Modeling and Simulation
Earthquake Soil Structure Interaction

Boris Jeremić

University of California, Davis, CA
Lawrence Berkeley National Laboratory, Berkeley, CA

University of Science and Technology Beijing
Beijing, July 2019
Outline

Introduction
- Motivation

Real-ESSI Simulator System
- Real ESSI Components
- Stochastic Modeling
- High Performance Computing

Modeling and Simulation Examples
- Seismic Motions
- Plastic Energy Dissipation

Conclusion
- Real-ESSI Simulator System
Outline

Introduction
 Motivation

Real-ESSI Simulator System
 Real ESSI Components
 Stochastic Modeling
 High Performance Computing

Modeling and Simulation Examples
 Seismic Motions
 Plastic Energy Dissipation

Conclusion
 Real-ESSI Simulator System
Motivation

Improve modeling and simulation for infrastructure objects
Reduction of modeling uncertainty
Choice of analysis level of sophistication
Goal: Predict and Inform rather than fit
Engineer needs to know!

System for modeling and simulation of Earthquakes and/or Soils and/or Structures and their Interaction:
Real-ESSI, 真简单
http://sokocalo.engr.ucdavis.edu/~jeremic/
Real_ESSI_Simulator/
Motivation

Prediction under Uncertainty

- **Modeling Uncertainty**, Simplifying assumptions

 Low, medium, high sophistication modeling and simulation

 Choice of sophistication level for confidence in results

- **Parametric Uncertainty**, \(M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t) \),

 Uncertain mass \(M \), viscous damping \(C \) and stiffness \(K^{ep} \)

 Propagation of uncertainty in loads, \(F(t) \)

 Results are PDFs and CDFs for \(\sigma_{ij}, \epsilon_{ij}, u_i, \dot{u}_i, \ddot{u}_i \)
Motivation

Modeling Uncertainty

- Important (?!?) features are simplified, 1C vs 3C, inelasticity
- Modeling simplifications are justifiable if one or two level higher sophistication model demonstrates that features being simplified out are not important
Motivation

Parametric Uncertainty: Soil Stiffness and Strength

\[E = (101.125 \times 19.3)^{0.63} \text{ kPa} \]

\[S_u = (101.125 \times 0.29)^{0.72} \text{ kPa} \]

(cf. Phoon and Kulhawy (1999))
ESSI: Energy Input and Dissipation

Energy input, dynamic forcing

Energy dissipation outside SSI domain:
 SSI system oscillation radiation
 Reflected wave radiation

Energy dissipation/conversion inside SSI domain:
 Inelasticity of soil, contact/interface zone, structure, foundation, dissipators
 Viscous coupling with pore fluids, and external fluids

Numerical, algorithmic energy dissipation/production
Motivation

Fully Coupled Formulation, u-p-U

\[
\begin{bmatrix}
(M_s)_{KijL} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & (M_f)_{KijL}
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_{Lj} \\
\ddot{p}_N \\
\ddot{U}_{Lj}
\end{bmatrix}
+ \begin{bmatrix}
(C_1)_{KijL} & 0 & -(C_2)_{KijL} \\
0 & 0 & 0 \\
-(C_2)_{LjiK} & 0 & (C_3)_{KijL}
\end{bmatrix}
\begin{bmatrix}
\dot{u}_{Lj} \\
\dot{p}_N \\
\dot{U}_{Lj}
\end{bmatrix}
+ \begin{bmatrix}
(K^{EP})_{KijL} & -(G_1)_{KiM} & 0 \\
-(G_1)_{LjM} & -P_{MN} & -(G_2)_{LjM} \\
0 & -(G_2)_{KiL} & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_{Lj} \\
\ddot{p}_M \\
\ddot{U}_{Lj}
\end{bmatrix}
= \begin{bmatrix}
f_{solid}^{Ki} \\
0 \\
f_{fluid}^{Ki}
\end{bmatrix}
\]
Motivation

