\documentclass[fleqn]{beamer}
%\documentclass[handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagelayout{2 on 1}[letterpaper, border shrink=5mm]
\mode{\setbeamercolor{background canvas}{bg=black!3}}
\usepackage{epstopdf}
%This is a macro to convert eps to pdf files on the fly.
% make sure figure syntax uses graphicx syntax NOT epsfig syntax
%from http://mailman.mit.edu/pipermail/macpartners/2005-January/000780.html
%
% \ifx\pdfoutput\undefined
% % we are running LaTeX, not pdflatex
% \usepackage{graphicx}
% \else
% % we are running pdflatex, so convert .pdf files to .pdf
% \usepackage[pdftex]{graphicx}
% \usepackage{epstopdf}
% \fi
% %*****************************************
\usepackage{multimedia}
%
% % for not showing eq numbers unless eq is references
% \usepackage[fleqn,tbtags]{mathtools}
% \mathtoolsset{
% showonlyrefs
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FEI LOGO definition
\newcommand{\FEI}
{{\sf \uppercase{F}\kern-0.20em\uppercase{E}\kern-0.20em\uppercase{I}}}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % ovo je za cirilicu
% \input vuk.def
% %\newfont{\cyr}{wncyr10 scaled 1200}
% %\newfont{\cyrimena}{wncyb10 scaled 1800}
% %\newfont{\cyrnaslov}{wncyb10 scaled 2600}
% %\newfont{\cyrpodnaslov}{wncyr10 scaled 1400}
\newfont{\cyr}{wncyss10 scaled 1200}
\newfont{\cyrimena}{wncyss10 scaled 2000}
\newfont{\cyrnaslov}{wncyss10 scaled 2800}
\newfont{\cyrpodnaslov}{wncyss10 scaled 1400}
\newfont{\cyn}{wncyss10 scaled 2200}
%% JB sig
\newfont{\cyrjb}{wncyr10 scaled 600}
\newcommand{\JB}
{{\cyrjb \lower0.50ex\hbox{\uppercase{J}}\kern-.58em\hbox{\uppercase{B}}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\mode
{
% \usetheme{Marburg} % ima naslov i sadrzaj sa desne strane
% \usetheme{Hannover} % ima naslov i sadrzaj sa leve strane
% \usetheme{Singapore} % ima sadrzaj i tackice gore
% \usetheme{Antibes} % ima sadrzaj gore i kao graf ...
% \usetheme{Berkeley} % ima sadrzaj desno
% \usetheme{Berlin} % ima sadrzaj gore i tackice
% \usetheme{Goettingen} % ima sadrzxaj za desne strane
% \usetheme{Montpellier} % ima graf sadrzaj gore
% \usetheme{Warsaw}
% \usetheme{Warsaw}
\usetheme{Dresden}
\usecolortheme[RGB={20,0,128}]{structure}
% or ...
\setbeamercovered{transparent}
% \setbeamercovered{transparent}
% or whatever (possibly just delete it)
% \usecolortheme{albatross} % teget sa svetlim slovima
% \usecolortheme{beetle} % siva pozadina (vrh plav)
\usecolortheme{seagull} % sivo
%%%%%%%
% \usecolortheme{BorisJeremic}
%%%%%%%
% \usecolortheme{rose}
% \usefonttheme[onlylarge]{structuresmallcapsserif}
% \usefonttheme{structuresmallcapsserif}
}
\definecolor{mycolor}{rgb}{0,0.08,0.45}%
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\newcommand{\ud}{{\rm d}}
\usepackage{array}
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
\definecolor{webgreen}{rgb}{0, 0.15, 0} % less intense green
\definecolor{webblue}{rgb}{0, 0, 0.15} % less intense blue
\definecolor{webred}{rgb}{0.15, 0, 0} % less intense red
%\usepackage[colorlinks=true,linkcolor=webblue,citecolor=webred,urlcolor=webgreen]{hyperref}
\usepackage{hyperref}
\hypersetup{
pdfmenubar=true,
pdftoolbar=true,
pdfpagemode={None}
}
\usepackage{pause}
% or whatever
%\usepackage{html}
%\usepackage{url}
\usepackage[latin1]{inputenc}
% or whatever
\usepackage{times}
\usepackage[T1]{fontenc}
% Or whatever. Note that the encoding and the font should match. If T1
% does not look nice, try deleting the line with the fontenc.
\title[ESSI Modeling and Simulation]
{Nonlinear Time Domain \\
Modeling and Simulation of \\
Surface and Embedded NPPS }
%\subtitle
%{Include Only If Paper Has a Subtitle}
%\author[Author, Another] % (optional, use only with lots of authors)
%{F.~Author\inst{1} \and S.~Another\inst{2}}
% - Give the names in the same order as the appear in the paper.
% - Use the \inst{?} command only if the authors have different
% affiliation.
\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_blue_sm}
\pgfdeclareimage[height=0.7cm]{lbnl-logo}{/home/jeremic/BG/amblemi/lbnl-logo}
\author[Jeremi{\'c} et al.] % (optional, use only with lots of authors)
%{Boris~Jeremi{\'c}}
{Boris Jeremi{\'c} \\
{\tiny with contributions from} \\
Federico Pisan{\`o}, Jose Abell, Kohei Watanabe, Chao Luo}
%\institute[Computational Geomechanics Group \hspace*{0.3truecm}
\institute[\pgfuseimage{university-logo}\hspace*{0.1truecm}\pgfuseimage{lbnl-logo}] % (optional, but mostly needed)
%{ Professor, University of California, Davis\\
{ University of California, Davis\\
% and\\
% Faculty Scientist, Lawrence Berkeley National Laboratory, Berkeley }
Lawrence Berkeley National Laboratory, Berkeley }
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\date[] % (optional, should be abbreviation of conference name)
{\small DOE NPH, \\ October 2014}
\subject{}
% This is only inserted into the PDF information catalog. Can be left
% out.
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
%\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_gold_lrg}
%\logo{\pgfuseimage{university-logo}}
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
\setcounter{tocdepth}{2}
\AtBeginSubsection[]
% \AtBeginSection[]
{
\begin{scriptsize}
\begin{frame}
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
% \tableofcontents[currentsection]
\end{frame}
\end{scriptsize}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Outline}
\begin{scriptsize}
\tableofcontents
% You might wish to add the option [pausesections]
\end{scriptsize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Structuring a talk is a difficult task and the following structure
% may not be suitable. Here are some rules that apply for this
% solution:
% - Exactly two or three sections (other than the summary).
% - At *most* three subsections per section.
% - Talk about 30s to 2min per frame. So there should be between about
% 15 and 30 frames, all told.
% - A conference audience is likely to know very little of what you
% are going to talk about. So *simplify*!
% - In a 20min talk, getting the main ideas across is hard
% enough. Leave out details, even if it means being less precise than
% you think necessary.
% - If you omit details that are vital to the proof/implementation,
% just say so once. Everybody will be happy with that.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Motivation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
%\vspace*{0.3cm}
\item Improving seismic design (safety and economy) for Nuclear Facilities (NFs)
\vspace*{0.1cm}
\item {\bf E}arthquake {\bf S}oil {\bf S}tructure {\bf I}nteraction
({\bf ESSI}) in time and space, plays a major role in successes and failures
\vspace*{0.1cm}
\item Accurate following and directing (!) the flow of seismic energy in
ESSI system to optimize ESSI system for
\begin{itemize}
\item Safety and
\item Economy
\end{itemize}
\vspace*{0.1cm}
\item Development of high fidelity numerical modeling and simulation tools
to analyze realistic ESSI behavior, \\ Real ESSI Simulator
% of NFs
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Predictive Capabilities}
% \frametitle{High Fidelity Modeling of SFS System:
% Verification, Validation and Prediction}
\begin{itemize}
\item {{\bf Verification} provides evidence that the
model is solved correctly.} Mathematics issue.
