Concluding Remarks

Realistic Modeling and Simulation of Earthquake Soil Structure Interaction

Feng, Yang, Sinha, Wang, Wong, Petrone, McKenna, McCallen, Boris Jeremić

University of California, Davis Lawrence Berkeley National Laboratory, Berkeley

> IAEA, Vienna, Austria 12 January 2018

Jeremić et al.

Concluding Remarks

Outline

Introduction Motivation Real ESSI Simulator System

Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation

Concluding Remarks

Jeremić et al.

Motivation

Outline

Introduction Motivation Real ESSI Simulator System

Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation

Concluding Remarks

Jeremić et al.

Real ESSI

Modeling and Simulations

Concluding Remarks

Introduction	
000000000000000000000000000000000000000	

Motivation

Modeling and Simulations

Motivation

- ► Improving seismic design for nuclear installations
- Development of an expert numerical modeling and simulation tool
- Realistic Earthquake Soil Structure Interaction (Real ESSI) Simulator
- Use of high fidelity numerical models in analyzing seismic behavior of soil structure systems
- Accurate following of the flow of seismic energy in the soil structure system
- Direct, in space and time, seismic energy flow in and out of the soil structure system

Jeremić et al.

Motivation

Modeling and Simulations

Hypothesis

- Interplay of the Earthquake, Soil/Rock and Structure in time domain, plays a major role in successes and failures
- Timing and spatial location of energy dissipation determines location and amount of damage
- If timing and spatial location of the energy dissipation can be controlled (directed), we could optimize soil structure system for
 - Safety and
 - Economy

Jeremić et al.

Introduction	
000000000000000000000000000000000000000	000

Motivation

Flow of Seismic Energy Dissipation in SSI System

- Mechanical dissipation outside of SSI domain:
 - reflected wave radiation
 - SSI system oscillation radiation
- ► Mechanical dissipation/conversion inside SSI domain:
 - plasticity of soil subdomain
 - plasticity/damage of the parts of structure/foundation
 - viscous coupling of porous solid with pore fluid (air, water)
 - viscous coupling of structure/foundation with fluids
- Numerical energy dissipation/production

Jeremić et al.

Introduction	
000000000000000000000000000000000000000	
00000	

Motivation

Predictive Capabilities

- Prediction under Uncertainty: use of computational model to predict the state of SSI system under conditions for which the computational model has not been validated.
- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Modeling and parametric uncertainties are always present, need to be addressed
- Predictive capabilities with low Kolmogorov Complexity
- ► Goal: Predict and Inform and not (force) Fit

Motivation

Modeling and Simulations

Concluding Remarks

US DOE Motivation

Jeremić et al.

Introduction	
000000000000000000000000000000000000000	

Motivation

Modeling and Simulations

Concluding Remarks

Regional Scale Hazard and Risk Simulations

EXASCALE COMPUTING PROJECT

Jeremić et al.

Motivation

Modeling and Simulations

Concluding Remarks

Regional Scale Scenario Earthquakes

Jeremić et al.

Motivation

Modeling and Simulations

Concluding Remarks

Coupling of Earthquake Hazard and Risk

SW4 – 4th order finite difference geophysics code for wave propagation

NEVADA & ESSI – finite deformation, inelastic Finite element codes for structures and soils

Jeremić et al.

Introduction	
000000000000000000000000000000000000000	000

Motivation

00000000

Modeling and Simulations

Regional Scale Model Coupled with ESSI

Jeremić et al.

1020 limit states

Introduction	
000000000000000000000000000000000000000	>

Motivation

Modeling and Simulations

Validation Testing: New Facility at UNR

Jeremić et al.

Motivation

Modeling and Simulations

Concluding Remarks

Unique Shear Box Design

Jeremić et al.

Motivation

Modeling and Simulations

Concluding Remarks

Components at UNR

Jeremić et al.

Introduction
000000000000000000000000000000000000000

Motivation

Modeling and Simulations

Concluding Remarks

Progress in Modeling and Simulation

Jeremić et al.

Introduction

Real ESSI Simulator System

Modeling and Simulations

Concluding Remarks

Outline

Introduction Motivation Real ESSI Simulator System

Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation

Concluding Remarks

Jeremić et al.

