

Quality Assurance of Inelastic Numerical Analysis for Soils and Structures

Boris Jeremić

University of California, Davis, CA

2nd IF-NFEES Forum Jul 2022

Jeremić

Outline

Introduction Motivation Errors in Scientific/Engineering Software

Engineering Analysis Analysis Phases Verification Validation

Summary

Jeremić

Outline

Introduction Motivation

Errors in Scientific/Engineering Software

Engineering Analysis Analysis Phases Verification Validation

Summary

Jeremić

Motivation

- Improve analysis and design for infrastructure
- Credible numerical analysis
- Predict and inform, Engineer needs to know!
- Design, build and maintain sustainable objects
- Civil engineering objects are important
- Civil enginering analysis better than "rocket science"

Motivation

Long Lasting Infrastructure

UCDAVIS

Jeremić

Prediction under Uncertainty

- Modeling, Epistemic Uncertainties

Modeling simplifications Low, medium, high sophistication modeling and simulation Modeling sophistication level for confidence in results Verification and Validation

- Parametric, Aleatory Uncertainties

 $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$

Uncertain: mass M, viscous damping C and stiffness K^{ep}

Uncertain loads, F(t)

Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić

Analysis Governance

- Numerical analysis is fragile
- Engineer's competency and expertise
- Model verification
- Solution verification, program-mathematics inaccuracies
- Validation, program-physics inaccuracies

Jeremić

Engineer, Analyst

- Sound engineering judgement
- Assess various analysis sophistication levels
- Engineer is in full control of the model and the analysis
- Engineer uses models to investigate designs
- Confidence in all modeling choices
- Confidence in all model components
- Confidence in all analysis results

Expert Analyst, Engineer

Hartford Coliseum Collapse, 1978 (Martin and Delatte, ASCE-JPCF (2001))

Jeremić

Analysis Program

- Hierarchy of model sophistication
- Hierarchy of simulation/algorithmic capabilities
- Full (!) Verification
- Extensive Validation
- Confidence in analysis results

Jeremić

Motivation

Under the Simulation Hood

- Commercial programs benchmark examples
- Commercial programs verification (?)
- Surprises under the simulation hood

Jeremić

Commercial Programs

Oberkampf and Trucano, SAND2007-0853 note:

- Commercial programs with large number of benchmark examples
- Primary goal is to demonstrate "engineering accuracy"
- However (!) verification should carefully quantify the numerical error in the solutions

Jeremić

UCDAVIS

Outline

Introduction

Motivation

Errors in Scientific/Engineering Software

Engineering Analysis Analysis Phases Verification Validation

Summary

Jeremić

Analysis Program Errors

- Analysis Programs might have feature/errors
- Analysis Program quality control/assurance/management
- Open-source programs without quality control are dangerous!
- Fitting a curve does not mean that results are accurate (2.0+2.0=4.0; 1.9+2.1=4.0; 2.51+1.51=4.02)

Jeremić

AIAA Editorial Policy

Editorial policy of the American Institute of Aeronautics and Astronautics (AIAA) Journal: The AIAA journals will not accept for publication any paper reporting:

- Numerical solution of an engineering problem that fails adequately to address accuracy of the computer results, or
- Experimental results unless the accuracy of the data is adequately presented

Jeremić

Introduction	
000000000000)
000000000000000000000000000000000000000)

Errors in Scientific/Engineering Software

The T Experiments

- Les Hatton: The T experiments, Errors in scientific software. IEEE Computational Science and Engineering, 4(2):27-38, April-June 1997.
- "Extensive tests showed that many software codes widely used in science and engineering are not as accurate as we would like to think."
- "Better software engineering practices wold help solve this problem,"
- "Realizing that the problem exists is an important first step."
- Large experiment over 4 years measuring faults (T1) and failures (T2) of scientific and engineering codes

The T1 Experiments

- Measured defects without running the code, measuring formal consistency of 3,305,628 lines f77 and 1,928,011 lines of C
- 100 codes, 40 application areas: graphics, nuc. mech. chem. aero. civil engineering, comms, DBs, med. systems
- Safety-critical and non-safety-critical codes
- Applications with and without internationally standardized systems of quality control
- Mature codes (1 20 years old), in regular use
- Some errors: function call argument sequence, finite precision arithmetic misunderstanding, code complexity

