Inelastic, Coupled Analysis

Summary 000

Fully Coupled FEM Analysis

Boris Jeremić University of California, Davis

Tongji University Liquefaction Workshop

01Nov2023

Jeremić et al.

Outline

Introduction

Inelastic, Coupled Analysis Numerical Formulation Analysis Examples

Summary

Jeremić et al.

Outline

Introduction

Inelastic, Coupled Analysis Numerical Formulation Analysis Examples

Summary

Jeremić et al.

Engineering Analysis

- Improve analysis and design for infrastructure
- All ESSI problems are three dimensional, 3D
- Simplifying assumptions \rightarrow epistemic uncertainty
- Design and assessment of infrastructure
- Predict and inform!
- Engineer needs to know!

Jeremić et al.

Prediction under Uncertainty

- Modeling, Epistemic Uncertainties

Modeling simplifications Low, medium, high sophistication modeling and simulation Modeling sophistication level for confidence in results Verification and Validation

- Parametric, Aleatory Uncertainties

 $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$

Uncertain: mass M, viscous damping C and stiffness K^{ep} Uncertain loads, F(t)

Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić et al.

Engineer, Analyst

- Educated, Trained, Experienced
- Sound engineering judgement
- Assess various analysis sophistication levels
- Engineer is in full control of the model and the analysis
- Engineer uses models to assess design options
- Confidence in all modeling choices
- Confidence in all analysis results

Jeremić et al.

Analysis Program

- Hierarchy of model sophistication capabilities
- Hierarchy of simulation/algorithmic capabilities
- Full Verification !
- Extensive Validation
- Confidence in analysis results

Jeremić et al.

Modeling Features

- Solid elements: dry, (un-)saturated, elastic, inelastic
- Structural elements: beams, shells, elastic, inelastic
- Contact/interface/joint elements: Bonded, Shear/Frictional; Gap/Normal; linear, nonlinear, dry, coupled/saturated,
- Material models: soil, rock, concrete, steel...
- Seismic input: 1C and 3C, deterministic or probabilistic
- Energy dissipation: elastic-plastic, viscous, algorithmic
- Solid/Structure-Fluid interaction, Internal and External
- Intrusive probabilistic inelastic modeling, Forw. and Backw.

Jeremić et al.

Inelastic, Coupled Analysis

Summary 000

Simulation Features

- Static loading stages
- Dynamic loading stages
- Explicit and Implicit computations
- Restart, simulation tree
- Solution advancement methods/algorithms, on global and constitutive levels, with and without enforcing equilibrium
- High Performance Computing
 - . Fine grained, template mataprograms, small matrix library
 - . Coarse grained, distributed memory parallel

Jeremić et al.

Introduction 0000000 Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

Outline

Introduction

Inelastic, Coupled Analysis Numerical Formulation

Analysis Examples

Summary

Jeremić et al.

Numerical Formulation

FEM Formulation Assumptions

- 3D Geometry
- Solids and Structures
- Material nonlinear, inelastic and/or elastic
- Small deformations:
 - small strain small translations small rotations
- Fully or Partially/Un- Saturated, two phase material
- Mixture of pore fluid and porous solid
- Compressible pore fluid and compressible porous solid

Jeremić et al.

Numerical Formulation

Two Phase, Fully Coupled Systems

- Based on:

O. C. Zienkiewicz and T. Shiomi. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8:71-96, 1984.

- Full coupling of internal, pore fluid with porous solid
- Full saturation and partial, unsaturated soils
- Statics and dynamics of coupled systems

Jeremić et al.

Numerical Formulation

FEM Discretization, Approximation

- Displacement approximation: $u_i \approx \hat{u}_a = H_I \bar{u}_{Ia}$

- Strain:
$$\epsilon_{ab} \approx \hat{\epsilon}_{ab} = \frac{1}{2} \left(\left(H_{l,b} \ \bar{u}_{la} \right) + \left(H_{l,a} \ \bar{u}_{lb} \right) \right)$$

Jeremić et al.

