Modeling and Simulation of Earthquake Soil Structure Interaction for Nuclear Installations

Boris Jeremić
Yuan Feng, Han Yang, Hexiang Wang, Fangbo Wang
Fatema Behbehani, Sumeet Kumar Sinha, José Abell
Federico Pisanó, Kohei Watanabe, Kallol Sett

UCD and LBNL

DOE/NRC NPH
North Bethesda, MD, USA
October 2018
Outline

Introduction
 Motivation

Modeling and Simulation
 MS-ESSI/Real-ESSI Simulator System
 Illustrative Examples

Summary
Outline

Introduction
Motivation

Modeling and Simulation
MS-ESSI/Real-ESSI Simulator System
Illustrative Examples

Summary
Motivation

Improve modeling and simulation for infrastructure objects

Use of numerical models to analyze statics and dynamics of soil/rock-structure systems

Reduction of modeling uncertainty

Desired level of sophistication (high ↔ low) analysis

Follow the flow, input and dissipation, of seismic energy,

Practical system for modeling and simulation of Earthquakes, Soils, Structures and their Interaction,

Real-ESSI/MS-ESSI:

http://ms-essi.info/ http://real-essi.info/
Predictive Capabilities

- Prediction under Uncertainty: use of computational model to predict the state of SSI system under conditions for which the computational model has not been validated.

- Verification: provides evidence that the model is solved correctly. Mathematics issue.

- Validation: provides evidence that the correct model is solved. Physics issue.

- Modeling and parametric uncertainties are always present, need to be addressed

- Goal: Predict and Inform rather than (force) Fit
Outline

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Modeling and Simulation</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>MS-ESSI/Real-ESSI Simulator System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illustrative Examples</td>
<td></td>
</tr>
</tbody>
</table>

Jeremić et al.
Real-ESSI/MS-ESSI
MS-ESSI / Real-ESSI

- A system for time domain, nonlinear/inelastic, deterministic or probabilistic, modeling and simulation of
 - statics and dynamics of soil,
 - statics and dynamics of rock,
 - statics and dynamics of structures,
 - statics of soil-structure systems, and
 - dynamics of earthquake-soil-structure system interaction.

- Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins
MS-ESSI / Real-ESSI Modeling Features

► Solid elements, dry, saturated, elastic, inelastic
► Structural elements, beams, shells, elastic, inelastic
► Contact elements, dry, coupled/saturated,
► Super element, stiffness and mass matrices
► Material models, soil, concrete, steel...
► Seismic input, 1C and 3C, deterministic or probabilistic
► Energy dissipation calculations
► Solid/Structure – Fluid interaction, full coupling
► All Modeling Features listed at http://ms-essi.info/
MS-ESSI / Real-ESSI Simulation Features

- Static loading stages
- Dynamic loading stages
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - Fine grained, template mataprograms, small matrix library
 - Coarse grained, distributed memory parallel
- All Simulation Features are listed at http://ms-essi.info/
MS-ESSI / Real-ESSI Model Development

- Pre-Processing, gmsh/gmESSI, translation (SASSI...)
- Choose level of sophistication, reduce modeling uncertainty
- Model developed in phases
- Verify model components
- Build confidence in inelastic modeling
MS-ESSI / Real-ESSI Modeling Phases
MS-ESSI / Real-ESSI Results Post Processing

- All output is saved (stress, strain, displacements, energy...)
- Time histories, scripts to plot or extract in preferred format
- 3D visualization, Paraview with pvESSI plugin
MS-ESSI / Real-ESSI Verification

- Implementation verification
- Solution verification for each component
 - Finite elements
 - Constitutive algorithms
 - Solution advancement, static and dynamic
- Error quantification for ranges of modeling parameters
- Automatic verification, a 13 hour process on multiple CPUs
MS-ESSI / Real-ESSI Validation

- Validation partially done, need for high quality data
- Validation, UNR soil box tests in the near future
 - Soil testing, range of strains, confinements, stress paths
 - Contact testing, axial, shear, soil-concrete, formed, poured
 - Wave propagation through soil, equivalent elastic and inelastic, 1C and 2C, dilatancy influence
- Inelastic structural behavior for beams, walls, plates, shells, use of already published high quality test data
- ESSI tests for a complete simplified SSI systems
MS-ESSI / Real-ESSI Training and Education

- Short Courses:
 - Online short course this fall/winter
 - Professional practice
 - Examples available in lecture notes, and documentation
 - MS-ESSI system, with examples on Amazon Web Services (AWS)

- Full lecture notes (2600+ pages) available online

- Up to date information on Real-ESSI/MS-ESSI at:
 http://ms-essi.info/ and http://real-essi.info/
MS-ESSI / Real-ESSI Core Functionality

- Introduction to inelastic/nonlinear analysis for practicing engineers
- Use of prescribed/required (low, medium, high) fidelity numerical models to analyze ESSI behavior
- Set of suggested modeling and simulation parameters
- Investigate sensitivity of response to model sophistication
- Investigate sensitivity of response to model parameters
MS-ESSI / Real-ESSI Core Functionality Components

- Structural elements: Truss, Beam, Shell, Super-Element
- Soil, solids: elastic, G/G_{max}
- Contacts: Bonded, Frictional, Gap open/close
- Loads: Static, Dynamic (earthquake, 1C or $3 \times 1C$), Restart
- Simulation: Explicit no-equilibrium, Implicit equilibrium,
- Core Functionality Application programs: APPS
Outline

Introduction
Motivation

Modeling and Simulation
MS-ESSI/Real-ESSI Simulator System
Illustrative Examples

Summary
Seismic Motions

- Variation in inclination, frequency, energy, duration...
- Deterministic and Probabilistic
- Stress test the soil-structure system
Free Field, Variation in Input Frequency, $\theta = 60^\circ$
SMR ESSI, Variation in Input Frequency, $\theta = 60^\circ$
SMR ESSI, 3C vs 3×1C

(OGV)

Jeremić et al.
Real-ESSI/MS-ESSI
Free Field vs ESSI - Different Frequencies

Acceleration response - Surface center point A

(a) \(f = 1\text{Hz} \quad \theta = 60^\circ \)

(b) \(f = 5\text{Hz} \quad \theta = 60^\circ \)

(c) \(f = 10\text{Hz} \quad \theta = 60^\circ \)
SMR, Inelastic Response, Energy Dissipation

(MP4)
Wall, Regular and ASR Concrete

Jeremić et al.

Real-ESSI/MS-ESSI
Solid/Structure – Fluid Interaction

(MP4)

Jeremić et al.
Real-ESSI/MS-ESSI
Outline

Introduction
Motivation

Modeling and Simulation
MS-ESSI/Real-ESSI Simulator System
Illustrative Examples

Summary
Summary

- Numerical modeling to predict and inform, rather than fit
- Inelastic/nonlinear analysis done in phases
- Education and Training is the key!

- **Real-ESSI/MS-ESSI Simulator System:**
 - ms-essi.info
 - real-essi.info