\documentclass[fleqn]{beamer}
%\documentclass[handout]{beamer}
%\usepackage{pgfpages}
%\pgfpagelayout{2 on 1}[letterpaper, border shrink=5mm]
\mode{\setbeamercolor{background canvas}{bg=black!3}}
\usepackage{epstopdf}
% for textblock command
\usepackage[absolute,overlay]{textpos}
% %% Jose Antonio Abell Mena provided this for DSL descriptions
% % (used in a file _Chapter_SoftwareHardware_Domain_Specific_Language_English.tex
% % This is added for listing FEI DSL
% % since he customized it, it needs to be changed (linked to
% % /usr/share/texmf/tex/latex/misc)
% %\usepackage{myListings}
% \input{essi_listings_options.tex}
\usepackage{multimedia}
% for inclusion of other PDF pages, in this case Frank's presentation
\usepackage{pdfpages}
%This is a macro to convert eps to pdf files on the fly.
% make sure figure syntax uses graphicx syntax NOT epsfig syntax
%from http://mailman.mit.edu/pipermail/macpartners/2005-January/000780.html
%
% \ifx\pdfoutput\undefined
% % we are running LaTeX, not pdflatex
% \usepackage{graphicx}
% \else
% % we are running pdflatex, so convert .pdf files to .pdf
% \usepackage[pdftex]{graphicx}
% \usepackage{epstopdf}
% \fi
% %*****************************************
%% ovo je za cirilicu
\input vuk.def
\newfont{\cyr}{wncyr10 scaled 1000 }
\newfont{\cyb}{wncyb10 scaled 1000 }
\newfont{\cyi}{wncyi10 scaled 1000 }
\newfont{\cysc}{wncysc10 scaled 1000 }
\newfont{\cyss}{wncyss10 scaled 1200 }
\newfont{\romjba}{cmss10 scaled 1000}
\newfont{\cyrjbnaslov}{wncyss10 scaled 1400 }
% % for not showing eq numbers unless eq is references
% \usepackage[fleqn,tbtags]{mathtools}
% \mathtoolsset{
% showonlyrefs
% }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FEI LOGO definition
\newcommand{\FEI}
{{\sf \uppercase{F}\kern-0.20em\uppercase{E}\kern-0.20em\uppercase{I}}}
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % ovo je za cirilicu
% % \input vuk.def
% % %\newfont{\cyr}{wncyr10 scaled 1200}
% % %\newfont{\cyrimena}{wncyb10 scaled 1800}
% % %\newfont{\cyrnaslov}{wncyb10 scaled 2600}
% % %\newfont{\cyrpodnaslov}{wncyr10 scaled 1400}
%
% \newfont{\cyr}{wncyss10 scaled 1200}
% \newfont{\cyrimena}{wncyss10 scaled 2000}
% \newfont{\cyrnaslov}{wncyss10 scaled 2800}
% \newfont{\cyrpodnaslov}{wncyss10 scaled 1400}
%
% \newfont{\cyn}{wncyss10 scaled 2200}
% %% JB sig
% \newfont{\cyrjb}{wncyr10 scaled 600}
% \newcommand{\JB}
% {{\cyrjb \lower0.50ex\hbox{\uppercase{J}}\kern-.58em\hbox{\uppercase{B}}}}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\mode
{
% \usetheme{Marburg} % ima naslov i sadrzaj sa desne strane
% \usetheme{Hannover} % ima naslov i sadrzaj sa leve strane
% \usetheme{Singapore} % ima sadrzaj i tackice gore
% \usetheme{Antibes} % ima sadrzaj gore i kao graf ...
% \usetheme{Berkeley} % ima sadrzaj desno
% \usetheme{Berlin} % ima sadrzaj gore i tackice
% \usetheme{Goettingen} % ima sadrzxaj za desne strane
% \usetheme{Montpellier} % ima graf sadrzaj gore
% \usetheme{Warsaw}
% \usetheme{Warsaw}
\usetheme{Dresden}
\usecolortheme[RGB={20,0,128}]{structure}
% or ...
\setbeamercovered{transparent}
% \setbeamercovered{transparent}
% or whatever (possibly just delete it)
% \usecolortheme{albatross} % teget sa svetlim slovima
% \usecolortheme{beetle} % siva pozadina (vrh plav)
\usecolortheme{seagull} % sivo
%%%%%%%
% \usecolortheme{BorisJeremic}
%%%%%%%
% \usecolortheme{rose}
% \usefonttheme[onlylarge]{structuresmallcapsserif}
% \usefonttheme{structuresmallcapsserif}
}
\definecolor{mycolor}{rgb}{0,0.08,0.45}%
\usepackage[greek,english]{babel}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\newcommand{\ud}{{\rm d}}
\usepackage{array}
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
%%%% HYPERREF HYPERREF HYPERREF HYPERREF HYPERREF
\definecolor{webgreen}{rgb}{0, 0.35, 0} % less intense green
\definecolor{webblue}{rgb}{0, 0, 0.50} % less intense blue
\definecolor{webred}{rgb}{0.35, 0, 0} % less intense red
%\usepackage[colorlinks=true,linkcolor=webblue,citecolor=webred,urlcolor=webgreen]{hyperref}
\usepackage{hyperref}
\hypersetup{
pdfmenubar=true,
pdftoolbar=true,
pdfpagemode={None}
colorlinks=true,
linkcolor=webblue,
citecolor=webblue,
urlcolor=webblue,
}
% \usepackage[pdfauthor={Boris Jeremic},
% colorlinks=true,
% linkcolor=webblue,
% citecolor=webblue,
% urlcolor=webblue,
% linktocpage,
% pdftex]{hyperref}
\usepackage{pause}
% or whatever
%\usepackage{html}
%\usepackage{url}
\usepackage[latin1]{inputenc}
% or whatever
\usepackage{times}
\usepackage[T1]{fontenc}
% Or whatever. Note that the encoding and the font should match. If T1
% does not look nice, try deleting the line with the fontenc.
% Site Specific Dynamics of Structures:
%From Seismic Source to
%the Safety of Occupants and Content
\title[Real-ESSI]
{ Beneficial and Detrimental Effects of \\
Earthquake Soil Structure Interaction }
%\subtitle
%{Include Only If Paper Has a Subtitle}
%\author[Author, Another] % (optional, use only with lots of authors)
%{F.~Author\inst{1} \and S.~Another\inst{2}}
% - Give the names in the same order as the appear in the paper.
% - Use the \inst{?} command only if the authors have different
% affiliation.
\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_blue_sm}
\pgfdeclareimage[height=0.7cm]{lbnl-logo}{/home/jeremic/BG/amblemi/lbnl-logo}
\author[Jeremi{\'c} et al.] % (optional, use only with lots of authors)
%{Boris~Jeremi{\'c}}
{Boris Jeremi{\'c} \\
Feng, Yang, Behbehani, Sinha, Wang, Pisan{\'o}, Abell
}
%\institute[Computational Geomechanics Group \hspace*{0.3truecm}
%\institute[\pgfuseimage{university-logo}\hspace*{0.1truecm}\pgfuseimage{lbnl-logo}] % (optional, but mostly needed)
\institute[\pgfuseimage{university-logo}] % (optional, but mostly needed)
{ University of California, Davis, California, USA}
% %{ Professor, University of California, Davis\\
% { University of California, Davis, CA\\
% % and\\
% % Faculty Scientist, Lawrence Berkeley National Laboratory, Berkeley }
% Lawrence Berkeley National Laboratory, Berkeley, CA}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\date[] % (optional, should be abbreviation of conference name)
{\small GeoMEast2018\\
Cairo, Egypt}
% 24-28 November 2018
\subject{}
% This is only inserted into the PDF information catalog. Can be left
% out.
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
%\pgfdeclareimage[height=0.2cm]{university-logo}{/home/jeremic/BG/amblemi/ucdavis_logo_gold_lrg}
%\logo{\pgfuseimage{university-logo}}
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
\setcounter{tocdepth}{3}
\AtBeginSubsection[]
% \AtBeginSection[]
{
\begin{scriptsize}
\begin{frame}
\frametitle{Outline}
\tableofcontents[currentsection,currentsubsection]
% \tableofcontents[currentsection]
\end{frame}
\end{scriptsize}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Outline}
\begin{scriptsize}
\tableofcontents
% You might wish to add the option [pausesections]
\end{scriptsize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Structuring a talk is a difficult task and the following structure
% may not be suitable. Here are some rules that apply for this
% solution:
% - Exactly two or three sections (other than the summary).
% - At *most* three subsections per section.
% - Talk about 30s to 2min per frame. So there should be between about
% 15 and 30 frames, all told.
% - A conference audience is likely to know very little of what you
% are going to talk about. So *simplify*!
% - In a 20min talk, getting the main ideas across is hard
% enough. Leave out details, even if it means being less precise than
% you think necessary.