%\vspace*{0.1cm}
\item {{\bf Validation} provides
evidence that the correct model is solved.} Physics issue.
%\vspace*{0.1cm}
\item {\bf Prediction}: use of computational model to foretell the state of a
physical system under consideration under conditions for which the
computational model has not been validated.
%\vspace*{0.2cm}
% \item Goal: predictive capabilities
% with {\bf low Kolmogorov Complexity}
% %% % \vspace*{0.2cm}
% % \item {\bf The Finite Element
% % Interpreter \FEI{}} might be one such
% % predictive tool (application program)
%\vspace*{0.1cm}
\item {\bf Real ESSI Simulator}: a software, hardware and documentation system for high
fidelity, high performance, time domain, nonlinear, 3D, finite element
modeling and simulation of earthquake-soil/rock-structure interaction of
Nuclear Facilities (NFs)
% % developed in collaboration and with a financial
% % support of the
% (US-NRC, US-DOE, CNSC-CCSN, US-NSF,
% AREVA, and Shimizu)
% % AREVA NP GmbH, and Shimizu Corp.)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \subsection{Flow of Seismic Energy}
%
%
%
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Seismic Energy Input for the SSI System}
%
% \begin{itemize}
%
% \vspace*{-1.5cm}
% \item Kinetic energy flux through closed surface $\Gamma$ includes both incoming
% and outgoing waves (using Domain Reduction Method by Bielak et al.)
% \begin{eqnarray*}
% E_{flux} =
% \left[0 ; -M^{\Omega+}_{be} \ddot{u}^0_e-K^{\Omega+}_{be}u^0_e ;
% M^{\Omega+}_{eb}\ddot{u}^0_b+K^{\Omega+}_{eb}u^0_b \right]_i
% %
% % \left[
% % \begin{array}{c}
% % 0 \\
% % -M^{\Omega+}_{be} \ddot{u}^0_e-K^{\Omega+}_{be}u^0_e \\
% % M^{\Omega+}_{eb}\ddot{u}^0_b+K^{\Omega+}_{eb}u^0_b
% % \end{array}
% % \right]^{T}
% \times u_i
% %\left[
% %\begin{array}{c}
% %0 \\
% %{u}_b\\
% %{u}_e
% %\end{array}
% %\right]
% \end{eqnarray*}
%
% \item Alternatively, $E_{flux} = \rho A c \int_0^t \dot{u}_i^2 dt$
%
% \item Outgoing kinetic energy \\
% is obtained from outgoing \\
% wave field ($w_i$, in DRM)
%
% \item Incoming kinetic energy \\
% is then the difference.
%
%
% \end{itemize}
%
%
% \vspace*{-7.0cm}
% % \begin{figure}[!hbpt]
% %\begin{flushright}
% \hfill \includegraphics[width=5.5cm]{/home/jeremic/tex/works/psfigures/DRMidea03.pdf}
% %\end{flushright}
% %\end{figure}
% \vspace*{-2cm}
%
%
% \end{frame}
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
% \frametitle{Seismic Energy Dissipation for \underline{Soil}-Foundation-Structure Systems}
\frametitle{Seismic Energy Input and Dissipation for NFs}
% \frametitle{Seismic Energy Dissipation for
% \underline{Soil}-Foundation-Structure Systems}
\begin{itemize}
% \vspace*{0.2cm}
\item Seismic waves input (flux) into SSI system
\vspace*{0.1cm}
\item Mechanical dissipation outside of SSI domain:
\begin{itemize}
\item reflected (surface, NF) wave radiation
\item SSI (NF) system oscillation radiation
\end{itemize}
\vspace*{0.1cm}
\item Mechanical dissipation/conversion inside SSI domain:
\begin{itemize}
\item plasticity of soil and rock
\item nonlinear contact zone (foundation -- soil/rock)
\item plasticity/damage of structure, foundation
\item viscous coupling of porous solid with pore fluid (soil)
\item viscous coupling of structure/foundation with fluids
% \item potential and kinetic energy
% \item potential $\leftarrow \! \! \! \! \! \! \rightarrow$ kinetic energy
\end{itemize}
\vspace*{0.1cm}
% \item Numerical energy dissipation (numerical damping/production and period errors)
% \item Numerical energy dissipation (damping/production)
\item Numerical energy dissipation/production
\end{itemize}
%
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Energy Dissipation by Soil Plasticity}
%
%
% \begin{itemize}
%
% % \item Plastic work ($W = \int_{0}^{t} \sigma_{ij} d \epsilon_{ij}^{pl}$)
% \item Plastic work ($W = \int \sigma_{ij} d \epsilon_{ij}^{pl}$)
%
% \item Energy dissipation capacity for different soils
%
%
% \end{itemize}
%
% %\vspace*{-1.0cm}
% \begin{center}
% \vspace*{-0.9cm}
% \includegraphics[width=8.5cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/Energy-Capacity2.pdf}
% \hspace*{-0.2cm}
% %\includegraphics[width=6.0cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/Energy-Capacity10.pdf}
% \vspace*{-1.0cm}
% \end{center}
%
%
% \end{frame}
% %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- \begin{frame}
% %- \frametitle{Plasticity Energy Dissipation}
% %-
% %- \begin{itemize}
% %-
% %- \item
% %-
% %- \end{itemize}
% %-
% %-
% %- \end{frame}
% %- %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Energy Dissipation by Soil Viscous Coupling}
%
%
% \begin{itemize}
%
% \item Viscous coupling of porous solid and fluid
% \item Energy loss per unit volume is $E_{vc}= n^2 k^{-1} (\dot{U}_i - \dot{u}_i)^2$
% \item Natural in $u-p-U$ formulation:
%
% \end{itemize}
% %\vspace*{-0.4cm}
%
%
%
%
% \begin{footnotesize}
% %\begin{tiny}
% \begin{eqnarray*}
% %& &\left[ \begin{array}{ccc}
% \left[ \begin{array}{ccc}
% (M_s)_{KijL} & 0 & 0 \\
% 0 & 0 & 0 \\
% 0 & 0 & (M_f)_{KijL}
% \end{array} \right]
% \left[ \begin{array}{c}
% \ddot{\overline{u}}_{Lj} \\
% \ddot{\overline{p}}_N \\
% \ddot{\overline{U}}_{Lj}
% \end{array} \right]
% +
% \left[ \begin{array}{ccc}
% (C_1)_{KijL} & 0 & -(C_2)_{KijL} \\
% 0 & 0 & 0 \\
% -(C_2)_{LjiK} & 0 & (C_3)_{KijL} \\
% \end{array} \right]
% \left[ \begin{array}{c}
% \dot{\overline{u}}_{Lj} \\
% \dot{\overline{p}}_N \\
% \dot{\overline{U}}_{Lj}
% \end{array} \right]
% \nonumber\\
% +
% %& &\left[ \begin{array}{ccc}
% \left[ \begin{array}{ccc}
% (K^{EP})_{KijL} & -(G_1)_{KiM} & 0 \\
% -(G_1)_{LjM} & -P_{MN} & -(G_2)_{LjM} \\
% 0 & -(G_2)_{KiL} & 0
% \end{array} \right]
% \left[ \begin{array}{c}
% \overline{u}_{Lj} \\
% \overline{p}_M \\
% \overline{U}_{Lj}
% \end{array} \right]
% =
% \left[ \begin{array}{c}
% \overline{f}_{Ki}^{solid} \\
% 0 \\
% \overline{f}_{Ki}^{fluid}
% \end{array} \right] \nonumber\\
% \label{68}
% \end{eqnarray*}
% %\end{tiny}
% \end{footnotesize}
%
% \vspace*{-1cm}
%
% \begin{footnotesize}
% \begin{eqnarray*}
% %%%%%%%%
% (C_{(1,2,3)})_{KijL}
% =
% \int_{\Omega} N_K^{(u,u,U)}
% n^2 k_{ij}^{-1}
% N_L^{(u,U,U)} d\Omega
% % (C_1)_{KijL} =\int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^u d\Omega
% % \;\; \mbox{;} \;\;
% % (C_2)_{KijL} =\int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^U d\Omega
% % %%%%%%%%
% % %\;\; \mbox{;}\;\;
% % \\
% % %%%%%%%%
% % (C_3)_{KijL} =\int_{\Omega} N_K^U n^2 k_{ij}^{-1} N_L^U d\Omega
