\documentclass[fleqn]{beamer}
%\documentclass[handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagelayout{2 on 1}[letterpaper, border shrink=5mm]
\mode{\setbeamercolor{background canvas}{bg=black!3}}
\usepackage{epstopdf}
%This is a macro to convert eps to pdf files on the fly.
% make sure figure syntax uses graphicx syntax NOT epsfig syntax
%from http://mailman.mit.edu/pipermail/macpartners/2005-January/000780.html
%
% \ifx\pdfoutput\undefined
% % we are running LaTeX, not pdflatex
% \usepackage{graphicx}
% \else
% % we are running pdflatex, so convert .pdf files to .pdf
% \usepackage[pdftex]{graphicx}
% \usepackage{epstopdf}
% \fi
% %*****************************************
% % for not showing eq numbers unless eq is references
% \usepackage[fleqn,tbtags]{mathtools}
% \mathtoolsset{
% showonlyrefs
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FEI LOGO definition
\newcommand{\FEI}
{{\sf \uppercase{F}\kern-0.20em\uppercase{E}\kern-0.20em\uppercase{I}}}
% % For Greek and Arabic
% \usepackage[greek,arabtex,english]{babel}
\usepackage[greek,english]{babel}
% % For Arabic
% \usepackage{arabtex}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % ovo je za cirilicu
% \input vuk.def
% %\newfont{\cyr}{wncyr10 scaled 1200}
% %\newfont{\cyrimena}{wncyb10 scaled 1800}
% %\newfont{\cyrnaslov}{wncyb10 scaled 2600}
% %\newfont{\cyrpodnaslov}{wncyr10 scaled 1400}
% \newfont{\cyr}{wncyss10 scaled 1200}
% \newfont{\cyrimena}{wncyss10 scaled 2000}
% \newfont{\cyrnaslov}{wncyss10 scaled 2800}
% \newfont{\cyrpodnaslov}{wncyss10 scaled 1400}
%
% \newfont{\cyn}{wncyss10 scaled 2200}
%% JB sig
\newfont{\cyrjb}{wncyr10 scaled 600}
\newcommand{\JB}
{{\cyrjb \lower0.50ex\hbox{\uppercase{J}}\kern-.58em\hbox{\uppercase{B}}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ovo je za cirilicu
\input vuk.def
\newfont{\cyr}{wncyr10 scaled 1000 }
\newfont{\cyb}{wncyb10 scaled 1000 }
\newfont{\cyi}{wncyi10 scaled 1000 }
\newfont{\cysc}{wncysc10 scaled 1000 }
\newfont{\cyss}{wncyss10 scaled 1200 }
\newfont{\romjba}{cmss10 scaled 1000}
\newfont{\cyrjbnaslov}{wncyss10 scaled 1400 }
\setbeamertemplate{navigation symbols}{}
\mode
{
% \usetheme{Marburg} % ima naslov i sadrzaj sa desne strane
% \usetheme{Hannover} % ima naslov i sadrzaj sa leve strane
% \usetheme{Singapore} % ima sadrzaj i tackice gore
% \usetheme{Antibes} % ima sadrzaj gore i kao graf ...
% \usetheme{Berkeley} % ima sadrzaj desno
% \usetheme{Berlin} % ima sadrzaj gore i tackice
% \usetheme{Goettingen} % ima sadrzxaj za desne strane
% \usetheme{Montpellier} % ima graf sadrzaj gore
% \usetheme{Warsaw}
% \usetheme{Warsaw}
\usetheme{Dresden}
\usecolortheme[RGB={20,0,128}]{structure}
% or ...
\setbeamercovered{transparent}
% \setbeamercovered{transparent}
% or whatever (possibly just delete it)
% \usecolortheme{albatross} % teget sa svetlim slovima
% \usecolortheme{beetle} % siva pozadina (vrh plav)
\usecolortheme{seagull} % sivo
%%%%%%%
% \usecolortheme{BorisJeremic}
%%%%%%%
% \usecolortheme{rose}
% \usefonttheme[onlylarge]{structuresmallcapsserif}
% \usefonttheme{structuresmallcapsserif}
}
\definecolor{mycolor}{rgb}{0,0.08,0.45}%
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\newcommand{\ud}{{\rm d}}
\usepackage{array}
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
\definecolor{webgreen}{rgb}{0, 0.15, 0} % less intense green
\definecolor{webblue}{rgb}{0, 0, 0.15} % less intense blue
\definecolor{webred}{rgb}{0.15, 0, 0} % less intense red
%\usepackage[colorlinks=true,linkcolor=webblue,citecolor=webred,urlcolor=webgreen]{hyperref}
\usepackage{hyperref}
\hypersetup{
pdfmenubar=true,
pdftoolbar=true,
pdfpagemode={None}
}
\usepackage{pause}
% or whatever
%\usepackage{html}
%\usepackage{url}
\usepackage[latin1]{inputenc}
% or whatever
\usepackage{times}
\usepackage[T1]{fontenc}
% Or whatever. Note that the encoding and the font should match. If T1
% does not look nice, try deleting the line with the fontenc.
\title[Real ESSI]
{Real Earthquake Soil Structure Interaction \\
(Real ESSI) \\
Modeling and Simulation }
%\subtitle
%{Include Only If Paper Has a Subtitle}
%\author[Author, Another] % (optional, use only with lots of authors)
%{F.~Author\inst{1} \and S.~Another\inst{2}}
% - Give the names in the same order as the appear in the paper.
% - Use the \inst{?} command only if the authors have different
% affiliation.
\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_blue_sm}
\pgfdeclareimage[height=0.7cm]{lbnl-logo}{/home/jeremic/BG/amblemi/lbnl-logo}
\author[Jeremi{\'c} et al.] % (optional, use only with lots of authors)
%{Boris~Jeremi{\'c}}
{Boris Jeremi{\'c} et al.}
%\institute[Computational Geomechanics Group \hspace*{0.3truecm}
\institute[\pgfuseimage{university-logo}\hspace*{0.1truecm}\pgfuseimage{lbnl-logo}] % (optional, but mostly needed)
%{ Professor, University of California, Davis\\
{UCD, LBNL}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\date[] % (optional, should be abbreviation of conference name)
{\small PRENOLIN \\
December 2014}
\subject{}
% This is only inserted into the PDF information catalog. Can be left
% out.
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
%\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_gold_lrg}
%\logo{\pgfuseimage{university-logo}}
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% % Delete this, if you do not want the table of contents to pop up at
% % the beginning of each subsection:
% % \AtBeginSubsection[]
% \setcounter{tocdepth}{2}
% \AtBeginSubsection[]
% % \AtBeginSection[]
% {
% \begin{scriptsize}
% \begin{frame}
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% % \tableofcontents[currentsection]
% \end{frame}
% \end{scriptsize}
% }
%
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Outline}
\begin{scriptsize}
\tableofcontents
% You might wish to add the option [pausesections]
\end{scriptsize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Structuring a talk is a difficult task and the following structure
% may not be suitable. Here are some rules that apply for this
% solution:
% - Exactly two or three sections (other than the summary).
% - At *most* three subsections per section.
% - Talk about 30s to 2min per frame. So there should be between about
% 15 and 30 frames, all told.
% - A conference audience is likely to know very little of what you
% are going to talk about. So *simplify*!
% - In a 20min talk, getting the main ideas across is hard
% enough. Leave out details, even if it means being less precise than
% you think necessary.