% - If you omit details that are vital to the proof/implementation,
% just say so once. Everybody will be happy with that.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Motivation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Motivation}
\begin{itemize}
%\vspace*{0.3cm}
\item[] Improve modeling and simulation for infrastructure objects
% \vspace*{2mm}
% \item[] Expert numerical modeling and simulation tool
\vspace*{1mm}
\item[] Use select fidelity (high $\leftrightarrow$ low) numerical models to
analyze static and dynamic behavior of soil/rock structure fluid systems
\vspace*{1mm}
\item[] Reduction of modeling uncertainty, ability to perform desired level
of sophistication modeling and simulation
\vspace*{1mm}
\item[] Accurately follow the flow of input and dissipation of energy
in a soil structure system
\vspace*{1mm}
\item[] Development of an expert system for modeling and simulation of
Earthquakes, Soils, Structures and their Interaction, Real-ESSI:
\hspace*{5mm} {\bf \href{http://real-essi.info/}{http://real-essi.info/}}
% \url{http://real-essi.info/}
% \vspace*{1mm}
% \item[] The goal is to create methodology and numerical tool that is used to
% predict and inform and not to fit
%
%\vspace*{1mm}
% \item[] Directing, in space and time, seismic energy flow in the
% soil structure system
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Hypothesis}
%
% \begin{itemize}
%
%
%
% %\vspace*{0.5cm}
% \item Interplay dynamic characteristics of the Dynamic Forcing /
% Earthquake, Soil/Rock and Structure in time domain, plays a decisive role in
% successes and failures
%
%
% \vspace*{3mm}
% \item Timing and spatial location of energy dissipation determines location
% and amount of damage
%
% \vspace*{3mm}
% \item If timing and spatial location of the energy dissipation
% can be controlled (directed),
% we could optimize soil structure system for
% \begin{itemize}
% \item Safety and
% \item Economy
% \end{itemize}
%
% \end{itemize}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% % \frametitle{Seismic Energy Dissipation for \underline{Soil}-Foundation-Structure Systems}
% \frametitle{Energy Dissipation in SSI System}
% % \frametitle{Seismic Energy Dissipation for
% % \underline{Soil}-Foundation-Structure Systems}
%
%
% \begin{itemize}
%
%
% \vspace*{0.2cm}
% \item Mechanical dissipation outside of SSI domain:
% \begin{itemize}
% \item SSI system oscillation radiation
% \item reflected wave radiation
% \end{itemize}
% \vspace*{0.2cm}
% \item Mechanical dissipation/conversion inside SSI domain:
% \begin{itemize}
% \item plasticity of soil subdomain
% \item plasticity/damage of the parts of structure/foundation
% \item viscous coupling of porous solid (soil) with pore fluid (air, water)
% \item viscous coupling of structure/foundation with fluids
% % \item potential and kinetic energy
% % \item potential $\leftarrow \! \! \! \! \! \! \rightarrow$ kinetic energy
% \end{itemize}
%
%
%
% \vspace*{0.2cm}
% % \item Numerical energy dissipation (numerical damping/production and period errors)
% % \item Numerical energy dissipation (damping/production)
% \item Numerical energy dissipation/production
%
%
% \end{itemize}
%
% %
% \end{frame}
% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Predictive Capabilities}
% \frametitle{High Fidelity Modeling of SFS System:
% Verification, Validation and Prediction}
\begin{itemize}
\item { Prediction under Uncertainty}: use of computational model
to predict the state of SSI system under
conditions for which the computational model has not been validated.
\vspace*{1mm}
\item {{ Verification} provides evidence that the model is solved
correctly.} Mathematics issue.
\vspace*{1mm}
\item {{ Validation} provides evidence that the correct model is
solved.} Physics issue.
\vspace*{1mm}
\item Modeling and parametric uncertainties are always present, need to be
addressed
% \vspace*{1mm}
% \item Predictive capabilities with {low Kolmogorov Complexity}
%
\vspace*{1mm}
\item Goal: Predict and Inform rather than (force) Fit
\end{itemize}
\end{frame}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Hypothesis}
\begin{itemize}
%\vspace*{0.5cm}
\item Interplay dynamic characteristics of the Dynamic Forcing /
Earthquake, Soil/Rock and Structure in time domain, plays a decisive role in
successes and failures
\vspace*{3mm}
\item Timing and spatial location of energy dissipation determines location
and amount of damage
\vspace*{3mm}
\item If timing and spatial location of the energy dissipation
can be controlled (directed),
we could optimize soil structure system for
\begin{itemize}
\item Safety and
\item Economy
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection*{Uncertainties}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Motivation: Modeling Uncertainty}
%
% \begin{itemize}
%
%
%
% \item Simplified modeling: Features (important ?) are neglected,
% simplified out (6C ground motions, inelasticity)
%
% \vspace*{3mm}
% \item Modeling Uncertainty: unrealistic (unnecessary?) modeling
% simplifications
%
%
% %
% % \vspace*{3mm}
% % \item Desired level
% % of sophistication (high $\leftrightarrow$ low) analysis
% %
%
%
% \vspace*{3mm}
% \item Modeling simplifications are justifiable if one or two
% level higher sophistication model shows that features being simplified out
% are not important
%
%
% %\vspace*{3mm}
% % \item Chief Engineer in my old company: "I would really love to know what
% % would a realistic response this object be"
% %
%
% \end{itemize}
% \end{frame}
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Uncertainties}
\begin{itemize}
%\vspace*{1mm}
\item Modeling uncertainty, introduced by simplifying assumptions
\begin{itemize}
\item low sophistication modeling and simulation
\item medium sophistication modeling and simulation
\item high sophistication modeling and simulation
\item choice of sophistication level for confidence in analysis results
\end{itemize}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\vspace*{2mm}
\item Parametric uncertainty, ${M} \ddot{u_i} + {C} \dot{u_i} + {K}^{ep} {u_i} = {F(t)}$,
\begin{itemize}
\item propagation of uncertainty in material, $K^{ep}$,
\item propagation of uncertainty in loads, $F(t)$,
\item results are PDFs and CDFs for $\sigma_{ij}$, $\epsilon_{ij}$, $u_i$, $\dot{u}_i$, $\ddot{u}_i$
%
\end{itemize}
\end{itemize}
%
%
% %Le doute n'est pas un {\'e}tat bien agr{\'e}able,\\
% mais l'assurance est un {\'e}tat ridicule. (Fran{\c c}ois-Marie Arouet, Voltaire)
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Modeling Uncertainty}
%
% \begin{itemize}
%
%
%
% \item Simplified modeling: Features (important ?) are neglected (3C, 6C
% ground motions, inelasticity)
%
% \vspace*{4mm}
% \item Modeling Uncertainty: unrealistic and unnecessary modeling
% simplifications
%
% \vspace*{4mm}
% \item Modeling simplifications are justifiable if one or two level higher
% sophistication model shows that features being simplified out are not
% important
%
%
%
% \end{itemize}
% \end{frame}
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Parametric Uncertainty: Soil Stiffness}
%\vspace*{-3mm}
\begin{figure}[!hbpt]
\begin{center}
%
\hspace*{-7mm}
\includegraphics[width=7.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_RawData_and_MeanTrend_01-Ed.pdf}
% \hfill
\includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/YoungModulus_Histogram_Normal_01-Ed.pdf}
%
\end{center}
\end{figure}
%\vspace*{-1.8cm}
%\hspace*{-3.3cm}
\begin{flushright}
{\tiny
Transformation of SPT $N$-value:
1-D Young's modulus, $E$
(cf. Phoon and Kulhawy (1999B))
~}
\end{flushright}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Parametric Uncertainty: Soil Strength}
%
%
% \begin{figure}[!hbpt]
% \begin{center}
% %
% \hspace*{-7mm}
% \includegraphics[width=6.50truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_RawData_and_MeanTrend-Mod.pdf}
% \hspace*{-7mm}
% % \hfill
% \includegraphics[width=6.0truecm]{/home/jeremic/tex/works/Papers/2008/JGGE-GoverGmax/figures/ShearStrength_Histogram_PearsonIV-FineTuned-Mod.pdf}
% %
% \end{center}
% \end{figure}
%
% % \vspace*{-1.8cm}
% % %\hspace*{-3.3cm}
% % \begin{flushright}
% % {\tiny
% % Transformation of SPT $N$-value: \\
% % 1-D Young's modulus, $E$ \\
% % (cf. Phoon and Kulhawy (1999B))\\
% % ~}
% % \end{flushright}
% % %
%
%
% \end{frame}
%
% %%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Parametric Uncertainty: Material Properties}
%
%
%
% \begin{figure}[!hbpt]
% \begin{center}
% % %
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldPhiPdf.pdf}
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldPhiCdf.pdf}
% \hspace*{3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldSuPdf.pdf}
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/FieldSuCdf.pdf}