Introduction 0000000 Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

FEM Discretization, Stress-Strain

$$\Delta \hat{\sigma}_{ab} = \textit{E}_{abcd}^{\textit{EP}} \left(\Delta \hat{\epsilon}_{cd} - \Delta \epsilon_{cd}^{0} \right) + \Delta \sigma_{ab}^{0}$$

Jeremić et al.

Numerical Formulation

FEM Discretization, Stiffness Tensor Symmetries

- Minor symmetry of stiffness tensor: ${}^{EP}E_{abcd} = E_{bacd}^{EP} = E_{abdc}^{EP}$
- Major symmetry is not necessary, non-associated plasticity ${}^{EP}E_{abcd} \neq E_{cdab}^{EP}$

Jeremić et al.

Numerical Formulation

Notation

- Effective stress $\sigma_{ij}^{''} = \sigma_{ij} \alpha \delta_{ij} p$
- σ_{ij} the total Cauchy stress in the mixture
- $\alpha = 1 K_T / K_S \approx 1$
- p the pore fluid pressure
- u_i the displacement of the solid skeleton
- w_i disp. of fluid phase relative to the skeleton of solid
- $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ strain increment of the solid phase,
- ρ, ρ_{s}, ρ_{f} densities of mixture, solid phase and water
- $n = V_{voids} / V_{total}$ porosity,
- $\dot{w}_{i,i}$ rate of change of volume of fluid / volume of mixture

Jeremić et al.

Numerical Formulation

Governing Equations

- Equilibrium Equation of the Mixture:

$$\sigma_{ij,j} - \rho \ddot{u}_i - \rho_f [\ddot{w}_i + \dot{w}_j \dot{w}_{i,j}] + \rho b_i = 0$$

$$\rho = \frac{M_t}{V_t} = \frac{M_s + M_f}{V_t} = \frac{V_{s\rho s + V_f} \rho_f}{V_t} = \frac{V_f}{V_t} \rho_f + \frac{V_t - V_f}{V_t} \rho_s = n\rho_f + (1 - n)\rho_s$$

- Equilibrium Equation of the Fluid $-p_{,i} - R_i - \rho_f \ddot{u}_i - \rho_f [\ddot{w}_i + \frac{\dot{w}_j \dot{w}_{i,j}}{N}]/n + \rho_f b_i = 0$ $R_i = k_{ij}^{-1} \dot{w}_j \quad \text{or} \quad R_i = k^{-1} \dot{w}_i$
- Flow Conservation Equation $\dot{w}_{i,i} + \alpha \dot{\varepsilon}_{ii} + \frac{\dot{p}}{Q} + \frac{n \dot{\rho}_{f}}{\rho_{f}} + \dot{s}_{0} = 0$ $\frac{1}{Q} \equiv \frac{n}{K_{f}} + \frac{\alpha - n}{K_{s}} \cong \frac{n}{K_{f}} + \frac{1 - n}{K_{s}}$

Jeremić et al.

Numerical Formulation

Simplified Governing Equations

- Equilibrium Equation of the Mixture: $\sigma_{ii,i} - \rho \ddot{u}_i - \rho_f \ddot{w}_i + \rho b_i = 0$
- Equilibrium Equation of the Fluid $-p_{,i} - R_i - \rho_f \ddot{u}_i - \frac{\rho_f \ddot{w}_i}{n} + \rho_f b_i = 0$
- Flow Conservation Equation

$$\dot{w}_{i,i} + \alpha \dot{\varepsilon}_{ii} + \frac{\dot{p}}{Q} = 0$$

Jeremić et al.

