#### I-880 Bridge Testbed Simulations: Soil–Foundation–Structure Interaction Issues

#### **Boris Jeremić**

Department of Civil and Environmental Engineering University of California, Davis



1 в

# I-880 Bridge SFSI Issues

- Seismic response of I–880 viaduct using performance based engineering
- Hierarchical set of SFSI simulations models developed to represent engineering demand parameters (EDP)
- Local site conditions (inelastic SFSI interaction problem)
- Wave propagation over the bridge length (scale problem)
- Single point (spatial) far field input motions
- Stochastic distribution of materials (properties) over spatial scales



#### I-880: Where in the World?





# I-880: Local Site Conditions



- Adjacency of foundations in soft and stiff soil
- Spatial distribution of soil materials (?)



# I-880: Foundation System











# I-880: Hierarchy of Models





# I-880: Systems Approach Where are we Going

- Currently investigated SFSI issues
  - Wave propagation over the bridge length (scale problem)
  - Single point (spatial) far field input motions
  - Stochastic distribution of materials (properties) over spatial scales
- Application of the Domain Reduction Method to the bridge system simulations



# **Domain Reduction Method (DRM)**

- Work by Bielak et al. (since 1986, current paper: 2003, Bulletin of the Seismological Society of America) at CMU.
- Modular, two step procedure for large 3D dynamics problems.
  - Background wave field on simplified domain
  - Local wave field (coupled through acc. and disp.)
- Green's functions solutions, Quake system, SCEC database, SHAKE, 3D downhole arrays,





8 в

# **DRM: Dynamic (Seismic) Forces**

$$\left\{\begin{array}{c}P_i^{eff}\\P_b^{eff}\\P_e^{eff}\end{array}\right\} = \left\{\begin{array}{c}0\\-M_{be}^{\Omega+}\ddot{u}_e^0 - K_{be}^{\Omega+}u_e^0\\M_{eb}^{\Omega+}\ddot{u}_b^0 + K_{eb}^{\Omega+}u_b^0\end{array}\right\}$$



- Seismic forces  $P_e$  replaced by the effective nodal forces  $P^{eff}$ ,
- $P^{eff}$  involve only submatrices,  $M_{be}, K_{be}, M_{eb}, K_{eb}$
- They vanish everywhere except in the single layer of elements in  $\Omega^+$  adjacent to  $\Gamma.$
- $\bullet$  The material inside  $\Omega$  does not have to be linear elastic



### SSI Model



#### SSI Model: Stiff Soil



Free field

SFSI



#### SSI Model: Soft Soil



Free field

SFSI



### **SSI Model: Seismic Amplification**



Stiff soil

Soft soil



# **Currently in Works**

- Generation of background wave fields from point seismic motions data
- Development of full soil-foundation-structure bridge model to investigate influences of
  - Local site amplifications
  - Coherency loss (stochastic variations)
  - Time lag (wave passage effects)

