Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Realistic Modeling and Simulation of Earthquakes, Soil, Structures and their Interaction

Boris Jeremić

University of California, Davis

Duke University 13th September, 2021

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

xamples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 0000000 0000000000 0000000000 Conclusion

Motivation

Improve modeling and simulation for infrastructure objects

Modeling sophistication level, epistemic uncertainty

Parametric, aleatory uncertainty

Goal: Predict and Inform

Expert numerical modeling and simulation tool

Engineer needs to know!

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 0000000 000000000 00000000 Conclusion

Numerical Prediction under Uncertainty

- Modeling, Epistemic Uncertainty

Modeling simplifications Modeling sophistication for confidence in results

- Parametric, Aleatory Uncertainty

 $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t),$

Uncertain: mass M, viscous damping C and stiffness K^{ep} Uncertain loads, F(t)

Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić et al.

Introduction	
00000	

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Modeling, Epistemic Uncertainty

- Important (?!) features are simplified, 1C vs 3C, inelasticity
- Modeling simplifications are justifiable if one or two level higher sophistication model demonstrates that features being simplified out are less or not important

UCDAVIS

Jeremić et al.

Introduction 0000● Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 0000000 000000000 00000000 Conclusion

Parametric, Aleatory Uncertainty

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Forward Propagation

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation

Backward Propagation, Sensitivities

Real-ESSI Simulator

xamples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Forward Propagation

Forward Uncertain Inelasticity

- Incremental el-pl constitutive equation

$$\Delta \sigma_{ij} = \mathcal{E}_{ijkl}^{\mathcal{EP}} \ \Delta \epsilon_{kl} = \left[\mathcal{E}_{ijkl}^{el} - \frac{\mathcal{E}_{ijmn}^{el} m_{mn} n_{pq} \mathcal{E}_{pqkl}^{el}}{n_{rs} \mathcal{E}_{rstu}^{el} m_{tu} - \xi_* h_*} \right] \Delta \epsilon_{kl}$$

- Dynamic Finite Elements

$$M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$$

- Material and loads are uncertain

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Forward Propagation

Cam Clay with Random G, M and p_0

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Forward Propagation

Stochastic Elastic-Plastic Finite Element Method

- Material uncertainty expanded into stochastic shape funcs.
- Loading uncertainty expanded into stochastic shape funcs.
- Displacement expanded into stochastic shape funcs.
- Jeremić et al. 2011

$$\begin{bmatrix} \sum_{k=0}^{P_d} < \Phi_k \Psi_0 \Psi_0 > K^{(k)} & \dots & \sum_{k=0}^{P_d} < \Phi_k \Psi_P \Psi_0 > K^{(k)} \\ \sum_{k=0}^{P_d} < \Phi_k \Psi_0 \Psi_1 > K^{(k)} & \dots & \sum_{k=0}^{d} < \Phi_k \Psi_P \Psi_1 > K^{(k)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=0}^{P_d} < \Phi_k \Psi_0 \Psi_P > K^{(k)} & \dots & \sum_{k=0}^{M} < \Phi_k \Psi_P \Psi_P > K^{(k)} \end{bmatrix} \begin{bmatrix} \Delta u_{10} \\ \vdots \\ \Delta u_{N0} \\ \vdots \\ \Delta u_{1P_u} \\ \vdots \\ \Delta u_{NP_{ij}} \end{bmatrix} = \begin{bmatrix} \sum_{l=0}^{P_f} f_l < \Psi_0 \zeta_l > \\ \sum_{l=0}^{P_f} f_l < \Psi_2 \zeta_l > \\ \vdots \\ \sum_{l=0}^{P_f} f_l < \Psi_2 \zeta_l > \\ \vdots \\ \Delta u_{NP_{ij}} \end{bmatrix}$$

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Backward Propagation, Sensitivities

Outline

Introduction

Uncertain Inelastic Mechanics

Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Backward Propagation, Sensitivities

ANOVA Representation

Model with *n* uncertain inputs (\boldsymbol{x}) and scalar output \boldsymbol{y} :

 $y = f(\mathbf{x}); \ \mathbf{x} \in I^n$

The ANalysis Of VAriance representation (Sobol 2001):

$$f(x_1,...x_n) = f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{1 \le i < j \le n} f_{ij}(x_i, x_j) + ...f_{1,...n}(x_1,...x_n)$$

Jeremić et al.

