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Motivation

e Advanced Structural Analysis (ASA) has become a primary tool in structural
assessments of concrete dams

* Complex mathematical models are used in ASA of concrete dams

 The primary concern is the level of confidence in modeling and accuracy of
the analysis results

 QOur primary goal is to initiate and contribute to a discussion on developing
unified guidelines (a road map) for conducting ASA of concrete dams and for
verification and validation of such analyses
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Road Map for Advanced Analysis of Concrete Dams

Road map for the ASA, as it applies to concrete dams

Real Object - dam, reservoir, foundation
Conceptual Model is a “virtual image” of the real object
Mathematical Model - system of partial differential equations

Computational Model - solutions of the mathematical model
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Road Map for Advanced Analysis of Concrete Dams

Confidence and credibility of the analysis is related to assessing accuracy in

modeling and computational simulations
* Verification
* Validation

* Software Quality Assurance
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Verification Process

Process of determining that a model implementation accurately represents the
developer’s conceptual description and specification

Mathematics, Computer Science issue

Verification provides evidence that the
model is solved correctly

Identify and remove errors in computer coding
Quantification of the numerical errors in computed coding

/

Conceptual Model
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Highly accurate solution

Computational Model

Analytical solution
Benchmark ODE solution
Benchmark PDE solution
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Verification Process

Practical methods for verifying the ASA for concrete Dams

* Check the input parameters

* Check the computation results for symmetry, conservation of energy, general structure behavior, etc.

* Test submodels — each feature of the computational model is verified separately

* Compare submodel results with analytical solutions

* Compare the results with a suite of benchmark tests specific for concrete dam structures

* Compare software-to-software — conduct analyses with various software

* Evaluate discretization error

* Perform convergence tests

* Perform order-of-accuracy test

* Perform sensitivity studies — compare analysis results for a range of settings and a range of model
parameters

ussbD %L-




lllustration of Verification with Benchmark Test

Benchmark Workshops: Seismic Analysis of Concrete Pine Flat Dam
e |COLD 2019 - Milan, Italy [1]
e USSD 2018 - Miami, FL [2]
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lllustration of Verification with Benchmark Test

15t |COLD Benchmark Workshops: Seismic Analysis of Concrete Pine Flat Dam
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Damage profiles from 7 contributors [1]
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lllustration of Verification with Analytical Solution

Far-field boundary condition [1]

B-1 [22): Free-Surface Velocity. NMSE: a=0L067, c=0.067, o=0.067, g=0L06T, MA=0.067
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lllustration of Verification

Effect of Numerical Damping
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Validation Process

Process of determining the degree to which a model is accurate representation of
the real world from the perspective of the intended uses of the model

Real World

l

Conceptual Model

Physics, Mechanics issue

Validation provides evidence that the
correct model is solved

* Experimental Data
Computational Model Unit Problems
Benchmark Cases
Tactical goal: * Subsystem Cases
Identification and minimization of modeling uncertainties Computational Solution |«g— | Complete System

in the computational model

Validation

Strategic goal:
Increase confidence in the quantitative predictive
capability of the computational model




Illustration of Validation Process

Harmonic forced vibration field test of Pine Flat Dam [1]

Case A-3: Acceleration Time Histories: 11
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Illustration of Calibration Process
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Perform sensitivity studies — compare analysis results for a range of settings and a
range of model parameters

Variations in Elastic Modulus of foundation rock [2]
E, = 3,000,000 psi

Table D.1 - Natural Frequencies

Case D-1 Case D-2
Natural (dam &
(dam & .
Frequency . reservoir &
foundation) .
foundation)
1 2.48 2.06
2 4.16 3.98
3 4.84 4.81
4 5.49 5.24
5 5.89 5.89
& 6.51 6.51

Distance from base (ft)

D-1 Normalize Mode shape at
line (A-C)
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E, =10,000,000 psi
Table E.1 - Natural Frequencies
Case E-1 Case E-2
Natural (dam &
(dam & .
Frequency . reservoir &
foundation) .
foundation)
1 291 243
2 5.58 5.02
3 6.94 6.90
4 7.89 7.72
5 9.96 9.48
6 10.28 10.28

Distance from base (ft)

E-1 Normalize Mode shape
at line (A-C)
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Conclusions

* Accuracy the ASA for concrete dams is the primary interest in developing
confidence in the analyses results

* Technical complexity and mathematical advancement of structural analyses of
concrete dams require the analysts to have a high-level technical education,
knowledge and experience in numerical solutions of structural problems, good
skills in using the software, and expertise in concrete dams

* Engineering community will benefit from the unified guidelines (a road map)
for conducting ASA of concrete dams
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