Numerical Formulation

Modified Governing Equations

$$U_i = u_i + \frac{w_i}{n}$$

$$\sigma_{ij,j}^{''}-(\alpha-n)\rho_{,i}+(1-n)\rho_{s}b_{i}-(1-n)\rho_{s}\ddot{u}_{i}+nR_{i}=0$$

$$-np_{,i}+n\rho_f b_i-n\rho_f \ddot{U}_i-nR_i=0$$

$$-n\dot{U}_{i,i} = (\alpha - n)\dot{\varepsilon}_{ii} + \frac{1}{Q}\dot{p}$$

- ui: three solid displacement
- *p*: pore pressure
- U_i: three fluid displacement

Jeremić et al.

Numerical Formulation

FEM u-p-U Discretization

$$\begin{bmatrix} M_{s} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_{f} \end{bmatrix} \begin{bmatrix} \ddot{\overline{u}} \\ \ddot{\overline{p}} \\ \vdots \\ \overline{\overline{U}} \end{bmatrix} + \begin{bmatrix} C_{1} & 0 & -C_{2} \\ 0 & 0 & 0 \\ -C_{2}^{T} & 0 & C_{3} \end{bmatrix} \begin{bmatrix} \dot{\overline{u}} \\ \dot{\overline{p}} \\ \vdots \\ \overline{\overline{U}} \end{bmatrix} + \begin{bmatrix} K^{EP} & -G_{1} & 0 \\ -G_{1}^{T} & -P & -G_{2}^{T} \\ 0 & -G_{2} & 0 \end{bmatrix} \begin{bmatrix} \overline{u} \\ \overline{\overline{p}} \\ \overline{\overline{U}} \end{bmatrix} = \begin{bmatrix} \overline{f}_{s} \\ 0 \\ \overline{f}_{f} \end{bmatrix}$$

Jeremić et al.

Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

FEM u-p-U Discretization, Index Form

$$\begin{bmatrix} (M_{s})_{\textit{KijL}} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & (M_{f})_{\textit{KijL}} \end{bmatrix} \begin{bmatrix} \ddot{\overline{u}}_{L_{j}} \\ \ddot{\overline{p}}_{N} \\ \vdots \\ \ddot{\overline{u}}_{L_{j}} \end{bmatrix} + \begin{bmatrix} (C_{1})_{\textit{KijL}} & 0 & -(C_{2})_{\textit{KijL}} \\ 0 & 0 & 0\\ -(C_{2})_{\textit{L}jiK} & 0 & (C_{3})_{\textit{KijL}} \end{bmatrix} \begin{bmatrix} \dot{\overline{u}}_{L_{j}} \\ \dot{\overline{p}}_{N} \\ \vdots \\ \vdots \\ \end{bmatrix} + \begin{bmatrix} (K^{EP})_{\textit{KijL}} & -(G_{1})_{\textit{KiM}} & 0\\ -(G_{1})_{\textit{L}jM} & -P_{MN} & -(G_{2})_{\textit{L}jM} \\ 0 & -(G_{2})_{\textit{KiL}} & 0 \end{bmatrix} \begin{bmatrix} \overline{\overline{u}}_{L_{j}} \\ \overline{\overline{p}}_{M} \\ \vdots \\ \overline{\overline{u}}_{L_{j}} \end{bmatrix} = \begin{bmatrix} \overline{f}_{livid}^{solid} \\ \overline{f}_{ki}^{fluid} \\ \overline{f}_{ki}^{fluid} \end{bmatrix}$$

Jeremić et al.