% \\
% %\vspace*{-2mm}
% \hspace*{-2.5cm} \mbox{\tiny Field $\phi$} \hspace*{3.5cm} \mbox{\tiny Field $c_u$}
% %\vspace*{45mm}
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabPhiPdf.pdf}
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabPhiCdf.pdf}
% \hspace*{3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabSuPdf.pdf}
% \hspace*{-3mm}
% \includegraphics[width=3.0truecm]{/home/jeremic/tex/works/Thesis/KonstantinosKarapiperis/Soil_Uncertainty_Report_Pdf_Cdf_Figures/LabSuCdf.pdf}
% \\
% %\vspace*{-8mm}
% \hspace*{-2.5cm} \mbox{\tiny Lab $\phi$} \hspace*{3.5cm} \mbox{\tiny Lab $c_u$}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Realistic ESSI Modeling Uncertainties}
%
%
% \begin{itemize}
%
%
% \item Seismic Motions: 6D, inclined, body and surface waves
% (translations, rotations); Incoherency
%
% \vspace*{3mm}
% \item Inelastic material: soil, rock, concrete, steel; Contacts,
% foundation--soil, dry, saturated slip--gap; Nonlinear buoyant forces; Isolators,
% Dissipators
%
%
% \vspace*{3mm}
% \item Uncertain loading and material
%
% \vspace*{3mm}
% \item Verification and Validation $\Rightarrow$ Predictions
%
%
% % \vspace*{2mm}
% % \item High Fidelity Models $\Rightarrow$ High Performance Computing
% %
% %
% % \vspace*{2mm}
% % \item Education
% %
%
%
%
% \end{itemize}
%
% \end{frame}
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%
%
%
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Real-ESSI Simulator System}
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Real-ESSI Simulator System}
%
% The Real-ESSI,
% ({\underline {\bf Real}}istic
% {{M}}odeling and
% {{S}}imulation of
% %{\underline {\bf M}}odeling and
% %{\underline {\bf S}}imulation of
% {\underline {\bf E}}arthquakes,
% {\underline {\bf S}}oils,
% {\underline {\bf S}}tructures and their
% {\underline {\bf I}}nteraction)
% Simulator is a software, hardware and
% documentation system for high fidelity, high performance, time domain,
% nonlinear/inelastic, deterministic or probabilistic, 3D, finite element modeling
% and simulation of:
%
% \begin{itemize}
% %\vspace*{1mm}
% \item statics and dynamics of soil,
% \vspace*{1mm}
% \item statics and dynamics of rock,
% \vspace*{1mm}
% \item statics and dynamics of structures,
% \vspace*{1mm}
% \item statics of soil-structure systems, and
% \vspace*{1mm}
% \item dynamics of earthquake-soil-structure system interaction
% \end{itemize}
%
%
% \end{frame}
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Real-ESSI Simulator System}
%
%
% \begin{itemize}
%
%
% \item Real-ESSI System Components
% \begin{itemize}
% \item Real-ESSI Pre-processor (gmsh/gmESSI, X2ESSI)
% \item Real-ESSI Program (local, remote, cloud)
% \item Real-ESSI Post-Processor (Paraview, Python, Matlab)
%
% \end{itemize}
%
% \vspace*{1mm}
% \item Real-ESSI System availability:
% \begin{itemize}
% %\vspace*{1mm}
% \item Educational Institutions: Amazon Web Services (AWS), free
% \item Government Agencies, National Labs: AWS GovCloud
% \item Professional Practice: AWS, commercial
% %\vspace*{1mm}
% %%\vspace*{1mm}
% % \item Sources available to collaborators
% \end{itemize}
%
%
%
% \vspace*{1mm}
% \item Real-ESSI Short Courses (online)
%
%
%
% \vspace*{1mm}
% \item System description and documentation at {\bf \url{http://real-essi.info/}}
%
%
%
% % \vspace*{2mm}
% % \item
% %
%
%
% \end{itemize}
%
%
% \end{frame}
%
%
%
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{Quality Assurance}
% %
% % \begin{itemize}
% %
% % \item Full verification suit for each element, model, algorithm
% %
% % \vspace*{4mm}
% % \item Certification process in progress for NQA-1 and ISO-90003-2014
% %
% % %\vspace*{3mm}
% % %\item[] Verification examples given below
% %
% % \end{itemize}
% %
% %
% %
% %
% % \end{frame}
% %
% %
% %
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Trusting Simulation Tools, Quality Assurance}
%
%
%
% \begin{itemize}
%
% \item Full verification suit for each element, model, algorithm
%
% \vspace*{3mm}
% \item Certification in progress for NQA-1 and ISO-90003-2014
%
%
%
% \vspace*{3mm}
% \item {\bf Verification}:
% % The process of determining that a model
% % implementation accurately represents the developer's conceptual description
% % and specification.
% Mathematics issue. {Verification provides evidence that the
% model is solved correctly.}
%
%
% \vspace*{3mm}
% \item {\bf Validation}:
% % The process of determining the degree to which a
% % model is accurate representation of the real world from the perspective of
% % the intended uses of the model.
% Physics issue. {Validation provides
% evidence that the correct model is solved.}
%
%
%
% \end{itemize}
%
%
%
%
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Importance of Verification and Validation (V\&V)}
%
%
%
%
% \begin{itemize}
%
%
% \item V \& V procedures are the primary means of assessing accuracy in
% modeling and computational simulations
%
%
% \vspace*{8mm}
% \item V \& V procedures are the tools with which we build confidence and
% credibility in modeling and computational simulations
%
%
% \end{itemize}
%
%
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Verification and Validation}
%
%
%
% \begin{figure}[!ht]
% \vspace*{-4mm}
% %\hspace*{-0.5cm}
% \begin{center}
% {\includegraphics[width=11cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_Introduction/tex_works_Conferences_2005_OpenSeesWorkshopAugust_DeveloperSymposium_VerifValidFund01.pdf}}
% \end{center}
% \end{figure}
%
%
% Oberkampf et al.
%
%
% \end{frame}
%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{V\&V Further Reading}
% %
% %
% %
% % \begin{itemize}
% %
% % \item {\sc William Oberkampf}: {\it Short Course on Verification and Validation
% % in Computational Mechanics}, July 2003, Albuquerque, NM.
% %
% % \item {\sc William~L. Oberkampf, Timothy~G. Trucano, and Charles Hirsch.}
% % Verification, Validation and Predictive Capability in Computational
% % Engineering and Physics.
% % {\em Proceedings of the Foundations for Verification and
% % Validation on the 21st Century Workshop}, Laurel, Maryland,
% % % October 2002, JHU / Applied Physics Laboratory.
% % October 2002, JHU.
% %
% %
% % \item {\sc Patrick~J. Roache.}
% % {\em Verification and Validation in Computational Science and
% % Engineering}. Hermosa publishers, 1998. ISBN 0-913478-08-3.
% %
% %
% % \end{itemize}
% %
% %
% % \end{frame}
% %
% %
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Earthquake Soil Structure Interaction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Energy Dissipation, Elasto-Plasticity}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Energy Input and Dissipation}
\begin{itemize}
\vspace*{1mm}
\item[] Energy input, static and dynamic forcing
\vspace*{4mm}
\item[] Energy dissipation outside SSI domain:
\begin{itemize}
\item SSI system oscillation radiation
\item Reflected wave radiation
\end{itemize}
%\vspace*{1mm}
\item[] Energy dissipation/conversion inside SSI domain:
\begin{itemize}
\item Inelasticity of soil, contact zone, structure, foundation, dissipators
\item Viscous coupling with internal/pore fluids, and external fluids
% % \item[] potential and kinetic energy
% \item[] potential $\leftarrow \! \! \! \! \! \! \rightarrow$ kinetic energy
\end{itemize}
%\vspace*{1mm}
% \item[] Numerical energy dissipation (numerical damping/production and period errors)
% \item[] Numerical energy dissipation (damping/production)
%\vspace*{4mm}
\item[] Numerical energy dissipation/production
\end{itemize}
%
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Incremental Plastic Work: $d W_p = \sigma_{ij} \, d\epsilon_{ij}^{pl}$}
%
% \begin{itemize}
% \item Negative incremental energy dissipation
% \item Plastic work is NOT plastic dissipation
% \end{itemize}
%
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[height=5.2cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_06June2017/DOE_Annual_2017/Figures/Negative_Dissipation_Problem.png}
% \end{center}
% \end{figure}
%
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Energy Dissipation due to Elasto-Plasticity}
\vspace*{2mm}
Single elastic-plastic element under cyclic shear loading
\begin{itemize}
\item[] Difference between plastic work and dissipation
\item[] Plastic work can decrease, dissipation always increases
\end{itemize}
\vspace*{-7mm}
\begin{figure}[!hbpt]
\begin{center}
\hspace*{-5mm}
\includegraphics[width=12.0truecm]{/home/jeremic/tex/works/Thesis/HanYang/Files_06June2017/DOE_Annual_2017/Figures/Dissipation_Material.png}
\end{center}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Plastic Free Energy}
%
% \begin{itemize}
% % \item Direct violation of the second law of thermodynamics
% % % \item Where is the problem?