% - If you omit details that are vital to the proof/implementation,
% just say so once. Everybody will be happy with that.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Motivation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
%\vspace*{0.3cm}
\item Improving seismic design for infrastructure objects, focus on Nuclear Facilities
\vspace*{0.3cm}
\item Use of high fidelity numerical models in analyzing seismic behavior
of soil structure interaction (SSI) systems
\vspace*{0.3cm}
\item Accurate following of the flow of seismic energy in the
soil/rock-foundation-structure
system
\vspace*{0.3cm}
\item Directing, in space and time, seismic energy flow in the
soil/rock-foundation-structure system
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Hypothesis}
\begin{itemize}
%\vspace*{0.5cm}
\item Interplay of the Earthquake with the
Soil/Rock, Foundation and Structure in time domain, plays a major
role in successes and failures
\vspace*{0.2cm}
\item Timing and spatial location of energy dissipation determines location
and amount of damage
\vspace*{0.2cm}
\item If timing and spatial location of energy dissipation
can be controlled (directed, designed),
we could optimize soil structure system for
\begin{itemize}
\item Safety and
\item Economy
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Predictive Capabilities}
% \frametitle{High Fidelity Modeling of SFS System:
% Verification, Validation and Prediction}
\begin{itemize}
\item {{\bf Verification} provides evidence that the
model is solved correctly.} Mathematics issue.
\vspace*{0.2cm}
\item {{\bf Validation} provides
evidence that the correct model is solved.} Physics issue.
\vspace*{0.2cm}
\item {\bf Prediction}: use of computational model to foretell the state of a
physical system under consideration under conditions for which the
computational model has not been validated.
\vspace*{0.2cm}
\item Goal: predictive capabilities
with {\bf low Kolmogorov Complexity}
% %% % \vspace*{0.2cm}
% % \item {\bf The Finite Element
% % Interpreter \FEI{}} might be one such
% % predictive tool (application program)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Flow of Seismic Energy}
%-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Seismic Energy Input for the SSI System}
\begin{itemize}
\vspace*{-1.5cm}
\item Kinetic energy flux through closed surface $\Gamma$ includes both incoming
and outgoing waves (using Domain Reduction Method by Bielak et al.)
\begin{eqnarray*}
E_{flux} =
\left[0 ; -M^{\Omega+}_{be} \ddot{u}^0_e-K^{\Omega+}_{be}u^0_e ;
M^{\Omega+}_{eb}\ddot{u}^0_b+K^{\Omega+}_{eb}u^0_b \right]_i
%
% \left[
% \begin{array}{c}
% 0 \\
% -M^{\Omega+}_{be} \ddot{u}^0_e-K^{\Omega+}_{be}u^0_e \\
% M^{\Omega+}_{eb}\ddot{u}^0_b+K^{\Omega+}_{eb}u^0_b
% \end{array}
% \right]^{T}
\times u_i
%\left[
%\begin{array}{c}
%0 \\
%{u}_b\\
%{u}_e
%\end{array}
%\right]
\end{eqnarray*}
\item Alternatively, $E_{flux} = \rho A c \int_0^t \dot{u}_i^2 dt$
\item Outgoing kinetic energy \\
is obtained from outgoing \\
wave field ($w_i$, in DRM)
\item Incoming kinetic energy \\
is then the difference.
\end{itemize}
\vspace*{-7.0cm}
% \begin{figure}[!hbpt]
%\begin{flushright}
\hfill \includegraphics[width=5.5cm]{/home/jeremic/tex/works/psfigures/DRMidea03.pdf}
%\end{flushright}
%\end{figure}
\vspace*{-2cm}
\end{frame}
%-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
% \frametitle{Seismic Energy Dissipation for \underline{Soil}-Foundation-Structure Systems}
\frametitle{Seismic Energy Dissipation for the SSI System}
% \frametitle{Seismic Energy Dissipation for
% \underline{Soil}-Foundation-Structure Systems}
\begin{itemize}
\vspace*{0.2cm}
\item Mechanical dissipation outside of SSI domain:
\begin{itemize}
\item reflected wave radiation
\item SSI system oscillation radiation
\end{itemize}
\vspace*{0.2cm}
\item Mechanical dissipation/conversion inside SSI domain:
\begin{itemize}
\item plasticity of soil subdomains
\item plasticity/damage of foundation
\item plasticity/damage of structure
\item viscous coupling of structure/foundation with fluids
\item viscous coupling of porous solid with pore fluid (air, water)
% \item potential and kinetic energy
\item potential $\leftarrow \! \! \! \! \! \! \rightarrow$ kinetic energy
\end{itemize}
\vspace*{0.2cm}
% \item Numerical energy dissipation (numerical damping/production and period errors)
% \item Numerical energy dissipation (damping/production)
\item Numerical energy dissipation/production
\end{itemize}
%
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Energy Dissipation by Soil Plasticity}
%
%
% \begin{itemize}
%
% % \item Plastic work ($W = \int_{0}^{t} \sigma_{ij} d \epsilon_{ij}^{pl}$)
% \item Plastic work ($W = \int \sigma_{ij} d \epsilon_{ij}^{pl}$)
%
% \item Energy dissipation capacity for different soils
%
%
% \end{itemize}
%
% %\vspace*{-1.0cm}
% \begin{center}
% \vspace*{-0.9cm}
% \includegraphics[width=8.5cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/Energy-Capacity2.pdf}
% \hspace*{-0.2cm}
% %\includegraphics[width=6.0cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/Energy-Capacity10.pdf}
% \vspace*{-1.0cm}
% \end{center}
%
%
% \end{frame}
% %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- \begin{frame}
% %- \frametitle{Plasticity Energy Dissipation}
% %-
% %- \begin{itemize}
% %-
% %- \item
% %-
% %- \end{itemize}
% %-
% %-
% %- \end{frame}
% %- %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Energy Dissipation by Soil Viscous Coupling}
%
%
% \begin{itemize}
%
% \item Viscous coupling of porous solid and fluid
% \item Energy loss per unit volume is $E_{vc}= n^2 k^{-1} (\dot{U}_i - \dot{u}_i)^2$
% \item Natural in $u-p-U$ formulation:
%
% \end{itemize}
% %\vspace*{-0.4cm}
%
%
%
%
% \begin{footnotesize}
% %\begin{tiny}
% \begin{eqnarray*}
% %& &\left[ \begin{array}{ccc}
% \left[ \begin{array}{ccc}
% (M_s)_{KijL} & 0 & 0 \\
% 0 & 0 & 0 \\
% 0 & 0 & (M_f)_{KijL}
% \end{array} \right]
% \left[ \begin{array}{c}
% \ddot{\overline{u}}_{Lj} \\
% \ddot{\overline{p}}_N \\
% \ddot{\overline{U}}_{Lj}
% \end{array} \right]
% +
% \left[ \begin{array}{ccc}
% (C_1)_{KijL} & 0 & -(C_2)_{KijL} \\
% 0 & 0 & 0 \\
% -(C_2)_{LjiK} & 0 & (C_3)_{KijL} \\
% \end{array} \right]
% \left[ \begin{array}{c}
% \dot{\overline{u}}_{Lj} \\
% \dot{\overline{p}}_N \\
% \dot{\overline{U}}_{Lj}
% \end{array} \right]
% \nonumber\\
% +
% %& &\left[ \begin{array}{ccc}
% \left[ \begin{array}{ccc}
% (K^{EP})_{KijL} & -(G_1)_{KiM} & 0 \\
% -(G_1)_{LjM} & -P_{MN} & -(G_2)_{LjM} \\
% 0 & -(G_2)_{KiL} & 0
% \end{array} \right]
% \left[ \begin{array}{c}
% \overline{u}_{Lj} \\
% \overline{p}_M \\
% \overline{U}_{Lj}
% \end{array} \right]
% =
% \left[ \begin{array}{c}
% \overline{f}_{Ki}^{solid} \\
% 0 \\
% \overline{f}_{Ki}^{fluid}
% \end{array} \right] \nonumber\\
% \label{68}
% \end{eqnarray*}
% %\end{tiny}
% \end{footnotesize}
%
% \vspace*{-1cm}
%
% \begin{footnotesize}
% \begin{eqnarray*}
% %%%%%%%%
% (C_{(1,2,3)})_{KijL}
% =
% \int_{\Omega} N_K^{(u,u,U)}
% n^2 k_{ij}^{-1}
% N_L^{(u,U,U)} d\Omega
