders till master issues

one and then do corresponding work on their own copy of data. The original design in OpenSees

framework has disabled slave to initiate communication, which means in order for a sub-processor

to communicate with another sub-processor, it has to send all the data back to the master process

first. This is highly inefficient and needed to be redeveloped (improved). In this research actor model

has been implemented to enable direct communications between sub-processes and this improvement

greatly reduced unnecessary communications.

All of the class designs for sequential version of OpenSees can be reused in parallel version following the

Object-Oriented paradigm. There are some very important additions however in order to facilitate master-

slave parallel processing. In this section, these classes will be revisited and updated/changes/improvements

originally developed during this research will be explained thereafter.

• PartitionedDomain

The PartitionedDomain class basically inherits all functionality from the Domain class in sequential

version. This class acts as a container class in the master process. It differs from Domain class

in the respect that all actions performed on the domain will be propagated to all subdomains when

doing parallel processing.

• Subdomain

The Subdomain is a child class of Domain. This class will be instanced by each slave process and

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 57

it covers all functionality of the Domain class in sequential version. It can be called as an instance

of Domain taking care of components only for the local slave process.

• ActorSubdomain & ShadowSubdomain

The Actor/Shadow Subdomain classes are the most important classes for parallel version OpenSees.

They are assuming the roles to initiate and facilitate all communications between master and slave

processes. Both Actor/Shadow Subdomain will be instanced automatically when user creates slave

processes.

ShadowSubdomain sits on master process. The function of this class is to represent a specific slave

process in master process. Master does not directly interact with slave. Whatever action that needs

to be performed by the slave process will be issued to ShadowSubdomain. This extra layer smooths

the communication between master and slave nodes.

On the other hand, ActorSubdomain sits on slave process and it hides master from slave nodes.

All commands from master node will be received by ActorSubdomain and ActorSubdomain will

match the command with some actions performed by Subdomain.

Actor/Shadow Subdomain are extremely important classes in the parallel implementation of this

report . They carry all communication functionality required to finish the partition and adaptive

repartition.

• Channel

Channel is the class that really does the job of sending/receiving data between processors. Only

MPI channel has been used in this report . Specific data structure, such as ID (integer array), vector

(double array) or matrix needs to provide its own implementation for send/receive functionality.

• FEMObjectBroker

This class is instanced only at slave processors, which is in charge of creating new model data for

subdomains. This design isolates model creation from communication classes.

• Address

Address class identifies parallel processes. With MPI channel used, the address corresponds to global

process ID.

• DomainPartitioner

DomainPartitioner assumes the responsibilities of invoking the GraphPartitioner and feeding nec-

essary data to finish the partition/repartition. This class will also be in charge of data migration after

partition/repartition is done.

• SendSelf & RecvSelf

These two should be called functions rather than classes. SendSelf & RecvSelf are functions

implemented to provide copy of model data to finish sending/receiving operations.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 58

The old parallel design of OpenSees is not capable of performing elastic–plastic computations since it

was designed and implemented for a single stage loading only. This single stage loading works fine for elastic

analysis, but since elastic–plastic materials do have memory, staged loading is essential for any realistic

computations with elastic–plastic material. This is particularly true for geotechnical and structural models,

where simulations support for staged loading (self weight of soil medium for initial stress, construction

process and subsequent static or dynamic loading) is essential if any modeling accuracy is to be achieved.

One of new developments in this report was the addition of multi-stage elastic-plastic analysis. This

improvement included modification of 3D solid and beam elements, Template3Dep/NewTemplate3Dep

material models and DRM loading pattern for seismic analysis. Some of the old utility commands, such as

“wipeAnalysis”, were improved/redeveloped to enable parallel multi-stage analysis.

The most significant significant improvement developed during research over the old parallel design

of OpenSees is the introduction of load balancing technique by adaptive graph partitioning algorithm

through ParMETIS. Major improvements/updates have been introduced in PartitionedDomain, Ac-

tor/ShadowSubdomain, DomainPartitioner, FEM ObjectBroker and Subdomain. Modifications done

in this report also focus very much on performance issue. In order to reduce unnecessary data communi-

cation during partitioning/repartitioning, some functions have been rewritten. The functionality of Actor

and ShadowSubdomain have been expanded so that any ActorSubdomain can initiate communication

to another ActorSubdomain. The old design of OpenSees had to use master process as intermediate layer

if subdomains want to exchange information.

For example, if Subdomain No. 1 needs to migrate an Element to Subdomain No. 2, the old design

would issue a “remove Element” command from master PartitionedDomain to Subdomain No. 1, then

Subdomain No. 1 would remove the Element and send the Element back to master process, finally the

Element would be migrated to Subdomain No. 2. We can clearly recognize the communication to master

is not necessary here. In order to develop adaptive load balancing while minimizing data redistribution cost,

the improvement in this report is to allow ActorSubdomain at source Subdomain initiates communication

with ActorSubdomain at target Subdomains and they can exchange information without recourse to master

process. So the new communication pattern will be, again for the “migrate element” case, the master

process will issue an “export element” command to Subdomain No. 1 and a “receive element from

Subdomain No. 1” command to Subdomain No. 2, and then the element information will be directly sent

from Subdomain No. 1 to No. 2.

Details of implementation are given in following sections.

3.4.1 MPI Channel

• Functions sendnDarray and recvnDarray have been added to facilitate the data communication of

Template3D material classes, which are based on nDarray tensor data structures.

int MPI Channel::sendnDarray(int,int, const nDarray&, ChannelAddress*)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 59

int MPI Channel::recvnDarray(int,int, const nDarray&, ChannelAddress*)

3.4.2 MPI ChannelAddress

• Function getOtherTag has been added to get MPI global ID for the specific MPI Channel. This

function is mainly used for data migration. It provides the MPI global communicator ID of the target

process which the next communication will be directed to.

int MPI ChannelAddress::getOtherTag(void)

3.4.3 FEM ObjectBroker

• New functionality to instance 3D continuum brick elements has been added to getNewElement

function.

Element* FEM ObjectBroker::getNewElement(EightNodeBrickTag)

• New functionality to instance Template3D/NewTemplate3D material models for continuum brick

elements has been added to getNewNDMaterial function.

NDMaterial* FEM ObjectBroker::getNewNDMaterial(int)

• Template3D material is a stand-alone material library designed for general elastic-plastic materials.

User can define separately YieldSurface, PotentialSurface, Scalar Evolution Law and Tensorial

Evolution Law. Various material models have been implemented in OpenSees Jeremić and Yang

(2002), such as Cam Clay, Drucker Prager and von Mises yield/potential surfaces, Armstrong Freder-

ick nonlinear kinematic hardening law and bounding surface plasticity. All the material models have

to be instanced by FEM ObjectBroker during parallel processing.

YieldSurface* FEM ObjectBroker::getYieldSurfacePtr(int)

PotentialSurface* FEM ObjectBroker::getPotentialSurfacePtr(int)

EvolutionLaw S* FEM ObjectBroker::getEL S(int)

EvolutionLaw T* FEM ObjectBroker::getEL T(int)

• NewTemplate3D material is a newly designed material library which includes more advanced elastic-

plastic constitutive models for geomaterials, such as Dafalias and Manzari 2004 model. The design

of NewTemplate3D extends the principle of Template3D, in which key parameters describing

plasticity model are abstracted as different class objects, such as YieldFunction, PlasticFlow, etc.

In order to reduce unnecessary data allocation, new MaterialParameter class has been developed

to carry all material parameters. New ElasticState has been used to store all intermediate and/or

committed stress/strain data. All these material classes have to be instanced by FEM ObjectBroker

during parallel processing and new functions have been implemented in this report .

MaterialParameter* FEM ObjectBroker::getNewMaterialParameterPtr(void)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 60

ElasticState* FEM ObjectBroker::getNewElasticStatePtr(int)

YieldFunction* FEM ObjectBroker::getNewYieldFunctionPtr(int)

PlasticFlow* FEM ObjectBroker::getNewPlasticFlowPtr(int)

ScalarEvolution* FEM ObjectBroker::getNewScalarEvolutionPtr(int)

TensorEvolution* FEM ObjectBroker::getNewTensorEvolutionPtr(int)

3.4.4 Domain

• Timing routines have been added to update function to measure computation time of constitutive

level iterations for each element during every single loading increment. This metric will be assigned to

the corresponding vertex of the element graph as the vertex weight. This metric represents element-

level computational load against which subsequent load balancing techniques will be applied.

3.4.5 PartitionedDomain

• addElementalLoad function has been added to add ElementalLoad into LoadPattern, which was

not supported in the old design.

bool PartitionedDomain::addElementalLoad(ElementalLoad*, int)

• repartition function has been implemented to initiate adaptive repartitioning on the element graph

of the Domain after every loading increment.

int PartitionedDomain::repartition(int)

3.4.6 Node & DOF Group

• sendSelf and recvSelf functions for Node class have been changed mainly to deal with the DOF Group

object associated with the Node. In the old design of parallel version of OpenSees, only one-step

static domain partitioning would be invoked so that there is no need to pass the DOF Group. But

in this report , adaptive load balancing is developed to achieve better performance. The Node

class should keep the information of its own DOF Group, which guarantees the consistency of the

DOF Graph of the whole Domain. This point is extremely important when user tries to invoke

Transformation constraint handler on the DOF Graph. The addition of this feature in Node

improved the robustness of the whole program.

• DOF Group is a class carries information about the DOF Graph of the analysis model, which will

be used to finish assembling the stiff/mass/damping matrices. Each Node has its own DOF Group

to record the IDs of degree of freedoms in the global analysis model. Function unSetMyNode has

been introduced to avoid segmentation fault. The reason is that after each round of repartitioning,

if data movement is required, the AnalysisModel will be wiped off but Nodes are still in existence.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 61

Introduction of unSetMyNode function separates Node from its DOF Group so the DOF Group

can be wiped and regenerated for the new model. void DOF Group::unSetMyNode(void)

3.4.7 DomainPartitioner

DomainPartitioner is one of the most extensively changed classes in this report . This class acts as the

entry point for PartitionedDomain to do domain decomposition and it basically has been rewritten to

introduce new partition/repartition functionality and new data structures.

• Function repartition is implemented to do repartitioning after each loading increment. Partition

and repartition are both implemented in parallel through ParMETIS library in this report . This

function will collect ElementGraph from each Subdomain and pass them to GraphPartitioner.

The global ElementGraph will be kept intact from which connectivity/adjacency information will be

gathered to assemble child ElementGraphs and provide initial graph distribution data for repartition

routines. After repartitioning by ParMETIS finishes, the function will verify the new partition against

the original one to see if data redistribution is required to achieve load balancing. This repartition

function also acts as a commander to control the data migration for adaptive load balancing. It issues

commands to ShadowSubdomain to export/import Nodes, Elements, Constraintss, Loads, etc.

• The old design of OpenSees used multiplication of prime numbers as index number to record which

partitions a specific node belongs to. This is a very good idea because with this approach, we only

need one integer for each node to keep track of node partitions, which can be called as an index

number for the node. The idea was to name each Subdomain with one specific prime number, if a

node belongs to this Subdomain, we would multiply the index number of the node with the prime

number of this Subdomain. In order to determine if a node belongs to on specific Subdomain, all

we need is to divide the index number of the node with the prime number the Subdomain represents

to see if we can get zero residual.

• The drawback of the old data structure based on prime numbers is that it only works when the

number of processing units is small, say less than 16. In 3D continuum models, a single node might

belong to up to 8 partitions simultaneously, which happens when a corner node sits on intersections

of different Subdomains. As we know, prime numbers grow up very fast, multiplication with 8

prime numbers can easily overflow the index number of the node. A new data structure inspired by

the Compressed Sparse Row (CSR) storage format popular in sparse matrix calculations has been

introduced into in this report to solve the problem. One integer array has been used to store the

partition data of all nodes, i.e. which partitions this node belongs to. Another integer array has been

employed to record the count of partitions for each node. With these two arrays, we can load as

many partitions as we want in our parallel processing.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 62

3.4.8 Shadow/ActorSubdomain

As mentioned in previous sections of this report , Shadow/ActorSubdomain are the most important

classes in parallel design of OpenSees McKenna (1997). ShadowSubdomains represent Subdomains

in the master PartitionedDomain. If PartitionedDomain requires one specific Subdomain to carry out

some operations, it will send out orders to the ShadowSubdomain associated with the target Subdomain.

Then the ShadowSubdomain sets up communication channel to communicate with the Subdomain

through ActorSubdomain. ActorSubdomain, on the other hand, sits on each child process as an agent

receiving and processing incoming operation requests. The major improvements in this report include new

functionality for adaptive repartitioning and data migration, and several other minor changes to reduce

unnecessary data communications, such as when the Subdomain is required to removeElement, the new

design won’t send the element information out, etc. New features will be introduced in this section.

• ShadowActorSubdomain Partition

New design used ParMETIS to do parallel graph partitioning instead of sequential partitioning by

METIS in old design. This improvement helps to reduce partition/repartition overhead and enable

the parallel adaptive repartitioning for PDD algorithms proposed in this report .

• ShadowActorSubdomain BuildElementGraph

In order to provide input graphs for adaptive load balancing, all Subdomains have to construct their

own subElementGraph, which will be fed into ParMETIS routines for repartitioning.

• ShadowActorSubdomain Repartition

The repartitioning is implemented in parallel in this report so this entry point is set in the Actor-

Subdomain for each Subdomain.

• ShadowActorSubdomain reDistributeData

If data migration is needed to achieve load balancing, the master process will orchestrate the data

redistribution process and the functionality here helps to facilitate the data communications be-

tween processes. This is one of the major additions to the existing design. Starting from this

point, the ActorSubdomain is able to handle all required data movement on its own and Actor-

Subdomains representing other Subdomains will connect to the current working ActorSubdomain

to receive/send data. Logically only one ActorSubdomain will be doing ShadowActorSubdo-

main reDistributeData while others including the master will be listening to separate MPI port for

data migration requests.

• ShadowActorSubdomain recvChangedNodeList

This function is used to simplify the data migration routine. With this function, only Nodes/Elements

and their associated Constraints, Loads etc. need to be moved between processors.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 63

• ShadowActorSubdomain ChangeMPIChannel

This function prepares the current ActorSubdomain for messages from some specific processes.

It changes the destination/source for subsequent outgoing/incoming communications, which helps

redistributing data after load balancing.

• ShadowActorSubdomain restoreChannel

The default communication pattern in the old design of OpenSees was one to one, master to slave.

This function helps restoring communication patterns of the whole model after data redistribution

finishes.

• ShadowActorSubdomain swapNodeFromInternalToExternal

Nodes that only belongs to one single Subdomain is called internal nodes whose information will

be stored only in that specific Subdomain. While for those nodes that belong to more than one

Subdomains, their information should be accessible from all Subdomains with which the nodes are

associated. Those nodes are called external nodes instead. It is possible that former internal nodes

to one Subdomain become external after the adaptive repartitioning. What the old design would do

is to remove the internal nodes from that Subdomain, gather the information back to the master

process and then distribute it externally among those Subdomains as indicated by the newly obtained

partitions. The improvement in this report avoids unnecessary data communication between current

working Subdomain and the master Domain. We can just swap the node in working Subdomain

from internal status to external status and then export them to other specified Subdomains. This

new design can improve performance if the data migration is extensive by avoiding unnecessary

communications.

• ShadowActorSubdomain swapNodeFromExternalToInternal

This function is introduced due to the same reason as described previously although now the swapping

direction is in reverse. It is noted that along with the swapping, removing operations must be invoked

for those Subdomains that does not contain the node anymore.

• ShadowActorSubdomain exportInternalNode

This function handles the situation when a Node does not belong to the current Subdomain af-

ter adaptive repartitioning. The node will be removed from current Subdomain and exported to

other Subdomains specified by the graph repartitioning. This again avoids the unnecessary data

communication to/from master process by directly sending data to other Subdomains.

• ShadowActorSubdomain resetRecorders

The Recorders have to be reset after data migration to reflect component changes in each Subdo-

main.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 64

3.4.9 Send/RecvSelf

As stated in previous sections, Send/RecvSelf must be provided by all domain components to finish

data communication operations, such as Nodes, Elements, Loads, Constraints, Materials etc. In

this report , new communication functions have been developed for EightNodeBrick element, Elasti-

cIsotropic3D material, Template3Dep/NewTemplate3Dep material. The basic requirement to imple-

ment Send/RecvSelf is to replicate the source object instance in target process. For the old design, only

one-step initial partitioning is performed and thus greatly simplifies the Send/RecvSelf routines because

all the analysis-related information is null or void and only geometry-related data need to be transferred.

But in this report , data migration is needed periodically to achieve load balance so the Send/RecvSelf has

to be redesigned to carry analysis-related information besides the geometry model data. This is extremely

important for Element and Material classes because they contain intermediate iteration/solution data

of nonlinear finite element simulations. Figure 3.15 shows the class diagrams of brick Element and the

associated Template3Dep material model. Send/RecvSelf operations have been implemented also for

all classes associated with Template3Dep which are necessary to define a complete material model, such

as Cam Clay, Drucker Prager and von Mises PotentialSurfaces, Cam Clay, Drucker Prager and von Mises

YieldSurfaces, linear and nonlinear isotropic and kinematic hardening rules, etc.

