Engineering Analysis Toolbox The Real-ESSI Simulator System

Boris Jeremić Борис Јеремић

University of California, Davis, CA, USA

5th SEECCM July 2023

Врњачка Бања, Србија

Jeremić et al.

Outline

Introduction

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

Jeremić et al.

Outline

Introduction

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

Jeremić et al.

Motivation

- Safety and economy of infrastructure
- Design, build and maintain sustainable infrastructure
- Responsible Engineer, with Executive Powers
- Engineer with versatile, quality assured analysis tool to
 - Explore design concepts
 - Assess infrastructure performance
- Engineering Analysis to Predict and Inform

Jeremić et al.

Engineering Analysis Applications

Summary

Engineer Needs to Know!

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Summary

Civil Engineering Analysis Challenges

Jeremić et al.

UCDAVIS

Outline

Introduction

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

Jeremić et al.

UCDAVIS

Engineering Analysis Methods and Tools

Engineering Analysis System

- Statics and dynamics of rock, soil, structures, fluids...
- Linear, Nonlinear, Inelastic
- Deterministic and Probabilistic
- High Performance Computing, HPC
- Reduction of Modeling Uncertainty
- Propagation of Parametric Uncertainty
- QA: Verification and Validation
- Infrastructure safety and economy
- http://real-essi.us/

Finite Element Method

- Single Phase FEM: $M_{AacB} \ddot{\bar{u}}_{Bc} + K_{AacB} \bar{\bar{u}}_{Bc} = F_{Aa}$

$$\begin{array}{c|c} & \text{- Two phase FEM, u-p-U:} \\ \begin{bmatrix} (M_{s})_{\textit{\textit{KjjL}}} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (M_{f})_{\textit{\textit{KjjL}}} \end{bmatrix} \begin{bmatrix} \ddot{\overline{u}}_{L_{j}} \\ \ddot{\overline{p}}_{N} \\ \ddot{\overline{U}}_{L_{j}} \end{bmatrix} + \begin{bmatrix} (C_{1})_{\textit{\textit{KjjL}}} & 0 & -(C_{2})_{\textit{KijL}} \\ 0 & 0 & 0 \\ -(C_{2})_{\textit{LjiK}} & 0 & (C_{3})_{\textit{KijL}} \end{bmatrix} \begin{bmatrix} \dot{\overline{u}}_{L_{j}} \\ \dot{\overline{p}}_{N} \\ \ddot{\overline{U}}_{L_{j}} \end{bmatrix} \\ & + \begin{bmatrix} (\mathcal{K}^{EP})_{\textit{KijL}} & -(G_{1})_{\textit{KiM}} & 0 \\ -(G_{1})_{\textit{LjM}} & -P_{MN} & -(G_{2})_{\textit{LjM}} \\ 0 & -(G_{2})_{\textit{KiL}} & 0 \end{bmatrix} \begin{bmatrix} \overline{u}_{L_{j}} \\ \overline{p}_{M} \\ \overline{U}_{L_{j}} \end{bmatrix} = \begin{bmatrix} \overline{t}_{K_{i}}^{\text{solid}} \\ \overline{t}_{K_{i}}^{\text{fluid}} \\ \overline{t}_{K_{i}}^{\text{fluid}} \end{bmatrix} \end{array}$$

- Equilibrium: $R = F_{external} - F_{internal}$

Jeremić et al.

UCDAVIS

Energy Input and Dissipation

Energy input, forces, loads

Energy dissipation outside SSI domain: SSI system oscillation radiation Reflected waves radiation

Energy dissipation/conversion inside SSI domain:

Inelasticity of soil, interfaces, structure, dissipators Viscous coupling with internal/pore and external fluids Energy deflectors, meta-materials

Numerical energy dissipation/production

Jeremić et al.

UCDAVIS

Energy Dissipation

- Rate of plastic energy dissipation: $\Phi = \sigma_{ij}\Delta\epsilon_{ij} - \sigma_{ij}\Delta\epsilon_{ij}^{el} - \rho\Delta\psi_{pl} \ge 0$
- Increment of viscous energy dissipation/damping: $\Delta D_V = C_{ij} \dot{u}_j \Delta u_i$
- Algorithmic, numerical dissipation: Newmark, Hilber-Hughes-Taylor, Houbolt, Wilson ...

Jeremić et al.

Plastic Energy Dissipation

Plastic work is NOT plastic dissipation !

Surface area of $F - \Delta$ or $\sigma - \epsilon$ is NOT plastic dissipation !

Jeremić et al.