Fully Coupled Formulation, u-p-U

\[
(M_s)_{KijL} = \int_\Omega H_K^U (1-n) \rho_s \delta_{ij} H_L^U d\Omega \\
(M_f)_{KijL} = \int_\Omega H_K^U n \rho_f \delta_{ij} H_L^U d\Omega \\
(C_1)_{KijL} = \int_\Omega H_K^U n^2 k_i^{-1} H_L^U d\Omega \\
(C_2)_{KijL} = \int_\Omega H_K^U n^2 k_i^{-1} H_L^U d\Omega \\
(C_3)_{KijL} = \int_\Omega H_K^U n^2 k_i^{-1} H_L^U d\Omega \\
(K_{EP})_{KijL} = \int_\Omega H_K^U n D_{imjn} H_L^U d\Omega \\
(G_1)_{KiM} = \int_\Omega H_{K,i}^U (\alpha - n) H_M^p d\Omega \\
(G_2)_{KiM} = \int_\Omega n H_{K,i}^U H_M^p d\Omega \\
P_{NM} = \int_\Omega H_N^p \frac{1}{Q} H_M^p d\Omega
\]
Energy Dissipation Control

![Graph showing energy dissipation over time](image)

- Kinetic Energy
- Strain Energy
- Plastic Free Energy
- Plastic Dissipation
- Viscous Damping
- Numerical Damping
- Input Work

Motivation
Outline

Introduction
Motivation

Real-ESSI Simulator System
Real ESSI Components
Stochastic Modeling
High Performance Computing

Modeling and Simulation Examples
Seismic Motions
Plastic Energy Dissipation

Conclusion
Real-ESSI Simulator System
Real-ESSI Simulator System

The Real-ESSI, **Real**istic Modeling and Simulation of **E**arthquakes, **S**oils, **S**tructures and their **I**nteraction. Simulator is a software, hardware and documentation system for time domain, linear and nonlinear, inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Used for:

- Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins
Real-ESSI Simulator System

- Real-ESSI System Components
 - Real-ESSI Pre-processor (gmsh/gmESSI, X2ESSI)
 - Real-ESSI Program (local, remote, cloud)
 - Real-ESSI Post-Processor (Paraview, Python, Matlab)

- Real-ESSI System availability:
 - Educational Institutions: Amazon Web Services (AWS), free
 - Government Agencies, National Labs: AWS GovCloud
 - Professional Practice: AWS, commercial

- Real-ESSI Short Courses, online, worldwide

- System description and documentation at
 http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/
Quality Assurance

- Full verification suit for each element, model, algorithm
- Certification process in progress for NQA-1 and ISO-90003-2014
Real-ESSI Components

Real-ESSI Modeling Features

- Solid elements, dry, (un-)saturated, elastic, inelastic
- Structural elements, beams, shells, elastic, inelastic
- Contact elements, dry, coupled/saturated,
- Super element, stiffness and mass matrices
- Material models, soil, concrete, steel...
- Seismic input, 1C and 3C, deterministic or probabilistic
- Energy dissipation calculations
- Solid/Structure – Fluid interaction, full coupling
- Intrusive probabilistic inelastic modeling
Real-ESSI Simulation Features

- Static loading stages
- Dynamic loading stages
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - Fine grained, template mataprograms, small matrix library
 - Coarse grained, distributed memory parallel
Real-ESSI Model Development

- Pre-Processing, model development gmsh/gmESSI
- Existing model translation, SASSI → Real-ESSI
- Choose level of sophistication
- Reduce modeling uncertainty
- Model developed in phases
- Verify model components
- Build confidence in inelastic modeling
Real-ESSI Components

Real-ESSI Modeling Phases
Real-ESSI Results Post Processing

- All output is saved (stress, strain, displacements, energy...)
- Time histories, scripts to plot or extract in preferred format
- 3D visualization, Paraview with pvESSI plugin
Real-ESSI Training and Education

- Short Courses:
 - Online short course, soon
 - Professional practice
 - Examples available in lecture notes, and documentation
 - Real-ESSI Simulator system, with examples on Amazon Web Services (AWS)

