Real ESSI Modeling and Simulation: Reduction of Modeling Uncertainty

Boris Jeremić

University of California, Davis Lawrence Berkeley National Laboratory, Berkeley

Civil Nuclear Energy Research and Development Working Group (CNerdWG) Argonne National Laboratory January 2015

Motivation

- Improving seismic design (safety and economy) for Nuclear Facilities
- Earthquake Soil Structure Interaction (ESSI) in time and space, plays a major role in successes and failures
- Accurately follow and direct the flow of seismic energy in ESSI system to optimize for
 - Safety and
 - Economy

Seismic Energy Input and Dissipation

- Energy input: seismic waves input (flux) into SSI system
- Energy dissipation:
 - Mechanical dissipation outside of SSI domain:
 - Wave reflections
 - SSI system oscillation radiation
 - Mechanical dissipation/conversion inside SSI domain:
 - ► Inelasticity (plasticity, damage) of soil and rock
 - ► Inelasticity (plasticity, gaping) of contact zone
 - ► Inelasticity (plasticity, damage) of structure, foundation
 - Viscous coupling of solids and fluids (pores, soil)
 - Numerical energy dissipation and production

Motivation: Modeling Uncertainty

Predictive Capabilities

- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.
- Predictive capabilities with low Kolmogorov Complexity

Reduction of Modeling Uncertainty

- Simplified modeling: Features (important?) are neglected (soil and structure complexity, 6D ground motions, non-linearities)
- Modeling Uncertainty: unrealistic and unnecessary modeling simplifications
- Modeling simplifications are justifiable if one or two level higher sophistication model shows that features being simplified out are not important

Motivation: Modeling Uncertainty

Uncertain Material and Loads

Transformation of SPT *N*-value \rightarrow 1-D Young's modulus, *E* (cf. Phoon and Kulhawy (1999B))

- ► A System for high fidelity, high performance/parallel, time domain, deterministic and probabilistic, nonlinear, 3D, finite element modeling and simulation of earthquake soil/rock structure interaction of Nuclear Facilities
- ト Real ESSI Simulator, also known as: Стварно Лако, Muy Fácil, Molto Facile, 本当に簡単, Πραγματιχά Εύχολο, آسان واقعی, Très Facile, Вистински Лесно, Wirklich Einfach

Important Issues for ESSI Modeling and Simulation

- ▶ 6D, inclined, body and surface seismic waves
- Incoherent seismic motions
- ► Inelastic/Nonlinear material (soil, rock, concrete, steel, &c.)
- Inelastic/Nonlinear, foundation—soil, dry, saturated slip—gap
- Saturated dense and loose soil
- Buoyant forces
- Piles and pile groups
- Isolators, dissipators
- Uncertain material and loading
- Verification and Validation

Inform Designers and Regulators

Earthquake Soil Structure Interaction, nonlinear, uncertain, in time domain, plays a decisive role in seismic

performance of Nuclear Facilities

- ► Improve assessment of seismic performance (safety and economy) of nuclear facilities, through high fidelity, high performance, physics based modeling and simulation
- One available tool for modeling and simulation: Real ESSI Simulator, used for deterministic and probabilistic assessment of safety and economy (design, regulatory decision making, &c.)
- Education and training of users (designers, regulators, owners) proves essential

- Funding from and collaboration with the US-NRC, US-DOE, US-NSF, CNSC, AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,
- Collaborators: Dr. Budnitz (LBNL), Dr. Kammerer (NRC, Private Consultant), Mr. Orbović (CNSC), Prof. Pisanò (TU Delft), Prof. Sett (UB), Mr. Watanabe (Shimizu), Mr. Vlaski (AREVA) and UCD students: Mr. Abell, Mr. Karapiperis, Mr. Luo, Mr. Kamranimoghadam, Mr. Feng

