ESSI Modeling and Simulations

Summary 00

Advancement in Earthquake Soil Structure Interaction (ESSI) Modeling and Simulation

Boris Jeremić

University of California, Davis Lawrence Berkeley National Laboratory, Berkeley

A University of California Pacific Rim Forum The Earthquake Resilience of Nuclear Facilities Berkeley, CA. January 2017

Jeremić et al.

Outline

Motivation

ESSI Modeling and Simulations Seismic Energy Flow Modeling Validation Test Box/Cylinder

Summary

Jeremić et al.

Motivation
0000

Introduction

Motivation

- Improve seismic design of soil structure systems
- Earthquake Soil Structure Interaction (ESSI) in time and space, plays a decisive role in successes and failures
- Accurate following and directing (!) the flow of seismic energy in ESSI system to optimize for Safety and Economy
- Verification and Validation for Numerical Predictions
- Modeling and Parametric Uncertainties
- High fidelity numerical modeling and simulation tool to analyze realistic ESSI behavior: The Real ESSI Simulator
- ► DOE Project with Dr. McCallen and Dr. Buckle

Jeremić et al.

ESSI Modeling and Simulations

Summary 00

Introduction

Modeling Uncertainty

Modeling simplifications (unrealistic?) for important features

- Inelastic material: soil, rock, concrete, steel; Contacts, dry, saturated slip–gap; Nonlinear buoyant forces; Isolators, Dissipators
- Seismic Motions: 6D, inclined, body and surface waves

Introduction

Parametric Uncertainty

Uncertain loads and material (shown uncertain elastic stiffness)

Jeremić et al.

Motivation
0000

Introduction

Predictive Capabilities

- Verification: provides evidence that the model is solved correctly. Mathematics issue. Well developed (for the Real ESSI Simulator).
- Validation: provides evidence that the correct model is solved. Physics issue. Work in progress, US-DOE project.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.
- ► Goal is to predict and inform, rather than fit!

Seismic Energy Flow Modeling

Outline

Motivation

ESSI Modeling and Simulations Seismic Energy Flow Modeling

Validation Test Box/Cylinder

Summary

Jeremić et al.

Seismic Energy Input and Dissipation

- Seismic energy input, through a closed boundary
- Mechanical dissipation outside of SSI domain:
 - reflected wave radiation
 - SSI system oscillation radiation
- Mechanical dissipation/conversion inside SSI domain:
 - plasticity of soil and rock
 - plasticity/damage of structure/foundation
 - plasticity of contact (foundation soil) zone
 - viscous coupling in soils and structure
- Numerical energy dissipation/production

Material Energy Dissipation

- ► Free Energy
 - Based on the second law of thermodynamics
 - Decomposed into elastic and plastic components
- Plastic Free Energy
 - Particle rearrangement of granular/molecular assembly
 - Related to material internal variables (back stress etc.)
- Energy Dissipation due to Plasticity
 - Incremental dissipation should be nonnegative

Jeremić et al.

Energy Dissipation on Material Level

Single elasto-plastic element under cyclic shear loading

- Significant difference between plastic work and dissipation
- Plastic work can decrease, however, dissipation always increases

Evolution of Energy Dissipation

Short cantilever under shear/bending loading

Jeremić et al.

Energy Dissipation in Contact Zone

Elasto-plastic brick elements coupled with contact elements.

ESSI Modeling and Simulations

Summary 00

Seismic Energy Flow Modeling

Seismic Energy Dissipation under an NPP

Advancement in ESSI Modeling and Simulation

Validation Test Box/Cylinder

Outline

Motivation

ESSI Modeling and Simulations Seismic Energy Flow Modeling Validation Test Box/Cylinder

Summary

Jeremić et al.

Summary 00

Validation Test Box/Cylinder

UNR Experimental Setup Modeling

- Detailed models of UNR test setup
- Different levels of modeling sophistication

Jeremić et al.

Validation Test Box/Cylinder

UNR Experimental Setup, Model

- Gain better understanding of behavior
- Guide design
- Validation experiments

Jeremić et al.

Summary

- Modeling and Parametric uncertainties
- Change state of practice (and research)
- ► 5 Year U.S. DOE Project
 - Development of advanced computational tools and validation test data for earthquake response of nuclear facilities
 - Enhance understanding of the expected levels of damage, and margins against failure, for critical facilities subjected to earthquake ground motions
- Education is the key to successful use of realistic nonlinear Earthquake Soil Structure Interaction modeling and simulation

Jeremić et al.

Acknowledgement

- Collaboration with and funding from the US-DOE (current), IAEA, US-NRC, US-NSF, CNSC, LLNL, INL, AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,
- Collaborators: Mr. Feng, Mr. Lacour, Ms. Behbehani, Mr. Han, Mr, Sinha, Mr. Wang, Dr. Abell, Mr. Watanabe, Mr. Chao, Dr. Tafazzoli, Dr. Sett, Dr. McCallen, Dr. Buckle, Dr. McKenna, Dr. Pisanò,

Jeremić et al.