% \end{eqnarray*}
% \end{footnotesize}
% %
% %
% %
% %
% %\newpage
%
%
%
%
% \end{frame}
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Numerical Energy Dissipation}
%
% \begin{itemize}
%
% \item Newmark and Hilber-Hughes-Taylor can be made non-dissipative for
% elastic system $\alpha=0.0, \beta = 0.25 ; \gamma = 0.5,$
%
% \item Or dissipative (for elastic) for higher frequency modes:
% %Newmark ($\gamma \ge 0.5, \;\;\; \beta = 0.25(\gamma+0.5)^2$ ),
% %Hilber-Hughes-Taylor ($-0.3\dot{3}\le\alpha \le0, \;\;\;\gamma =
% %0.5(1-2\alpha), \;\;\; \beta = 0.25(1-\alpha)^2$)
% \begin{itemize}
% \item N: $\gamma \ge 0.5, \;\;\; \beta = 0.25(\gamma+0.5)^2$,
% \item HHT: $-0.3\dot{3}\le\alpha \le0, \;\;\;\gamma =
% 0.5(1-2\alpha), \;\;\; \beta = 0.25(1-\alpha)^2$
% \end{itemize}
%
% \item For nonlinear problems,
% energy cannot be maintained
% \begin{itemize}
% \item Energy dissipation for steps with reduction of stiffness
% \item Energy production for steps with increase of stiffness
%
% \hspace{1cm}
% \includegraphics[width=1.80cm, angle=-90]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/EnergyDissipationReducationStiffness.pdf}
% \hspace{1cm}
% \includegraphics[width=1.80cm, angle=-90]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/EnergyProductionIncreaseStiffness.pdf}
% \hspace{1cm}
%
%
%
% \end{itemize}
%
%
% \end{itemize}
%
%
% \end{frame}
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Modeling Uncertainty}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Modeling Uncertainty}
\begin{itemize}
\item Real ESSI goal: reduction of modeling uncertainty
\vspace*{0.2cm}
\item Simplified modeling: important features are
neglected (structure complexity, 6D ground motions, non-linearities)
\vspace*{0.2cm}
\item Modeling Uncertainty: unnecessary and
unrealistic modeling simplifications
\vspace*{0.2cm}
\item Modeling simplifications are justifiable if one or two level higher
sophistication model shows that features being simplified out are not
important
%\vspace*{0.1cm}
% \item Use of results from models with (high) modeling uncertainty
% should be avoided
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
% \frametitle{Complexity and Uncertainty in Ground Motions and Material Modeling}
\frametitle{Complexity and Uncertainty in Motions and Material}
\begin{itemize}
%\vspace*{0.3cm}
\item 6D (3 translations (horizontal and vertical), 3 rotations)
%\vspace*{0.3cm}
% \item Vertical motions usually neglected
%
% \vspace*{0.3cm}
% \item Rotational components usually not measured and neglected
%
% \vspace*{0.3cm}
% \item Lack of models for such 6D motions (from measured data))
%
\vspace*{0.1cm}
\item Sources of uncertainties in ground motions (Source, Path (rock), soil (rock))
\vspace*{0.1cm}
\item Most engineering materials and components experience inelastic
deformations for service and hazard loads
%\vspace*{0.1cm}
% \item This is even more so for hazard loads (earthquakes)
\vspace*{0.1cm}
\item Pressure sensitive materials (soil, rock, concrete, \&c.) have complex
constitutive response, tying together nonlinear stress-strain with volume
response
%\vspace*{0.1cm}
% \item Simplistic material modeling introduces
% (significant) uncertainties in response results
\vspace*{0.1cm}
\item In addition, man-made and natural materials are spatially variable and
their material modeling parameters are uncertain
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Material Behavior Inherently Uncertain}
%
%
% %\begin{itemize}
%
% %\vspace*{0.5cm}
% %\item
% %Material behavior is inherently uncertain (concrete, metals, soil, rock,
% %bone, foam, powder \&c.)
%
% \begin{itemize}
%
% \vspace*{0.5cm}
% \item Spatial \\
% variability
%
% \vspace*{0.5cm}
% \item Point-wise \\
% uncertainty, \\
% testing \\
% error, \\
% transformation \\
% error
%
% \end{itemize}
%
% % \vspace*{0.5cm}
% % \item Failure mechanisms related to spatial variability (strain localization and
% % bifurcation of response)
% %
% % \vspace*{0.5cm}
% % \item Inverse problems
% %
% % \begin{itemize}
% %
% % \item New material design, ({\it point-wise})
% %
% % \item Solid and/or structure design (or retrofits), ({\it spatial})
% %
% % \end{itemize}
%
% %\end{itemize}
%
% \vspace*{-5cm}
% \begin{figure}[!hbpt]
% %\nonumber
% %\begin{center}
% \begin{flushright}
% %\includegraphics[height=5.0cm]{/home/jeremic/tex/works/Conferences/2006/KragujevacSEECCM06/Presentation/MGMuzorak01.jpg}
% \includegraphics[height=5.5cm]{/home/jeremic/tex/works/Conferences/2006/KallolsPresentationGaTech/FrictionAngleProfile.jpg}
% \\
% \mbox{(Mayne et al. (2000) }
% \end{flushright}
% %\end{center}
% %\end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
%
%
% \frametitle{SPT Based Determination of Shear Strength}
%
%
%
%
% \begin{figure}[!hbpt]
% \begin{center}
% %
% \includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_RawData_and_MeanTrend-Mod.pdf}
% \hfill
% \includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_Histogram_PearsonIV-FineTuned-Mod.pdf}
% %
% \end{center}
% \end{figure}
%
% \vspace*{-0.3cm}
% Transformation of SPT $N$-value $\rightarrow$ un-drained shear
% strength, $s_u$ (cf. Phoon and Kulhawy (1999B)
%
% Histogram of the residual
% (w.r.t the deterministic transformation
% equation) un-drained strength,
% along with fitted probability density function
% (Pearson IV)
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SPT Based Determination of Young's Modulus}
\begin{figure}[!hbpt]
\begin{center}
%
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_RawData_and_MeanTrend_01-Ed.pdf}
\hfill
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_Histogram_Normal_01-Ed.pdf}
%
\end{center}
\end{figure}
\vspace*{-0.3cm}
Transformation of SPT $N$-value $\rightarrow$ 1-D Young's modulus, $E$ (cf. Phoon and Kulhawy (1999B))
Histogram of the residual (w.r.t the deterministic transformation equation) Young's modulus, along with fitted probability density function
\end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{ESSI Modeling}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Modeling Issues}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Important Issues for ESSI Modeling and Simulation}
\begin{itemize}
\item Verification and Validation
\vspace*{2mm}
\item 6D, inclined, body and surface seismic waves
\vspace*{2mm}
\item Uncorrelated (incoherent) motions
\vspace*{2mm}
\item Nonlinear material (soil, rock, concrete, steel, \&c.)
