Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Hierarchical, High Fidelity Modeling and Simulation of Static and Dynamic Behaviour of Soil Structure Systems

Boris Jeremić

University of California, Davis, CA Lawrence Berkeley National Laboratory, Berkeley, CA

Ørsted Energy, Copenhagen, Denmark January 2018

Jeremić et al.

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Outline

Introduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al.

Introduction ••••••••	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusio o

Motivation

Outline

Introduction Motivation Real ESSI Simulator Syst

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al

Introduction 0000000 000000	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o
Motivation				

Motivation

Improve modeling and simulation for infrastructure objects

Use of high fidelity numerical models to analyze behavior of soil structure systems

Reduction of modeling uncertainty, ability to perform high(er) level of sophistication modeling and simulation

Accurately follow the flow of input and dissipation of energy in a soil structure system

Development of an expert, rational physics based, system for modeling and simulation

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o
Motivation				

Hypothesis

- Interplay dynamic characteristics of the Dynamic Forcing / Earthquake, Soil/Rock and Structure in time domain, plays a decisive role in successes and failures
- Timing and spatial location of energy dissipation determines location and amount of damage
- If timing and spatial location of the energy dissipation can be controlled (directed), we could optimize soil structure system for
 - Safety and
 - Economy

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion O
Mativation				

Predictive Capabilities

- Prediction under Uncertainty: use of computational model to predict the state of SSI system under conditions for which the computational model has not been validated.
- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Modeling and parametric uncertainties are always present, need to be addressed
- Predictive capabilities with low Kolmogorov Complexity
- ► Goal: Predict and Inform and not (force) Fit

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion
00000000	000000000000000000000000000000000000000	000000000	000000000000 000000000000 00000000	0

Motivation

Modeling Uncertainty

- Simplified modeling: Features (important ?) are neglected (6D ground motions, inelasticity)
- Modeling Uncertainty: unrealistic and unnecessary modeling simplifications
- Modeling simplifications are justifiable if one or two level higher sophistication model shows that features being simplified out are not important

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Motivation

Parametric Uncertainty: Material Stiffness

Jeremić et al.

Introduction	
00000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Motivation

Parametric Uncertainty: Material Properties

UCDAVIS

High Fidelity Modeling and Simulation

Jeremić et al.

Introduction
0000000
0000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Motivation

Realistic ESSI Modeling Uncertainties

- Seismic Motions: 6D, inclined, body and surface waves (translations, rotations); Incoherency
- Inelastic material: soil, rock, concrete, steel; Contacts, foundation—soil, dry, saturated slip—gap; Nonlinear buoyant forces; Isolators, Dissipators
- Uncertain loading and material
- ► Verification and Validation ⇒ Predictions

Jeremić et al.

Introduction ●○○○○○○ ●○○○○○	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion O
			00000000	

Real ESSI Simulator System

Outline

Introduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion
0000000	000000000000000000000000000000000000000	000000000	00000000000 00000000000 00000000	0

Real ESSI Simulator System

Real ESSI Simulator System

The Real ESSI, **<u>Real</u>**istic modeling and simulation of <u>Earthquakes</u>, <u>Soils</u>, <u>Structures and their</u> <u>Interaction</u>. Simulator is a software, hardware and documentation system for high fidelity, high performance, time domain, nonlinear/inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

LICDA

Jeremić et al.

Introduction	Seismic Motion
0000000 000000	000000000000000000000000000000000000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Real ESSI Simulator System

Real ESSI Simulator System

- Real ESSI System Components
 - Pre-processor (gmsh/gmESSI, X2ESSI, SASSI2ESSI)
 - Simulator (local, remote/cloud)
 - Post-Processor (Paraview, Python, Matlab)
- Real ESSI System availability:
 - Professional Practice and Educational Institutions: Amazon Web Services (AWS, economical!)
 - Government Agencies, National Labs and some Companies: Local/Remote
- Real ESSI Education and Training
- System description and documentation at http://real-essi.us/

Jeremić et al.

