Realistic Modeling and Simulation of Earthquakes, Soil, Structures and their Interaction

Boris Jeremić
University of California, Davis

Duke University
13th September, 2021
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Motivation

Improve modeling and simulation for infrastructure objects

Modeling sophistication level, epistemic uncertainty

Parametric, aleatory uncertainty

Goal: Predict and Inform

Expert numerical modeling and simulation tool

Engineer needs to know!
Numerical Prediction under Uncertainty

- Modeling, Epistemic Uncertainty

 Modeling simplifications

 Modeling sophistication for confidence in results

- Parametric, Aleatory Uncertainty

\[M\ddot{u}_i + C\dot{u}_i + K^{ep} u_i = F(t), \]

Uncertain: mass \(M \), viscous damping \(C \) and stiffness \(K^{ep} \)

Uncertain loads, \(F(t) \)

Results are PDFs and CDFs for \(\sigma_{ij}, \epsilon_{ij}, u_i, \dot{u}_i, \ddot{u}_i \)
Modeling, Epistemic Uncertainty

- Important (?!?) features are simplified, 1C vs 3C, inelasticity
- Modeling simplifications are justifiable if one or two level higher sophistication model demonstrates that features being simplified out are less or not important
Parametric, Aleatory Uncertainty

E = (101.125*19.3) N^{0.63}

Residual (w.r.t Mean) Young’s Modulus (kPa)
Normalized Frequency

(cf. Phoon and Kulhawy (1999B))

(cf. Wang et al. (2019))

Jeremić et al.
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Forward Propagation

Forward Uncertain Inelasticity

- Incremental el–pl constitutive equation

\[
\Delta \sigma_{ij} = E_{ij}^{EP} \Delta \epsilon_{kl} = \left[E_{ij}^{el} - \frac{E_{ij}^{el} m_{mn} n_{pq} E_{pq}^{el}}{n_{rs} E_{rst}^{el} m_{tu} - \xi^* h^*} \right] \Delta \epsilon_{kl}
\]

- Dynamic Finite Elements

\[
M \ddot{u}_i + C \dot{u}_i + K^{ep} u_i = F(t)
\]

- Material and loads are uncertain
Cam Clay with Random G, M and ρ_0
Stochastic Elastic-Plastic Finite Element Method

- Material uncertainty expanded into stochastic shape funcs.
- Loading uncertainty expanded into stochastic shape funcs.
- Displacement expanded into stochastic shape funcs.
- Jeremić et al. 2011

\[
\begin{bmatrix}
\sum_{k=0}^{P_d} \phi_k \psi_0 \psi_0 & K^{(k)} & \cdots & \sum_{k=0}^{P_d} \phi_k \psi_P \psi_0 & K^{(k)} \\
\sum_{k=0}^{P_d} \phi_k \psi_0 \psi_1 & K^{(k)} & \cdots & \sum_{k=0}^{P_d} \phi_k \psi_P \psi_1 & K^{(k)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sum_{k=0}^{P_d} \phi_k \psi_0 \psi_P & K^{(k)} & \cdots & \sum_{k=0}^{M} \phi_k \psi_P \psi_P & K^{(k)}
\end{bmatrix}
\begin{bmatrix}
\Delta u_{10} \\
\vdots \\
\Delta u_{N0} \\
\vdots \\
\Delta u_{1P_P} \\
\vdots \\
\Delta u_{MN_P_P}
\end{bmatrix}
=
\begin{bmatrix}
\sum_{i=0}^{P_f} f_i & \psi_0 \zeta_i \\
\sum_{i=0}^{P_f} f_i & \psi_1 \zeta_i \\
\sum_{i=0}^{P_f} f_i & \psi_2 \zeta_i \\
\vdots & \vdots \\
\sum_{i=0}^{P_f} f_i & \psi_{P_0} \zeta_i
\end{bmatrix}
\]
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
ANOVA Representation

Model with n uncertain inputs (\mathbf{x}) and scalar output y:

$$y = f(\mathbf{x}); \quad \mathbf{x} \in I^n$$

The ANalysis Of VAriance representation (Sobol 2001):

$$f(x_1, \ldots, x_n) = f_0 + \sum_{i=1}^{n} f_i(x_i) + \sum_{1 \leq i < j \leq n} f_{ij}(x_i, x_j) + \ldots f_{1,\ldots,n}(x_1, \ldots, x_n)$$
Sobol Indices

