Collaborative Research: Development of Realistic Seismic Input Motions for Improving the Resilience of Infrastructures to Earthquakes

¹Chanseok Jeong and ²Boris Jeremic

¹School of Engineering and Technology, Central Michigan University, Mount Pleasant, 48859, MI, USA ²Department of Civil and Environmental Engineering, University of California, Davis, 95616, CA, USA

Objective

Investigate a new method for accurate reconstruction of three component (3C) of incoming seismic wave field in a 3D, truncated near-surface domain by using sparse seismic data in consideration of mildly nonlinear, inelastic materials.

Motivation for this work

- Estimating incident seismic wavefields in a soil-structure system from seismic measurement allows engineers to pinpoint where large amplitudes of stress waves occur (or structural failures occur) in built environments during seismic events.
- It helps decision-makers to plan the budget and schedule of upgrades, Improving the Resilience of Infrastructure to Earthquakes.

Research Plan

- Task 1: Implementation of the Novel Inverse Modeling Coupled with the Domain Reduction Method (DRM) in Consideration of Various Measurement Types.
- Task 2: Verification of the Task 1.
- Task 3: Parametric Studies.

Task Name	Project Year 1				Year 2			
Task 1: Developing novel inverse modeling								
Task 2: Verification								
Task 3: Parametric studies								

Research Results

(2022) B. Guidio, B. Jeremic, L. Guidio, and C. Jeong, *Passive-seismic inversion of SH-wave input motions in a domain truncated by wave-absorbing boundary conditions*, **Soil Dynamics and Earthquake Engineering**, Vol. 158, Elsevier.

Research Results

To increase the accuracy of the presented algorithm, **the number of sensors per unit length should rise as the frequency content of an incident wave increases**.

Waves of a dominant frequency of 20 Hz are considered with a sensor spacing of 8 m.

Simulation Program

- Implementation of the Inverse Modeling Method in the Real-ESSI Simulator
 - Realistic Modeling and Simulation of Earthquakes, Soils, Structures, and their Interaction
 - Goal Achieve accurate and efficient reconstruction of full three component (3C) seismic wave field in a three dimensional (3D) domain
 - Accuracy \rightarrow High fidelity finite element method (FEM) modeling techniques
 - Efficiency \rightarrow High performance parallel computing techniques
 - Verification and Validation
- Take advantage of the existing functionality in Real-ESSI
 - Modeling of elastic/inelastic materials, soil/structure/interface elements
 - Domain reduction method (DRM) for seismic wave input
 - Plastic domain decomposition technique for parallel computing
 - Post-Processing and Visualization

Parallel Computing

- Implementation in Real-ESSI Parallel Computing in progress...
 - Necessary for large realistic models
 - Plastic domain decomposition method
- Ongoing work
 - Parallelization of time-integration schemes, solvers, output module, etc.
 - Verification and validation
 - Post-processing and visualization

Use: Energy-Based Design

- Follow Energy Flow in Soil-Structure Systems
 - Proposed inverse modeling method can be used to accurately calculate seismic energy input into a realistic infrastructure object under realistic seismic excitations.

Improved Infrastructure

Control Energy Dissipation in Soil-Structure Systems

Summary

- We will be investigating a method for accurate reconstruction of 3C incoming seismic wave in a 3D, truncated near-surface domain by using seismic data in consideration of nonlinear, inelastic materials using Real-ESSI Simulator.
- Proposed inverse modeling method can be used to accurately calculate seismic energy input into a realistic infrastructure object under realistic seismic excitations for energy-based design.
- Acknowledgement: This material is based upon work supported by the National Science Foundation under Awards CMMI-2053694.