% % \item Missing is the plastic free energy
%
%
% \item Multi-scale effect of particle interlocking/rearrangement
% \item Strain energy on particle level
% \end{itemize}
%
% \begin{figure}[!h]
% \begin{center}
% \includegraphics[width=7truecm]{/home/jeremic/tex/works/Thesis/HanYang/Files_06June2017/DOE_Annual_2017/Figures/Plastic_Free_Energy.png}
% \end{center}
% \end{figure}
%
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%f%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Energy Transformation in Elastic-Plastic Material}
%
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[height=6cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_06June2017/DOE_Annual_2017/Figures/Energy_Transformation.png}
% \end{center}
% \end{figure}
%
% \end{frame}
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Energy Dissipation Control Mechanisms}
\begin{figure}[!H]
%\hspace*{-10mm}
\includegraphics[width=3.4cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_plasticity.pdf}
\includegraphics[width=3.4cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_Rayleigh.pdf}
\includegraphics[width=3.4cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_Newmark.pdf}
\end{figure}
% \hspace*{10mm} Numerical \hspace*{20mm} Viscous \hspace*{20mm} Plasticity
\hspace*{10mm} Plasticity \hspace*{20mm} Viscous \hspace*{20mm} Numerical
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Energy Dissipation Control}
\begin{figure}[!H]
%\hspace*{-10mm}
% \includegraphics[width=3cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_a.pdf}
% \includegraphics[width=3cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_b.pdf}
\includegraphics[width=9cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_g.pdf}
% \includegraphics[width=3cm]{/home/jeremic/tex/works/Thesis/HanYang/Files_Energy_dissipation_01Dec2017/case_e.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Inelastic Modeling for Components}
\begin{itemize}
%\vspace*{1mm}
\item Soil elastic-plastic
\begin{itemize}
\item Dry, single phase
\item Unsaturated (partially saturated)
\item Fully saturated
\end{itemize}
%\vspace*{1mm}
\item Contact, inelastic, soil/rock -- foundation
\begin{itemize}
\item Dry, single phase, Normal (hard and soft, gap open/close),
Friction (nonlinear)
\item Fully saturated, suction and excess pressure (buoyant force)
\end{itemize}
%\vspace*{1mm}
\item Structural inelasticity/damage
\begin{itemize}
\item Nonlinear/inelastic 1D fiber beam
\item Nonlinear/inelastic 2D wall element
\end{itemize}
% %\vspace*{1mm}
% \item Fluid-Solid interaction (open surface)
%
\end{itemize}
%
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Sold/Structure -- Fluid Interaction}
%
%
% Still in verification phase, so not use at this time
%
% %\vspace*{-5mm}
% \begin{center}
% % \hspace*{-15mm}
% \movie[label=show3,width=6cm,poster,autostart,showcontrols]
% {\includegraphics[width=6.5cm]
% {/home/jeremic/tex/works/Conferences/2017/DOE_Project_Review_Meeting_LBNL_09June2017/Present/Solid-Fluid-Interaction.jpg}}
% {/home/jeremic/tex/works/Thesis/HexiangWang/Files_06June2017/pic/Solid_Fluid_Interaction.mp4}
% \end{center}
%
%
%
%
% \end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Inelastic Behavior of an SMR}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Modeling Uncertainties for Embedded Structures}
% \begin{itemize}
% \item Ground motions: 1D seismic records, deconvolution\\
% \item Motion-input method: directly imposed excitation, no SSI\\
% \item Neglected non-linear behaviors:\\
% \setbeamertemplate{itemize items}[circle]
% \begin{itemize}
% \item material nonlinearity
% \item soil-structure interface nonlinearity
% \end{itemize}
% \end{itemize}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Modeling Procedure}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Model Development}
% % \small -geometry, mesh, contacts, BCs, damping
%
% \vspace{-2mm}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/Parallel_Fancy.png}
% \includegraphics[width=6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_2.pdf}
% \end{center}
% \end{figure}
%
%
% % Model 1 (structure:DRM=1:1)\quad\quad\quad\quad Model 2 (structure:DRM=1:4)
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{3D free field motion transition}
%
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=\linewidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SW42DRM.pdf}
% \end{center}
% \end{figure}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Soil Modeling Parameters}
\begin{columns}[T]
\begin{column}{.6\textwidth}
\vspace*{-0.5cm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/parameters.png}
\end{center}
\end{figure}
\end{column}
\begin{column}{.4\textwidth}
% \centerline{\scriptsize Armstrong Frederick kinematic hardening}
\vspace*{-0.3cm}
\begin{figure}[!H]
\begin{center}
\vspace*{-3mm}
\includegraphics[width=4.5cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/ha=30Mpa.png}
\\
\includegraphics[width=3.5cm]{/home/jeremic/tex/works/Thesis/SumeetKumarSinha/Files_10Aug2017/Npp_Non_Linear_Effects/images/SoftContact.pdf}
\end{center}
\end{figure}
% \small{Relationship between shear wave velocity and shear strength:\\}
% \vspace{-0.2cm}
% \begin{equation*}
% V_s=23S^{0.475}
% \end{equation*}
\end{column}
\end{columns}
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Modeling Result}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Representative points}
\begin{columns}[T]
\begin{column}{.5\textwidth}
\vspace{-0.5cm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/Points_configuration.pdf}
\end{center}
\end{figure}
\end{column}
\begin{column}{.5\textwidth}
\vspace{0.6cm}
\centerline{\scriptsize Location of points}
\vspace{-0.6cm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/representative_points.pdf}
\end{center}
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SMR: Inelastic ESSI Effects, Top Center}
\vspace*{-30mm}
\begin{figure}[!H]
\begin{flushleft}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point1_ax_time_series.pdf}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point1_ay_time_series.pdf}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point1_az_time_series.pdf}
\\
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point1_ax_fft.pdf}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point1_ay_fft.pdf}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point1_az_fft.pdf}
\end{flushleft}
\end{figure}
\vspace*{-75mm}
\begin{figure}[!H]
\begin{flushright}
\hspace*{30mm}
\includegraphics[width=2cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/Points_configuration.pdf}
\hspace*{-10mm}
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{SMR: ESSI Effects, Location}
%
%
%
%
%
% \vspace*{-30mm}
%
% \scriptsize \hspace*{20mm} Point 3 \hspace*{25mm} Point 4 \hspace*{20mm} Point 5
% \begin{figure}[!H]
% \begin{flushleft}
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point3_ax_time_series.pdf}
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point4_ax_time_series.pdf}
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point5_ax_time_series.pdf}
% \\
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point3_ax_fft.pdf}
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point4_ax_fft.pdf}
% \includegraphics[width=3.6cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point5_ax_fft.pdf}
% \end{flushleft}
% \end{figure}
%
%
% \vspace*{-75mm}
%
% \begin{figure}[!H]
% \begin{flushright}
% \hspace*{30mm}
% \includegraphics[width=2cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/Points_configuration.pdf}
% \hspace*{-10mm}
% \end{flushright}
% \end{figure}
%
%
%
%
%
%
% %
% %
% %
% % \begin{columns}[T]
% % \begin{column}{0.8\textwidth}
% % \vspace{-0.6cm}
% % \scriptsize \quad \quad \quad \quad Point 3\quad \quad \quad \quad \quad \quad \quad Point 4\quad \quad \quad \quad \quad \quad Point 5
% % \vspace{-0.3cm}
% % \begin{figure}[!H]
% % \begin{center}
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point3_ax_time_series.pdf}
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point4_ax_time_series.pdf}
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point5_ax_time_series.pdf} \\
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point3_ax_fft.pdf}
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point4_ax_fft.pdf}
% % \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point5_ax_fft.pdf}
% % \end{center}
% % \end{figure}
% % \vspace{-0.3cm}
% % \begin{itemize}
% % \item Nonlinear effects attenuate along the depth
% % \end{itemize}
% % \end{column}
% % \begin{column}{0.3\textwidth}
% % \begin{figure}[!H]
% % \begin{center}
% % \includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/Points_configuration.pdf}
% % \end{center}
% % \end{figure}
% % \end{column}
% % \end{columns}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SMR: ESSI Effects, Material Modeling}
\begin{columns}[T]
\begin{column}{0.6\textwidth}
\scriptsize \quad \quad \quad \quad \quad Material A\quad \quad \quad \quad \quad \quad \quad Material B
\vspace{-3mm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_point1_ax_time_series.pdf}
% \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_me_point1_ax_time_series.pdf}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bilinear_point1_ax_time_series.pdf} \\
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_yuan_Point1_ax_fft.pdf}
% \includegraphics[width=0.3\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/AF_me_Point1_ax_fft.pdf}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bilinear_Point1_ax_fft.pdf}
\end{center}
\end{figure}
\vspace{-0.3cm}
% \begin{itemize}
% \item
% \end{itemize}
\end{column}
\hspace{-0.3cm}
\begin{column}{0.3\textwidth}
\vspace{-0.35cm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/ha=30Mpa.png} \\
\tiny \quad Material A: nonlinear, vM - AF\\
\vspace{0.2cm}
\includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/material_stress_strain_behavior.pdf} \\
\tiny \quad Material B: Bilinear\\
\end{center}
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SMR: Accelerations Along Depth}
\vspace{-0.6cm}
\begin{columns}[T]
\hspace{-0.6cm}
\begin{column}{1.1\textwidth}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/free_field_acceleration_depth_variation.pdf}\hspace{-0.7cm}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/free_field_a_depth_variation_AF.pdf}
\end{center}
\end{figure}
\vspace{-1.1cm}
\begin{figure}[!H]
\begin{center}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_acceleration_depth_variation_elastic.pdf}\hspace{-0.7cm}
\includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_acceleration_depth_variation.pdf}
\end{center}
\end{figure}
\end{column}
\hspace{-0.7cm}
\begin{column}{0.15\textwidth}
\vspace{1.5cm}
Nonlinear site effects\\
\vspace{2.5cm}
SSI effects
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{SMR: Displacements Along Depth}
% \vspace{-0.6cm}
% \begin{columns}[T]
% \hspace{-0.5cm}
% \begin{column}{1.1\textwidth}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/free_field_displacement_depth_variation.pdf}\hspace{-0.7cm}
% \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/free_field_AF_u_depth_variation.pdf}
% \end{center}
% \end{figure}
% \vspace{-1.1cm}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_displacement_depth_variation_elastic.pdf}\hspace{-0.7cm}
% \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_displacement_depth_variation.pdf}
% \end{center}
% \end{figure}
% \end{column}
% \hspace{-0.7cm}
% \begin{column}{0.15\textwidth}
% \vspace{1.5cm}
% Nonlinear site effects\\
% \vspace{2.5cm}
% SSI effects
% \end{column}
% \end{columns}
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Depth variation - PGA \& PGD}
\vspace{-0.9cm}
\begin{figure}[!H]
\begin{center}
\hspace*{-10mm}
\includegraphics[width=0.6\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/depth_variation_peak_AH_annotation.pdf}
\includegraphics[width=0.6\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/depth_variation_peak_UH_annotation.pdf}
\hspace*{-5mm}
\end{center}
\end{figure}
\vspace{-0.5cm}
\begin{itemize}
\item \scriptsize The PGA \& PGD of SSI systems are (very) different from free field motions,
\item \scriptsize Material nonlinearity has significant effect on acceleration response.