- Sobol’ indices $S_{i_1...i_s}$, fractional contributions from random inputs $\{X_{i_1}, \ldots, X_{i_s}\}$ to the total variance D: $S_{i_1...i_s} = D_{i_1...i_s}/D$

- First order indices $S_i \rightarrow$ individual influence of each uncertain input parameter

- Higher order indices $S_{i_1...i_s} \rightarrow$ mixed influence from groups of uncertain input parameters

- Total sensitivity indices, influence of input parameter X_i

$$S_{i}^{\text{total}} = \sum_{\mathcal{I}_i} D_{i_1...i_s}$$
Sobol Indices and Polynomial Chaos

PC expansion of response, in ANOVA form (Sudret 2008)

Multi-dimensional PC bases \(\{\psi_j(\xi)\} \) decomposed into products of single dimension PC chaos bases of different orders

\[
\psi_j(\xi) = \prod_{i=1}^{n} \phi_{\alpha_i}(\xi_i)
\]

\(\phi_{\alpha_i}(\xi_i) \) is the single dimensional, order \(\alpha_i \), polynomial function of underlying basic random variable \(\xi_i \).
Sobol Sensitivity Analysis

\[
\text{ANOVA } \rightarrow \text{ Sobol' indices: } S^\text{PC}_{i_1...i_s} = \sum_{\alpha \in \mathcal{I}_{i_1...i_s}} y^2_\alpha \mathbb{E} \left[\psi^2_\alpha \right] / D^\text{PC}
\]

Total Sobol' indices: \[S^\text{PC, total}_{j_1...j_t} = \sum_{(i_1,...,i_s) \in \mathcal{I}_{i_1,...,i_s}} S^\text{PC}_{i_1...i_s} \]

Using PC representation of probabilistic model response, Sobol’ sensitivity indices are analytic and inexpensive
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Real-ESSI Simulator System

The Real-ESSI, **Real**istic Modeling and Simulation of **Earthquakes**, **Soils**, **Structures** and their **Interaction** Simulator is a software, hardware and documentation system for time domain, linear and nonlinear, elastic and inelastic, deterministic or probabilistic, 3D, modeling and simulation of:

- statics and dynamics of soil,
- statics and dynamics of rock,
- statics and dynamics of structures,
- statics of soil-structure systems, and
- dynamics of earthquake-soil-structure system interaction

Used for:

- Design, linear elastic, load combinations, dimensioning
- Assessment, nonlinear/inelastic, safety margins
Real-ESSI Simulator System

Components
- Real-ESSI Pre (gmsh/gmESSI, X2ESSI)
- Real-ESSI Program (local, remote, cloud)
- Real-ESSI Post (Paraview/pvESSI, Python, Matlab)

Availability
- Linux Executables
- Amazon Web Services
- Docker Container Image
 - Linux
 - MS-Windows
 - MacOS

Real-ESSI documentation and program available at http://real-essi.us/
Real-ESSI Simulation Features

- Static loading stages
- Dynamic loading stages
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - Fine grained, template mataprograms, small matrix library
 - Coarse grained, distributed memory parallel
Real ESSI DSL Example

```plaintext
model name "SmallTestModel";
new loading stage "First_static";

// Nodal Coordinates
add node # 1 at (0*m, 0*m, 0*m) with 6 dofs;
add node # 2 at (0*m, 0*in, 1000*mm) with 6 dofs;
add element # 1 type beam_elastic with
    nodes (1, 2) cross_section=1.0*m^2
    elastic_modulus=1.0e5*KN/m^2
    shear_modulus=2.0e4*KN/m^2
    torsion_Jx=2*0.083*m^4
    bending_Iy=0.083*m^4 bending_Iz=0.083*m^4
    mass_density=2500.0*kg/m^3
    xz_plane_vector = (0, -1, 0)
    joint_1_offset = (0.0*m, 0.0*m, 0.0*m)
    joint_2_offset = (0.0*m, 0.0*m, 0.0*m);
```

Jeremić et al.
Real-ESSI
Real ESSI DSL Example

```plaintext
1. fix node No 1 dofs all;
2. add load #1 to node #2 type linear \( F_y = -9 \times 10^3 \) kN;
3. define load factor increment 0.01;
4. define solver UMFPack;
5. define convergence test
   Norm_Displacement_Increment
   tolerance = 1e-5
   maximum_iterations = 20
   verbose_level = 4;
7. define algorithm Newton;
8. simulate 100 steps using static algorithm;
9. bye;
```
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Uncertain Inelastic Mechanics</th>
<th>Real-ESSI Simulator</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Seismic Motions