3.5 Graph Partitioning

Graph partitioning approach has been extensively used in implementing domain decomposition type parallel

finite element method. The element-based graph naturally becomes the favorite due to the fact that

elemental operation forms the fundamental calculation unit in finite element analysis.

In this report , element graph has been constructed upon which graph partitioning algorithm acts to

get domain decomposition for parallel finite element analysis. In the current implementation of this report

, vertices of the element graph represent elements of the analysis model. Vertex weight is then specified as

the computational load of each element. In elastic-plastic finite element simulations, the most expensive

part has shown to be the elemental level calculations, which include constitutive-level stress update (strain-

driven constitutive driver assumed) and formulation of elastic-plastic modulus (or so-called tangent stiffness

tensor/matrix). In this research, the wall clock time used by elemental calculations has been dynamically

collected and specified as the corresponding vertex weight for each element. The elemental calculation time

clearly tells whether the element is elastic or plastified. With this timing metric, the graph can effectively

reflect load distribution among elements thus load balancing repartition can be triggered on the graph to

redistribute element between processors to achieve more balanced elastic-plastic calculation.

On the other hand, vertex size has to be defined for repartitioning problem as mentioned in previous

sections. In this research, vertex size has been specified to be redistribution cost associated with each

element. This information depends on the parallel implementation of the software and is discussed in the

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 65

section immediately following.

3.5.1 Construction of Element Graph

Each element is considered as one vertex in the element graph. An edge is formed when two elements

share a common node. In this report , the graph structure is assumed to be undirected, which means the

same edge will be added to both vertex ends. The edge is weightless in our application considering the fact

that the purpose of minimizing edge-cut is to reduce the data migration when assembling global stiffness

matrix. In that sense, the edge of element graph should carry the same weight or, more directly no weight

at all.

3.5.2 Interface to ParMETIS/METIS

Interfaces to both ParMETIS and METIS have been implemented in this report . ParMETIS is the parallel

implementation of METIS and new adaptive repartitioning functionality is only available through ParMETIS.

All of the graph routines in ParMETIS/METIS take as input the adjacency structure of the graph, the

weights of the vertices and edges (if any), and an array describing how the graph is distributed among

the processors Karypis et al. (2003). The structure of the graph is represented by the compressed storage

format (CSR), extended for the context of parallel distributed-memory computing. We will first describe

the CSR format for serial graphs and then describe how it has been extended for storing graphs that are

distributed among processors.

• Serial CSR Format The CSR format is a widely-used scheme for storing sparse graphs. Here, the

adjacency structure of a graph is represented by two arrays, xadj and adjncy. Weights on the vertices

and edges (if any) are represented by using two additional arrays, vwgt and adjwgt. For example,

consider a graph with n vertices and m edges. In the CSR format, this graph can be described using

arrays of the following sizes:

xadj[n + 1], vwgt[n], adjncy[2m], and adjwgt[2m] (3.1)

Note that the reason both adjncy and adjwgt are of size 2m is because every edge is listed twice

(i.e., as (v, u) and (u, v)). Also note that in the case in which the graph is unweighted (i.e., all

vertices and/or edges have the same weight), then either or both of the arrays vwgt and adjwgt can

be set to NULL. ParMETIS V3 AdaptiveRepart additionally requires a vsize array. This array is

similar to the vwgt array, except that instead of describing the amount of work that is associated

with each vertex, it describes the amount of memory that is associated with each vertex.

The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts

from 0 (C style), the adjacency list of vertex i is stored in array adjncy starting at index xadj[i]

and ending at (but not including) index xadj[i + 1] (in other words, adjncy[xadj[i]] up through and

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 66

including adjncy[xadj[i+1]−1]). Hence, the adjacency lists for each vertex are stored consecutively

in the array adjncy. The array xadj is used to point to where the list for each specific vertex begins

and ends. Figure 3.14(a) illustrates the CSR format for the 15-vertex graph shown in Figure 3.14(b).

If the graph has weights on the vertices, then vwgt[i] is used to store the weight of vertex i . Similarly,

if the graph has weights on the edges, then the weight of edge adjncy[j] is stored in adjwgt[j]. This

is the format that is used by (serial) METIS library routines.

Figure 3.14: An example of the parameters passed to PARMETIS in a three processor case Karypis et al.

(2003).

• Distributed CSR Format ParMETIS uses an extension of the CSR format that allows the vertices of

the graph and their adjacency lists to be distributed among the processors. In particular, PARMETIS

assumes that each processor Pi stores ni consecutive vertices of the graph and the corresponding

mi edges, so that n =
∑

i ni , and 2m =
∑

i mi. Here, each processor stores its local part of the

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 67

graph in the four arrays xadj[ni + 1], vwgt[ni], adjncy[mi], and adjwgt[mi], using the CSR storage

scheme. Again, if the graph is unweighted, the arrays vwgt and adjwgt can be set to NULL. The

straightforward way to distribute the graph for PARMETIS is to take n/p consecutive adjacency

lists from adjncy and store them on consecutive processors (where p is the number of processors).

In addition, each processor needs its local xadj array to point to where each of its local vertices’

adjacency lists begin and end. Thus, if we take all the local adjncy arrays and concatenate them,

we will get exactly the same adjncy array that is used in the serial CSR. However, concatenating the

local xadj arrays will not give us the serial xadj array. This is because the entries in each local xadj

must point to their local adjncy array, and so, xadj[0] is zero for all processors. In addition to these

four arrays, each processor also requires the array vtxdist[p + 1] that indicates the range of vertices

that are local to each processor. In particular, processor Pi stores the vertices from vtxdist[i] up to

(but not including) vertex vtxdist[i + 1].

Figure 3.14(c) illustrates the distributed CSR format by an example on a three-processor system. The

15-vertex graph in Figure 3.14(a) is distributed among the processors so that each processor gets

5 vertices and their corresponding adjacency lists. That is, Processor Zero gets vertices 0 through

4, Processor One gets vertices 5 through 9, and Processor Two gets vertices 10 through 14. This

figure shows the xadj, adjncy, and vtxdist arrays for each processor. Note that the vtxdist array

will always be identical for every processor. All five arrays that describe the distributed CSR format

are defined in PARMETIS to be of type idxtype. By default idxtype is set to be equivalent to

type int (i.e., integers). However, idxtype can be made to be equivalent to a short int for certain

architectures that use 64-bit integers by default. (Note that doing so will cut the memory usage and

communication time required approximately in half.) The conversion of idxtype from int to short

can be done by modifying the file parmetis.h. (Instructions are included there.) The same idxtype

is used for the arrays that store the computed partitioning and permutation vectors.

When multiple vertex weights are used for multi-constraint partitioning, the c vertex weights for each

vertex are stored contiguously in the vwgt array. In this case, the vwgt array is of size nc, where n

is the number of locally stored vertices and c is the number of vertex weights (and also the number

of balance constraints).

New GraphPartitioner class ParMETIS has been developed in this report to provide seamless interface

to adaptive partitioning/repartitioning routines.

3.6 Data Redistribution

Data redistribution after repartitioning has been a challenging problem which needs careful study to guar-

antee correctness of subsequent analysis. In this research, Object-Oriented philosophy has been followed to

abstract container classes to facilitate analysis and model data redistribution after repartition. As for the

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 68

initial partitioning, only model data, such as geometry parameters, has to be exported to sub-processors,

while in adaptive repartitioning finite element simulation, analysis data has to be moved as well. It is

extremely important to have well-designed container classes to carry data around. Basic units of finite

element analysis, such as nodes and elements naturally become our first choices. Not to give up generality,

the design in OpenSees adopts basic iterative approach for nonlinear finite element analysis Crisfield (1997),

important intermediate analysis data include trial data, commit data, incremental data, element residual,

element tangent stiffness, etc. Vertex size of each element has been defined as the total number of bytes

that have to be transferred between sub-processors.

1. Node

Other than geometric data such as node coordinates and number of degree of freedoms, the Node

class contains nodal displacement data which should be sent together with the node to preserve

continuity of the analysis model.

2. Element

Element class is the basic construction unit in finite element model. In the design of this research,

Element class keeps internal links to Template3D material class Jeremić and Yang (2002). In

order to facilitate elastic-plastic simulation, EPState class is constructed to hold all the intermediate

response data. This object-oriented abstraction greatly systematize the communication pattern. The

information on class design is shown in the class diagram Figure 3.15 by Rational Rose Boggs and

Boggs (2002).

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 69

F
ig

u
re

3.
15

:
C
la

ss
D

ia
gr

am
:

M
aj

or
C
on

ta
in

er
C
la

ss
es

fo
r

D
at

a
R
ed

is
tr

ib
u
ti
on

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 70

All data communication operations have been implemented through the standard Send/RecvSelf interface,

which forms a complete set of consistent point-to-point communication patterns and is convenient for future

additions of new element/materials.

Jeremić and Jie version: 1. May, 2008, 15:22

Chapter 4

Performance Studies on PDD Algorithm

4.1 Introduction

In this chapter, parallel performance of the proposed PDD algorithm is thoroughly investigated. There

are two major focuses for the timing analysis. Firstly we want to see how much performance gain we can

have by introducing the PDD algorithm into inelastic finite element calculations. Secondly, we also want

to show how scalable the proposed PDD algorithm is.

As our final objective is to apply PDD in large scale SFSI finite element simulations, finite element

models of SFSI have been set up to study the parallel performance of the PDD based parallel program.

Implicit constitutive integration scheme Jeremić and Sture (1997) has been used to expose the load imbal-

ance by plasticity calculation. Only continuum element has been studied due to the fact they can be easily

visualized to obtain partition and/or repartition figures.

Distributed memory Linux/Unix clusters are major platforms used in this report for speed up analysis.

4.2 Parallel Computers

Performance measurement has been carried out on two SMP-based clusters.

• IBM eServer p655

The DataStar IBM eServer p655 cluster consists of 176 8-way P655+ nodes at San Diego Super-

computer Center. System configuration is shown in Fig 4.1. The network benchmark is shown in

Table 4.1.

• TeraGrid IA-64 Intel-Based Linux Cluster

The TeraGrid project was launched by the the National Science Foundation with $53 million in fund-

ing to four sites: the National Center for Supercomputing Applications (NCSA) at the University of

Illinois, Urbana-Champaign, the San Diego Supercomputer Center (SDSC) at the University of Cali-

fornia, San Diego, Argonne National Laboratory in Argonne, IL, and Center for Advanced Computing

71

PDD Parallel FEM 72

Table 4.1: Latency and Bandwidth Comparison (as of August 2004)

MPI Latencies (µsec) Bandwidth (MBs)

Intra-node 3.9 3120.4

Inter-node 7.65 1379.1

Figure 4.1: System Configuration of DataStar http://www.sdsc.edu/user services/datastar/

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 73

Research (CACR) at the California Institute of Technology in Pasadena.

SDSC’s TeraGrid cluster currently consists of 256 IBM cluster nodes, each with dual 1.5 GHz Intel R©

Itanium R© 2 processors, for a peak performance of 3.1 teraflops. The nodes are equipped with four

gigabytes (GBs) of physical memory per node. The cluster is running SuSE Linux and is using

Myricom’s Myrinet cluster interconnect network. Table 4.2 shows the technical configuration of the

IA64 cluster, on which the second part of the performance study has been done.

Table 4.2: Technical Information of IA64 TeraGrid Cluster at SDSC

IA-64 Cluster (tg-login.sdsc.teragrid.org)

COMPONENT DESCRIPTION

Architecture Linux Cluster

? quad-processor

Access Nodes ? ECC SDRAM memory: 8 GB

? 2 nodes (8 processors)

? dual-processor

Compute Nodes ? ECC SDRAM memory: 4 GB

? 262 nodes (524 processors)

? Intel R© Itanium R© 2, 1.5 GHz

Processor ? Integrated 6 MB L3 cache

? Peak performance 3.1 Tflops

Network Interconnect Myrinet 2000, Gigabit Ethernet, Fiber Channel

Disk 1.7 TB of NFS, 50 TB of GPFS (Parallel File System)

Operating System Linux 2.4-SMP (SuSE SLES 8.0)

Compilers ? Intel: Fortran77/90/95 C C++

? GNU: Fortran77 C C++

Batch System Portable Batch System (PBS) with Catalina Scheduler

4.3 Soil-Foundation Interaction Model

A soil-shallow-foundation interaction model as shown in Figure 4.2 has been set up to study the parallel

performance. 3D brick element with 8 integration (Gaussian) points is used. The soil is modeled by

Template3D elasto-plastic material model (Drucker-Prager model with Armstrong Frederick nonlinear

kinematic hardening rule) and linear elasticity is assumed for the foundation. More advanced constitutive

laws can be applied through Template3D model although the model used here suffices the purpose of this

research to show repartitioning triggered by plastification. It is shown in this research that the speedup by

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 74

adaptive load balancing is significant even for seemingly simple constitutive model. The material properties

are shown in Table 4.3 and the vertical loading is applied at 5.0kN increments. The performance analysis

has been carried out on DataStar supercomputer at San Diego Supercomputing Center (P655+ 8-way

nodes).

Table 4.3: Material Constants for Soil-Foundation Interaction Model

Soil

Elastic modulus E = 17400kPa

Poisson ratio ν = 0.35

Friction angle φ = 37.1̊

Cohesion c = 0

Isotropic Hardening Linear

Kinematic Hardening A/F nonlinear (ha = 116.0, Cr = 80.0)

Foundation

Elastic modulus E = 21GPa

Poisson ratio ν = 0.2

4.4 Numerical Study for ITR

As described in Section 2.3.2, the parameter ITR in ParMETIS describes the ratio between the time required

for performing the inter-processor communications incurred during parallel processing compared to the time

to perform the data redistribution associated with balancing the load. It acts like a switch on algorithmic

approaches of ParMETIS repartitioning kernel. With ITR factor being very small, the ParMETIS tends to

do that repartitioning which can minimize data redistribution cost. If the ITR factor is set to be very large,

ParMETIS tends to minimize edge-cut of the final repartition.

In parallel design of PDD, if repartitioning is necessary to achieve load balance after each load increment,

the whole AnalysisModel McKenna (1997) has to be wiped off thus a new analysis container can be defined

to reload subsequent analysis steps. The data redistribution cost can be much higher than communication

overhead only. In order to determine an adequate ITR value for our application, preliminary study needs

to be performed to investigate the effectiveness of the URA. In this research, two extreme values of the

ITR (0.001 and 1, 000, 000) are prescribed and then parallel analysis is carried out on 2, 4 and 8 processors

to see how the partition/repartition algorithm behaves. Two soil-structure interaction models as shown in

Figure 4.4 have been used in this parametric study. Timing data and partition figures have been collected

to investigate the performance of different approaches. The one that tends to bring better performance will

be adopted in subsequent parallel analysis for prototype 3D soil structure interaction problems. Figure 4.5

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 75

Figure 4.2: Example Finite Element Model of Soil-Foundation Interaction (Indication Only, Real Model

Shown in Each Individual Section)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 76

Figure 4.3: FE Models (1,968 Elements, 7,500 DOFs) for Studying Soil-Foundation Interaction Problems

Figure 4.4: FE Models (4,938 Elements, 17,604 DOFs) for Studying Soil-Foundation Interaction Problems

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 77

to Figure 4.10 shows the initial partition and final repartition figures for two different types of algorithms.

With ITR factor to be very small, the URA tends to present results that minimize data redistribution cost,

in which diffusive repartitioning approach is used. On the other hand, if the ITR factor is set to be very

large, then the URA algorithm tends to give repartitioning with lowest edge cut but with considerably

higher data redistribution cost.

Figure 4.5: Partition and Repartition on 2 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 78

Figure 4.6: Partition and Repartition on 2 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Figure 4.7: Partition and Repartition on 4 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 79

Figure 4.8: Partition and Repartition on 4 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Figure 4.9: Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 80

Figure 4.10: Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (1,968 Elements,

7,500 DOFs)

Figure 4.11: Partition and Repartition on 7 CPUs (ITR=1e-3, Imbal. Tol. 5%), FE Model (4,938 Elements,

17,604 DOFs)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 81

Figure 4.12: Partition and Repartition on 7 CPUs (ITR=1e6, Imbal. Tol. 5%), FE Model (4,938 Elements,

17,604 DOFs)

Figure 4.13: Timing Data of ITR Parametric Studies (1,968 Elements, 7,500 DOFs, Imbal. Tol. 5%)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 82

Figure 4.14: Relative Speedup of ITR=1e-3 over ITR=1e6 (1,968 Elements, 7,500 DOFs, Imbal. Tol.

5%)

Figure 4.15: Timing Data of ITR Parametric Studies (4,938 Elements, 17,604 DOFs, Imbal. Tol. 5%)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 83

Figures 4.13, 4.14 and 4.15 show the speedup data of parametric study on ITR factors. The purpose

is to expose the the more efficient approach to do repartitioning for our specific parallel SFSI simulations,

either scratch-remap approach (ITR = 1e6) or diffusive approach (ITR = 1e− 3). Through the study of

this report , some conclusions can be drawn.

