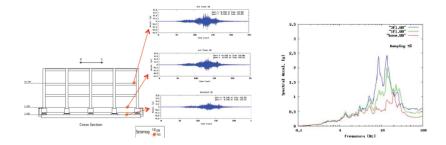
Asses and Increase Resilience of NEF SSI

UCDAVIS LIBINI

Fukushima NPP: Damage, Inelastic Behavior

Control Rod Drive System DAMAGE [TEPCO, 2023]


Loss of Coolant Accident, LOCA [Japanese Diet NAIIC, 2012]

Jeremić et al.

+

UCDAVIS

Fukushima NPP: Vertical Isolator Amplification +80%

Base isolation, VERTICAL amplification (!) [JAEE/LLNL, 2012]

Jeremić et al.

Assessing and Increasing Resilience of Nuclear Energy Facilities for Dynamic, Seismic Loads

Boris Jeremić

University of California, Davis Lawrence Berkeley National Lab

> DOE-NRC NPH October 2024

Jeremić et al.

Improve static and dynamic analysis of Soil-Structure Interaction (SSI) for Nuclear Energy Facilities (NEF)

Inelastic behavior of NEF SSI systems is always present

Reduce modeling uncertainty

Improve analysis sophistication level

Analyze, propagate parametric uncertainty

Goal: Predict and Inform

Engineer needs to know all what ifs!

Jeremić et al.

Asses and Increase Resilience of NEF SSI

Dedication

Robert P. Kennedy, 1939-2018

"Response of a soil structure system is nonlinear, and I would really like to know what that response is!"

Nebojša Orbović, 1962-2021

"As an engineer, I have to know what are response sensitivities to modeling choices and model parameters."

Jeremić et al.

Analysis of NEF Soil-Structure Systems

- Nonlinear, inelastic material behavior of SSI systems
 - Soil: always inelastic
 - Interfaces: always inelastic
 - Concrete: usually inelastic
 - Steel: sometimes inelastic
- Numerical analysis has to follow physics
- Numerical analysis programs to provide all necessary modeling (models, elements) and simulation (algorithms, methods) features
- Verification and Validation (QA) is really important
 - Quality of numerical discretization, algorithms (math.)
 - Quality of models (phys.)

Jeremić et al.

Asses and Increase Resilience of NEF SSI •••••••• Summary o

Resilient NEF SSI Systems

Stress Test Motions, Inclined Wave $\theta = 60^{\circ}$

Jeremić et al.

Asses and Increase Resilience of NEF SSI

Resilient NEF SSI Systems

SMR ESSI, Variation in Input Frequency, $\theta = 60^{\circ}$

Summary

Jeremić et al.

Seismic Energy Propagation in ESSI System

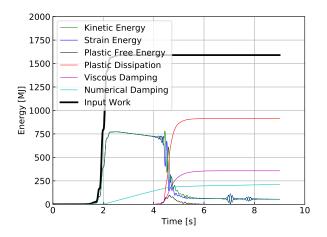
Energy input, forces/loads, static/dynamic

Energy dissipation outside SSI domain: SSI system oscillation radiation Reflected waves radiation

Energy dissipation/conversion inside SSI domain:

Inelasticity: soil/rock, interfaces, structure, dissipators Viscous coupling: internal, pore and external fluids Energy deflectors, meta-materials/meta-devices

Numerical energy dissipation/production



Jeremić et al.

UCDAVIS

Resilient NEF SSI Systems

Energy Dissipation Control, Analysis

Jeremić et al.

Resilient NEF SSI Systems

Design Alternatives

Energy dissipation in structure More structural damage Energy dissipation in soil Less structural damage

Jeremić et al.

Resilient NEF SSI Systems

LWR NEF, Energy Dissipation

Jeremić et al.

Resilient NEF SSI Systems

SMR NEF, Energy Dissipation

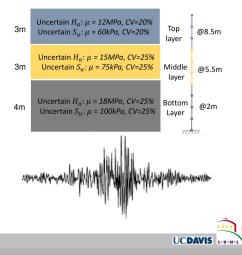
Jeremić et al.

Forward and Bakward Uncertainty Propagation

Time Domain Stochastic Elastic-Plastic FEM $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$

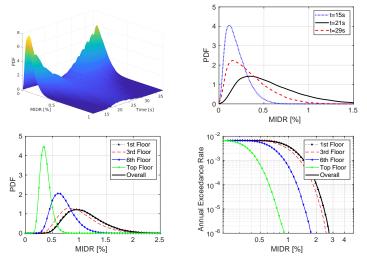
- Input random field and random process, non-Gaussian, heterogeneous/non-stationary: Multi-dimensional Hermite Polynomial Chaos (PC) with known coefficients
- Output response process: Multi-dimensional Hermite PC with unknown coefficients

<u>Results</u> \rightarrow Probability Distribution Functions (PDF) ($u_i, \sigma_{ij}, \epsilon_{ij}...$)


 $\underline{Sensitivities} \leftarrow Sobol \ sensitivities \ to \ input \ uncertainties$

Jeremić et al.

Sensitivity Example: Probabilistic SSI


- Uncertain material: uncertain random field, marginally lognormal distribution, exponential correlation length 10m
- Uncertain seismic rock motions: seismic scenario M=7, R=50km

Jeremić et al.

Seismic Risk Analysis

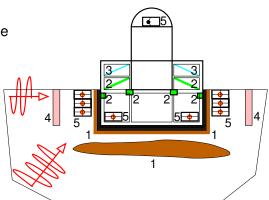
Engineering demand parameter (EDP): Maximum inter-story drift ratio (MIDR)

Sensitivity Analysis

Total variance in PGA, in this particular case (!), dominated by uncertain ground motions

49% from uncertain rock motions at depth

2% from uncertain soil


49% from interaction of uncertain rock motions and uncertain soil

Jeremić et al.

Increase Resilience of NEF SSI Systems

- 1. Plasticity of soil, structure, and the soil-foundation interface
- 2. Energy dissipators, energy sinks
- 3. Viscous dampers and viscous coupling
- 4. External trenches
- 5. Meta-materials, meta-devices

Jeremić et al.

LICDA

Summary

- Sophisticated, realistic analysis: improve design, safety
- Improved infrastructure economy, and (!) $\textit{CO}_{2}\downarrow$
- Education and Training is the Key !
- Analysis tool: Real-ESSI Simulator
- Students/PostDocs: Yang, Cheng, Tafazzoli, Feng, Yang, Sinha, Wang, Pisanó, Abell, Tafazzoli, Sett, Vilhar, Jeong, Jie, Preisig, Liu, Jain, Liao, Wu, Li, Tasiopoulou, Watanabe, Luo, Cheng, Yang, Kanellopoulos, Staszewska ...
- Collaboration/Funding, much appreciated: US-DOE, US-NRC, US-NSF, US-DOD, Caltrans, US-FEMA/ATC, CNSC-CCSN, UN-IAEA, CERN, ETH, CH-ENSI, Basler&Hofmann AG, Shimizu Corp.