% % (C_1)_{KijL} =\int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^u d\Omega
% % \;\; \mbox{;} \;\;
% % (C_2)_{KijL} =\int_{\Omega} N_K^u n^2 k_{ij}^{-1} N_L^U d\Omega
% % %%%%%%%%
% % %\;\; \mbox{;}\;\;
% % \\
% % %%%%%%%%
% % (C_3)_{KijL} =\int_{\Omega} N_K^U n^2 k_{ij}^{-1} N_L^U d\Omega
% \end{eqnarray*}
% \end{footnotesize}
% %
% %
% %
% %
% %\newpage
%
%
%
%
% \end{frame}
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Numerical Energy Dissipation}
%
% \begin{itemize}
%
% \item Newmark and Hilber-Hughes-Taylor can be made non-dissipative for
% elastic system $\alpha=0.0, \beta = 0.25 ; \gamma = 0.5,$
%
% \item Or dissipative (for elastic) for higher frequency modes:
% %Newmark ($\gamma \ge 0.5, \;\;\; \beta = 0.25(\gamma+0.5)^2$ ),
% %Hilber-Hughes-Taylor ($-0.3\dot{3}\le\alpha \le0, \;\;\;\gamma =
% %0.5(1-2\alpha), \;\;\; \beta = 0.25(1-\alpha)^2$)
% \begin{itemize}
% \item N: $\gamma \ge 0.5, \;\;\; \beta = 0.25(\gamma+0.5)^2$,
% \item HHT: $-0.3\dot{3}\le\alpha \le0, \;\;\;\gamma =
% 0.5(1-2\alpha), \;\;\; \beta = 0.25(1-\alpha)^2$
% \end{itemize}
%
% \item For nonlinear problems,
% energy cannot be maintained
% \begin{itemize}
% \item Energy dissipation for steps with reduction of stiffness
% \item Energy production for steps with increase of stiffness
%
% \hspace{1cm}
% \includegraphics[width=1.80cm, angle=-90]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/EnergyDissipationReducationStiffness.pdf}
% \hspace{1cm}
% \includegraphics[width=1.80cm, angle=-90]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/EnergyProductionIncreaseStiffness.pdf}
% \hspace{1cm}
%
%
%
% \end{itemize}
%
%
% \end{itemize}
%
%
% \end{frame}
% %-
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Modeling Uncertainty}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Modeling Uncertainty}
\begin{itemize}
\item Goal: reduction of modeling uncertainty
\vspace*{0.2cm}
\item Simplified (or inadequate/wrong) modeling: important features are
missed (3D seismic ground motions, nonlinearities, etc.)
\vspace*{0.2cm}
\item Modeling Uncertainty: introduced with unnecessary and
unrealistic modeling simplification
\vspace*{0.2cm}
\item Avoid use of results obtained using models with (high) modeling
uncertainty
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Complexity of and Uncertainty in Ground Motions}
\begin{itemize}
%\vspace*{0.3cm}
\item 6D (3 translations, 3 rotations)
\vspace*{0.3cm}
\item Vertical motions usually neglected
\vspace*{0.3cm}
\item Rotational components usually not measured and neglected
\vspace*{0.3cm}
\item Lack of models for such 6D motions (from measured data))
\vspace*{0.3cm}
\item Sources of uncertainties in ground motions (Source, Path (rock), soil (rock))
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Complexity of and Uncertainty in Material Modeling}
\begin{itemize}
%\vspace*{0.3cm}
\item All engineering materials experience inelastic deformations for working loads
\vspace*{0.1cm}
\item This is even more so for hazard loads (earthquakes)
\vspace*{0.1cm}
\item Pressure sensitive materials (soil, rock , concrete, etc) can have very
complex constitutive response, tying together nonlinear stress-strain with volume response
\vspace*{0.1cm}
\item Simplistic material modeling (elastic, $G/G_{max}$, etc.) introduce
(significant) uncertainties in response results
\vspace*{0.1cm}
\item In addition, man-made and natural materials are spatially variable and
their material modeling parameters are uncertain
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Material Behavior Inherently Uncertain}
%\begin{itemize}
%\vspace*{0.5cm}
%\item
%Material behavior is inherently uncertain (concrete, metals, soil, rock,
%bone, foam, powder etc.)
\begin{itemize}
\vspace*{0.5cm}
\item Spatial \\
variability
\vspace*{0.5cm}
\item Point-wise \\
uncertainty, \\
testing \\
error, \\
transformation \\
error
\end{itemize}
% \vspace*{0.5cm}
% \item Failure mechanisms related to spatial variability (strain localization and
% bifurcation of response)
%
% \vspace*{0.5cm}
% \item Inverse problems
%
% \begin{itemize}
%
% \item New material design, ({\it point-wise})
%
% \item Solid and/or structure design (or retrofits), ({\it spatial})
%
% \end{itemize}
%\end{itemize}
\vspace*{-5cm}
\begin{figure}[!hbpt]
%\nonumber
%\begin{center}
\begin{flushright}
%\includegraphics[height=5.0cm]{/home/jeremic/tex/works/Conferences/2006/KragujevacSEECCM06/Presentation/MGMuzorak01.jpg}
\includegraphics[height=5.5cm]{/home/jeremic/tex/works/Conferences/2006/KallolsPresentationGaTech/FrictionAngleProfile.jpg}
\\
\mbox{(Mayne et al. (2000) }
\end{flushright}
%\end{center}
%\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SPT Based Determination of Shear Strength}
\begin{figure}[!hbpt]
\begin{center}
%
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_RawData_and_MeanTrend-Mod.pdf}
\hfill
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_Histogram_PearsonIV-FineTuned-Mod.pdf}
%
\end{center}
\end{figure}
\vspace*{-0.3cm}
Transformation of SPT $N$-value $\rightarrow$ un-drained shear
strength, $s_u$ (cf. Phoon and Kulhawy (1999B)
Histogram of the residual
(w.r.t the deterministic transformation
equation) un-drained strength,
along with fitted probability density function
(Pearson IV)
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SPT Based Determination of Young's Modulus}
\begin{figure}[!hbpt]
\begin{center}
%
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_RawData_and_MeanTrend_01-Ed.pdf}
\hfill
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_Histogram_Normal_01-Ed.pdf}
%
\end{center}
\end{figure}
\vspace*{-0.3cm}
Transformation of SPT $N$-value $\rightarrow$ 1-D Young's modulus, $E$ (cf. Phoon and Kulhawy (1999B))
Histogram of the residual (w.r.t the deterministic transformation equation) Young's modulus, along with fitted probability density function
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Transformation Error/Uncertainty}
\begin{figure}[!hbpt]
\begin{center}
%
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldPhiPdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldPhiCdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldSuPdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldSuCdf.pdf}
\\
\mbox{Field $\phi$} \hspace*{4cm} \mbox{Field $c_u$}
\hfill
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabPhiPdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabPhiCdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabSuPdf.pdf}
\includegraphics[width=2.7truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabSuCdf.pdf}
\\
\mbox{Lab $\phi$} \hspace*{4cm} \mbox{Lab $c_u$}
%
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{ESSI Modeling}
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{3D, Inclined, Body and Surface}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Earthquake Ground Motions}
%
%
%
% Realistic earthquake ground motions
% \begin{itemize}
% \vspace*{0.1cm}
% \item Body waves: P and S waves
% \vspace*{0.1cm}
% \item Surface waves: Rayleigh, Love waves, etc.