\vspace*{2mm}
\item Nonlinear foundation-soil/rock contact (dry and saturated), slip -- gap
\vspace*{2mm}
\item Saturated dense vs loose soil with buoyant forces
%\vspace*{2mm}
% \item Piles and pile groups
\vspace*{2mm}
\item Isolators, dissipators
\end{itemize}
\end{frame}
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{ESSI Models}
\vspace*{+10mm}
Detailed \\
high\\
fidelity\\
models\\
taking\\
into\\
account\\
all of the\\
issues
\vspace*{-60mm}
\begin{figure}[!hbpt]
\begin{flushright}
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model01.jpeg}
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model02.jpeg}
\\
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model03.jpeg}
\includegraphics[width=3.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model04.jpeg}
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model01_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model02_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model03_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/SMR02_a.jpg &
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{In Detail: Main ESSI Issues for SMRs}
\begin{figure}[!hbpt]
\begin{center}
\vspace*{-0.2cm}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_01-GRAY_pdf.pdf}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_02-GRAY_pdf.pdf}
\\
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_03-GRAY_pdf.pdf}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_04-GRAY_pdf.pdf}
\vspace*{-0.6cm}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{High Fidelity Modeling and Simulation \\
% Detrimental and Beneficial ESSI Effects}
%
%
%
% \begin{figure}[!hb]
% \begin{center}
% \vspace*{-0.2cm}
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/consulting/2013/CNSC/ProgressReports/Progress_report_02_figs/single-NPP-FEM-model.jpg}
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/consulting/2013/CNSC/ProgressReports/Progress_report_02_figs/double-NPP-FEM-model.jpg}
% \end{center}
% \end{figure}
% %\vspace*{2.0cm}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \hspace*{-0.5cm}
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR01_a.jpg}
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a.jpg}
% \end{center}
% \end{figure}
%
% %
% % %
% %
% % \begin{itemize}
% % \item
% % \item
% % \item
% % \end{itemize}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Current Surface NPP Models (LWRs)}
%
% %
%
% \vspace*{-0.2cm}
% \begin{figure}[!hbpt]
% \begin{center}
% \raisebox{0.9cm}{\includegraphics[width=1.0cm]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/04_cropped.jpg}}
% \raisebox{1.2cm}{\includegraphics[width=2.2cm]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/02_cropped.jpg}}
% \raisebox{-0.5cm}{\includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/03_cropped.jpg}}
% \end{center}
% \end{figure}
%
% \vspace*{-1.6cm}
% \begin{itemize}
% % \item Modular models
% %\vspace*{-0.1cm}
% \item 3D, Inclined, body and \\ surface seismic waves
% %\vspace*{-0.1cm}
% \item Uncorrelated (incoherent) motions
% %\vspace*{-0.1cm}
% \item Foundation slip -- gap
% %\vspace*{-0.1cm}
% \item Isolators, dissipators
% %\vspace*{-0.1cm}
% \item Saturated dense vs loose soil with buoyant forces
% %\vspace*{-0.1cm}
% \item Piles and pile groups
%
% \end{itemize}
%
% \end{frame}
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Current Embedded NPP Models (SMRs)}
%
%
% \begin{figure}[!hbpt]
% \begin{center}
% \vspace*{-0.2cm}
% %\includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR01_a.jpg}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a.jpg}
% \vspace*{-0.6cm}
% \end{center}
% \end{figure}
%
% % OVDE stavi srdjene slike (ovu mrezu, dodaj mnan tablici, za sve probleme)...
%
%
% \begin{itemize}
% \item A number of ESSI modeling and simulation issues that control the
% seismic response
% \item Detrimental and Beneficial ESSI effects
% \item Seismic energy propagation and dissipation
% \end{itemize}
%
% \end{frame}
%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{ESSI: Seismic Body and Surface Waves}
% %
% % \begin{figure}[!hbpt]
% % \begin{center}
% % \vspace*{-0.2cm}
% % \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_01-GRAY_pdf.pdf}
% % \vspace*{-0.6cm}
% % \end{center}
% % \end{figure}
% %
% % \begin{itemize}
% % \item Seismic surface waves carry most seismic energy
% % \item SMR bottom: body waves; SMR top: surface waves
% % \item Incoherent seismic motions
% % \end{itemize}
% % \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{ESSI: Nonlinear Contact and Soil/Rock Zones}
% %
% % \begin{figure}[!hbpt]
% % \begin{center}
% % \vspace*{-0.2cm}
% % \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_02-GRAY_pdf.pdf}
% % \vspace*{-0.6cm}
% % \end{center}
% % \end{figure}
% %
% % \begin{itemize}
% % \item Seismic energy dissipated at the contact
% % \item Seismic energy dissipated within adjacent soil/rock zones
% % \item Passive (complete) structural isolation (beneficial)
% % \end{itemize}
% % \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{ESSI: Fluid Structure Interaction}
% %
% % \begin{figure}[!hbpt]
% % \begin{center}
% % \vspace*{-0.2cm}
% % \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_03-GRAY_pdf.pdf}
% % \vspace*{-0.6cm}
% % \end{center}
% % \end{figure}
% %
% % \begin{itemize}
% % \item SMR below water table,
% % \item Saturated soil (liquefaction, densification/stiffening)
% % \item Buoyant forces (dynamically changing)
% % \end{itemize}
% % \end{frame}
% %
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{ESSI: Uncertain Material and Uncertain Loads}
% %
% % \begin{figure}[!hbpt]
% % \begin{center}
% % \vspace*{-0.2cm}
% % \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_04-GRAY_pdf.pdf}
% % \hspace{0.5cm}
% % \includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SPT_Uncertain_Youngs_Modulus.jpg}
% % %
% % %\includegraphics[width=6.0cm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_RawData_and_MeanTrend_01-Ed.pdf}
% % %\\
% % %%\hfill
% % %\includegraphics[width=6.0cm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_Histogram_Normal_01-Ed.pdf}
% % %
% % \vspace*{-0.6cm}
% % \end{center}
% % \end{figure}
% %
% % \begin{itemize}
% % \item Inherently uncertain material response
% % \item Inherently uncertain (seismic) loading
% % \item Full probabilistic modeling and simulations is desired
% % % \item
% % \end{itemize}
% % \end{frame}
% %
% %
% %
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{3D, Inclined, Body and Surface Seismic Waves}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real Earthquake Ground Motions}
\begin{itemize}
\vspace*{0.2cm}
\item Body waves: P and S waves
\vspace*{0.2cm}
\item Inclined waves
\vspace*{0.2cm}
\item Surface waves: Rayleigh, Love waves, \&c.
