Enabling Simulation and Information Technologies
Solutions Schemes and
Challenges for Very large Models

Boris Jeremić
Department of Civil and Environmental Engineering
University of California, Davis
Motivation

- Create high fidelity models of constructed facilities (bridges, buildings, port structures, dams...).
- Models will live concurrently with the physical system they represent.
- Models to provide owners and operators with the capabilities to assess operations and future performance.
- Use observed performance to update and validate models through simulations.

- Niklaus Wirth’s Law (NK of Pascal and Modula fame): Software is slowing faster than the hardware is accelerating
- in other words:

 Moore giveth, and OpenSees taketh away.
Application Domain

- Inference \Rightarrow Based on **physics** or **statistics**
- Validation domain \rightarrow non–convex aggregation of tests
- Physical experiments provide for non–overlapping validation domain

Jeremić, PEER Annual Meeting, 2004
Somewhat Detailed Models
Large Scale Numerical Simulation Goal

- Scalable parallel finite element method for inelastic computations (solid and structural elements)
- Available for a range of sequential and parallel machines, including clusters, grids of machines and clusters (DMPs), and also multiprocessors (SMPs)
- Public domain, portable platform.
- Extensible (directly usable!) to a wide area grids or resources
Inelastic Parallel Problem

- Presence of elastic and inelastic computational domains.
- Difference in computational load for elastic and inelastic state determination leads to computational load imbalance.
- This leads to imbalanced computations, very inefficient, not much gain from using parallelization.
- Internal state determination can take as much as 80% of CL.

Loading Stage
- Self weight, construction stages, excavations...

Load Increments
- Path dependent materials, mimic physics, static of dynamic

Equilibrium Iterations
- Explicit (single step), iterations (equilibrium within tolerance)
- No equilibrium yet
- Next load increment
- Next load stage
- Finish

Jeremić, PEER Annual Meeting, 2004
Development of the Plastic Domain Decomposition

- Based on work of Karypis et al.
- Multilevel Graph Partitioning
 - graph coarsening
 - initial partitioning
 - multilevel refinement
- Par–METIS system
- Weighted graphs edges and graph nodes
- Zoltan framework used as an interface layer for extensibility
Plastic Domain Decomposition

• Graph partitioning → balance multiple phases simultaneously, while also minimizing the inter-processor communications costs
• It is a multi-objective optimization problem (minimize both the inter-processor communications, the data redistribution costs and create balanced partitions)
• Take into the account (deterministic or probabilistic):
 – heterogeneous element loads that change in each iteration
 – heterogeneous processor performance (multiple generations nodes)
 – inter-processor communications (LAN or WAN)
 – data redistribution costs
• Follows standard interface (more or less)
• Works on SMPs, local DMPs, grids of computers

Jeremić, PEER Annual Meeting, 2004
• Work flow sequencing (Rational Rose)

• Designed and tested on a low budget local DMP (LAN and WAN)

• Extension to tasks other than internal state determination and SES (remote data bases, model discovery, visualization)
PDD: Elastic Decomposition

• 16 subdomains,
• approx. equal number of elastic elements per domain,
• minimized inter-domain boundary
• OpenSees \Rightarrow Zoltan \Rightarrow Par–METIS
PDD: Mild Plasticity

- Small amount of plastic elements close to the pile
- Note smaller domain close to the pile
- Note also somewhat increased inter–domain boundary
PDD: Severe Plasticity

- Note small number of elements per CL heavy domains
- Note also two large, mostly elastic, subdomains
- Good DD for internal state determination, but bad for SES
- Use graph–partitioner to optimize SES phase using info on imbalance and network speed
Grid Services

• In addition to internal state determination and solving system of equations, other computational jobs can be distributed

• Data bases of
 – data bases of models
 – repositories of input motions
 – results storage providers
 – visualization (post–processing, rendering)

• A multi–objective (slack) optimization problem on larger scale
 – minimize network (inter–processor) communication
 – minimize data and job redistribution cost
 – balance computational work
Current Grid Resources

Application Service Providers
- GeoWulf cluster (UCD)
- Koyaanisqatsi SMP (UCD)
- Millenium Cluster (UCB)
- alpha-8 SMP (UCB)
- Seaborg (NERSC-LBL)
- Geomechanics SML (UCD)

Simulation Framework
- UMFPACK
- Blitz++
- LAPACK
- Par-METIS
- SuperLU
- CBLAS
- ZOLTAN
- OpenSees-core

Application Testing Providers
- GeoWulf cluster (DMP parallel)
- GeoWulf-dev.engr.ucdavis.edu
- bechtel.colorado.edu

Strong Motions Input
- Quake project (CMU)
- UCB SeismoLab
- User defined

Visualization Providers
- sokocalo.engr.ucdavis.edu
- mali.engr.ucdavis.edu
- dowitcher.ce.berkeley.edu
- CIPIC (UCD)

Storage Service Provider
- GeoWulf-BigDisk.engr.ucdavis.edu
- Mil-4.ce.berkeley.edu
- cml00.engr.ucdavis.edu
- bechtel.colorado.edu

Virtual Organization

Jeremić, PEER Annual Meeting, 2004
Conclusions

Jeremić, PEER Annual Meeting, 2004