Introduction 0000000 000000	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o
	-			

Real ESSI Simulator System

Quality Assurance

- ► Full verification suit for each element, model, algorithm
- Certification process in progress for NQA-1 and ISO-90003-2014

Jeremić et al.

ntroduction	Seismic Motions	Inelast
0000000	000000000000000000000000000000000000000	00000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Real ESSI Simulator System

High Fidelity (Parametric, Geometric and Algorithmic)

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Real ESSI Simulator System

Example: Verification for Elastoplastic Algorithms Comparison between forward and backward Euler algorithms.

Drucker-Prager Non-Associate Material with Backward Euler Algorithm

ξ	0.05	0.10	0.15
Observed β	0.892	0.870	0.858
GCI	0.23%	0.33%	0.41%
Result(Pa)	33816.496	36714.681	38499.480
Uncertain(Pa)	± 77.673	± 121.912	± 156.082
Richarson(Pa)	33878.635	36812.210	38624.345

Drucker-Prager Non-Associate Material with Forward Euler Algorithm

ξ	0.05	0.10	0.15
Observed β	1.040	1.049	1.054
GCI	0.08%	0.09%	0.11%
Result(Pa)	33887.813	36818.553	38627.278
Uncertain(Pa)	± 25.944	± 34.672	± 40.695
Richarson(Pa)	33867.058	36790.815	38594.722

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESS
00000000	0000000000 000000000	000000000	000
			000

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models

Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al.

Introduction	Seismic Motions	Ine
000000000000000000000000000000000000000	0000000000 000000000	00

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

UCDAVIS

Observations and Regional Models

3D (6D) Seismic Motions

- All (most) measured motions are full 3D (6D)
- ► One example of an almost 2D motion (LSST07, LSST12)

▶ 1D (?): M 6.9 San Pablo, Guatemala EQ, 14Jun2017

Introduction	Seismic Motio
000000000000000000000000000000000000000	000000000000000000000000000000000000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Regional Geophysical Models

- ► High fidelity free field seismic motions on regional scale
- Knowledge of geology (deep and shallow) needed
- ► High Performance Computing using SW4 on CORI (LBNL)
- Collaboration with LLNL: Dr. Rodgers, Dr. Pitarka and Dr. Petersson

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Regional Geophysical Models

Rodgers and Pitarka

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Regional Geophysical Models

USGS

Jeremić et al.

Introduction	Seismi
00000000	00000

smic Motions 000●00000 0000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Example Regional Model

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

Example Regional Model (Rodgers)

(MP4)

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o

Observations and Regional Models

ESSI: 6D or 1D Seismic Motions

- Assume that a full 6D (3D) motions at the surface are only recorded in one horizontal direction
- From such recorded motions one can develop a vertically propagating shear wave in 1D
- Apply such vertically propagating shear wave to the same soil-structure system

LICDA

Jeremić et al.

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

6D Free Field Motions (closeup)

Jeremić et al.

Introduction	Seismic Motions
00000000 000000	000000000000000000000000000000000000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

1D vs 3D Seismic Motions

- One component of motions (1D) from 3D
- Excellent fit

UCDAVIS

(MP4)

(MP4)

Jeremić et al.

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Observations and Regional Models

6D vs 1D NPP ESSI Response Comparison

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Stress Test Motions

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions

Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al.

Introduction 00000000 000000	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	O O O
Stress Test Mot	tions			

Stress Testing SSI Systems

- Excite SSI system with a suite of seismic motions
- Simple sources, variation in strike and dip, P and S waves, surface waves (Rayleigh, Love, etc.)
- Stress test soil-structure system
- ► Try to "break" the system, shake-out strong and weak links

LICDA

Jeremić et al.

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Stress Test Motions

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Stress Test Motions

Layered and Dyke/Sill Models

- ► (a) Horizontal layers
- (b) Dyke/Sill intrusion

- Source locations matrix (point sources)
- Source strike and dip variation
- Magnitude variations
- Range of frequencies

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o
Stress Test Mo	tions			

Layered System, Displacement Traces

- ► Epicenter is 2500m away from the location of interest
- ► Source depth 850m (left) and 2500m (right)
- Different wave propagation path to the point of interest
- Surface waves quite pronounced
- Layered geology did not filter out surface waves

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Stress Test Motions

Layered System, Variable Source Depth

(MP4)

(MP4)

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations
00000000	0000000000 000000000	000000000000000000000000000000000000000	00000000000 00000000000 00000000