1. Smaller value of ITR (1e-3) outperforms larger value (1e6). The performance gain is up to 22.1%

for 7 processors. As the model gets larger, the speedup tends to get better.

2. With small ITR value, the URA algorithm tends to give results for diffusive partition/repartitioning

scheme, which is good for performance for our application in overall due to the fact that the overhead

associated with data redistribution in this research is very high. Diffusive approach minimizes possible

data movement thus delivers better performance. The drawback is the diffusive approach typically

gives very bad or even disconnected graphs with very high edge-cut as shown in Figures 4.5, 4.7

and 4.9. So careful attention must be paid to these graph structures when programing the finite

element calculation. In this sense, the diffusive algorithm is not as robust as scratch/remapping.

One very important observation was that repetitive repartitionings tend to yield totally ill-connected

graph.

3. With large ITR value, the URA algorithm adopts the scratch/remapping scheme which inevitably

introduce huge data redistribution cost. But this approach gives high quality graph and the integrity

of original graph is well preserved as shown Figures 4.6, 4.8 and 4.10. This will be of great meaning for

parallel finite element method based on substructure-type methods. Another important observation

was, the scratch/remapping approach performed much more repartitionings than diffusive approach

for same analysis. Repetitive repartitionings by scratch/remapping method tends to totally migrate all

elements out of their initial partitioning and repartitioning never stops even though the computation

is stabilized (in the sense of formation of plastic zones). This also explains in part why the diffusive

approach can substantially outperform scratch/remapping.

4. Based on the timing analysis performed in this report , ITR=1e-3 is the best choice that brings

substantially better performance over large ITR values. With the increase of number of processing

units or the model size, the performance gain is more significant as shown in Figures 4.13, 4.14

and 4.15. Robustness of the diffusive approach has not caused much trouble in our application.

4.5 Parallel Performance Analysis

Timing routines have been implemented in PDD (and parts of OpenSees framework and other used libraries,

such as Template3DEP/NewTemplate3Dep) to study the parallel performance. The preprocessing unit,

like reading model data from file, has not been timed so the speed up here reflects only algorithmic gain

by graph partitioning. In the current phase of this research, the equation solving problem has not been

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 84

addressed yet. More meaningful perspective would be to consider performance gains by simply switching

from plain graph partitioning to adaptive graph partitioning, which is also the basic aim of this research.

As we can see from the results below, adaptive graph partitioning improves the overall performance of

elasto-plastic finite element computations. The partitioning/repartitioning overhead has been minimized

by using parallel partitioner.

As stated in previous sections of this report , there are a couple of key parameters that control perfor-

mance of the adaptive load balancing algorithm. One is the ITR factor, and the other is the computational

load imbalance tolerance.

1. ITR is the key parameter which determines the algorithmic approach of the adaptive load balancing

scheme. Depending on different applications and network interconnections, this value can be set to

very small (0.001) or very large (up to 1,000,000) and algorithm focus will be set to minimizing data

redistribution or edge-cut respectively as explained in previous sections.

2. Computational Imbalance Load Tolerance is the other key factor affecting greatly the overall

performance of the whole application codes. Basically speaking, with larger finite element model,

the tolerance should be set higher due to the fact that data redistribution and subsequent analysis-

restarting overhead can be substantially higher as the finite element model size increases.

The performance tunings on ITR factor tend to yield consistent results as stated previously that smaller

ITR (0.001) brings better performance over large ITR values. Diffusive repartitioning algorithm outperforms

scratch/remapping in our application.

While on the other hand, tuning on load imbalance studies has been more illusive. The first conclusion

is that load imbalance tolerance larger than 5% was not able to work robustly as the size of finite element

model increases in the application study of this report .

Detailed parametric studies have been performed on DataStar IBM Power4 and IA64 Intel clusters to

indicate the effectiveness of the proposed adaptive PDD algorithm. Models with different sizes have been

tested on various number of processors to show the scalability of computational performance. All results

will be compared with static one-step Domain Decomposition approach to investigate the advantage of

proposed PDD algorithm in nonlinear elastic-plastic finite element calculations.

Table 4.4: Test Cases of Performance Studies

Model Sizes (DOF) 4,035, 17,604, 32,091, 68,451

of CPUs 3, 5, 7, 16, 32, 64

ITR Factors 0.001, 1,000,000

Imbalance Tolerance 5%, 10%, 20%

In the following sections, timing data and partition/repartition figures will be presented and results will

be discussed at the end of this chapter.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 85

4.5.1 Soil-Foundation Model with 4,035 DOFs

The partition/repartition figures by PDD have been shown in Figure 4.16, 4.17, 4.18.

Figure 4.16: 4,035 DOFs Model, 2 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition

Figure 4.17: 4,035 DOFs Model, 4 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 86

Figure 4.18: 4,035 DOFs Model, 8 CPUs, ITR=1e-3, Imbal Tol 5%, PDD Partition/Repartition

Figure 4.19: Timing Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 87

Figure 4.20: Absolute Speedup Data of Parallel Runs on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5%

Figure 4.21: Relative Speedup of PDD over Static DD on 4,035 DOFs Model, ITR=1e-3, Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 88

4.5.2 Soil-Foundation Model with 4,938 Elements, 17,604 DOFs

This is the same model as described before but with more elements as shown in 4.22. Timing data has

been collected to indicate performance gains by adaptive load balancing Partition and repartition figures

are shown from Figure 4.26 to 4.28. The partition/repartition figures by PDD have been shown in

Figure 4.22: Finite Element Model of Soil-Foundation Interaction (4,938 Elements, 17,604 DOFs)

Figure 4.26, 4.27, 4.28.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 89

Figure 4.23: Timing Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal Tol

5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 90

Figure 4.24: Absolute Speedup Data of Parallel Runs on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 91

Figure 4.25: Relative Speedup of PDD over Static DD on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Figure 4.26: 4,938 Elements, 17,604 DOFs Model, 2 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 92

Figure 4.27: 4,938 Elements, 17,604 DOFs Model, 4 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Figure 4.28: 4,938 Elements, 17,604 DOFs Model, 8 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 93

4.5.3 Soil-Foundation Model with 9,297 Elements, 32,091 DOFs

The mesh is shown in Figure 4.29. Speed up results are shown from Figure 4.30 to Figure 4.32. Partition

and repartition figures are shown from Figure 4.33 to Figure 4.37.

Figure 4.29: Finite Element Model of Soil-Foundation Interaction (9,297 Elements, 32,091 DOFs)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 94

Figure 4.30: Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal Tol

5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 95

Figure 4.31: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 96

Figure 4.32: Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Figure 4.33: 9,297 Elements, 32,091 DOFs Model, 3 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 97

Figure 4.34: 9,297 Elements, 32,091 DOFs Model, 5 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Figure 4.35: 9,297 Elements, 32,091 DOFs Model, 7 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 98

Figure 4.36: 9,297 Elements, 32,091 DOFs Model, 16 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Figure 4.37: 9,297 Elements, 32,091 DOFs Model, 32 CPUs, PDD Partition/Repartition, ITR=1e-3, Imbal

Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 99

4.6 Algorithm Fine-Tuning

From performance analysis results in previous sections, it has been shown that adaptive graph partitioning

algorithm based on element graph can improve overall load balance for nonlinear elastic-plastic finite

element calculations. Speed up has been observed on example problems. While on the other hand, we can

also see as the model size increases, the efficiency of proposed PDD algorithm dropped sharply as shown

in Figures 4.31 and 4.32.

So the naive implementation of PDD does not work as expected. With load balancing, one expects

that the performance of PDD should not be worse than the DD case. It otherwise implies that the PDD

does not bring performance gain that can completely offset its own extra load balancing operations-related

overheads.

In this report , more detailed algorithm fine-tuning has been performed to address the problems we had

in previous sections of the naive PDD implementation.

In order to improve the overall efficiency of proposed PDD algorithm. we have to consider two levels

of costs when one wishes to balance the computational load among processing units. One is the data

communication cost, and the other one is finite element model regeneration overhead associated with

specific application problems.

Currently the adaptive graph partitioning algorithm does not consider the fact that the network com-

munication patterns might differ much among processing nodes. The single ITR value indicates the

algorithmic approach of the graph partitioning algorithm, but the real communication performance has not

been addressed in the implementation.

On the other hand, certain applications impose extra problem-dependent overhead to repartitioning

operations. For example, whenever data communications happen, the finite element model has to be

wiped off and regenerated. This is not inherent with the graph partitioning algorithm but still needs to be

addressed in order to get the best performance. As observed in this report , model regeneration overhead

increases when the finite element model becomes bigger.

In order to improve the overall performance of our application, we hope to consider both data commu-

nication and model regeneration cost and create a new strategy through which we can adaptively monitor

the extra overheads to assure that load balancing operation can offset both costs.

This chapter will first investigate the effect of load balance tolerance on performance and then a new

globally adaptive strategy will be proposed to handle both communication and model regeneration overhead.

Speedup analysis have been done to show performance gains.

4.7 Fine Tuning on Load Imbalance Tolerance

If one finds out that the application-associated overhead (say, model regeneration cost) overwhelms when

repartitioning happens, the most natural way to improve performance is to increase the load imbalance

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 100

tolerance of the adaptive repartition routine. In this way, one hopes to increase the critical load imbalance

that can trigger the balancing routine and so that the repartition counts can be reduced. As a result, model

regeneration cost can do less harm to the overall performance.

This should rather viewed as a work-around and has not been effective in our application.

The tuning approach aims at improving efficiency of previous runs that failed showing speedup over

static domain decomposition method. Shallow foundation model with 9,297 Elements, 32,091 DOFs has

been chosen to study the effect of imbalance tolerance on parallel performance. Model setup has been the

same as in previous sections.

Speedup analysis results have been shown in Figures 4.38, 4.39 and 4.40.

Figure 4.38: Timing Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal Tol

20%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 101

Figure 4.39: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 20%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 102

Figure 4.40: Relative Speedup of PDD over Static DD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 20%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 103

From the performance results, we can see that increasing load imbalance tolerance does not lead to

efficiency for our application. As the number of processing units increases, the whole performance of appli-

cation codes deteriorates. It is also important to note that the adaptive graph partitioning/repartitioning

kernel in ParMETIS has not been capable of producing adequate partitions for finite element calcula-

tions when the load imbalance tolerance is larger than the recommended 5% Karypis et al. (2003). The

application crushed with 20% imbalance tolerance for same models tested in previous sections.

The conclusion reached for the application in this report is that load imbalance tolerance larger than

5% has not been proved more efficient. This can also be explained in more details.

In the implementation of ParMETIS, load imbalance tolerance is one of the most important parameters

in the sense that this value determines whether repartition will be switched on. The other equally significant

implication of this value comes from the fact that it also establishes target load imbalance residual to be

achieved after adaptive load balancing. That means for each repartition, the ParMETIS will only reduce

the load imbalance to the provided tolerance.

In current implementation, the load imbalance tolerance is set to be the same for both switch-on and

target values, which is not capable of bringing the best performance into our application due to the fact

that aside from data redistribution cost, analysis model reconstruction is equally expensive. The dilemma

is described by numerical example as shown in Table 4.5.

Table 4.5: Observation on Load Imbalance Tolerance %5

Model 20,476 Elements, 68,451 DOFs

CPUs 32

Imbalance Before 7.018%

Imbalance After 4.9%

Model Regeneration 57.2934 seconds

Total Step Time 140.961 seconds

We can easily see that tiny portion of data movement to balance out 7.018− 4.9 = 2.228% loads still

invoked analysis model regeneration, which accounts for extra overhead that is about 40.6% of total step

time.

Because the load balance tolerance is also the target value that the repartitioning operation hopes

to achieve. The implication is that after repartitioning, the load distribution among processing units is

barely under this acceptable tolerance. The performance study conducted so far showed that continuous

plastification can easily creates load imbalance over this tolerance so another round of repartitioning would

be launched again. It greatly brings down the performance of the whole application when the huge data

redistribution overhead is taken just to overcome a tiny imbalance. This explains why changing the tolerance

was not able to bring better performance in our application.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 104

In order to improve performance while still minimizing load imbalance, we hope to maximize the

efficiency of model regeneration routine in our application. This is a two-fold statement, firstly, we don’t

want to blindly increase the load imbalance because it basically claims we fail our adaptive PDD algorithm

by not switching on repartitioning (5% is suggested by the author of ParMETIS Karypis et al. (2003) and

has been proved to be the most stable value in this report), secondly, with each repartitioning, we hope

to achieve ”perfect balance” as much as possible and in this way, the huge model regeneration cost can

be offset by performance gain. What was proposed as future extension of this report is the idea of dual

load imbalance tolerances. Load balancing triggering tolerance and the target tolerance can be defined

separately. We can set higher triggering tolerance to reduce the number of repartition counts, while on

the other hand a strict target tolerance can be set close to 1.0 to get better load distribution out of

the balancing routine. With proposed approach, our application in this report will be able to fully take

advantage of the repartition routines without sacrificing too much on model regenerations.

4.8 Globally Adaptive PDD Algorithm

One significant drawback of current implementation is that neither network communication nor model

regeneration cost has been considered in element-graph-based type domain decomposition algorithm. Ele-

ment graph only records computational load carried by each element. Only one ITR factor characterizes

algorithmic approach of the load balancing operation and this is apparently too crude for complicated

network/hardware configurations. The ignorance of the repartitioning-associated overheads inherent with

application codes can lead to serious performance drop of the proposed PDD algorithm as shown in Fig-

ure 4.41.

This drawback can harm the overall performance of the whole application code more seriously when

the simulation is to be run on heterogeneous networks, which means we can have different network connec-

tions and nodes with varied computational power. The dilemma is, without exact monitoring of network

communication and local model regeneration costs, we can easily sacrifice the performance gain by load

balancing operations.

A second approach proposed in this report was the idea of modified Globally Adaptive PDD algorithm.

The novelty comes from the fact that both data redistribution and analysis model regeneration costs will be

monitored during execution. Load balancing will be triggered only when the performance gain necessarily

offset the extra cost associated with the whole program. Domain graph structures will be kept intact

till successful repartitioning happens. Meanwhile all elemental calculations will be timed to provide graph

vertex weights. Data will be accumulated till algorithm restart happens, when all analysis model and vertex

weights will be nullified.

This improvement aims at handling network communication and any specific application-associated

overheads automatically at the global level in order to remedy the drawback that the element graph

repartitioning kernel currently supported by ParMETIS is not capable of directly reflecting this application

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 105

Figure 4.41: Absolute Speedup Data of Parallel Runs on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 106

level overheads. The new strategy is to automatically monitor network communication and local model

regeneration timings which will be integrated to the entry of load balancing routines to act as additional

triggers of the operation along with the load imbalance tolerance.

Performance study shows that PDD algorithm with the new additions significantly improve performance

even when the number of processing units is large. This modification fixes the drawback shown in previous

sections that the performance of PDD was beaten by static domain decomposition when the number of

processors increases.

This strategy is called to be globally adaptive because both data communication and model regeneration

costs are monitored at the application level, which tells best how the real application performs on all kinds of

networks. Whatever the network/hardware configurations might be, real application runs always deliver the

most accurate performance counters. This information can be applied on top of graph partitioning algorithm

as a supplement to account for the drawback that the algorithm kernel is not capable of integrating global

data communication costs.

4.8.1 Implementations

We can define the global overhead associated with load balancing operation as two parts, data communi-

cation cost Tcomm and finite element model regeneration cost Tregen,

Toverhead := Tcomm + Tregen (4.1)

Performance counters have been setup to study both.

• Tcomm

Data communication patterns characterizing the network configuration can be readily measured as the

program runs the initial partitioning. As described in previous sections, initial domain decomposition

needs to be done to send elements over to processing nodes. This step is necessary for parallel

finite element processing and it provides perfect initial estimate how the communication pattern of

the application performs on specific networks. Timing routines have been added to automatically

measure the communication cost. This cost is inherently changing as the network condition might vary

as simulation progresses, so whenever data redistribution happens, this metric will be automatically

updated to reflect the network conditions.

• Tregen

Model regeneration cost basically comes from the fact that if data redistribution happens, the analysis

model needs to be regenerated to reflect changes of nodes and elements inside the domain. Detailed

operations include renumbering DOFs and rehandling constraints. This part of cost is application-

dependent. In current implementation of PDD, efforts have been made to set up timing stop at the

entry and exit of model regeneration routines to get the accurate data for the extra overhead. It is also

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 107

important to note that model regeneration happens when the initial data distribution finishes, again

the initial domain decomposition phase provides perfect initial estimate of the model regeneration

cost on any specific hardware configurations.

Naturally, for the load balancing operations to pay off, the Toverhead has to be offset by the performance

gain Tgain. This report also creates a strategy to estimate the performance gain Tgain even before the

load balancing operation happens and this metric provides global control on top of the existing graph

repartitioning algorithm.

As implemented in previous sections, the computational load on each element is represented by the

associated vertex weight vwgt[i]. If the SUM operation is applied on every single processing node, the

exact computational distribution among processors can be obtained as total wall clock time for each CPU

as shown in Equation 4.2,

Tj :=
n∑

i=1

vwgt[i], j = 1, 2, . . . , np (4.2)

in which n is the number of elements on each processing domain and np is the number of CPUs.