% \item \scriptsize Deconvolution methodology for analysis of embedded structure is inaccurate and even dangerous.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Simulation video}
% \centerline{\href{http://cml08.engr.ucdavis.edu/for_professor/SMR.mp4}{Elastic vs Inelastic-This is a link!!}}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=0.8\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/SMR_comparison.png}
% \end{center}
% \end{figure}
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Elastic and Inelastic Response: Differences}
%
% % Elastoplastic soil with contact elements
% %% Both solid and contact elements dissipate energy
%
% % \vspace*{-5mm}
% \begin{center}
% % \hspace*{-15mm}
% \movie[label=show3,width=9cm,poster,autostart,showcontrols]
% {\includegraphics[width=9cm]
% {/home/jeremic/tex/works/Thesis/HexiangWang/Files_13June2017/SMiRT_SMR_hexiang.jpg}}
% {/home/jeremic/tex/works/Thesis/HexiangWang/Files_13June2017/SMiRT_SMR_hexiang.mp4}
% \end{center}
%
%
% \begin{flushleft}
% \vspace*{-15mm}
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/SMR_animations_August2017/SMiRT_SMR_hexiang.mp4}
% % \href{./homo_50m-mesh_45degree_Ormsby.mp4}
% {\tiny (MP4)}
% \end{flushleft}
% %
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Energy Dissipation for an SMR}
% Elastoplastic soil with contact elements
%% Both solid and contact elements dissipate energy
% \vspace*{-5mm}
\begin{center}
% \hspace*{-15mm}
\movie[label=show3,width=9cm,poster,autostart,showcontrols]
{\includegraphics[width=9cm]
{/home/jeremic/tex/works/Conferences/2017/SMiRT_24/present/Nonlinear_Analysis_of_ESSI_for_SMR/SMR_Energy_Dissipation_screen_grab.jpg}}
{/home/jeremic/tex/works/Thesis/HanYang/Files_16Aug2017/SMR_Energy_Dissipation.mp4}
\end{center}
\begin{flushleft}
\vspace*{-15mm}
\href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Energy_Dissipation_Animations/SMR_Energy_Dissipation.mp4}
% \href{./homo_50m-mesh_45degree_Ormsby.mp4}
{\tiny (MP4)}
\end{flushleft}
%
\end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
%
% \frametitle{Buoyant Force Simulation}
%
% \begin{figure}[!H]
% \hspace*{-10mm}
% \includegraphics[width=7cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/upU_element_type_annotation.pdf}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bouyant_displacement.pdf}
% \end{figure}
%
% % - %
% % - % \begin{tikzpicture}[remember picture,overlay]
% % - % \node[anchor=south west,inner sep=0pt] at ($(current page.south west)+(7.5cm,2.5cm)$) {
% % - % \includegraphics[width=0.4\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bouyant_displacement.pdf}};
% % - % \end{tikzpicture}
% % -
% % - % \vspace{-1.4cm}
% % \begin{itemize}
% % \item \scriptsize Upward structural displacement under buoyant force
% % \end{itemize}
% \end{frame}
%
%
%
% %
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Fully Coupled Formulation, u-p-U}
%
%
% \begin{itemize}
%
% \item Fully saturated soil
% \item Partially, un-saturated soil
%
% \end{itemize}
%
% %
% %
% \vspace*{-3mm}
% \begin{small}
% \begin{eqnarray}
% \hspace*{-13mm}
% \left[ \begin{array}{ccc}
% (M_s)_{KijL} & 0 & 0 \\
% 0 & 0 & 0 \\
% 0 & 0 & (M_f)_{KijL}
% \end{array} \right]
% \left[ \begin{array}{c}
% \ddot{\overline{u}}_{Lj} \\
% \ddot{\overline{p}}_N \\
% \ddot{\overline{U}}_{Lj}
% \end{array} \right]
% +
% \left[ \begin{array}{ccc}
% (C_1)_{KijL} & 0 & -(C_2)_{KijL} \\
% 0 & 0 & 0 \\
% -(C_2)_{LjiK} & 0 & (C_3)_{KijL} \\
% \end{array} \right]
% \left[ \begin{array}{c}
% \dot{\overline{u}}_{Lj} \\
% \dot{\overline{p}}_N \\
% \dot{\overline{U}}_{Lj}
% \end{array} \right]
% \nonumber
% \\
% +
% \left[ \begin{array}{ccc}
% (K^{EP})_{KijL} & -(G_1)_{KiM} & 0 \\
% -(G_1)_{LjM} & -P_{MN} & -(G_2)_{LjM} \\
% 0 & -(G_2)_{KiL} & 0
% \end{array} \right]
% \left[ \begin{array}{c}
% \overline{u}_{Lj} \\
% \overline{p}_M \\
% \overline{U}_{Lj}
% \end{array} \right]
% =
% \left[ \begin{array}{c}
% \overline{f}_{Ki}^{solid} \\
% 0 \\
% \overline{f}_{Ki}^{fluid}
% \end{array} \right] \nonumber
% %\\
% %\label{68}
% \end{eqnarray}
% \end{small}
% %
% %
% %
% \end{frame}
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Fully Coupled Formulation, u-p-U}
%
% %
% %
% %
% %
% %
% \begin{eqnarray}
% \hspace*{-10mm} (M_s)_{KijL}&=&\int_{\Omega} H_K^u (1-n) \rho_s \delta_{ij} H_L^u d\Omega
% \hspace*{5mm} (M_f)_{KijL}=\int_{\Omega} H_K^U n \rho_f \delta_{ij} H_L^U d\Omega \nonumber\\
% \hspace*{-10mm} (C_1)_{KijL}&=&\int_{\Omega} H_K^u n^2 k_{ij}^{-1} H_L^u d\Omega
% \hspace*{5mm} (C_2)_{KijL}=\int_{\Omega} H_K^u n^2 k_{ij}^{-1} H_L^U d\Omega \nonumber\\
% \hspace*{-10mm} (C_3)_{KijL}&=&\int_{\Omega} H_K^U n^2 k_{ij}^{-1} H_L^U d\Omega
% \hspace*{5mm} (K^{EP})_{KijL}=\int_{\Omega} H_{K,m}^u D_{imjn} H_{L,n}^u d\Omega \nonumber\\
% \hspace*{-10mm} (G_1)_{KiM}&=&\int_{\Omega} H_{K,i}^u (\alpha-n) H_M^p d\Omega
% \hspace*{5mm} (G_2)_{KiM}=\int_{\Omega} n H_{K,i}^U H_M^p d\Omega \nonumber\\
% \hspace*{-10mm} P_{NM}&=&\int_{\Omega} H_N^p \frac{1}{Q} H_M^p d\Omega \nonumber
% \end{eqnarray}
% %
% %
% %
% %
% %\newpage
%
% % \begin{eqnarray}
% % \overline{f}_{Ki}^{solid}&=&(f_1^u)_{Ki}-(f_4^u)_{Ki}+(f_5^u)_{Ki} \nonumber\\
% % \overline{f}_{Ki}^{fluid}&=&-(f_1^U)_{Ki}+(f_2^U)_{Ki} \nonumber\\
% % (f_1^u)_{Ki}&=&\int_{\Gamma_t} H_K^u n_j \sigma_{ij}^{''} d\Gamma \nonumber\\
% % (f_4^u)_{Ki}&=&\int_{\Gamma_p} H_K^u (\alpha-n) n_i p d\Gamma \nonumber\\
% % (f_5^u)_{Ki}&=&\int_{\Omega} H_K^u (1-n) \rho_s b_i d\Omega \nonumber\\
% % (f_1^U)_{Ki}&=&\int_{\Gamma_p} n H_K^U n_i p d\Gamma \nonumber\\
% % (f_2^U)_{Ki}&=&\int_{\Omega} n H_K^U \rho_f b_i d\Omega
% % \label{69}
% % \end{eqnarray}
% %
%
% %
% \end{frame}
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Liquefaction as Base Isolation, Model}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=4.5truecm]{/home/jeremic/tex/works/Conferences/2017/Slovenia_IAEA_short_course/present/SSI-Site_Response_Analysis/Liquefaction_04.jpg}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Liquefaction, Wave Propagation}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=5.5truecm]{/home/jeremic/tex/works/Conferences/2017/Slovenia_IAEA_short_course/present/SSI-Site_Response_Analysis/Liquefaction_01.jpg}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{Liquefaction, Excess Pore Pressure Ratio}
% %
% % \begin{figure}[!hbpt]
% % \begin{center}
% % \includegraphics[width=10truecm]{/home/jeremic/tex/works/Conferences/2017/Slovenia_IAEA_short_course/present/SSI-Site_Response_Analysis/Liquefaction_02.jpg}
% % \end{center}
% % \end{figure}
% %
% % \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Liquefaction, Stress-Strain Response}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=5.5truecm]{/home/jeremic/tex/works/Conferences/2017/Slovenia_IAEA_short_course/present/SSI-Site_Response_Analysis/Liquefaction_03.jpg}
% \end{center}
% \end{figure}
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Pile in Liquefiable Soil, Model}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=2.7truecm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Cyclic_Mobility_and_Liquefaction/tex_works_Papers_2008_Pile_in_liquefied_soil_upU_final_FEmesh3D.pdf}
% \hfill
% \includegraphics[width=3.5truecm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Cyclic_Mobility_and_Liquefaction/tex_works_Papers_2008_Pile_in_liquefied_soil_upU_final_FEmeshPileBeam.pdf}
% %\hfill