Introduction

Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

FEM u-p-U Matrices/Tensors

$$\begin{split} \boldsymbol{M}_{\boldsymbol{s}} &= (\boldsymbol{M}_{\boldsymbol{s}})_{\boldsymbol{K}ij\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K}}^{\boldsymbol{\nu}}(1-n)\rho_{\boldsymbol{s}}\delta_{ij}\boldsymbol{H}_{\boldsymbol{L}}^{\boldsymbol{\nu}}d\Omega \ ; \ \boldsymbol{M}_{\boldsymbol{f}} &= (\boldsymbol{M}_{\boldsymbol{f}})_{\boldsymbol{K}ij\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K}}^{\boldsymbol{\nu}}n\rho_{\boldsymbol{f}}\delta_{ij}\boldsymbol{H}_{\boldsymbol{L}}^{\boldsymbol{U}}d\Omega \\ \boldsymbol{C}_{1} &= (\boldsymbol{C}_{1})_{\boldsymbol{K}j\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K}}^{\boldsymbol{\nu}}n^{2}\boldsymbol{k}_{ij}^{-1}\boldsymbol{H}_{\boldsymbol{L}}^{\boldsymbol{\nu}}d\Omega \ ; \ \boldsymbol{C}_{2} &= (\boldsymbol{C}_{2})_{\boldsymbol{K}j\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K}}^{\boldsymbol{\nu}}n^{2}\boldsymbol{k}_{ij}^{-1}\boldsymbol{H}_{\boldsymbol{L}}^{\boldsymbol{U}}d\Omega \\ \boldsymbol{C}_{3} &= (\boldsymbol{C}_{3})_{\boldsymbol{K}j\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K}}^{\boldsymbol{\nu}}n^{2}\boldsymbol{k}_{ij}^{-1}\boldsymbol{H}_{\boldsymbol{L}}^{\boldsymbol{U}}d\Omega \\ \boldsymbol{K}^{\boldsymbol{EP}} &= (\boldsymbol{K}^{\boldsymbol{EP}})_{\boldsymbol{K}i\boldsymbol{j}\boldsymbol{L}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K},\boldsymbol{m}}^{\boldsymbol{\nu}}\boldsymbol{D}_{imjn}\boldsymbol{H}_{\boldsymbol{L},\boldsymbol{n}}^{\boldsymbol{\nu}}d\Omega \\ \boldsymbol{G}_{1} &= (\boldsymbol{G}_{1})_{\boldsymbol{K}\boldsymbol{i}\boldsymbol{M}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{K},\boldsymbol{i}}^{\boldsymbol{\nu}}(\alpha-n)\boldsymbol{H}_{\boldsymbol{M}}^{\boldsymbol{p}}d\Omega \ ; \ \boldsymbol{G}_{2} &= (\boldsymbol{G}_{2})_{\boldsymbol{K}\boldsymbol{i}\boldsymbol{M}} = \int_{\Omega} \boldsymbol{n}\boldsymbol{H}_{\boldsymbol{K},\boldsymbol{i}}^{\boldsymbol{\nu}}\boldsymbol{H}_{\boldsymbol{M}}^{\boldsymbol{p}}d\Omega \\ \boldsymbol{P} &= \boldsymbol{P}_{\boldsymbol{N}\boldsymbol{M}} = \int_{\Omega} \boldsymbol{H}_{\boldsymbol{N}}^{\boldsymbol{\rho}}\frac{1}{\boldsymbol{Q}}\boldsymbol{H}_{\boldsymbol{M}}^{\boldsymbol{p}}d\Omega \end{split}$$

Jeremić et al.

Numerical Formulation

FEM u-p-U Loads

$$\begin{split} \overline{f}_{Ki}^{solid} &= (f_1^u)_{Ki} - (f_4^u)_{Ki} + (f_5^u)_{Ki} \\ \overline{f}_{Ki}^{fluid} &= -(f_1^U)_{Ki} + (f_2^U)_{Ki} \\ (f_1^u)_{Ki} &= \int_{\Gamma_t} H_K^u n_j \sigma_{ij}^{''} d\Gamma \\ (f_4^u)_{Ki} &= \int_{\Gamma_p} H_K^u (\alpha - n) n_i p d\Gamma \\ (f_5^u)_{Ki} &= \int_{\Omega} H_K^u (1 - n) \rho_s b_i d\Omega \\ (f_1^U)_{Ki} &= \int_{\Gamma_p} n H_K^U n_i p d\Gamma \\ (f_2^U)_{Ki} &= \int_{\Omega} n H_K^U \rho_f b_i d\Omega \end{split}$$

Jeremić et al.

Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

Coupled FEM Discretization, Matrix Form

- Coupled FEM, full matrix form:

$$\begin{bmatrix} M_{s} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_{f} \end{bmatrix} \begin{bmatrix} \ddot{\ddot{u}} \\ \ddot{\ddot{p}} \\ \vdots \\ \ddot{\ddot{U}} \end{bmatrix} + \begin{bmatrix} C_{1} & 0 & -C_{2} \\ 0 & 0 & 0 \\ -C_{2}^{T} & 0 & C_{3} \end{bmatrix} \begin{bmatrix} \dot{\ddot{u}} \\ \dot{\ddot{p}} \\ \vdots \\ \ddot{U} \end{bmatrix} + \\ + \begin{bmatrix} \mathcal{K}^{EP} & -G_{1} & 0 \\ -G_{1}^{T} & -P & -G_{2}^{T} \\ 0 & -G_{2} & 0 \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{p} \\ \vdots \\ U \end{bmatrix} = \begin{bmatrix} \bar{f}_{s} \\ 0 \\ \bar{f}_{f} \end{bmatrix}$$

- Coupled FEM, generalized matrix form: $M_{PQ} \ddot{u}_P + C_{PQ} \dot{u}_P + K_{PQ} \bar{u}_P = F_Q$

Jeremić et al.

Inelastic, Coupled Analysis

Summary 000

Numerical Formulation

Coupled FEM, Residuals, Equilibrium

- Nonlinear coupled FEM residuals, equilibrium:

$$egin{aligned} R_Q &= \ F_Q - \left(M_{PQ} ~\ddot{ar{u}}_P + C_{PQ} ~\dot{ar{u}}_P + K_{PQ} ~ar{u}_P
ight) \end{aligned}$$

Jeremić et al.

Analysis Examples

Outline

Introduction

Inelastic, Coupled Analysis Numerical Formulation Analysis Examples

Summary

Jeremić et al.

Coupled Analysis in Practice

- The coupled u-p-U formulation is very powerful
- The u-p-U formulation is useful for many problems
- ESSI: internal fluids problems
- ESSI: external fluid problems

Jeremić et al.

Liquefaction as Base Isolation

Jeremić et al.

Liquefaction, Wave Propagation

Jeremić et al.

Introduction 0000000 Inelastic, Coupled Analysis

Summary 000

Analysis Examples

Liquefaction, Stress-Strain Response

Jeremić et al.

Pile in Liquefiable Soil

Jeremić et al.

Pile in Liquefiable Soil

Jeremić et al.

Buoyant Force Effects

Displacements UZ

Jeremić et al.

Analysis Examples

Building on Liquefiable Soil

Pore Fluid Pressures

(MP4) (MP4)

Jeremić et al.

Analysis Examples

Solid/Structure-Fluid Interaction

(MP4)

alpha.water -4.206e-07 0.25 0.5 0.75 1.000e+00

Generalized_Displacements Magnitude 0.000++00 0.0039 0.0078 0.012 1.551+-02

Jeremić et al.

Outline

Introduction

Inelastic, Coupled Analysis Numerical Formulation Analysis Examples

Summary

Jeremić et al.

Analysis of ESSI Systems

- Soil, elastic, elastic-plastic/inelastic
 - Dry, single phase
 - Unsaturated/partially saturated
 - Fully saturated
- Contact/Interface/Joint, inelastic
 - Dry, single phase, Normal, hard and soft, gap open/close
 - Dry, single phase, Tangential, friction, nonlinear
 - Fully saturated, suction/excess pressure, buoyant force
- Structure inelasticity/damage
 - Nonlinear/inelastic 1D fiber beam
 - Nonlinear/inelastic 3D shell/wall/plate element
- Fluid-Solid interaction, open surface fluid

Jeremić et al.

- Reduction of modeling uncertainty
- Choice of analysis level of sophistication
- Numerical analysis to predict and inform
- Engineer needs to know!
- The Real ESSI Simulator system

http://real-essi.info

Jeremić et al.