If we define,

Tsum := sum(Tj), Tmax := max(Tj), and Tmin := min(Tj), j = 1, 2, . . . , np (4.3)

one always hope to minimize Tmax because in parallel processing, Tmax controls the total wall clock time.

By load balancing operations, we mean to deliver evenly distributed computational loads among processors.

So theoretically, the best execution time is,

Tbest := Tsum/np, and Tj ≡ Tbest, j = 1, 2, . . . , np (4.4)

if the perfect load balance is to be achieved.

Based on definitions above, the best performance gain Tgain one can obtain from load balancing

operations can be calculated as,

Tgain := Tmax − Tbest (4.5)

Finally, the load balancing operation will be beneficial IF AND ONLY IF

Tgain ≥ Toverhead = Tcomm + Tregen (4.6)

4.8.2 Performance Results

The newly improved design has been compared to the old design to see the effectiveness of the globally

adaptive switch of PDD algorithm.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 108

Figure 4.42: Performance of Globally Adaptive PDD on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 109

Figure 4.43: Performance of Globally Adaptive PDD on 20,476 Elements, 68,451 DOFs Model, ITR=1e-3,

Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 110

From Figures 4.42 and 4.43, advantage of the improved globally adaptive PDD algorithm have clearly

been shown. After considering the effect of both data communication and model regeneration costs, the

adaptive PPD algorithm necessarily outperforms the static Domain Decomposition approach as expected.

This new design also significantly improves the overall scalability of the proposed PDD algorithm as shown

in Figure 4.44 and 4.45.

Figure 4.44: Scalability Study on 4,938 Elements, 17,604 DOFs Model, ITR=1e-3, Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 111

Figure 4.45: Scalability Study on 9,297 Elements, 32,091 DOFs Model, ITR=1e-3, Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 112

4.9 Scalability Study on Prototype Model

The ultimate purpose of this report is to develop an efficient parallel simulation tool for large scale earth-

quake analysis on prototype SFSI system. After in-depth development-refining process conducted in previous

sections, real 3-bent production models have been set up to study the parallel performance of the proposed

PDD algorithm using real world earthquake ground motions.

4.9.1 3 Bent SFSI Finite Element Models

As described in later sections, various sizes of a 3 bent bridge SFSI system has been developed to study

dynamic behaviors of the whole system in different frequency domain. These models provide perfect test

cases for parallel scalability study of our proposed PDD algorithm.

Detailed model description will be presented in later chapters of this report and only model size and

mesh pictures are shown here to indicate the range of model sizes we have covered.

Figure 4.46: Finite Element Model - 3 Bent SFSI, 56,481 DOFs, 13,220 Elements, Frequency Cutoff >

3Hz, Element Size 0.9m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 113

Figure 4.47: Finite Element Model - 3 Bent SFSI, 484,104 DOFs, 151,264 Elements, Frequency Cutoff

10Hz, Element Size 0.3m, Minimum G/Gmax 0.08, Maximum Shear Strain γ 1%

Figure 4.48: Finite Element Model - 3 Bent SFSI, 1,655,559 DOFs, 528,799 Elements, Frequency Cutoff

10Hz, Element Size 0.15m, Minimum G/Gmax 0.02, Maximum Shear Strain γ 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 114

4.9.2 Scalability Runs

The models with different detail levels have been subject to 1997 Northridge earthquake respectively for

certain time steps and total wall clock time has been recorded to analyze the parallel scalability of our

proposed PDD. The result is presented in Figure 4.49.

181632 64 128 256 512 1024
181632

64

128

256

512

1024

Number of CPUs

P
ar

al
le

l S
pe

ed
up

Linear Speedup
56,481 DOFs
484,104 DOFs
1,655,559 DOFs

Figure 4.49: Scalability Study on 3 Bent SFSI Models, DRM Earthquake Loading, Transient Analysis,

ITR=1e-3, Imbal Tol 5%, Performance Downgrade Due to Increasing Network Overhead

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 115

4.10 Conclusions

Through detailed performance studies as presented in previous sections, some conclusions can be drawn

and future directions can be noted.

• Plastic Domain Decomposition (PDD) algorithm based on adaptive multilevel graph partitioning

kernels has been shown to be effective for elastic-plastic parallel finite element calculations. PDD

algorithm consistently outperforms classical Domain Decomposition method for models tested so far

in this report as shown in Figures 4.50 and 4.52.

Number of CPUs

P
ar

al
le

l S
pe

ed
up

35

30

25

20

15

10

5

0
0 5 10 15 20 25 30 35

PDD (17,604 DOFs)

THEORETICAL LIN
EAR SPEEDUP

PDD (32,091 DOFs)

DD (32,091 DOFs)

DD (17,604 DOFs)

with increase in # of DOFs
Increase in parallel performance

Figure 4.50: Relative Performance of PDD over DD, Shallow Foundation Model, Static Loading, ITR=1e-

3, Imbal Tol 5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 116

• There are some parameters that can be calibrated in the current implementation. As indicated

by results of thorough numerical tests, ITR=0.001 and load imbalance tolerance ubvec=1.05 (5%)

should be adopted and studies on our application in this report have shown they are adequate and

able to bring performance not worse than the commonly used domain decomposition method in

parallel finite element analysis.

• For the parameters suggested in the report , we can see a general trend that the efficiency of

PDD will drop as the number of processors increases. This can be explained. The implication of

increasing processing units is that the subdomain problem size will decrease. It is naturally evident

that the repartition load balancing won’t be able to recover the overhead by balancing off small size

local calculations. The improved design of globally adaptive PDD algorithm has been implemented

in this report and both data communication and model regeneration costs associated with graph

repartitioning have been integrated into the new globally adaptive strategy. With the new design,

it has also been shown that the PDD algorithm consistently outperforms classic one step domain

decomposition algorithm and better scalability can be obtained as shown in Figure 4.51. It has been

shown that even for large number of processors, the current implementation can always guarantee

that the performance of PDD is not worse than static DD method as shown in Figure 4.52. (the

repartition routine has less than 5% overhead of the total wall clock time).

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 117

0
8

16
24

32
40

48
56

64
72

80
88

96
10

4
11

2
12

0
12

8
08162432404856647280889610
4

11
2

12
0

12
8

N
u

m
b

er
 o

f
C

P
U

s

Parallel Speedup

Th
eo

re
tic

al
 S

pe
ed

up

39
8,

72
1

D
O

Fs
 (1

25
,2

25
 E

le
m

en
ts

)

11
8,

27
5

D
O

F
s

(3
6,

03
7

E
le

m
en

ts
)

68
,4

51
 D

O
F

s
(2

0,
47

6
E

le
m

en
ts

)

32
,0

91
 D

O
F

s
(9

,2
97

 E
le

m
en

ts
)

17
,6

04
 D

O
F

s
(4

,9
38

 E
le

m
en

ts
)

F
ig

u
re

4.
51

:
S
ca

la
b
ili

ty
of

P
D

D
,
S
ta

ti
c

L
oa

d
in

g,
S
h
al

lo
w

F
ou

n
d
at

io
n

M
o
d
el

,
IT

R
=

1e
-3

,
Im

b
al

T
ol

5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 118

F
ig

u
re

4.
52

:
R
el

at
iv

e
S
p
ee

d
u
p

of
P
D

D
ov

er
D

D
,
S
ta

ti
c

L
oa

d
in

g,
S
h
al

lo
w

F
ou

n
d
at

io
n

M
o
d
el

,
IT

R
=

1e
-3

,
Im

b
al

T
ol

5%

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 119

• If the problem size is fixed, there exists an optimum number of processors that can bring the best

performance of the proposed load balancing algorithm. As the number of processing units increases

after this number, the efficiency of proposed algorithm drops, which is understandable because the

local load imbalance is so small overall that balancing gain won’t offset the extra cost associated with

repartitioning. But still the bottom line of proposed adaptive PDD algorithm is that it can run as

fast as static one-step domain decomposition approach with less than 5% overhead of repartitioning

routine calls. On the other hand, if the number of processing units is fixed, bigger finite element

model will exhibit better performance. The conclusion is shown clearly in 3D in Figure 4.52.

• It is also worthwhile to point out that even without comparing with classical DD, PDD itself exhibits

deteriorating performance as the number of processing units increases. Here the reproduction of

Figure 4.51 is presented with some downside performance noted as shown in Figure 4.53.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 120

1
16

32
64

12
8

25
6

51
2

116326412
8

25
6

N
u

m
b

er
 o

f
C

P
U

s

Parallel Speedup

Theoretic
al S

peedup

39
8,

72
1

D
O

F
s

(1
25

,2
25

 E
le

m
en

ts
)

11
8,

27
5

D
O

F
s

(3
6,

03
7

E
le

m
en

ts
)

68
,4

51
 D

O
F

s
(2

0,
47

6
E

le
m

en
ts

)

32
,0

91
 D

O
F

s
(9

,2
97

 E
le

m
en

ts
)

17
,6

04
 D

O
F

s
(4

,9
38

 E
le

m
en

ts
)

F
ig

u
re

4.
53

:
F
u
ll

R
an

ge
S
ca

la
b
ili

ty
of

P
D

D
,
S
ta

ti
c

L
oa

d
in

g,
S
h
al

lo
w

F
ou

n
d
at

io
n

M
o
d
el

,
IT

R
=

1e
-3

,
Im

b
al

T
ol

5%
,
P
er

fo
rm

an
ce

D
ow

n
gr

ad
e

D
u
e

to
In

cr
ea

si
n
g

N
et

w
or

k
O

ve
rh

ea
d

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 121

The implication is explained as follows:

– The performance drop partly is due to the communication overhead gets bigger and bigger so

parallel processing will not be able to offset the communication loss.

– It is also noted that as the number of processing units increases, the elemental level calculation

drops very scalably with the number of CPUs. This is inherently advantage of the proposed

PDD algorithm. PDD through domain decomposition is very scalable for local level calculations

because inherently local comp is element-based. when elements are distributed, loads are spread

out evenly (during initial and redistribution). So as the number of CPU increases, the equation

solving becomes more expensive.

For the case of 56,481 DOFs prototype model with DRM earthquake loading, it has been

observed that for sequential case (1 CPU), elemental computation takes 70% of time. As for

parallel case (8 CPUs), we optimized parallel elemental computations through PDD, elemental

computation only accounts for about 40%. As the number of CPU increases, parallel case (32

CPUs), the local level computation will only take less than 10% of total wall clock time.

In other words, as the number of CPUs increases, PDD loses scalability because of the equation

solving now dominates. As being discussed in Chapter 5, the parallel direct solver itself is not

scalable up to large number of CPUs Demmel et al. (1999a). Parallel iterative solver is much

more scalable but difficult to guarantee convergence. This is now also the most important topic

in the whole scientific computing community.

For one set of fixed algorithm parameters, such as ITR and load imbalance tolerance, basic conclusion is

there exists an optimal number of processors that can bring best performance and as finite element model

size increases, this number increases as listed in Table 4.6.

Table 4.6: Best Performance Observed for ITR=0.001, Load Imbalance Tolerance %5

of DOFs Speedup # of CPUs

4,035 1.553 4

17,604 1.992 7

32,091 1.334 7

68,451 1.068 16

The second point is related to the implementation of the multilevel graph partitioning algorithm. In

current implementation of ParMETIS used in this report , vertex weight can only be specified as an int.

That means in order to get timing data from local level calculation for each element, double data returned

by MPI timing routine has to be converted to int. Significant digit loss can happen depending on what

accuracy the system clock can carry. We can also adjust the vertex weight by amplifying the timing by

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 122

scale factors in order to save effective digits. 10 millisecond has been used in this report to represent the

effective timing digits when converting from double to int.

Jeremić and Jie version: 1. May, 2008, 15:22

Part II

Parallel Equation Solving in Finite

Element Calculations

123

Chapter 5

Application of Project-Based Iterative

Methods in SFSI Problems

5.1 Introduction

Finite element method has been the most extensively used numerical method in computational mechanics.

Equation solver is the numerical kernel of any finite element package. Gauss elimination type direct solver

has dominated due to its robustness and predictability in performance.

As modern computer becomes more and more powerful, more advanced and detailed models need to

be analyzed by numerical simulation. Direct solver is not the favorite choice for large scale finite element

calculations because of high memory requirements and the inherent lack of parallelism of the method itself.

The motivation of this research on iterative solvers results from the fact that there is no robust parallel

iterative solvers now available to be used with OpenSees framework. In order to expand the tool for

large scale simulation problems such as soil-structure interaction study on prototype bridge systems, it is

necessary to introduce a powerful and robust parallel solver into the system.

In this report , the effectiveness of Krylov iterative methods has been tested in solving soil-structure

interaction problems. Preconditioning techniques have been introduced. Robustness of iterative solvers has

been investigated on equation systems from real soil-structure interaction problems. Several popular parallel

algorithms and tools have been collected and implemented on PETSc platform to solve the SFSI problems.

Performance study has been carried out using IA64 super computers at San Diego Supercomputing Center.

A complete implementation has also been implemented in our computational system, which is based on

PDD method, parts of OpenSees framework, ParMETIS, and other material and numerical libraries.

124

PDD Parallel FEM 125

5.2 Projection-Based Iterative Methods

Projection techniques are defined as methods to find approximate solutions x̂ for Ax = b (A ∈ Rn×n) in a

subspace W of dimension m. Then in order to determine x̂, we need m independent conditions. One way

to obtain these is by requiring the residual b−Ax̂ is orthogonal to a subspace V of dimension m, i.e.,

x̂ ∈ W, b−Ax̂ ⊥ V (5.1)

The conditions shown in Equation 5.1 are known as Petrov-Galerkin conditions (Bai).

There are two key questions to answer if one wants to use projection techniques in solving large scale

linear systems. Different answers lead to many variants of the projection method.

• Choice of Subspaces

Krylov subspaces have been the favorite of most researchers and a large family of methods have been

developed based on Krylov subspaces. Typically people choose either V = W or V = AW with V
and W both Krylov subspaces.

• Enforcement of Petrov-Galerkin Conditions

Arnoldi’s procedure and Lanczos algorithm are two choices for building orthogonal or biorthogonal

sequence to enforce the projection conditions.

The iterative methods discussed in this report are generally split into two categories, one based on Arnoldi’s

procedure and the other on Lanczos biorthoganalization. The most popular for the first family are Conju-

gate Gradient and General Minimum Residual methods, while Bi-Conjugate Gradient and Quasi-Minimum

Residual methods represent the Lanczos family.

5.2.1 Conjugate Gradient Algorithm

The conjugate gradient (CG) algorithm is one of the best known iterative techniques for solving sparse

symmetric positive definite (SPD) linear systems. This method is a realization of an orthogonal pro-

jection technique onto the Krylov subspace Km(A, r0), where r0 is the initial residual. Because A is

symmetry, some simplifications resulting from the three-term Lanczos recurrence will lead to more elegant

algorithms (Demmel, 1997).

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 126

ALGORITHM CG (Saad, 2003)

1. Compute r0 := b−Ax0, p0 := r0

2. For j = 0, 1, · · ·, until convergence, Do

3. αj := (rj , rj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. βj := (rj+1, rj+1)/(rj , rj)

7. pj+1 := rj+1 + βjpj

8. EndDo

• Applicability

Matrix A is SPD.

• Subspaces

Choose W = V = Km(A, r0), in which initial residual r0 = b−Ax0.

• Symmetric Lanczos Procedure

This procedure can be viewed as a simplification of the Arnoldi’s procedure when A is symmetric.

Great three-term Lanczos recurrence is discovered when the symmetry of A is considered (Demmel,

1997).

• Optimality

If A is SPD and one chooses W = V, enforcing Petrov-Galerkin conditions minimizes the A-norm of

the error over all vectors x ∈ W, i.e., x̂ solves the problem,

min
x∈W

‖x− x∗‖A, x∗ = A−1b (5.2)

From the lemma above, one can derive global minimization property of the Conjugate Gradient

method. The vector xk in the Conjugate Gradient method solves the minimization problem

min
x

φ(x) =
1
2
‖x− x∗‖2

A, x− x0 ∈ Kk(A, r0) (5.3)

• Convergence

In exact arithmetic, the Conjugate Gradient method will produce the exact solution to the linear

system Ax = b in at most n steps and it owns the superlinear convergence rate. The behavior of

Conjugate Gradient algorithm in finite precision is much more complex. Due to rounding errors,

orthogonality is lost quickly and finite termination does not hold anymore. What is more meaningful

in application problems would be to use CG method for solving large, sparse, well-conditioned linear

systems in far fewer than n iterations.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 127

5.2.2 GMRES

The Generalized Minimum Residual method is able to deal with more general type of matrices.

ALGORITHM GMRES (Saad, 2003)

1. Compute r0 := b−Ax0, β := ‖r0‖2, and v1 := r0/β

2. For j = 1, 2, · · · ,m, Do

3. Compute ωj := Avj

4. For i = 1, · · · , j, Do

5. hij := (ωj , vi)

6. ωj := ωj − hijvi

7. EndDo

8. hj+1,j = ‖ωj‖2. If hj+1,j = 0 set m := j and go to 11

9. vj+1 = ωj/hj+1,j

10. EndDo

11. Define the (m + 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m

12. Compute ym, the minimizer of ‖βie1 − H̄my‖2, and xm = x0 + Vmym

• Applicability

Matrix A is nonsingular.