\vspace*{0.2cm}
\item 6D waves (3 translations, 3 rotations)
\vspace*{0.2cm}
\item Surface waves carry most seismic energy
\vspace*{0.2cm}
\item Lack of correlation (incoherence)
%\vspace*{0.1cm}
% \item Earthquake energy dissipation
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Body (P, S) and Surface (Rayleigh, Love) Waves}
%
%
% \vspace*{-0.3cm}
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=2.5cm, angle=45]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/P_body_wave.jpeg}
% \includegraphics[width=2.5cm, angle=45]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/S_body_wave.jpeg}
% \vspace*{-0.7cm}
% \\
% \includegraphics[width=3cm]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/Rayleigh_surface_wave.jpeg}
% \includegraphics[width=3cm]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/Love_surface_wave.jpeg}
% %\caption{\label{Love_surface_wave} Visualization of propagation of a Love
% %surface seismic wave (illustrations are from MTU web site).}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Spatial Variability (Incoherence, Lack of Correlation)}
%
% Incoherence $\rightarrow$ frequency domain
%
% \vspace*{0.2cm}
%
% Lack of Correlation $\rightarrow$ time domain
%
%
% \vspace*{0.5cm}
%
% \begin{itemize}
% \item Wave passage effects
% \item Attenuation effects
% \item Extended source effects
% \item Scattering effects
% % \item Variable seismic energy dissipation
% \end{itemize}
%
% %\begin{figure}[!htb]
% %\begin{center}
% \vspace*{-3.5cm}
% \hspace*{5.5cm}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2011/NRC_Staff_Capacity_Building_25May2011/Lack_of_Correlation_5_points.pdf}
% %\caption{\label{LC} Four main sources contributing to the lack of correlation of
% %seismic waves as measured at two observation points.}
% %\end{center}
% %\end{figure}
% %
% %A number of models available (Abrahamson...)
% %
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Free Field, Inclined, 3D Body and Surface Waves}
%
% \begin{itemize}
%
% \item Development of analytic and numerical 3D, inclined, uncorrelated
% seismic motions for verification
%
% \vspace*{0.2cm}
% \item Large scale models
%
% \vspace*{0.2cm}
% \item Point shear source
%
% \vspace*{0.2cm}
% \item Stress drop:
% \begin{itemize}
%
% \item Wavelet (Ricker, \\
% Ormsby, \&c.)
%
% \item Analytic
%
%
% \end{itemize}
%
% \vspace*{0.2cm}
% \item Seismic input using DRM (Bielak et al (2003))
%
% \end{itemize}
%
%
%
%
% \vspace*{-4.6cm}
% \begin{flushright}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/FaultSlipModel2km.pdf}
% \end{flushright}
%
%
%
% \end{frame}
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Plane Wave Model}
%
% \vspace*{-1cm}
% \begin{figure}[!h]
% \begin{flushright}
% \includegraphics[width=4cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_wave_propagation_figs_DRMModel.pdf}
% \label{fig:DRMModel}
% \end{flushright}
% \end{figure}
%
%
% \vspace*{-1.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=8cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Seismic Source Mechanics}
%
% \vspace*{0.5cm}
% Stress drop, Ormsby wavelet
%
% \vspace*{-1cm}
% \begin{figure}[H]
% \begin{flushright}
% \includegraphics[width=2cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/Seismic_source_moment_couple.pdf}
% \end{flushright}
% \end{figure}
%
% \vspace*{-1.9cm}
% \hspace*{-1cm}
% \begin{figure}[H]
% \begin{center}
% \hspace*{-0.4cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/3000_3000_x_displacement.pdf}
% \hspace*{-0.4cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_FFT/3000_3000_x_displacement_FFT.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{3D, Body and Surface Seismic Waves}
\vspace*{-0.5cm}
\begin{figure}[H]
\begin{flushright}
\includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_MIDDLE.pdf}
\end{flushright}
\end{figure}
\vspace*{-2.0cm}
\begin{figure}[H]
\begin{center}
\hspace*{-1.0cm}
\includegraphics[width=6.5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/Ormsby/middle_top2000/middle_acceleration_x.pdf}
\hspace*{-0.5cm}
\includegraphics[width=6.5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/Ormsby/middle_top2000/middle_acceleration_z.pdf}
\hspace*{-0.5cm}
\end{center}
\end{figure}
\vspace*{-0.90cm}
{horizontal accelerations \hfill vertical accelerations}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Body and Surface Wave Animations}
%
%
%
% \begin{itemize}
%
% % \item
% % \begin{center}%
% % \includemovie{.85\textheight}{.85\textheight}{homo_50m-mesh_45degree_Ormsby.mp4}%
% % \end{center}%
% %
% \item
%
% %\begin{figure}[h!]
% %\centering
% \movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
% {\includegraphics[width=30mm]{BJicon.png}}{homo_50m-mesh_45degree_Ormsby.mp4}
% % \caption{caption}
% % \end{figure}
%
% \item
% \href{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_45degree_Ormsby.mp4}
% % \href{./homo_50m-mesh_45degree_Ormsby.mp4}
% {Homogeneous soil/rock, $45^{\deg}$ off vertical}
%
%
% \hspace*{0.5cm}
% \item
% \href{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/vector/homo_50m-mesh_45degree_Ormsby.mp4}
% {Homogeneous soil/rock, $45^{\deg}$ off vertical, motion vectors}
%
%
% \hspace*{0.5cm}
% \item
% \href{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/vector/homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4}
% {Homogeneous soil/rock, $45^{\deg}$ off vertical, motion vectors, NPP location}
%
% \hspace*{0.5cm}
% \item
% \href{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_45degree_Ormsby.mp4}
% {Two layers of soft soil with homogeneous soil/rock, $45^{\deg}$ off
% vertical }
%
%
% \end{itemize}
%
%
%
% % Homogeneous soil/rock, $56^{\deg}$ off vertical)
% % \href{/home/jeremic/lecture_notes_online_material/public_html/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_56degree_Ormsby.mp4}
% % {(link to a movie, 39MB)}
% %
% % Homogeneous soil/rock, $45^{\deg}$ off vertical)
% % \href{http://SOKOCALO.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_45degree_Ormsby.mp4}
% % {(link to a movie, 32MB)}
% %
% % Homogeneous soil/rock, $27^{\deg}$ off vertical)
% % \href{http://SOKOCALO.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_27degree_Ormsby.mp4}
% % {(link to a movie, 37MB)}
% %
% %
% % Single layer soft soil with homogeneous soil/rock, $56^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_56degree_Ormsby.mp4}
% % {(link to a movie, 30MB)}
% %
% % Single layer soft soil with homogeneous soil/rock, $45^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_45degree_Ormsby.mp4}
% % {(link to a movie, 34MB)}
% %
% % Single layer soft soil with homogeneous soil/rock, $27^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_27degree_Ormsby.mp4}
% % {(link to a movie, 32MB)}
% %
% %
% %
% % Two layers of soft soil with homogeneous soil/rock, $56^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_56degree_Ormsby.mp4}
% % {(link to a movie, 30MB)}
% %
% % Two layers of soft soil with homogeneous soil/rock, $45^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_45degree_Ormsby.mp4}
% % {(link to a movie, 31MB)}
% %
% % Two layers of soft soil homogeneous soil/rock, $27^{\deg}$ off vertical)
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_27degree_Ormsby.mp4}
% % {(link to a movie, 32MB)}
% % %
%
%
%
% \end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Body and Surface Wave: System Displacements}
\begin{center}
\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
{\includegraphics[width=65mm]{BJicon.png}}{homo_50m-mesh_45degree_Ormsby.mp4}
\end{center}
%homo_50m-mesh_45degree_Ormsby.mp4
%homo_50m-mesh_45degree_Ormsby_vector.mp4
%homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4
%layered2_50m-mesh_45degree_Ormsby.mp4
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Body and Surface Wave: Vectors}
\begin{center}
%\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
{\includegraphics[width=65mm]{BJicon.png}}{homo_50m-mesh_45degree_Ormsby_vector.mp4}
\end{center}
%homo_50m-mesh_45degree_Ormsby.mp4
%homo_50m-mesh_45degree_Ormsby_vector.mp4
%homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4
%layered2_50m-mesh_45degree_Ormsby.mp4
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Body and Surface Wave: NF Soil Motions}
\begin{center}
%\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols]
\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
{\includegraphics[width=65mm]{BJicon.png}}{homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4}
\end{center}
%homo_50m-mesh_45degree_Ormsby.mp4
%homo_50m-mesh_45degree_Ormsby_vector.mp4
%homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4
%layered2_50m-mesh_45degree_Ormsby.mp4
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Body and Surface Wave Animations \#4}
%
% %\movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols,loop]
% \movie[label=show3,width=0.7\textwidth,poster,autostart,showcontrols]
% {\includegraphics[width=65mm]{BJicon.png}}{layered2_50m-mesh_45degree_Ormsby.mp4}
% %homo_50m-mesh_45degree_Ormsby.mp4
% %homo_50m-mesh_45degree_Ormsby_vector.mp4
% %homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4
% %layered2_50m-mesh_45degree_Ormsby.mp4
% \end{frame}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Nonlinear Material Behavior}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Validation: Lotung, LSST07, $G/G_{max}$ and Damping}
\vspace*{5mm}
\begin{itemize}
\item Nonlinear, 3D elastic-plastic, Pisan{\`o} material model for Lotung (validation)
\item 1D wave propagation, only LSST07 is close to 1D!
