Real ESSI Modeling and Simulation: Reduction of Modeling Uncertainty

Boris Jeremić

University of California, Davis
Lawrence Berkeley National Laboratory, Berkeley

Civil Nuclear Energy Research and Development Working Group (CNERdWG)
Argonne National Laboratory
January 2015
Motivation

- Improving seismic design (safety and economy) for Nuclear Facilities
- Earthquake Soil Structure Interaction (ESSI) in time and space, plays a major role in successes and failures
- Accurately follow and direct the flow of seismic energy in ESSI system to optimize for
 - Safety and
 - Economy
Introduction

Motivation: Modeling Uncertainty

Real ESSI Modeling

Seismic Energy Input and Dissipation

- Energy input: seismic waves input (flux) into SSI system
- Energy dissipation:
 - Mechanical dissipation outside of SSI domain:
 - Wave reflections
 - SSI system oscillation radiation
 - Mechanical dissipation/conversion inside SSI domain:
 - Inelasticity (plasticity, damage) of soil and rock
 - Inelasticity (plasticity, gaping) of contact zone
 - Inelasticity (plasticity, damage) of structure, foundation
 - Viscous coupling of solids and fluids (pores, soil)
 - Numerical energy dissipation and production

Summary
Predictive Capabilities

- Verification provides evidence that the model is solved correctly. Mathematics issue.

- Validation provides evidence that the correct model is solved. Physics issue.

- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.

- Predictive capabilities with low Kolmogorov Complexity
Reduction of Modeling Uncertainty

- Simplified modeling: Features (important ?) are neglected (soil and structure complexity, 6D ground motions, non-linearities)

- Modeling Uncertainty: unrealistic and unnecessary modeling simplifications

- Modeling simplifications are justifiable if one or two level higher sophistication model shows that features being simplified out are not important
Uncertain Material and Loads

Transformation of SPT N-value \rightarrow 1-D Young’s modulus, E (cf. Phoon and Kulhawy (1999B))
Real ESSI Simulator

- A System for high fidelity, high performance/parallel, time domain, deterministic and probabilistic, nonlinear, 3D, finite element modeling and simulation of earthquake soil/rock structure interaction of Nuclear Facilities

- Real ESSI Simulator, also known as: Стварно Лако, Muy Fácil, Molto Facile, 本当に簡単, Πραγματικά Εύχολο, آسان واقعی, Très Facile, Вистински Лесно, Wirklich Einfach
Important Issues for ESSI Modeling and Simulation

- 6D, inclined, body and surface seismic waves
- Incoherent seismic motions
- Inelastic/Nonlinear material (soil, rock, concrete, steel, &c.)
- Inelastic/Nonlinear, foundation–soil, dry, saturated slip–gap
- Saturated dense and loose soil
- Buoyant forces
- Piles and pile groups
- Isolators, dissipators
- Uncertain material and loading
- Verification and Validation
Inform Designers and Regulators
Summary

- Earthquake Soil Structure Interaction, nonlinear, uncertain, in time domain, plays a decisive role in seismic performance of Nuclear Facilities
- Improve assessment of seismic performance (safety and economy) of nuclear facilities, through high fidelity, high performance, physics based modeling and simulation
- One available tool for modeling and simulation: Real ESSI Simulator, used for deterministic and probabilistic assessment of safety and economy (design, regulatory decision making, &c.)
- Education and training of users (designers, regulators, owners) proves essential
Acknowledgement

- Funding from and collaboration with the US-NRC, US-DOE, US-NSF, CNSC, AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,

- Collaborators: Dr. Budnitz (LBNL), Dr. Kammerer (NRC, Private Consultant), Mr. Orbović (CNSC), Prof. Pisanò (TU Delft), Prof. Sett (UB), Mr. Watanabe (Shimizu), Mr. Vlaski (AREVA) and UCD students: Mr. Abell, Mr. Karapiperis, Mr. Luo, Mr. Kamranimoghadam, Mr. Feng