• Subspaces

Choose W = Km(A, r0) and V = AW = AKm(A, r0), in which initial residual r0 = b−Ax0.

• Arnoldi’s Procedure

Classic Arnoldi’s procedure (modified Gram-Schmidt) is followed in GMRES (Bai).

• Optimality

If one chooses V = AW, enforcing Petrov-Galerkin conditions solves the least square problem

‖b−Ax̃‖2 = min
x∈W

‖b−Ax‖2 (5.4)

• Convergence

It has been shown that in exact arithmetic, GMRES can not breakdown and will give exact solutions

in at most n steps. In practice, the maximum steps GMRES can run depends on the memory due

to the fact it needs to store all Arnoldi vectors. Restarting schemes have been proposed for a fixed

m, which is denoted by GMRES(m). Typical value for m can be m ∈ [5, 20]. GMRES(m) can not

breakdown in exact arithmetic before the exact solution has been reached. But it may never converge

for m < n (Bai).

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 128

5.2.3 BiCGStab and QMR

These two methods are based on nonsymmetric Lanczos procedure, which is quite different from Arnoldi’s

in the sense that it formulates biorthogonal instead of orthogonal sequence. They are counterparts of CG

and GMRES method, which follows similar derivation procedure except the Lanczos biorthogonalization is

used instead of Arnoldi’s procedure (Bai).

5.3 Preconditioning Techniques

Lack of robustness is a widely recognized weakness of iterative solvers relative to direct solvers. Using

preconditioning techniques can greatly improve the efficiency and robustness of iterative methods. Pre-

conditioning is simply a means of transforming the original linear system into one with the same solution

but easier to solve with an iterative solver. Generally speaking, the reliability of iterative techniques, when

dealing with various applications, depends much more on the quality of the preconditioner than on the

particular Krylov subspace accelerator used.

The first step in preconditioning is to find a preconditioning matrix M . The matrix M can be defined

in many different ways but there are a few minimal requirements the M is supposed to satisfy (Benzi,

2002).

1. From practical point of view, the most important requirement of M is that it should be inexpensive

to solve linear system Mx = b. This is because the preconditioned algorithm will all require a linear

system solution with the matrix M at each step.

2. The matrix M should be somehow close to A and it should not be singular. We can see that actually

most powerful preconditioners are constructed directly from A.

3. The preconditioned M−1A should be well-conditioned or has very few extreme eigenvalues thus M

can accelerate convergence dramatically.

Once a preconditioner M is available, there are three ways to apply it.

1. Left Preconditioning

M−1Ax = M−1b (5.5)

2. Right Preconditioning

AM−1u = b, x ≡ M−1u (5.6)

3. Split Preconditioning

It is a very common situation that M is available in factored form M = MLMR, in which, typically,

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 129

ML and MR are triangular matrices. Then the preconditioning can be split,

M−1
L AM−1

R u = b, x ≡ M−1
R u (5.7)

It is imperative to preserve symmetry when the original matrix A is symmetric, so the split precon-

ditioner seems mandatory in this case.

Consider that a matrix A that is symmetric and positive definite and assume that a preconditioner

M is available. The preconditioner M is a matrix that approximates A in some yet-undefined sense. We

normally require that the M is also symmetric positive definite.

In order to preserve the nice SPD property, in the case when M is available in the form of an incomplete

Cholesky factorization, M = LLT , people can simply just use the split preconditioning, which yields the

SPD matrix

L−1AL−T u = L−1b, x ≡ L−T u (5.8)

However, it is not necessary to split the preconditioner in this manner in order to preserve symmetry.

Observe that M−1A is self-adjoint for the M inner product

(x, y)M ≡ (Mx, y) = (x,My) (5.9)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M (5.10)

Therefore, an alternative is to replace the usual Euclidean inner product in the CG algorithm with the M

inner product (Saad, 2003).

If the CG algorithm is rewritten for this new inner product, denoting by rj = b−Axj the original residual

and by zj = M−1rj the residual for the preconditioned system, the following sequence of operations is

obtained, ignoring the initial step:

1. αj := (zj , zj)M/(M−1Apj , pj)M ,

2. xj+1 := xj + αjpj ,

3. rj+1 := rj − αjApj and zj+1 := M−1rj+1,

4. βj := (zj+1, zj+1)M/(zj , zj)M ,

5. pj+1 := zj+1 + βjpj .

Since (zj , zj)M = (rj , zj) and (M−1Apj , pj)M = (Apj , pj), the M inner products do not have to be

computed explicitly. With this observation, the following algorithm is obtained.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 130

ALGORITHM Preconditioned CG (Saad, 2003)

1. Compute r0 := b−Ax0, z0 := M−1r0, p0 := z0

2. For j = 0, 1, · · ·, until convergence, Do

3. αj := (rj , zj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)

8. pj+1 := zj+1 + βjpj

9. EndDo

5.4 Preconditioners

Finding a good preconditioner to solve a given sparse linear system is often viewed as a combination

of art and science. Theoretical results are rare and some methods work surprisingly well, often despite

expectations. As it is mentioned before, the preconditioner M is always close to A in some undefined-yet

sense. Some popular preconditioners will be introduced in this chapter.

5.4.1 Jacobi Preconditioner

This might be the simplest preconditioner people can think of. If A has widely varying diagonal entries,

we may just use diagonal preconditioner M = diag(a11, · · · , ann). One can show that among all possible

diagonal preconditoners, this choice reduces the condition number of M−1A to within a factor of n of its

minimum value.

5.4.2 Incomplete Cholesky Preconditioner

Another simple way of defining a preconditioner that is close to A is to perform an incomplete Cholesky

factorization of A. Incomplete factorization formulates an approximation of A ≈ L̂L̂T , but with less or no

fill-ins relative to the complete factorization A = LLT (Demmel, 1997).

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 131

ALGORITHM Incomplete Cholesky Factorization (Saad, 2003)

1. For j = 1, 2, · · · , n, Do

3. ljj :=
√

ajj −
∑j−1

k=1 l2jk

4. For i = j + 1, · · · , n, Do

5. lij = (aij −
∑j−1

k=1 likljk)/ljj

6. Apply dropping rule to lij

7. EndDo

8. EndDo

There are many ways to control the number of fill-ins in IC factorization. No fill-in version of incomplete

Cholesky factorization IC(0) is rather easy and inexpensive to compute. On the other hand, it often leads

to a very crude approximation of A, which may result in the Krylov subspace accelerator requiring too many

iterations to converge. To remedy this, several alternative incomplete factorizations have been developed by

researchers by allowing more fill-in in L, such as incomplete Cholesky factorization with dropping threshold

IC(ε). In general, more accurate IC factorizations require fewer iterations to converge, but the preprocessing

cost to compute the factors is higher.

5.4.3 Robust Incomplete Factorization

Incomplete factorization preconditioners are quite effective for many application problems but special care

must be taken in order to avoid breakdowns due to the occurrence of non-positive pivots during the

incomplete factorization process.

The existence of an incomplete factorization A ≈ L̂L̂T has been established for certain classes of

matrices. For the class of M -matrices, the existence of incomplete Cholesky factorization was proved

for arbitrary choices of the sparsity pattern (Meijerink and van der Vorst, 1977). The existence result

was extended shortly thereafter to a somewhat larger class (that of H-matrices with positive diagonal

entries) (Manteuffel, 1980; Varga et al., 1980; Robert, 1982). Benzi and Tůma (2003) presents reviews

on the topic of searching for robust incomplete factorization algorithms and an robust algorithm based on

A-Orthogonalization has been proposed.

In order to construct triangular factorization of A, the well-known is not the only choice. Benzi and

Tůma (2003) shows how the factorization A = LDLT (root-free factorization) can be obtained by means

of an A-orthogonalization process applied to the unit basis vectors e1, e2, · · · , en. This is simply the Gram-

Schmidt process with respect to the inner product generated by the SPD matrix A. This idea is not new

and as a matter of fact, it was originally proposed at as early as 1940’s in Fox et al. (1948). It has been

observed in Hestenes and Stiefel (1952) that A-orthogonalization of the unit basis vectors is closely related

to Gaussian elimination but this algorithm costs twice as much as the Cholesky factorization in the dense

case.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 132

Factored Approximate Inverse Preconditioner

In reference Benzi et al. (1996) A-orthogonalization has been exploited to construct factored sparse approxi-

mate inverse preconditioners noting the fact that A-orthogonalization also produces the inverse factorization

A−1 = ZD−1ZT (with Z unit upper triangular and D diagonal). Because the A-orthogonaliza-tion, even

when performed incompletely, is not subject to pivot breakdowns, these preconditioners are reliable (Benzi

et al., 2000). However, they are often less effective than incomplete Cholesky preconditioning at reduc-

ing the number of PCG iterations and their main interest stems from the fact that the preconditioning

operation can be applied easily in parallel because triangular solve is not necessary in approximate inverse

preconditioning.

Reference Benzi and Tůma (2003) investigates the use of A-orthogonalization as a way to compute an

incomplete factorization of A rather than A−1 thus a reliable preconditioning algorithm can be developed.

The basic A-orthogonalization procedure can be written as follows (Benzi et al., 2000).

ALGORITHM Incomplete Factored Approximate Inverse (Benzi et al.,

1996)

1. Let z
(0)
i = ei, for i = 1, 2, · · · , n

2. For i = 1, 2, · · · , n, Do

3. For j = i, i + 1, · · · , n, Do

4. p
(i−1)
j := aT

i z
(i−1)
j

5. EndDo

6. For j = i + 1, · · · , n, Do

7. z
(i)
j := z

(i−1)
j − (

p
(i−1)
j

p
(i−1)
i

)

8. Apply dropping to z
(i)
j

9. EndDo

10. EndDo

11. Let zi := z
(i−1)
i and pi := p

(i−1)
i , for i = 1, 2, · · · , n.

12. Return Z = [z1, z2, · · · , zn] and D = diag(p1, p2, · · · , pn).

The basic algorithm described above can suffer a breakdown when a negative or zero value of a pivot

pi. When no dropping is applied, pi = zT
i Azi > 0. The incomplete procedure is well defined, i.e., no

breakdown can occur, if A is an H-matrix (in the absence of round-off). In the general case, breakdowns

can occur. Breakdowns have a crippling effect on the quality of the preconditioner. A negative pi would

result in an approximate inverse which is not positive definite; a zero pivot would force termination of the

procedure, since step (7) cannot be carried out.

The way proposed to avoid non-positive pivots is simply to recall that in the exact A-orthogonalization

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 133

process, the pi’s are the diagonal entries of matrix D which satisfies the matrix equation

ZT AZ = D (5.11)

hence for 1 < i < n

pi = zT
i Azi > 0 (5.12)

since A is SPD and zi 6= 0. In the exact process, the following equality holds

pi = zT
i Azi = aT

i zi and pj = zT
i Azj = aT

i zj (5.13)

Clearly it is more economical to compute the pivots using just inner product aT
i zi rather than the middle

expression involving matrix-vector multiply. However, because of dropping and the resulting loss of A-

orthogonality in the approximate z̄-vectors, such identities no longer hold in the inexact process and for

some matrices one can have

aT
i z̄i � z̄T

i Az̄i (5.14)

The robust algorithm requires that the incomplete pivots p̄i’s be computed using the quadratic form z̄T
i Az̄i

throughout the AINV process, for i = 1, 2, · · · , n.

ALGORITHM Stabilized Incomplete Approximate Inverse (Benzi et al.,

2000)

1. Let z
(0)
i = ei, for i = 1, 2, · · · , n

2. For i = 1, 2, · · · , n, Do

3. vi := Az
(i−1)
i

4. For j = i, i + 1, · · · , n, Do

5. p
(i−1)
j := vT

i z
(i−1)
j

6. EndDo

7. For j = i + 1, · · · , n, Do

8. z
(i)
j := z

(i−1)
j − (

p
(i−1)
j

p
(i−1)
i

)

9. Apply dropping to z
(i)
j

10. EndDo

11. EndDo

12. Let zi := z
(i−1)
i and pi := p

(i−1)
i , for i = 1, 2, · · · , n.

13. Return Z = [z1, z2, · · · , zn] and D = diag(p1, p2, · · · , pn).

Obviously, the robust (referred to as SAINV) and plain algorithm are mathematically equivalent. How-

ever, the incomplete process obtained by dropping in the z-vectors in step (9) of the robust algorithm leads

to a reliable approximate inverse. This algorithm, in exact arithmetic, is applicable to any SPD matrix

without breakdowns. The computational cost of SAINV is higher than basic AINV and special care has to

be taken to do sparse-sparse matrix-vector multiply.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 134

Incomplete Factorization by SAINV

Consider now the exact algorithm (with no dropping) and write A = LDLT with L unit lower triangular

and D diagonal. Observe that L in the LDLT factorization of A and the inverse factor satisfy

AZ = LD or L = AZD−1 (5.15)

where D is the diagonal matrix containing the pivots. This easily follows from

ZT AZ = D and ZT = L−1 (5.16)

If we recall that pivot dj = pj = zT
j Azj = 〈Azj , zj〉, then by equating corresponding entries of AZD−1

and L = [lij] we find that (Benzi and Tůma, 2003; Bollhöfer and Saad, 2001)

lij =
〈Azj , zi〉
〈Azj , zj〉

i ≥ j (5.17)

Hence, the L factor of A can be obtained as a by-product of the A-orthogonal-ization, at no extra cost.

In the implementation of SAINV, the quantities lij in Equation 5.17 are the multipliers that are used in

updating the columns of Z. Once the update is computed, they are no longer needed and are discarded. To

obtain an incomplete factorization of A, we do just the opposite; we save the multipliers lij , and discard

the column vectors zj as soon as they have been computed and operated with. Hence, the incomplete

L factor is computed by columns; these columns can be stored in place of the zj vectors, with minimal

modifications to the code. Here, we are assuming that the right-looking form of SAINV is being used. If

the left-looking one is being used, then L would be computed by rows. Please refer to Benzi and Tůma

(2003) for more implementation details.

5.5 Numerical Experiments

Matrices from soil-structure interaction finite element analysis have been extracted from simulation system

to study the performance of different preconditioning techniques on PCG method. The prototype of soil

structure model has been shown in Figures 5.1 and 5.2. In order to introduce both of the nonlinear theories

for soil and structures, we use continuum elements to model the soil and beam elements for the structures.

Matrices from static pushover analysis and dynamic ground motion analysis have been collected for this

research.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 135

Figure 5.1: Finite Element Mesh of Soil-Structure Interaction Model

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 136

Figure 5.2: Finite Element Mesh of Soil-Structure Interaction Model

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 137

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 220283

Figure 5.3: Matrices N = 3336 (Continuum FEM)

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nz = 364877

Figure 5.4: Matrices N = 5373 (Continuum FEM)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 138

Figure 5.5: Matrices N = 33081 (Continuum FEM)

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

nz = 547678

Figure 5.6: Matrices N = 8842 (Soil-Beam Static FEM)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 139

Table 5.1: Matrices in FEM Models

Continuum Model (Static)

Matrix Property Dimension # Nonzeros

m1188 SPD 3336 220283

m1968 SPD 5373 364877

m11952 SPD 33081 2424543

Soil-Beam Model (Static and Dynamic)

Matrix Property Dimension # Nonzeros

SoilBeam SPD 8442 547678

SoilBeamDyn SPD 8442 547671

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

nz = 547671

Figure 5.7: Matrices N = 8842 (Soil-Beam Dynamic FEM)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 140

SPD matrices have been studied using Conjugate Gradient method with or without preconditioning.

Performance has been summarized in Table 5.2.

Table 5.2: Performance of CG and PCG Method (Continuum FEM)

3336 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density1

- 4376 - 54.82 54.82 -

Jacobi 1612 0.01 20.18 20.19 -

IC(0) 413 2.19 11.07 13.26 1.00

IC(1e-6) 5 5.90 0.47 6.37 5.88

RIF2(1e-2) 571 9.37 14.94 24.31 0.94

RIF3(1e-2) 541 6.80 14.13 20.93 0.94

5373 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 4941 - 103.78 103.78 -

Jacobi 1711 0.01 36.61 36.62 -

IC(0) 437 6.5 20.38 26.88 1.00

IC(1e-6) 6 19.81 1.3 21.11 8.10

RIF2(1e-2) 599 25.71 26.55 52.26 0.96

RIF3(1e-2) 566 21.31 25.23 46.54 0.96

33081 DOFs FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 6754 - 952.53 952.53 -

Jacobi 2109 0.03 308.46 308.49 -

IC(0) 565 273.83 173.05 446.88 1.00

IC(1e-6)2

RIF2(1e-2) 694 1172.7 211.88 1384.58 0.99

RIF3(1e-2) 664 1245.4 202.67 1448.07 0.99
1Density is defined as the number of non-zeros of the incomplete factor divided

by the number of non-zeros in the lower triangular part of A.

