Full Seismic Wave Inversion in 3D for ESSI Analysis

Boris Jeremić

University of California, Davis, CA

SMiRT26, Potsdam, Germany
July 2022
Outline

Introduction

Inverse Wave Field Analysis

Summary
Outline

Introduction

Inverse Wave Field Analysis

Summary

Jeremić et al.

Seismic Eave Field Inversion
Motivation

Improve modeling and simulation of nuclear installations

Reduction of modeling uncertainty

Development of full 3D/3C wave fields for ESSI analysis

Use surface, structure and limited downhole motion measurements for development of wave fields
Robert P. Kennedy, 1939-2018

"Response of a soil structure system is nonlinear, and I would really like to know what that response is!"

Nebojša Orbović, 1962-2021

"As an engineer, I have to know what are response sensitivities to modeling choices and model parameters."
Prediction under Uncertainty

- **Modeling Uncertainty**, Simplifying assumptions
 Low, medium, high sophistication modeling and simulation
 Choice of sophistication level for confidence in results

- **Parametric Uncertainty**, \(M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t) \),
 Uncertain mass \(M \), viscous damping \(C \) and stiffness \(K^{ep} \)
 Propagation of uncertainty in loads, \(F(t) \)
 Results are PDFs and CDFs for \(\sigma_{ij}, \epsilon_{ij}, u_i, \dot{u}_i, \ddot{u}_i \)
Goal: Reduction of Modeling Uncertainty

- Modeling Uncertainty: introduced with unnecessary and unrealistic modeling simplification

- Simplified (or inadequate/wrong) modeling: important features are missed (3C (6C) seismic ground motions, inelasticity, etc.)

- Modeling simplifications are justifiable if one, two or higher level sophistication model demonstrates that features being simplified out are not important

- Use of HPC for low modeling uncertainty and direct probabilistic modeling and simulations
Outline

Introduction

Inverse Wave Field Analysis

Summary
ESSI: 6C or 1C Seismic Motions

- Assume that a full 6C (3C) motions at the surface are only recorded in one horizontal direction.
- From such recorded motions one can develop a vertically propagating shear wave (1C) in 1D.
- Apply such vertically propagating shear wave to same soil-structure system.
Realistic Ground Motions

- Free field seismic motion models
Development of Realistic Motions

- Sources will send both P and S waves
1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent fit

(MP4) (MP4)
1C vs 6C Free Field Motions

(a) \(f = 5\text{Hz} \), \(\theta = 10^\circ \)
(b) \(f = 5\text{Hz} \), \(\theta = 45^\circ \)
(c) \(f = 5\text{Hz} \), \(\theta = 60^\circ \)
(d) \(f = 5\text{Hz} \), \(\theta = 80^\circ \)
(e) \(f = 1\text{Hz} \), \(\theta = 60^\circ \)
(f) \(f = 2.5\text{Hz} \), \(\theta = 60^\circ \)
(g) \(f = 5\text{Hz} \), \(\theta = 60^\circ \)
(h) \(f = 10\text{Hz} \), \(\theta = 60^\circ \)
SMR ESSI, 3C vs 3×1C

(OGV)
Development of 3D/3C Wave Fields

- PDE-constrained optimization
- Evaluate gradient of a misfit between measured and computed wave fields
- Optimize DRM effective forces

\[P_{\text{eff}} = \begin{bmatrix} 0 \\ -M_{\Omega}^{+} \ddot{u}_{e}^{0} - K_{\Omega}^{+} u_{e}^{0} \\ +M_{\Omega}^{-} \ddot{u}_{b}^{0} + K_{\Omega}^{-} u_{b}^{0} \end{bmatrix} \]

Example size: ~ 500 m
Example size: ~ 100 km

Jeremić et al.
Seismic Wave Field Inversion
Development of 3D/3C Wave Fields

- Preliminary results encouraging
- Minimizing number of measuring points
- Measurements of 1C, 2C or 3C motions
- Recreate full 3D/3C wave field
Outline

Introduction

Inverse Wave Field Analysis

Summary
Summary

- Importance of using realistic 3D/3C seismic wave fields
- PDE-constrained optimization
- Develop optimized DRM effective forces
- Use surface and at depth measurements (1C, 2C, 3C)
- Develop full, 3C wave field
- http://real-essi.us