% \includegraphics[width=4truecm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Cyclic_Mobility_and_Liquefaction/tex_works_Papers_2008_Pile_in_liquefied_soil_upU_final_SFSIModelSetup_upU_01.pdf}
% \end{center}
% \end{figure}
%
%
% \end{frame}
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Pile in Liquefiable Soil, Results}
%
% \begin{figure}[!hbpt]
% \begin{center}
% \includegraphics[width=6truecm]{/home/jeremic/tex/works/Conferences/2018/Oersted-DONG-Energy/present/Pile_in_liquefied_soil.jpg}
% \end{center}
% \end{figure}
%
%
%
%
% \end{frame}
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Dam, 3D Slope Stability}
%
% %
% \begin{figure}[!htbp]
% \begin{center}
% \includegraphics[width=3.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WolfCreekDam_SateliteView01.jpg}
% \hfill
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WolfCreekDam_SatelliteView_with_slope01.jpg}
% \hfill
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/img-0188.jpg}
% \hfill
% \includegraphics[width=2.6cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WolfCreekDam_Q2-61_621_Embankment_Sep_30_48.jpg}
% \\
% \includegraphics[width=3.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WolfCreekDam_PerpendicularSection.jpg}
% \hfill
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/3D_final02.jpg}
% \hfill
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/3D_final04.jpg}
% \hfill
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/3D_final05.jpg}
% %\hfill
% %\includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/3D_final_Top.jpg}
% \\
% \includegraphics[width=2.0cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/Undrained-Su440-Vector-Plan_snapshot.jpg}
% \hfill
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WCD_Undrained_L680_E680_Su800_Alluvium_Su1500_FS250.jpg}
% \hfill
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WCD_Undrained_L680_E680_Su900_Alluvium_Su1000_FS222.jpg}
% \hfill
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Applications_Slope_Stability_in_2D_and_3D/WCD_Undrained_L680_E720_Su1300_FS154.jpg}
%
% %\hspace*{-0.9cm}
% %bridge.}
% \end{center}
% \end{figure}
% %
%
%
%
%
% \end{frame}
%
% %-
%
%
%
%
% %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %- \begin{frame}
% %- \frametitle{Partially Saturated, Unsaturated Soil}
% %-
% %- %
% %-
% %- %OVDE
% %-
% %-
% %- \end{frame}
% %-
% %- %-
% %-
% %- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %-
% %-
% %-
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
%
% \frametitle{Buoyant Force Simulation}
%
% \begin{figure}[!H]
% \hspace*{-10mm}
% \includegraphics[width=7cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/upU_element_type_annotation.pdf}
% \includegraphics[width=5cm]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bouyant_displacement.pdf}
% \end{figure}
%
% % - %
% % - % \begin{tikzpicture}[remember picture,overlay]
% % - % \node[anchor=south west,inner sep=0pt] at ($(current page.south west)+(7.5cm,2.5cm)$) {
% % - % \includegraphics[width=0.4\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_SMiRT_11Aug2017/pic/bouyant_displacement.pdf}};
% % - % \end{tikzpicture}
% % -
% % - % \vspace{-1.4cm}
% % \begin{itemize}
% % \item \scriptsize Upward structural displacement under buoyant force
% % \end{itemize}
% \end{frame}
%
%
%
% %
%
%
%
%
%
%
%
%
%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Solid/Structure-Fluid Interaction: gmFoam}
% \begin{columns}[T]
% \begin{column}{.6\textwidth}
% \begin{itemize}
% % \vspace{-0.4cm}
% \item[] Mesh separation
% \begin{itemize}
% \item[] integrated geometry model %(solid \& fluid) based on gmsh
% \item[] FEM \& FVM mesh conversion
% \item[] handle discontinuous mesh
% \end{itemize}
% \item[] Incorporate gmESSI
% % \begin{itemize}
% % \item[] conveniently set BCs
% % \item[] input files easy generation
% % \end{itemize}
% \item[] Interface geometry extraction
%
% \item[] Interface class \textbf{SSFI} in Real-ESSI
% % \begin{itemize}
% % \item[] interface geometrical mapping
% % \item[] handle different mesh size
% % \item[] BCs interpolation \& updating
% % \item[] boundary mass conservation iteration
% % \end{itemize}
% \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ OpenFoam
% % \item[] Shepherd method
% % \begin{itemize}
% % \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ OpenFoam
% % \item[] explicit transient algorithm
% % \item[] handle different time step length
% % \end{itemize}
%
%
% \end{itemize}
% \vspace{0.2cm}
% % \scriptsize gmFoam: https://github.com/hexiang6666/gmFoam
% \end{column}
% \begin{column}{.4\textwidth}
% \vspace{-1cm}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/gmFoam.pdf}
% \end{center}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % \begin{frame}
% % \frametitle{Semi-Coupled Solid Fluid Interaction}
% % \begin{itemize}
% % \item[] Utilize VOF implemented in interFoam
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] avoid tracking free surface
% % \item[] relatively fixed BCs
% % \item[] relatively fixed background mesh
% % \end{itemize}
% % \end{itemize}
% % \vspace{-0.3cm}
% % \begin{itemize}
% % \item[] Interface class \textbf{SSFI} added in Real-ESSI
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] interface geometrical mapping
% % \item[] handle different mesh size
% % \item[] BCs interpolation \& updating
% % \item[] boundary mass conservation iteration
% % \end{itemize}
% % \end{itemize}
% % \vspace{-0.3cm}
% % \begin{itemize}
% % \item[] Shepherd method
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ InterFoam
% % \item[] explicit transient algorithm
% % \item[] handle different time step length
% % \end{itemize}
% % \end{itemize}
% %
% % \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % \begin{frame}
% % \frametitle{Semi-Coupled Solid Fluid Interaction}
% % Implemented in Real-ESSI based on explicit transient algorithm
% % \begin{figure}[!H]
% % \begin{center}
% % \includegraphics[width=.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/No_SSFI.pdf}\enspace
% % \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/SSFI.pdf}\enspace
% % \end{center}
% % \end{figure}
% % \quad \href{http://cml08.engr.ucdavis.edu/for_professor/fluid_model_simulation.mp4}{Water Break without SFI}\quad \quad \quad \quad \quad \href{http://cml08.engr.ucdavis.edu/for_professor/Solid_Fluid_Interaction.mp4}{Box Sloshing with SFI}
% % \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Solid/Structure-Fluid Interaction, Example}
%
%
%
% %\vspace*{-5mm}
% \begin{center}
% % \hspace*{-15mm}
% \movie[label=show3,width=9cm,poster,autostart,showcontrols]
% {\includegraphics[width=8.5cm]
% {/home/jeremic/tex/works/Conferences/2017/DOE_Project_Review_Meeting_LBNL_09June2017/Present/Solid-Fluid-Interaction.jpg}}
% {/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/Fluid_Solid_interaction/Solid_Fluid_Interaction_NEW.mpeg}
% \end{center}
%
%
% \begin{flushleft}
% \vspace*{-15mm}
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/Fluid_Solid_interaction/Solid_Fluid_Interaction.mp4}
% % \href{./homo_50m-mesh_45degree_Ormsby.mp4}
% {\tiny (MP4)}
% \end{flushleft}
% %
%
%
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % -
% % - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Seismic Motions}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Stress Testing SSI Systems}
\begin{itemize}
\item Excite SSI system with a suite of seismic motions
%\vspace*{2mm}
\item Waves: P, SV, Sh, Surface (Rayleigh, Love, etc.)