\item No volume change data (a serious issue!)
\end{itemize}
\vspace*{-5mm}
\begin{figure}[!h]
\begin{center}
\includegraphics[width=5.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_GGmax_Curves.pdf}
\includegraphics[width=5.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Damping_Curves.pdf}
% \caption{G/Gmax and Damping Curves}\label{GD}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Validation: Lotung, LSST07, Downhole Motions}
\begin{figure}[!h]
\centering
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Time_History_of_Surface.pdf}
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Time_History_of_6m_depth.pdf}
\\
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Time_History_of_11m_depth.pdf}
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Time_History_of_17m_depth.pdf}
% \caption{Time history comparison at different depths}\label{Time_History}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Validation: Lotung, LSST07, Fourier Spectra}
\begin{figure}[!h]
\centering
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Fourier_Spectrum_of_Surface.pdf}
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Fourier_Spectrum_of_6m_depth.pdf}
\\
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Fourier_Spectrum_of_11m_depth.pdf}
\includegraphics[width=4.1cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/LLSST07_Fourier_Spectrum_of_17m_depth.pdf}
% \caption{Fourier spectrum comparison at different depths}\label{Fourier_Spectrum}
\end{figure}
\end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Soil Volume Response}
%
% \begin{itemize}
%
%
% \item 3D elastic-plastic material modeling with (only) $G/G_{max}$ and
% damping curves known: Pisan{\`o} model
%
% \item Soil behavior is very much a function of volumetric response
%
% \item Dilative soils: increase volume due to shearing
%
% \item Compressive soils: decrease volume due to shearing
%
% \item Modulus reduction and damping curves do not provide volumetric data
%
% \item Soil volume change will affect response due to volume constraints
%
% \end{itemize}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{No Volume Change, Compressive and Dilative Soil}
% %\frametitle{No Volume Change and Dilative Soil}
%
% \begin{figure}[!h]
% \begin{center}
% \hspace*{-1cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz-4.pdf}
% \hspace*{-0.3cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz_comp-4.pdf}
% \hspace*{-0.3cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz_dil-4.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change Soil}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-2.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, Dilatant Soil}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-3.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change and Dilative Soils}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-4.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change and Dilative Soils}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-5.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Foundation Slip/Gap and Liquefiable Soils}
%
% \begin{itemize}
% \item Slip and gap between foundation slab and the soil/rock
%
% \vspace*{0.4cm}
% \item Passive seismic isolation by liquefaction
%
% \end{itemize}
%
% \end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{NPP with Base Slip and Gap}
\begin{itemize}
\item Low friction zone between \\
concrete foundation and soil/rock
\item Inclined, 3D, body and surface, \\
seismic wave field (wavelets: \\
Ricker, Ormsby; real seismic, \&c.)
\end{itemize}
\vspace*{-4.0cm}
\begin{figure}[!h]
\begin{flushright}
\includegraphics[width=2.50cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
%{\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
\end{flushright}
\end{figure}
\vspace*{-0.9cm}
\begin{figure}[!h]
\begin{flushright}
{\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
\end{flushright}
\end{figure}
\vspace*{-3.6cm}
\begin{figure}[H]
\begin{center}
%\vspace*{-0.5cm}
%\includegraphics[width=2.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
%\hspace*{0.5cm}
%\vspace*{0.2cm}
\includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
\hspace*{-0.5cm}
\includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
%
\vspace*{-0.5cm}
\hspace*{0.8cm}
\mbox{horizontal}
\hspace*{4cm}
\mbox{vertical}
\hspace*{3cm}
\end{center}
\end{figure}
\vspace*{-1.0cm}
%
% %\vspace*{-3.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
% \end{center}
% \end{figure}
%
% %\vspace*{-3.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_x_acceleration.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_z_acceleration.pdf}
% \end{center}
% \end{figure}
%
% \vspace*{-0.90cm}
% {horizontal accelerations \hfill vertical accelerations}
%
%
%
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Acc. Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
\begin{figure}[H]
\begin{center}
\begin{tabular}{rr}
%\hline
\mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration.pdf}
&
\mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration.pdf}
\\
\mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration.pdf}
&
\mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration.pdf}
\end{tabular}
%\caption{Comparison of acceleration time histories of the structure between
%slipping and no-slipping models for Ricker wave}
\label{fig:3d_ricker_acc_1000}
\end{center}
\end{figure}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{FFT Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
%
% \begin{figure}[H]
% \begin{center}
% \begin{tabular}{rr}
% \mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration_FFT.pdf}
% &
% \mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration_FFT.pdf}
% \\
% \mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration_FFT.pdf}
% &
% \mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration_FFT.pdf}
% \end{tabular}
% %\caption{Comparison of FFT of the acceleration of the structure between
% %slipping and no-slipping models for Ricker wave}
% \label{fig:3d_ricker_fft_1000}
% \end{center}
% \end{figure}
%
%
% \end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Slipping Response and Energy Dissipated ($45^\circ$ Ricker)}
\vspace*{-0.1cm}
\begin{tiny}
\begin{figure}[H]
\begin{flushleft}
\hspace*{-1cm}
\begin{tabular}{ccc}
%\hline
$4.5s$
&
$4.6s$
&
$4.7s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide450.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide460.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide470.pdf}
\\
$4.8s$
&
$4.9s$
&
$5.0s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide480.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide490.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide500.pdf}
\\
$5.1s$
&
$5.2s$
&
$5.3s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide510.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide520.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide530.pdf}
%\\
%
%\hline
\end{tabular}
%\caption{Distribution of sliding along the contact interface for Ricker wave
%(gray scale given in meters)}
\label{fig:3d_ricker1000_slide_9}
\end{flushleft}
\end{figure}
\end{tiny}
\vspace*{-5cm}
\begin{figure}[!H]
\begin{flushright}