Stress Test Motions

Dyke/Sill Intrusion, Variable Source Depth

- Lower amplitudes than with layered only model!
- Difference in body and surface wave arrivals
- Surface waves present, more complicated wave field

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Stress Test Motions

Dyke/Sill Intrusion, Variable Source Depth

(MP4)

(MP4)

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion O

Stress Test Motions

Dyke/Sill as Seismic Energy Sink

- Dyke/Sill (right Fig), made of stiff rock, is an energy sink, as well as energy reflector
- Variable wave lengths behave differently, depending on dyke/sill geometry and location

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation

Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al

Introduction	Seismic Mo
00000000	00000000

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Energy Input and Dissipation

Energy input, dynamic forcing

Mechanical dissipation outside SSI domain:

SSI system oscillation radiation Reflected wave radiation

Mechanical dissipation/conversion inside SSI domain:

Inelasticity of soil and contact zone Inelasticity/damage of structure and foundation Viscous coupling of porous solid and pore fluids (soil) Viscous coupling of structures with fluids

Numerical energy dissipation/production

Jeremić et al.

Introduction	Seismic Mot
00000000	00000000

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Fully Coupled Formulation, u-p-U

$$\begin{bmatrix} (M_{s})_{KijL} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (M_{f})_{KijL} \end{bmatrix} \begin{bmatrix} \ddot{u}_{Lj} \\ \ddot{p}_{N} \\ \ddot{U}_{Lj} \end{bmatrix} + \begin{bmatrix} (C_{1})_{KijL} & 0 & -(C_{2})_{KijL} \\ 0 & 0 & 0 \\ -(C_{2})_{LjiK} & 0 & (C_{3})_{KijL} \end{bmatrix} \begin{bmatrix} \dot{\bar{u}}_{Lj} \\ \dot{\bar{p}}_{N} \\ \dot{\bar{U}}_{Lj} \end{bmatrix} + \begin{bmatrix} (K^{EP})_{KijL} & -(G_{1})_{KiM} & 0 \\ -(G_{1})_{LjM} & -P_{MN} & -(G_{2})_{LjM} \\ 0 & -(G_{2})_{KiL} & 0 \end{bmatrix} \begin{bmatrix} \bar{u}_{Lj} \\ \bar{p}_{M} \\ \overline{U}_{Lj} \end{bmatrix} = \begin{bmatrix} \bar{t}_{Ki}^{solid} \\ 0 \\ \bar{t}_{Ki}^{fluid} \\ \bar{t}_{Ki} \end{bmatrix}$$

Jeremić et al.

Introduction	Seismic Motior
00000000 000000	000000000000000000000000000000000000000

ESSI Modeling and Simulations

Conclusion

UCDAVIS

Energy Dissipation

Fully Coupled Formulation, u-p-U

$$\begin{aligned} (M_{s})_{KijL} &= \int_{\Omega} H_{K}^{u}(1-n)\rho_{s}\delta_{ij}H_{L}^{u}d\Omega \quad (M_{f})_{KijL} = \int_{\Omega} H_{K}^{U}n\rho_{f}\delta_{ij}H_{L}^{U}d\Omega \\ (C_{1})_{KijL} &= \int_{\Omega} H_{K}^{u}n^{2}k_{ij}^{-1}H_{L}^{u}d\Omega \quad (C_{2})_{KijL} = \int_{\Omega} H_{K}^{u}n^{2}k_{ij}^{-1}H_{L}^{U}d\Omega \\ (C_{3})_{KijL} &= \int_{\Omega} H_{K}^{U}n^{2}k_{ij}^{-1}H_{L}^{U}d\Omega \quad (K^{EP})_{KijL} = \int_{\Omega} H_{K,m}^{u}D_{imjn}H_{L,n}^{u}d\Omega \\ (G_{1})_{KiM} &= \int_{\Omega} H_{K,i}^{u}(\alpha-n)H_{M}^{p}d\Omega \quad (G_{2})_{KiM} = \int_{\Omega} nH_{K,i}^{U}H_{M}^{p}d\Omega \\ P_{NM} &= \int_{\Omega} H_{N}^{p}\frac{1}{Q}H_{M}^{p}d\Omega \end{aligned}$$

Jeremić et al.