\item Variation in inclination, frequency, energy and duration
\item Try to "break" the system, shake-out strong and weak links
%\vspace*{3mm}
%\item
\end{itemize}
\vspace*{-4mm}
\begin{figure}[!htb]
\begin{center}
\hspace*{-5mm}
\includegraphics[width=6.5cm]{/home/jeremic/tex/works/Conferences/2018/BestPSHANI/Presentation/stress_test_Best_SHANI_May2018.jpg}
\end{center}
\end{figure}
\vspace*{-5mm}
\begin{figure}[!htb]
\begin{center}
\hspace*{-5mm}
%\includegraphics[width=4cm]{/home/jeremic/tex/works/consulting/2017/IAEA/TECDOC/Version_14Mar2017/1Dvs3x1Dvs3D_waves_02.pdf}
\includegraphics[width=7.5cm]{/home/jeremic/tex/works/Conferences/2018/WCCM2018/Present/1Dvs3x1Dvs3D_waves_03.pdf}
\hspace*{4mm}
\includegraphics[width=3.6cm]{/home/jeremic/tex/works/Conferences/2018/WCCM2018/Present/1Dvs3x1Dvs3D_waves_02.pdf}
\hspace*{-5mm}
\end{center}
\end{figure}
%
%
% \vspace*{-2mm}
% \begin{figure}[!htb]
% \begin{center}
% \includegraphics[width=6.5cm]{/home/jeremic/tex/works/Conferences/2015/CNSC_July/Present/Stress_test_NPP_idea.jpg}
% \hspace*{-5mm}
% \end{center}
% \end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Stress Test Wavelet Signals}
\begin{itemize}
% \item Gauss
% \begin{figure}[!hbpt]
% \begin{flushright}
% \vspace*{-0.5cm}
% \includegraphics[width=7.0truecm]{/home/jeremic/tex/works/Thesis/JoseAntonioAbellMena/Dyke_results/gauss.png}
% \end{flushright}
% \end{figure}
\item Ricker
\begin{figure}[!hbpt]
\begin{flushright}
\vspace*{-1cm}
\includegraphics[width=4.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ricker2nd.pdf}
\includegraphics[width=4.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ricker2nd_FFT.pdf}
\hspace*{-0.7cm}
\end{flushright}
\end{figure}
\item Ormsby
\begin{figure}[!hbpt]
\begin{flushright}
\vspace*{-1cm}
\includegraphics[width=4.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ormsby.pdf}
\includegraphics[width=4.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ormsby_FFT.pdf}
\hspace*{-0.7cm}
\end{flushright}
\end{figure}
\end{itemize}
% \begin{figure}[!hbpt]
% \begin{center}
% %
% \includegraphics[width=5.0truecm]{/home/jeremic/tex/works/Thesis/JoseAntonioAbellMena/Dyke_results/gauss.png}
% %
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ricker2nd.pdf}
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ricker2nd_FFT.pdf}
% %
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ormsby.pdf}
% \includegraphics[width=2.5cm]{/home/jeremic/tex/works/lecture_notes_SOKOCALO/Figure-files/_Chapter_Verification_and_Validation_for_Seismic_Wave_Propagation_Problems/tex_works_Thesis_NimaTafazzoli_Dissertation_Nima_Dissertation_Chapter3_Ormsby_FFT.pdf}
% %
% \end{center}
% \end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Free Field, Variation in Input Frequency, $\theta = 60^{o}$}
% Elastoplastic soil with contact elements
%% Both solid and contact elements dissipate energy
% \vspace*{-5mm}
\begin{center}
% \hspace*{-15mm}
%\movie[label=show3,width=10cm,poster,autostart,showcontrols]
\movie[label=show3,width=10cm,poster,showcontrols]
{\includegraphics[width=10cm]
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/Free_Field_variation_in_wave_frequency.jpg}}
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/free_field_frequency.mp4}
\end{center}
% online
\vspace*{-12mm}
\begin{flushleft}
\hspace*{-4mm}
\href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/free_field_frequency.mp4}
{\tiny (MP4)}
\end{flushleft}
% online
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{SMR ESSI, Variation in Input Frequency, $\theta = 60^{o}$}
% Elastoplastic soil with contact elements
%% Both solid and contact elements dissipate energy
% \vspace*{-5mm}
\begin{center}
% \hspace*{-15mm}
%\movie[label=show3,width=10cm,poster,autostart,showcontrols]
\movie[label=show3,width=10cm,poster,showcontrols]
{\includegraphics[width=10cm]
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/ESSI_SMR_variation_in_wave_frequency.jpg}}
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/SMR_frequency.mp4}
\end{center}
% online
\vspace*{-12mm}
\begin{flushleft}
\hspace*{-4mm}
\href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/Free_Field_animations_angle_or_frequency_variation/SMR_frequency.mp4}
{\tiny (MP4)}
\end{flushleft}
% online
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
%\frametitle{SMR ESSI, Variation in Input Frequency, $\theta = 60^{o}$}
\frametitle{SMR ESSI, 3C vs 3$\times$1C}
% Elastoplastic soil with contact elements
%% Both solid and contact elements dissipate energy
% \vspace*{-5mm}
\begin{center}
% \hspace*{-15mm}
%\movie[label=show3,width=10cm,poster,autostart,showcontrols]
\movie[label=show3,width=10cm,poster,showcontrols]
{\includegraphics[width=10cm]
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/SMR_animations_May2018/3Dvs1D_deconvolution.jpg}}
{/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/SMR_animations_May2018/3Dvs1D_deconvolution.ogv}
\end{center}
% online
\vspace*{-12mm}
\begin{flushleft}
\hspace*{-4mm}
\href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/SMR_animations_May2018/3Dvs1D_deconvolution.ogv}
{\tiny (OGV)}
\end{flushleft}
% online
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Free Field vs ESSI - Different Frequencies}
\begin{textblock*}{8cm}(1.0cm,2.5cm) % {block width} (coords)
\scriptsize Acceleration response - Surface center point A
\end{textblock*}
\begin{textblock*}{2cm}(0.2cm,4cm) % {block width} (coords)
\tiny X direction
\end{textblock*}
\begin{textblock*}{2cm}(0.2cm,6.3cm) % {block width} (coords)
\tiny Z direction
\end{textblock*}
\begin{textblock*}{3cm}(2.4cm,7.6cm) % {block width} (coords)
\tiny (a) $f=1Hz \ \ \theta=60^{o}$
\end{textblock*}
\begin{textblock*}{3cm}(5.6cm,7.6cm) % {block width} (coords)
\tiny (b) $f=5Hz \ \ \theta=60^{o}$
\end{textblock*}
\begin{textblock*}{3cm}(8.8cm,7.6cm) % {block width} (coords)
\tiny (c) $f=10Hz \ \ \theta=60^{o}$
\end{textblock*}
\vspace*{-30mm}
\begin{figure}[!H]
\centering
% \begin{flushleft}
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/1Hz_center_ax.pdf}
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/5Hz_center_ax.pdf}
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/10Hz_center_ax.pdf}
\\
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/1Hz_center_az.pdf}
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/5Hz_center_az.pdf}
\includegraphics[width=3.3cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/10Hz_center_az.pdf}
% \end{flushleft}
\end{figure}
\vspace*{-75mm}
\begin{figure}[!H]
\begin{flushright}
\hspace*{30mm}
\includegraphics[width=2.5cm]{/home/jeremic/tex/works/Thesis/HexiangWang/plots_slides_14May2018/Updated_SMR_slides/pic/Points_configuration.pdf}
\hspace*{-10mm}
\end{flushright}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{Reinforced Concrete Wall, Evolution of Plastic Dissipation}
%
%
%
% \vspace*{-2mm}
% \begin{center}
% \hspace*{-7mm}
% \movie[label=show3,width=90mm,poster,showcontrols]
% {\includegraphics[width=90mm]{/home/jeremic/tex/works/Conferences/2018/ENSI_meeting_Brugg_18May2018/Present/Shear_wall_frame.jpg}}{/home/jeremic/tex/works/Thesis/HanYang/Shear_Wall_Presentation_26Apr2018/Presentation/Figures/Shear_Wall_Plastic_Dissipation.mp4}
% \end{center}
%
% % \begin{flushleft}
% % \vspace*{-15mm}
% % \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_Earthquake_Soil_Structure_Interaction_General_Aspects/ESSI_VisIt_movies_Jose_01AApr2015/movie_input_closeup.mp4}
% % % \href{./homo_50m-mesh_45degree_Ormsby.mp4}
% % {\tiny (MP4)}
% % \end{flushleft}
% % %
%
%
% %
% %
% % \vspace*{-3mm}
% % \begin{center}
% % % \hspace*{-15mm}
% % \includemedia[width=\linewidth,height=0.6\linewidth,activate=pageopen,addresource=/home/jeremic/tex/works/Thesis/HanYang/Shear_Wall_Presentation_26Apr2018/Presentation/Figures/Shear_Wall_Plastic_Dissipation.mp4,