UCDAVIS

Introduction 00000	Uncertain Inelastic Mechanics	Real-ESSI Simulator	Examples 0000000 000000000 0000000000	Conclusion
Backward Propag	ation Sonsitivitios			

Sobol Indices

- Sobol' indices S_{i1...is}, fractional contributions from random inputs {X_{i1},...,X_{is}} to the total variance D: S_{i1...is} = D_{i1...is}/D
- First order indices $S_i \rightarrow$ individual influence of each uncertain input parameter
- Higher order indices $\mathcal{S}_{i_1 \dots i_s} \to \text{mixed}$ influence from groups of uncertain input parameters
- Total sensitivity indices, influence of input parameter X_i

$$S_i^{ ext{total}} = \sum_{\mathscr{S}_i} D_{i_1...i_s}$$

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

UCDAVIS

Backward Propagation, Sensitivities

Sobol Indices and Polynomial Chaos

PC expansion of response, in ANOVA form (Sudret 2008)

Multi-dimensional PC bases $\{\Psi_j(\xi)\}$ decomposed into products of single dimension PC chaos bases of different orders

$$\Psi_j(\boldsymbol{\xi}) = \prod_{i=1}^n \phi_{\alpha_i}(\xi_i)$$

 $\phi_{\alpha_i}(\xi_i)$ is the single dimensional, order α_i , polynomial function of underlying basic random variable ξ_i .

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Backward Propagation, Sensitivities

Sobol Sensitivity Analysis

ANOVA
$$\rightarrow$$
 Sobol' indices: $S^{PC}_{i_1...i_s} = \sum_{lpha \in \mathscr{S}_{i_1...i_s}} y^2_{lpha} \boldsymbol{E} \left[\Psi^2_{lpha} \right] / D^{PC}$

Total Sobol' indices:
$$S^{PC, ext{total}}_{j_1...j_t} = \sum_{(i_1,...,i_s) \in \mathscr{S}_{j_1,...,j_t}} S^{PC}_{i_1...i_s}$$

Using PC representation of probabilistic model response, Sobol' sensitivity indices are analytic and inexpensive

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 0000000 000000000 0000000 Conclusion

Real-ESSI Simulator System

The Real-ESSI, **<u>Real</u>**istic Modeling and Simulation of <u>Earthquakes</u>, <u>Soils</u>, <u>Structures and their</u> <u>Interaction</u> Simulator is a software, hardware and documentation system for time domain, linear and nonlinear, elastic and inelastic, deterministic or probabilistic, 3D, modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Used for:

- Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Real-ESSI Simulator System

Components

- Real-ESSI Pre (gmsh/gmESSI, X2ESSI)
- Real-ESSI Program (local, remote, cloud)
- Real-ESSI Post (Paraview/pvESSI, Python, Matlab)

Availability

- Linux Executables
- Amazon Web Services
- Docker Container Image Linux MS-Windows MacOS

Real-ESSI documentation and program available at http://real-essi.us/

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Real-ESSI Simulation Features

- Static loading stages
- Dynamic loading stages
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - . Fine grained, template mataprograms, small matrix library
 - . Coarse grained, distributed memory parallel

Uncertain Inelastic Mechanics

Beal-ESSI Simulator 000000

Real ESSI DSL Example


```
23456789
    add node # 1 at (0*m, 0*m, 0*m) with 6 dofs;
    add node # 2 at (0*m, 0*in, 1000*mm) with 6 dofs;
    add element #1 type beam_elastic with
      nodes (1, 2) cross_section=1.0*m^2
      elastic_modulus=1.0e5*KN/m^2
      shear modulus=2.0e4*KN/m^2
10
      torsion Jx=2*0.083*m^4
      bending Iy=0.083*m^4 bending Iz=0.083*m^4
12
      mass_density=2500.0*kg/m^3
13
      xz_plane_vector = (0, -1, 0)
14
      joint 1 offset = (0.0*m, 0.0*m, 0.0*m)
15
      joint 2 offset = (0.0*m, 0.0*m, 0.0*m);
```

Jeremić et al

UCDAVIS

Real-ESSI

11

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Real ESSI DSL Example

```
fix node No 1 dofs all:
add load #1 to node #2 type linear Fv = -9 \times kN;
define load factor increment 0.01;
define solver UMFPack:
define convergence test
 Norm_Displacement_Increment
 tolerance = 1e-5
 maximum_iterations = 20
 verbose_level = 4;
define algorithm Newton:
simulate 100 steps using static algorithm;
bye;
```

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

 Conclusion

Seismic Motions

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples Seismic Motions

Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Seismic Motions

Realistic Ground Motions

Jeremić et al.