Introduction	Seismic M
00000000	0000000

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Energy Dissipation Control Mechanisms

Numerical

Viscous

Plasticity

Jeremić et al.

Introduction	Seismic Mo
00000000	00000000

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Energy Dissipation Control

Jeremić et al.

Introduction	Seismic M
00000000 000000	0000000

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Incremental Plastic Work: $dW_p = \sigma_{ij} d\epsilon_{ij}^{pl}$

- Negative incremental energy dissipation
- Plastic work is NOT plastic dissipation

From a paper on Soil Dynamics and Earthquake Engineering (2011)

Jeremić et al.

Introduction	Seis
00000000	000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Negative Incremental Energy Dissipation!

Direct violation of the second law of thermodynamics

600 papers since 1990 (!?!) repeat this error

Important form of energy missing: Plastic Free Energy

First described by Taylor and Quinney in 1925 and then 1934!

Plastic Work vs. Plastic Energy Dissipation

Jeremić et al.

Introduction 00000000 000000	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusior O
	tion			

Energy Dissipation

Energy Dissipation on Material Level

Single elastic-plastic element under cyclic shear loading Difference between plastic work and dissipation Plastic work can decrease, dissipation always increases

Introduction	S
00000000	0

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Energy Dissipation

Energy Dissipation for Soil Structure Systems

Examples of energy dissipation for buildings (nuclear power plants and small modular reactors) are given in section on ESSI modeling and simulation.

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Probabilistic Inelastic Modeling

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al

Introduction	Seismic Motions	Inelasticity and Energy Dissipation
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

ESSI Modeling and Simulations

Conclusion

UCDAV

Probabilistic Inelastic Modeling

Parametric Uncertainty: Material and Loads

- Significant uncertainty in material and loads
- Propagate uncertainties in space and time

Transformation of SPT N-value: 1-D Young's modulus, E (cf. Phoon and Kulhawy (1999B))

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Probabilistic Inelastic Modeling

Stochastic Elastic-Plastic Finite Element Method (SEPFEM)

Material uncertainty expanded along stochastic shape functions: $D(x, t, \theta) = \sum_{i=0}^{P_d} r_i(x, t) * \Phi_i[\{\xi_1, ..., \xi_m\}]$

Loading uncertainty expanded along stochastic shape functions: $f(x, t, \theta) = \sum_{i=0}^{P_f} f_i(x, t) * \zeta_i [\{\xi_{m+1}, ..., \xi_f]$

Displacement expanded along stochastic shape functions: $u(x, t, \theta) = \sum_{i=0}^{P_u} u_i(x, t) * \Psi_i[\{\xi_1, ..., \xi_m, \xi_{m+1}, ..., \xi_f\}]$

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusio
00000000	000000000000000000000000000000000000000	000000000 0000000	00000000000 000000000000 00000000	0

Probabilistic Inelastic Modeling

SEPFEM : Formulation

Stochastic system of equation resulting from Galerkin approach

# KL terms material	# KL terms load	PC order displacement	Total # terms per DoF
4	4	10	43758

nić et al	I.			UCDAVIS	
					<u></u>
	6	6	30	1.1058 10 ¹⁰	
	6	6	20	225 792 840	
	6	6	10	646 646	
	4	4	30	48 903 492	
	4	4	20	3 108 105	
	4	4	10	43758	

Jeremić et al.

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Probabilistic Inelastic Modeling

SEPFEM : Probabilistic Elastic-Plastic Modeling

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

UCDAVIS

Probabilistic Inelastic Modeling

SEPFEM : Example in 1D

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Probabilistic Inelastic Modeling

SEPFEM : Example in 3D

Jeremić et al.

Introduction 00000000 000000 eismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations Nuclear Power Plant Modeling and Simulation

Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al

Introduction	Seismic M
00000000	0000000

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Modeling Sophistication Levels, Phased Modeling

- Level of sophistication chosen to reduce modeling uncertainty
- ► Verify code, solutions, methods, elements, material models
- Verify model components
- Model developed in phases (components) and verified
- Gradually building confidence in inelastic modeling
- Use such developed models to predict and inform, rather than force fit

Jeremić et al.