- Full lecture notes (2600+ pages) available online

- Up to date information on Real-ESSI at:

 http://sokocalo.engr.ucdavis.edu/~jeremic/Real_ESSI_Simulator/
Real-ESSI Core Functionality

- Introduction to inelastic, nonlinear analysis for practicing engineers
- Use of prescribed, required (low, medium, high) fidelity numerical models to analyze ESSI behavior
- Set of suggested modeling and simulation parameters
- Investigate sensitivity of response to model sophistication
- Investigate sensitivity of response to model parameters
Real-ESSI Core Functionality Components

- Structural elements: Truss, Beam, Shell, Super-Element
- Soil, solids: elastic, G/G_{max}
- Contacts: Bonded, Frictional, Gap open/close
- Loads: Static, Dynamic (earthquake, 1C or $3 \times 1C$), Restart
- Simulation: Explicit no-equilibrium, Implicit equilibrium
- Core Functionality Application programs: APPs
Outline

Introduction
Motivation

Real-ESSI Simulator System
Real ESSI Components
Stochastic Modeling
High Performance Computing

Modeling and Simulation Examples
Seismic Motions
Plastic Energy Dissipation

Conclusion
Real-ESSI Simulator System
Existing Simulation Methods for Stochastic PDEs

- Analytical, stochastic differential equation approach: difficult to solve with complex random coefficients
- Monte Carlo method: Computationally expensive
- Perturbation approach: Small variation with respect to mean, closure problem
- Stochastic collocation method: Global error minimization
- Stochastic Galerkin method: Local error minimization
Stochastic Modeling

Time Domain Stochastic Galerkin Method

- Input random field/process (non-Gaussian, heterogeneous/non-stationary)
 Multi-dimensional Hermite Polynomial Chaos (PC) with known coefficients

- Output response process
 Multi-dimensional Hermite PC with unknown coefficients

- Galerkin projection: minimize the error to compute unknown coefficients of response process

- Time integration using Newmark’s method
 Update coefficients following an elastic-plastic constitutive law at each time step

Note: PC = Polynomial Chaos
Polynomial Chaos Representation

Material random field: \(D(x, \theta) = \sum_{i=1}^{P_1} a_i(x) \psi_i(\{\xi_r(\theta)\}) \)

Motion random process: \(f_m(t, \theta) = \sum_{j=1}^{P_2} f_{mj}(t) \psi_j(\{\xi_k(\theta)\}) \)

Displacement response: \(u_n(t, \theta) = \sum_{k=1}^{P_3} d_{nk}(t) \psi_k(\{\xi_l(\theta)\}) \)

where \(a_i(x), f_{mj}(t) \) are known PC coefficients, while \(d_{nk}(t) \) are unknown PC coefficients.

Stochastic Elastic-Plastic Response

Governing equation:

\[d\sigma_{ij} = E_{ijkl} d\epsilon_{kl} \]

\[
E_{ijkl} = \begin{cases}
E_{ijkl}^{el} & \text{for elastic} \\
E_{ijkl}^{el} - \frac{E_{ijmn}^{el} m_{mn} n_{pq} E_{pqkl}^{el}}{n_{rs} E_{rstu}^{el} m_{tu} - \xi h} & \text{for elastic–plastic}
\end{cases}
\]
Transformation of a Bi–Linear, von Mises Response

linear elastic – linear hardening elastic-plastic von Mises
Outline

Introduction
 Motivation

Real-ESSI Simulator System
 Real ESSI Components
 Stochastic Modeling
 High Performance Computing

Modeling and Simulation Examples
 Seismic Motions
 Plastic Energy Dissipation

Conclusion
 Real-ESSI Simulator System
Course and Fine Grained HPC

- Hardware Aware Plastic Domain Decomposition (HAPDD) Method
- Small Tensor Library

![Graph showing speedup vs. number of cores for different domain decomposition methods.](image-url)
HAPDD

Original Model Partitioned Model Computer Architecture

Jeremić et al.
Real-ESSI
HAPDD

Partitioned Domains

Performance on Different Architectures

Jeremić et al.

