The Real ESSI Simulator System

Boris Jeremić,

Yuan Feng, Han Yang, Hexiang Wang, Fangbo Wang, José Abell, Sumeet Kumar Sinha, Fatema Behbehani, Nima Tafazzoli, Guanzhou Jie, Zhao Cheng, Zhaohui Yang

> University of California, Davis, CA Lawrence Berkeley National Laboratory, Berkeley, CA

> > SMiRT25 Charlotte, NC, USA, August 2019

Jeremić et al.

Introduction

Real-ESSI Simulator System

Summary

Jeremić et al.

Introduction

Real-ESSI Simulator System

Summary

Jeremić et al.

Motivation

Improve modeling and simulation for infrastructure objects

Expert numerical modeling and simulation tool

Reduction of modeling uncertainty

Choice of analysis level of sophistication

Goal: Predict and Inform rather than fit

Engineer needs to know!

System for modeling and simulation of Earthquakes and/or Soils and/or Structures and their Interaction: Real-ESSI Simulator http://real-essi.info/

Jeremić et al.

Prediction under Uncertainty

► Modeling Uncertainty, Simplifying assumptions

Low, medium, high sophistication modeling and simulation Choice of sophistication level for confidence in results

• Parametric Uncertainty, $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$,

Uncertain mass *M*, viscous damping *C* and stiffness K^{ep} Propagation of uncertainty in loads, F(t)Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić et al.

ESSI: Energy Input and Dissipation

Energy input, dynamic forcing

Energy dissipation outside SSI domain: SSI system oscillation radiation Reflected wave radiation

Energy dissipation/conversion inside SSI domain: Inelasticity of soil, contact/interface zone, structure, foundation, dissipators Viscous coupling with pore fluids, and external fluids

Numerical, algorithmic energy dissipation/production

Jeremić et al.

Introduction

Real-ESSI Simulator System

Summary

Jeremić et al.

LICDA

Real-ESSI Simulator System

The Real-ESSI, **<u>Real</u>**istic Modeling and Simulation of <u>Earthquakes</u>, <u>Soils</u>, <u>Structures and their</u> <u>Interaction</u>. Simulator is a software, hardware and documentation system for time domain, linear and nonlinear, elastic or inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Used for:

- ► Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins

Jeremić et al.

Real-ESSI Simulator System

- Real-ESSI System Components
 - Real-ESSI Pre-processor (gmsh/gmESSI, X2ESSI)
 - Real-ESSI Program (local, remote, cloud)
 - Real-ESSI Post-processor (Paraview/pvESSI, Python, ...)
- ► Real-ESSI System availability:
 - Universities: AWS, LinuxESSI image
 - Government, National Labs: AWS GovCloud, LinuxESSI image

Professional Practice: AWS, LinuxESSI image

- ► Real-ESSI Short Courses, online, worldwide
- Real ESSI Simulator system documentation at http://real-essi.info/

Jeremić et al.

Real-ESSI Short Course, Fall 2019

- Online, live sessions, that are also recorded
- ► Weekly, 8 weeks, 3 hours per week, each Tuesdays
 - 3 hours lecture
 - Homework, practice problems
 - 3 hours discussion session
 - Message/discussion list
- October November 2019
- Documentation, examples available online

Jeremić et al.

Real ESSI Quality Assurance

- Verification, mathematics issue
 - Solution verification for each component
 - Finite elements
 - Constitutive algorithms
 - Solution advancement, static and dynamic
 - Model verification
 - Error quantification for ranges of modeling parameters
 - Automatic verification, a 13 hour process on multiple CPUs
- ► Validation, physics issue, partially done, in progress
- Certification process in progress
 - ASME NQA-1
 - ► ISO-90003-2014

Jeremić et al.

Real-ESSI Modeling Features

- Solid elements, dry, (un-)saturated, elastic, inelastic
- ► Structural elements, beams, shells, elastic, inelastic
- ► Contact/interface elements, dry, coupled/saturated,
- Super element, stiffness and mass matrices
- Material models, soil, concrete, steel...
- Seismic input, 1C and 3C, deterministic or probabilistic
- Solid/Structure Fluid interaction, full coupling
- Input programming language, requires units
- Energy dissipation calculations
- Intrusive probabilistic inelastic modeling

Jeremić et al.

Real-ESSI Simulation Features

- Static loading stages
- Dynamic loading stages
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - . Fine grained, template mataprograms, small matrix library
 - . Coarse grained, distributed memory parallel

LICDA

Jeremić et al.

Real-ESSI Model Development

- Pre-Processing, model development gmsh/gmESSI
- ► Existing model translation, SASSI→Real-ESSI
- Choose level of sophistication
- Reduce modeling uncertainty
- Model developed in phases
- Verify model components
- Build confidence in inelastic modeling

Jeremić et al.

Real-ESSI Results Post Processing

- ► All output is saved (stress, strain, displacements, energy...)
- ► Time histories, scripts to plot or extract in preferred format
- ► 3D visualization, Paraview with pvESSI plugin

Jeremić et al.

Real-ESSI Core Functionality

- Introduction to inelastic, nonlinear analysis for practicing engineers
- Use of prescribed, required (low, medium, high) fidelity numerical models to analyze ESSI behavior
- Set of suggested modeling and simulation parameters
- Investigate sensitivity of response to model sophistication
- Investigate sensitivity of response to model parameters

Jeremić et al.

Real-ESSI Core Functionality Components

- Structural elements: Truss, Beam, Shell, Super-Element
- ► Soil, solids: elastic, *G*/*G*_{max}
- ► Contacts: Bonded, Frictional, Gap open/close
- ► Loads: Static, Dynamic (earthquake, 1C or 3×1C), restart1
- Simulation: Implicit equilibrium, Explicit no-equilibrium,
- Core Functionality Application programs: APPs

Jeremić et al.

Introduction

Real-ESSI Simulator System

Summary

Jeremić et al.

- Numerical modeling to predict and inform, rather than fit
- Engineer needs to know!
- Education and Training is the key!
- Funding from and collaboration with the US-DOE, US-NRC, US-NSF, US-BR, US-FEMA, NASA, CNSC-CCSN, UN-IAEA, Shimizu Corp., and Basler&Hofmann is greatly appreciated,
- More info: http://real-essi.info/

Jeremić et al.