I-880 Bridge Testbed Simulations: Soil–Foundation–Structure Interaction Issues

Boris Jeremić
Department of Civil and Environmental Engineering
University of California, Davis
I–880 Bridge SFSI Issues

- Seismic response of I–880 viaduct using performance based engineering

- Hierarchical set of SFSI simulations models developed to represent engineering demand parameters (EDP)

- Local site conditions (inelastic SFSI interaction problem)

- Wave propagation over the bridge length (scale problem)

- Single point (spatial) far field input motions

- Stochastic distribution of materials (properties) over spatial scales

Jeremić, PEER Annual Meeting, 2004
I–880: Where in the World?

Jeremić, PEER Annual Meeting, 2004
I–880: Local Site Conditions

- Adjacency of foundations in soft and stiff soil
- Spatial distribution of soil materials (?)
I–880: Foundation System

- Similar pile group beneath all piers
I–880: Hierarchy of Models
I–880: Systems Approach
Where are we Going

- Currently investigated SFSI issues
 - Wave propagation over the bridge length (scale problem)
 - Single point (spatial) far field input motions
 - Stochastic distribution of materials (properties) over spatial scales

- Application of the Domain Reduction Method to the bridge system simulations
Domain Reduction Method (DRM)

- Work by Bielak et al. (since 1986, current paper: 2003, Bulletin of the Seismological Society of America) at CMU.
- Modular, two step procedure for large 3D dynamics problems.
 - Background wave field on simplified domain
 - Local wave field (coupled through acc. and disp.)
- Green’s functions solutions, Quake system, SCEC database, SHAKE, 3D downhole arrays,
DRM: Dynamic (Seismic) Forces

\[
\begin{bmatrix}
P_{i}^{\text{eff}} \\
P_{b}^{\text{eff}} \\
P_{e}^{\text{eff}}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
-M_{be}^{\Omega+}\ddot{u}_{e}^{0} - K_{be}^{\Omega+}u_{e}^{0} \\
M_{eb}^{\Omega+}\ddot{u}_{b}^{0} + K_{eb}^{\Omega+}u_{b}^{0}
\end{bmatrix}
\]

- Seismic forces P_{e} replaced by the effective nodal forces P_{i}^{eff},
- P_{i}^{eff} involve only submatrices, $M_{be}, K_{be}, M_{eb}, K_{eb}$
- They vanish everywhere except in the single layer of elements in Ω^{+} adjacent to Γ.
- The material inside Ω does not have to be linear elastic
SSI Model: Stiff Soil

Free field SFSI

Jeremić, PEER Annual Meeting, 2004
SSI Model: Soft Soil

Free field

SFSI

Jeremić, PEER Annual Meeting, 2004
SSI Model: Seismic Amplification

Stiff soil

Soft soil

Jeremić, PEER Annual Meeting, 2004
Currently in Works

• Generation of background wave fields from point seismic motions data

• Development of full soil–foundation–structure bridge model to investigate influences of
 – Local site amplifications
 – Coherency loss (stochastic variations)
 – Time lag (wave passage effects)