2Could not continue because memory requirement larger than 1.4GB.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 141

0 1000 2000 3000 4000 5000
10

0

10
2

10
4

10
6

10
8

10
10

Iterations

R
es

id
ua

l N
or

m

CG
PCG−Jacobi
PCG−IC(’0’)
PCG−IC(1e−6)
PCG−RIF2(1e−2)
PCG−RIF3(1e−2)

Figure 5.8: Convergence of CG and PCG Method (3336 DOFs Model)

0 1000 2000 3000 4000 5000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Iterations

R
es

id
ua

l N
or

m

CG
PCG−Jacobi
PCG−IC(’0’)
PCG−IC(1e−6)
PCG−RIF2(1e−2)
PCG−RIF3(1e−2)

Figure 5.9: Convergence of CG and PCG Method (5373 DOFs Model)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 142

0 1000 2000 3000 4000 5000 6000 7000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Iterations

R
es

id
ua

l N
or

m

CG
PCG−Jacobi
PCG−IC(’0’)
PCG−RIF2(1e−2)
PCG−RIF3(1e−2)

Figure 5.10: Convergence of CG and PCG Method (33081 DOFs Model)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 143

0 500 1000 1500 2000 2500 3000 3500
10

2

10
4

10
6

10
8

10
10

10
12

Iterations

R
es

id
ua

l N
or

m

CG
PCG−Jacobi
PCG−IC(’0’)
PCG−IC(1e−6)
PCG−RIF2(1e−2)
PCG−RIF3(1e−2)

Figure 5.11: Convergence of CG and PCG Method (Soil-Beam Static Model)

0 2000 4000 6000 8000 10000 12000
10

2

10
4

10
6

10
8

10
10

10
12

10
14

Iterations

R
es

id
ua

l N
or

m

CG
PCG−Jacobi
PCG−IC(’0’)
PCG−IC(1e−6)
PCG−RIF2(1e−2)
PCG−RIF3(1e−2)

Figure 5.12: Convergence of CG and PCG Method (Soil-Beam Dynamic Model)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 144

Table 5.3: Performance of CG and PCG Method (Soil-Beam FEM)

8842 DOFs Soil-Beam FEM (Static)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density3

- 3274 - 102.5 102.5 -

Jacobi 1687 0.01 54.56 54.57 -

IC(0) 26 15.77 1.95 17.72 1.00

IC(1e-6) 6 110.17 2.79 112.96 15.11

RIF2(1e-6)4 23 3364.8 3.44 3368.24 4.32

RIF3(1e-6)4 31 34541 9.26 34550.26 16.37

8842 DOFs Soil-Beam FEM (Dynamic)

Preconditioner # Iter Pre Time(s) Iter Time(s) Total Time(s) Density

- 3276 - 136.7 136.7 -

Jacobi MaxIt

IC(0) MaxIt

IC(1e-6) MaxIt

RIF2(1e-2) MaxIt

RIF3(1e-2) MaxIt
3Density is defined as the number of non-zeros of the incomplete factor divided by the number

of non-zeros in the lower triangular part of A.
4Iteration with tolerance 1e-2 failed to converge.

5.6 Conclusion and Future Work

1. For the soil-structure interaction problems investigated in this report , Conjugate Gradient method

works fine and the convergence is acceptable for most cases.

2. Incomplete Cholesky factorization preconditioner has been shown to be very powerful in static

pushover problems.

3. Dynamic problems formulated by Newmark integration scheme have not been extensively tested. But

according to the data available so far, neither IC nor RIF preconditioners performed well and further

testing is necessary to reach a more persuasive conclusion. The difficulty in dynamic analysis results

from the fact that consistent mass and damping matrices used in continuum finite element formula-

tions significantly degrade the conditioning number of the final system. This situation deteriorates

when penalty handler is used to apply multiple point constraints, which introduces huge off-diagonal

numbers to stiffness, mass and damping matrices (Cook et al., 2002).

4. Robust incomplete factorization preconditioning based on A-orthogonalization has not been shown

competitive with IC preconditioners in this research. It is also worth noting that all timings are taken

in MATLAB. There are much more improvement can be achieved with a carefully coded FORTRAN

program.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 145

5. Static analysis has been extensively studied in this report . It can be safely concluded that IC(0) and

Jacobi preconditioners are good choices for the nonlinear soil-beam interaction simulations.

6. Dynamic analysis has not been studied well enough to draw a detailed conclusion in this report .

Generally speaking, one should be alert if iterative solver is to be used for dynamic analysis. This

partially comes from the fact that mass and damping matrices undoubtedly alter the structures of the

coefficient matrix. This situation becomes more complicated if penalty handler is used to introduce

off-diagonal numbers when handling multi-point constraints. So direct solver would be a more stable

option for solving dynamic equations.

Jeremić and Jie version: 1. May, 2008, 15:22

Chapter 6

Performance Study on Parallel

Direct/Iterative Solving in SFSI

The motivation of this report is to introduce a robust and efficient parallel equation solver into our parallel

finite element analysis framework. Aside from sparsity, which has been well known as the result of compact

support that is inherent with finite element method, there exist some other special considerations that

make the equation solving in finite element simulation a more involved problem.

In nonlinear finite element simulations, handling of constraints significantly affects the condition number

of assembled equation systems. In SFSI simulations, multiple-point constraint is necessary to enforce the

connection between soil and pile elements. In this research, penalty handler has been adopted to impose

multiple point constraints on the assembled equation systems. Transformation and Lagrange multipliers

are among those popular methods as well (Belytschko et al., 2000; Cook et al., 2002). The method of

Lagrange multipliers adds extra constraints to the system and the resulted coefficient matrix will lose

symmetric positive definiteness. Transformation is favorable especially in the sense that it reduces the

order of the equation systems by condensing out slave/constrained DOFs. But the transformation is the

most difficult to code and the situation of one single master/retained node with multiple slave/constrained

nodes further complicates the problem.

Penalty method is chosen in this research due to the fact that it well preserves the symmetric positive

definiteness of the system if the nice property is observed. Another consideration comes from the easiness

with which the penalty methods can handle the single master/retained multiple slave/constrained situations.

This is proven to be extremely valuable when data redistribution is required in adaptive parallel processing

because the DOF Graph object can be clearly tracked during partition and repartition phases.

The incapability of handling constraints accurately has been long known as the weakness of penalty

method. The choice of the key penalty number seems arbitrary and largely depends on experience. The

dilemma is with larger penalty number, the system can handle constraints more accurately while the

coefficient matrix can become very ill-conditioned. This can lead to serious convergence problem for

146

PDD Parallel FEM 147

iterative solvers.

The majority of coefficient matrices resulted from finite element analysis are inherently symmetric pos-

itive definite, for which lots of numerical algorithms have been proposed and solving SPD, symmetric or

closely symmetric systems has been relatively maturer than more common unsymmetric cases. Unfortu-

nately, in geotechnical finite element simulations, unassociated constitutive models lead to unsymmetric

stiffness matrices (Jeremić, 2004b). More general parallel solvers must be coded to solve the problem.

In this section, both iterative and direct solvers are coded using the consistent PETSc interface (Balay

et al., 2001, 2004, 1997). Popular direct solvers for general unsymmetric systems such as MUMPS,

SPOOLES, SuperLU, PLAPACK have been introduced and performance study has been carried out to

investigate the efficiency of different solvers on large scale SFSI simulations with penalty-handled unsym-

metric equation systems. GMRES is always the first choice of iterative method when general unsymmetric

systems are concerned. Preconditioning techniques have been thoroughly studied in this research to explore

possible advantage of preconditioned iterative solver over direct solving. Jacobi, incomplete LU decompo-

sition and approximate inverse preconditioners represent the most popular choices for Krylov methods and

they are chosen in this performance survey.

All numerical algorithms have been implemented through interface of PETSc, which provides a consis-

tent platform on which implementation issues can be avoided to expose individual algorithmic performance.

6.1 Parallel Sparse Direct Equation Solvers

The methods that we consider for the solution of sparse linear equations can be grouped into four main cat-

egories: general techniques, frontal methods, multifrontal approaches and supernodal algorithms (Dongarra

et al., 1996).

6.1.1 General Techniques – SPOOLES

The so-called general approach can be viewed as parallel versions of sparse LU decomposition. Special

cares must be taken to handle the sparse data structures. Sparsity ordering is crucial in parallel sparse

equation solving in order to reduce fill-in and discover large-grain parallelism (Demmel et al., 1993).

Freely available package SPOOLES provides minimum degree (multiple external minimum degree (Liu,

1985)), generalized nested dissection and multisection ordering schemes for matrix sparsity ordering. Fun-

damental supernode tree built on top of vertex elimination tree is used to explore granularity in paral-

lel (Ashcraft, 1999; Ashcraft et al., 1999).

6.1.2 Frontal and Multifrontal Methods – MUMPS

Frontal methods have their origins in the solution of finite element problems from structural analysis. The

usual way to describe the frontal method is to view its application to finite element problems where the

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 148

matrix A is expected as a sum of contributions from the elements of a finite element discretization (Dongarra

et al., 1996). That is,

A =
m∑

l=1

A[l], (6.1)

where A[l] is nonzero only in those rows and columns that correspond to variables in the lth element. If aij

and a
[l]
ij denote the (i, j)th entry of A and A[l], respectively, the basic assembly operation when forming A

is of the form

aij ⇐ aij + a
[l]
ij . (6.2)

It is evident that the basic operation in Gaussian elimination

aij ⇐ aij + aip[app]−1apj . (6.3)

may be performed as soon as all the the terms in the triple product 6.3 are fully summed (that is, are

involved in no more sums of the form 6.2). The assembly and Gaussian elimination processes can therefore

be interleaved and the matrix A is never assembled explicitly. This allows all intermediate working to be

performed in a dense matrix, termed frontal matrix, whose rows and columns correspond to variables that

have not yet been eliminated but occur in at least one of the elements that have been assembled.

For general problems other than finite element, the rows of A (equations) are added into the frontal

matrix one at a time. A variable is regarded as fully summed whenever the equation in which it last appears

is assembled. The frontal matrix will, in this case, be rectangular.

The idea of multifrontal method is to couple a sparsity ordering with the efficiency of a frontal matrix

kernel so allowing good exploitation of high performance computers. The basic approach is to develop

separate fronts simultaneously which can be chosen using a sparsity preserving ordering such as minimum

degree.

Elimination tree, again is the most important notion in the factorization process and also utilized

to discover the potential of parallelism. An elimination tree defines the a precedence order within the

factorization. The factorization commences at the leaves of of the tree and data is passed towards the root

along the edges in the tree. To complete the work associated with a node, all the data must have been

obtained from the children of the node, otherwise work at different nodes is independent.

Freely available package MUMPS (MUltifrontal Massively Parallel sparse direct Solver) has been used

in this research to investigate the performance of multifrontal methods (http://graal.ens-lyon.fr/MUMPS/,

2006).

MUMPS is a package for solving systems of linear equations of the form Ax = b, where A is a square

sparse matrix that can be either unsymmetric, symmetric positive definite, or general symmetric. MUMPS

uses a multifrontal technique which is a direct method based on either the LU or the LDLT factorization

of the matrix. MUMPS exploits both parallelism arising from sparsity in the matrix A and from dense

factorizations kernels.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 149

The main features of the MUMPS package include the solution of the transposed system, input of

the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative

refinement, scaling of the original matrix, and return of a Schur complement matrix. MUMPS offers

several built-in ordering algorithms, a tight interface to some external ordering packages such as METIS

and PORD, and the possibility for the user to input a given ordering. Finally, MUMPS is available in

various arithmetics (real or complex, single or double precision).

The software is written in Fortran 90 although a C interface is available. The parallel version of MUMPS

requires MPI for message passing and makes use of the BLAS, BLACS, and ScaLAPACK libraries. The

sequential version only relies on BLAS.

MUMPS distributes the work tasks among the processors, but an identified processor (the host) is

required to perform most of the analysis phase, to distribute the incoming matrix to the other processors

(slaves) in the case where the matrix is centralized, and to collect the solution. The system Ax = b is

solved in three main steps:

1. Analysis. The host performs an ordering based on the symmetrized pattern A + AT, and carries

out symbolic factorization. A mapping of the multifrontal computational graph is then computed,

and symbolic information is transferred from the host to the other processors. Using this information,

the processors estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will participate in the nu-

merical factorization. The numerical factorization on each frontal matrix is conducted by a master

processor (determined by the analysis phase) and one or more slave processors (determined dynam-

ically). Each processor allocates an array for contribution blocks and factors; the factors must be

kept for the solution phase.

3. Solution. The right-hand side b is broadcast from the host to the other processors. These processors

compute the solution x using the (distributed) factors computed during Step 2, and the solution is

either assembled on the host or kept distributed on the processors.

Each of these phases can be called separately and several instances of MUMPS can be handled simul-

taneously. MUMPS allows the host processor to participate in computations during the factorization and

solve phases, just like any other processor.

For both the symmetric and the unsymmetric algorithms used in the code, a fully asynchronous approach

with dynamic scheduling of the computational tasks has been chosen. Asynchronous communication is used

to enable overlapping between communication and computation. Dynamic scheduling was initially chosen

to accommodate numerical pivoting in the factorization. The other important reason for this choice was

that, with dynamic scheduling, the algorithm can adapt itself at execution time to remap work and data

to more appropriate processors. In fact, the main features of static and dynamic approaches have been

combined and the estimation obtained during the analysis to map some of the main computational tasks

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 150

has been used; the other tasks are dynamically scheduled at execution time. The main data structures (the

original matrix and the factors) are similarly partially mapped according to the analysis phase.

6.1.3 Supernodal Algorithm – SuperLU

The left-looking or column Cholesky algorithm can be implemented for sparse system and can be blocked

by using a supernodal formulation. The idea of a supernode is to group together columns with the same

nonzero structure, so they can be treated as a dense matrix for storage and computation. Supernodes were

originally used for (symmetric) sparse Cholesky factorization (Demmel et al., 1999a). In the factorization

A = LLT (or A = LDLT), a supernode is a range (r : s) of columns of L with the same nonzero structure

below the diagonal; that is, L(r : s; r : s) is full lower triangular and every row of L(r : s; r : s) is either

full or zero.

Then in left-looking Cholesky algorithm, all the updates from columns of a supernode are summed

into a dense vector before the sparse update is performed. This reduces indirect addressing and allows

the inner loops to be unrolled. In effect, a sequence of col-col updates is replaced by a supernode-column

(sup-col) update. The sup-col update can be implemented using a call to a standard dense Level 2 BLAS

matrix-vector multiplication kernel. This idea can be further extended to supernode-supernode (sup-sup)

updates, which can be implemented using a Level 3 BLAS dense matrix-matrix kernel. This can reduce

memory traffic by an order of magnitude, because a supernode in the cache can participate in multiple

column updates (Demmel et al., 1999a). It has been reported in (Ng and Peyton, 1993) that a sparse

Cholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 times as fast as a col-col algorithm.

Indeed, supernodes have become a standard tool in sparse Cholesky factorization.

To sum up, supernodes as the source of updates help because of the following (Demmel et al., 1999a):

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS is replaced by dense

Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save memory references. (Level

1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

3. Elements of the source supernode can be reused in multiple columns of the destination supernode to

reduce cache misses. (Level 2 BLAS is replaced by Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization, before the numeric

factorization begins. However, in sparse LU, the nonzero structure cannot be predicted before numeric

factorization, so supernodes must be defined dynamically. Furthermore, since the factors L and U are no

longer transposes of each other, the definition of a supernode must be generalized.

Freely available package SuperLU proposed a couple of ways to generalize the symmetric definition

of supernodes to unsymmetric factorization (Demmel et al., 1999a). It is now not possible to use Level

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 151

3 BLAS efficiently for unsymmetric systems. The implementation in SuperLU performs a dense matrix

multiplication of a block of vectors and, although these can not be written as another dense matrix, it has

been shown that this Level 2.5 BLAS has most of the performance characteristics of Level 3 BLAS since

the repeated use of the same dense matrix allows good use of cache and memory hierarchy.

There are three versions of libraries collectively referred as SuperLU (Demmel et al., 2003),

• Sequential SuperLU is designed for sequential processors with one or more layers of memory hier-

archy (caches).

• Multithreaded SuperLU (SuperLU MT) is designed for shared memory multiprocessors (SMPs),

and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices in order to

speed up the computation (Demmel et al., 1999b).

• Distributed SuperLU SuperLU DIST is designed for distributed memory parallel processors, us-

ing MPI for interprocess communication. It can effectively use hundreds of parallel processors on

sufficiently large matrices (Li and Demmel, 2003).

Parallelizing sparse direct solver for unsymmetric systems is more complicated than parallel sparse

Cholesky case. The advantage of sparse Cholesky over the unsymmetric case is that pivots can be chosen

in any order from the main diagonal while guaranteeing stability. This lets us perform pivot choice before

numerical factorization begins, in order to minimize fill-in, maximize parallelism. precompute the nonzero

structure of the Cholesky factor, and optimize the (2D) distributed data structures and communication

pattern (Li and Demmel, 2003).