\includegraphics[width=5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/energy_sliding_92/energy_time.pdf}
\hspace*{-1cm}
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Gaping Response ($45^\circ$ Ricker Wavelet)}
\vspace*{-0.1cm}
\begin{tiny}
\begin{figure}[H]
\begin{center}
\begin{tabular}{ccc}
%\hline
$4.5s$
&
$4.6s$
&
$4.7s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap450.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap460.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap470.pdf}
\\
$4.8s$
&
$4.9s$
&
$5.0s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap480.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap490.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap500.pdf}
\\
$5.1s$
&
$5.2s$
&
$5.3s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap510.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap520.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap530.pdf}
%\\
%
%\hline
\end{tabular}
%\caption{Distribution of gap openings along the contact interface for Ricker wave
%(gray scale given in meters)}
\label{fig:3d_ricker1000_gap_9}
\end{center}
\end{figure}
\end{tiny}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Passive Base Isolation in Uniform and Layered Soils}
%
%
%
%
% \vspace*{-0.5cm}
% \begin{figure}[!htbp]
% \begin{flushleft}
% \includegraphics[width=5cm,angle=90]{/home/jeremic/tex/works/Papers/2009/SeismicIsolationLiquefaction/Mesh-Isolation.pdf}
% \\
% \includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/StackElements-Compare.pdf}
% \end{flushleft}
% \end{figure}
% \vspace*{-1cm}
%
%
% \vspace*{-8cm}
% %\hspace*{-0.5cm}
% \begin{figure}[!htbp]
% \begin{flushright}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Papers/2009/SeismicIsolationLiquefaction/time-history-acc.jpg} \\
% %\\
% %\includegraphics[width=8cm]{/home/jeremic/tex/works/Thesis/GuanzhouJie/thesis/Verzija_Februar/Images/LongMotion/MomentBent1Pile2.pdf}
% %\caption{\label{BridgeSFSI01} FEM model for seismic response of a three bend
% %bridge.}
% \end{flushright}
% \end{figure}
% \vspace*{-1cm}
%
%
%
% \end{frame}
% %
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Pile in Liquefiable Sloping Ground}
%
%
%
%
%
%
%
%
% \vspace*{-0.8cm}
% \begin{figure}[!htbp]
% \begin{flushright}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Conferences/2007/PEERAnnualMeeting/Liquefaction/PileBridgeModel01.jpg} \\
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/Conferences/2007/PEERAnnualMeeting/Liquefaction/PileBridgeModel02.jpg}
% % \includegraphics[width=4cm]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/GMklot02.pdf}
% \end{flushright}
% \end{figure}
%
%
%
%
%
% %
% \vspace*{-0.4cm}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{figure}[!htbp]
% \begin{center}
% \hspace*{-0.5cm}
% \begin{tabular}{lllllll}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.03\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_IV.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T080.jpg}
% \\
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.03\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_V.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T080.jpg}
% \\
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.035\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_VI.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T080.jpg}
% \\
% t=
% &
% 2~sec
% &
% 5~sec
% &
% 10~sec
% &
% 15~sec
% &
% 20~sec
% &
% 80~sec
% \end{tabular}
% \includegraphics[width=7cm,height=0.45cm]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/GMklot02.pdf}\hspace*{1cm}
% \\
% \vspace*{-0.5cm}
% \includegraphics[angle=-90,width=0.4\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_scale.pdf}
% \end{center}
% \end{figure}
% %
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{ESSI: ANIMATIONS}
%
%
%
% Homogeneous soil/rock, $56^{\deg}$ off vertical)
% \href{/home/jeremic/lecture_notes_online_material/public_html/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_56degree_Ormsby.mp4}
% {(link to a movie, 39MB)}
%
% Homogeneous soil/rock, $45^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_45degree_Ormsby.mp4}
% {(link to a movie, 32MB)}
%
% Homogeneous soil/rock, $27^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_27degree_Ormsby.mp4}
% {(link to a movie, 37MB)}
%
%
% Single layer soft soil with homogeneous soil/rock, $56^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_56degree_Ormsby.mp4}
% {(link to a movie, 30MB)}
%
% Single layer soft soil with homogeneous soil/rock, $45^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_45degree_Ormsby.mp4}
% {(link to a movie, 34MB)}
%
% Single layer soft soil with homogeneous soil/rock, $27^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered_50m-mesh_27degree_Ormsby.mp4}
% {(link to a movie, 32MB)}
%
%
%
% Two layers of soft soil with homogeneous soil/rock, $56^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_56degree_Ormsby.mp4}
% {(link to a movie, 30MB)}
%
% Two layers of soft soil with homogeneous soil/rock, $45^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_45degree_Ormsby.mp4}
% {(link to a movie, 31MB)}
%
% Two layers of soft soil homogeneous soil/rock, $27^{\deg}$ off vertical)
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/layered2_50m-mesh_27degree_Ormsby.mp4}
% {(link to a movie, 32MB)}
% %
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Real ESSI Simulator System}
% %
%
%
%
%
% \subsection{Real ESSI Simulator Components}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator System}
%
% \begin{itemize}
%
% \item {\bf The Real ESSI-Program} is a 3D, nonlinear, time domain,
% parallel finite element program specifically developed for
% Hi-Fi modeling and simulation of Earthquake Soil/Rock Structure
% Interaction problems for NPPs (infrastructure objects) on ESSI-Computers. \
% %The NRC ESSI Program is based on
% %a number of public domain numerical libraries developed at UCD as well as those
% %available on the web, that are compiled and linked together to form the
% %executable program (NRC-ESSI-Program). Significant effort is devoted to development
% %of verification and validation procedures, as well as on development of
% %extensive documentation. NRC-ESSI-Program is in public domain and is licensed
% %through the Lesser GPL.
%
% %\vspace*{0.3cm}
% \vspace*{0.1cm}
% \item {\bf The Real ESSI-Computer} is a distributed memory
% parallel computer, a cluster of clusters with multiple performance
% processors and multiple performance networks.
% %Compute nodes are Shared Memory Parallel
% %(SMP) computers, that are connected, using high speed network(s), into a
% %Distributed Memory Parallel (DMP) computer.
%
% %\vspace*{0.3cm}
% \vspace*{0.1cm}
% \item {\bf The Real ESSI-Notes} represent a hypertext
% documentation system
% (Theory and Formulation, Software and Hardware, Verification and Validation, and
% Case Studies and Practical Examples)
% detailing modeling and simulation of ESSI
% problems.
% %
% %the
% %NRC-ESSI-Program code API (application Programming Interface) and DSLs (Domain
% %Specific Language).
% %%NRC-ESSI-Notes, developed by Boris Jeremic and collaborators, are in public
% %domain
% %%and are licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
% %%License.