% \vspace*{0.1cm}
% \item Surface waves carry most seismic energy
% \vspace*{0.1cm}
% \item Lack of correlation (incoherence)
% \vspace*{0.1cm}
% \item Inclined waves
% \vspace*{0.1cm}
% \item 3D waves
% %\vspace*{0.1cm}
% % \item Earthquake energy dissipation
%
% \end{itemize}
%
%
%
%
%
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Body (P, S) and Surface (Rayleigh, Love) Waves}
%
%
% \vspace*{-0.3cm}
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=2.5cm, angle=45]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/P_body_wave.jpeg}
% \includegraphics[width=2.5cm, angle=45]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/S_body_wave.jpeg}
% \vspace*{-0.7cm}
% \\
% \includegraphics[width=3cm]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/Rayleigh_surface_wave.jpeg}
% \includegraphics[width=3cm]{/home/jeremic/tex/works/consulting/2010/CanadianNuclearSafetyComission/Presentation/Love_surface_wave.jpeg}
% %\caption{\label{Love_surface_wave} Visualization of propagation of a Love
% %surface seismic wave (illustrations are from MTU web site).}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Spatial Variability (Incoherence, Lack of Correlation)}
%
% Incoherence $\rightarrow$ frequency domain
%
% \vspace*{0.2cm}
%
% Lack of Correlation $\rightarrow$ time domain
%
%
% \vspace*{0.5cm}
%
% \begin{itemize}
% \item Wave passage effects
% \item Attenuation effects
% \item Extended source effects
% \item Scattering effects
% % \item Variable seismic energy dissipation
% \end{itemize}
%
% %\begin{figure}[!htb]
% %\begin{center}
% \vspace*{-3.5cm}
% \hspace*{5.5cm}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Conferences/2011/NRC_Staff_Capacity_Building_25May2011/Lack_of_Correlation_5_points.pdf}
% %\caption{\label{LC} Four main sources contributing to the lack of correlation of
% %seismic waves as measured at two observation points.}
% %\end{center}
% %\end{figure}
% %
% %A number of models available (Abrahamson...)
% %
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Free Field, Inclined, 3D Body and Surface Waves}
%
% \begin{itemize}
%
% \item Development of analytic and numerical 3D, inclined, uncorrelated
% seismic motions for verification
%
% \vspace*{0.2cm}
% \item Large scale models
%
% \vspace*{0.2cm}
% \item Point shear source
%
% \vspace*{0.2cm}
% \item Stress drop:
% \begin{itemize}
%
% \item Wavelet (Ricker, \\
% Ormsby, etc)
%
% \item Analytic
%
%
% \end{itemize}
%
% \vspace*{0.2cm}
% \item Seismic input using DRM (Bielak et al (2003))
%
% \end{itemize}
%
%
%
%
% \vspace*{-4.6cm}
% \begin{flushright}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/FaultSlipModel2km.pdf}
% \end{flushright}
%
%
%
% \end{frame}
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Plane Wave Model}
%
% \vspace*{-1cm}
% \begin{figure}[!h]
% \begin{flushright}
% \includegraphics[width=4cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_wave_propagation_figs_DRMModel.pdf}
% \label{fig:DRMModel}
% \end{flushright}
% \end{figure}
%
%
% \vspace*{-1.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=8cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Seismic Source Mechanics}
%
% \vspace*{0.5cm}
% Stress drop, Ormsby wavelet
%
% \vspace*{-1cm}
% \begin{figure}[H]
% \begin{flushright}
% \includegraphics[width=2cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/Seismic_source_moment_couple.pdf}
% \end{flushright}
% \end{figure}
%
% \vspace*{-1.9cm}
% \hspace*{-1cm}
% \begin{figure}[H]
% \begin{center}
% \hspace*{-0.4cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/3000_3000_x_displacement.pdf}
% \hspace*{-0.4cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_FFT/3000_3000_x_displacement_FFT.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{3D, Body and Surface Seismic Waves}
%
% \vspace*{-0.5cm}
% \begin{figure}[H]
% \begin{flushright}
% \includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_MIDDLE.pdf}
% \end{flushright}
% \end{figure}
%
% \vspace*{-2.0cm}
% \begin{figure}[H]
% \begin{center}
% \hspace*{-1.0cm}
% \includegraphics[width=6.5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/Ormsby/middle_top2000/middle_acceleration_x.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6.5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/Ormsby/middle_top2000/middle_acceleration_z.pdf}
% \hspace*{-0.5cm}
% \end{center}
% \end{figure}
%
% \vspace*{-0.90cm}
% {horizontal accelerations \hfill vertical accelerations}
%
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Body and Surface Wave Animations}
%
%
%
% \begin{itemize}
% \item
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/color_high-quality/homo_50m-mesh_45degree_Ormsby.mp4}
% {Homogenous soil/rock, $45^{\deg}$ off vertical}
%
%
% \hspace*{0.5cm}
% \item
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/vector/homo_50m-mesh_45degree_Ormsby.mp4}
% {Homogenous soil/rock, $45^{\deg}$ off vertical, motions at the top $2$km $\times$ $2$km}
%
%
% \hspace*{0.5cm}
% \item
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/vector/homo_50m-mesh_45degree_Ormsby_X5000-Z5000.mp4}
% {Homogenous soil/rock, $45^{\deg}$ off vertical, motions at the very top, location of observation point and/or structure}
% \end{itemize}
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Verification: Displacements, Top Middle Point }
% % \begin{itemize}
% % \item
% % \end{itemize}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{figure}[!htbp]
% \begin{center}
% \begin{tabular}{ccc}
% %\hline
% (X)
% &
% (Z)
% \\
% \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/top_middle_comparison_disp_x.pdf}
% &
% \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/top_middle_comparison_disp_z.pdf}
% &
% \end{tabular}
% %\caption{Comparison of displacements for top middle point using Ricker wave $(f=1Hz)$ as an input motion}
% %\label{fig:ricker_acc}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{Verification: Accelerations, Top Middle Point }
% % % \begin{itemize}
% % % \item
% % % \end{itemize}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{figure}[!htbp]
% % \begin{center}
% % \begin{tabular}{ccc}
% % %\hline
% % (X)
% % &
% % (Z)
% % \\
% % \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/top_middle_comparison_accel_x.pdf}
% % &
% % \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/top_middle_comparison_accel_z.pdf}
% % &
% % \end{tabular}
% % %\caption{Comparison of accelerations for top middle point using Ricker wave $(f=1Hz)$ as an input motion}
% % %\label{fig:ricker_acc}
% % \end{center}
% % \end{figure}
% %
% %
% %
% %
% % \end{frame}
% %
% %
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Verification: Disp. and Acc., Out of DRM }
% % \begin{itemize}
% % \item
% % \end{itemize}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{figure}[!htbp]
% \begin{center}
% \begin{tabular}{ccc}
% %\hline
% Displacement
% &
% Acceleration
% \\
% \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/10_40_disp_x.pdf}
% &
% \includegraphics[width=5.0cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/wave_propagation/figs/ricker_2km/10_40_accel_x.pdf}
% &
% \end{tabular}
% %\caption{Displacement and acceleration time history for a point outside of DRM layer in (x) direction}
% %\label{fig:out_ricker_disp}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
% %
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge 3D FE Model}
% \vspace*{-3.5cm}
% \begin{figure}
% % \includegraphics[scale=0.35]{Present06_figs/3DModel.pdf}
% \includegraphics[scale=0.35]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/Jose_fix/presentation/Present06_figs/3DModel.pdf}
% \end{figure}
% \end{frame}
%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{FE Model}
% % \begin{figure}
% % % \includegraphics[scale=0.4]{Present06_figs/3DModelxzPlane.pdf}
% % \includegraphics[scale=0.4]{Present06_figs/3DModelxzPlane.pdf}
% % \end{figure}
% % \end{frame}
% %
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge 3D Model Properties}
% \begin{itemize}
% \item Model Properties
% \begin{itemize}
% \item 90 m $\times$ 90 m $\times$ 90 m dimension
% \item Vs1 = 300 m/s, Vs2 = 400 m/s
% \item Poisson's ratio1 = 0.25, Poisson's ratio2 = 0.25
% % \item Density1 = 940 kg/m$^3$, Density2 = 990 kg/m$^3$
% \end{itemize}
% \vspace{2mm}
% \item Input Wave Properties
% \begin{itemize}
% \item Northridge earthquake source properties
% \item Generated using fk program
% \end{itemize}
% \end{itemize}
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{FEM Results, EW Component}
% \vspace*{-3.5cm}
% \begin{figure}
% % \includegraphics[scale=0.5]{Present06_figs/90m_Northridge_EW.pdf}
% \includegraphics[scale=0.5]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/Jose_fix/presentation/Present06_figs/90m_Northridge_EW.pdf}
% \end{figure}
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{FEM Results, NS Component}
% \vspace*{-3.5cm}
% \begin{figure}
% % \includegraphics[scale=0.5]{Present06_figs/90m_Northridge_NS.pdf}
% \includegraphics[scale=0.5]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/Jose_fix/presentation/Present06_figs/90m_Northridge_NS.pdf}
% \end{figure}
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{FEM Results, UD Component}
% \vspace*{-3.5cm}
% \begin{figure}
% % \includegraphics[scale=0.5]{Present06_figs/90m_Northridge_UD.pdf}
% \includegraphics[scale=0.5]{/home/jeremic/tex/works/Conferences/2013/NRC_Short_Course_May2013/Present/Jose_fix/presentation/Present06_figs/90m_Northridge_UD.pdf}
% \end{figure}
% \end{frame}
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Model Verification: Mesh Size Effects}
%
% \begin{itemize}
%
% \item Finite element mesh "filters out" \\
% high frequencies
%
% %\vspace*{0.2cm}
% \item Usual rule of thumb: 10-12 elements \\
% needed per wave length
% % (SASSI recommends only 5 ?!)
