Road Map for Advanced Structural Analysis of Concrete Dams

Jerzy Salamon and Boris Jeremić

US Bureau of Reclamation, Denver, CO, USA
University of California, Davis, CA, USA

ICOLD
New Delhi, India, February, 2021
Outline

Introduction

Road Map
 Overview
 Example

Summary
Outline

Introduction

Road Map
 Overview
 Example

Summary
Motivation

- Engineer, Analyst use of numerical methods for advanced structural analysis of concrete dams

- Reduction of modeling uncertainty, ability to perform desired level of sophistication modeling and simulation

- Expert analysis system, a synergy of expert analysts and expert numerical modeling tools, for advanced structural analysis of concrete dams
Advanced Analysis of Concrete Dams

- Verification and Validation (V&V)

- Prediction of behavior of the concrete dams under conditions for which the model has not been validated.

- Verification provides evidence that the model is solved correctly. Mathematics issue.

- Validation provides evidence that the correct model is solved. Physics issue.

- Goal: Predict and Inform, instead of just force fitting
Outline

Introduction

Road Map
 Overview
 Example

Summary
Road Map for Advanced Analysis of Concrete Dams

A Formal Process for

- Education and training of expert analysts
- Development of numerical analysis program
- Verification of numerical analysis program
- Validation of numerical analysis program
- Development of concrete dam models
- Concrete dam model verification
Road Map Components

- Real Object: Dam, reservoir, foundation system
- Conceptual Model: Dimensions, loads, properties
- Mathematical Model: System of differential equations
- Computational Model: Solution method - numerical
- Software Quality Assurance (QA)
- Interpretation of Results and Reporting

Model Calibration

Model Validation

Solution Results
Road Map Activities

- Numerical program
 Quality Assurance: Verification and Validation
 Repeatability of analysis results using the same program
 Reproducibility of analysis results using different program

- Numerical Model
 Identify sources of modeling errors (simplifications)
 Identify sources of numerical errors

- Engineer, modeler, numerical analyst
 Numerical modeling expertise
 Numerical results interpretation expertise

- Interpretation of numerical analysis results
 Design
 Regulation
Outline

Introduction

Road Map
 Overview
 Example

Summary
Road Map, Example

Pine Flat Dam in California

- Model verification, components, full model
 Dynamic wave propagation through rock only
 Eigen-analysis of dam structure, with/without reservoir
 Dynamic response of dam structure, with/without reservoir
 Dynamic response of reservoir/fluid
 Constitutive integrations for material response

- Model validation, components, full model
 Seismic wave propagation through the rock
 Constitutive modeling of rock, concrete, interfaces, joints
 Reservoir, fluid dynamics
 Seismic response of a concrete dam
Road Map, Workshop

Yang et al. (2019)
Salamon et al. (2019)

Salamon and Jeremić
Road Map for Advanced Structural Analysis of Concrete Dams
Concrete Dam – Rock – Reservoir Model

- Model components: concrete dam, rock, reservoir
- Verification and Validation of each component, model
Input Pulse Wave, at Depth, Only Rock

Salamon and Jeremić

Road Map for Advanced Structural Analysis of Concrete Dams
Pulse Wave at Surface

Non-reflective BC

Free field BC
Numerical Damping Effects, $\ddot{u}_{\text{hor}}^{\text{top}}$
Outline

- Introduction
- Road Map
 - Overview
 - Example
- Summary

Salamon and Jeremić

Road Map for Advanced Structural Analysis of Concrete Dams
Summary

Road map: Formal process to ensure quality of results

Numerical modeling to predict and inform, rather than fit

Education and Training is the key!