Real-ESSI
Small Tensor Library

- Benchmark Libraries
 - **LTensor** – Target library
 - **SmallTensor** – Our Small Tensor Library for Computational Mechanics.

- Runtime Performance Comparison

![Runtime Performance](image1)

![Peak Memory Usage](image2)
Outline

Introduction
 Motivation

Real-ESSI Simulator System
 Real ESSI Components
 Stochastic Modeling
 High Performance Computing

Modeling and Simulation Examples
 Seismic Motions
 Plastic Energy Dissipation

Conclusion
 Real-ESSI Simulator System
Seismic Motions

- Variation in inclination, frequency, energy, duration...
- Deterministic and Probabilistic
- Stress test the soil-structure system
Seismic Motions

Free Field, Variation in Input Frequency, $\theta = 60^\circ$

(MP4)
SMR ESSI, Variation in Input Frequency, $\theta = 60^\circ$
SMR ESSI, Variation in Input Frequency, REAL TIME

Jeremić et al.

Real-ESSI
SMR ESSI, 3C vs 3 × 1C

(OGV)

Jeremić et al.

Real-ESSI
Seismic Motions

3C, 6C Seismic Motions

- All (most) measured motions are full 3C, 6C
- One example of an almost 2C motion (LSST07, LSST12)
ESSI: 6C or 1C Seismic Motions

- Assume that a full 6C (3C) motions at the surface are only recorded in one horizontal direction.
- From such recorded motions one can develop a vertically propagating shear wave (1C) in 1D.
- Apply such vertically propagating shear wave to same soil-structure system.
6C Free Field Motions (closeup)
1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent fit

(DB: npp_model01_ff_quake.h5.feloutput
Time:0.77)

(DB: npp_model01_ff_quake.h5.feloutput
Time:0.72)

(MP4) (MP4)
6C vs 1C NPP ESSI Response Comparison

(MP4)
Stress Testing SSI Systems

- Excite SSI system with a suite of seismic motions
- Waves: P, SV, SH, Surface (Rayleigh, Love, etc.)
- Variation in inclination, frequency, energy and duration
- Try to "break" the system. shake-out strong and weak links
Stress Test Source Signals

- Ricker

- Ormsby
Outline

Introduction
 Motivation

Real-ESSI Simulator System
 Real ESSI Components
 Stochastic Modeling
 High Performance Computing

Modeling and Simulation Examples
 Seismic Motions
 Plastic Energy Dissipation

Conclusion
 Real-ESSI Simulator System
Energy Input and Dissipation

Energy input, dynamic forcing

Energy dissipation outside SSI domain:
 SSI system oscillation radiation
 Reflected wave radiation

Energy dissipation/conversion inside SSI domain:
 Inelasticity of soil, contact zone, structure, foundation, dissipators
 Viscous coupling with internal/pore fluids, and external fluids

Numerical energy dissipation/production
Plastic Energy Dissipation

Single elastic-plastic element under cyclic shear loading

Difference between plastic work and plastic dissipation
Plastic work can decrease
Plastic dissipation always increases
Energy Dissipation Control

![Graph showing energy dissipation control with various energy components over time.]

- Kinetic Energy
- Strain Energy
- Plastic Free Energy
- Plastic Dissipation
- Viscous Damping
- Numerical Damping
- Input Work

Energy [MJ] vs. Time [s]
Inelastic Modeling of Soil Structure Systems

- **Soil, inelastic, elastic-plastic**
 - Dry, single phase
 - Unsaturated, partially saturated
 - Fully saturated

- **Contact, inelastic, soil/rock – foundation**
 - Dry, single phase,
 - Normal, hard and soft, gap open/close
 - Friction, nonlinear
 - Fully saturated, suction, excess pressure, buoyant force

- **Structure, inelastic, damage, cracks**
 - Nonlinear/inelastic 1D reinforced concrete fiber beam
 - Nonlinear/inelastic 3D reinforced concrete solid element
 - Alcali Silica Reaction concrete modeling
Inelastic Soil and Inelastic Contact

