Use of Nonlinear, Time Domain Analysis for Design

Nebojša Orbović, **Boris Jeremić**, José Antonio Abell Mena, Chao Luo, Robert P. Kennedy and Andrei Blaihoanu,

SMiRT, Manchester, UK, August 2015

Jeremić et al.

Introduction

Nonlinear ESSI in Design

Summary

Jeremić et al.

Introduction

Nonlinear ESSI in Design

Summary

Jeremić et al.

Motivation

- Improve seismic design, safety and economy, of Nuclear Power Plants (NPPs)
- ► Follow seismic energy within NPP ESSI system
- Accurate, high fidelity numerical modeling and simulation of Nonlinear Earthquake Soil Structure Interaction (ESSI), in time and space, for realistic analysis of NPP response
- Use realistic nonlinear ESSI for design!

Jeremić et al.

Predictive Capabilities

- High fidelity, accurate modeling and simulation: Verification and Validation
- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Verification and validation (V&V) require huge effort!
- Verification procedures in development
- Validation almost non-existent (new U.S. DOE project will add significantly to ESSI validation data base)
- Modeling and Parametric Uncertainties (sensitivity studies are very important)

Jeremić et al.

Introduction	
00000	
Motivation	

Uncertainties

 Modeling Uncertainty: important features are neglected (6D ground motions, inelasticity), unrealistic and unnecessary modeling simplifications

 Parametric Uncertainty: spatial variability, measuring and transformation errors

Jeremić et al.

Realistic, Nonlinear ESSI Modeling

- Nonlinear behavior
 - ► Nonlinear, inelastic (saturated or dry) soil/rock
 - Nonlinear, inelastic (saturated or dry) contact
 - Nonlinear, inelastic structures, systems and components
 - Buoyant (nonlinear) forces
- ► Full 3D (6D) Earthquake motions
- Uncertain material and loads
- Verification and validation for accurate numerical simulations
- Real ESSI Simulator (developed in collaboration and with the support of NRC, CNSC, DOE)

Jeremić et al.

Realistic, nonlinear ESSI for Design

- ► Design standards require structure to be elastic
- Anything below foundation can be modeled as nonlinear
- Possible reduction of demand due to nonlinearities in soil/rock and contact zone
- Assessment of NPP designs using sweeps of earthquakes/motions and realistic nonlinear ESSI analysis

Jeremić et al.

Introduction

Nonlinear ESSI in Design

Summary

Jeremić et al.

Earthquake Motions

 Earthquake record: Taiwan SMART1(45), Time: 11/14/1986, Station:SMART1 E02.

- ► Horizontal #1: 100%, horizontal #2: 40%, vertical: 40%
- Full application of 3D motions, no superposition allowed (nonlinear analysis)

Jeremić et al.

Introduction	Nonlir	
00000	0000	
Results of Nonlinear Analysis		

Earthquake Motion Input into FEM Model

- Domain Reduction Method (Bielak et al.)
- Capable of accurately inputting all body (P, SV, SH) and surface (Rayleigh, Love, etc.) earthquake waves into a finite element model
- Free field motions needed for input effective forces
- Radiated waves from the structures leave the system
- Inside DRM finite element layer can be fully nonlinear (elastic-plastic)

Jeremić et al.

Introduction 00000

Results of Nonlinear Analysis

Finite Element Model

- ► Soil/Rock, solids, linear elastic (can be fully elastic-plastic)
- ► Contact (soil/rock foundation slab) fully nonlinear, Coulomb friction (friction coefficient µ = 0.5, taking into account plastic sheets beneath foundation) and gaping
- Structure (stick model) linear elastic (can use a far more sophisticated structural model, however this is a demonstration)
- Seismic input using DRM

Jeremić et al.

Foundation – Soil/Rock Slip

- Foundation slab slips significantly during an earthquake
- ► Base isolation (?!) and energy dissipation
- Soil on the side restricts movements
- Minimal gaping as contact sleeps before slab lifts-off

Jeremić et al.

Nonlinear vs Linear Response, Top of Soil

- Reduction in soil horizontal demand
- Amplification of vertical due to pounding upon contact
- Soil horizontal and vertical peaks at the same frequency, hence vertical motions are from a Rayleigh surface wave

Jeremić et al.

Nonlinear vs Linear Response, Foundation Slab

- Horizontal reduced at high frequency, due to slip,
- Horizontal slightly increased at low frequency, due to slip,
- Vertical reduced

Jeremić et al.

Nonlinear vs Linear Response, Top of Containment

- Significant reduction of horizontal motions
- Reduction of vertical motions

Jeremić et al.

Nonlinear vs Linear Response, Comments

- In general, significant reductions in motions for nonlinear response, both horizontally and vertically
- ► Larger horizontal slip, low frequency response
- Structure is still linear elastic (by modeling) and hence satisfies standard design

Jeremić et al.

Introduction

Nonlinear ESSI in Design

Summary

Jeremić et al.

Concluding Remarks

- ► Nonlinear analysis can be used for design
- Potential for reduction of demand with realistic nonlinear analysis
- Assessment of NPP SSI systems using fully nonlinear, realistic ESSI analysis

Jeremić et al.