Probabilistic Seismic Risk Analysis for Inelastic Soil-Structure Systems

Boris Jeremić
Hexiang Wang, Han Yang

University of California, Davis

UCLA Lifelines Conference
Jan/Feb 2022
Outline

Introduction

Probabilistic Seismic Risk
 Uncertainty Propagation
 Risk Analysis Example

Summary
Outline

Introduction

Probabilistic Seismic Risk
Uncertainty Propagation
Risk Analysis Example

Summary
Motivation

Improve modeling and simulation of infrastructure objects

Modeling, epistemic uncertainty

Parametric, aleatory uncertainty

Goal is to Predict and Inform
Aleatory Uncertainties, Material, Motions

\[E = (101.125 \times 19.3) N^{0.63} \]

(cf. Phoon and Kulhawy (1999B))

(cf. Wang et al. (2019))
Outline

Introduction

Probabilistic Seismic Risk
Uncertainty Propagation
Risk Analysis Example

Summary
Forward Uncertainty Propagation

- Given uncertain material
- Given uncertain loads
- Determine uncertain response, $u_i, \dot{u}_i, \ddot{u}_i, \epsilon_{ij}, \sigma_{ij}$, PDFs/CDFs
- Direct, intrusive, analytic development
- Circumvent Monte Carlo inefficiencies, inaccuracies
Cam Clay with Random G, M and p_0
Stochastic Elastic-Plastic FEM

Dynamic Finite Elements $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$

- Input random field/process (non-Gaussian, heterogeneous/non-stationary): Multi-dimensional Hermite Polynomial Chaos (PC) with known coefficients
- Output response process: Multi-dimensional Hermite PC with unknown coefficients
- Galerkin projection: minimize the error to compute unknown coefficients of response process
Probabilistic Seismic Risk Analysis

- Objective, quantitative decision making based on exceedance rate $\lambda(EDP > z)$
- PSRA: convolution of PSHA and fragility

$$
\lambda(EDP > z) = \int \left| \frac{d\lambda(IM > x)}{dx} \right| G(EDP > z | IM = x) \, dx
$$

$\lambda(\cdot)$: rate of exceedance
EDP: engineering demand parameter
$PSHA$: probabilistic seismic hazard analysis
IM: intensity measure, choice to be made (!)
Outline

Introduction

Probabilistic Seismic Risk
 Uncertainty Propagation
Risk Analysis Example

Summary
Application: Seismic Hazard

Seismic source characterization

Stochastic ground motion

Uncertainty propagation

Uncertainty characterization

\[\lambda(EDP > z) = \sum N_i(M_i, R_i) P(EDP > z | M_i, R_i) \]
Example Object

- Fault 1: San Gregorio fault
- Fault 2: Calaveras fault
- Uncertainty: Segmentation, slip rate, rupture geometry, etc.

- 371 total seismic scenarios
- $M \sim 5.5$ and $6.5 \sim 7.0$
- $R_{jb} 20km \sim 40km$
Stochastic Ground Motion Modeling

Realizations of simulated uncertain motions for scenario $M = 7$, $R = 15\text{km}$:

Verification with GMPE:

Jeremić et al.
Stochastic Ground Motion Characterization

Acc. marginal mean
Acc. marginal S.D.
Acc. realization Cov.
Acc. synthesized Cov.

Dis. marginal mean
Dis. marginal S.D.
Dis. realization Cov.
Dis. synthesized Cov.
Stochastic Soil and Structure Modeling

(a) Frame

(b) Interstory response

Jeremić et al.
Probabilistic Dynamic Structural Response

- Coefficient of variation 15% for H_a and C_r
- Time domain stochastic
 El-PI FEM analysis (SEPFEM)
Seismic Risk, Forward Analysis

- Damage measure defined on single EDP:

<table>
<thead>
<tr>
<th>Damage Measure</th>
<th>MIDR > 0.5%</th>
<th>MIDR > 1%</th>
<th>MIDR > 2%</th>
<th>PFA > 0.5 m/s²</th>
<th>PFA > 1 m/s²</th>
<th>PFA > 1.5 m/s²</th>
</tr>
</thead>
</table>

- Damage measure (DM) defined on multiple EDPs:

 \[DM : \{ \text{MIDR} > 1\% \cup \text{PFA} > 1 \text{m/s}^2 \} \], seismic risk is \(4.2 \times 10^{-3} \text{/yr} \)

 \[DM : \{ \text{MIDR} > 1\% \cap \text{PFA} > 1 \text{m/s}^2 \} \], seismic risk is \(1.71 \times 10^{-3} \text{/yr} \)

- Seismic risk for DM defined on multiple EDPs can be quite different from that defined on single EDP
Sensitivity, Backward Analysis

Total variance in PGA, in this particular case (!), dominated by uncertain ground motions

- 49% from uncertain rock motions at depth
- 2% from uncertain soil
- 49% from interaction of uncertain rock motions and uncertain soil
Outline

Introduction

Probabilistic Seismic Risk
 Uncertainty Propagation
 Risk Analysis Example

Summary
Summary

- Analysis of uncertainties and sensitivities
- Full, direct, intrusive probabilistic modeling
- No need to define IMs
- http://real-essi.us/