% % flashvars={source=/home/jeremic/tex/works/Thesis/HanYang/Shear_Wall_Presentation_26Apr2018/Presentation/Figures/Shear_Wall_Plastic_Dissipation.mp4&autoPlay=true&loop=true}]{VPlayer.swf}
% % \end{center}
% %
%
%
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
%
% \frametitle{NPP 3C vs 3$\times$1C Motions}
%
% % Elastoplastic soil with contact elements
% %% Both solid and contact elements dissipate energy
%
%
% % \vspace*{-5mm}
% \begin{flushleft}
% \hspace*{-7mm}
% %\movie[label=show3,width=54mm,poster,autostart,showcontrols]
% \movie[label=show3,width=54mm,poster,showcontrols]
% {\includegraphics[width=54mm]
% {/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3C.jpg}
% }
% {/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3C.mp4}
% \end{flushleft}
% % online
% %\vspace*{-12mm}
% \begin{flushleft}
% %\hspace*{-10mm}
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3C.mp4}
% {\tiny (MP4)}
% \end{flushleft}
% % online
%
%
%
%
% % \vspace*{-5mm}
% \vspace*{-53mm}
% \begin{flushright}
% % \hspace*{-15mm}
% %\movie[label=show3,width=58mm,poster,autostart,showcontrols]
% \movie[label=show3,width=54mm,poster,showcontrols]
% {\includegraphics[width=54mm]
% {/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3_times_1C.jpg}
% }
% {/home/jeremic/public_html/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3_times_1C.mp4}
% \end{flushright}
% \hspace*{-7mm}
% % online
% %\vspace*{-12mm}
% \begin{flushright}
% %\hspace*{-4mm}
% \vspace*{-9mm}
% \href{http://sokocalo.engr.ucdavis.edu/~jeremic/lecture_notes_online_material/_Chapter_Applications_ESSI_for_NPPs/NPP_animations_June2018/Displacement_Inclined_Wave_3_times_1C.mp4}
% {\tiny (MP4)}
% \hspace*{-4mm}
% \end{flushright}
% % online
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Solid/Structure-Fluid Interaction: gmFoam}
% \begin{columns}[T]
% \begin{column}{.6\textwidth}
% \begin{itemize}
% % \vspace{-0.4cm}
% \item[] Mesh separation
% \begin{itemize}
% \item[] integrated geometry model %(solid \& fluid) based on gmsh
% \item[] FEM \& FVM mesh conversion
% \item[] handle discontinuous mesh
% \end{itemize}
% \item[] Incorporate gmESSI
% % \begin{itemize}
% % \item[] conveniently set BCs
% % \item[] input files easy generation
% % \end{itemize}
% \item[] Interface geometry extraction
%
% \item[] Interface class \textbf{SSFI} in Real-ESSI
% % \begin{itemize}
% % \item[] interface geometrical mapping
% % \item[] handle different mesh size
% % \item[] BCs interpolation \& updating
% % \item[] boundary mass conservation iteration
% % \end{itemize}
% \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ OpenFoam
% % \item[] Shepherd method
% % \begin{itemize}
% % \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ OpenFoam
% % \item[] explicit transient algorithm
% % \item[] handle different time step length
% % \end{itemize}
%
%
% \end{itemize}
% \vspace{0.2cm}
% % \scriptsize gmFoam: https://github.com/hexiang6666/gmFoam
% \end{column}
% \begin{column}{.4\textwidth}
% \vspace{-1cm}
% \begin{figure}[!H]
% \begin{center}
% \includegraphics[width=\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/gmFoam.pdf}
% \end{center}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % \begin{frame}
% % \frametitle{Semi-Coupled Solid Fluid Interaction}
% % \begin{itemize}
% % \item[] Utilize VOF implemented in interFoam
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] avoid tracking free surface
% % \item[] relatively fixed BCs
% % \item[] relatively fixed background mesh
% % \end{itemize}
% % \end{itemize}
% % \vspace{-0.3cm}
% % \begin{itemize}
% % \item[] Interface class \textbf{SSFI} added in Real-ESSI
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] interface geometrical mapping
% % \item[] handle different mesh size
% % \item[] BCs interpolation \& updating
% % \item[] boundary mass conservation iteration
% % \end{itemize}
% % \end{itemize}
% % \vspace{-0.3cm}
% % \begin{itemize}
% % \item[] Shepherd method
% % \setbeamertemplate{itemize items}[circle]
% % \begin{itemize}
% % \item[] Real-ESSI $\Longleftrightarrow$ SSFI $\Longleftrightarrow$ InterFoam
% % \item[] explicit transient algorithm
% % \item[] handle different time step length
% % \end{itemize}
% % \end{itemize}
% %
% % \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % \begin{frame}
% % \frametitle{Semi-Coupled Solid Fluid Interaction}
% % Implemented in Real-ESSI based on explicit transient algorithm
% % \begin{figure}[!H]
% % \begin{center}
% % \includegraphics[width=.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/No_SSFI.pdf}\enspace
% % \includegraphics[width=0.5\textwidth]{/home/jeremic/tex/works/Thesis/HexiangWang/Files_08June2017/pic/SSFI.pdf}\enspace
% % \end{center}
% % \end{figure}
% % \quad \href{http://cml08.engr.ucdavis.edu/for_professor/fluid_model_simulation.mp4}{Water Break without SFI}\quad \quad \quad \quad \quad \href{http://cml08.engr.ucdavis.edu/for_professor/Solid_Fluid_Interaction.mp4}{Box Sloshing with SFI}
% % \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}
% \frametitle{Solid/Structure-Fluid Interaction, Example}
%
%
%
% %\vspace*{-5mm}
% \begin{center}
% % \hspace*{-15mm}
% \movie[label=show3,width=9cm,poster,autostart,showcontrols]
% {\includegraphics[width=8.5cm]
% {/home/jeremic/tex/works/Conferences/2017/DOE_Project_Review_Meeting_LBNL_09June2017/Present/Solid-Fluid-Interaction.jpg}}
% {Solid_Fluid_Interaction.mp4}
% \end{center}
%
%
%
% \end{frame}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{NQA-11}
% %
% %
% %
% % \end{frame}
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % \begin{frame}
% % \frametitle{ISO 90003}
% %
% %
% %
% % \end{frame}
% %
% %
%
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{Energy Dissipation}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% -
% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Summary}
\subsection*{Summary}
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% \begin{frame}
%
% \frametitle{Science Quotes}
%
% \begin{itemize}
%
%
% \item Max Planck:
% "A new scientific truth does not triumph by convincing its opponents and
% making them see the light, but rather because its opponents eventually die, and
% a new generation grows up that is familiar with it." (Science advances one
% funeral at a time)
%
%
% \vspace*{3mm}
%
% \item Fran{\c c}ois-Marie Arouet, Voltaire:
% "Le doute n'est pas une condition agr{\'e}able, mais la certitude est absurde."
%
% \vspace*{3mm}
%
% \item Niklaus Wirth:
% "Software is getting slower more rapidly than hardware becomes faster."
% w
% \end{itemize}
%
%
% \end{frame}
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Summary}
\begin{itemize}
% \item Importance of using proper models correctly (verification,
% validation, level of sophistication)
%
% \item Reduction of modeling uncertainty
%
\vspace*{1mm}
\item Numerical modeling to predict and inform, rather than fit
%\vspace*{1mm}
% \item Change of demand due to inelastic effects
%\vspace*{-1mm}
% \begin{itemize}
% \item Reduction of dynamic motions
% \item Increase in deformations
% \end{itemize}
%
%
% \vspace*{1mm}
% \item Sophisticated inelastic/nonlinear modeling and simulations need to be
% done carefully and in phases
%
\vspace*{2mm}
\item Education and Training is the key!
% \vspace*{1mm}
% \item Collaborators: Feng, Han, Behbehani, Sinha, Wang, Pisan{\'o}, Abell,
\vspace*{2mm}
\item Funding from and collaboration with the US-DOE, US-NRC, US-NSF,
CNSC-CCSN, UN-IAEA, and Shimizu Corp. is greatly appreciated,
\vspace*{2mm}
\item Real-ESSI/MS-ESSI Simulator System: \\
{\bf \url{http://real-essi.info/}} \\
{\bf \url{http://ms-essi.info/}}
\vspace*{2mm}
\item Lecture Notes, Book: \\
{\bf \url{http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/}}
\end{itemize}
\end{frame}
%
\end{document}
%
%