% %
% %\vspace*{0.3cm}
% \end{itemize}
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator Program: Finite Elements}
%
%
% %\vspace*{-3mm}
% \begin{itemize}
% %\vspace*{-1.5mm}
% \item Dry/single phase solids (8, 20, 27, 8-27 node bricks),
% %\vspace*{-1.5mm}
% \item Saturated/two phase solids (8 and 27 node bricks, liquefaction modeling),
% %\vspace*{-1.5mm}
% \item Shell with 6DOF per node,
% %\vspace*{-1.5mm}
% \item Beams (six and variable DOFs per node),
% %\vspace*{-1.5mm}
% \item Truss,
% %\vspace*{-1.5mm}
% \item Contacts (dry and/or saturated soil/rock - concrete, gap
% opening-closing, frictional slip),
% %\vspace*{-1.5mm}
% \item Base isolators (elastomeric, frictional pendulum)
% \end{itemize}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator Program: Material Models and Seismic Input}
%
% \begin{itemize}
%
% \item Material Models
% %\vspace*{-2mm}
% \begin{itemize}
% %\vspace*{-1.5mm}
% \item Linear and nonlinear, isotropic and anisotropic elastic
% %\vspace*{-1.5mm}
% \item Elastic-Plastic (von Mises, Drucker Prager, Rounded Mohr-Coulomb,
% Leon Parabolic, Cam-Clay, SaniSand, SaniClay,
% Pisan{\` o}...). All elastic-plastic models can be used as perfectly
% plastic, isotropic hardening/softening and kinematic hardening
% models.
% \end{itemize}
%
% \vspace*{4mm}
% \item Analytic input of seismic motions (both body (P, S) and surface
% (Rayleigh, Love, \&c., waves), including analytic radiation damping.
%
% \end{itemize}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator Program: V\&V, Parallel}
%
% \begin{itemize}
%
% %\vspace*{-2mm}
% \item Verification and Validation:
% each element, model, algorithm and procedure has been extensively verified
% (math issue) and validated (physics issue). Verification and Validation is
% documented in detail in Real ESSI Notes.
%
% %%\vspace*{-2mm}
% %\item Documentation: available in great detail through ESSI Notes, consisting
% %of four parts: Theory/Formulation Background, Software and Hardware description,
% %Verification and Validation, Examples and Case Studies.
%
% %\vspace*{-2mm}
% \vspace*{4mm}
% \item High Performance Parallel Computing:
% both parallel and sequential version available, however, for high fidelity
% modeling, parallel is really the only option. Parallel Real ESSI Simulator runs on
% clusters of PCs and on large supercomputers (Distributed Memory Parallel
% machines, all top national supercomputers).
% % Parallel algorithm uses our
% % original Plastic Domain Decomposition method (featuring dynamic computational
% % load balancing) that is efficient for elastic-plastic finite element problems
% % where elastic-plastic (slow) and elastic (fast) domains change dynamically
% % during run time.
%
%
% \end{itemize}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator Program: Probabilistic/Stochastic}
% %\vspace*{-2mm}
%
%
% \begin{itemize}
% %\vspace*{-2.5mm}
% \item Constitutive: Euler-Lagrange form of Fokker-Planck (forward
% Kolmogorov) equation for probabilistic elasto-plasticity (PEP)
% %\vspace*{-1.5mm}
% \item Spatial: stochastic elastic plastic finite element method (SEPFEM)
% \end{itemize}
%
%
% Uncertainties in material and load are analytically taken into account.
% Resulting displacements, stress and strain are obtained as very accurate
% (second order accurate for stress) Probability Density Functions.
% PEP and SEPFEM are not based on a Monte Carlo method, rather they expand
% uncertain input variables and uncertain degrees of freedom (unknowns) into
% spectral probabilistic spaces and solve for PDFs of
% resulting displacement, stress and strain in a single run.
%
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Real ESSI Simulator Program: Design and Users}
%
% \begin{itemize}
%
% %\vspace*{0.2cm}
% \item Based on a Collection of Useful Libraries (portable)
%
% \vspace*{0.1cm}
% \item Library centric software design
%
% \vspace*{0.1cm}
% \item Sequential (learning) and Parallel (production modeling and simulation)
%
% \vspace*{0.1cm}
% \item Distributed Memory Parallel (DMP) paradigm, scales well to large supercomputers
%
%
%
% \vspace*{0.1cm}
% \item Various public domain licenses (GPL, LGPL, BSD, CC)
%
% %\vspace*{0.3cm}
% \vspace*{0.1cm}
% \item Verification (extensive) and Validation (not much)
%
%
% \vspace*{0.1cm}
% \item Target users: US-NRC, CNSC, IAEA, LBNL, INL, US-DOE, professional
% practice collaborators (AREVA, Shimizu)
%
% \vspace*{0.1cm}
% \item Limited use Expert Modeling and Simulation System, and not a commercial product
%
% %\item Sources will be available through
% %{\bf
% %\url{http://nrc-essi-simulator.info}}
%
%
% \end{itemize}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}[fragile]
% \frametitle{ESSI Simulator Computer(s)}
%
% A distributed memory parallel (DMP) computer
% designed for high performance,
% parallel finite element simulations
%
% \begin{itemize}
% %\vspace*{0.1cm}
% \item Multiple performance CPUs \\
% and Networks
% %\vspace*{0.1cm}
% \item Most cost-performance \\
% effective
% %\vspace*{0.1cm}
% \item Source compatibility with \\
% any DMP supercomputer
% %\vspace*{0.1cm}
% \item Current systems: 208CPUs, \\
% and 40CPUs (8+32) and \\
% 160CPUs (8x5+2x16+24+64)...
%
% %%\vspace*{0.1cm}
% % \item Near future: 784 CPUs
%
% \end{itemize}
%
%
% \vspace*{-4.5cm}
% \begin{flushright}
% %\hspace*{-0.5cm}
% \includegraphics[width=5.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2607.JPG}
% %\includegraphics[width=6.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2609.JPG}
% %\includegraphics[width=8.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2611.JPG}
% \end{flushright}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Summary}
\subsection*{Summary}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary}
\begin{itemize}
\item Earthquake Soil Structure Interaction,
in time domain, nonlinear, uncertain, plays a
decisive role in seismic performance of Nuclear Facilities
\vspace*{0.2cm}
\item Improve design and retrofits (safety and economy) through
high fidelity, physics based modeling and simulation
\vspace*{0.2cm}
\item Real ESSI Simulator System, verified (extensive) and
validated (not so extensive), for modeling and simulations used for design, retrofits and
regulatory decision making
\vspace*{0.2cm}
\item Education and training of users (designers, regulators,
owners) proves essential
\end{itemize}
\end{frame}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Acknowledgement}
\begin{itemize}
% \item High fidelity
% modeling and simulations for performance assessment of infrastructure systems
\vspace*{0.1cm}
\item Funding from and collaboration with the US-NRC, US-DOE,
US-NSF, CNSC, LLNL, INL,
AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,
\vspace*{0.4cm}
\item Collaborators:
Dr. Budnitz (LBNL), Dr. Kammerer (Bechtel Corp.), Prof. Whittaker (UB), Mr.
Orbovi{\'c} (CNSC), Prof. Pisan{\`o} (TU Delft), Prof. Sett (UB),
and UCD students: Mr. Abell, Mr. Jeong, Mr. Kamranimoghadam, Mr.
Karapiperis, Mr. Watanabe, Mr. Chao, Dr. Tafazzoli,
%\vspace*{0.2cm}
% \item Contact: \\
% {\bf \url{jeremic@ucdavis.edu}}~~~;~~~{\bf \url{bjeremic@lbl.gov}}
\end{itemize}
\end{frame}
\end{document}
%
%