%
% %
% % \item Maximum grid spacing should not exceed
% % $\Delta h \;\le\; {\lambda}/{10}\;=\;{v}/({10\,f_{max}})$
% % where $v$ is the lowest wave velocity (shear, elastic-plastic ?)
% %
% % \item Tests without and with numerical damping, for different element sizes
% %
%
% \item 1D wave propagation model
% %\vspace*{0.2cm}
% \item 3D finite elements (same in 3D)
% %\vspace*{0.2cm}
% \item Motions applied as displacements at the bottom
%
%
% \end{itemize}
%
% %\begin{figure}[H]
% \vspace*{-4.0cm}
% \begin{flushright}
% \includegraphics[width=0.7cm]{/home/jeremic/tex/works/Conferences/2011/NRC_Staff_Capacity_Building_21Nov2011/model01.pdf}
% \end{flushright}
% %\end{figure}
%
% \vspace*{-0.4cm}
% \begin{small}
% \begin{table}[!htbp]
% \centering
% % \begin{tabular}{|c|c|c|c|c|}
% \begin{tabular}{|r|m{2.6cm}|m{1.5cm}|m{1.8cm}|m{2.3cm}|}
% \hline
% case & model height [m] & $V_s$ [m/s] & El.size [m] & $f_{max}$ (10el) [Hz]\\
% \hline
% %\hline
% 3 & 1000 & 1000 & 10 & 10\\
% %\hline
% 4 & 1000 & 1000 & 20 & 5\\
% %\hline
% 6 & 1000 & 1000 & 50 & 2\\
% \hline
% % \begin{tabular}{|m{1.5cm}c|m{2.8cm}c|m{2.8cm}c|m{3.0cm}c|m{4.0cm}c|}
% % \begin{tabularx}{\linewidth}{|c|c|c|c|c|}
% % \begin{tabular*}{0.75\textwidth}{@{\extracolsep{\fill}}|c|c|c|c|c|}
% \end{tabular}
% % \end{tabularx}
% \end{table}
% \end{small}
%
%
%
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Cases 3, 4, and 6, Ormsby Wavelet Input Motions}
%
%
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=9cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/MeshSize/figs/3_4_6/Input_Displacement.pdf}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Cases 3, 4, and 6, Input and Surface Motions, FFT}
%
%
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=9cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/MeshSize/figs/3_4_6/FFT.pdf}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Cases 3, 4, and 6, Surface Motions}
%
%
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=9cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/MeshSize/figs/3_4_6/displacement.pdf}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Nonlinear Material Behavior}
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Soil Volume Response}
%
% \begin{itemize}
%
%
% \item 3D elastic-plastic material modeling with (only) $G/G_{max}$ and
% damping curves known: Pisan{\`o} model
%
% \item Soil behavior is very much a function of volumetric response
%
% \item Dilative soils: increase volume due to shearing
%
% \item Compressive soils: decrease volume due to shearing
%
% \item Modulus reduction and damping curves do not provide volumetric data
%
% \item Soil volume change will affect response due to volume constraints
%
% \end{itemize}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{No Volume Change, Compressive and Dilative Soil}
% %\frametitle{No Volume Change and Dilative Soil}
%
% \begin{figure}[!h]
% \begin{center}
% \hspace*{-1cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz-4.pdf}
% \hspace*{-0.3cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz_comp-4.pdf}
% \hspace*{-0.3cm}
% \includegraphics[width=4.3cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/sine1Hz_dil-4.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change Soil}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-2.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, Dilatant Soil}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-3.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change and Dilative Soils}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-4.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Northridge, No Volume Change and Dilative Soils}
%
% \vspace*{-0.6cm}
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=10cm]{/home/jeremic/tex/works/Thesis/FedericoPisano/Pisano_model/Issue_of_dilatancy/Northridge1-5.pdf}
% \end{center}
% \end{figure}
%
% \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Foundation Slip/Gap and Liquefiable Soils}
%
% \begin{itemize}
% \item Slip between foundation slab and the soil/rock
% underneath
%
% \vspace*{0.2cm}
% \item Passive seismic isolation by liquefaction
%
% \vspace*{0.2cm}
% \item Structural response in liquefied soil
%
%
% \end{itemize}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Nuclear Power Plant with Base Slip}
%
% \begin{itemize}
%
% \item Low friction zone between \\
% concrete foundation and soil/rock
%
% \item Inclined, 3D, body and surface, \\
% seismic wave field (wavelets: \\
% Ricker, Ormsby; real seismic, etc.)