Introduction

Modeling and Simulations

Concluding Remarks

Real ESSI Simulator System

The Real ESSI, **<u>Real</u>**istic modeling and simulation of <u>Earthquakes</u>, <u>Soils</u>, <u>Structures and their</u> <u>Interaction</u>. Simulator is a software, hardware and documentation system for high fidelity, high performance, time domain, nonlinear/inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Jeremić et al.

Real ESSI Simulator System

- Real ESSI System Components
 - Pre-processor (gmsh/gmESSI, SASSI2ESSI)
 - Simulator (local, remote/cloud)
 - Post-Processor (Paraview, Python, Matlab)
- ► Real ESSI System availability:
 - Public: Amazon Web Services (AWS, economical!)
 - Government Agencies and National Labs: Local/Remote
- Real ESSI documentation at: http://real-essi.us/
- ► Real ESSI Education and Training

Jeremić et al.

Introduction

Real ESSI Simulator System

Modeling and Simulations

Concluding Remarks

Real ESSI Simulator System, Education and Training

- Special training and education for USA Government Agencies and National Labs
 - US-NRC
 - ► LBNL (all)
 - ► LANL
- International
 - UN-IAEA TECDOC
 - Short course at Tongji University in Shanghai, China
 - Visitors from Japan
- Professional practice: Real ESSI Short Course

Jeremić et al.

Concluding Remarks

Real ESSI Short Course, Professional Practice December 12-14, 2017, San Francisco

- ► Day 1: Intro, Setup (AWS), Phased Modeling, ESSI
- ► Day 2: Ground Motions, 1D, 3×1D, 3D, ESSI
- Day 3: Inelastic Modeling, Soil, Contact, Structures, ESSI

Jeremić et al.

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Outline

ntroduction Motivation Real ESSI Simulator System

Modeling and Simulations Nuclear Power Plant Modeling and Simulation

Small Modular Reactors Modeling and Simulation

Concluding Remarks

Jeremić et al.

Nuclear Power Plant Modeling and Simulation

Modeling Sophistication Levels, Phased Modeling

- Level of sophistication chosen to reduce modeling uncertainty
- ► Verify code, solutions, methods, elements, material models
- Verify model components
- Model developed in phases (components) and verified
- Gradually building confidence in inelastic modeling
- Use such developed models to predict and inform, rather than force fit

Jeremić et al.

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Model Verification and Modeling Phases

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Inelastic Modeling for NPP and Components

- ► Soil elastic-plastic
 - Dry, single phase
 - Unsaturated (partially saturated)
 - Fully saturated
- Contact, inelastic, soil/rock foundation
 - Dry, single phase, Normal (hard and soft, gap open/close), Friction (nonlinear)
 - Fully saturated, suction and excess pressure (buoyant force)
- Structural inelasticity/damage
 - Nonlinear/inelastic 1D fiber beam
 - Nonlinear/inelastic 2D wall element

Jeremić et al.

L-B-N

Nuclear Power Plant Modeling and Simulation

NPP Model

Jeremić et al.

Introduction

Modeling and Simulations

Nuclear Power Plant Modeling and Simulation

Structure Model

The nuclear power plant structure comprise of

- Auxiliary building, $f_1^{aux} = 8Hz$
- Containment/Shield building, $f_1^{cont} = 4Hz$
- ► Concrete raft foundation: 3.5*m* thick

Jeremić et al.

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Inelastic Soil and Inelastic Contact

- Shear velocity of soil $V_s = 500 m/s$
- ► Undrained shear strength (Dickenson 1994) $V_s[m/s] = 23(S_u[kPa])^{0.475}$
- ► For $V_s = 500 m/s$ Undrained Strength $S_u = 650 kPa$ and Young's Modulus of E = 1.3 GPa
- ► von Mises, Armstrong Frederick kinematic hardening $(S_u = 650 kPa \text{ at } \gamma = 0.01\%; h_a = 30 MPa, c_r = 25)$
- Soft contact (concrete-soil), gaping and nonlinear shear

Jeremić et al.

