Seismic Energy Flow Calculations for Earthquake Soil Structure Interaction Systems

Han Yang, Yuan Feng, Hexiang Wang, Fangbo Wang, Boris Jeremić

University of California, Davis, CA
Lawrence Berkeley National Laboratory, Berkeley, CA

SMiRT25
Charlotte, NC, USA, August 2019
Outline

Introduction

Energy Flow Simulations

Conclusion
Outline

Introduction

Energy Flow Simulations

Conclusion
Motivation

Improve modeling and simulation for infrastructure objects

Expert numerical modeling and simulation tool

Reduction of modeling uncertainty

Choice of analysis level of sophistication

Goal: Predict and Inform rather than fit

Engineer needs to know!

System for Realistic modeling and simulation of Earthquakes, Soils, Structures and their Interaction:

Real-ESSI Simulator http://real-essi.info/
ESSI: Energy Input and Dissipation

Energy input, dynamic forcing

Energy dissipation outside SSI domain:
- SSI system oscillation radiation
- Reflected wave radiation

Energy dissipation/conversion inside SSI domain:
- Inelasticity of soil, contact/interface zone, structure, foundation, dissipators
- Viscous coupling with pore fluids, and external fluids

Numerical, algorithmic energy dissipation/production
Energy Dissipation Control Mechanisms

Plasticity Viscous Numerical
Real-ESSI Simulator System

The Real-ESSI, Realistic Modeling and Simulation of Earthquakes, Soils, Structures and their Interaction. Simulator is a software, hardware and documentation system for time domain, linear and nonlinear, inelastic, deterministic or probabilistic, 3D, finite element modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Used for:

- Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins
Outline

Introduction

Energy Flow Simulations

Conclusion
Plastic Energy Dissipation

Single elastic-plastic element under cyclic shear loading

Difference between plastic work and plastic dissipation
Plastic work can decrease
Plastic dissipation always increases
Energy Dissipation Control

![Graph showing energy flow simulations over time with various energy components: Kinetic Energy, Strain Energy, Plastic Free Energy, Plastic Dissipation, Viscous Damping, Numerical Damping, and Input Work.](image)

- Kinetic Energy
- Strain Energy
- Plastic Free Energy
- Plastic Dissipation
- Viscous Damping
- Numerical Damping
- Input Work
Inelastic Modeling of Soil Structure Systems

- Soil, inelastic, elastic-plastic
 - Dry, single phase
 - Unsaturated, partially saturated
 - Fully saturated

- Contact, inelastic, soil/rock – foundation
 - Dry, single phase,
 - Normal, hard and soft, gap open/close
 - Friction, nonlinear
 - Fully saturated, suction, excess pressure, buoyant force

- Structure, inelastic, damage, cracks
 - Nonlinear/inelastic 1D reinforced concrete fiber beam
 - Nonlinear/inelastic 3D reinforced concrete solid element
 - Alcali Silica Reaction concrete modeling
Energy Dissipation in a NPP and SMR Models

(MP4)
Energy Dissipation for Design

Section A-A

Cover Concrete
Core Concrete
Steel Rebar

Reinforced Concrete Frame

Contact

Soil

DRM Layer
Damping Layers

140 m
51 m
32 m
16 m
40 m
12 m
2 m

Jeremić et al.
Real-ESSI
Design Alternatives, Individual Footing

Time Step: 3880

Plastic Dissipation Density (J/m3)

0 1.25 2.5 3.75 5
Design Alternatives, Slab Foundation
Design Alternatives
Wall, Regular and ASR Concrete

\[u_y = 1.4 \text{ mm} \quad u_y = 1.8 \text{ mm} \quad u_y = 3.0 \text{ mm} \]
Outline

Introduction

Energy Flow Simulations

Conclusion
Summary

▶ Numerical modeling to predict and inform, rather than fit
▶ Accurate energy dissipation calculations
▶ Education and Training is the key!
▶ Real-ESSI short course this Fall!
▶ http://real-essi.info/