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Model Verification and Modeling Phases

Introduction	Seismic
00000000	00000

nic Motions Inel

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Inelastic Modeling for NPP and Components

- ► Soil elastic-plastic
 - Dry, single phase
 - Unsaturated (partially saturated)
 - Fully saturated
- Contact, inelastic, soil/rock foundation
 - Dry, single phase, Normal (hard and soft, gap open/close), Friction (nonlinear)
 - Fully saturated, suction and excess pressure (buoyant force)
- Structural inelasticity/damage
 - Nonlinear/inelastic 1D fiber beam
 - Nonlinear/inelastic 2D wall element

Jeremić et al.

Introduction	Seismic Moti
00000000	00000000

ESSI Modeling and Simulations

Conclusion

L · B

Nuclear Power Plant Modeling and Simulation

NPP Model

Jeremić et al.

Introduction	Seismi
00000000	00000

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

: Motions

Structure Model

The nuclear power plant structure comprise of

- Auxiliary building, $f_1^{aux} = 8Hz$
- Containment/Shield building, $f_1^{cont} = 4Hz$
- ► Concrete raft foundation: 3.5m thick

Jeremić et al.

Introduction	Seismic M
00000000 000000	0000000

nic Motions Inel

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Inelastic Soil and Inelastic Contact

- Shear velocity of soil $V_s = 500 m/s$
- ► Undrained shear strength (Dickenson 1994)
 V_s[m/s] = 23(S_u[kPa])^{0.475}
- ► For $V_s = 500 m/s$ Undrained Strength $S_u = 650 kPa$ and Young's Modulus of E = 1.3 GPa
- von Mises, Armstrong Frederick kinematic hardening (S_u = 650kPa at γ = 0.01%; h_a = 30MPa, c_r = 25)
- Soft contact (concrete-soil), gaping and nonlinear shear

Jeremić et al.

Introduction	Seismic Mo
00000000	00000000

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Acc. Response, Top of Containment Building

Introduction	Seismic N
00000000	0000000

nic Motions Ine

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Acceleration Traces, Free Field

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

UCDAVIS

Nuclear Power Plant Modeling and Simulation

Acceleration Traces, Elastic vs Inelastic

Jeremić et al.

Introduction	Se	
00000000	0	
000000	0	

mic Motions I

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Elastic and Inelastic Response: Differences

Introduction	Se	
00000000	00	
000000	00	

smic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Nuclear Power Plant Modeling and Simulation

Energy Dissipation in Large-Scale Model (NPP)

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations

Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Jeremić et al

Introduction	Seismic I
00000000	000000

Motions Inelasticit

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Inelastic Modeling for Components

- ► Soil elastic-plastic
 - Dry, single phase
 - Unsaturated (partially saturated)
 - Fully saturated
- Contact, inelastic, soil/rock foundation
 - Dry, single phase, Normal (hard and soft, gap open/close), Friction (nonlinear)
 - Fully saturated, suction and excess pressure (buoyant force)
- Structural inelasticity/damage
 - Nonlinear/inelastic 1D fiber beam
 - Nonlinear/inelastic 2D wall element

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Soil Modeling Parameters

Material parameters	shear wave velocity [m/s] Young's modulus [GPa] Poisson ratio von Mises radius [kPa] linear hardening parameter [MPa] nonlinear hardening parameter	$500 \\ 1.25 \\ 0.25 \\ 60 \\ 30 \\ 25$
Contact parameters	initial normal stiffness [N/m] hardening rate [/m] maximum normal stiffness [N/m] tangential stiffness [N/m] normal damping [N/(m/s)] tangential damping [N/(m/s)] friction ratio	$1e9 \\ 1000 \\ 1e12 \\ 1e7 \\ 100 \\ 100 \\ 0.25$
Damping parameters	structure layer surrounding soil DRM layer outside layer 1 outside layer 2 outside layer 3	5% 15% 20% 20% 40% 60%

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Representative points

Location of points				
Point ID	X (m)	Y (m)	Z (m)	layer
1	0	0	14	structure
2	15	15	14	structure
3	0	15	14	structure
4	0	15	0	structure
5	0	15	-36	structure
6	0	-15	-36	structure
7	0	-15	0	structure
8	0	15	0	surrounding soil
9	0	15	-36	surrounding soil
10	0	-15	-36	surrounding soil
11	0	-15	0	surrounding soil
12	0	0	-36	structure
13	0	0	-36	surrounding soil

Jeremić et al.