UCDAVIS

Forward Uncertainty Propagation

Time Domain Stochastic Elastic-Plastic FEM $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$

- Input random field and random process, non-Gaussian, heterogeneous/non-stationary: Multi-dimensional Hermite Polynomial Chaos (PC) with known coefficients
- Output response process: Multi-dimensional Hermite PC with unknown coefficients
- Galerkin projection: minimize the error to compute unknown coefficients of response process

Jeremić et al.

Forward Probabilistic Constitutive Solution in 1D

- Zero elastic region elasto-plasticity with stochastic Armstrong-Frederick kinematic hardening $\Delta \sigma = H_a \Delta \epsilon - c_r \sigma |\Delta \epsilon|; \quad E_t = d\sigma/d\epsilon = H_a \pm c_r \sigma$
- Uncertain: init. stiff. H_a , shear strength H_a/c_r , strain $\Delta \epsilon$: $H_a = \Sigma h_i \Phi_i$; $C_r = \Sigma c_i \Phi_i$; $\Delta \epsilon = \Sigma \Delta \epsilon_i \Phi_i$
- Resulting stress and stiffness are also uncertain

Jeremić et al.

Engineering Analysis Methods and Tools

Forward Probabilistic Stress Solution

- Analytic product, for each stress component, $\Delta\sigma_{ij} = E^{EP}_{ijkl} \ \Delta\epsilon_{kl}$
- Incremental stress: each Polynomial Chaos component is updated incrementally

$$\begin{split} \dot{\Delta}\sigma_{1}^{n+1} &= \frac{1}{\langle \Phi_{1}\Phi_{1} \rangle} \{ \sum_{i=1}^{P_{h}} \sum_{k=1}^{P_{e}} h_{i} \Delta \epsilon_{k}^{n} \langle \Phi_{i}\Phi_{k}\Phi_{1} \rangle \\ &- \sum_{j=1}^{P_{g}} \sum_{k=1}^{P_{e}} \sum_{l=1}^{P_{\sigma}} c_{j} \Delta \epsilon_{k}^{n} \sigma_{l}^{n} \langle \Phi_{j}\Phi_{k}\Phi_{l}\Phi_{1} \rangle \} \end{split}$$

$$\Delta \sigma_P^{n+1} = \frac{1}{\langle \Phi_P \Phi_P \rangle} \{ \sum_{i=1}^{P_h} \sum_{k=1}^{P_e} h_i \Delta \epsilon_k^n \langle \Phi_i \Phi_k \Phi_P \rangle \\ - \sum_{j=1}^{P_g} \sum_{k=1}^{P_e} \sum_{l=1}^{P_\sigma} c_j \Delta \epsilon_k^n \sigma_l^n \langle \Phi_j \Phi_k \Phi_l \Phi_P \rangle \}$$

- Stress update: $\sum_{l=1}^{P_{\sigma}} \sigma_i^{n+1} \Phi_i = \sum_{l=1}^{P_{\sigma}} \sigma_i^n \Phi_i + \sum_{l=1}^{P_{\sigma}} \Delta \sigma_i^{n+1} \Phi_i$

Jeremić et al.

Engineering Analysis Applications

Summary 00

Backward Uncertainty Propagation, Sensitivities

Engineering Analysis Methods and Tools

0000000000000000

- Given forward uncertain response, PDFs, CDFs...
- Sensitivity of forward uncertainty to input uncertainties
- The ANalysis Of VAriance representation (Sobol 2001)
- Sobol indices S_{i1...is}, fractional contributions from random inputs {X_{i1},...,X_{is}} to the total variance D: S_{i1...is} = D_{i1...is}/D
- First order indices $S_i \rightarrow$ individual influence of each uncertain input parameter
- Higher order indices $\mathcal{S}_{i_1 \dots i_s} \to \text{mixed}$ influence from groups of uncertain input parameters
- Total sensitivity indices, influence of input parameter X_i

$$S_i^{total} = \sum_{\mathscr{S}_i} D_{i_1...i_s}$$

Jeremić et al.

Sobol Indices and Polynomial Chaos

PC expansion of response, ANOVA form (Sudret 2008) Multi-dimensional PC bases $\{\Psi_j(\xi)\}$ decomposed into products of single dimension PC chaos bases of different orders

$$\Psi_j(\boldsymbol{\xi}) = \prod_{i=1}^n \phi_{\alpha_i}(\xi_i)$$

 $\phi_{\alpha_i}(\xi_i)$ is the single dimensional, order α_i , polynomial function of underlying basic random variable ξ_i .

