Conclusion

Stress Test Seismic Motions for Nuclear Installations

Hexiang Wang, Yuang Feng, Han Yang, Fangbo Wang, Boris Jeremić

University of California, Davis, CA Lawrence Berkeley National Laboratory, Berkeley, CA

> SMiRT25 Charlotte, NC, USA, August 2019

Jeremić et al.

Outline

Introduction

Stress Test Motions

Conclusion

Jeremić et al.

Outline

Introduction

Stress Test Motions

Conclusion

Jeremić et al.

Motivation

Improve modeling and simulation for infrastructure objects

Control and reduce modeling uncertainty

Goal: Predict and Inform rather than fit

System for modeling and simulation of Earthquakes, Soils, Structures and their Interaction:

Real-ESSI Simulator, http://real-essi.info/

Jeremić et al.

Prediction under Uncertainty

► Modeling Uncertainty, Simplifying assumptions

Low, medium, high sophistication modeling and simulation Choice of sophistication level for confidence in results

► Parametric Uncertainty, $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$,

Uncertain mass *M*, viscous damping *C* and stiffness K^{ep} Propagation of uncertainty in loads, F(t)Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić et al.

Outline

Introduction

Stress Test Motions

Conclusion

Jeremić et al.

UCDAV

3C, 6C Seismic Motions

- All (most) measured motions are full 3C, 6C
- One example of an almost 2C motion (LSST07, LSST12)

Jeremić et al.

Introduction	
000	

Stress Test Motions

- ► Variation in inclination, frequency, energy, duration...
- Deterministic and Probabilistic
- Stress test the soil-structure system

Jeremić et al.

Seismic Motion Wave Lengths

Jeremić et al.

Stress Test Source Signals

1C vs 6C Free Field Motions

One component of motions, 1C from 6C Excellent fit

(MP4) (MP4)

Jeremić et al.

Free Field, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić et al.

Stress Test Motions 00000000000000

SMR ESSI, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić et al.

Stress Test Motions

SMR ESSI, Variation in Input Frequency, REAL TIME

Jeremić et al.

Free Field vs ESSI Motions, Horizontal Displacements

Jeremić et al.

Free Field vs ESSI Motions, Horizontal Accelerations

Jeremić et al.

Free Field vs ESSI Motions, Vertical Displacements

Jeremić et al.

Free Field vs ESSI Motions, Vertical Accelerations

Jeremić et al.

SMR ESSI, 3C vs 3×1C

0.0e+00 0.05

ď

0 0.05 0.1 0.15 2.0e-01

 $3 \times 1C$

X[m]

50

100

.50

UCDAVIS L-B-N

Jeremić et al.

(OGV)

Outline

Introduction

Stress Test Motions

Conclusion

Jeremić et al.

Summary

- Numerical modeling to predict and inform, rather than fit
- Stress test motions for improving design
- Stress test motions for assessing performance
- http://real-essi.info/

Jeremić et al.