T1: C Sources

Jeremić

UCDAVIS

T1: f77 Sources

Jeremić

UCDAVIS

The T2 Experiments

- Application area: seismic inverse analysis
- Echo sounding of underground
- Reconstruct "images" of subsurface geologic structure
- Nine mature programs
- Using the very same set of algorithms
- Same input data set!
- 14 primary calibration points for results check
- Results "fascinating and disturbing"

Jeremić

T2: Disagreement at Calibration Points

Jeremić

UCDAVIS

T2: Stage 14, Interpretation of Data

Jeremić

Outline

ntroduction Motivation Errors in Scientific/Engineering Software

Engineering Analysis Analysis Phases

Verification Validation

Summary

Jeremić

Analysis Phases

Jeremić

Analysis Phases

ESSI Modeling Phases

- Account for all model physical components
- Solids, structures and fluids
- Elastic, inelastic materials
- Static loads
- Dynamic loads
- Response quantities
- Engineer/Analyst builds confidence in analysis
- No surprises and no "reliance" on good luck!

Jeremić

Analysis Phases

ESSI Modeling Phases

- 1D, 1C free field response
- Linear elastic material
- Inelastic material

Jeremić

Analysis Phases

ESSI Modeling Phases

- 3D, 1C free field response
- Linear elastic material
- Inelastic material

	-			
	Generalized	_Displacemen	ts Magnitude	
0.000e+00	0.00048	0.00095	0.0014	1.905e-03

Jeremić

Analysis Phases

ESSI Modeling Phases

- 3D, 1C, part of SSI response
- 3D, 1C, add SSI components
- Linear elastic material
- Inelastic material

Jeremić

UCDAVIS

Analysis Phases

ESSI Modeling Phases

- Eigenvalue analysis

Jeremić

UCDAVIS

Analysis Phases

ESSI Modeling Phases

- Synthesis: full ESSI model

Jeremić

UCDAVIS

Analysis Phases

Nonlinear Modeling, Loading Stages

Jeremić

UCDAVIS

Small Deformation Theory!

Jeremić

Equivalent Linear Soil Modeling

(Pecker, Johnson, Jeremić. Seismic Soil Structure Interaction for Design and Assessment of Nuclear Installations. ISBN-978-92-0-143021-2, UN-IAEA-TECDOC-1990, 2022)

Jeremić

UCDAVIS

Quality Assurance: Verification and Validation

- Verification: provides evidence that the model is solved correctly, Mathematics issue.
- Validation: provides evidence that the correct model is solved, Physics issue.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.

Jeremić

UCDAVIS

Role of Verification and Validation

Oberkampf et al.

Jeremić

UCDAVIS

Role of Verification and Validation

Oden et al.

Jeremić

UCDAVIS

Outline

ntroduction Motivation Errors in Scientific/Engineering Software

Engineering Analysis

Analysis Phases Verification

Summary

Jeremić

Verification

Code Verification

- Process of determining that the numerical algorithms are correctly implemented in the computer code and that these algorithms are functioning as intended (ASME V&V 10)

Highly accurate analytical solutions needed Method of manufactured solutions Simple physics, simple BC, mesh refinment Tested features are uncoupled from other code options

Jeremić

UCDAVIS

Verification

Solution Verification

- Numerical error estimation, using methods different accuracy methods

Richardson extrapolation Recovery methods Sensitivities

Jeremić

Verification

- Constitutive integration
- Static and dynamic behavior of single phase solids
- Static and dynamic behavior of fully and partially saturated, fully coupled, porous solid-pore fluid problems
- Static and dynamic behavior of structural elements
- Static and dynamic behavior of special elements (contacts-interface/gap-frictional/dry-saturated, isolators/dissipators)
- Static and dynamic FEM solution advancement
- Seismic wave propagation problems

Introduction

UCDAVIS

Verification

Constitutive Integration Verification

- Asymptotic regime of convergence
- Richardson extrapolation
- Grid convergence index

Jeremić

Plastic Energy Dissipation

Single elastic-plastic element under cyclic shear loading Difference between plastic work and plastic dissipation Plastic work can decrease Plastic dissipation always increases

Jeremić

UCDAVIS

Introduction
00000000000
00000000000

Verification: Irregular Solids and Poisson's Ratio

Jeremić

Verification of Solid Shell/Plate

- Simply supported and clamped ends
- Timoshenko's analytic solutions

Jeremić

UCDAVIS

Verification of Boussinesq Problem

Jeremić

UCDAVIS

UCDAVIS

Verification

Wave Propagation, Mesh Size Effects

(Case 1, Vs = 1000 m/s, Cutoff Fq. = 15 Hz, E. Size = 20 m)