In contrast, for unsymmetric or indefinite systems, distributed memory codes can be much more com-

plicated for at least two reasons. First and foremost, some kind of numerical pivoting is necessary for

stability. Classical partial pivoting or the sparse variant of threshold pivoting typically cause the fill-ins

and workload to be generated dynamically during factorization. Therefore, we must either design dynamic

data structures and algorithms to accommodate these fill-ins, or else use static data structures which can

grossly overestimate the true fill-in. The second complication is the need to handle two factored matrices

L and U, which are structurally different yet closely related to each other in the filled pattern. Unlike

the Cholesky factor whose minimum graph representation is a tree (elimination tree), the minimum graph

representations of the L and U factors are directed acyclic graphs (elimination DAGs).

In SuperLU DIST, a static pivoting approach, called GESP (Gaussian Elimination with Static Pivot-

ing) (Li and Demmel, 1998) is used. In order to parallelize the GESP algorithm, a 2D block-cyclic mapping

of a sparse matrix to the processors is used. An efficient pipelined algorithm is also designed to perform

parallel factorization. With GESP, the parallel algorithm and code are much simpler than dynamic pivoting.

The main algorithmic features of SuperLU DIST solver are summarized as follows (Li and Demmel,

2003):

• supernodal fan-out (right-looking) based on elimination DAGs,

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 152

• static pivoting with possible half-precision perturbations on the diagonal,

• use of an iterative algorithm using the LU factors as a preconditioner, in order to guarantee stability,

• static 2D irregular block-cyclic mapping using supernodal structure, and

• loosely synchronous scheduling with pipelining.

In particular, static pivoting can be performed before numerical numerical factorization, allowing us to

use all the techniques in good sparse Cholesky codes: choice of a (symmetric) permutation to minimize

fill-in and maximize parallelism, precomputation of the fill pattern and optimization of 2D distributed data

structures and communication patterns. Users are referred to Li and Demmel (2003) for algorithm details.

6.2 Performance Study on SFSI Systems

In this section, performance study on popular parallel direct and iterative solvers has been conducted. The

purpose is to provide some guidelines on appropriate use of different solvers with the parallel finite simulation

framework. Matrix systems from SFSI analysis are used as test cases. The performance investigation uses

IA64 Intel-based cluster at SDSC.

6.2.1 Equation System

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 153

Figure 6.1: Matrices N = 33081 (Continuum FEM)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 154

6.2.2 Performance Results

Table 6.1: Performance Study on SFSI Systems (N=33081)

Direct Solvers

Solvers Num of CPUs Time (s)

4 6.0312

MUMPS 8 7.0534

16 5.3472

4 20.358

SuperLU DIST 8 13.803

16 13.755

4 10.696

SPOOLES 8 7.5338

16 6.2448

Iterative Solvers (GMRES)

Preconditioner Num of CPUs Time (s)

Jacobi 16 96.441

4 277.49

Parallel ILU(0) 8 276.07

16 135.78

6.3 Conclusion

This chapter presents the parallel solvers implemented in parallel finite element framework. Table 6.1,

draws several conclusions about appropriate use of solvers:

• Direct solvers outperforms the iterative solver significantly for general cases. It is worthwhile to

note that nonsymmetric solvers are used here due to their generality. For special cases such as SPD

system, preconditioned CG will show much better performance.

• The Conjugate Gradient method applies only to Symmetric Positive Definite (SPD) system. This

puts restriction on the material models we can use in our simulations. Generally speaking, elastic

material will yield a SPD stiffness matrix. Plastic material with associative flow rule also satisfies this

category. Plastic material with non-associative flow rule has non-symmetric element stiffness matrix

and so will be the global coefficient matrix of the equation system.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 155

• Another category of matrix that deserves attention is the stiffness matrix from softening materials,

which possesses at least one negative eigenvalue so the SPD property will be broken. For advanced

geo-materials subject to complicated loadings, as the material develops nonlinearity, the condition of

stiffness matrix might vary greatly from SPD (elastic phase), to singular (elastic-perfectly-plastic),

and non-symmetric non-positive-definite (elastic-non-associative-plastic-softening) cases. This poses

another challenge when one tries to use iterative solver for production runs. The unpredictability

of stiffness matrix will disable the application of powerful solvers such as Conjugate Gradient for

iterative case and Cholesky for direct case.

• The reason why iterative solver exhibits poor efficiency is partly due to the problem size. We can also

see from the Table 6.1 that parallel direct solver is not scalable in general. Iterative solver, on the

other hand, is more scalable and it is safe to project that when the size of matrix increases, iterative

solver has the advantage from the memory requirement point of view.

Parallel equation solving itself is a complicated topic in numerical computing community. In this report , the

main purpose is to introduce a robust and generally efficient parallel solver for finite element simulations.

So in this sense, parallel direct solvers such as MUMPS and SPOOLES are recommended.

Appendix C presents Tcl commands to invoke those solvers in parallel simulation runs.

Jeremić and Jie version: 1. May, 2008, 15:22

Part III

Bibliography and Appendices

156

Bibliography

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1984.

Graham Charles Archer. Object Oriented Finite Analysis. PhD thesis, University of California, Berkeley,

1996.

Cleve Ashcraft. Ordering sparse matrices and transforming front trees. Technical report, Boeing Shared

Service Group, 1999.

Cleve Ashcraft, Daniel Pierce, David K. Wah, and Jason Wu. The Reference Manual for SPOOLES, Release

2.2: An Object Oriented Software Library for Solving Sparse Linear Systems of Equations. Boeing Shared

Services Group, Seattle, Washington, 1999.

Zhaojun Bai. Class notes on large scale scientific computing. ECS 231, Department of Computer Science,

UC Davis.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management

of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.

Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press,

1997.

Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman

McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley,

Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Report

ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

H. Bavestrello, P. Avery, and C. Farhat. Incorporation of linear multipoint constraints in domain-

decomposition-based iterative solvers - Part II: Blending FETI-DP and mortar methods and assembling

floating substructures. Computer Methods in Applied Mechanics and Engineering, 196(8):1347–1368,

January 2007.

Ted Belytschko, Wing Kam Liu, and Brian Moran. Nonlinear finite elements for continua and structures.

John Wiley & Sons, 2000.

157

http://www.mcs.anl.gov/petsc

PDD Parallel FEM 158

Michele Benzi. Preconditioning techniques for large linear systems: A survey. Journal of Computational

Physics, 182:418–477, 2002.

Michele Benzi and Miroslav Tůma. A robust incomplete factorization preconditioner for positive definite

matrices. Numerical Linear Algebra with Applications, 10:385–400, 2003.

Michele Benzi, Carl D. Meyer, and Miroslav Tůma. A sparse approximate inverse preconditioner for the

conjugate gradient method. SIAM Journal on Scientific Computing, 17(5):1135–1149, 1996.

Michele Benzi, Jane K. Cullum, and Miroslav Tůma. Robust approximate inverse preconditioning for the

conjugate gradient method. SIAM Journal on Scientific Computing, 22(4):1318–1332, 2000.

Wendy Boggs and Michael Boggs. Mastering UML with Rational Rose 2002. Sybex, Alameda CA 94501,

2002.

Matthias Bollhöfer and Yousef Saad. On the relations between ILUs and factored approximate inverses.

Technical Report UMSI-2001-67, Department of Computer Science and Engineering, University of Min-

nesota, 2001.

A Cardona, I. Klapka, and M. Geradin. Design of a new finite element programming environment. Engi-

neering Computations, 11:365–381, 1994.

W. T. Carter, T. L. Sham, and K. H. Law. A Parallel Finite Element Method and It’s Prototype Imple-

mentation on a Hypercube. Computers and Structures, 31(6):921–934, 1989.

R. Chudoba and Z. Bittnar. Explicit Finite Element Computation: An Object-Oriented Approach. In

Computing in Civil and Building Engineering: Proceedings of the Sixth International Conference on

Computing in Civil and Building Engineering, Berlin, Germany, July 12-15 1995.

Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt. Concepts and Applications of

Finite Element Analysis. John Wiley & Sons, 2002.

M. A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures. John Wiley & Sons, 1997.

Luis Crivelli and Charbel Farhat. Implicit transient finite element structural computations on mimd systems:

Feti v.s. direct solvers. In 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, La Jolla, CA, USA, April 19-22 1993.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

James W. Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel numerical linear algebra.

Technical report, LAPACK Working Note 60, UT CS–93–192, 1993.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 159

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A supernodal

approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications, 20(3):720–755, 1999a.

James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal algorithm for

sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999b.

James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU Users’ Guide, 2003.

Clark R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM

Journal of Scientific Computing, 25(1):246–258, September/October 2003.

Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and Andy White.

Source Book of Parallel Computing. Morgan Kaufmann Publishers, 2003.

Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Numerical Linear Algebra

for High Performance Computers. Prentice Hall, New Jersey, 1996.

Y. Dubois-Pelerin and T. Zimmermann. Object-Oriented Finite Element Programming: III. An Efficient

Implementation in C++. Computer Methods in Applied Mechanics and Engineering, 108(1-2):165–183,

1993.

Y. Dubois-Pelerin, T. Zimmermann, and P. Bomme. Object-Oriented Finite Element Programming: II.

A Prototype Program in Smalltalk. Computer Methods in Applied Mechanics and Engineering, 98(3):

361–397, 1992.

C. Farhat and F. X. Roux. A method of finite element tearing and interconnecting and its parallel solution

algorithm. International Journal for Numerical Methods in Engineering, 32(6):1205–1227, 1991a.

C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal unified FETI

method - Part I: a faster alternative to the two-level FETI method. International Journal for Numerical

Methods in Engineering, 50(7):1523–1544, 2001.

Charbel Farhat. Muliprocessors in Computational Mechanics. PhD thesis, University of California, Berkeley,

1987.

Charbel Farhat. Saddle-point principle domain decomposition method for the solution of solid mechanics

problems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential

Equations, Norfolk, VA, USA, May 6-8 1991.

Charbel Farhat and Luis Crivelli. A transient FETI methodology for large–scale parallel implicit comutations

in structural mechanics. International Journal for Numerical Methods in Engineering, 37:1945–1975,

1994.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 160

Charbel Farhat and M. Geradin. Using a reduced number of lagrange multipliers for assembling parallel in-

complete field finite element approximations. Computer Methods in Applied Mechanics and Engineering,

97(3):333–354, June 1992.

Charbel Farhat and Francois-Xavier Roux. Method of finite element tearing and interconnecting and its

parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6):1205–

1227, October 1991b.

Charbel Farhat, Michael Lesoinne, and Kendall Pierson. A scalable dual-primal domain decomposition

method. Numerical Linear Algebra with Applications, 7(7–8):687–714, 2000.

Carlos A. Felippa. Class notes on nonlinear finite element methods. Department of Aerospace Engineering

Sciences, University of Colorado at Boulder, 2004.

Bruce W. R. Forde, Ricardo O. Foschi, and Siegfried F. Steimer. Object – oriented finite element analysis.

Computers and Structures, 34(3):355–374, 1990.

L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of algebraic linear simultaneous equations.

Quarterly Journal of Mechanics and Applied Mathematics, 1:149–173, 1948.

R. E. Fulton and P. S. Su. Parallel substructure approach for massively parallel computers. Computers in

Engineering, 2:75–82, 1992.

J. F. Hajjar and J. F. Abel. Parallel processing for transient nonlinear strcutraul dynamics of three–

dimensional framed structures using domain decomposition. Computers & Structures, 30(6):1237–1254,

1988.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of

Research of the National Bureau of Standards, 49:409–436, 1952.

Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for Artificial

Intelligence. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence, Stanford,

CA, August 1973.

http://graal.ens-lyon.fr/MUMPS/. MUltifrontal Massively Parallel Solver (MUMPS Version 4.6.2) Users’

Guide, 2006.

http://www.sdsc.edu/user services/datastar/. Ibm datastar user guide. San Diego Supercomputer Center

at UCSD.

Feng-Nan Hwang and Xiao-Chuan Cai. A class of parallel two-level nonlinear Schwarz preconditioned

inexact Newton algorithms . Computer Methods in Applied Mechanics and Engineering, 196(8):1603–

1611, January 2007.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 161

Boris Jeremić. Lecture notes on computational geomechanics: Inelastic finite elements for pressure sensi-

tive materials. Technical Report UCD-CompGeoMech–01–2004, University of California, Davis, 2004a.

available online: http://sokocalo.engr.ucdavis.edu/~jeremic/CG/LN.pdf.

Boris Jeremić. Lectures notes on computational geomechanics: Inelastic finite elements for pressure sensitive

materials. April 2004b.

Boris Jeremić and Stein Sture. Tensor data objects in finite element programming. International Journal

for Numerical Methods in Engineering, 41:113–126, 1998.

Boris Jeremić and Stein Sture. Implicit integrations in elastoplastic geotechnics. Mechanics of Cohesive-

Frictional Materials, 2(2):165–183, 1997.

Boris Jeremić and Christos Xenophontos. Application of the p-version of the finite element method to

elastoplasticity with localization of deformation. Communications in Numerical Methods in Engineering,

15(12):867–876, December 1999.

Boris Jeremić and Zhaohui Yang. Template elastic–plastic computations in geomechanics. International

Journal for Numerical and Analytical Methods in Geomechanics, 26(14):1407–1427, 2002.

Boris Jeremić and Zhaohui Yang. Template elastic-plastic computations in geomechanics. International

Journal for Numerical and Analytical Methods in Geomechanics, 26(14):1407–1427, December 2002.

George Karypis and Vipin Kumar. METIS A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4.0. Army

HPC Research Center, Department of Computer Science and Engineering, University of Minnesota,

Minneapolis, MN 55455, September 1998a.

George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 4.0. Army

HPC Research Center, Department of Computer Science and Engineering, University of Minnesota,

Minneapolis, MN 55455, September 1998b.

George Karypis, Kirk Schloegel, and Vipin Kumar. ParMETIS: Parallel Graph Partitioning and Sparse

Matrix Ordering Library. University of Minnesota.

George Karypis, Kirk Schloegel, and Vipin Kumar. PARMETIS Parallel Graph Partitioning and Sparse

Matrix Ordering Library Version 3.1. Army HPC Research Center, Department of Computer Science and

Engineering, University of Minnesota, Minneapolis, MN 55455, August 2003.

George Kaypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal of

Parallel and Distributed Computing, 48(1):96–129, 1998.

Jeremić and Jie version: 1. May, 2008, 15:22

http://sokocalo.engr.ucdavis.edu/~jeremic/CG/LN.pdf

PDD Parallel FEM 162

O. Klaas, M. Kreienmeyer, and E. Stein. Elastoplastic finite element anslysis on a MIMD parallel–computer.

Engineering Computations, 11:347–355, 1994.

Petr Krysl and Zdeněk Bittnar. Parallel explicit finite element solid dynamics with domain decomposition

and message passing: dual partitioning scalability. Computers and Structures, 79:345–360, 2001.

Jing Li and Olof B. Widlund. On the use of inexact subdomain solvers for BDDC algorithms . Computer

Methods in Applied Mechanics and Engineering, 196(8):1415–1428, January 2007.

Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static pivoting.

In Proceedings of SC98: High Performance Networking and Computing Conference, Orlando, Florida,

November 7–13 1998.

Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver

for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.

Joseph W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Transac-

tions on Mathematical Software, 11(2):141–153, June 1985.

R. I. Mackie. Object-Oriented Methods - Finite Element Programming and Engineering Software Design.

In Computing in Civil and Building Engineering: Proceedings of the Sixth International Conference on

Computing in Civil and Building Engineering, Berlin, Germany, July 12-15 1995.

J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition by constraints and

energy minimization. Numerical Linear Algebra with Applications, 10(7):639–659, 2003.

T. Manteuffel. An incomplete factorization technique for posititive definite linear systems. Mathematics

of Computation, 34:473–497, 1980.

Francis Thomas McKenna. Object Oriented Finite Element Programming: Framework for Analysis, Algo-

rithms and Parallel Computing. PhD thesis, University of California, Berkeley, 1997.

Francis Thomas McKenna. Object-Oriented Finite Element Programming: Frameworks for Analysis, Algo-

rithms and Parallel Computing. PhD thesis, University of California, Berkeley, 1997.

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the

coefficient matrix is a symmetric M -matrix. Mathematics of Computation, 31:148–162, 1977.

Ph. Menéntrey and Th. Zimmermann. Object–oriented non–linear finite element analysis: Application to

J2 plasticity. Computers and Structures, 49(5):767–77, 1993.

G. R. Miller and M. D. Rucki. A Program Architecture for Interactive Nonlinear Dynamic Analysis of

Structures. In Computing in Civil and Building Engineering: Proceedings of the Fifth International

Conference V ICCCBE, Anaheim, CA, June 7–9 1993.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 163

Esmond Ng and Barry Peyton. Block sparse cholesky algorithms on advanced uniprocessor computers.

SIAM Journal on Scientific and Statistical Computing, 14(5):1034–1056, September 1993.

A. K. Noor, A. Kamel, and R. E. Fulton. Substructuring techniques – status and projections. Computers

& Structures, 8:628–632, 1978.