From ANOVA representation of probabilistic model response, the PC-based Sobol indices $S_{i_1...i_s}^{PC}$ are

$$S^{PC}_{i_1...i_s} = \sum_{lpha \in S_{i_1,...,i_s}} y^2_{lpha} oldsymbol{E} \left[\Psi^2_{lpha}
ight] / D^{PC}$$

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Sobol Sensitivity Analysis

Total Sobol indices $S_{j_1...j_t}^{PC,total}$

$$S_{j_1...j_t}^{PC,total} = \sum_{(i_1,...,i_s)\in S_{j_1,...,j_t}} S_{i_1...i_s}^{PC}$$

where
$$S_{j_1,...,j_t} = \{(i_1,...,i_s) : (j_1,...,j_t) \subset (i_1,...,i_s)\}$$

Using PC representation of probabilistic model response, Sobol' sensitivity indices are analytic and inexpensive

Jeremić et al.

UCDAVIS

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

HPC: Course Grained and Fine Grained

- Plastic Domain Decomposition Method

- Small Tensor Library

Jeremić et al.

UCDAVIS

Outline

Introduction

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Realistic Ground Motions

Jeremić et al.

UCDAVIS

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent 1C/1D fit, wrong 3C/3D dynamics

(MP4) (MP4)

Jeremić et al.

UCDAVIS

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Ventura Hotel, Northridge Earthquake, nonSSI vs SSI

(MP4)

Jeremić et al.

UCDAVIS

NPP Seismic Reponse, Energy Dissipation

Jeremić et al.

UCDAVIS

Engineering Analysis Methods and Tools

Engineering Analysis Applications

SMR Seismic Reponse, Energy Dissipation

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Design Alternatives

(MP4)

(MP4)

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Summary

ASCE-7-21, Low Building: BRB Energy Dissipation

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Summary

Building on Liquefiable Soil

(MP4) (MP4)

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Summary

Building with Metamaterial Deflectors

(MP4)

Jeremić et al.

Engineering Analysis Applications

Summary

UCDAVIS

Building without Metamaterial Deflectors

Jeremić et al.

Engineering Analysis Applications

Probabilistic Elastic-Plastic Response

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

SEPFEM: Example in 1D

Jeremić et al.

UCDAVIS

Engineering Analysis Applications

Application: Seismic Hazard

Engineering Analysis Applications

Seismic Risk Analysis

Engineering demand parameter (EDP): Maximum inter-story drift ratio (MIDR)

Seismic Risk Analysis

- Damage measure defined on single EDP:

DM	MIDR>0.5%	MIDR>1%	MIDR>2%	$PFA > 0.5 \mathrm{m/s^2}$	$PFA>1m/s^2$	$PFA>1.5m/s^2$
Risk [/yr]	6.66×10 ⁻³	3.83×10 ⁻³	9.97×10 ⁻⁵	6.65×10 ⁻³	$1.92 imes 10^{-3}$	9.45×10 ⁻⁵

- Damage measure (DM) defined on multiple EDPs: $DM : \{MIDR > 1\% \cup PFA > 1m/s^2\}$, seismic risk is $4.2 \times 10^{-3}/yr$ $DM : \{MIDR > 1\% \cap PFA > 1m/s^2\}$, seismic risk is $1.71 \times 10^{-3}/yr$
- Seismic risk for DM defined on multiple EDPs can be quite different from that defined on single EDP

Jeremić et al.

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Sensitivity Example: Probabilistic Site Response

- Uncertain material: uncertain random field, marginally lognormal distribution, exponential correlation length 10m
- Uncertain seismic rock motions: seismic scenario M=7, R=50km

Jeremić et al.

Sensitivity Analysis

Total variance in PGA, in this particular case (!), dominated by uncertain ground motions

49% from uncertain rock motions at depth

2% from uncertain soil

49% from interaction of uncertain rock motions and uncertain soil

Jeremić et al.

Outline

Introduction

Engineering Analysis Methods and Tools

Engineering Analysis Applications

Summary

Jeremić et al.

UCDAVIS

Summary

- Engineering analysis to predict and inform
- Engineer needs to know
- Education and Training is the Key
- Collaborators: Feng, Yang, Behbehani, Sinha, Wang, Lacoure, Wang, Pisanó, Abell, Tafazzoli, Jie, Preisig, Tasiopoulou, Watanabe, Luo, Cheng, Yang
- Funding from and collaboration with the US-DOE, US-NRC, US-NSF, ATC/US-FEMA, CNSC-CCSN, CH-ENSI, UN-IAEA, is greatly appreciated

Jeremić et al.