- Shear velocity of soil \(V_s = 500 \text{m/s} \)
- Undrained shear strength (Dickenson 1994)
 \[V_s[m/s] = 23(S_u[kPa])^{0.475} \]
- For \(V_s = 500 \text{m/s} \) Undrained Strength \(S_u = 650 \text{kPa} \) and Young’s Modulus of \(E = 1.3 \text{GPa} \)
- von Mises, Armstrong Frederick kinematic hardening
 \(S_u = 650 \text{kPa} \) at \(\gamma = 0.01\% \); \(h_a = 30 \text{MPa} \), \(c_r = 25 \)
- Soft contact (concrete-soil), gaping and nonlinear shear
Plastic Energy Dissipation

Acceleration Traces, Elastic vs Inelastic

![Elastic Example](image1.png)

![Inelastic Example](image2.png)

Elastic

Inelastic

 Jeremić et al.

Real-ESSI
Plastic Energy Dissipation

Displacement Traces, Elastic vs Inelastic

![Displacement traces](image)

Elastic

Inelastic
Elastic and Inelastic Response: Differences

Time: 10.67 [s]

Displacement Magnitude $||U||$ [m]

Acceleration A_x [g]

Disp. U_x [m]

Disp. U_y [m]

Acceleration A_y [g]

Acceleration A_z [g]

Plastic Energy Dissipation

Jeremić et al.

Real-ESSI
Energy Dissipation in a Large-Scale Model

Accumulated Plastic Dissipation Density (J/m³)

Incremental Plastic Dissipation Density (J/m³)

Time Step: 620

Jeremić et al.

Real-ESSI
Energy Dissipation for an SMR Model

(MP4)

Jeremić et al.

Real-ESSI
Energy Dissipation for Design
Design Alternatives

Plastic Energy Dissipation
Wall, Regular and ASR Concrete

![Diagram of Wall, Regular and ASR Concrete](image)

- Concrete Damage Index
 - $u_y = 1.4\,\text{mm}$
 - $u_y = 1.8\,\text{mm}$
 - $u_y = 3.0\,\text{mm}$
Buoyant Force Simulation

8 node solid brick (3 dofs)

8 node upU (7 dofs)

Coupled Contact
Solid, Structure-Fluid Interaction, Example

(MP4)
Outline

Introduction
 Motivation

Real-ESSI Simulator System
 Real ESSI Components
 Stochastic Modeling
 High Performance Computing

Modeling and Simulation Examples
 Seismic Motions
 Plastic Energy Dissipation

Conclusion
 Real-ESSI Simulator System
Real-ESSI Simulator System

The Real-ESSI, Realistic **Modeling** and **Simulation** of **Earthquakes**, **Soils**, **Structures** and their **Interaction**. Simulator is a software, hardware and documentation system for high fidelity, high performance, time domain, nonlinear/inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction
Real-ESSI Simulator System

- Real-ESSI System Components
 - Real-ESSI Pre-processor (gmsh/gmESSI, X2ESSI)
 - Real-ESSI Program (local, remote, cloud)
 - Real-ESSI Post-Processor (Paraview, Python, Matlab)

- Real-ESSI System availability:
 - Educational Institutions: Amazon Web Services (AWS), free
 - Government Agencies, National Labs: AWS GovCloud
 - Professional Practice: AWS, commercial

- Quality Management System, ASME-NQA-1, ISO9003-2018, Certification in progress

- Real-ESSI Short Courses (online, this Fall)

- System description and documentation at
Summary

- Numerical modeling to predict and inform, rather than fit
- Sophisticated inelastic/nonlinear modeling and simulations need to be done carefully and in phases
- Education and Training is the key!
- Collaborators: Feng, Yang, Behbehani, Sinha, Wang, Wang, Pisanó, Abell, Tafazzoli, Jie, Preisig, Tasiopoulou, Watanabe, Luo, Cheng, Yang...
- Funding from and collaboration with the US-DOE, US-NRC, US-NSF, CNSC-CCSN, UN-IAEA, and Shimizu Corp. is greatly appreciated,

Thank You