Outline

- Introduction
- Uncertain Inelastic Mechanics
 - Forward Propagation
 - Backward Propagation, Sensitivities
- Real-ESSI Simulator
- Examples
 - Seismic Motions
 - Plastic Energy Dissipation
 - Sensitivity Analysis
- Conclusion
Realistic Ground Motions
Seismic Motions

1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent fit
- Wrong mechanics
6C vs 1C NPP ESSI Response Comparison
Free Field, Variation in Input Frequency, $\theta = 60^\circ$

(MP4)
SMR ESSI, Variation in Input Frequency, $\theta = 60^\circ$
SMR ESSI, 3C vs 3×1C

(OGV)

Jeremić et al.
Real-ESSI
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Energy Input and Dissipation

Energy input, static and dynamic forcing

Energy dissipation outside SSI domain:
- SSI system oscillation radiation
- Reflected wave radiation

Energy dissipation/conversion inside SSI domain:
- Inelasticity of soil, interfaces, structure, dissipators
- Viscous coupling with internal/pore and external fluids

Numerical energy dissipation/production
Plastic Energy Dissipation

Single elastic-plastic element under cyclic shear loading

Difference between plastic work and plastic dissipation
Energy Dissipation Control

![Graph showing energy dissipation over time](Image)

- **Kinetic Energy**
- **Strain Energy**
- **Plastic Free Energy**
- **Plastic Dissipation**
- **Viscous Damping**
- **Numerical Damping**
- **Input Work**

Figure

Jeremić et al. (2023) Real-ESSI
Inelastic Modeling of Soil Structure Systems

- Soil, inelastic, elastic-plastic
 Dry, single phase
 Unsaturated, partially saturated
 Fully saturated
- Contact/Interface/Joint, inelastic: dry or saturated
 Axial, hard and soft, gap open/close
 Shear, friction, nonlinear
- Structure, inelastic, damage, cracks
 Inelastic fiber beam
 Inelastic layer shell
 Inelastic 3D solid element
Acceleration Traces, Elastic vs Inelastic

Elastic

Inelastic
Plastic Energy Dissipation

Displacement Traces, Elastic vs Inelastic

Elastic

Inelastic

Jeremić et al.

Real-ESSI
NPP: Energy Dissipation

Accumulated Plastic Dissipation Density (J/m³)

Time Step: 620

(MP4)
Energy Dissipation for Design
Design Alternatives

Plastic Energy Dissipation

(MP4) (MP4)

Jeremić et al.

Real-ESSI
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Sensitivity Analysis

Stochastic Site Response

- Uncertain material: uncertain random field, marginally lognormal distribution, exponential correlation length 10m
- Uncertain seismic rock motions: seismic scenario M=7, R=50km
Sensitivity Analysis

Stochastic Material Parameters

Lognormal distributed random field with PC Dim. 3 Order 2

Jeremić et al.
Real-ESSI
Stochastic Seismic Motion Development

- UCERF3 (Field et al. 2014)
- Stochastic motions (Boore 2003)
- Polynomial Chaos Karhunen-Loève expansion
- Probabilistic DRM (Bielak et al. 2003, Wang et al. 2021)
Sensitivity Analysis

Stochastic Seismic Motions

![Graph showing stochastic seismic motions](image)

- **Realizations**
- **Mean**

![Graph showing Sa vs. Period](image)

- **Simu. Sa**
- **GMPE**
Sensitivity Analysis

Total variance in PGA, in this case (!), dominated by uncertain ground motions

49% from uncertain rock motions at depth

2% from uncertain soil

49% from interaction of uncertain rock motions and uncertain soil
Outline

Introduction

Uncertain Inelastic Mechanics
 Forward Propagation
 Backward Propagation, Sensitivities

Real-ESSI Simulator

Examples
 Seismic Motions
 Plastic Energy Dissipation
 Sensitivity Analysis

Conclusion
Appropriate Quotes

François-Marie Arouet, Voltaire: "Le doute n’est pas une condition agréable, mais la certitude est absurde."

Max Planck: "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."

Niklaus Wirth: "Software is getting slower more rapidly than hardware becomes faster."
Summary

- Numerical modeling to predict and inform

- Education and Training is the key!

- Funding from and collaboration with the US-NSF, US-DOE, US-NRC, US-FEMA/ATC, CNSC-CCSN, CH-ENSI/Basler&Hofmann, UN-IAEA, and Shimizu Corp. is greatly appreciated,

http://sokocalo.engr.ucdavis.edu/~jeremic