%
%
% \end{itemize}
%
%
%
% \vspace*{-4.0cm}
% \begin{figure}[!h]
% \begin{flushright}
% \includegraphics[width=2.50cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
% %{\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
% \end{flushright}
% \end{figure}
%
% \vspace*{-0.9cm}
% \begin{figure}[!h]
% \begin{flushright}
% {\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
% \end{flushright}
% \end{figure}
%
%
%
%
% \vspace*{-3.6cm}
% \begin{figure}[H]
% \begin{center}
% %\vspace*{-0.5cm}
% %\includegraphics[width=2.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
% %\hspace*{0.5cm}
% %\vspace*{0.2cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
% %
% \vspace*{-0.5cm}
% \hspace*{0.8cm}
% \mbox{horizontal}
% \hspace*{4cm}
% \mbox{vertical}
% \hspace*{3cm}
% \end{center}
% \end{figure}
% \vspace*{-1.0cm}
% %
% % %\vspace*{-3.5cm}
% % \begin{figure}[H]
% % \begin{center}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
% % \hspace*{-0.5cm}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
% % \end{center}
% % \end{figure}
% %
% % %\vspace*{-3.5cm}
% % \begin{figure}[H]
% % \begin{center}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_x_acceleration.pdf}
% % \hspace*{-0.5cm}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_z_acceleration.pdf}
% % \end{center}
% % \end{figure}
% %
% % \vspace*{-0.90cm}
% % {horizontal accelerations \hfill vertical accelerations}
% %
% %
% %
%
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Acc. Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
%
% \begin{figure}[H]
% \begin{center}
% \begin{tabular}{rr}
% %\hline
% \mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration.pdf}
% &
% \mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration.pdf}
% \\
% \mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration.pdf}
% &
% \mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration.pdf}
% \end{tabular}
% %\caption{Comparison of acceleration time histories of the structure between
% %slipping and no-slipping models for Ricker wave}
% \label{fig:3d_ricker_acc_1000}
% \end{center}
% \end{figure}
%
%
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{FFT Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
%
% \begin{figure}[H]
% \begin{center}
% \begin{tabular}{rr}
% \mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration_FFT.pdf}
% &
% \mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration_FFT.pdf}
% \\
% \mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration_FFT.pdf}
% &
% \mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration_FFT.pdf}
% \end{tabular}
% %\caption{Comparison of FFT of the acceleration of the structure between
% %slipping and no-slipping models for Ricker wave}
% \label{fig:3d_ricker_fft_1000}
% \end{center}
% \end{figure}
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Gaping Response ($45^\circ$ Ricker Wavelet)}
%
% \vspace*{-0.1cm}
% \begin{tiny}
% \begin{figure}[H]
% \begin{center}
% \begin{tabular}{ccc}
% %\hline
% $4.5s$
% &
% $4.6s$
% &
% $4.7s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap450.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap460.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap470.pdf}
% \\
% $4.8s$
% &
% $4.9s$
% &
% $5.0s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap480.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap490.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap500.pdf}
% \\
% $5.1s$
% &
% $5.2s$
% &
% $5.3s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap510.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap520.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap530.pdf}
% %\\
% %
% %\hline
% \end{tabular}
% %\caption{Distribution of gap openings along the contact interface for Ricker wave
% %(gray scale given in meters)}
% \label{fig:3d_ricker1000_gap_9}
% \end{center}
% \end{figure}
% \end{tiny}
%
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Slipping Response and Energy Dissipated ($45^\circ$ Ricker)}
%
%
%
%
%
% \vspace*{-0.1cm}
% \begin{tiny}
% \begin{figure}[H]
% \begin{flushleft}
% \hspace*{-1cm}
% \begin{tabular}{ccc}
% %\hline
% $4.5s$
% &
% $4.6s$
% &
% $4.7s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide450.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide460.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide470.pdf}
% \\
% $4.8s$
% &
% $4.9s$
% &
% $5.0s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide480.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide490.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide500.pdf}
% \\
% $5.1s$
% &
% $5.2s$
% &
% $5.3s$
% \\
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide510.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide520.pdf}
% &
% \includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide530.pdf}
% %\\
% %
% %\hline
% \end{tabular}
% %\caption{Distribution of sliding along the contact interface for Ricker wave
% %(gray scale given in meters)}
% \label{fig:3d_ricker1000_slide_9}
% \end{flushleft}
% \end{figure}
% \end{tiny}
%
% \vspace*{-5cm}
% \begin{figure}[!H]
% \begin{flushright}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/energy_sliding_92/energy_time.pdf}
% \hspace*{-1cm}
% \end{flushright}
% \end{figure}
%
%
%
% \end{frame}
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Passive Base Isolation in Uniform and Layered Soils}
%
%
%
%
% \vspace*{-0.5cm}
% \begin{figure}[!htbp]
% \begin{flushleft}
% \includegraphics[width=5cm,angle=90]{/home/jeremic/tex/works/Papers/2009/SeismicIsolationLiquefaction/Mesh-Isolation.pdf}
% \\
% \includegraphics[width=4cm]{/home/jeremic/tex/works/Conferences/2009/CompDyn/Present/StackElements-Compare.pdf}
% \end{flushleft}
% \end{figure}
% \vspace*{-1cm}
%
%
% \vspace*{-8cm}
% %\hspace*{-0.5cm}
% \begin{figure}[!htbp]
% \begin{flushright}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Papers/2009/SeismicIsolationLiquefaction/time-history-acc.jpg} \\
% %\\
% %\includegraphics[width=8cm]{/home/jeremic/tex/works/Thesis/GuanzhouJie/thesis/Verzija_Februar/Images/LongMotion/MomentBent1Pile2.pdf}
% %\caption{\label{BridgeSFSI01} FEM model for seismic response of a three bend
% %bridge.}
% \end{flushright}
% \end{figure}
% \vspace*{-1cm}
%
%
%
% \end{frame}
% %
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Pile in Liquefiable Sloping Ground}
%
%
%
%
%
%
%
%
% \vspace*{-0.8cm}
% \begin{figure}[!htbp]
% \begin{flushright}
% % \includegraphics[width=6cm]{/home/jeremic/tex/works/Conferences/2007/PEERAnnualMeeting/Liquefaction/PileBridgeModel01.jpg} \\
% \includegraphics[width=3.3cm]{/home/jeremic/tex/works/Conferences/2007/PEERAnnualMeeting/Liquefaction/PileBridgeModel02.jpg}
% % \includegraphics[width=4cm]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/GMklot02.pdf}
% \end{flushright}
% \end{figure}
%
%
%
%
%
% %
% \vspace*{-0.4cm}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{figure}[!htbp]
% \begin{center}
% \hspace*{-0.5cm}
% \begin{tabular}{lllllll}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.03\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_IV.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_4_T080.jpg}
% \\
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.03\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_V.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_5_T080.jpg}
% \\
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \includegraphics[width=0.035\textwidth,angle=0]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/Model_VI.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T002.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T005.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T010.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T015.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T020.jpg}
% &
% \includegraphics[height=0.09\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_6_T080.jpg}
% \\
% t=
% &
% 2~sec
% &
% 5~sec
% &
% 10~sec
% &
% 15~sec
% &
% 20~sec
% &
% 80~sec
% \end{tabular}
% \includegraphics[width=7cm,height=0.45cm]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/GMklot02.pdf}\hspace*{1cm}
% \\
% \vspace*{-0.5cm}
% \includegraphics[angle=-90,width=0.4\textwidth]{/home/jeremic/tex/works/Papers/2008/Pile_in_liquefied_soil_upU/NewFiga/Snap_scale.pdf}
% \end{center}
% \end{figure}
% %
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Real ESSI Simulator System}
%
\subsection{Real ESSI Simulator Components}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator System}
\begin{itemize}
\item {\bf The Real ESSI-Program} is a 3D, nonlinear, time domain, parallel
finite element program specifically developed for Hi-Fi modeling and simulation
of Earthquake Soil/Rock Structure Interaction problems for Nuclear Facilities
(NPPs and other infrastructure objects) on ESSI-Computers.
%The NRC ESSI Program is based on
%a number of public domain numerical libraries developed at UCD as well as those
%available on the web, that are compiled and linked together to form the
%executable program (NRC-ESSI-Program). Significant effort is devoted to development
%of verification and validation procedures, as well as on development of
%extensive documentation. NRC-ESSI-Program is in public domain and is licensed
%through the Lesser GPL.
%\vspace*{0.3cm}
%\vspace*{0.1cm}
\item {\bf The Real ESSI-Computer} is a distributed memory
parallel computer.
%a cluster of clusters with multiple performance
%processors and multiple performance networks.
%Compute nodes are Shared Memory Parallel
%(SMP) computers, that are connected, using high speed network(s), into a
%Distributed Memory Parallel (DMP) computer.
%\vspace*{0.3cm}
%\vspace*{0.1cm}
\item {\bf The Real ESSI-Notes} are a hypertext documentation system.
%
%(Theory and Formulation, Software and Hardware, Verification and Validation, and
%Case Studies and Practical Examples)
%detailing modeling and simulation of ESSI
%problems.
%
%the
%NRC-ESSI-Program code API (application Programming Interface) and DSLs (Domain
%Specific Language).
%%NRC-ESSI-Notes, developed by Boris Jeremic and collaborators, are in public
%domain
%%and are licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
%%License.