Nuclear Power Plant Modeling and Simulation

Acc. Response, Top of Containment Building

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Acceleration Traces, Free Field

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Acceleration Traces, Elastic vs Inelastic

Jeremić et al.

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Elastic and Inelastic Response: Differences

Jeremić et al.

Concluding Remarks

Nuclear Power Plant Modeling and Simulation

Energy Dissipation in Large-Scale Model (NPP)

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Outline

ntroduction Motivation Real ESSI Simulator System

Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation

Concluding Remarks

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Inelastic Modeling for Components

- ► Soil elastic-plastic
 - Dry, single phase
 - Unsaturated (partially saturated)
 - Fully saturated
- Contact, inelastic, soil/rock foundation
 - Dry, single phase, Normal (hard and soft, gap open/close), Friction (nonlinear)
 - Fully saturated, suction and excess pressure (buoyant force)
- Structural inelasticity/damage
 - Nonlinear/inelastic 1D fiber beam
 - Nonlinear/inelastic 2D wall element

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Soil Modeling Parameters

Material parameters	shear wave velocity [m/s] Young's modulus [GPa] Poisson ratio von Mises radius [kPa] linear hardening parameter [MPa] nonlinear hardening parameter	$500 \\ 1.25 \\ 0.25 \\ 60 \\ 30 \\ 25$
Contact parameters	initial normal stiffness [N/m] hardening rate [/m] maximum normal stiffness [N/m] tangential stiffness [N/m] normal damping [N/(m/s)] tangential damping [N/(m/s)] friction ratio	1e9 1000 1e12 1e7 100 100 0.25
Damping parameters	structure layer surrounding soil DRM layer outside layer 1 outside layer 2 outside layer 3	5% 15% 20% 20% 40% 60%

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Representative points

Location of points				
Point ID	X (m)	Y (m)	Z (m)	layer
1	0	0	14	structure
2	15	15	14	structure
3	0	15	14	structure
4	0	15	0	structure
5	0	15	-36	structure
6	0	-15	-36	structure
7	0	-15	0	structure
8	0	15	0	surrounding soil
9	0	15	-36	surrounding soil
10	0	-15	-36	surrounding soil
11	0	-15	0	surrounding soil
12	0	0	-36	structure
13	0	0	-36	surrounding soil

Jeremić et al.

Small Modular Reactors Modeling and Simulation

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

SMR: ESSI Effects, Material Modeling

Material B: Bilinear

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

SMR: Accelerations Along Depth

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Depth variation - PGA & PGD

- ► The PGA & PGD of SSI systems are (very) different from free field motions,
- Material nonlinearity has significant effect on acceleration response.

Jeremić et al.

Concluding Remarks

UCDAVIS

Small Modular Reactors Modeling and Simulation

Elastic and Inelastic Response: Differences

Jeremić et al.

Concluding Remarks

L · B

Small Modular Reactors Modeling and Simulation

Energy Dissipation for an SMR

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Energy Dissipation Control Mechanisms

Numerical

Viscous

Plasticity

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Energy Dissipation Control

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Buoyant Force Simulation

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

1D vs 3D Seismic Motions

- One component of motions (1D) from 3D
- Excellent fit

(MP4)

(MP4)

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

1D vs 3×1D vs 3D Seismic Motions

- ID is required by the code
- 3×1D can be used depending on frequency/wave length of interest,
- 3D is more realistic, however it is challenging to define motions in full 3D

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

When to use 3D and/or $3 \times 1D$

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

1D vs 3D, Bottom Control Point

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

Free Field 3D vs 1D Convolution From Base Point

Jeremić et al.

Concluding Remarks

Small Modular Reactors Modeling and Simulation

3D vs $3 \times 1D$ vs 1D, Top of SMR

Jeremić et al.

Summary

Summary

- Numerical modeling to predict and inform, rather than fit
- Change of demand due to inelastic effects
 - Reduction of dynamic motions
 - Increase in deformations
- Sophisticated inelastic/nonlinear modeling and simulations need to be done carefully and in phases
- Education and Training is the key!
- http://real-essi.us/

Jeremić et al.