UCDAVIS

Introduction
00000

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 000000

Seismic Motions

1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent fit
- Wrong mechanics

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

UCDAVIS

Seismic Motions

6C vs 1C NPP ESSI Response Comparison

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

UCDAVIS

Seismic Motions

Free Field, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Seismic Motions

SMR ESSI, Variation in Input Frequency, $\theta = 60^{\circ}$

UCDAVIS

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Seismic Motions

SMR ESSI, 3C vs 3×1C

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Energy Input and Dissipation

Energy input, static and dynamic forcing

Energy dissipation outside SSI domain: SSI system oscillation radiation Reflected wave radiation

Energy dissipation/conversion inside SSI domain: Inelasticity of soil, interfaces, structure, dissipators Viscous coupling with internal/pore and external fluids Numerical energy dissipation/production

Jeremić et al.

Introduction
00000

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Plastic Energy Dissipation

Single elastic-plastic element under cyclic shear loading

Difference between plastic work and plastic dissipation

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Energy Dissipation Control

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Inelastic Modeling of Soil Structure Systems

- Soil, inelastic, elastic-plastic

Dry, single phase Unsaturated, partially saturated Fully saturated

- Contact/Interface/Joint, inelastic: dry or saturated Axial, hard and soft, gap open/close Shear, friction, nonlinear
- Structure, inelastic, damage, cracks

Inelastic fiber beam Inelastic layer shell Inelastic 3D solid element

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Acceleration Traces, Elastic vs Inelastic

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Displacement Traces, Elastic vs Inelastic

Elastic

Inelastic

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

NPP: Energy Dissipation

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Plastic Energy Dissipation

Energy Dissipation for Design

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples 0000000000

UCDAVIS

Plastic Energy Dissipation

Design Alternatives

(MP4)

(MP4)

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

00000

Sensitivity Analysis

Outline

Forward Propagation

Examples Sensitivity Analysis

Jeremić et al

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Sensitivity Analysis

Stochastic Site Response

- Uncertain material: uncertain random field, marginally lognormal distribution, exponential correlation length 10m
- Uncertain seismic rock motions: seismic scenario M=7, R=50km

UCDAVIS

Jeremić et al.

Introduction
00000

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Sensitivity Analysis

Stochastic Material Parameters

Lognormal distributed random field with PC Dim. 3 Order 2

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Sensitivity Analysis

Stochastic Seismic Motion Development

- UCERF3 (Field et al. 2014)
- Stochastic motions (Boore 2003)
- Polynomial Chaos Karhunen-Loève expansion
- Probabilistic DRM (Bielak et al. 2003, Wang et al. 2021)

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Sensitivity Analysis

Stochastic Seismic Motions

Jeremić et al.

UCDAVIS

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Examples

Conclusion

Sensitivity Analysis

Sensitivity Analysis

Total variance in PGA, in this case (!), dominated by uncertain ground motions

49% from uncertain rock motions at depth

2% from uncertain soil

49% from interaction of uncertain rock motions and uncertain soil

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Outline

Introduction

Uncertain Inelastic Mechanics Forward Propagation Backward Propagation, Sensitivities

Real-ESSI Simulator

xamples Seismic Motions Plastic Energy Dissipation Sensitivity Analysis

Conclusion

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Appropriate Quotes

François-Marie Arouet, Voltaire: "Le doute n'est pas une condition agréable, mais la certitude est absurde."

Max Planck: "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."

Niklaus Wirth: "Software is getting slower more rapidly than hardware becomes faster."

Jeremić et al.

Uncertain Inelastic Mechanics

Real-ESSI Simulator

Conclusion

Summary

- Numerical modeling to predict and inform
- Education and Training is the key !
- Collaborators: Feng, Yang, Behbehani, Lacour, Sinha, Wang, Wang, Pisanó, Abell, Tafazzoli, Jie, Preisig, Tasiopoulou, Watanabe, Luo, Cheng, Yang.
- Funding from and collaboration with the US-NSF, US-DOE, US-NRC, US-FEMA/ATC, CNSC-CCSN, CH-ENSI/Basler&Hofmann, UN-IAEA, and Shimizu Corp. is greatly appreciated,

http://sokocalo.engr.ucdavis.edu/~jeremic

Jeremić et al.