Introduction
00000000
000000

ESSI Modeling and Simulations

Small Modular Reactors Modeling and Simulation

Jeremić et al.

Introduction
00000000
000000

ESSI Modeling and Simulations

Small Modular Reactors Modeling and Simulation

SMR: ESSI Effects, Material Modeling

Material B: Bilinear

0.0006

Jeremić et al.

Introduction	Seis
00000000	000

smic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

SMR: Accelerations Along Depth

Introduction	Seismi
00000000	00000

mic Motions I

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Depth variation - PGA & PGD

- ► The PGA & PGD of SSI systems are (very) different from free field motions,
- Material nonlinearity has significant effect on acceleration response.

Jeremić et al.

Introduction	Se
00000000	00
000000	0.

smic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Elastic and Inelastic Response: Differences

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Energy Dissipation for an SMR

Jeremić et al.

Introduction	
00000000	
000000	

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Buoyant Force Simulation

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Solid/Structure-Fluid Interaction: gmFoam

Mesh separation integrated geometry model FEM & FVM mesh conversion handle discontinuous mesh Incorporate gmESSI Interface geometry extraction Interface class **SSFI** in RealESSI RealESSI \iff SSFI \iff OpenFoam

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Small Modular Reactors Modeling and Simulation

Solid/Structure-Fluid Interaction, Example

alpha.water -4.206e-07 0.25 0.5 0.75 1.000e+00

Jeremić et al.

Introduction 00000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Liquefaction

Outline

troduction Motivation Real ESSI Simulator System

Seismic Motions Observations and Regional Models Stress Test Motions

Inelasticity and Energy Dissipation Energy Dissipation Probabilistic Inelastic Modeling

ESSI Modeling and Simulations

Nuclear Power Plant Modeling and Simulation Small Modular Reactors Modeling and Simulation Liquefaction

Conclusion

Introduction 00000000 000000	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion o
Liquefaction				

Saturated Soil

- For fully and partially saturated layers of loose to medium sand, with fines, silt, and with in-between layers of low permeability clay, liquefaction is likely
- Liquefaction can result in uniform and differential settlements!
- Liquefaction can also base isolate objects

(Mahdi Taiebat, Boris Jeremic. Yannis F. Dafalias, Amir M. Kaynia, and Zhao Cheng. Propagation of Seismic Waves through Liquefied Soils. Soil Dynamics and Earthquake Engineering, No. 30, pp 236-257, 2010.)

Piles in liquefied soil, pile pinning effects

((Zhao Cheng and Boris Jeremic. Numerical Simulations of Piles in Liquefied Soils. Soil Dynamics and Earthquake Engineering, No. 29, pp 1405-1416, 2009.)

Jeremić et al.

Introduction 0000000 000000 Seismic Motions

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Liquefaction

Liquefaction as Base Isolation, Model

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusior

Liquefaction

Liquefaction, Wave Propagation

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

Liquefaction

Liquefaction, Excess Pore Pressure Ratio

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusion

UCDAVIS

Liquefaction

Liquefaction, Stress-Strain Response

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusior

Liquefaction

Pile in Liquefiable Soil, Model

Jeremić et al.

Introduction
00000000
000000

Inelasticity and Energy Dissipation

ESSI Modeling and Simulations

Conclusior o

Liquefaction

Pile in Liquefiable Soil, Results

Jeremić et al.

Introduction	Seismic Motions	Inelasticity and Energy Dissipation	ESSI Modeling and Simulations	Conclusion ●
Summarv				

Summary

- ► Numerical modeling to predict and inform, rather than fit
- Sophisticated inelastic/nonlinear modeling and simulations need to be done carefully and in phases
- Education and Training is the key!
- http://real-essi.us/
- Collaborators: Feng, Lacour, Han, Behbehani, Sinha, Wang, Pisanó, Abell, McCallen, McKenna, Petrone, Rodgers, Petersson, Pitarka
- Funding from and collaboration with the US-DOE, US-NRC, US-NSF, CNSC-CCSN, UN-IAEA, and Shimizu Corp. is greatly appreciated,