Jeremić

Verification

Verification for Fully Coupled Problems

Jeremić

UCDAVIS

Verification

Dynamic Time Stepping Verification

Hilber-Hughes-Taylor $\alpha = -0.2$

Jeremić

UCDAVIS

Free Field, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić

Engineering Analysis

Summary 00

Verification

Free Field, Variation in Input Wave Angle, f = 5Hz

Jeremić

Outline

ntroduction Motivation Errors in Scientific/Engineering Software

Engineering Analysis

Analysis Phases Verification Validation

Summary

Jeremić

Validation

Quantification of uncertainties and errors in the computational model and the experimental measurements

- Goals on validation
 - Tactical goal: Identification and minimization of uncertainties and errors in the computational model
 - Strategic goal: Increase confidence in the quantitative predictive capability of the computational model
- Strategy is to reduce as much as possible the following:
 - Computational model uncertainties and errors
 - Random, precision errors in the experiments
 - Bias, systematic errors in the experiments
 - Incomplete physical characterization of the experiment

Validation

Types of Physical Experiments

- Traditional, physics discovery experiments

- Validation experiments

Jeremić

Validation

Traditional Experiments

- Improve the fundamental understanding of physics
- Improve the mathematical models for physical phenomena
- Assess component performance

Jeremić

Validation Experiments

- Model validation experiments
- Designed and executed to quantitatively estimate mathematical model's ability to simulate well defined physical behavior
- The simulation tool (SimTool) (conceptual model, computational model, computational solution) is the customer!

Analysis Quality Assurance

Jeremić

Introduction
0000000000
0000000000

Validation Experiments

- A validation experiment should be jointly designed and executed by experimentalist and analyst
 - Need for close working relationship from inception to documentation
 - Elimination of typical competition
 - Complete honesty concerning strengths and weaknesses of both experimental and computational simulations
- A validation experiment should be designed to capture the relevant physics
 - Measure all important modeling data in the experiment
 - Characteristics and imperfections of the experimental facility should be included in the model

Introduction
0000000000
0000000000

Validation Experiments (contd)

- A validation experiment should use any possible synergism between experiment and computational approaches
 - Offset strength and weaknesses of computations and experiments
 - Use high confidence simulations for simple physics to calibrate of improve the characterization of the experimental facility
 - Conduct experiments with a hierarchy of physics complexity to determine where the computational simulation breaks (remember, SimTool is the customer!)
- Maintain independence between computational and experimental results
 - Blind comparison, the computational simulations should be predictions
 - Neither side is allowed to use fudge factors, parameters

Introduction
000000000000000000000000000000000000000

Validation Experiments (contd)

- Validate experiments on unit level problems, hierarchy of experimental measurements should be made that present an increasing range of computational difficulty
 - Use of qualitative data (visualization) and quantitative data
 - Computational data should be processed to match the experimental measurement techniques
- Experimental uncertainty analysis should be developed and employed
 - Distinguish and quantify random and correlated bias errors
 - Use symmetry arguments and statistical methods to identify correlated bias errors
 - Make uncertainty estimates on input quantities needed by the SimTool

Validation Experiments

- Experimental data for all components of infrastructure systems
- Laboratory or real object measurement data
- Unit tests
- Subsystem tests
- Complete infrastructure system test

Jeremić

Validation, Material Behavior, Sand

UCDAVIS

Jeremić

Nonlinear, Inelastic Behavior of Rock

(Stavrogin et al 2001)

Jeremić

UCDAVIS

Nonlinear, Inelastic Behavior of Interfaces/Joints

(Shahrour and Rezaie (1997))

Jeremić

UCDAVIS

Validation, Material, ASR Concrete

Jeremić

UCDAVIS

Outline

ntroduction Motivation Errors in Scientific/Engineering Software

Engineering Analysis Analysis Phases Verification Validation

Summary

Jeremić

- Quality Control and Assurance is of utmost importance for numerical analysis
 - Engineer controls analysis quality
 - Analysis program
- Modeling, epistemic uncertainties
- Parametric, aleatory uncertainties
- Physics Discovery and Validation experiments
- TJU NFEES will make significant contribution !