W. Ostermann, W. Wunderlich, and H. Cramer. Object-Oriented Tools for the Development of User

Interface for Interactive Teachware. In Computing in Civil and Building Engineering: Proceedings of the

Sixth International Conference on Computing in Civil and Building Engineering, Berlin, Germany, July

12-15 1995.

Luca F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Computer

Methods in Applied Mechanics and Engineering, 196(8):1380–1388, January 2007.

R. M. V. Pidaparti and A. V. Hudli. Dynamic analysis of structures using object–oriented techniques.

Computers and Structures, 49(1):149–156, 1993.

J. S. Przemieniecki. Theory of Matrix Structural Analysis. McGraw Hill, New York, 1986.

Daniel Rixena and Frédéric Magoulès. Domain decomposition methods: Recent advances and new chal-

lenges in engineering. Computer Methods in Applied Mechanics and Engineering, 196(8):1345–1346,

January 2007.

Y. Robert. Regular incomplete factorizations of real positive definite matrices. Linear Algebra and Its

Applications, 48:105–117, 1982.

T. J. Ross, L. R. Wagner, and G. F. Luger. Object-Oriented Programming for Scientific Codes. II: Examples

in C++. Journal of Computing in Civil Engineering, 6(4):497–514, 1992.

M. D. Rucki and G. R. Miller. An Algorithmic Framework for Flexible Finite Element-Based Structural

Modeling. Computer Methods in Applied Mechanics and Engineering, 136(3–4):363–384, 1996.

J. Rumbaugh, M. Blaha, W. Premerhani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.

Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, second edition, 2003.

Marcus Sarkis and Daniel B. Szyld. Optimal left and right additive Schwarz preconditioning for minimal

residual methods with Euclidean and energy norms. Computer Methods in Applied Mechanics and

Engineering, 196(8):1612–1621, January 2007.

R. Sause and J. Song. Object-Oriented Structural Analysis with Substructures. In Computing in Civil

Engineering: Proceedings of the First Conference held in Conjunction with with A/E/C Systems’ 94,

Washington, D.C., June 20–22 1994.

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 164

Kirk Schloegel, George Kaypis, and Vipin Kumar. Graph partitioning for high performance scientific simula-

tions. Technical report, Army HPC Research Center, Department of Computer Science and Engineering,

University of Minnesota, 1999.

Kirk Schloegel, George Karypis, and Vipin Kumar. A unified algorithm for load-balancing adaptive scien-

tific simulations. Technical report, Army HPC Research Center, Department of Computer Science and

Engineering, University of Minnesota, 2000.

O. O. Storaasli and P. Bergan. Nonlinear substructuring method for concurrent processing computers.

AIAA Journal, 25(6):871–876, 1987.

B. H. V. Topping and A. I. Khan. Parallel Finite Element Computations. SAXE-COBURG, Dun Eaglais,

Kippen, Stirling, FK8 3DY, Scotland, 1996.

S. Utku, R. Melosh, M. Islam, and M. Salama. On nonlinear finite element analysis in single– multi– and

parallel processors. Computers & Structures, 15(1):39–47, 1982.

R. S. Varga, E. B. Saff, and V. Mehrmann. Incomplete factorizations of matrices and connections with

H-matrices. SIAM Journal on Numerical Analysis, 17:787–793, 1980.

C. Warshaw. Parallel JOSTLE User Guide. University of Greenwich, London, 1998.

W. Zahlten, P. Demmert, and W. B. Kratzig. An Object-Oriented Approach to Physically Nonlinear

Problems in Computational Mechanics. In Computing in Civil and Building Engineering: Proceedings

of the Sixth International Conference on Computing in Civil and Building Engineering, Berlin, Germany,

July 12-15 1995.

Gordon W. Zeglinski, Ray S. Han, and Peter Aitchison. Object oriented matrix classes for use in a finite

element code using C++. International Journal for Numerical Methods in Engineering, 37:3921–3937,

1994.

Thomas Zimmermann, Yves Dubois-Pèlerin, and Patricia Bomme. Object oriented finite element program-

ming: I. governing principles. Computer Methods in Applied Mechanics and Engineering, 98:291–303,

1992.

Jeremić and Jie version: 1. May, 2008, 15:22

Appendix A

Compilation of Parallel Program

(PDD–based) on GNU/Linux Clusters

This report developed a comprehensive package for performing parallel finite element calculations on both

nonlinear structural and geotechnical models. The analysis framework of sequential implementation of

OpenSees has been used in part but major new additions of partitioning and repartitioning modules have

been implemented using ParMETIS (version 3.1). The parallel equation solving kernel has been developed

based on PETSc (version 2.3.1-p15). In order to successfully compile the parallel implementation developed

in this report , these libraries must be correctly built. This chapter introduces how to compile all the

necessary libraries for producing executables of the parallel code on local clusters. The default compilers

are assumed to be GNU gcc/g++ and g77 (or gfortran for Fedora Core 5 and above). All the procedures

described have been successfully verified on our Linux clusters GeoWulf.

A.1 MPICH

The implementation of this report used mpich-1.2.7 for facilitating inter-process communication. SMP-

based cluster now becomes more and more popular as the dual-core technology matures. By default, MPI

directs the messages from the source out to switch and then to the destination. This is not efficient for SMP

machines with more than one CPUs on board (or more than one cores on the chip). MPI (mpich-1.2.7) has

to be compiled with the –with-comm=shared flag on in order to turn on shared memory communication

mechanism (basically shared memory approach).

This can greatly accelerated on-board communication.

A.1.1 SMP On-Board Communication Effective Benchmark

Effective Bandwith Benchmark (beff) Version 3.5

Linux geowulf 2.6.16.4 #3 SMP i686

165

PDD Parallel FEM 166

beff = 278.434 MB/s

number beff Lmax beff beff

of pro- at Lmax at Lmax

cessors rings& rings

random only

MByte/s MByte/s MByte/s

accumulated 2 278 8 MB 589 591

Latency Latency Latency ping-pong

rings& rings ping- bandwidth

random only pong

mircosec microsec microsec MByte/s

accumulated 13.108 13.086 7.897 556

Ping-Pong result (only the processes with rank 0 and 1 in MPI COMM WORLD were used):

Latency: 7.897 microsec per message Bandwidth: 555.831 MB/s (with MB/s = 106 byte/s)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 167

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Sndrcv, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Sndrcv, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 168

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Alltoal, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Alltoal, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 169

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

non-blk, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

non-blk, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 170

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best transfer method, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best transfer method, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 171

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Ring & random average: Sndrcv, Alltoal, non-blk

Sendrcv rings
Alltoal rings

non-blk rings
Sendrcv random

Alltoal random
non-blk random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best method: rings & random

rings minumum
rings average

rings maximum
random minimum

random average
random maximum

ring & random average

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 172

A.1.2 Cluster Inter-Switch Communication Effective Benchmark

Effective Bandwith Benchmark (beff) Version 3.5

Linux geowulf to nodes 2.6.16.4 #3 i686

beff = 34.021 MB/s

number beff Lmax beff beff

of pro- at Lmax at Lmax

cessors rings& rings

random only

MByte/s MByte/s MByte/s

accumulated 2 34 8 MB 75 75

Latency Latency Latency ping-pong

rings& rings ping- bandwidth

random only pong

mircosec microsec microsec MByte/s

accumulated 70.599 68.930 62.487 75

Ping-Pong result (only the processes with rank 0 and 1 in MPI COMM WORLD were used):

Latency: 62.487 microsec per message Bandwidth: 74.935 MB/s (with MB/s = 106 byte/s)

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 173

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Sndrcv, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Sndrcv, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 174

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Alltoal, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Alltoal, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 175

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

non-blk, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

non-blk, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 176

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best transfer method, ring & random patterns

ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix
ring-1*2fix

worst random
avg random
best random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best transfer method, additional patterns

worst-cyc-1dim
best bi-section

worst bi-section
acyclic-2dim-all
acyclic-3dim-all

cyclic-2dim-x
cyclic-2dim-all
cyclic-3dim-x

cyclic-3dim-all

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 177

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Ring & random average: Sndrcv, Alltoal, non-blk

Sendrcv rings
Alltoal rings

non-blk rings
Sendrcv random

Alltoal random
non-blk random

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

ba
nd

w
ith

 [
M

B
/s

]

message length per process [Byte]

Best method: rings & random

rings minumum
rings average

rings maximum
random minimum

random average
random maximum

ring & random average

Jeremić and Jie version: 1. May, 2008, 15:22

PDD Parallel FEM 178

A.2 PETSc

PETSc is a comprehensive numerical package developed by Argonne National Lab. PETSc stands for

Portable Extensible Toolkit for Scientific Computation. It provides convenient parallel data structure for

users to develop high performance parallel numerical algorithm. In this report , petsc-2.3.1-p15 has been

used to develop a parallel equation solving kernel for the parallel computational system. Both parallel direct

and iterative solving are available through a consistent interface.

Many external packages have to be compiled into PETSc in order for it to recognize the data format.

Typical configuration flags look like

–with-debugging=no –with-shared=1 –with-mpi-dir=/usr/local –with-mpi=1

–useThreads=0 –with-superlu dist=1 –download-superlu dist=yes –with-

superlu=1 –download-superlu=yes –download-f-blas-lapack=yes –with-spooles=1

–download-spooles=yes –with-blacs=1 –download-blacs=yes –with-scalapack=1

–download-scalapack=yes –with-spai=1 –download-spai=yes –with-hypre=1

–download-hypre=yes –with-plapack=1 –download-plapack=yes

The key features to include are decided by the solving algorithms user wants to use in analysis. For

example, if one is interested in using SPOOLES solver, then the spooles flag must be set on and the

package must be downloaded (or manually compiled) and linked with PETSc by setting relevant flags

when compiling the package.

In this report , it has been shown that the spooles solving algorithm delivers best performance when

pairing with penalty constraint handler. Some memory bugs have also been fixed by the author of this

report . The file is available upon request.

A.3 ParMETIS

ParMETIS 3.1 provides complete multi-level graph partitioning/repartitioning algorithm for load balancing

operations. The compiling is straightforward and no extra instruction is needed other than following the

package README itself.

Jeremić and Jie version: 1. May, 2008, 15:22

Appendix B

Import New Element/Material/Load etc.

to PDD–based Parallel Program

This Appendix introduces the necessary steps to import new finite element model classes, such as Element,

Material, Load, etc. to the PDD–based parallel program.

B.1 MovableObject

All new classes must be inherited from superclass MovableObject in order to use parallel framework.

The MovableObject defines a unique class tag (in SRC/classTags.h) to identify every class that will be

sent/received through network.

B.2 Send/RecvSelf

In the new classes, the clone functions SendSelf/RecvSelf must be implemented. The basic functionality

of SendSelf/RecvSelf is to replicate the local object in remote process.

The straightforward implementation is to send/receive every private data member defined in the header

files. In this sense, it should be sufficient to replicate the functionality provided by the copy constructor or

the clone() function in Java.

B.3 Default Constructor

The new classes must also provide a default constructor which can be used by FEM ObjectBroker to

initially create an empty object in remote process, whose RecvSelf will be called to enable the remote

clone process.

This default constructor, of course, can have no parameters. But from the efficiency point of view,

author of the new classes should design a constructor for FEM ObjectBroker that takes some default

179

PDD Parallel FEM 180

construction list. In this way, those default parameters need not be sent through network anymore. This

can save much time if the class will be instanced frequently.

B.4 FEM ObjectBroker

The class of FEM ObjectBroker is responsible for instancing the new class in the remote process. In order

for the new class to be recognized by the broker, relevant getNewYourClass-type function must be added

in FEM ObjectBorker. The body of the getNewYourClass-type function basically returns the reference to

the newly created instance by calling the default constructor introduced above.

B.5 getObjectSize

The function is used to get the exact volume size of data that will be sent through network when an object

is replicated on the remote process. This metric is very important because it gives an exact measurement

how many data is involved in communication. This communication overhead will be used in multi-objective

repartitioning operations.

The body of this function is to sum up the size of each member that needs to be communicated in

SendSelf/RecvSelf.

Jeremić and Jie version: 1. May, 2008, 15:22

Appendix C

Commands to Invoke Parallel Equation

Solvers

This Appendix presents example script to invoke parallel solvers available in PDD–based parallel program.

All solvers are implemented through the interface of PETSc. In order to use these features, the PETSc

package must be correctly compiled to link with corresponding libraries as explained in Appendix A. More

detailed information about PETSc can be found at Balay et al. (2001, 2004, 1997).

C.1 Iterative Solvers

C.1.1 Conjugate Gradient Method

system Petsc -KSP KSPCG -PC NONE

C.1.2 Precoditioned Conjugate Gradient

Jacobi Preconditioner

system Petsc -KSP KSPCG -PC JACOBI

Incomplete Cholesky Preconditioner

system Petsc -KSP KSPCG -PC ICC -MatType MPIROWBS

C.1.3 GMRES Method

system Petsc -KSP KSPGMRES -PC NONE

181

PDD Parallel FEM 182

C.1.4 Precoditioned GMRES

Jacobi Preconditioner

system Petsc -KSP KSPGMRES -PC JACOBI

Incomplete LU Preconditioner

system Petsc -KSP KSPGMRES -PC ILU

C.2 Direct Solvers

C.2.1 MUMPS

system Petsc -KSP KSPPREONLY -PC PCLU -MatType MPIAIJMUMPS

C.2.2 SPOOLES

system Petsc -KSP KSPPREONLY -PC PCLU -MatType SPOOLES AIJ

C.2.3 SuperLU DIST

system Petsc -KSP KSPPREONLY -PC PCLU -MatType SUPERLU DIST

Jeremić and Jie version: 1. May, 2008, 15:22

	Introduction -- Adaptive Parallel Inelastic Finite Element Simulations
	Hypothesis
	Scope of Study
	Summary of Contents
	Development Platform CONSOLID8

	I Theory and Implementation
	Plastic Domain Decomposition Algorithm
	Introduction
	Inelastic Parallel Finite Element
	Adaptive Computation
	Multiphase Computation
	Multiconstraint Graph Partitioning
	Adaptive PDD Algorithm

	Adaptive Multilevel Graph Partitioning Algorithm
	Unified Repartitioning Algorithm
	Study of ITR in ParMETIS

	Object-Oriented Design of PDD
	Introduction
	Object-Oriented Parallel Finite Element Algorithm
	Modeling Classes
	Finite Element Model Class
	Analysis
	Object-Oriented Domain Decomposition
	Parallel Object-Oriented Finite Element Design

	Dual-Phase Adaptive Load Balancing
	Elemental Level Load Balancing
	Equation Solving Load Balancing

	Object-Oriented Design of PDD
	MPI_Channel
	MPI_ChannelAddress
	FEM_ObjectBroker
	Domain
	PartitionedDomain
	Node & DOF_Group
	DomainPartitioner
	Shadow/ActorSubdomain
	Send/RecvSelf

	Graph Partitioning
	Construction of Element Graph
	Interface to ParMETIS/METIS

	Data Redistribution

	Performance Studies on PDD Algorithm
	Introduction
	Parallel Computers
	Soil-Foundation Interaction Model
	Numerical Study for ITR
	Parallel Performance Analysis
	Soil-Foundation Model with 4,035 DOFs
	Soil-Foundation Model with 4,938 Elements, 17,604 DOFs
	Soil-Foundation Model with 9,297 Elements, 32,091 DOFs

	Algorithm Fine-Tuning
	Fine Tuning on Load Imbalance Tolerance
	Globally Adaptive PDD Algorithm
	Implementations
	Performance Results

	Scalability Study on Prototype Model
	3 Bent SFSI Finite Element Models
	Scalability Runs

	Conclusions

	II Parallel Equation Solving in Finite Element Calculations
	 Application of Project-Based Iterative Methods in SFSI Problems
	Introduction
	Projection-Based Iterative Methods
	Conjugate Gradient Algorithm
	GMRES
	BiCGStab and QMR

	Preconditioning Techniques
	Preconditioners
	Jacobi Preconditioner
	Incomplete Cholesky Preconditioner
	Robust Incomplete Factorization

	Numerical Experiments
	Conclusion and Future Work

	Performance Study on Parallel Direct/Iterative Solving in SFSI
	Parallel Sparse Direct Equation Solvers
	General Techniques -- SPOOLES
	Frontal and Multifrontal Methods -- MUMPS
	Supernodal Algorithm -- SuperLU

	Performance Study on SFSI Systems
	Equation System
	Performance Results

	Conclusion

	III Bibliography and Appendices
	Compilation of Parallel Program (PDD--based) on GNU/Linux Clusters
	MPICH
	SMP On-Board Communication Effective Benchmark
	Cluster Inter-Switch Communication Effective Benchmark

	PETSc
	ParMETIS

	Import New Element/Material/Load etc. to PDD--based Parallel Program
	MovableObject
	Send/RecvSelf
	Default Constructor
	FEM_ObjectBroker
	getObjectSize

	Commands to Invoke Parallel Equation Solvers
	Iterative Solvers
	Conjugate Gradient Method
	Precoditioned Conjugate Gradient
	GMRES Method
	Precoditioned GMRES

	Direct Solvers
	MUMPS
	SPOOLES
	SuperLU_DIST