%
%\vspace*{0.3cm}
%\vspace*{0.3cm}
\vspace*{0.1cm}
\item Real ESSI aka, Tr{\`e}s Facile, Muy
F{\'a}cil, {\cyss Vrlo Prosto}, Molto Facile, {\large \greektext{Pragmatik'a
E'ukolo}}, \raisebox{-1mm}{\includegraphics[height=5mm]{/home/jeremic/tex/works/Conferences/2014/PRENOLIN/Nov2014_meeting/Present/Real_ESSI_in_Japanese/sc20141217105418/Hontoni_Kantan.jpg}}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator Program: Finite Elements}
\begin{itemize}
\item Dry/single phase solids (8, 20, 27, 8-27 node bricks),
\item Saturated/two phase solids (8 and 27 node bricks, $u-p-U$ and $u-p$, liquefaction modeling),
\item Truss,
\item Beams (\underline{six} and \underline{variable} DOFs per node),
\item Shell (ANDES) with 6DOF per node,
\item Contacts (dry and/or saturated soil/rock - concrete, gap
opening-closing, frictional slip),
\item Base isolators and dissipators (elastomeric, natural rubber, frictional pendulum)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator Program: Material Models and Seismic Input}
\begin{itemize}
\item Material Models
%\vspace*{-2mm}
\begin{itemize}
%\vspace*{-1.5mm}
\item Linear and nonlinear, isotropic and anisotropic elastic
%\vspace*{-1.5mm}
\item Elastic-Plastic (von Mises, Drucker Prager, Rounded Mohr-Coulomb,
Leon Parabolic, Cam-Clay, SaniSand, SaniClay,
Pisan{\` o}...). All elastic-plastic models can be used as perfectly
plastic, isotropic hardening/softening and kinematic hardening
models.
\end{itemize}
\vspace*{2mm}
\item Analytic input of seismic motions (both body (P, S) and surface
(Rayleigh, Love, etc., waves), including analytic radiation damping.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator Program: V\&V, Parallel}
\begin{itemize}
%\vspace*{-2mm}
\item Verification and Validation:
each element, model, algorithm and procedure has been extensively verified
(math issue) and (not so extensively) validated (physics issue). Verification and Validation is
documented in detail in Real ESSI Notes.
%%\vspace*{-2mm}
%\item Documentation: available in great detail through ESSI Notes, consisting
%of four parts: Theory/Formulation Background, Software and Hardware description,
%Verification and Validation, Examples and Case Studies.
%\vspace*{-2mm}
\vspace*{2mm}
\item High Performance Parallel Computing:
both parallel and sequential version available. Parallel Real ESSI
Simulator (based on the Plastic Domain Decomposition Method, designed for
efficient elastic-plastic parallel simulations) runs on clusters of PCs
and on large supercomputers (Distributed Memory Parallel machines, all top
national supercomputers).
% Parallel algorithm uses our
% original Plastic Domain Decomposition method (featuring dynamic computational
% load balancing) that is efficient for elastic-plastic finite element problems
% where elastic-plastic (slow) and elastic (fast) domains change dynamically
% during run time.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator Program: Probabilistic/Stochastic}
%\vspace*{-2mm}
\begin{itemize}
%\vspace*{-2.5mm}
\item Constitutive: Euler-Lagrange form of Fokker-Planck (forward
Kolmogorov) equation for probabilistic elasto-plasticity (PEP)
%\vspace*{-1.5mm}
\item Spatial: stochastic elastic plastic finite element method (SEPFEM)
\end{itemize}
Uncertainties in material and load are \underline{analytically} taken into account.
Resulting displacements, stress and strain are obtained as very accurate
(second order accurate for stress) Probability Density Functions.
PEP and SEPFEM are not based on a Monte Carlo method, rather they expand
uncertain input variables and uncertain degrees of freedom (unknowns) into
spectral probabilistic spaces and solve for PDFs of
resulting displacement, stress and strain in a single run.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Real ESSI Simulator Program: Design and Users}
\begin{itemize}
\item Library centric software design (portable, modular)
\item Sequential (initial use, learning) and Parallel (production modeling and simulation)
\item Distributed Memory Parallel (DMP) paradigm, scales well to large supercomputers
\item Public domain licenses (CC, GPL, LGPL, BSD, \&c.)
\item Verification (extensive) and Validation (not much)
\item Target users: US-DOE, US-NRC, CNSC, IAEA, AREVA NP GmbH, Shimizu Corp,
Rizzo and Assoc., Academic Collaborators, \&c.
\item Real ESSI is a limited distribution expert modeling and simulation system
\end{itemize}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}[fragile]
% \frametitle{ESSI Simulator Computer(s)}
%
% A distributed memory parallel (DMP) computer
% designed for high performance,
% parallel finite element simulations
%
% \begin{itemize}
% %\vspace*{0.1cm}
% \item Multiple performance CPUs \\
% and Networks
% %\vspace*{0.1cm}
% \item Most cost-performance \\
% effective
% %\vspace*{0.1cm}
% \item Source compatibility with \\
% any DMP supercomputer
% %\vspace*{0.1cm}
% \item Current systems: 208CPUs, \\
% and 40CPUs (8+32) and \\
% 160CPUs (8x5+2x16+24+64)...
%
% %%\vspace*{0.1cm}
% % \item Near future: 784 CPUs
%
% \end{itemize}
%
%
% \vspace*{-4.5cm}
% \begin{flushright}
% %\hspace*{-0.5cm}
% \includegraphics[width=5.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2607.JPG}
% %\includegraphics[width=6.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2609.JPG}
% %\includegraphics[width=8.0cm]{/home/jeremic/public_html/NRC_ESSI_Simulator/NRC_ESSI_Computer/photos/IMG_2611.JPG}
% \end{flushright}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Current NPP Modeling Issues}
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Earthquake Soil Structure Interaction (ESSI)}
%
%
% \begin{figure}[!hbpt]
% \begin{flushleft}
% %\hspace*{-0.5cm}
% %\includegraphics[width=2.0cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR01_a.jpg}
% %\hfill
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a.jpg}
% \hfill
% \includegraphics[width=3.5cm]{/home/jeremic/tex/works/consulting/2013/CNSC/ProgressReports/Progress_report_02_figs/single-NPP-FEM-model.jpg}
% \hfill
% \includegraphics[width=4.8cm]{/home/jeremic/tex/works/consulting/2013/CNSC/ProgressReports/Progress_report_02_figs/double-NPP-FEM-model.jpg}
% \end{flushleft}
% \end{figure}
%
%
% \begin{itemize}
% \item Seismic response modeling controlled by a number of ESSI modeling
% and simulation issues
% \item Detrimental and Beneficial ESSI effects
% % \item Seismic energy propagation and dissipation
% \end{itemize}
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{ESSI Issues}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \vspace*{-0.2cm}
% \includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_01-GRAY_pdf.pdf}
% \includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_02-GRAY_pdf.pdf}
% \\
% \includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_03-GRAY_pdf.pdf}
% \includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_04-GRAY_pdf.pdf}
% \vspace*{-0.6cm}
% \end{center}
% \end{figure}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Important Issues for ESSI Modeling and Simulation}
\begin{itemize}
\item Verification and Validation
\vspace*{1mm}
\item 6D, inclined, body and surface seismic waves
\vspace*{1mm}
\item Uncorrelated (incoherent) motions
\vspace*{1mm}
\item Nonlinear material (soil, rock, concrete, steel, \&c.)
\vspace*{1mm}
\item Nonlinear foundation-soil/rock contact (dry and saturated), slip -- gap
\vspace*{1mm}
\item Seismic Isolators and Dissipators
\vspace*{1mm}
\item Saturated dense vs loose soil with buoyant forces
\vspace*{1mm}
\item Piles and pile groups
\end{itemize}
\end{frame}
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{ESSI Models}
\vspace*{+10mm}
Detailed \\
high\\
fidelity\\
models\\
taking\\
into\\
account\\
all of the\\
issues
\vspace*{-60mm}
\begin{figure}[!hbpt]
\begin{flushright}
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model01.jpeg}
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model02.jpeg}
\\
\includegraphics[width=4.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model03.jpeg}
\includegraphics[width=3.30cm]{/home/jeremic/tex/works/Conferences/2014/DOE_Natural_Phenomena_Hazards_Germantown_MD-21-22Oct/present/Model04.jpeg}
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model01_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model02_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/Model03_full_view.jpg &
%gthumb /home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_ESSI_for_NPPs/SMR02_a.jpg &
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{In Detail: Main ESSI Issues for SMRs}
\begin{figure}[!hbpt]
\begin{center}
\vspace*{-0.2cm}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_01-GRAY_pdf.pdf}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_02-GRAY_pdf.pdf}
\\
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_03-GRAY_pdf.pdf}
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Conferences/2014/ASME_SMR_Symposium/present/SMR02_a_04-GRAY_pdf.pdf}
\vspace*{-0.6cm}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{NPP with Base Slip and Gap}
\begin{itemize}
\item Low friction zone between \\
concrete foundation and soil/rock
\item Inclined, 3D, body and surface, \\
seismic wave field (wavelets: \\
Ricker, Ormsby; real seismic, \&c.)
\end{itemize}
\vspace*{-4.0cm}
\begin{figure}[!h]
\begin{flushright}
\includegraphics[width=2.50cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
%{\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
\end{flushright}
\end{figure}
\vspace*{-0.9cm}
\begin{figure}[!h]
\begin{flushright}
{\includegraphics[width=4.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Feb2011/Case_study_model/visit0002.jpeg}}
\end{flushright}
\end{figure}
\vspace*{-3.6cm}
\begin{figure}[H]
\begin{center}
%\vspace*{-0.5cm}
%\includegraphics[width=2.0cm]{/home/jeremic/tex/works/Conferences/2011/NRC_LBNL_Review_Panel_Sept2011/2D_faul_slip_model_top_200m.pdf}
%\hspace*{0.5cm}
%\vspace*{0.2cm}
\includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
\hspace*{-0.5cm}
\includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
%
\vspace*{-0.5cm}
\hspace*{0.8cm}
\mbox{horizontal}
\hspace*{4cm}
\mbox{vertical}
\hspace*{3cm}
\end{center}
\end{figure}
\vspace*{-1.0cm}
%
% %\vspace*{-3.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_x.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FreeFieldInclinedMotionModels/FaultSlip_Ormsby/figs/surface_200m/middle_acceleration_z.pdf}
% \end{center}
% \end{figure}
%
% %\vspace*{-3.5cm}
% \begin{figure}[H]
% \begin{center}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_x_acceleration.pdf}
% \hspace*{-0.5cm}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/FaultModel_7seconds/xz_TimeHistory/5000_5000_z_acceleration.pdf}
% \end{center}
% \end{figure}
%
% \vspace*{-0.90cm}
% {horizontal accelerations \hfill vertical accelerations}
%
%
%
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Acc. Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
\begin{figure}[H]
\begin{center}
\begin{tabular}{rr}
%\hline
\mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration.pdf}
&
\mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration.pdf}
\\
\mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration.pdf}
&
\mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration.pdf}
\end{tabular}
%\caption{Comparison of acceleration time histories of the structure between
%slipping and no-slipping models for Ricker wave}
\label{fig:3d_ricker_acc_1000}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{FFT Response for a Full 3D (at $45^\circ$) Ricker Wavelet}
\begin{figure}[H]
\begin{center}
\begin{tabular}{rr}
\mbox{\tiny top X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_x_acceleration_FFT.pdf}
&
\mbox{\tiny top Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/top_structure_z_acceleration_FFT.pdf}
\\
\mbox{\tiny bottom X}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_x_acceleration_FFT.pdf}
&
\mbox{\tiny bottom Z}\includegraphics[width=4.0truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/91_97/bottom_structure_z_acceleration_FFT.pdf}
\end{tabular}
%\caption{Comparison of FFT of the acceleration of the structure between
%slipping and no-slipping models for Ricker wave}
\label{fig:3d_ricker_fft_1000}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Slipping Response and Energy Dissipated ($45^\circ$ Ricker)}
\vspace*{-0.1cm}
\begin{tiny}
\begin{figure}[H]
\begin{flushleft}
\hspace*{-1cm}
\begin{tabular}{ccc}
%\hline
$4.5s$
&
$4.6s$
&
$4.7s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide450.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide460.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide470.pdf}
\\
$4.8s$
&
$4.9s$
&
$5.0s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide480.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide490.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide500.pdf}
\\
$5.1s$
&
$5.2s$
&
$5.3s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide510.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide520.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/slide530.pdf}
%\\
%
%\hline
\end{tabular}
%\caption{Distribution of sliding along the contact interface for Ricker wave
%(gray scale given in meters)}
\label{fig:3d_ricker1000_slide_9}
\end{flushleft}
\end{figure}
\end{tiny}
\vspace*{-5cm}
\begin{figure}[!H]
\begin{flushright}
\includegraphics[width=5cm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/energy_sliding_92/energy_time.pdf}
\hspace*{-1cm}
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Gaping Response ($45^\circ$ Ricker Wavelet)}
\vspace*{-0.1cm}
\begin{tiny}
\begin{figure}[H]
\begin{center}
\begin{tabular}{ccc}
%\hline
$4.5s$
&
$4.6s$
&
$4.7s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap450.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap460.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap470.pdf}
\\
$4.8s$
&
$4.9s$
&
$5.0s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap480.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap490.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap500.pdf}
\\
$5.1s$
&
$5.2s$
&
$5.3s$
\\
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap510.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap520.pdf}
&
\includegraphics[width=2.3truecm]{/home/jeremic/tex/works/Thesis/NimaTafazzoli/SSI_Contact_Element_01_13/figs/Gap_Slide_Magnitude_91_9pieces/gap530.pdf}
%\\
%
%\hline
\end{tabular}
%\caption{Distribution of gap openings along the contact interface for Ricker wave
%(gray scale given in meters)}
\label{fig:3d_ricker1000_gap_9}
\end{center}
\end{figure}
\end{tiny}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Summary}
\subsection{Summary}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary}
\begin{itemize}
\item {\bf Interplay} of
% {\bf Uncertain}
{\bf Earthquake},
% {\bf Uncertain}
{\bf Soil},
and
% {\bf Uncertain}
{\bf Structure}, in time domain,
%{\bf probably}
plays a
decisive role in seismic performance of NPPs and other infrastructure objects
\vspace*{0.1cm}
\item Improve {\bf
% risk informed
% decision making}
design} ({\bf safety} and {\bf economy})
through
{\bf high fidelity},
% {\bf Deterministic} and
% {\bf Stochastic Elastic-Plastic Finite Element}
modeling and simulation
\vspace*{0.1cm}
\item {\bf Real ESSI Simulator}, developed with this in mind, is used for
modeling, simulations, design and regulatory decision making
\vspace*{0.1cm}
\item {\bf Education} and {\bf training} of users (designers, regulators,
owners) will prove essential
\end{itemize}
\end{frame}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Acknowledgement}
\begin{itemize}
% \item High fidelity
% modeling and simulations for performance assessment of infrastructure systems
\vspace*{0.1cm}
\item Funding from and collaboration with the US-NRC, US-DOE, CNSC, US-NSF,
AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,
\vspace*{0.5cm}
\item Collaborators, students:
Messrs. Abell, Jeong, Aldridge. Kamranimoghadam, Karapiperis, Watanabe, Chao,
Drs. Tafazzoli, Cheng, Profs. Pisan{\`o}, Sett, Taiebat, Yang
\end{itemize}
\end{frame}
%
\end{document}
%
%